BA01966F/14/FR/03.21 71537538 2021-08-16

Manuel de mise en service Gammapilot FMG50

Mesure radiométrique

Contenu du présent manuel de mise en service

Le présent manuel de mise en service décrit l'installation et la mise en service du transmetteur radiométrique compact Gammapilot FMG50. Il intègre toutes les fonctions nécessaires aux applications de mesure standard. De plus, le Gammapilot FMG50 comprend de nombreuses fonctions supplémentaires d'optimisation du point de mesure et de conversion des valeurs mesurées. Ces fonctions ne sont pas décrites dans le présent manuel de mise en service.

Sommaire

1	Informations relatives au
	document
1.1 1.2	Fonction du document8Symboles utilisés81.2.1Symboles d'avertissement81.2.2Symboles pour certains types d'informations et graphiques
1.3	Documentation91.3.1Information technique (TI)1.3.2Instructions condensées (KA)1.3.3Conseils de sécurité (XA)
1.4 1.5	Termes et abréviations10Marques déposées10
2	Consignes de sécurité de base 11
2.1 2.2 2.3 2.4 2.5	Exigences imposées au personnel11Utilisation conforme11Montage, mise en service et configuration11Zone explosible12Protection contre les rayonnements122.5.1Règles fondamentales de protectioncontre les rayonnements12
2.6 2.7 2.8	Sécurité au travail13Sécurité de fonctionnement13Sécurité du produit142.8.1Marquage CE142.8.2Conformité EAC14
3	Description du produit 15
3.1	Construction du produit 15
3.2	3.1.1 Composants du FMG50 15 Plaques signalétiques 16 3.2.1 Plaque signalétique de l'appareil 16
3.3	Contenu de la livraison
3.4	Documentation correspondante163.4.1Instructions condensées163.4.2Description des fonctions de l'appareil17
	3.4.3 Conseils de sécurité 17
4	Montage 18
4.1	Réception des marchandises, identification
	des produits, transport, stockage184.1.1Réception des marchandises184.1.2Identification du produit184.1.3Adresse du fabricant184.1.4Transport au point de mesure184.1.5Stockage18
4.2	Conditions de montage194.2.1Généralités194.2.2Dimensions, poids204.2.3Conditions de montage pour la mesure de niveau22

8

 détection de niveau	 23 24 25 25 26 27 27 27
 4.2.5 Conditions de montage pour la mesure de masse volumique	24 25 25 26 27 27
 mesure de masse volumique 4.2.6 Conditions de montage pour la mesure d'interface 4.2.7 Conditions de montage pour la mesure du profil de masse volumique (DPS) 4.2.8 Conditions de montage pour la mesure de concentration 4.2.9 Conditions de montage pour la mesure de concentration avec des produits rayonnants 4.2.10 Conditions de montage pour la mesure de débit 4.3 Contrôle du montage 	 24 25 25 26 27 27 27
 4.2.6 Conditions de montage pour la mesure d'interface 4.2.7 Conditions de montage pour la mesure du profil de masse volumique (DPS) 4.2.8 Conditions de montage pour la mesure de concentration 4.2.9 Conditions de montage pour la mesure de concentration avec des produits rayonnants 4.2.10 Conditions de montage pour la mesure de débit 4.3 Contrôle du montage 	25 25 26 27 27
 4.2.7 Conditions de montage pour la mesure du profil de masse volumique (DPS)	25 25 26 27 27
 4.2.7 Conditions de montage pour la mesure du profil de masse volumique (DPS)	25 26 27 27
 4.2.8 Conditions de montage pour la mesure de concentration 4.2.9 Conditions de montage pour la mesure de concentration avec des produits rayonnants 4.2.10 Conditions de montage pour la mesure de débit 4.3 Contrôle du montage 	25 26 27 27
 4.2.8 Conditions de montage pour la mesure de concentration	26 27 27
 4.2.9 Conditions de montage pour la mesure de concentration 4.2.9 Conditions de montage pour la mesure de concentration avec des produits rayonnants 4.2.10 Conditions de montage pour la mesure de débit 4.3 Contrôle du montage 	26 27 27
 4.2.9 Conditions de montage pour la mesure de concentration avec des produits rayonnants	27 27
 mesure de concentration avec des produits rayonnants	27 27
 produits rayonnants	27 27
4.2.10 Conditions de montage pour la mesure de débit4.3 Contrôle du montage	27
Mesure de débit4.3Contrôle du montage	27
4.3 Controle du montage	
	28
5 Raccordement électrique	29
5.1 Compartiment de raccordement	29
5.2 4 20 mA Raccordement HART	29
5.3 Affectation des bornes	30
5.4 Entrées de câble	30
5.5 Compensation de potentiel	30
5.6 Protection contre les surtensions (en option) .	31
5.7 Section nominale	31
5.8 Connecteurs de bus de terrain	31
5.8.1 Affectation des proches du	ວງ
5.8.2 Recordement des appareils avec	54
connecteur Harting Han7D	32
5.9 FMG50 avec RIA15	33
5.9.1 Raccordement de l'appareil HART et	
RIA15 sans rétroéclairage	33
5.9.2 Raccordement de l'appareil HART et	
RIA15 avec rétroéclairage	34
5.9.3 FMG50, RIA15 avec résistance de	
5.9.3 FMG50, RIA15 avec résistance de communication HART installée	34
5.9.3 FMG50, RIA15 avec résistance de communication HART installée 5.10 Câblage	34 35
 5.9.3 FMG50, RIA15 avec résistance de communication HART installée 5.10 Câblage	34 35 36
 5.9.3 FMG50, RIA15 avec résistance de communication HART installée 5.10 Câblage	34 35 36 36
 5.9.3 FMG50, RIA15 avec résistance de communication HART installée 5.10 Câblage	34 35 36 36 36
 5.9.3 FMG50, RIA15 avec résistance de communication HART installée 5.10 Câblage 5.11 Exemples de câblage 5.11.1 Détection du seuil 5.11.2 Mode cascade avec 2 unités FMG50 5.11.3 Mode cascade avec plus de 2 unités FMG50 	34 35 36 36 36 38
 5.9.3 FMG50, RIA15 avec résistance de communication HART installée 5.10 Câblage 5.11 Exemples de câblage 5.11.1 Détection du seuil 5.11.2 Mode cascade avec 2 unités FMG50 5.11.3 Mode cascade avec plus de 2 unités FMG50 5.11.4 Applications Ex en liaison avec le 	34 35 36 36 36 38
 5.9.3 FMG50, RIA15 avec résistance de communication HART installée 5.10 Câblage	34 35 36 36 36 38 40
 5.9.3 FMG50, RIA15 avec résistance de communication HART installée 5.10 Câblage 5.11 Exemples de câblage 5.11.1 Détection du seuil 5.11.2 Mode cascade avec 2 unités FMG50 5.11.3 Mode cascade avec plus de 2 unités FMG50 5.11.4 Applications Ex en liaison avec le RMA42 5.11.5 Applications SIL pour le Gammapilot 	34 35 36 36 36 38 40
 5.9.3 FMG50, RIA15 avec résistance de communication HART installée 5.10 Câblage 5.11 Exemples de câblage 5.11.1 Détection du seuil 5.11.2 Mode cascade avec 2 unités FMG50 5.11.3 Mode cascade avec plus de 2 unités FMG50 5.11.4 Applications Ex en liaison avec le RMA42 5.11.5 Applications SIL pour le Gammapilot en liaison avec le RMA42 	34 35 36 36 36 38 40 40
 5.9.3 FMG50, RIA15 avec résistance de communication HART installée 5.10 Câblage 5.11 Exemples de câblage 5.11.1 Détection du seuil 5.11.2 Mode cascade avec 2 unités FMG50 5.11.3 Mode cascade avec plus de 2 unités FMG50 5.11.4 Applications Ex en liaison avec le RMA42 5.11.5 Applications SIL pour le Gammapilot en liaison avec le RMA42 5.12 Contrôle du raccordement 	 34 35 36 36 36 38 40 40 40 40
 5.9.3 FMG50, RIA15 avec résistance de communication HART installée 5.10 Câblage 5.11 Exemples de câblage 5.11.1 Détection du seuil 5.11.2 Mode cascade avec 2 unités FMG50 5.11.3 Mode cascade avec plus de 2 unités FMG50 5.11.4 Applications Ex en liaison avec le RMA42 5.11.5 Applications SIL pour le Gammapilot en liaison avec le RMA42 5.12 Contrôle du raccordement 6 Configuration 	 34 35 36 36 36 38 40 40 40 40 40 40 40 40 40
 5.9.3 FMG50, RIA15 avec résistance de communication HART installée 5.10 Câblage	 34 35 36 36 36 38 40 40 40 40 40 42 42 42

	6.1.2 Configuration via FieldCare/	
	DeviceCare	42
	6.1.3 Configuration via RIA 15 (afficheur	()
	separe)	42
67	Autres options de configuration	42 73
0.2	6.2.1 Configuration sur site	43
	6.2.2 Configuration via l'interface service .	43
	6.2.3 Configuration via RIA15	44
	6.2.4 Configuration via technologie sans fil	
	Bluetooth [®]	44
	6.2.5 Heartbeat Verification/Monitoring	45
6.3	Verrouillage/déverrouillage de la	
	configuration	46
	6.3.1 Verrouillage du sontware	40 46
64	Rétablissement de la configuration par	40
0.1	défaut	46
7	Mise en service	48
71	Contrôle du montage et contrôle du	
/.1	raccordement	48
7.2	Mise en service au moven de l'assistant de	10
	mise en service	48
	7.2.1 Généralités	48
	7.2.2 Identification de l'appareil	49
	7.2.3 Paramètres de mesure	49
	7.2.4 Etalonnage	52
73	7.2.5 Mode esclave	70 77
ر.۱	7 3 1 Frigences	77
	7.3.2 App SmartBlue	77
7.4	Mise en service par configuration sur site	77
	7.4.1 Étalonnage de base du niveau	78
	7.4.2 LED d'état et de mise en marche	78
7.5	Mise en service de la compensation de	70
	densite avec le RSG45 (calculateur gamma) .	79
	7.5.1 Scellario 1 . compensation de la	
	et de pression	79
	7.5.2 Scénario 2 : compensation de densité	
	via mesure de densité du gaz	
	FMG50	82
7.6	Configuration et réglages via RIA15	84
7.7	Accès aux données - Sécurité	84
	/./.1 Verroullage par mot de passe dans	0/
	7.7.2 Verrouillage du bardware	04 8/i
	7 7 3 Technologie sans fil Bluetooth [®] (en	04
	option)	84
	7.7.4 Verrouillage du RIA15	84
7.8	Aperçu du menu de configuration	84
8	Diagnostic et suppression des	
	défauts	85
8.1	Messages d'erreur système	85
	8.1.1 Signal d'erreur	85

8.2 8 3	8.1.2 Erreurs	Types d'erreur d'étalonnage possibles	85 85 86
8.4	Événen	nent de diagnostic	87
	8.4.1	Événement de diagnostic dans l'outil	87
	8.4.2	Liste des événements de diagnostic	07
	8.4.3	dans l'outil de configuration Affichage des événements de	87
0.5	ń,	diagnostic	89
8.5	Evenen	nent de diagnostic sur le RIA15	89
8.6	Gamma	Dringings de base	90
	8.6.2	Réaction au rayonnement de	90
		gammagraphie	90
	8.6.3	Seulls de reconnaissance de	
		cas de rayonnement excessif	91
	864	Réglages de gammagraphie	91
	865	Paramètre Gammagraphy detection	91
	866	Paramètre Gammagraphy hold time	92
	8.6.7	Paramètre Gammagraphy limit	92
	8.6.8	Paramètre Gammagraphy sensitivity .	92
8.7	Réétalo	nnage de la densité pour un	
	étalonn	nage multipoint	92
	8.7.1	Principes de base	92
	8.7.2	Exécution d'un réétalonnage de	~ ~
0.0	Horlog	densite pour l'etalonnage multipoint .	93
0.0	décroise	sance	93
	881	Principes de base	93
	8.8.2	Réglage de l'horloge temps réel	93
8.9	Compor	rtement en cas de tension aux bornes	0.4
		Principes de base	94 Q/i
8 10	Historia		94
0.10	8.10.1	Historique du firmware	95
	8.10.2	Historique du hardware	95
9	Maint	tenance et réparation	96
9.1	Nettova	- age	96
9.2	Réparat	tion	96
	9.2.1	Concept de réparation	96
	9.2.2	Réparations des appareils avec	
		certificat Ex	96
9.3	Rempla	cement	96
	9.3.1	Mesure de niveau et détection de	
	9.3.2	seuil	96
			06
		concentration	90
	9.3.3	HistoROM	90 97
9.4	9.3.3 Pièces d	concentration HistoROM de rechange	90 97 97
9.4 9.5	9.3.3 Pièces o Retour	concentration HistoROM	97 97 97 97
9.4 9.5 9.6	9.3.3 Pièces o Retour Mise au	concentration	90 97 97 97 97
9.4 9.5 9.6	9.3.3 Pièces o Retour Mise au 9.6.1	concentration HistoROM de rechange de matériel rebut Mise au rebut des batteries	97 97 97 97 97 97

10	Accessoires	99
10.1	Commubox FXA195 HART	. 99
10.2	Field Xpert SFX350, SFX370, SMT70	. 99
10.3	Dispositif de montage (pour la mesure et la	
	détection de niveau)	100
	10.3.1 Montage de l'étrier de fixation	100
	10.3.2 Instructions de montage	100
	10.3.3 Utilisation	103
10.4	Dispositif de fixation pour mesure de densité	
	FHG51	103
	10.4.1 FHG51-A#1	103
	10.4.2 FHG51-A#1PA	104
	10.4.3 FHG51-B#1	104
	10.4.4 FHG51-B#1PB	104
	10.4.5 FHG51-E#1	104
	10.4.6 FHG51-F#1	104
10.5	Afficheur de process RIA15	104
	10.5.1 Résistance de communication HART	105
11	Caractéristiques techniques	106
11.1	Caractéristiques techniques supplémentaires	106
11.2	Documentation complémentaire	106
	11.2.1 Modulateur FHG65	106
	11.2.2 Conteneur de source FOG60	106
	11.2.3 Conteneur de source FOG61. FOG62	106
	11.2.4 Conteneur de source FOG63	106
	11.2.5 Conteneur de source FOG66	106
	11.2.6 Dispositif de montage FHG51	106
	11.2.7 Dispositif de montage pour	
	Gammapilot FMG50	106
	11.2.8 Écran thermique pour Gammapilot	
	FMG50	106
	11.2.9 Capot de protection climatique pour	
	boîtier à double compartiment	107
	11.2.10 Afficheur VU101 Bluetooth [®]	107
	11.2.11 Afficheur de process RIA15	107
	11.2.12 Memograph M, RSG45	107
	11.2.13 Collimateur (côté capteur) pour	
	Gammapilot FMG50	107
	-	
12	Certificats et agréments	108
12.1	Sécurité fonctionnelle	108
12.2	Heartbeat Monitoring + Verification	108
12.3	Agrément Ex	108
	12.3.1 Smartphones et tablettes	
	antidéflagrants	108
12.4	Autres normes et directives	108
12.5	Certificats	108
12.6	Marquage CE	109
12.7	EAC	109
12.8	Sécurité antidébordement	109

1 Informations relatives au document

1.1 Fonction du document

Le présent manuel de mise en service fournit toutes les informations qui sont nécessaires dans les différentes phases du cycle de vie de l'appareil, à savoir :

- Identification du produit
- Réception des marchandises
- Stockage
- Montage
- Raccordement
- Fonctionnement
- Mise en service
- Suppression des défauts
- Maintenance
- Mise au rebut

1.2 Symboles utilisés

1.2.1 Symboles d'avertissement

ATTENTION

Cette remarque attire l'attention sur une situation dangereuse pouvant entraîner des blessures corporelles de gravité légère ou moyenne, si elle n'est pas évitée.

A DANGER

Cette remarque attire l'attention sur une situation dangereuse entraînant la mort ou des blessures corporelles graves, si elle n'est pas évitée.

AVIS

Cette remarque contient des informations relatives à des procédures et éléments complémentaires, qui n'entraînent pas de blessures corporelles.

AVERTISSEMENT

Cette remarque attire l'attention sur une situation dangereuse pouvant entraîner des blessures corporelles graves voire mortelles, si elle n'est pas évitée.

1.2.2 Symboles pour certains types d'informations et graphiques

A

Avertit de la présence de substances radioactives ou d'un rayonnement ionisant

\checkmark

Autorisé

Procédures, processus ou actions autorisés

$\checkmark\checkmark$

A privilégier

Procédures, processus ou actions à privilégier

Interdit Procédures, processus ou actions interdits

1 Conseil

Indique des informations complémentaires

Renvoi à la documentation

Renvoi à la page

Renvoi au schéma

Remarque ou étape individuelle à respecter

1., 2., 3. Série d'étapes

Résultat d'une étape

Configuration via l'afficheur local

Configuration via l'outil de configuration

A

Paramètre protégé en écriture

1, 2, 3, ... Repères

A, B, C ... Vues

$\Lambda \rightarrow \square$

Consignes de sécurité

Respecter les consignes de sécurité contenues dans le manuel de mise en service associé

1.3 Documentation

Les documents suivants sont disponibles dans la zone de téléchargement de la page Internet Endress+Hauser (www.fr.endress.com/Télécharger) :

Vous trouverez un aperçu de l'étendue de la documentation technique correspondant à l'appareil dans :

- W@M Device Viewer (www.endress.com/deviceviewer) : entrer le numéro de série figurant sur la plaque signalétique
- Endress+Hauser Operations App : entrer le numéro de série figurant sur la plaque signalétique ou scanner le code matriciel 2D (code QR) sur la plaque signalétique

1.3.1 Information technique (TI)

Aide à la planification

Ce document fournit toutes les caractéristiques techniques relatives à l'appareil et donne un aperçu des accessoires qui peuvent être commandés pour l'appareil.

1.3.2 Instructions condensées (KA)

Prise en main rapide

Ce manuel contient toutes les informations essentielles de la réception des marchandises à la première mise en service.

1.3.3 Conseils de sécurité (XA)

Selon l'agrément, les Conseils de sécurité (XA) suivants sont fournis avec l'appareil. Ils font partie intégrante du manuel de mise en service.

La plaque signalétique indique les Conseils de sécurité (XA) qui s'appliquent à l'appareil.

1.4 Termes et abréviations

FieldCare

Outil logiciel pour la configuration des appareils de terrain et de gestion des équipements

DeviceCare

Logiciel de configuration universel pour les appareils de terrain Endress+Hauser HART, PROFIBUS, FOUNDATION Fieldbus et Ethernet

DTM

Device Type Manager

Outil de configuration

Le terme "outil de configuration" est utilisé en lieu et place du logiciel d'exploitation suivant :

- FieldCare / DeviceCare, pour la configuration via la communication HART et un PC
- App SmartBlue, pour la configuration à l'aide d'un smartphone Android ou iOS, ou d'une tablette

CDI

Common Data Interface

API

Automate programmable industriel (API)

1.5 Marques déposées

HART®

Marque déposée par le FieldComm Group, Austin, Texas, USA

Apple®

Apple, le logo Apple, iPhone et iPod touch sont des marques déposées par Apple Inc., enregistrées aux États-Unis et dans d'autres pays. App Store est une marque de service d'Apple Inc.

Android®

Android, Google Play et le logo Google Play sont des marques déposées par Google Inc.

Bluetooth®

La marque et les logos *Bluetooth*[®] sont la propriété de Bluetooth SIG, Inc. et toute utilisation de ces marques par Endress+Hauser fait l'objet d'une licence. Les autres marques déposées et marques commerciales appartiennent à leurs propriétaires respectifs.

2 Consignes de sécurité de base

2.1 Exigences imposées au personnel

Le personnel chargé de l'installation, la mise en service, le diagnostic et la maintenance doit remplir les conditions suivantes :

- Le personnel qualifié et formé doit disposer d'une qualification qui correspond à cette fonction et à cette tâche
- Etre habilité par le propriétaire / l'exploitant de l'installation
- Etre familiarisé avec les réglementations nationales
- Avant le début du travail, lire et comprendre les instructions figurant dans le manuel de mise en service, la documentation complémentaire et les certificats (selon l'application)
- Suivre les instructions et respecter les conditions de base

Le personnel d'exploitation doit remplir les conditions suivantes :

- Etre formé et habilité par l'exploitant de l'installation conformément aux exigences liées à la tâche
- Suivre les instructions du présent manuel

2.2 Utilisation conforme

Le Gammapilot FMG50 est un transmetteur compact pour la détection de seuil et la mesure de niveau, de densité et de concentration sans contact. Le détecteur a une longueur maximale de 3 m (9,84 ft). Le Gammapilot FMG50 est certifié selon IEC 61508 pour l'utilisation comme dispositif de sécurité jusqu'à SIL 2/3.

2.3 Montage, mise en service et configuration

Le Gammapilot FMG50 est conçu selon les exigences de sécurité actuelles et satisfait aux normes et réglementations CE applicables. Toutefois, s'il n'est pas utilisé correctement ou pour les applications auxquelles il est destiné, des dangers spécifiques aux applications concernées peuvent survenir (p. ex. un débordement du produit dû à des erreurs de montage ou de configuration). Le montage, le raccordement électrique, la mise en service, l'utilisation et la maintenance de l'ensemble de mesure doivent donc uniquement être confiés au personnel spécialisé, qualifié et autorisé par l'exploitant du système à effectuer ces opérations. Le personnel technique doit avoir lu et compris ce manuel de mise en service et s'y conformer. Les modifications et réparations de l'appareil sont uniquement autorisées si le manuel de mise en service les permet explicitement.

AVERTISSEMENT

 Les quatre vis reliant le tube du détecteur à la tête de raccordement ne doivent pas être dévissées.

2.4 Zone explosible

Si l'ensemble de mesure est utilisé en zone explosible, les normes et réglementations nationales pertinentes doivent être respectées. L'appareil est accompagné d'une "documentation Ex" séparée qui fait partie intégrante de ce manuel de mise en service. Les spécifications de montage, les charges de connexion et les consignes de sécurité fournies dans cette documentation complémentaire doivent être respectées.

- Le personnel technique doit être qualifié et formé au travail dans la zone explosible concernée.
- Respecter les exigences en matière de métrologie et de sécurité s'appliquant au point de mesure.

AVERTISSEMENT

 Respecter les conseils de sécurité fournis avec l'appareil. Le contenu de ce manuel de mise en service varie en fonction du certificat choisi à la commande.

2.5 Protection contre les rayonnements

Le Gammapilot FMG50 s'utilise en combinaison avec une source radioactive se trouvant dans un conteneur de source. Le Gammapilot FMG50 n'émet pas de rayonnement radioactif. Lors de la manipulation de sources radioactives, les instructions suivantes doivent être respectées :

2.5.1 Règles fondamentales de protection contre les rayonnements

AVERTISSEMENT

Lors de l'utilisation de sources radioactives, éviter toute exposition superflue au rayonnement. Réduire à un minimum les expositions au rayonnement inévitables. Pour cela, trois mesures fondamentales s'imposent :

- A Blindage
- B Durée
- C Distance

ATTENTION

► Lors de l'utilisation de conteneurs de source, respecter toutes les instructions de montage et d'utilisation fournies dans les documents suivants :

Documentation sur les conteneurs de source

- FQG60 :
- TI00445F
- FQG61, FQG62 :
- TI00435F • FOG63 :
- TI00446F
- FOG66 :
- TI01171F
- BA01327F

Blindage

Assurer le meilleur blindage possible entre la source radioactive, soi-même et toute autre personne. Les conteneurs de source (FQG60, FQG61/ FQG62, FQG63, FQG66) et tous les matériaux à densité élevée (plomb, fer, béton, etc.) assurent un blindage efficace.

Durée

Rester le moins longtemps possible dans la zone exposée au rayonnement.

Distance

Rester le plus loin possible de la source radioactive. L'intensité du rayonnement diminue avec le carré de la distance par rapport à la source radioactive.

2.6 Sécurité au travail

Lors des travaux sur et avec l'appareil :

- ▶ Porter un équipement de protection individuelle conforme aux prescriptions nationales.
- Mettre l'appareil hors tension avant d'effectuer le raccordement.

2.7 Sécurité de fonctionnement

Risque de blessure !

- Ne faire fonctionner l'appareil que s'il est en bon état technique, exempt d'erreurs et de défauts.
- L'exploitant est responsable du fonctionnement sans défaut de l'appareil.

Transformations de l'appareil

Les transformations effectuées sur l'appareil sans l'accord du fabricant ne sont pas autorisées et peuvent entraîner des dangers imprévisibles :

► Si des transformations sont malgré tout nécessaires, consulter au préalable le fabricant.

Réparation

Afin de garantir la sécurité et la fiabilité de fonctionnement :

- N'effectuer la réparation de l'appareil que dans la mesure où elle est expressément autorisée.
- ▶ Respecter les prescriptions nationales relatives à la réparation d'un appareil électrique.
- Utiliser exclusivement des pièces de rechange d'origine et des accessoires du fabricant.

Zone explosible

Pour éviter tout danger pour les personnes ou l'installation lorsque l'appareil est utilisé en zone explosible (par ex. protection contre les risques d'explosion) :

- Vérifier à l'aide de la plaque signalétique si l'appareil commandé peut être utilisé pour l'usage prévu dans la zone explosible.
- Respecter les consignes figurant dans la documentation complémentaire séparée, qui fait partie intégrante du présent manuel.

2.8 Sécurité du produit

Le présent appareil de mesure a été construit et testé d'après l'état actuel de la technique et les bonnes pratiques d'ingénierie, et a quitté nos locaux en parfait état. Il satisfait aux exigences générales de sécurité et aux exigences légales.

2.8.1 Marquage CE

Le système de mesure satisfait aux exigences légales des Directives UE en vigueur. Celles-ci sont listées dans la déclaration UE de conformité, conjointement avec les normes appliquées.

Endress+Hauser confirme que l'appareil a réussi les tests en apposant le marquage CE.

2.8.2 Conformité EAC

Le système de mesure satisfait aux exigences légales des directives EAC en vigueur. Cellesci sont listées dans la déclaration de conformité EAC correspondante avec les normes appliquées.

Par l'apposition du marquage EAC, Endress+Hauser atteste que l'appareil a passé les tests avec succès.

Description du produit 3

3.1 Construction du produit

3.1.1 **Composants du FMG50**

1 A : Gammapilot FMG50

- 1 Boîtier
- 2 Borne de compensation de potentiel
- 3 Vis de blocage
- 4 5 Tube du détecteur
- Marquage de gamme de mesure

3.2 Plaques signalétiques

3.2.1 Plaque signalétique de l'appareil

- 1 Adresse du fabricant et nom de l'appareil
- 2 Référence de commande
- 3 Numéro de série (ser. no.)
- 4 Référence de commande étendue (ext. ord. cd.)
- 5 Sorties signal
- 6 Tension d'alimentation
- 7 Étendue de la gamme de mesure
- 8 Type de scintillateur
- 9 Données relatives aux certificats et aux agréments
- 10 Version de firmware (FW)
- 11 Révision de l'appareil (Dev.Rev.)
- 12 Spécifications de température pour le câble de raccordement
- 13 Température ambiante admissible (T_a) , renvoi à la documentation
- 14 Date de fabrication : année-mois et code matriciel 2D (QR code)

3.3 Contenu de la livraison

- Appareil dans la version commandée (avec instructions condensées)
- Logiciel d'exploitation Endress+Hauser sur DVD (en option)
- Accessoires commandés

3.4 Documentation correspondante

3.4.1 Instructions condensées

Les instructions condensées décrivent l'installation et la mise en service du Gammapilot FMG50.

KA01427F

Toutes les fonctions supplémentaires sont décrites dans le manuel de mise en service et le document "Description des fonctions de l'appareil"

3.4.2 Description des fonctions de l'appareil

Le document "Description des fonctions de l'appareil" contient une description détaillée de toutes les fonctions du Gammapilot FMG50 et s'applique à l'ensemble des variantes de communication. Disponible en téléchargement sur "www.fr.endress.com".

GP01141F

3.4.3 Conseils de sécurité

Des conseils de sécurité supplémentaires (XA, ZE, ZD) sont fournis avec les versions d'appareil certifiées. Pour les conseils de sécurité s'appliquant à la version d'appareil utilisée, se référer à la plaque signalétique.

Une vue d'ensemble des certificats et des agréments est disponible au chapitre "Certificats et agréments".

4 Montage

4.1 Réception des marchandises, identification des produits, transport, stockage

4.1.1 Réception des marchandises

Vérifier les points suivants lors de la réception des marchandises :

□ Les références de commande sur le bordereau de livraison et sur l'étiquette autocollante du produit sont-elles identiques ?

 \Box La marchandise est-elle intacte ?

□ Les indications de la plaque signalétique correspondent-elles aux informations de commande figurant sur le bordereau de livraison ?

□ Le cas échéant (voir plaque signalétique) : Les Conseils de sécurité (XA) sont-ils disponibles ?

Si l'une de ces conditions n'est pas remplie, contacter le fabricant.

4.1.2 Identification du produit

Les options suivantes sont disponibles pour l'identification de l'appareil de mesure :

- Indications de la plaque signalétique
- Référence de commande étendue (Extended order code) avec énumération des caractéristiques de l'appareil sur le bordereau de livraison
- Entrer le numéro de série figurant sur les plaques signalétiques dans le W@M Device Viewer (www.endress.com/deviceviewer)
 - └ Toutes les informations sur l'appareil de mesure et l'ensemble de la documentation technique associée sont indiqués.
- Entrer le numéro de série figurant que la plaque signalétique dans l'Endress+Hauser Operations App ou utiliser l'Endress+Hauser Operations App pour scanner le code matriciel 2-D (QR Code) figurant sur la plaque signalétique
 - └ Toutes les informations sur l'appareil de mesure et l'ensemble de la documentation technique associée sont indiqués.

4.1.3 Adresse du fabricant

Endress+Hauser SE+Co. KG Hauptstraße 1 79689 Maulburg, Allemagne Adresse du site de production : Voir plaque signalétique.

4.1.4 Transport au point de mesure

ATTENTION

Risque de blessure

 Respecter les consignes de sécurité et les conditions de transport pour les appareils pesant plus de 18 kg (39,69 lb).

4.1.5 Stockage

Pour le stockage (et le transport), l'appareil doit être protégé contre les chocs. L'emballage d'origine offre une protection optimale. La température de stockage admissible est :

Cristal NaI (Tl)

-40 ... +80 °C (-40 ... +176 °F)

Scintillateur PVT (standard)

-40 ... +60 °C (-40 ... +140 °F)

Scintillateur PVT (version haute température)

-20 ... +80 °C (-4 ... +176 °F)

L'appareil étant équipé d'une batterie, il est recommandé de le stocker à température ambiante dans un endroit à l'abri des rayons directs du soleil

4.2 Conditions de montage

4.2.1 Généralités

- L'angle de sortie du conteneur de source doit être parfaitement aligné à la gamme de mesure du Gammapilot FMG50. Observer les marques de la gamme de mesure de l'appareil.
- Le conteneur de source et le Gammapilot FMG50 doivent être montés aussi près que possible de la cuve. L'accès au faisceau doit être rendu impossible par une protection appropriée.
- Le Gammapilot FMG50 doit être protégé contre l'ensoleillement direct ou la chaleur du process, afin d'augmenter sa durée de vie.
 - Caractéristique 620, option PA : "Capot de protection climatique 316L"
 - Caractéristique 620, option PV : "Écran thermique 1200-3000 mm, PVT"
 - Caractéristique 620, option PW : "Écran thermique Nal, 200-800 mm, PVT"
- Des collimateurs peuvent être commandés en option avec l'appareil pour certaines versions de capteur de l'appareil.

Caractéristique 620, option P7 : "Collimateur côté capteur"

- Des colliers peuvent être commandés en option avec l'appareil.
 - Caractéristique 620, option Q1 : "Collier de montage 1x d=80 mm, 1x d=95 mm"
 - Caractéristique 620, option Q2 : "Collier de montage 2x d=80 mm, 1x d=95 mm"
 - Caractéristique 620, option Q3 : "Collier de montage 3x d=80 mm, 1x d=95 mm"
 - Caractéristique 620, option Q4 : "Étrier de fixation"
- Le dispositif de montage doit être installé de telle manière à supporter le poids du Gammapilot FMG50 et des pièces montées, dans toutes les conditions prévisibles du process (p. ex. vibrations).

Pour des informations supplémentaires concernant l'utilisation de sécurité du Gammapilot FMG50, consulter le manuel de sécurité fonctionnelle.

Rotation du boîtier

Le boîtier peut être tourné afin d'orienter l'afficheur ou les presse-étoupe

1. Desserrer la vis de blocage de 0,5 à 1,5 tour (max.)

2. Tourner le boîtier

Selon l'application, le presse-étoupe peut devoir être orienté vers le bas. Le presseétoupe et le bouchon aveugle peuvent être permutés à cette fin.

Serrer le presse-étoupe avec un couple max. de 3,75 Nm.

4.2.2 Dimensions, poids

Gammapilot FMG50

- Version NaI (Tl) 2":
 - Longueur totale A : 430 mm (16,93 in)
 - Poids total : 11,60 kg (25,57 lb)
 - Gamme de mesure longueur B : 51 mm (2 in)
 - Distance C : 24 mm (0,94 in)
- Version NaI (Tl) 4":
 - Longueur totale A : 480 mm (18,90 in)
 - Poids total : 12,19 kg (26,87 lb)
 - Gamme de mesure longueur B : 102 mm (4 in)
 - Distance C : 24 mm (0,94 in)
- Version NaI (Tl) 8":
 - Longueur totale A : 590 mm (23,23 in)
 - Poids total : 13,00 kg (28,63 lb)
 - Gamme de mesure longueur B : 204 mm (8 in)
 - Distance C : 30 mm (1,18 in)
- Version PVT 200 :
 - Longueur totale A : 590 mm (23,23 in)
 - Poids total : 12,10 kg (26,68 lb)
 - Gamme de mesure longueur B : 200 mm (8 in)
 - Distance C : 41 mm (1,61 in)

- Version PVT 400 :
 - Longueur totale A : 790 mm (31,10 in)
 - Poids total : 13,26 kg (29,23 lb)
 - Gamme de mesure longueur B : 400 mm (16 in)
 - Distance C : 41 mm (1,61 in)
- Version PVT 800 :
 - Longueur totale A : 1190 mm (46,85 in)
 - Poids total : 15,54 kg (34,26 lb)
 - Gamme de mesure longueur B : 800 mm (32 in)
 - Distance C : 41 mm (1,61 in)
- Version PVT 1200 :
 - Longueur totale A : 1590 mm (62,60 in)
 - Poids total : 17,94 kg (39,55 lb)
 - Gamme de mesure longueur B : 1200 mm (47 in)
 - Distance C : 41 mm (1,61 in)
- Version PVT 1600 :
 - Longueur totale A : 1990 mm (78,35 in)
 - Poids total : 20,14 kg (44,40 lb)
 - Gamme de mesure longueur B : 1600 mm (63 in)
 - Distance C : 41 mm (1,61 in)
- Version PVT 2000 :
 - Longueur totale A : 2 390 mm (94,09 in)
 - Poids total : 22,44 kg (49,47 lb)
 - Gamme de mesure longueur B : 2 000 mm (79 in)
 - Distance C : 41 mm (1,61 in)
- Version PVT 2400 :
 - Longueur totale A : 2790 mm (109,84 in)
 - Poids total : 24,74 kg (54,54 lb)
 - Gamme de mesure longueur B : 2 400 mm (94 in)
 - Distance C : 41 mm (1,61 in)
- Version PVT 3000 :
 - Longueur totale A : 3 390 mm (133,46 in)
 - Poids total : 28,14 kg (62,04 lb)
 - Gamme de mesure longueur B : 3 000 mm (118 in)
 - Distance C : 41 mm (1,61 in)
- Les données de poids se réfèrent aux versions à boîtier en inox. Les versions avec boîtier alu sont plus légères de 2,5 kg (5,51 lb).
- Le poids additionnel pour les petites pièces est de : 1 kg (2,20 lb)

Gammapilot FMG50 avec collimateur

El 2 Version Nal (Tl) 2" avec collimateur côté capteur

Version NaI (Tl) 2" avec collimateur côté capteur :

- Longueur totale : 498 mm (19,6 in)
- Poids du collimateur (à l'exclusion du FMG50 et des pièces montées) : 25,5 kg (56,2 lb)

Le poids additionnel pour les petites pièces est de : 1 kg (2,20 lb)

4.2.3 Conditions de montage pour la mesure de niveau

Conditions

- Le Gammapilot FMG50 est monté verticalement pour les mesures de niveau.
- Pour faciliter le montage et la mise en service, le Gammapilot FMG50 peut être configuré et commandé avec un support additionnel (commander la caractéristique 620, option Q4 : "Étrier de fixation").

Exemples

- Α Cylindre vertical ; le Gammapilot FMG50 est monté verticalement avec la tête de détecteur pointant vers le bas ou vers le haut, le rayonnement gamma est aligné par rapport à la gamme de mesure.
- В Correct : Gammapilot FMG50 monté en dehors de l'isolation de la cuve
- С Incorrect : Gammapilot FMG50 monté à l'intérieur de l'isolation de la cuve
- D Sortie conique de la cuve
- Ε Cylindre horizontal
- Conteneur de source 1 2 Gammapilot FMG50

4.2.4 Conditions de montage pour la détection de niveau

Conditions

Pour la détection de niveau, le Gammapilot FMG50 est généralement monté horizontalement à la hauteur du seuil souhaité.

Configuration du système de mesure

- Α Détection de niveau maximum
- В Détection de niveau minimum
- 1 Conteneur de source
- 2 Gammapilot FMG50

4.2.5 Conditions de montage pour la mesure de masse volumique

Conditions

- Si possible, la masse volumique doit être mesurée sur des conduites verticales avec un écoulement du bas vers le haut.
- Si l'on ne dispose que de conduites horizontales, il faut que le faisceau soit également horizontal afin de minimiser l'effet des bulles d'air et des dépôts.
- Il est recommandé d'utiliser le dispositif de fixation Endress+Hauser ou un dispositif de fixation équivalent pour fixer le conteneur de source et le Gammapilot FMG50 au tube de mesure.

Le dispositif de fixation lui-même doit être monté de telle manière à supporter le poids du conteneur de source et le Gammapilot FMG50 dans toutes les conditions du process.

- Le point de prélèvement ne doit pas se trouver à plus 20 m (66 ft) du point de mesure.
- La distance entre la mesure de masse volumique et les coudes du tube est ≥3 x le diamètre du tube, et ≥10 x le diamètre du tube dans le cas de pompes.

Configuration du système de mesure

La disposition du conteneur de source et du Gammapilot FMG50 dépend du diamètre de tube (ou de la longueur rayonnée) et de la gamme de mesure de masse volumique. Ces deux paramètres déterminent l'effet de la mesure (changement relatif de la fréquence d'impulsions). Plus la longueur rayonnée est grande, plus l'effet de mesure est grand. Par conséquent, il est recommandé d'utiliser une irradiation ou un trajet de mesure diagonal pour les petits diamètres de tube.

Pour sélectionner la configuration du système de mesure, contacter Endress+Hauser ou utiliser le logiciel de configuration Applicator™. ¹⁾

- A Faisceau vertical (90°)
- B Faisceau diagonal (30°)
- *C Chemin de mesure*
- Point de prélèvement
 Conteneur de source
- Conteneur de source
 Gammapilot FMG50
- Pour augmenter la précision des mesures de masse volumique, l'utilisation d'un
 - collimateur est recommandée. Le collimateur protège le détecteur contre le rayonnement de fond.
 - Lors de la planification, le poids total du système de mesure doit être pris en compte.
 - Un dispositif de fixation FHG51 est disponible en tant qu'accessoire

¹⁾ L'Applicator™ est disponible auprès d'Endress+Hauser.

4.2.6 Conditions de montage pour la mesure d'interface

Conditions

Pour la mesure d'interface, le Gammapilot FMG50 est généralement monté horizontalement à la limite supérieure ou inférieure de la gamme d'interface. Lors de l'introduction d'une source de rayonnement dans un tube à immersion, il est important de s'assurer que la gamme de mesure est déjà remplie de produit afin de maintenir le rayonnement à proximité de la source aussi faible que possible. Lorsqu'une source de rayonnement est utilisée dans un tube à immersion, le rayonnement peut être aligné avec la gamme de mesure du Gammapilot FMG50 en utilisant un collimateur sur le tube à immersion.

Configuration du système de mesure

1 Gammapilot (2 pces)

Description

Le principe de mesure repose sur le fait que la source de rayonnement émet un rayonnement qui est atténué lorsqu'il pénètre un matériau et le produit à mesurer. Pour la mesure d'interface radiométrique, la source de rayonnement est souvent introduite dans un tube à immersion fermé via une rallonge de câble. Ceci exclut la possibilité de contact entre la source de rayonnement et le produit.

En fonction de la gamme de mesure et de l'application, un ou plusieurs détecteurs sont montés à l'extérieur de la cuve. La masse volumique moyenne du produit entre la source de rayonnement et le détecteur est calculée à partir du rayonnement reçu. Une corrélation directe avec la position de l'interface peut alors être dérivée de cette valeur de masse volumique.

Pour plus d'informations, voir :

CP01205F

4.2.7 Conditions de montage pour la mesure du profil de masse volumique (DPS)

Conditions

Pour la mesure du profil de masse volumique, les appareils Gammapilot FMG50 sont montés horizontalement à des distances définies, selon la taille et la gamme de mesure. Dans le cas de la mesure du profil de masse volumique, la source de rayonnement est normalement insérée dans un tube à immersion, de préférence un tube à double paroi, puis introduite dans la cuve. Lors de l'introduction d'une source de rayonnement dans un tube à immersion, il est important de s'assurer que la gamme de mesure est déjà remplie de produit afin de maintenir le rayonnement à proximité de la source aussi faible que possible.

² Mesure d'interface

Configuration du système de mesure

- 1 Configuration de plusieurs unités FMG50
- 2 Mesure du profil de densité

Description

Pour obtenir des informations détaillées sur la répartition des couches de différentes masses volumiques dans une cuve, un profil de masse volumique est mesuré à l'aide d'une solution multidétecteur. Pour ce faire, plusieurs FMG50 sont montés les uns à côté des autres à l'extérieur de la paroi de la cuve. La gamme de mesure est divisée en zones et chaque transmetteur compact mesure la valeur de masse volumique dans sa zone respective. Un profil de masse volumique est dérivé de ces valeurs.

Il en résulte une mesure à haute résolution de la répartition des couches de produit (p. ex. dans des séparateurs)

Pour plus d'informations, voir :

4.2.8 Conditions de montage pour la mesure de concentration

Conditions

- Si possible, la concentration doit être mesurée sur des conduites verticales avec un écoulement du bas vers le haut.
- Si l'on ne dispose que de conduites horizontales, il faut que le faisceau soit également horizontal afin de minimiser l'effet des bulles d'air et des dépôts.
- Il est recommandé d'utiliser le dispositif de fixation Endress+Hauser FHG51 ou un dispositif de fixation équivalent pour fixer le conteneur de source et le Gammapilot FMG50 au tube de mesure.

Le dispositif de fixation lui-même doit être monté de telle manière à supporter le poids du conteneur de source et le Gammapilot FMG50 dans toutes les conditions du process.

- Le point de prélèvement ne doit pas se trouver à plus 20 m (66 ft) du point de mesure.
- La distance entre la mesure de masse volumique et les coudes du tube est ≥3 x le diamètre du tube, et ≥10 x le diamètre du tube dans le cas de pompes.

Configuration du système de mesure

La disposition du conteneur de source et du Gammapilot FMG50 dépend du diamètre de tube (ou de la longueur rayonnée) et de la gamme de mesure de masse volumique. Ces deux paramètres déterminent l'effet de la mesure (changement relatif de la fréquence d'impulsions). Plus la longueur rayonnée est grande, plus l'effet de mesure est grand. Par conséquent, il est recommandé d'utiliser une irradiation ou un trajet de mesure diagonal pour les petits diamètres de tube.

Pour sélectionner la configuration du système de mesure, contacter Endress+Hauser ou utiliser le logiciel de configuration Applicator™.²⁾

- A Faisceau vertical (90°)
- B Faisceau diagonal (30°)
- C Chemin de mesure
- 1 Point de prélèvement
- 2 Conteneur de source
- 3 Gammapilot FMG50

• Lors de la planification, le poids total du système de mesure doit être pris en compte.

• Un dispositif de fixation FHG51 est disponible en tant qu'accessoire

4.2.9 Conditions de montage pour la mesure de concentration avec des produits rayonnants

Mesure de la concentration de produits rayonnants dans des cuves

La concentration de produits rayonnants dans des cuves peut être déterminée en prenant une mesure sur la paroi de la cuve ou dans un tube immergé dans la cuve. L'intensité de rayonnement reçue est proportionnelle à la concentration du produit rayonnant se trouvant dans la cuve. Il est important de noter que le produit se trouvant dans la cuve absorbe également son propre rayonnement. Le rayonnement détecté n'augmente pas davantage avec des diamètres plus grands et le signal est saturé. Cette longueur de saturation dépend de la couche de demi-atténuation du matériau.

Le niveau dans la cuve doit être constant à proximité du détecteur pour que la mesure soit correcte.

Mesure du débit massique de produits rayonnants

Dans le cas des bascules à bande et des tubes, la concentration du produit rayonnant peut être mesurée dans l'échantillon. Dans ce cas, l'appareil est monté au-dessus ou au-dessous de la bande transporteuse de manière à ce qu'il soit parallèle à la direction de la bande ou qu'il soit monté sur le tube. L'intensité de rayonnement reçue est proportionnelle à la concentration du produit rayonnant se trouvant dans le matériau transporté.

4.2.10 Conditions de montage pour la mesure de débit

Mesure de débit massique (liquides)

Le signal de masse volumique déterminé par le Gammapilot FMG50 est transmis au Promag 55S. Le Promag 55S mesure le débit volumique ; le Promag peut déterminer un débit massique en liaison avec la valeur de masse volumique calculée.

²⁾ L'Applicator™ est disponible auprès d'Endress+Hauser.

- El 3 Mesure du débit massique (m) à l'aide d'un densimètre et d'un débitmètre. Si la masse volumique de solides (ρ_s) et la masse volumique d'un liquide porteur (ρ_c) sont également connues, le débit de solides peut être calculé.
- 1 Gammapilot FMG50 -> masse volumique totale (ρ_m) se composant du liquide porteur et des solides
- 2 Débitmètre (Promag 55S) -> débit volumique (V). La masse volumique des solides (ρ_s) et la masse volumique du liquide porteur (ρ_c) doivent également être entrées dans le transmetteur

Mesure de débit massique (solides)

Applications de solides en vrac sur bandes et vis transporteuses.

Le conteneur de source est positionné au-dessus de la bande transporteuse et le Gammapilot FMG50 au-dessous de la bande transporteuse. Le rayonnement est atténué par le produit sur la bande transporteuse. L'intensité de rayonnement reçue est proportionnelle à la masse volumique du produit. Le débit massique est calculé à partir de la vitesse de la bande et de l'intensité du rayonnement.

1 Gammapilot FMG50

4.3 Contrôle du montage

Procéder aux contrôles suivants après le montage de l'appareil de mesure :

L'appareil est-il endommagé (contrôle visuel) ?

□ L'appareil est-il conforme aux spécifications du point de mesure (température ambiante, gamme de mesure, etc.) ?

□ Si disponible : le numéro et le marquage du point de mesure sont-ils corrects (contrôle visuel) ?

L'appareil de mesure est-il suffisamment protégé de la lumière du soleil ?

Les presse-étoupe sont-ils correctement serrés ?

5 Raccordement électrique

5.1 Compartiment de raccordement

1 Compartiment de raccordement

5.2 4 ... 20 mA Raccordement HART

Raccordement de l'appareil avec communication HART, source d'alimentation et afficheur 4 ... 20 mA

El 4 Schéma de principe du raccordement HART

- 1 Appareil avec communication HART
- 2 Résistance HART
- 3 Alimentation électrique

Dans le cas d'une alimentation à basse impédance, la résistance de communication HART de 250 Ω est toujours nécessaire dans le câble de liaison signal.

La chute de tension à prendre en compte est de :

Max. 6 V pour une résistance de communication de 250 $\ensuremath{\Omega}$

5.3 Affectation des bornes

■ 5 Bornes de raccordement et borne de terre dans le compartiment de raccordement

1 Borne de terre interne (pour la mise à la terre du blindage de câble)

- 2 Borne moins
- 3 Borne plus
- Non Ex : tension d'alimentation : 14 ... 35 VDC
- Ex-i : tension d'alimentation : 14 ... 30 VDC

5.4 Entrées de câble

- 1 Entrée de câble
- 2 Bouchon aveugle

Le nombre et le type d'entrées de câble dépendent de la version d'appareil commandée. Les éléments suivants sont possibles :

- Raccord fileté M20, plastique, IP66/68, type NEMA 4X/6P
- Raccord fileté M20, laiton nickelé, IP66/68, type NEMA 4X/6P
- Raccord fileté M20, 316L, IP66/68, type NEMA 4X/6P
- Filetage M20, IP66/68, type NEMA 4X/6P
- Filetage G1/2, IP66/68, type NEMA 4X/6P, avec adaptateur M20 vers G1/2
- Filetage NPT1/2, IP66/68, type NEMA 4X/6P
- Connecteur M12, IP66/68, type NEMA 4X/6P
- Connecteur HAN7D, 90° IP65, type NEMA 4x
- Lors de la pose, veiller à diriger les câbles de raccordement vers le bas à la sortie du boîtier afin d'éviter l'infiltration d'humidité dans le boîtier de raccordement. Sinon, former une boucle d'écoulement ou utiliser un capot de protection climatique.

En cas d'utilisation d'une entrée G1/2, respecter les instructions de montage fournies.

5.5 Compensation de potentiel

Avant le câblage, raccorder le câble d'équipotentialité à la borne de terre.

1 Borne de terre pour le raccordement du câble d'équipotentialité

ATTENTION

 Les conseils de sécurité sont fournis dans la documentation séparée pour les applications en zone explosible.

Pour une compatibilité électromagnétique optimale, le câble d'équipotentialité doit être le plus court possible et sa section doit atteindre au moins 2,5 mm² (14 AWG).

5.6 Protection contre les surtensions (en option)

Structure du produit, caractéristique 610 "Accessoire monté", option "NA"

- Parafoudre :
 - Tension continue nominale : 600 V
- Courant de fuite nominal : 10 kA
- Test pic de courant î = 20 kA selon DIN EN 60079-14: 8/20 μs réussi
- Contrôle du courant alternatif de fuite I = 10 A réussi

AVIS

L'appareil pourrait être détruit !

• Les appareils avec parafoudre intégré doivent être reliés à la terre.

5.7 Section nominale

Conducteur de protection ou de mise à la terre du blindage de câble : section nominale > 1 mm² (17 AWG)

Section nominale de 0,5 mm² (AWG 20) à 2,5 mm² (AWG 13)

5.8 Connecteurs de bus de terrain

Pour les versions d'appareils avec connecteur de bus de terrain, il n'est pas nécessaire d'ouvrir le boîtier pour établir la connexion.

5.8.1 Affectation des broches du connecteur M12-A

Matériau : CuZn, les contacts pour la douille et le connecteur sont plaqués or

5.8.2 Raccordement des appareils avec connecteur Harting Han7D

A Raccordement électrique pour les appareils avec connecteur Harting Han7D

B Vue du connecteur enfichable de l'appareil

Matériau : CuZn, les contacts pour la douille et le connecteur sont plaqués or

5.9 FMG50 avec RIA15

L'afficheur séparé RIA15 peut être commandé avec l'appareil.

- Structure du produit, caractéristique 620 "Accessoire fourni" :
- Option PE "Afficheur séparé RIA15, zone non Ex, boîtier de terrain alu"
- Option PF "Afficheur séparé RIA15, zone Ex, boîtier de terrain alu"

Disponible également comme accessoire, pour plus de détails, voir Information technique TI01043K et manuel de mise en service BA01170K

ATTENTION

 Respecter les Conseils de sécurité (XA) en cas d'utilisation du Gammapilot FMG50 avec l'afficheur séparé RIA15 dans des environnements Ex :

🖬 🖉 XA01028R

- XA01464K
 - XA01056K
 - XA01368K
 - XA01097K

Occupation des bornes du RIA15

- +
 - Raccordement positif, mesure du courant
- -
- Raccordement négatif, mesure du courant (sans rétroéclairage)
- LED
- Raccordement négatif, mesure du courant (avec rétroéclairage)
- ±

Terre fonctionnelle : borne dans le boîtier

L'afficheur de process RIA15 est alimenté par la boucle de courant et ne requiert aucune alimentation externe.

La chute de tension à prendre en compte est de :

- \leq 1 V pour la version standard avec communication 4 ... 20 mA
- ≤1,9 V pour la communication HART
- et en plus 2,9 V si l'éclairage de l'afficheur est utilisé

5.9.1 Raccordement de l'appareil HART et RIA15 sans rétroéclairage

6 Schéma de principe de l'appareil HART avec afficheur de process RIA15 sans rétroéclairage

- 1 Appareil avec communication HART
- 2 Alimentation électrique
- 3 Résistance HART

5.9.2 Raccordement de l'appareil HART et RIA15 avec rétroéclairage

- Schéma de principe de l'appareil HART avec afficheur de process RIA15 avec rétroéclairage
- 1 Appareil avec communication HART
- 2 Alimentation électrique
- 3 Résistance HART

5.9.3 FMG50, RIA15 avec résistance de communication HART installée

Le module de communication HART à connecter au RIA15 peut être commandé avec l'appareil.

Structure du produit, caractéristique 620 "Accessoire fourni" : Option PI "Résistance de communication HART pour RIA15"

La chute de tension à prendre en compte est de : $\max. \ 7 \ V$

Disponible également comme accessoire, pour plus de détails, voir Information technique TI01043K et manuel de mise en service BA01170K

Raccordement du module de résistance pour communication HART, RIA15 sans rétroéclairage

- 8 Schéma de principe de l'appareil HART, RIA15 sans rétroéclairage, module de résistance pour communication HART
- 1 Module de résistance de communication HART
- 2 Appareil avec communication HART
- *3 Alimentation électrique*

Raccordement du module de résistance pour communication HART, RIA15 avec rétroéclairage

- 9 Schéma de principe de l'appareil HART, RIA15 avec rétroéclairage, module de résistance pour communication HART
- 1 Module de résistance de communication HART
- 2 Appareil avec communication HART
- 3 Alimentation électrique

5.10 Câblage

ATTENTION

Avant le raccordement, tenir compte de ce qui suit :

- Si l'appareil est utilisé en zone explosible, veiller à respecter les normes nationales et les spécifications fournies dans les Conseils de sécurité (XA). Utiliser le presse-étoupe indiqué.
- La tension d'alimentation doit correspondre aux indications sur la plaque signalétique.
- Couper la tension d'alimentation avant de raccorder l'appareil.
- Raccorder le câble d'équipotentialité à la borne de terre externe du transmetteur avant de raccorder l'appareil.
- Raccorder le conducteur de protection à la borne de terre de protection.
- Veiller à assurer une isolation adéquate des câbles, en tenant compte de la tension d'alimentation et de la catégorie de surtension.
- Veiller à utiliser des câbles de raccordement présentant une stabilité thermique appropriée, en tenant compte de la température ambiante.
- 1. Ouvrir le verrou du couvercle
- 2. Dévisser le couvercle
- 3. Passer les câbles dans les presse-étoupe ou les entrées de câble
- 4. Raccorder les câbles
- 5. Serrer les presse-étoupe ou les entrées de câble de manière à les rendre étanches
- 6. Revisser soigneusement le couvercle sur le compartiment de raccordement
- 7. Fermer le verrou du couvercle

📮 Filetage du boîtier

Le filetage du compartiment de l'électronique et du compartiment de raccordement est recouvert d'un vernis lubrifiant.

🔀 Éviter une lubrification supplémentaire.

5.11 Exemples de câblage

5.11.1 Détection du seuil

Le signal de sortie est linéaire entre le réglage "libre" et le réglage "recouvert" (p. ex. 4 à 20 mA) et peut être évalué dans le système de commande. En cas de besoin d'une sortie relais, les transmetteurs de process Endress+Hauser suivants peuvent être utilisés :

- RTA421 : pour applications non Ex, sans WHG (loi allemande sur les ressources en eau), sans SIL
- RMA42 : pour applications Ex, avec certificat SIL, avec WHG

- A Câblage avec détecteur de seuil RTA421
- *B* Câblage avec système de commande (respecter les prescriptions en matière de protection antidéflagrante)
- C Câblage avec transmetteur de process RMA42
- D En cas d'installation en zone Ex, respecter les consignes de sécurité correspondantes
- 1 Gammapilot FMG50
- 2 4 à 20 mA
- 3 RTA421
- 4 API (respecter les prescriptions en matière de protection antidéflagrante)
- 5 RMA42

5.11.2 Mode cascade avec 2 unités FMG50

Mesure de niveau : FMG50 avec transmetteur de process RMA42

Conditions nécessitant plusieurs unités FMG50 :

- Grandes gammes de mesure
- Géométrie de cuve spéciale
Deux unités FMG50 peuvent être interconnectées et alimentées via un transmetteur de process RMA42. Les courants de sortie individuels sont ajoutés ; cela donne le courant de sortie total.

La résistance HART interne du RMA42 est utilisée pour la communication HART. La communication HART avec le FMG50 est possible via les bornes situées en face avant du RMA42.

Éviter tout chevauchement entre les différentes gammes de mesure, car cela peut entraîner une valeur de mesure erronée. Les appareils peuvent se chevaucher, à condition que cela n'affecte pas les gammes de mesure.

IO Schéma de raccordement : pour deux unités FMG50 connectées à un RMA42

1 RMA42

Exemple de réglages pour le mode cascade

- ► Réglages FMG50 :
 - Toutes les unités FMG50 utilisées en cascade doivent être réglées individuellement. Par exemple via l'assistant "Mise en service" dans le mode de fonctionnement "Niveau".

L'exemple suivant se réfère à une mesure avec 2 détecteurs en mode cascade : Détecteur 1 : gamme de mesure 800 mm Détecteur 2 : gamme de mesure 400 mm

- 1. Réglages pour le RMA42 (entrée analogique 1) :
 - Type de signal : courant Plage : 4 ... 20 mA
 Début d'échelle : 0 mm
 Fin d'échelle : 800 mm
 Offset si applicable
- 2. Réglages pour le RMA42 (entrée analogique 2) :
 - └ Type de signal : courant Plage : 4 ... 20 mA Début d'échelle : 0 mm Fin d'échelle : 400 mm Offset si applicable

3. Valeur calculée 1 :

- └→ Calcul : somme totale Unité : mm Bargraph 0 : 0 m Bargraph 100 : 1,2 m Offset si applicable
- 4. Sortie analogique :
 - ➡ Affectation : valeur calculée 1 Type de signal : 4 ... 20 mA Début d'échelle : 0 m Fin d'échelle : 1,2 m

Seule la sortie courant du RMA42 fournit la valeur mesurée de niveau du système global. Aucune valeur HART n'est disponible pour la cascade entière.

Pour plus d'informations, voir :

BA00287R

5.11.3 Mode cascade avec plus de 2 unités FMG50

Mesure de niveau : FMG50 avec Memograph M RSG45

Conditions nécessitant plusieurs unités FMG50 :

- Grandes gammes de mesure
- Géométrie de cuve spéciale

Plus de deux unités FMG50 (maximum 20) peuvent être interconnectées et alimentées via un unique Memograph M RSG45. Les taux d'impulsions (cnt/s) des différentes unités FMG50 sont ajoutés entre eux et linéarisés ; ceci donne le niveau total.

Pour permettre l'application, les réglages doivent être effectués sur chaque unité FMG50. De cette manière, le niveau réel dans la cuve peut être déterminé sur toutes les zones de cascade prévues. Tandis que le calcul est le même pour tous les appareils FMG50 au sein de la cascade, les constantes pour chaque unité FMG50 varient et doivent rester éditables.

Le mode cascade requiert au moins 2 unités FMG50 qui communiquent avec le RSG45 via la voie HART.

Éviter tout chevauchement entre les différentes gammes de mesure, car cela peut entraîner une valeur de mesure erronée. Les appareils peuvent se chevaucher, à condition que cela n'affecte pas les gammes de mesure.

🖻 11 Schéma de raccordement : pour trois unités FMG50 (jusqu'à 20 FMG50) raccordées à un RSG45

- RSG45 1
- Algorithme : addition des taux d'impulsions individuels ($SV_1 + SV_2 + SV_3$), suivie de la linéarisation 2
- Signal HART FMG50 (1), PV_1 : niveau, SV_1 : taux d'impulsions (cnt/s) Signal HART FMG50 (2), PV_2 : niveau, SV_2 : taux d'impulsions (cnt/s) 3
- 4
- Signal HART FMG50 (3), PV_3 : niveau, SV_3 : taux d'impulsions (cnt/s) 5
- 6 Signal de sortie global

Réglages

Toutes les unités FMG50 utilisées en cascade doivent être ajustées individuellement. Ceci est possible via l'assistant "Mise en service", par exemple

- 1. Sélectionner le mode de fonctionnement "Niveau" pour toutes les unités FMG50
- 2. Configurer la variable PV (Primary Value) HART comme "Niveau"
 - └→ La variable PV (niveau) est sans importance pour le calcul
- 3. Configurer la variable SV (Secondary Value) HART comme "Taux d'impulsions" └ La variable SV (taux d'impulsions) est importante pour le calcul
- 4. Raccorder les voies HART avec le RSG45
- 5. Éditer le tableau de linéarisation dans le RSG45
 - └ Paires de valeurs (max. 32) : taux d'impulsions de la cascade (taux d'impulsions total) au niveau cascadé (niveau total)

Les taux d'impulsions (cnt/s) de toutes les unités FMG50 de la cascade sont ajoutés dans le RSG45, puis linéarisés

Exemple de tableau de linéarisation

Point de linéarisation	Taux d'impulsions total cnt/s	Niveau total %
21	0	100
20	39	95
19	82	90
18	129	85
17	178	80
16	230	75

Point de linéarisation	Taux d'impulsions total cnt/s	Niveau total %
15	283	70
14	338	65
13	394	60
12	451	55
11	507	50
10	562	45
9	614	40
8	671	35
7	728	30
6	784	25
5	839	20
4	892	15
3	941	10
2	981	5
1	1013	0

P Déterminer les paires de valeur pendant la mise en service

5.11.4 Applications Ex en liaison avec le RMA42

Respecter les conseils de sécurité suivants : ATEX II (1) G [Ex ia] IIC, ATEX II (1) D [Ex ia] IIIC pour RMA42

XA00095R

5.11.5 Applications SIL pour le Gammapilot en liaison avec le RMA42

Le Gammapilot FMG50 satisfait aux exigences SIL2/3 selon IEC 61508, voir :

FY01007F

Le RMA42 satisfait aux exigences SIL2 selon IEC 61508:2010 (Édition 2.0) , voir le manuel de sécurité fonctionnelle :

SD00025R

5.12 Contrôle du raccordement

Après le câblage de l'appareil, procéder aux contrôles suivants :

Le câble d'équipotentialité est-il raccordé ?

□ L'affectation des bornes est-elle correcte ?

Les presse-étoupe et les bouchons aveugles sont-ils fermement serrés ?

□ Les connecteurs de bus de terrain sont-ils correctement fixés ?

□ Tous les couvercles sont-ils vissés correctement ?

AVERTISSEMENT

Utiliser l'appareil uniquement lorsque les couvercles sont fermés

6 Configuration

6.1 Aperçu des options de configuration HART

6.1.1 Via protocole HART

I2 Options pour la configuration à distance via le protocole Hart

- 1 API (automate programmable industriel)
- 2 Unité d'alimentation de transmetteur, p. ex. RN221N (avec résistance de communication)
- 3 Raccordement pour Commubox FXA191, FXA195 et Field Communicator 375, 475
- 4 Field Communicator 475
- 5 Ordinateur avec outil de configuration (p. ex. DeviceCare/FieldCare , AMS Device Manager, SIMATIC PDM)
- 6 Commubox FXA191 (RS232) ou FXA195 (USB)
- 7 Field Xpert SFX350/SFX370
- 8 Modem VIATOR Bluetooth avec câble de raccordement
- 9 RIA15
- 10 Transmetteur

6.1.2 Configuration via FieldCare/DeviceCare

FieldCare/DeviceCare est un outil de gestion des équipements (asset management) Endress+Hauser basé sur la technologie FDT. Avec FieldCare/DeviceCare, il est possible de configurer tous les appareils Endress+Hauser ainsi que les appareils d'autres fabricants prenant en charge le standard FDT. Les exigences hardware et software peuvent être trouvées sur Internet :

www.fr.endress.com -> Rechercher : FieldCare -> FieldCare -> Caractéristiques techniques

FieldCare prend en charge les fonctions suivantes :

- Configuration des transmetteurs en mode en ligne
- Chargement et sauvegarde de données d'appareil (upload/download)
- Documentation du point de mesure

Options de raccordement :

- HART via Commubox FXA195 et le port USB d'un ordinateur
- Commubox FXA291 via l'interface service

6.1.3 Configuration via RIA 15 (afficheur séparé)

Afficheur de process auto-alimenté par boucle, pour l'affichage avec des signaux HART ou des signaux de 4 à 20 mA

6.1.4 Configuration via WirelessHART

Adaptateur WirelessHART SWA70 avec la Commubox FXA195 et le logiciel de configuration "FieldCare/DeviceCare"

6.2 Autres options de configuration

La configuration de l'appareil de mesure et la consultation des valeurs de mesure sont possibles de différentes manières.

6.2.1 Configuration sur site

L'appareil peut également être configuré sur site au moyen des touches.

En cas de verrouillage de la configuration sur site au moyen du commutateur DIP, l'entrée de paramètres via l'interface de communication n'est pas possible.

1 Touche de configuration pour étalonnage vide (fonction I)

- 2 Touche de configuration pour étalonnage plein (fonction II)
- 3 Commutateur DIP pour courant d'alarme (défini par logiciel/Alarme max.)
- 4 Commutateur DIP pour le verrouillage et le déverrouillage de l'appareil de mesure

6.2.2 Configuration via l'interface service

DeviceCare/FieldCare via interface service (CDI)

☑ 13 DeviceCare/FieldCare via interface service (CDI)

1 Ordinateur avec outil de configuration DeviceCare/FieldCare

2 Commubox FXA291

3 Interface service (CDI) de l'appareil de mesure (= Endress+Hauser Common Data Interface)

6.2.3 Configuration via RIA15

14 Éléments d'affichage et de configuration de l'afficheur de process

- *1 Symbole de verrouillage du menu de configuration*
- 2 Symbole d'erreur
- 3 Symbole d'avertissement
- 4 Symbole : communication HART active
- 5 Touches de configuration
- 6 Affichage 14 segments pour unité/TAG
- 7 Bargraph avec repères pour dépassement de gamme par excès ou par défaut
- 8 Afficheur 7 segments à 5 chiffres pour la valeur mesurée, hauteur de chiffre 17 mm (0,67 in)

La configuration s'effectue à l'aide des trois touches de programmation sur la face avant du boîtier.

E

Touche Entrée ; ouvrir le menu de configuration, confirmer la sélection/le réglage des paramètres dans le menu de configuration

\oplus / Θ

Sélection et réglage/modification des valeurs dans le menu de configuration ; une pression simultanée sur les touches '+' et '-' permet de retourner au niveau de menu supérieur. La valeur configurée n'est pas enregistrée.

Le manuel de mise en service du RIA15 contient des informations complémentaires BA01170K

6.2.4 Configuration via technologie sans fil Bluetooth[®]

Exigences

En option, uniquement pour les appareils avec un afficheur à fonctionnalité Bluetooth : caractéristique 030 "Affichage, configuration", option D "Segment affichage sans buttons + Bluetoo

🖻 15 Afficheur avec module Bluetooth

🚪 Un symbole Bluetooth clignotant indique qu'une connexion Bluetooth est disponible

La communication Bluetooth avec l'appareil est possible avec une tension d'alimentation d'au moins 14 V. Le rétroéclairage de l'afficheur est uniquement garanti avec une tension d'alimentation ≥ 16 V. La fonction de mesure est garantie à partir d'une tension aux bornes de 12 V; cependant, la communication Bluetooth avec l'appareil n'est pas possible avec ce niveau de tension.

Si la tension d'alimentation disponible chute en dessous des seuils susmentionnés pendant le fonctionnement, le rétroéclairage s'éteint d'abord avant que la fonction Bluetooth ne soit désactivée, afin de garantir la fonction de mesure. Aucun message d'avertissement correspondant n'est affiché. Ces fonctions sont réactivées lorsqu'une alimentation suffisante est fournie.

Si la tension d'alimentation disponible était déjà trop basse lorsque l'appareil a été démarré, ces fonctions ne sont pas activées ultérieurement.

Configuration via l'app SmartBlue

16 Configuration via l'app SmartBlue

- 1 Unité d'alimentation de transmetteur
- 2 Smartphone / tablette avec app SmartBlue
- 3 Transmetteur avec module Bluetooth

6.2.5 Heartbeat Verification/Monitoring

Le sous-menu **Heartbeat** est uniquement disponible en cas d'utilisation via **FieldCare**, **DeviceCare** ou l'**app SmartBlue**. Il contient des assistants qui sont disponibles avec les packs application **Heartbeat Verification** et **Heartbeat Monitoring**.

6.3 Verrouillage/déverrouillage de la configuration

6.3.1 Verrouillage du software

Verrouillage via mot de passe dans FieldCare / DeviceCare / app SmartBlue

Il est possible d'empêcher l'accès à la configuration du FMG50 en définissant un mot de passe. À la livraison de l'appareil, le "rôle utilisateur" est réglé sur "Maintainer". Le rôle "Maintainer" permet de configurer entièrement l'appareil. Ensuite, il est possible d'empêcher l'accès à la configuration en définissant un mot de passe. Le "rôle utilisateur" est alors réglé sur "Operator". La configuration est accessible par saisie du mot de passe.

Le mot de passe est défini sous :

System -> User management -> Define password

Il est possible de passer du rôle "Maintainer" à "Operator" sous :

System -> User management -> Logout

Désactivation du verrouillage via FieldCare / DeviceCare / app SmartBlue

Après saisie du mot de passe, il est possible d'activer la configuration du FMG50 en tant qu"Operator" avec le mot de passe. Le "rôle utilisateur" change ensuite sur "Maintainer"

Naviguer jusqu'à :

System -> User management -> Change user role

6.3.2 Verrouillage du hardware

Le verrouillage du hardware peut uniquement être désactivé sur l'électronique (actionner le commutateur). Il n'est pas possible de déverrouiller le hardware via l'interface de communication.

6.4 Rétablissement de la configuration par défaut

ATTENTION

- Une réinitialisation peut avoir un impact négatif sur les mesures. En règle générale, après une réinitialisation, il est nécessaire d'effectuer une configuration de base. Après une réinitialisation, toutes les données d'étalonnage sont effacées. Un réétalonnage complet est alors nécessaire pour remettre en service le système de mesure.
- 1. Connecter l'appareil à FieldCare ou DeviceCare.
- 2. Ouvrir l'appareil dans FieldCare ou DeviceCare.
 - └ Le tableau de bord (page d'accueil) de l'appareil s'affiche : Cliquer sur "System -> Device management"

FMG50 (Online Parameterize) ×						
Device tag FMG50	Status signal V Function ch	neck (C)	Primary variable (PV)	94,993 %	Output current	19,20 mA
Device name (24) FMG50	Locking status		Measurement mode	Level	Pulse value	481 cnt/s
			A *			
≡ > 0						
Device management		Device tag FMG50	?			Device reset
User management		Activate SW option				Restart device
Bluetooth configuration		Device reset Cancel	~			
Information	>	Operating time 25d09h22m13s				
Display						

Les types de réinitialisation suivants peuvent être sélectionnés :

Restart device

Permet d'effectuer un redémarrage à chaud. Le logiciel de l'appareil effectue tous les diagnostics qui seraient également réalisés lors d'un redémarrage à froid par mise en marche/à l'arrêt de l'appareil.

Reset to factory default
 Il est toujours recommandé de réinitialiser les paramètres personnalisés en cas
 d'utilisation d'un appareil dont on ne connaît pas l'usage antérieur ou en cas de
 changement de mode de fonctionnement. Lors de la réinitialisation, tous les paramètres
 personnalisés sont effacés et les réglages usine sont rétablis

Optional: reset to customer settings Si l'appareil a été commandé avec une configuration personnalisée, la réinitialisation permet de rétablir ces paramètres utilisateur configurés en usine.

Une réinitialisation peut également être effectuée sur site via les touches de configuration (voir section 7.4 "Mise en service via configuration sur site").

7 Mise en service

7.1 Contrôle du montage et contrôle du raccordement

Effectuer le contrôle du montage et le contrôle du raccordement du FMG50 avant la mise en service du point de mesure.

Effectuer la mise en service à l'aide de l'assistant de mise en service !

Si la mise en service est effectuée via le menu, des réglages incorrects peuvent entraîner une défaillance de l'appareil.

7.2 Mise en service au moyen de l'assistant de mise en service

7.2.1 Généralités

Lorsque l'appareil est mis sous tension pour la première fois ou suite à une réinitialisation aux réglages par défaut (voir la section 6.4), l'appareil affiche le message d'erreur **F440 "Device is not calibrated"**, le signal d'état indique une alarme et la sortie courant est réglée sur le courant de défaut : MIN, -10 %, 3,6 mA (réglage par défaut).

Un assistant est disponible dans FieldCare, DeviceCare et l'app SmartBlue ; celui-ci guide l'utilisateur tout au long de la procédure de mise en service initiale.

FieldCare et DeviceCare peuvent être téléchargés. Pour télécharger l'application, il faut s'enregistrer dans le Portail de Logiciels Endress+Hauser.

https://www.software-products.endress.com

SmartBlue permet la configuration via Bluetooth.

Pour plus de détails, voir la section "Mise en service via l'app SmartBlue"

- Les diagrammes suivants montrent l'affichage dans FieldCare ou DeviceCare. Les affichages dans d'autres outils de configuration peuvent différer, mais le contenu est le même.
- 1. Connecter l'appareil à FieldCare, DeviceCare ou l'app SmartBlue (Bluetooth).
- 2. Ouvrir l'appareil dans FieldCare, DeviceCare ou l'app SmartBlue.
 - └ Le tableau de bord (page d'accueil) de l'appareil s'affiche :

Device tag FMG50	Status signal Failure (F)	Primary variable (PV)	96,91%	Measurement mode	Level	Endress+Hauser
Davice name FMG50	Locking status	Output current	3,59 mA	Pulse rate	297 cnt/s	
=						1 Mantenano
Device monogement	Device top FMGSD	?			Device tag	
User management	Device reset. Cencel	~			Mer/Mex characters: 0.7	32
Bluetooth configuration	Operating time 26d14h45m34a	<u> </u>				
Information	>					
Display						
SW configuration						
					÷	

- 17 Capture d'écran : assistant de mise en service
- 3. Cliquer sur "Commissioning" pour lancer l'assistant.
- 4. Entrer la valeur appropriée pour chaque paramètre ou sélectionner l'option adaptée. Ces valeurs sont copiées directement dans l'appareil.
- 5. Cliquer sur "Next" pour passer à la page suivante.

6. Une fois toutes les pages remplies, cliquer sur "Finish" pour fermer l'assistant.

Si l'assistant est interrompu avant saisie de tous les paramètres nécessaires, l'appareil peut se trouver dans un état indéfini. Dans ce cas, il est conseillé de rétablir les réglages usine.

Les modes de fonctionnement suivants peuvent être configurés via l'assistant :

- Niveau
- Seuil min. ou max.
- Mesure de densité
- Mesure de concentration
- Mesure de concentration de produits rayonnants

Configuration de la reconnaissance de gammagraphie : voir section 8.6

Réétalonnage d'une mesure de densité : voir section 8.7

7.2.2 Identification de l'appareil

Le guidage de l'utilisateur démarre avec la configuration générale du nom de repère et certains réglages de paramètres HART.

Device Identification	Measurement adjustments	Calibration	Output se	ttings	Finish
Device tag					
SIL Testdevice, 27.01.2020			✓		
Transfer successful					
Device name					
FMG50			<u></u>		
P100080119F			0		
R100080119F Extended order code					
R100080119F Extended order code Extended order code 1 (25)					
R100080119F Extended order code Extended order code 1 (25)			e		
R100080119F Extended order code Extended order code 1 (25) Extended order code 2 (26)			e		
R100080119F Extended order code Extended order code 1 (25) Extended order code 2 (26)			0		
R100080119F Extended order code Extended order code 1 (25) Extended order code 2 (26) Extended order code 3 (27)					

Device identification	Measurement adjustments	Calibration	Output settings	Finish
HART short tag				
SIL Test			?	
HART date code				
2009-07-20				
HART descriptor				
FMG50				
HART message				
FMG50				

7.2.3 Paramètres de mesure

Après cela, les "paramètres de mesure" généraux du Gammapilot FMG50 peuvent être configurés :

A0042163

Measurement mode			
Level		\sim	
Calibration or Linearization type			
Standard		~	
Calibration time			
300 s			
Damping output			
6,0 s			
Temperature unit			

La première page des "paramètres de mesure" est affichée pour tous les modes de fonctionnement.

Les options de configuration suivantes sont disponibles :

- Paramètres généraux
- Configuration du temps de référence
- Sélection de l'isotope utilisé (dépend du mode de fonctionnement)
- Sélection du type de faisceau (dépend du mode de fonctionnement)

Paramètres généraux

Dans le mode de fonctionnement "esclave", aucun réglage n'est effectué à part le réglage du mode de fonctionnement.

Le taux d'impulsions, la valeur mesurée et le courant affichés sur l'afficheur optionnel sont également filtrés avec le "temps d'intégration" configuré.

- 1. Sélection du type d'étalonnage ou de linéarisation
 - 🛏 Dépend du mode de fonctionnement

2. Configuration de l'unité de mesure pour le niveau

└ → Dépend du mode de fonctionnement "Niveau" avec linéarisation personnalisée

- 3. Configuration de l'unité de longueur
 - Dépend du mode de fonctionnement
- 4. Configuration de l'unité de densité
 - └ Dépend du mode de fonctionnement
- 5. Configuration du temps d'étalonnage
 - Le temps d'étalonnage est le temps à mesurer pour l'étalonnage de points d'étalonnage individuels. Ce temps doit être changé en fonction de la tâche de mesure.
- 6. Configuration du temps d'intégration
 - └► Le temps d'intégration définit la constante de temps T₆₃. Le réglage dépend des conditions du process. Le fait d'augmenter le temps d'intégration rend la valeur mesurée considérablement plus stable, mais également plus lente. Afin de réduire l'influence d'agitateurs ou de surfaces turbulentes, il est recommandé d'augmenter le temps d'intégration. Cependant, la valeur sélectionnée pour l'intégration ne doit pas être trop grande, afin que les changements rapides de la valeur mesurée puissent également être détectés rapidement.

Exemple de réglages pour la constante de temps T₆₃ :

Niveau : 6 s

Densité : 60 s

Pour les informations sur l'effet sur la sortie courant, voir l'Information technique :

```
TI01462F
```

7. Configuration de l'unité de température

└ ► Sélection de l'unité de température

Configuration du temps de référence

Lors de la première exécution de la fonction de guidage de l'utilisateur, la date de référence est entrée pour le calcul de la décroissance de la source radioactive (il s'agit normalement de la date actuelle).

Device identification	Meas	surement adjustments	Calibration	Output settings	Finish	
	Referen	ice date for decay cal	lculation			
Year						
2015						
Month						
1						
Day						
1						

La date de l'outil de configuration est acceptée en pressant le bouton "Reference date for decay calculation".

Remarque : La date de référence ne peut être réglée qu'une seule fois. Il est uniquement possible de changer le réglage en réinitialisant l'appareil aux réglages par défaut, voir la section 6.4.

Sélection de l'isotope utilisé et du type de faisceau (dépend du mode de fonctionnement)

Device identification	Measurement adjustments	Calibration	Output settings	Finish
Isotope				
Caesium 137			~	
Beam type				
modulated				
not modulated				

Une fois la date de référence réglée, l'isotope utilisé est ensuite sélectionné. L'isotope doit être sélectionné de manière à pouvoir compenser correctement la décroissance de l'isotope

Une source ¹³⁷Cs ou ⁶⁰Co est utilisée comme source de rayonnement. Des sources de rayonnement avec d'autres constantes de décroissance peuvent également être utilisées. Le temps de décroissance peut être défini entre 1 et 65536 jours. Les temps de décroissance pour d'autres isotopes peuvent être trouvés dans la "NIST Standard Reference Database 120", voir :

https://www.nist.gov/pml/radionuclide-half-life-measurements/radionuclide-half-life-measurements-data

Si aucune compensation de décroissance n'est sélectionnée, le Gammapilot FMG50 détermine la grandeur de mesure sans aucune compensation.

Si un Gamma Modulator FHG65 est utilisé pour la suppression des rayonnements parasites, "modulated" doit être sélectionné comme type de faisceau. Si le Gammapilot

FMG50 est utilisé sans le Gamma Modulator FHG65, l'option par défaut "not modulated" est laissée.

AVERTISSEMENT

Si un mauvais type de faisceau ou un mauvais isotope est sélectionné, le Gammapilot FMG50 émettra une valeur mesurée incorrecte. Ceci pourrait être une défaillance dangereuse non détectée. Il est interdit de modifier le réglage dans le menu de configuration.

Le type d'isotope et le type de faisceau ne peuvent être réglés qu'une seule fois. Il est uniquement possible de changer le réglage en réinitialisant l'appareil aux réglages par défaut, voir la section 6.4.

7.2.4 Étalonnage

Étalonnage de fond

L'étalonnage de fond est nécessaire pour enregistrer le rayonnement de fond naturel à la position de montage du Gammapilot FMG50. Le taux d'impulsions de ce rayonnement de fond est automatiquement soustrait de tous les autres taux d'impulsions mesurés. Seule la partie du taux d'impulsions qui provient de la source de rayonnement utilisée est prise en compte.

Contrairement au rayonnement de la source utilisée, le rayonnement de fond reste plus ou moins constant pendant toute la durée de la mesure. Pour cette raison, l'étalonnage de fond n'est pas pris en compte dans la compensation automatique de la décroissance du Gammapilot FMG50.

1. Sélectionner l'isotope et le type de faisceau

- 2. Désactiver le rayonnement (boîtier de la source réglé sur la position "off") ou remplir la cuve jusqu'au niveau maximum.
- 3. Appuyer sur le bouton "Start background calibration"

Device identification	Measurement adjustments Calibration	Output settings	Finish
	Start background calibration		
Background radiation			
0 cnt/s			
Remaining calibration time			

La mesure démarre alors automatiquement et se poursuit, au maximum, pendant la durée qui a été configurée pour le temps d'étalonnage. Cependant, le processus peut également être arrêté manuellement en appuyant sur le bouton "Stop calibration".

L'étalonnage s'arrête automatiquement dès qu'un million d'impulsions ont été totalisées.

Il est également possible de saisir directement la valeur de fond. Pour que le bouton "Next" de l'assistant soit activé, la valeur doit toutefois être modifiée par rapport à la valeur de départ, au moins temporairement.

Dans le cas de produits rayonnants, l'étalonnage du rayonnement de fond doit être effectué au rayonnement le plus faible possible (idéalement : sans produit)

Étalonnage de seuil

Dépend du mode de fonctionnement sélectionné.

A0042167

Pour une détection de seuil, le Gammapilot FMG50 requiert deux autres points d'étalonnage en plus de l'étalonnage de fond :

- Étalonnage "vide"
- Étalonnage "plein"

La corrélation entre la sortie courant et les valeurs d'étalonnage est toujours linéaire en mode de fonctionnement seuil. En ce sens, ce mode de fonctionnement est le même que le mode de fonctionnement Level (Niveau) avec le type de linéarisation "linear" (linéaire).

- 1. Sélection : commencer par un étalonnage "plein" ou commencer par un étalonnage "vide"
 - Démarrer l'étalonnage -> l'étalonnage peut être arrêté une fois que le taux d'impulsions s'est stabilisé.

- 2. Étalonnage "vide" en mode seuil : le rayonnement est activé et le trajet du faisceau est complètement libre
 - └ Si ces conditions sont remplies, l'étalonnage "vide" peut être démarré.

	udjustinento	Calibration	Output settings	Finish
	Start empty calibration	on		
mpty calibration				
1000 cnt/s				
npty calibration date				
emaining calibration time				
s				

L'étalonnage "vide" peut être exécuté en appuyant sur le bouton "Start empty calibration". La mesure démarre alors automatiquement et se poursuit, au maximum, pendant la durée qui a été configurée pour le temps d'étalonnage. Cependant, le processus peut également être arrêté manuellement en appuyant sur le bouton "Stop calibration".

L'étalonnage s'arrête automatiquement dès qu'un million d'impulsions ont été totalisées.

Il est également possible de saisir directement l'étalonnage "vide".

Pour que le bouton "Next" de l'assistant soit activé, la valeur doit toutefois être modifiée par rapport à la valeur de départ, au moins temporairement.

3. Étalonnage "plein" en mode seuil : le rayonnement est activé et le trajet du faisceau est complètement recouvert de produit.

└ Si ces conditions sont remplies, l'étalonnage "plein" peut être démarré.

Device identification	Measurement adjustments 📏	Calibration	Output settings	Finish
	Start full calibration			
Full calibration				
0 cnt/s				
ull calibration date				
Remaining calibration time				
0 s				

L'étalonnage "plein" peut être exécuté en appuyant sur le bouton "Start full calibration". La mesure démarre alors automatiquement et se poursuit, au maximum, pendant la durée qui a été configurée pour le temps d'étalonnage. Cependant, le processus peut également être arrêté manuellement en appuyant sur le bouton "Stop calibration".

L'étalonnage s'arrête automatiquement dès qu'un million d'impulsions ont été totalisées.

Il est également possible de saisir directement l'étalonnage "plein". Pour que le bouton "Next" de l'assistant soit activé, la valeur doit toutefois être modifiée par rapport à la valeur de départ, au moins temporairement. **Conseil :** Si la cuve ne peut être remplie de manière appropriée, l'étalonnage "plein" peut également être effectué avec le rayonnement désactivé. C'est une façon de simuler un trajet de rayonnement complètement couvert. Dans ce cas, l'étalonnage "plein" est identique à l'étalonnage de fond et 0 cnt/s est généralement affiché.

4. L'étalonnage a été effectué avec succès.

 Les réglages de la sortie courant sont ensuite effectués dans l'étape "Réglages de la sortie"

Étalonnage du niveau

Dépend du mode de fonctionnement sélectionné.

Pour une détection de niveau, le Gammapilot FMG50 requiert au moins deux autres points d'étalonnage en plus de l'étalonnage de fond :

- Étalonnage "vide"
- Étalonnage "plein"

Linéarisation mesure de niveau : la linéarisation définit la corrélation entre le taux d'impulsions et le niveau (0 à 100 %).

Le Gammapilot FMG50 met à disposition une variété de modes de linéarisation :

- Linéarisations préprogrammées pour les cas standard fréquents ("linear", "standard")
 - Entrée d'une table de linéarisation quelconque adaptée à l'application spécifique
 - Le tableau de linéarisation peut comprendre jusqu'à 32 paires de valeurs "taux d'impulsions normalisé : niveau".
 - Le tableau de linéarisation doit être monotone décroissant, c'est-à-dire qu'un taux d'impulsions plus élevé doit toujours être associé à un niveau plus faible.

El 18 Exemple d'une courbe de linéarisation pour des mesures de niveau (composée de 6 paires de valeurs)

L Niveau

I_N Taux d'impulsions normalisé

Le type de linéarisation a déjà été sélectionné dans la section "Paramètres de mesure"

Le comportement du type "linear" de la linéarisation est identique au mode de fonctionnement "étalonnage du seuil".

- 1. Sélection : commencer par un étalonnage "plein" ou commencer par un étalonnage "vide"
 - Démarrer l'étalonnage -> l'étalonnage peut être arrêté une fois que le taux d'impulsions s'est stabilisé.

2. Étalonnage "vide" en mode niveau : le rayonnement est activé et le trajet du faisceau est complètement libre.

└ Si ces conditions sont remplies, l'étalonnage "vide" peut être démarré.

Device identification Advancement adjustments Calibration	Output settings Finis	h
Start empty calibration		
Empty calibration		
8000 cnt/s		
Empty calibration date		
Remaining calibration time		
0 s	▲	

L'étalonnage "vide" peut être exécuté en appuyant sur le bouton "Start empty calibration". La mesure démarre alors automatiquement et se poursuit, au maximum, pendant la durée qui a été configurée pour le temps d'étalonnage. Cependant, le processus peut également être arrêté manuellement en appuyant sur le bouton "Stop calibration".

L'étalonnage s'arrête automatiquement dès qu'un million d'impulsions ont été totalisées.

Il est également possible de saisir directement l'étalonnage "vide".

Pour que le bouton "Next" de l'assistant soit activé, la valeur doit toutefois être modifiée par rapport à la valeur de départ, au moins temporairement.

3. Étalonnage "plein" en mode niveau : le rayonnement est activé et le trajet du faisceau est complètement recouvert de produit.

└ Si ces conditions sont remplies, l'étalonnage "plein" peut être démarré.

Device identification	Measurement adjustments 🔪	Calibration	Output settings	Finish
	Start full calibration			
Full calibration				
Full calibration date				
Remaining calibration time 0 s				

L'étalonnage "plein" peut être exécuté en appuyant sur le bouton "Start full calibration". La mesure démarre alors automatiquement et se poursuit, au maximum, pendant la durée qui a été configurée pour le temps d'étalonnage. Cependant, le processus peut également être arrêté manuellement en appuyant sur le bouton "Stop calibration".

L'étalonnage s'arrête automatiquement dès qu'un million d'impulsions ont été totalisées.

Il est également possible de saisir directement l'étalonnage "plein". Pour que le bouton "Next" de l'assistant soit activé, la valeur doit toutefois être modifiée par rapport à la valeur de départ, au moins temporairement. **Conseil :** si la cuve ne peut être remplie de manière appropriée, l'étalonnage "plein" peut également être effectué avec le rayonnement désactivé. C'est une façon de simuler un trajet de rayonnement complètement couvert. Dans ce cas, l'étalonnage "plein" est identique à l'étalonnage de fond et 0 cnt/s est qénéralement affiché.

4.	Si un tableau personnalisé a été sélectionné pour la linéarisation, l'écran de saisie
	suivant apparaît :

╘►

Device identification	Measurement a	djustments Calibration	Output settings	Finish
Table mode				
Normalized pulse rate			~	
	Line	arization		
Edit table				
1				
Customer Input Value				
0,000 cnt/s				
Customer value				
Customer value				
Customer value				
Customer value 0,000 % Activate table				
Customer value 0,000 % Activate table Disable				

La procédure varie en fonction du type de tableau sélectionné.

- Pour le type de tableau "Taux d'impulsions normalisé", voir la description pour "Taux d'impulsions normalisé"
- Pour le type de tableau "Semi-automatique", voir la description pour "Semi-automatique"
- Si le type de tableau est modifié ultérieurement, se référer aux "Informations sur l'utilisation du module de linéarisation avec des valeurs de linéarisation enregistrées de manière semi-automatique".

Taux d'impulsions normalisé

Table mode			
Normalized pulse rate		~	
Transfer successful		 	
	Linearization		
Edit table			
1			
Customer Input Value			
0,000 cnt/s		?	
Customer value			
0,000 %			
Activate table			
Disable			

N	L	I	I _N
1	0	2431	1000
2	35	1935	792
3	65	1283	519
4	83	642	250
5	92	231	77
6	100	46	0

Taux d'impulsions normalisé

Noter que le taux d'impulsions normalisé est entré dans le tableau de linéarisation. Le taux d'impulsions normalisé n'est pas identique au taux d'impulsions réel mesuré. La relation entre ces deux variables est définie par la formule suivante :

 $I_N = (I - I_0) / (I_{MAX} - I_0) \times 1000$

Avec :

- I₀ correspondant au taux d'impulsions minimum (par ex. le taux d'impulsions pour l'étalonnage plein)
- I_{MAX} correspondant au taux d'impulsions maximum (par ex. le taux d'impulsions pour l'étalonnage vide)
- I : le taux d'impulsions mesuré
- I_N : le taux d'impulsions normalisé

Le taux d'impulsions normalisé est utilisé parce qu'il est indépendant de l'activité de la source radioactive employée :

- Pour L = 0 % (cuve vide), I_N toujours = 1000
- Pour L = 100 % (cuve pleine), I_N toujours = 0

Les valeurs de linéarisation individuelles peuvent être saisies via l'écran de saisie ou via un module de linéarisation séparé. Le tableau de linéarisation peut comprendre jusqu'à 32 paires de valeurs pour "taux d'impulsions normalisé : niveau".

Conditions du tableau de linéarisation

- Le tableau peut comprendre jusqu'à 32 paires "niveau valeur linéarisée".
- Le tableau doit décroître de façon monotone
 - La première valeur du tableau doit correspondre au niveau minimum
 - La dernière valeur du tableau doit correspondre au niveau maximum

Les valeurs du tableau peuvent être triées de manière monotone décroissante à l'aide de la fonction "Table mode -> Sort table".

Edit table : l'index du point de linéarisation est saisi dans ce champ (1-32 points)

Customer input value : entrer le taux d'impulsions normalisé

Customer value : niveau en unité de longueur, unité de volume ou %.

La valeur de l'entrée du client en taux d'impulsions normalisé et la valeur du client en pourcentage peuvent être déterminées dans le logiciel utilisateur "Applicator". ³⁾

Activate table : : l'option "Enable" doit d'abord être sélectionnée avant que le tableau de linéarisation ne soit utilisé. Le tableau de linéarisation n'est pas utilisé tant que "Disable" est sélectionné.

Le tableau de linéarisation peut également être saisi manuellement dans le module de linéarisation. Pour ce faire, sélectionner le bouton "Linearization" :

³⁾ Le logiciel Endress+Hauser Applicator est disponible en ligne à l'adresse www.fr.endress.com

Nerve State	N (N)		ISN .
	1,00	1.00	pd
	6,000	1.00	
	1.00	1.00	-
	1.00	1.00	
	1.00	1.00	
	1.00	1.00	
	6.000	1.00	
	8,000	1.00	-
	1,000	0.000	
	1,00	1.00	-
	1,00	6,88	
	8,000	1.00	
	1.00	1.00	
	1.00	1.00	
	1.89	1.00	
	1,000	1.00	
	8,000	6.000	
	8,808	0,000	
	1,00	0.000	
	1,89	1.00	
	1.000	1.00	
	1,000	1.00	
	1.00	1.00	
	1.00	1.00	
	1.00	1.00	
	1.00	1.00	
	1.00	1.00	
	8,000	1.00	
	8,600	6,000	-
			8
			* · · · · · · · · · · · · · · · · · · ·
and and the state of the local distance			
and the construction module is that	a inclusion and a second second		
	·		

Le taux d'impulsions normalisé et la valeur du client peuvent être saisis directement sous forme de tableau dans ce module.

📲 Le tableau de linéarisation doit être activé en sélectionnant "Activate table" -> "Enable"

Semi-automatique

		Output settings	T IIIISII
Table mode			
Semiautomatic		~	
_			
	Start semi-automatic calibr.		
Edit table			
1			
Customer Input Value			
0,000 cnt/s		A	
Customer value			
0,000 %			
Activate table			
Disable			
-			
O 5 11			

Pendant la linéarisation semi-automatique, l'appareil mesure le taux d'impulsions pour chaque point de linéarisation. La valeur de niveau associée est entrée manuellement. Contrairement au taux d'impulsions normalisé, le taux d'impulsions mesuré est directement appliqué au tableau de linéarisation en mode semi-automatique.

Le tableau de linéarisation peut comprendre jusqu'à 32 paires de valeurs "taux d'impulsions mesuré : niveau".

Conditions du tableau de linéarisation

- Le tableau peut comprendre jusqu'à 32 paires "niveau valeur linéarisée".
- Le tableau doit décroître de façon monotone
 - La première valeur du tableau doit correspondre au niveau minimum
 - La dernière valeur du tableau doit correspondre au niveau maximum

Les valeurs du tableau peuvent être triées de manière monotone décroissante à l'aide de la fonction "Table mode -> Sort table".

Edit table : l'index du point de linéarisation est saisi dans ce champ (1-32 points)

Customer input value : taux d'impulsions mesuré pour le point de linéarisation

Customer value : niveau en unité de longueur, unité de volume ou %.

Activate table : : l'option "Enable" doit d'abord être sélectionnée avant que le tableau de linéarisation ne soit utilisé. Le tableau de linéarisation n'est pas utilisé tant que "Disable" est sélectionné.

- Pour enregistrer une nouvelle valeur d'entrée, appuyer sur le bouton "Start semiautomatic calibration".
 - La mesure démarre alors automatiquement et se poursuit, au maximum, pendant la durée qui a été configurée pour le temps d'étalonnage. Cependant, le processus peut également être arrêté manuellement en appuyant sur le bouton "Stop calibration".

L'étalonnage s'arrête automatiquement dès qu'un million d'impulsions ont été totalisées.

Le temps restant pour l'étalonnage semi-automatique n'est pas affiché sur l'interface utilisateur.

🚹 Le tableau de linéarisation doit être activé en sélectionnant "Activate table" -> "Enable"

Utilisation du module de linéarisation avec des valeurs de linéarisation enregistrées de manière semi-automatique

Noter les points suivants en cas d'utilisation du module de linéarisation avec des tableaux de linéarisation enregistrés de manière semi-automatique :

Le module suppose que les taux d'impulsions sont normalisés et passe automatiquement à des valeurs normalisées lors du calcul de la mesure interne, si le module est utilisé. Cela fausse l'affectation entre la valeur de sortie et la valeur mesurée. Si le module de linéarisation a été ouvert avec des courbes de linéarisation semi-automatiques, le mode du tableau doit être à nouveau réglé sur "semiautomatique".

Si l'erreur F435 "Linearization incorrect" est affichée, le tableau de linéarisation doit être vérifié à nouveau en fonction des dépendances et des conditions mentionnées cidessus.

AVERTISSEMENT

► La linéarisation peut calculer une valeur incorrecte si le mauvais mode de tableau est utilisé. Dans ce cas, la sortie courant émettra également une valeur mesurée incorrecte.

Le message suivant s'affiche après un étalonnage réussi :

D	evice identification	Measurement adjustments	Calibration	Output settings	Finish	
Calibr	ration steps done					
~	Background calibrated			a		
~	Empty calibration done					
~	Full calibration done					
~	Date and Time set					
	Source type and beam type set					

Les réglages de la sortie courant sont ensuite effectués dans l'étape "Réglages de la sortie"

Étalonnage de la densité

Dépend du mode de fonctionnement sélectionné.

Le Gammapilot FMG50 requiert les paramètres suivants pour les mesures de densité et de concentration :

- La longueur du trajet de mesure irradié
- Le coefficient d'absorption μ du produit
- Le taux d'impulsions de référence I₀

Deux types d'étalonnage sont disponibles pour déterminer ces paramètres :

- Étalonnage multipoint
- Étalonnage en un point

Étalonnage multipoint

L'étalonnage multipoint est recommandé notamment pour les mesures dans une large gamme de densité ou pour des mesures particulièrement précises. Jusqu'à 4 points d'étalonnage peuvent être utilisés sur l'ensemble de la gamme de mesure. Les points d'étalonnage doivent être aussi éloignés que possible les uns des autres et répartis uniformément sur l'ensemble de la gamme de mesure.

I Taux d'impulsion

ρ Densité

Une fois les points d'étalonnage entrés, le Gammapilot FMG50 calcule lui-même les paramètres du taux d'impulsions de référence I_0 et du coefficient d'absorption μ .

Étalonnage en un point

Un étalonnage en un point peut être effectué si un étalonnage multipoint n'est pas possible. Cela signifie qu'en dehors de l'étalonnage de fond, un seul point d'étalonnage supplémentaire est utilisé. Ce point d'étalonnage doit être aussi proche que possible du point de fonctionnement. Les valeurs de densité proches de ce point d'étalonnage sont mesurées de manière assez précise, mais la précision peut diminuer à mesure que la distance du point d'étalonnage augmente.

I Taux d'impulsion

ρ Densité

Lors de l'étalonnage en un point, le Gammapilot FMG50 calcule uniquement le taux d'impulsions de référence I_0 . Pour le coefficient d'absorption μ , l'appareil utilise une valeur

prédéfinie. Cette valeur prédéfinie peut être éditée directement ou un coefficient d'absorption pour le point de mesure spécifique peut être déterminé à l'aide de l'Applicator. La valeur par défaut pour le coefficient d'absorption est $\mu = 7,7 \text{ mm}^2/\text{g}$.

Le type d'étalonnage a déjà été sélectionné dans la section "Paramètres de mesure"

Le Gammapilot FMG50 n'a pas d'assistant pour le **réétalonnage**. Cependant, un réétalonnage peut être effectué facilement. Voir "Réétalonnage de la densité pour un étalonnage multipoint"

Longueur de trajet optique du faisceau

La longueur du trajet du faisceau dans le produit à mesurer est spécifiée ici.

Beam path length 0,100 m	Device identification	Measu	rement adjustments 📏	Calibration	Output settings	Finish
0,100 m	Beam path length					
	0,100 m					

Exemples :

Si le faisceau traverse la conduite à un angle de 90°, cette valeur correspond au diamètre interne de la conduite. Si le faisceau traverse la conduite avec un angle de 30° afin d'augmenter la sensibilité de la mesure, la longueur du trajet du faisceau correspond à deux fois le diamètre interne de la conduite.

L'unité de longueur peut être définie dans la section "Paramètres de mesure"

Étalonnage multipoint

Jusqu'à quatre points d'étalonnage de la densité peuvent être enregistrés dans un étalonnage multipoint. La procédure est la même pour les quatre points d'étalonnage. Le premier des quatre points d'étalonnage possibles est décrit ci-dessous.

Points d'étalonnage 1-4 de la densité

1.

e rayo onnue	onnement est activé et le trajet du faisceau est rempli d'un produit de densit e.
	Device identification Measurement adjustments Calibration Output settings Finish
	Start density point calibration 1
	Pulse rate 1. density calibration point 0 cnt/s
	Density value of 1. calibration point 0.100 kg/m ³
	Density calibration date 1. point
	Remaining calibration time
	0 s at the state of the state o
	Disable Enable

L'étalonnage peut être exécuté en appuyant sur le bouton "Start density point calibration". La mesure démarre alors automatiquement et se poursuit, au maximum, pendant la durée qui a été configurée pour le temps d'étalonnage. Cependant, le processus peut également être arrêté manuellement en appuyant sur le bouton "Stop calibration".

L'étalonnage s'arrête automatiquement dès qu'un million d'impulsions ont été totalisées.

Il est également possible de saisir directement le taux d'impulsions. Pour que le bouton "Next" de l'assistant soit activé, la valeur doit toutefois être modifiée par rapport à la valeur de départ, au moins temporairement.

- 2. Avec ce point d'étalonnage, la densité du produit est saisie dans le champ "Density value of calibration point".
 - Cela permet d'établir la référence entre le taux d'impulsions déterminé et la densité du produit.

Conseil : Il est recommandé de prélever un échantillon du produit pendant l'intégration et de déterminer sa densité ultérieurement (p. ex. en laboratoire).

3. Activer le point d'étalonnage de la densité

Au moins deux des quatre points d'étalonnage de la densité disponibles doivent être activés à la fin. Cependant, on peut aussi utiliser trois ou quatre points. Cela augmente la précision de la détermination du coefficient d'absorption μ et du taux d'impulsions "vide" I_{0.} Si l'étalonnage doit être terminé après l'enregistrement de 2 points de densité, cliquer sur le bouton "Next" pour sauter les points de densité 3 et 4 sans les étalonner ou les activer. Le Gammapilot FMG50 ignore dans ce cas ces deux points de densité.

Le champ "Calibration date of density point" fournit à l'utilisateur des informations sur l'heure à laquelle la valeur d'étalonnage spécifique a été enregistrée.

2020-02-26			
------------	--	--	--

En cas d'étalonnage ultérieur d'un nouveau point d'étalonnage de la densité, il est possible d'utiliser et d'activer un point d'étalonnage libre ou d'écraser un ancien point de mesure.

Étalonnage en un point

H

L'utilisateur peut choisir entre deux méthodes différentes pour effectuer l'étalonnage de la densité en un point. Le choix est fait lorsque l'utilisateur est invité à "Use the Applicator"

"Use the Applicator settings" = No

Un point de densité est étalonné et le coefficient d'absorption prédéfini de 7,7 mm²/g est utilisé pour calculer les valeurs de densité. Ici, il est également possible d'entrer un coefficient d'absorption si cette valeur spécifique à l'application est connue pour la mesure.

"Use the Applicator settings" = Yes

La valeur pour le taux d'impulsions "vide" du point de mesure est calculée dans l'outil Endress+Hauser Applicator ⁴⁾, et entrée ici. Grâce à ce procédé breveté, le Gammapilot FMG50 peut calculer un coefficient d'absorption sur la base de la géométrie spécifique du point de mesure et ainsi étalonner la mesure de densité.

Point d'étalonnage 1 de la densité :

⁴⁾ Endress+Hauser Applicator est disponible en ligne à l'adresse www.fr.endress.com

1. Le rayonnement est activé et le trajet du faisceau est rempli d'un produit de densité connue. Le point d'étalonnage doit être aussi proche que possible du point de fonctionnement de la mesure de densité.

Device identification	Measurement adjustments	Calibration	Output settings	Finish
	Start density point calibrat	tion 1		
Use the applicator settings No Yes				
Empty pulse rate 500000,000 cnt/s Pulse rate 1. density calibration p	oint			
102 cnt/s	int			
1000,000 kg/m ³				
Density calibration date 1. point				
2020-02-26				
Remaining calibration time				
0 s				

L'étalonnage peut être exécuté en appuyant sur le bouton "Start calibration point 1". La mesure démarre alors automatiquement et se poursuit, au maximum, pendant la durée qui a été configurée pour le temps d'étalonnage. Cependant, le processus peut également être arrêté manuellement en appuyant sur le bouton "Stop calibration".

L'étalonnage s'arrête automatiquement dès qu'un million d'impulsions ont été totalisées.

Il est également possible de saisir directement le taux d'impulsions. Pour que le bouton "Next" de l'assistant soit activé, la valeur doit toutefois être modifiée par rapport à la valeur de départ, au moins temporairement.

- 2. Avec ce point d'étalonnage, la densité du produit est saisie dans le champ "Density value of calibration point".
 - ← Cela permet d'établir la référence entre le taux d'impulsions déterminé et la densité du produit.

Conseil : Il est recommandé de prélever un échantillon du produit pendant l'intégration et de déterminer sa densité ultérieurement (p. ex. en laboratoire). **Conseil :** Il n'est pas nécessaire d'activer le point de densité car celui-ci est activé automatiquement si un seul point existe.

ATTENTION : Dans le mode de fonctionnement "Densité", il est essentiel d'affecter la valeur limite inférieure (4 mA) et la valeur limite supérieure (20 mA) de la sortie courant à la densité.

Le message suivant s'affiche après un étalonnage réussi :

Calib	ration steps done	
	Background calibrated	
~	Date and Time set	
~	Density point 1 calibration done	
~	Density point 2 calibration done	
	Density point 3 calibration done	
	Density point 4 calibration done	
~	Density Calibration	
\checkmark	Source type and beam type set	

A0042213

Les réglages de la sortie courant sont ensuite effectués dans l'étape "Réglages de la sortie"

Interface

Dans le Gammapilot FMG50, la mesure d'interface est effectuée en mesurant les différentes densités de deux produits, comme l'huile et l'eau. La mesure d'interface dans un étalonnage est donc très similaire à une mesure multipoint de la densité avec deux valeurs d'étalonnage de la densité.

- Taux d'impulsion Ι
- Densité ρ
- *I_{min} Taux d'impulsions minimal*
- ρ_{min} Densité minimale, huile
- I_{max} Taux d'impulsions maximal
- ho_{max} Densité maximale, eau

Une fois que les points d'étalonnage ont été entrés, le Gammapilot FMG50 calcule de luimême la couche d'interface en %. Ici, 0 % correspond à la densité minimale et 100 % à la densité maximale.

Les réglages de la sortie courant sont ensuite effectués dans l'étape "Réglages de la sortie"

Longueur de trajet optique du faisceau

La longueur du trajet du faisceau dans le produit à mesurer est spécifiée ici.

Device identification	> Measurement adjustments	Calibration	Output settings	Finish
Beam path length				
0.100 m				

Exemples :

Si le faisceau traverse la conduite à un angle de 90°, cette valeur correspond au diamètre interne de la conduite. Si le faisceau traverse la conduite avec un angle de 30° afin d'augmenter la sensibilité de la mesure, la longueur du trajet du faisceau correspond à deux fois le diamètre interne de la conduite.

L'unité de longueur peut être définie dans la section "Paramètres de mesure"

Étalonnage du produit d'interface 1 / 2

Device identification	Measurement adjustments	Calibration	Output settings	Finish
	Start interface medium 1 calibr	ration		
Density calibration value fi	rst medium			
1000,000 kg/m ³				
Calibration pulse rate first	medium			
92 cnt/s				
Interface calibration date f	irst medium			
2020-02-26				
	1			
Remaining calibration time				

L'étalonnage peut être exécuté en appuyant sur le bouton "Start interface 1st/2nd medium calibration". La mesure démarre alors automatiquement et se poursuit, au maximum, pendant la durée qui a été configurée pour le temps d'étalonnage. Cependant, le processus peut également être arrêté manuellement en appuyant sur le bouton "Stop calibration".

L'étalonnage s'arrête automatiquement dès qu'un million d'impulsions ont été totalisées.

Il est également possible de saisir directement le taux d'impulsions. Pour que le bouton "Next" de l'assistant soit activé, la valeur doit toutefois être modifiée par rapport à la valeur de départ, au moins temporairement.

- 2. Avec ce point d'étalonnage, la densité du produit est saisie dans le champ "Density calibration value of 1st/2nd medium".
 - Cela permet d'établir la référence entre le taux d'impulsions déterminé et la densité du produit.

Le champ "Calibration date of 1st/2nd medium interface" fournit à l'utilisateur des informations sur l'heure à laquelle la valeur d'étalonnage a été enregistrée.

Interface calibration date first medium				
2020-02-26				

Le message suivant s'affiche après un étalonnage réussi :

Device identification Aeasurement adjustments Calibration	Output settings	Finish
Calibration steps done		
Background calibrated		
Date and Time set		
Interface medium 1 calibration done		
Interface medium 2 calibration done		
Source type and beam type set		

Les réglages de la sortie courant sont ensuite effectués dans l'étape "Réglages de la sortie"

Concentration

Dans les mesures de concentration, la linéarisation définit la corrélation entre la densité mesurée et la concentration.

La mesure de la concentration est donc une mesure de la densité avec une linéarisation ultérieure. Le processus d'étalonnage est identique à celui de la mesure de la densité.

La linéarisation est effectuée à la fin de l'étalonnage de la densité.

Exemple : Prélevez les paires de valeurs nécessaires dans le diagramme.

Exemple d'une courbe de linéarisation pour des mesures de concentration

Linéarisation

Conditions du tableau de linéarisation

- Le tableau peut comprendre jusqu'à 32 paires "valeur de densité : concentration (%)"
- Le tableau doit décroître de façon monotone
 - La première valeur du tableau doit correspondre à la valeur de densité minimale
 - La dernière valeur du tableau doit correspondre à la valeur de densité maximale

1. Effectuer l'étalonnage de densité

2.	Effectuer	la	linéarisation

	Measurement adjustments	Calibration	Output settings	Finish
Table mode				
Normalized pulse rate			~	
			_	
	Linearization			
Edit table				
1				
Customer Input Value				
0,000 kg/m³				
Customer value				
0,000 %				
0,000 %				
0,000 % Activate table				
0,000 % Activate table Disable				

Les valeurs de linéarisation individuelles sont saisies via l'écran de saisie ou via un module de linéarisation séparé.

Le tableau de linéarisation comprend jusqu'à 32 paires "valeur de densité : concentration (%)".

3. Les valeurs du tableau peuvent être triées de manière monotone décroissante à l'aide de la fonction "Table mode -> Sort table".

 Edit table : l'index du point de linéarisation est saisi dans ce champ (1-32 points) Customer input value : entrer la densité du client Customer value : niveau en unité de longueur, unité de volume ou %. Activate table : : l'option "Enable" doit d'abord être sélectionnée avant que le tableau de linéarisation ne soit utilisé. Le tableau de linéarisation n'est pas utilisé tant que "Disable" est sélectionné.

4. Le tableau de linéarisation peut également être saisi manuellement dans le module de linéarisation. Pour ce faire, sélectionner le bouton "Linearization" :

Le taux d'impulsions normalisé et la valeur du client peuvent être saisis directement sous forme de tableau dans ce module.

Le tableau de linéarisation doit être activé en sélectionnant "Activate table" = Enable

Conseil : Si le réglage de la densité est déjà terminé dans l'assistant, il n'est plus affiché. Le mode de fonctionnement doit être temporairement réglé sur "Densité" dans l'assistant pour pouvoir effectuer à nouveau le réglage de la densité ou le réétalonnage.

5. L'étalonnage a été effectué avec succès.

∟.

6. Les réglages de la sortie courant sont ensuite effectués dans l'étape "Réglages de la sortie"

Concentration de produits rayonnants

Pour la mesure de concentration dans des produits rayonnants (p. ex. : K40), le Gammapilot FMG50 requiert au moins deux autres points d'étalonnage en plus de l'étalonnage de fond :

- Taux d'impulsions à forte concentration du produit rayonnant
- Taux d'impulsions à faible concentration du produit rayonnant

La linéarisation définit la corrélation entre le taux d'impulsions mesuré et la concentration du produit rayonnant (0 à 100 %).

Le Gammapilot FMG50 met à disposition une variété de modes de linéarisation :

- Affectation linéaire du taux d'impulsions à la concentration
- Entrée d'une table de linéarisation quelconque adaptée à l'application spécifique.
 - Le tableau de linéarisation peut comprendre jusqu'à 32 paires de valeurs "taux d'impulsions normalisé : concentration"
 - Le tableau de linéarisation doit être monotone croissant, c'est-à-dire qu'une concentration plus élevée doit toujours être associée à un taux d'impulsions plus élevé.

20 Exemple d'une courbe de linéarisation pour des mesures de la concentration de produits rayonnants

- C Concentration de produits rayonnants
- I_N Taux d'impulsion normalisé

1. Sélection du type de linéarisation (déjà sélectionné dans la section "Paramètres de mesure")

- 2. **Sélection :** Commencer avec une forte concentration du produit rayonnant ou commencer avec une faible concentration du produit rayonnant
 - Démarrer l'étalonnage -> l'étalonnage peut être arrêté une fois que le taux d'impulsions s'est stabilisé.

Device identifica	tion	Measurement adjustments	Calibration	Output settings	Finish
Concentr. high self-r	ad calibration				
100,000 %					
Pulse rate self-radia	tion high calib.				
0 cnt/s					
Calib. date high self-	rad. concentratio	on			
	Sta	art calib.concentration se	elf-rad.high		
	Sta	art calib.concentration se	elf-rad.high		
Concentr. low self-ra	Sta d calibration	art calib.concentration s	elf-rad.high		
Concentr. low self-ra	Sta d calibration	art calib.concentration se	elf-rad.high		
Concentr. low self-ra 0,000 % Pulse rate self-radia	Stand calibration	art calib.concentration se	elf-rad.high		
Concentr. low self-ra 0,000 % Pulse rate self-radia 0 cnt/s	Stand calibration	art calib.concentration s	elf-rad.high		
Concentr. low self-ra 0,000 % Pulse rate self-radia 0 cnt/s	Sta d calibration tion low callb.	art calib.concentration so	elf-rad.high		
Concentr. low self-ra 0,000 % Pulse rate self-radia 0 cnt/s Calib. date low self-r	Sta Id calibration tion low calib. ad. concentratio	nt calib.concentration s	etf-rad.high		
Concentr. low self-ra [0,000 % Pulse rate self-radia [0 cnt/s Calib. date low self-r	Sta ed calibration tion low calib. ad. concentratio	nt calib.concentration s	etf-rad.high		
Concentr. low self-radia (0,000 %) Pulse rate self-radia (0 cnt/s Calib. date low self-r	Sta ed calibration tion low calib. ad. concentratio	nt calib.concentration so	elf-rad.high		
Concentr, low self-ra (0,000 % Pulse rate self-radia (0 cnt/s Calib. date low self-r	Sta d calibration tion low calib. ad. concentratio Sta	nt calib.concentration so	elf-rad.high elf-rad.low		

- 3. Étalonnage avec forte concentration
 - ← Appuyer sur le bouton "Calibration conc. self-rad. high"
- 4. Étalonnage avec faible concentration

4

- └ → Appuyer sur le bouton "Calibration conc. self-rad. low"
- 5. La mesure démarre alors automatiquement et se poursuit, au maximum, pendant la durée qui a été configurée pour le temps d'étalonnage.
 - Cependant, le processus peut également être arrêté manuellement en appuyant sur le bouton "Stop calibration".
 - L'étalonnage s'arrête automatiquement dès qu'un million d'impulsions ont été totalisées.
- 6. Entrée pour chaque point d'étalonnage : entrer la concentration du produit dans les champs "Calibration conc. self-rad. high" et "Calibration conc. self-rad. low"
 - Cela permet d'établir la référence entre le taux d'impulsions déterminé et la concentration du produit rayonnant.
 Conseil : Prélever un échantillon du produit pendant l'intégration et déterminer ensuite la concentration (p. ex. en laboratoire)
- 7. Si un tableau personnalisé a été sélectionné pour la linéarisation, l'écran de saisie suivant apparaît :

	measurement adjustments	Calibration	Output settings	Finish
Table mode				
Normalized pulse rate			~	
		_		
	Linearization			
Edit table				
1				
Customer Input Value				
0,000 cnt/s				
Customer value				
0,000 %				
Activate table				
Disable				

La procédure varie en fonction du type de tableau sélectionné.

- Pour le type de tableau "Taux d'impulsions normalisé"
- Pour le type de tableau "Semi-automatique"

Taux d'impulsion normalisé

Table mode			
Normalized pulse rate		<	
Transfer successful			
	Linearization		
Edit table			
1			
Customer Input Value			
0,000 cnt/s		?	
Customer value			
0,000 %			
Activate table			
Disable			
-			

Ν	С	Ι	I _N
1	100	2431	1000
2	92	1935	792
3	83	1283	519
4	65	642	250
5	35	231	77
6	0	46	0

Taux d'impulsion normalisé

Noter que le taux d'impulsions normalisé est entré dans le tableau de linéarisation. Le taux d'impulsions normalisé n'est pas identique au taux d'impulsions réel mesuré. La relation entre ces deux variables est définie par la formule suivante :

$I_N = (I - I_0) / (I_{MAX} - I_0) \times 1000$

Avec :

- I_0 correspondant au taux d'impulsions minimum (par ex. le taux d'impulsions pour l'étalonnage plein)
- I_{MAX} correspondant au taux d'impulsions maximum (par ex. le taux d'impulsions pour l'étalonnage vide)
- I : le taux d'impulsions mesuré
- I_N : le taux d'impulsions normalisé

Le taux d'impulsions normalisé est utilisé parce qu'il est indépendant de l'activité de la source radioactive employée :

- Pour L = 0 % (cuve vide), I_N toujours = 1000
- Pour L = 100 % (cuve pleine), I_N toujours = 0

Les valeurs de linéarisation individuelles peuvent être saisies via l'écran de saisie ou via un module de linéarisation séparé. Le tableau de linéarisation peut comprendre jusqu'à 32 paires de valeurs "taux d'impulsions normalisé : concentration".
Conditions du tableau de linéarisation

- Le tableau peut comprendre jusqu'à 32 paires "concentration valeur linéarisée".
- Le tableau doit décroître de façon monotone
 - La première valeur du tableau doit correspondre à la concentration minimale
 - La dernière valeur du tableau doit correspondre à la concentration maximale

Les valeurs du tableau peuvent être triées de manière monotone croissante à l'aide de la fonction "Table mode -> Sort table".

Edit table : l'index du point de linéarisation est saisi dans ce champ (1-32 points)

Customer input value : entrer le taux d'impulsions normalisé

Customer value : concentration en %.

Activate table : : l'option "Enable" doit d'abord être sélectionnée avant que le tableau de linéarisation ne soit utilisé. Le tableau de linéarisation n'est pas utilisé tant que "Disable" est sélectionné.

Le tableau de linéarisation peut également être saisi manuellement dans le module de linéarisation. Pour ce faire, sélectionner le bouton "Linearization" :

Le taux d'impulsions normalisé et la valeur du client peuvent être saisis directement sous forme de tableau dans ce module.

Semi-automatique

Device Identification	Measurement adjustments Calibration	Output settings	Finish
Table mode			
Semiautomatic		~	
	Start semi-automatic calibr.		
Edit table			
1			
Customer Input Value			
0,000 cnt/s			
Customer value			
Customer value 0,000 %			
Customer value 0,000 % Activate table			
Customer value 0,000 % Activate table Disable			

Pendant la linéarisation semi-automatique, l'appareil mesure la concentration pour chaque point du tableau. La valeur linéarisée associée est entrée manuellement. Les valeurs de linéarisation individuelles sont saisies via l'écran de saisie. Le tableau de linéarisation peut comprendre jusqu'à 32 paires de valeurs "taux d'impulsions mesuré : concentration".

Conditions du tableau de linéarisation

- Le tableau peut comprendre jusqu'à 32 paires "concentration valeur linéarisée".
- Le tableau doit croître de façon monotone
 - La première valeur du tableau doit correspondre à la concentration minimale
 - La dernière valeur du tableau doit correspondre à la concentration maximale

Les valeurs du tableau peuvent être triées de manière monotone croissante à l'aide de la fonction "Table mode -> Sort table".

Edit table : l'index du point de linéarisation est saisi dans ce champ (1-32 points)

Customer input value : taux d'impulsions mesuré pour le point de linéarisation

Customer value : concentration en %.

Activate table : : l'option "Enable" doit d'abord être sélectionnée avant que le tableau de linéarisation ne soit utilisé. Le tableau de linéarisation n'est pas utilisé tant que "Disable" est sélectionné.

Pour enregistrer une nouvelle valeur d'entrée, appuyer sur le bouton "Start semi-automatic calibration". La mesure démarre alors automatiquement et se poursuit, au maximum, pendant la durée qui a été configurée pour le temps d'étalonnage. Cependant, le processus peut également être arrêté manuellement en appuyant sur le bouton "Stop calibration".

L'étalonnage s'arrête automatiquement dès qu'un million d'impulsions ont été totalisées.

Le temps restant pour l'étalonnage semi-automatique n'est pas affiché sur l'interface utilisateur.

P Le tableau de linéarisation doit être activé en sélectionnant "Activate table" -> "Enable"

Utilisation du module de linéarisation avec des valeurs de linéarisation enregistrées de manière semi-automatique

Noter les points suivants en cas d'utilisation du module de linéarisation avec des tableaux de linéarisation enregistrés de manière semi-automatique :

Le module suppose que les taux d'impulsions sont normalisés et passe automatiquement à des valeurs normalisées lors du calcul de la mesure interne, si le module est utilisé. Cela fausse l'affectation entre la valeur de sortie et la valeur mesurée. Si le module de linéarisation a été ouvert avec des courbes de linéarisation semi-automatiques, le mode du tableau doit être à nouveau réglé sur "semiautomatique".

Remarque : La linéarisation peut calculer une valeur incorrecte si le mauvais mode de tableau est utilisé. Dans ce cas, la sortie courant émettra également une valeur mesurée incorrecte.

Le message suivant s'affiche après un étalonnage réussi :

	Device identification X Measurement adjus	tments Calibration	Output settings	Finish
Cali	bration steps done Background calibrated		A	
	Date and Time set			
	Conc.self-rad. low calibration done			
	concisen nut ingi canotation done			

Les réglages de la sortie courant sont effectués après l'étalonnage du mode de fonctionnement dans l'étape "Réglages de la sortie"

Réglages de la sortie courant

1. Régler la valeur limite inférieure (4 mA) et la valeur limite supérieure (20 mA) de la sortie courant aux valeurs souhaitées de la valeur mesurée primaire

	Device identification	Measurement adjustme	ents Calibration	Output settings	Finish	
I	Assign PV					
	Level					
	,					
	Lower range value output (44))				
	0,00 %					
	Upper range value output (39))				
	100,00 %					

Ces valeurs peuvent être utilisées pour une fonction de zoom ou pour inverser la valeur mesurée par rapport à la valeur actuelle.

2. La gamme de contrôle de la sortie courant peut être modifiée

		\		
	evice identification	Measurement adjustme	Output settings	Finish
42	nt range output (37) D mA NE (3.820.5 mA)		×	
Failur	e behavior current output			
•	Min.			
0	Max.			
				A0

La gamme de mesure de la sortie courant peut être définie comme suit :

4...20 mA (4... 20.5 mA)

4...20 mA NE (3.8...20.5 mA)

```
4...20 mA US (3.9...20.8 mA)
```

Le comportement du courant de défaut peut être défini comme une alarme min. ou max.

- L'alarme min. est définie avec <3,6 mA
- L'alarme max. est définie avec >21,5 mA
- Les deux conditions d'alarme sont garanties sur toute la gamme de température et sous l'influence des interférences CEM
 - Si le courant d'alarme max. a été sélectionné comme courant de défaut, la valeur du courant peut être ajustée entre 21,5 ... 23 V Le réglage est effectué via le menu de configuration :

Application -> Current output -> Failure current

 Dans le cas des réglages d'alarme min., il se peut que l'énergie ne soit pas suffisante pour alimenter le rétroéclairage de l'écran et la fonction Bluetooth. Pour garantir la fonction de mesure, les fonctions de rétroéclairage de l'écran / Bluetooth peuvent être désactivées et réactivées dès que l'énergie d'alimentation est de nouveau suffisante.

L'étalonnage du Gammapilot FMG50 est terminé.

7.2.5 Mode esclave

Le mode esclave peut être utilisé si le taux d'impulsions brut mesuré doit être traité par une unité d'exploitation aval (p. ex. un contrôleur) et non par le Gammapilot FMG50.

Dans ce mode de fonctionnement, le Gammapilot FMG50 transmet le taux d'impulsions brut en cnt/125 ms en tant que valeur primaire.

Aucun autre réglage ne doit être effectué une fois que le "mode esclave" a été sélectionné. La mise en service est conclue immédiatement.

D	Device identification	Measuremen	t adjustments 🔪 🛈	Calibration	Output settin	igs Finisl	1
Calib	oration steps done Date and Time set				<u> </u>		
	Source type and beam typ	e set					

La sortie courant est affectée automatiquement de façon linéaire :

- 4 mA = 0 cnt/125 ms
- 20 mA = 1000 cnt/125 ms

L'utilisation d'un Gamma Modulator FHG65 ne peut pas être configurée dans le mode de fonctionnement "esclave".

Si l'utilisation d'un Gamma Modulator FHG65 est nécessaire, contacter le SAV Endress +Hauser.

7.3 Mise en service via l'app SmartBlue

7.3.1 Exigences

Exigences de l'appareil

La mise en service via SmartBlue n'est possible que si l'appareil dispose d'un module Bluetooth.

Exigences du système SmartBlue

SmartBlue est disponible en téléchargement à partir du Google Play Store pour les appareils Android et à partir de l'iTunes Store pour les appareils iOS.

- Appareils avec iOS : iPhone 4S ou plus à partir d'iOS9.0 ; iPad2 ou plus à partir d'iOS9.0 ; iPod Touch 5e génération ou plus à partir d'iOS9.0
- Appareils avec Android :
 À partir d'Android 4.4 KitKat et Bluetooth[®] 4.0

Mot de passe initial

Le numéro de série de l'appareil sert de mot de passe initial pour l'établissement de la première connexion. Le numéro de série se trouve sur la plaque signalétique.

7.3.2 App SmartBlue

1. Scanner le QR code ou entrer "SmartBlue" dans le champ de recherche de l'App Store.

E 21 Lien de téléchargement

2. Démarrer SmartBlue.

- 3. Sélectionner l'appareil dans la liste des appareils joignables affichée.
- 4. Entrer les données de connexion :
 - └ Nom d'utilisateur : admin

Mot de passe : numéro de série de l'appareil ou numéro ID de l'afficheur Bluetooth

5. Sélectionner les icônes pour plus d'informations.

Pour la mise en service, voir la section "Assistant de mise en service"

Changer le mot de passe après la première connexion !

7.4 Mise en service par configuration sur site

L'appareil peut également être configuré sur site au moyen des touches. En cas de verrouillage de la configuration sur site au moyen du commutateur DIP, l'entrée de paramètres via l'interface de communication n'est pas possible.

- 1 Touche de configuration pour étalonnage vide (fonction I)
- 2 Touche de configuration pour étalonnage plein (fonction II)
- 3 Commutateur DIP pour courant d'alarme (défini par software / alarme min.)
- 4 Commutateur DIP pour le verrouillage et le déverrouillage de l'appareil de mesure
- **Empty calibration :** appuyer sur la touche et la maintenir enfoncée pour l'étalonnage "vide" (I) > 3 s
- Full calibration : appuyer sur la touche et la maintenir enfoncée pour l'étalonnage "plein" (II) > 3 s
- Background calibration : appuyer simultanément sur la touche pour l'étalonnage "vide" (I) et la touche pour l'étalonnage "plein" (II) et les maintenir enfoncées > 3 s
- **Reset to factory defaults :** appuyer simultanément sur la touche pour l'étalonnage "vide" (I) et la touche pour l'étalonnage "plein" (II) et les maintenir enfoncées > 12 s. La LED commence à clignoter. Lorsque le clignotement cesse, les réglages usine de l'appareil ont été rétablis.

7.4.1 Étalonnage de base du niveau

Temps par étalonnage : 5 min !

- 1. Reset
 - └ Appuyer sur les deux touches > 12 s

2. Démarrer l'étalonnage de fond

- Appuyer sur les deux touches > 3 s
 La LED verte s'allume pendant une seconde et commence à clignoter à un intervalle de 2 s
- 3. Démarrer l'étalonnage "vide"
 - ← Appuyer sur la touche "Zero / 1" > 3 s
 - La LED verte s'allume pendant une seconde et commence à clignoter à un intervalle de 2 s

Attendre 5 min jusqu'à ce que la LED verte cesse de clignoter

4. Démarrer l'étalonnage "plein"

 Appuyer sur la touche "Span / 2" > 3 s La LED verte s'allume pendant une seconde et commence à clignoter à un intervalle de 2 s Attendre 5 min jusqu'à ce que la LED verte cesse de clignoter

racentare 5 mini jusqu'a ce que la EED verte cesse de engliotes

Tous les étalonnages sont effacés lors de la réinitialisation !

7.4.2 LED d'état et de mise en marche

Une LED verte qui signale l'état et le retour d'information sur l'activation du bouton est présente sur l'électronique.

Comportement de la LED

- La LED clignote une fois brièvement lorsque l'appareil de mesure est mis en marche
- Lorsqu'une touche est actionnée, la LED cliqnote à titre de confirmation
- Lorsqu'une réinitialisation est effectuée, la LED clignote tant que les deux touches sont enfoncées et que la réinitialisation n'est pas encore active (compte à rebours). La LED cesse de cliqnoter une fois que la réinitialisation est active.
- La LED clignote lorsque l'étalonnage est en cours via la configuration sur site

7.5 Mise en service de la compensation de densité avec le RSG45 (calculateur gamma)

Mesure de niveau : FMG50 avec Memograph M RSG45 et information de densité du gaz.

Dans la cuve contenant le produit à mesurer, la phase gazeuse se trouve au-dessus du produit. La phase gazeuse absorbe également le rayonnement gamma au cours du process, mais à un degré bien moindre que le produit. Cette absorption est prise en compte dans les calculs et compensée lors de l'étalonnage.

Une compensation de la mesure du niveau est toutefois recommandée dans les process où la densité du gaz fluctue. Ici, le signal de niveau est calculé avec la valeur variable de la densité du gaz et compensé.

7.5.1 Scénario 1 : compensation de la densité via la mesure de température et de pression

La densité du gaz est calculée en fonction de la pression et de la température

Configuration du système de mesure

Exemple de connexion : RSG45 (scénario 1)

- 1 FMG50 (niveau)
- 2 Voie 2 HART (niveau)
- 3 RSG45
- 4 Capteur de pression
- 5 *Capteur de température*
- 6 Voie 4 HART (température)
- 7 Voie 3 HART (pression absolue)

Connexion de voies HART du RSG45

Voie 2 : Mesure de niveau FMG50

Voie 3 : Mesure de pression absolue

Voie 4 : Mesure de température

Configuration du RSG45

Définition ou suppression des valeurs limites

1. Naviguer jusqu'aux valeurs limites : "Setup -> Extended setup -> Application -> Limit values"

2. Entrer les valeurs limites

- FMG50 (mesure de densité), voie 1
 - Cnts_density_min: taux d'impulsions (impulsions par seconde, cnt/s) du FMG50 (densité) aux conditions atmosphériques (environnement)
 - Atmos Density: densité atmosphérique (environnement)
 - **Cnts_density_max:** taux d'impulsions (impulsions par seconde, cnt/s) du FMG50 (densité) à la densité maximale du process
 - max_Pro_density: densité maximale du process
- FMG50 (mesure de niveau), voie 2
 - Cnts_Level_empty: taux d'impulsions (impulsions par seconde, cnt/s) au niveau 0 %
 - Cnts_Level_full: taux d'impulsions (impulsions par seconde, cnt/s) au niveau 100 %
- Mesure de pression, voie 3
 - Atmos Pressure: pression atmosphérique (référence)
- Mesure de température, voie 4
 Atmos Temp: température de l'atmosphère (référence)

Configuration des fonctions mathématiques et du tableau de linéarisation

Affichage sous forme de pourcentage

1. Dans le menu Expert, naviguer jusqu'au tableau de linéarisation : Expert → Application → Mathematics → Level → Linearization

╘►		Device name : Device tag :		Memograph M RSG45 Gamma Calculator		Endress+Hauser 🖾	
	ALCONO.	Status signal :	~	OK			
						Cancel	
	Menu > Exp	sert > Application	> M	aths > LEVEL (5) (active)			
	Function		(i)	Formula editor	×		
	Channel ident.		(i)	LEVEL			
	Formula		i	MI(1;4)			
	Fo	rmula editor					
	The result is		(i)	Instantaneous value	۷		
	Plot type		i)	Average	٠		
	Engineering u	nit	i				
	Decimal point		i)	One (X.Y)	۷		
	>	Totalization					
	> Line	arization (active)					
	>	Fault mode					
	Copy settings		(i)	No	٣		

- 2. Entrer des paires de valeurs dans le tableau de linéarisation. Une paire de valeurs se compose d'une valeur en pourcentage et du taux d'impulsions associé (impulsions par seconde, cnt/s).
 - └ La valeur mesurée linéarisée est affichée sous forme de pourcentage.

Le tableau de linéarisation comprend jusqu'à 32 paires de valeurs.

Entrer autant de paires de valeurs que possible pour maximiser la précision.

Configuration des capteurs et des voies

Voie 2 :

Mesure de niveau FMG50 (sortie HART)

- PV : niveau (%)
- SV : taux d'impulsions (impulsions par seconde, cnt/s)

Voie 3 :

Mesure de pression (sortie HART) PV : pression absolue (bar)

Voie 4 :

Mesure de température (sortie HART) PV : température (K)

7.5.2 Scénario 2 : compensation de densité via mesure de densité du gaz FMG50

Configuration du système de mesure

■ 23 Exemple de connexion : RSG45 (scénario 2)

- 1 FMG50 (niveau)
- 2 FMG50 (densité)
- 3 RSG45
- 4 Voie 2 HART (niveau)
- 5 Voie 1 HART (densité)

Connexion de voies HART du RSG45

Voie 1 : Mesure de densité FMG50

Voie 2 : Mesure de niveau FMG50

Configuration du RSG45

Définition ou suppression des valeurs limites

1. Naviguer jusqu'aux valeurs limites : "Setup -> Extended setup -> Application -> Limit values"

- FMG50 (mesure de densité), voie 1
 - **Cnts_density_min:** taux d'impulsions (impulsions par seconde, cnt/s) du FMG50 (densité) aux conditions atmosphériques (environnement)
 - Atmos Density: densité atmosphérique (environnement)
 - Cnts_density_max: taux d'impulsions (impulsions par seconde, cnt/s) du FMG50 (densité) à la densité maximale du process
 - max_Pro_density: densité maximale du process
- **K-factor** = ln (taux d'impulsions_{vapeur} / taux d'impulsions_{atm}) / (ρ_{vapeur} ρ_{atm})
 FMG50 (mesure de niveau), voie 2
 - Cnts_Level_empty: taux d'impulsions (impulsions par seconde, cnt/s) au niveau 0 %
 - Cnts_Level_full: taux d'impulsions (impulsions par seconde, cnt/s) au niveau 100 %

Calculer le facteur K pendant la mise en service et l'entrer dans le RSG45.

Configuration des fonctions mathématiques et du tableau de linéarisation

Affichage sous forme de pourcentage

1. Dans le menu Expert, naviguer jusqu'au tableau de linéarisation : Expert → Application → Mathematics → Level → Linearization

	Device name :		emograph M	Endress+Hauser
	Device tag :		iGi45 Gamma Calculator	
	Status signal :	\checkmark	ĸ	
				Save settings
Menu > Exp	ert > Application	> Mi	hs > Level (5) (active)	
Function		i)	Formula editor 👻	
Channel ident.		i)	Level	
Formula		(i)	MM(1)4)	
Fo	rmula editor			
The result is		(i)	Instantaneous value	
Plot type		(j)	Average 🗸	
Engineering ur	oit.	i		
Decimal point		i)	One (X.Y)	
>	Totalization			
> Lines	arization (active)			
>	Fault mode			

- 2. Entrer des paires de valeurs dans le tableau de linéarisation. Une paire de valeurs se compose d'une valeur en pourcentage et du taux d'impulsions associé (impulsions par seconde, cnt/s).
 - └ La valeur mesurée linéarisée est affichée sous forme de pourcentage.

Entrer autant de paires de valeurs que possible pour maximiser la précision.

Configuration des capteurs et des voies

Voie 1:

- Mesure de densité FMG50 (sortie HART)
- PV : densité (kg/m3)
- SV : taux d'impulsions (impulsions par seconde, cnt/s)

Voie 2 :

Mesure de niveau FMG50 (sortie HART)

- PV : niveau (%)
- SV : taux d'impulsions (impulsions par seconde, cnt/s)

7.6 Configuration et réglages via RIA15

Voir le manuel de mise en service du RIA15, BA01170K

7.7 Accès aux données - Sécurité

7.7.1 Verrouillage par mot de passe dans FieldCare / DeviceCare / Smartblue

Le Gammapilot FMG50 peut être verrouillé et déverrouillé au moyen d'un mot de passe (voir le chapitre "Verrouillage du software")

7.7.2 Verrouillage du hardware

Le Gammapilot FMG50 peut être verrouillé et déverrouillé au moyen d'un commutateur situé sur l'appareil principal. Le verrouillage du hardware peut uniquement être désactivé au moyen de l'appareil principal (actionner le commutateur). Il n'est pas possible de déverrouiller le hardware via l'interface de communication.

7.7.3 Technologie sans fil Bluetooth[®] (en option)

La transmission du signal via la technologie sans fil Bluetooth® utilise une technique cryptographique testée par l'Institut Fraunhofer

- Sans l'app SmartBlue, l'appareil n'est pas visible via la technologie sans fil Bluetooth®.
- Une seule connexion point à point est établie entre un capteur et un smartphone ou une tablette.
- L'interface sans fil *Bluetooth*[®] peut être désactivée via SmartBlue, FieldCare ou DeviceCare.
- L'interface sans fil *Bluetooth*® peut être réactivée via FieldCare ou DeviceCare.
- Il n'est pas possible de réactiver l'interface sans fil *Bluetooth*® via l'app SmartBlue.

7.7.4 Verrouillage du RIA15

Il est possible de verrouiller la configuration de l'appareil au moyen d'un code utilisateur à 4 chiffres

Le manuel de mise en service du RIA15 contient des informations complémentaires

7.8 Aperçu du menu de configuration

Une vue d'ensemble complète du menu de configuration est disponible dans la documentation "Description des paramètres de l'appareil".

8 Diagnostic et suppression des défauts

8.1 Messages d'erreur système

8.1.1 Signal d'erreur

Les erreurs survenant pendant la mise en service ou le fonctionnement sont signalées de la manière suivante :

- Symbole d'erreur, couleur de l'écran, code et description de l'erreur sur le module d'affichage et de configuration.
- Sortie courant, adaptable :
 - MAX, 110 %, 22 mA
 - MIN, -10 %, 3,6 mA

😭 Réglage par défaut : MIN, -10 %, 3,6 mA

Le courant d'alarme max. peut être configuré dans la gamme 21,5 ... 23,0 mA. La valeur par défaut est 22,5 mA.

8.1.2 Types d'erreur

- Pas d'erreur durant le fonctionnement : l'écran est allumé est vert
- Alarme ou avertissement : l'écran est allumé en rouge
- Alarme : le courant de sortie prend une valeur prédéfinie. Un message erreur est affiché
 MAX, 110 %, 22 mA
 - MIN, -10 %, 3,8 mA
- Avertissement : l'appareil continue à mesurer. Un message d'erreur est affiché (en alternance avec la valeur mesurée)

L'indication d'erreur par un changement de couleur de l'affichage ne fonctionne que si la tension de fonctionnement n'est pas inférieure à 16 V

8.2 Erreurs d'étalonnage possibles

Défaut	Causes possibles	Solution
Taux d'impulsion trop faible lorsque la cuve est vide	Source radioactive désactivée	Activer la source au niveau du conteneur de source
	Alignement incorrect du boîtier de la source	Ajuster l'orientation de l'angle de rayonnement
	Dépôts dans la cuve	Nettoyer la cuve ou Procéder à un réétalonnage (si les dépôts sont stables)
	Les éléments internes de la cuve n'ont pas été pris en compte dans le calcul de l'activité	Recommencer le calcul de l'activité et changer de source radioactive si nécessaire
	La pression interne de la cuve n'a pas été prise en compte dans le calcul de l'activité	Recommencer le calcul de l'activité et changer de source radioactive si nécessaire
	Pas de source radioactive dans le conteneur de source	Charger la source radioactive
	Source radioactive trop faible	Utiliser une source avec une activité supérieure
	En cas d'utilisation d'un modulateur	Le modulateur n'est pas monté correctement
		Le modulateur n'est pas en service

Défaut	Causes possibles	Solution
		Le rayonnement n'est pas réglé sur la modulation
	En cas d'utilisation d'un collimateur	Alignement incorrect de la fenêtre d'entrée du rayonnement
Taux d'impulsion trop élevé lorsque la cuve est vide	Activité trop élevée	Atténuer le rayonnement, p. ex. en montant une plaque d'acier devant le conteneur de source ; ou remplacer la source radioactive
	Présence de sources radioactives externes (par ex. système de gammagraphie)	Si possible, utiliser un blindage ; répéter l'étalonnage sans source radioactive externe
Taux d'impulsion trop élevé lorsque la cuve est pleine	Présence de sources radioactives externes (par ex. système de gammagraphie)	Si possible, utiliser un blindage ; répéter l'étalonnage sans source radioactive externe

8.3 Erreur - configuration SmartBlue

Erreur	Cause possible	Remède
Connexion via SmartBlue impossible	Pas de connexion Bluetooth	Activer la fonction Bluetooth sur le smartphone ou la tablette
		Fonction Bluetooth du capteur désactivée, réaliser une séquence de récupération
	HistoROM manquante	Installer l'HistoROM
	L'appareil est déjà connecté avec un(e) autre smartphone / tablette	Une seule connexion point à point est établie entre un capteur et un smartphone ou une tablette
	Appareil mis en service pour la première fois	Entrer le mot de passe initial (numéro de série de l'appareil) et le modifier. Veiller à la casse (majuscules / minuscules) lors de la saisie du numéro de série.
L'appareil est visible dans la liste des appareils joignables	Terminal Android	La fonction de localisation est-elle autorisée pour l'application, a-t-elle été approuvée la première fois ?
mais n'est pas accessible via SmartBlue		La fonction GPS ou de positionnement doit être activée pour certaines versions Android en même temps que Bluetooth
		Activer le GPS – fermer complètement l'application et la redémarrer – activer la fonction de positionnement pour l'application
L'appareil est visible dans la liste des appareils joignables mais n'est pas accessible via SmartBlue	Terminal Apple	Se connecter en standard Entrer le nom d'utilisateur "admin" Entrer le mot de passe initial (numéro de série de l'appareil), veiller à la casse (majuscules / minuscules)
L'appareil ne peut pas être utilisé via SmartBlue	Le mot de passe entré est incorrect	Entrer le bon mot de passe
	Mot de passe oublié	Contacter le SAV Endress+Hauser.

Erreur	Cause possible	Remède
	La température du capteur est trop élevée	Si la température ambiante entraîne une température élevée du capteur >60 °C (140 °F), la communication Bluetooth peut être désactivée. Protéger l'appareil, l'isoler et le refroidir si nécessaire.
Les repères dans SmartBlue et HART ne correspondent pas	Dépend du système	L'identifiant de l'appareil (repère/TAG) est transféré à la liste en temps réel via Bluetooth® pour faciliter l'identification de l'appareil. L'étiquette est abrégée au milieu car l'étiquette HART peut comporter jusqu'à 32 caractères, mais Bluetooth® ne peut utiliser que 29 caractères pour le nom de l'appareil.

8.4 Événement de diagnostic

8.4.1 Événement de diagnostic dans l'outil de configuration

Si un événement de diagnostic s'est produit dans l'appareil, le signal d'état apparaît en haut à gauche dans la barre d'état de l'outil de configuration avec le symbole correspondant pour le comportement en cas d'événement selon NAMUR NE 107 :

- Défaut (F)
- Test fonction (C)
- En dehors de la spécification (S)
- Maintenance nécessaire (M)
- Pas d'erreur durant le fonctionnement : l'écran est allumé est vert
- Alarme ou avertissement : l'écran est allumé en rouge

Accès aux mesures correctives

- ► Aller jusqu'au menu Diagnostic
 - └ Dans le paramètre **Diagnostic actuel**, l'événement de diagnostic est affiché avec le texte de l'événement

8.4.2 Liste des événements de diagnostic dans l'outil de configuration

Numéro de diagnostic	o de Texte court Mesures correctives stic		Signal d'état [au départ usine]	Comportement du diagnostic [au départ usine]
Diagnostic du	capteur			
007	Capteur défectueux	Remplacer l'électronique du capteur	F	Alarm
008	Capteur défectueux	 Redémarrer appareil Contacter service après-vente 	F	Alarm
062	Connexion capteur défectueuse	Vérifier le raccordement capteur	F	Alarm
064	Taux d'impulsions hors gamme	 Vérifier conditions process Vérifier conditions environnementales Remplacer capteur 	С	Warning
082	Stockage données incohérent	 Contrôler les connexions des modules Contacter le service technique 	F	Alarm
Diagnostic de l	l'électronique			
242	Firmware incompatible	1. Contrôler Software	F	Alarm

Numéro de diagnostic	Texte court	Mesures correctives	Signal d'état [au départ usine]	Comportement du diagnostic [au départ usine]
252	Module incompatible	 Vérifier si le correct module électronique est branché Remplacer le module électronique 	F	Alarm
270	Electronique principale en panne	Remplacer électronique principale	F	Alarm
272	Electronique principale défectueuse	 Redémarrer appareil Contacter service après-vente 	F	Alarm
273	Electronique principale en panne	 Opération d'urgence via afficheur Changer électronique principale 	F	Alarm
282	Stockage données incohérent	 Redémarrer appareil Contacter service après-vente 	F	Alarm
283	Contenu mémoire inconsistant	 Transférer données ou RAZ capteur Contactez SAV 	F	Alarm
287	Contenu mémoire inconsistant	 Redémarrer appareil Contacter service après-vente 	М	Warning
311	Défaut électronique	Maintenance requise! 1. Ne pas resetter 2. Contacter Service	М	Warning
Diagnostic de	la configuration			
410	Echec transfert de données	 Vérifier liaison Réessayer le transfert de données 	F	Alarm
412	Traitement du téléchargement	Download en cours, veuillez patienter	С	Warning
431	Réglage requis	Carry out trim	С	Warning
434	Horloge temps réel défectueuse	Remplacer l'électronique du capteur	С	Alarm
435	Linéarisation défectueuse	Contrôler tableau de linéarisation	F	Alarm
436	Date/heure incorrecte	Vérifier réglage date et heure	М	Alarm
437	Configuration incompatible	 Redémarrer appareil Contacter service après-vente 	F	Alarm
438	Set données différent	 Contrôler fichier données Contrôler configuration Up/download de la nvelle config 	М	Warning
440	Capteur non étalonné	Calibrer l'appareil	F	Alarm
441	Sortie courant hors plage	 Vérifier process Vérifier réglages sortie courant 	S	Warning
484	Simulation mode défaut actif	Désactiver simulation	С	Alarm
490	Simulation sortie	Désactiver simulation	С	Warning
491	Simulation sortie courant 1 actif	Désactiver simulation	С	Warning
495	Simulation diagnostique évènement actif	Désactiver simulation	С	Warning

Numéro de diagnostic	Texte court	Mesures correctives	Signal d'état [au départ usine]	Comportement du diagnostic [au départ usine]
538	Configuration Sensor Unit invalide	 Vérifier la configuration du capteur Vérifier la configuration de l'appareil 	М	Alarm
544	Etalonnage de fond pas fait	Fond non étalonné	С	Warning
586	Étalonnage actif	Enregistrement taux d'impulsions	М	Alarm
593	Simulation impulsions active	Désactiver simulation	С	Warning
Diagnostic du	process			
801	Tension d'alimentation trop faible	Tension d'alimentation trop faible, augmenter tension d'alimentation	F	Alarm
802	Tension d'alimentation trop élevée	Diminuer la tension d'alimentation	S	Warning
803	Courant de boucle	 Vérifier le câblage Remplacer l'électronique 	М	Warning
805	Courant de boucle	 Vérifier le câblage Remplacer l'électronique 	F	Alarm
825	Température de fonctionnement	 Vérifier température ambiante Vérifier température process 	S	Warning
826	Capteur température hors gamme	 Vérifier température ambiante Vérifier température process 	S	Warning
927	Surexposition reconnue	Veuillez vérifier la source	С	Alarm
955	Gammagraphie détectée	Gammagraphie détectée	С	Warning ¹⁾
956	Evaluation courbe plateau	Enregistrement courbe plateau	М	Warning

1) Le comportement de diagnostic peut être modifié.

8.4.3 Affichage des événements de diagnostic

Diagnostic actuel

Le menu contient le paramètre "Actual diagnostics", avec horodatage.

Dernière erreur

Le menu contient le paramètre "Previous diagnostics", avec horodatage.

Journal événement

Les événements sont enregistrés dans ce journal des événements.

Navigation

Menu "Diagnostic" → Journal d'événements

8.5 Événement de diagnostic sur le RIA15

Les événements de diagnostic ne s'affichent pas directement sur le RIA15. Le défaut F911 apparaît directement sur l'afficheur RIA15 uniquement en cas d'alarme.

Affichage d'un événement de diagnostic sur le RIA15

- 1. Aller à : DIAG/TERR
- 2. Appuyer sur E
- 3. Appuyer sur 🛨
- 4. Appuyer sur 🗉
- 5. Appuyer 3 fois sur 🛨
- 6. Appuyer sur 🗉
 - 🕒 L'événement de diagnostic de l'appareil de terrain apparaît sur l'afficheur RIA15

8.6 Gammagraphie

8.6.1 Principes de base

Cette fonction permet de détecter les rayonnements parasites qui interrompent la mesure. Le but de la reconnaissance de gammagraphie consiste à détecter les rayonnements parasites typiques survenant lors des contrôles de matériaux non destructifs dans le système. Sans la reconnaissance de gammagraphie, ces rayonnements parasites réduiraient la valeur mesurée (jusqu'à 0 % ou pmin). En revanche, avec la reconnaissance de gammagraphie, la valeur mesurée prend dans ce cas une valeur définie (courant d'alarme ou maintien de la dernière valeur mesurée).

Influence de la gammagraphie sur les mesures radiométriques

1 Rayonnement parasite

8.6.2 Réaction au rayonnement de gammagraphie

Si le seuil "Gammagraphy limit" défini pour la reconnaissance de gammagraphie est atteint, la sortie de l'appareil prend une valeur définie par l'utilisateur (paramètre Gammagraphy detection). En outre, un avertissement est émis. Après écoulement d'une durée maximale définie par l'utilisateur (paramètre Hold time), un courant d'alarme est délivré et un événement est affiché (sélectionnable au moyen du paramètre Gammagraphy detection).

La reconnaissance de gammagraphie est également disponible avec modulation du rayonnement.

Si l'option Heartbeat est disponible, le nombre d'événements de gammagraphie détectés et leur durée totale sont indiqués dans le rapport Heartbeat Verification.

8.6.3 Seuils de reconnaissance de gammagraphie et comportement en cas de rayonnement excessif

La reconnaissance de gammagraphie est active dans la plage de rayonnement admissible de l'appareil, c'est-à-dire jusqu'à $\leq 65\,000\,$ cnt/s. La précision de l'appareil étant garantie dans cette plage, celui-ci est prêt à reprendre les mesures dès que l'événement de gammagraphie prend fin.

Au-delà de la gamme de rayonnement autorisée, une alarme de rayonnement excessif est signalée après 1 s (numéro de diagnostic 927), indépendamment des réglages pour la reconnaissance de gammagraphie. Pendant l'alarme de rayonnement excessif, la sortie courant est toujours réglée sur le courant de défaut.

Afin de protéger le tube photomultiplicateur, l'alimentation haute tension du tube est désactivée pendant que l'alarme de rayonnement est active, et réactivée par cycles pour contrôler l'intensité du rayonnement. Le temps de pause pendant lequel le tube est éteint est de 60 s. Par conséquent, la fin d'une période de rayonnement excessif ne peut être détectée qu'après 60 s au plus tôt. La tension d'alimentation est rajustée lorsque le rayonnement excessif disparaît. Par conséquent, en plus du temps de pause, il faut environ 30 s jusqu'à ce que le signal du capteur quitte l'état d'alarme.

Grâce à la désactivation cyclique de l'alimentation haute tension, le rayonnement excessif peut persister sur une durée quelconque sans affecter la durée de vie du photomultiplicateur ou de l'appareil dans son entier.

8.6.4 Réglages de gammagraphie

La reconnaissance de gammagraphie peut être configurée sous :

Application -> Sensor -> Gammagraphy detection

≡ > ≅ > Sensor			
Measurement mode		Gammagraphy detection Warning	~
Gammagraphy detection		Gammagraphy detection	~
Level settings	>	Gammagraphy hold time	
General settings		Gammagraphy limit 6178,103 cnt/s	A
		Sensitivity of gammagraphy detection	_

8.6.5 Paramètre Gammagraphy detection

Ce paramètre permet d'activer et de désactiver la reconnaissance de gammagraphie.

En supplément, il est possible de définir la classe d'événements selon NE107

Gammagraphy detection -> Off

La reconnaissance de gammagraphie est désactivée. En présence d'un événement de gammagraphie, la sortie courant affiche -10 % de la valeur mesurée (3,8 mA).

Gammagraphy detection -> Alarm

La reconnaissance de gammagraphie est activée. En présence d'un événement de gammagraphie, la sortie courant adopte le courant de défaut (3,6 mA ou \geq 21,5 mA, selon la configuration du courant d'alarme).

Gammagraphy detection -> Warning

La reconnaissance de gammagraphie est activée. La sortie courant est maintenue à la dernière valeur mesurée valide avant détection du rayonnement de gammagraphie.

8.6.6 Paramètre Gammagraphy hold time

Ce paramètre permet de définir la durée de maintien de la valeur mesurée en cas de détection d'un rayonnement de gammagraphie. Après écoulement de cette durée, la sortie courant prend la valeur définie avec le paramètre Gammagraphy detection.

La durée de maintien doit être légèrement plus longue que la durée maximale d'une mesure par gammagraphie. Une alarme est émise si le taux d'impulsions maximal est toujours dépassé à la fin de la durée de maintien.

Les événements sont seulement ajoutés à la liste des événements une fois la durée de maintien écoulée

AVERTISSEMENT

 Les changements de la valeur mesurée ne sont pas détectés pendant la durée de maintien. Dans un circuit de protection de sécurité, la durée de maintien sélectionnée peut être supérieure à la durée de sécurité process admissible

8.6.7 Paramètre Gammagraphy limit

Les rayonnements de gammagraphie sont détectés si le taux d'impulsions au niveau du détecteur dépasse le seuil maximal de gammagraphie. Cette valeur est déterminée au moyen du taux d'impulsions maximal provenant de l'étalonnage (généralement, la valeur de fin d'échelle) et du réglage de sensibilité à la gammagraphie.

8.6.8 Paramètre Gammagraphy sensitivity

La valeur de sensibilité appropriée dépend en grande partie des conditions de process et des conditions ambiantes. Par conséquent, il n'existe pas de règle générale s'appliquant au réglage de la valeur de sensibilité. Les principes suivants peuvent toutefois servir de points de repère :

- Entrer une valeur faible (entre 1 et 3) pour les produits homogènes à surface plane et calme. Le degré de détection des rayonnements de gammagraphie est alors élevé.
- Entrer une valeur élevée (entre 3 et 7) pour les produits non homogènes et à surface agitée car sinon, l'appareil prendra les variations aléatoires du taux d'impulsions pour un événement de gammagraphie.

Si l'appareil signale occasionnellement un événement de gammagraphie alors qu'il n'y a aucun rayonnement de gammagraphie, il est recommandé d'augmenter légèrement la valeur. Inversement, cette valeur doit être réduite si l'appareil n'a pas détecté pas un rayonnement de gammagraphie.

8.7 Réétalonnage de la densité pour un étalonnage multipoint

8.7.1 Principes de base

Un réétalonnage de la mesure peut être nécessaire si les conditions de mesure ont changé, p. ex. en cas d'accumulation de dépôts sur la conduite.

Le coefficient d'absorption μ de l'étalonnage original est maintenu mais le taux d'impulsions de référence I₀ est redéterminé, ce qui entraîne un décalage de la fonction de linéarisation globale.

El 25 Décalage de linéarisation

I Taux des impulsions (impulsions par seconde, imp./s)

o Densité

8.7.2 Exécution d'un réétalonnage de densité pour l'étalonnage multipoint

1. Dans le menu de configuration, changer le type d'étalonnage de option **Calibration multi-points** sur option **Calibration en 1 point**

← Application \rightarrow Capteur \rightarrow Réglages densité \rightarrow Type étalonnage ou linéarisation

⇒ ⇒ > Sensor > Density Settings		
Density Settings	Calibration or Linearization type One point calibration	~
		4006215

2. Après avoir changé le type d'étalonnage en étalonnage en un point, exécuter l'étalonnage en un point à l'aide de l'assistant de mise en service.

Ne changer le type d'étalonnage que dans le menu de configuration. Si le type d'étalonnage est modifié dans l'assistant de mise en service, le coefficient d'absorption existant de l'étalonnage actuel est remplacé par la valeur par défaut. 7,7 mm²/g. Cela nécessiterait un réétalonnage complet du point de mesure. Dans ce cas, la valeur μ peut être prélevée manuellement dans la documentation de mise en service et saisie à la place de la valeur par défaut.

8.8 Horloge temps réel et compensation de la décroissance

8.8.1 Principes de base

Pour la compensation de la décroissance, le Gammapilot FMG50 contient une horloge temps réel, qui est généralement alimentée par la tension aux bornes. Cette horloge est sauvegardée par une pile pour pallier aux interruptions de tension.

La pile doit avoir une capacité restante suffisante pour que l'horloge fonctionne correctement et continue à indiquer la date exacte en cas de coupure de courant.

La pile se décharge pendant la durée de vie de l'appareil. Le processus dépend de la température : l'autodécharge est plus rapide à des températures ambiantes élevées.

Pour limiter l'autodécharge, ne pas stocker les appareils à des températures élevées pendant une période prolongée

8.8.2 Réglage de l'horloge temps réel

Si la capacité de la pile est faible, le message d'erreur **M434 "Real-time clock battery is empty"** est affiché

Dans ce cas, la date doit être réinitialisée après chaque coupure de courant ou la pile doit être remplacée.

📳 La pile peut uniquement être remplacée par le SAV Endress+Hauser

Réglage de l'heure

1. \leftarrow Application \rightarrow Capteur \rightarrow Sensor Trim Gamma

Real time clock adjustment	Set system time
	Year
	20
	Month
	2
	Dav
	28
	Haur
	11
	Manas
	25
	Data (Alara
	Date/time

- 2. L'heure de l'horloge de l'appareil d'exploitation (PC connecté ou appareil Bluetooth) est réglée en appuyant sur l'élément **"Set system time"**.
- Réglage de l'horloge à l'état de livraison : temps universel coordonné (UTC).

AVERTISSEMENT

 Si une heure incorrecte est définie, cela fausse le résultat de la compensation de la décroissance. Cela pourrait entraîner une défaillance dangereuse qui ne peut être diagnostiquée dans l'appareil.

8.9 Comportement en cas de tension aux bornes faible

8.9.1 Principes de base

Si la tension aux bornes est faible, le niveau d'énergie disponible peut ne pas suffire à rendre toutes les fonctions de l'appareil disponibles. Pour garantir une fonction de mesure fiable, les mesures suivantes sont prises en fonction de l'énergie disponible :

- Pour les appareils avec afficheur (en option) : le rétroéclairage de l'afficheur et la fonction Bluetooth sont désactivés
- Pour les appareils sans afficheur : l'énergie totale disponible est toujours disponible pour le capteur

Si l'énergie ne suffit pas à garantir de manière fiable la fonction de mesure, une alarme **F801 "Increase supply voltage"** est émise et la fonction du capteur est désactivée.

8.10 Historique

8.10.1 Historique du firmware

Version de firmware

- 01.00.00
 - Software initial
 - Valable à partir du : 31 août 2019
- 01.00.01
 - Fonctions SIL certifiées
- Rétroéclairage de l'afficheur disponible
- Valable à partir du : 10 février 2020
- **01.00.02**
 - Certifié pour la sécurité antidébordement selon la loi allemande sur les ressources en eau (WHG)
 - Amélioration du comportement en cas de rayonnement excessif
 - Comportement modifié de l'afficheur en cas d'alimentation faible (le retroéclairage de l'afficheur et la fonction Bluetooth sont réactivés lorsqu'une alimentation suffisante est de nouveau disponible)
 - Les erreurs sont désormais affichées sur l'afficheur, pondérées en fonction de leur pertinence et non plus en fonction du moment où elles se produisent
 - Les assistants pour la fonctionnalité Heartbeat Verification et le test de fonctionnement périodique SIL sont désormais également disponibles via Bluetooth (mise à jour de l'app SmartBlue requise)
 - Corrections de bogues
 - Valable à partir du : 1 mars 2021

La version de firmware peut être commandée explicitement via la structure du produit. De cette façon, il est possible de garantir la compatibilité de la version du firmware avec une intégration système existante ou planifiée.

8.10.2 Historique du hardware

Version de hardware

- 01.00.00 -> hardware initial
 - Valable à partir du : 31 août 2019
- 01.00.01 -> rétroéclairage de l'afficheur disponible (il peut être nécessaire de mettre à jour le firmware de l'afficheur)

Valable à partir du : 10 février 2020

9 Maintenance et réparation

9.1 Nettoyage

Lors du nettoyage extérieur, veiller à toujours utiliser des produits de nettoyage qui n'attaquent pas la surface du boîtier et les joints.

9.2 Réparation

9.2.1 Concept de réparation

Selon le concept de réparation Endress+Hauser, les appareils sont construits de façon modulaire et les réparations peuvent être effectuées par le SAV Endress+Hauser ou par des clients spécialement formés.

Les pièces de rechange sont disponibles par kits avec les instructions de remplacement correspondantes.

Pour plus d'informations sur le service et les pièces de rechange, contacter le SAV Endress +Hauser.

9.2.2 Réparations des appareils avec certificat Ex

Lors de réparation d'appareils avec certificat Ex, tenir compte également des points suivants :

- Seul un personnel spécialisé ou le SAV Endress+Hauser est autorisé à effectuer des réparations sur des appareils certifiés Ex.
- Il faut obligatoirement respecter les normes et les directives nationales en vigueur, ainsi que les Conseils de sécurité (XA) et les certificats.
- Seules des pièces de rechange provenant d'Endress+Hauser doivent être utilisées.
- Seuls les collaborateurs des ateliers SAV Endress+Hauser sont autorisés à transformer un appareil certifié en une autre version certifiée.
- Documenter les réparations Ex et les modifications Ex.

Consulter les informations figurant dans le "Manuel de sécurité fonctionnelle" pour les appareils SIL

9.3 Remplacement

ATTENTION

Un upload/download de données est interdit si l'appareil est utilisé pour des applications de sécurité.

 Après remplacement d'un appareil complet ou d'un module électronique, les paramètres peuvent de nouveau être téléchargés dans l'appareil via l'interface de communication. Pour cela, les données doivent être téléchargées au préalable sur un ordinateur au moyen du logiciel "FieldCare/DeviceCare".

9.3.1 Mesure de niveau et détection de seuil

Les mesures peuvent reprendre sans nouvel étalonnage. Cependant, les valeurs d'étalonnage doivent être vérifiées au plus vite car la position de montage peut avoir changé légèrement.

9.3.2 Mesure de densité et de concentration

Un nouvel étalonnage est nécessaire après le remplacement.

9.3.3 HistoROM

Un nouvel étalonnage de l'appareil n'est pas nécessaire après le remplacement de l'afficheur ou de l'électronique du transmetteur. Les paramètres sont enregistrés dans l'HistoROM.

Après remplacement de l'électronique du transmetteur, retirer l'HistoROM et l'insérer dans la pièce de rechange neuve.

Contacter le SAV Endress+Hauser si l'HistoROM a été perdue ou est défectueuse.

9.4 Pièces de rechange

Entrer le numéro de série dans *W@M Device Viewer* (www.endress.com/deviceviewer).

Toutes les pièces de rechange de l'appareil y sont listées avec leur référence de commande et peuvent être commandées. Le cas échéant, on y trouve également les instructions de montage à télécharger.

🚹 Numéro de série :

- Se trouve sur la plaque signalétique de l'appareil et de la pièce de rechange.
- Peut être visualisé via le paramètre "Numéro série" dans le sous-menu "Information appareil".

9.5 Retour de matériel

En cas de réparation, étalonnage en usine, erreur de livraison ou de commande, l'appareil de mesure doit être retourné. En tant qu'entreprise certifié ISO et sur la base de directives légales, Endress+Hauser est tenu de traiter d'une certaine manière les produits retournés ayant été en contact avec des substances de process.

Pour garantir un retour sûr, rapide et dans les règles de l'art, consulter les procédures et conditions générales pour le retour d'appareils sur le site web Endress+Hauser sous http://www.endress.com/support/return-material

9.6 Mise au rebut

X

Si la directive 2012/19/UE sur les déchets d'équipements électriques et électroniques (DEEE) l'exige, nos produits sont marqués du symbole représenté afin de réduire la mise au rebut des DEEE comme déchets municipaux non triés. Ces produits ne doivent pas être mis au rebut comme déchets municipaux non triés et peuvent être retournés à Endress+Hauser pour une mise au rebut aux conditions stipulées dans nos conditions générales de vente ou comme convenu individuellement.

9.6.1 Mise au rebut des batteries

- L'utilisateur final est légalement tenu de retourner les batteries usagées.
- L'utilisateur final peut retourner gratuitement à Endress+Hauser les batteries usagées ou les ensembles électroniques contenant ces batteries.

X

Conformément à la loi allemande réglementant l'utilisation des piles et batteries (BattG §28 Para 1 Numéro 3), ce symbole est utilisé pour désigner les ensembles électroniques qui ne doivent pas être éliminés comme déchets ménagers.

9.7 Coordonnées Endress+Hauser

Les coordonnées sont disponibles à l'adresse <u>www.endress.com/worldwide</u> ou auprès de l'agence commerciale Endress+Hauser.

10 Accessoires

10.1 Commubox FXA195 HART

Pour communication HART à sécurité intrinsèque avec FieldCare / DeviceCare via l'interface USB. Pour plus de détails, se reporter à

TI00404F

10.2 Field Xpert SFX350, SFX370, SMT70

Terminal portable industrie compact, flexible et robuste pour la configuration à distance et l'interrogation des valeurs mesurées d'appareils HART. Pour plus de détails, se reporter à

10.3 Dispositif de montage (pour la mesure et la détection de niveau)

10.3.1 Montage de l'étrier de fixation

La dimension de référence A est utilisée pour définir l'emplacement de montage de l'étrier de fixation en fonction de la gamme de mesure.

- E 26 A définit la distance entre la bride de l'appareil et le début de la gamme de mesure. La distance A dépend du matériau du scintillateur (PVT ou Nal).
- A: PVT, distance : 172 mm (6,77 in)
- A: Nal, distance : 180 mm (7,09 in)
- *B* : Position et longueur de la gamme de mesure

10.3.2 Instructions de montage

Maintenir la plus grande distance possible entre les colliers de fixation

🖻 27 Aperçu du montage, avec colliers de fixation et étrier de montage

Dimensions des colliers de fixation

🖻 28 Dimensions du collier de fixation

Distance A

- Pour tube de l'électronique : 210 mm (8,27 in)
- Pour tube du détecteur : 198 mm (7,8 in)

ATTENTION

Couple de serrage max. pour les vis des dispositifs de retenue :

▶ 6 Nm (4,42 lbf ft)

29 Dimensions du collier de fixation

Diamètre A

- Tube de l'électronique : 95 mm (3,74 in)
- Tube du détecteur : 80 mm (3,15 in)

Dimensions de la fixation sur mât

☑ 30 øA: 40 ... 65 mm (1,57 ... 2,56 in)

Dimensions de l'étrier de montage

🗷 31 Étrier de fixation

10.3.3 Utilisation

🖌 Autorisée

🔀 Non recommandée, respecter les instructions de montage

- A Mesure de niveau, FMG50
- B Détection de niveau, FMG50
- C Un tel montage horizontal n'est pas recommandé
- 1 Dispositif de fixation pour diamètre de tube 80 mm (3,15 in)
- 2 Dispositif de fixation pour diamètre de tube 95 mm (3,74 in)
- 3 Étrier de fixation

Instructions pour montage horizontal (voir figure C) : le tube doit être monté par le client. Il est important de s'assurer que la puissance de serrage de l'installation est suffisante pour empêcher le FMG50 de glisser. Les dimensions sont indiquées dans la section "Dimensions des colliers de fixation".

ATTENTION

Lors du montage de l'appareil, tenir compte des points suivants :

- Le dispositif de montage doit être installé de telle manière à supporter le poids du Gammapilot FMG50 dans toutes les conditions du process.
- Quatre étriers doivent être utilisés pour des longueurs de mesure de 1600 mm (63 in) et plus.
- Pour faciliter le montage et la mise en service, le Gammapilot FMG50 peut être configuré et commandé avec un support additionnel (commander la caractéristique 620, option Q4 : "Étrier de fixation").
- Une solution de fixation pour le montage sur tube doit être fournie par le client sur site (voir figure C). Ne pas utiliser les colliers de fixation joints pour un tube horizontal. L'étrier de fixation fourni peut être utilisé pour le FMG50.
- Afin de ne pas endommager le tube du détecteur du Gammapilot FMG50, le couple maximal pouvant être appliqué pour le serrage des vis de fixation est de 6 Nm (4,42 lbf ft).

10.4 Dispositif de fixation pour mesure de densité FHG51

10.4.1 FHG51-A#1

Pour tubes avec diamètre 50 ... 200 mm (2 ... 8 in).

😭 SD02543F

10.4.2 FHG51-A#1PA

Pour tubes avec diamètre 50 ... 200 mm (2 ... 8 in) et cage de protection.

SD02533F

10.4.3 FHG51-B#1

Pour tubes avec diamètre 200 ... 420 mm (8 ... 16,5 in).

SD02544F

10.4.4 FHG51-B#1PB

Pour tubes avec diamètre 200 ... 420 mm (8 ... 16,5 in) et cage de protection. SD02534F

10.4.5 FHG51-E#1

Pour tubes avec diamètre 48 ... 77 mm (1,89 ... 3,03 in) et FQG60.

SD02557F

10.4.6 FHG51-F#1

Pour tubes avec diamètre 80 ... 273 mm (3,15 ... 10,75 in) et FQG60. SD02558F

10.5 Afficheur de process RIA15

Immensions du RIA15 en boîtier de terrain, unité de mesure : mm (in)

🖪 L'afficheur séparé RIA15 peut être commandé avec l'appareil.

- Option PE "Afficheur séparé RIA15, zone non Ex, boîtier de terrain alu"
- Option PF "Afficheur séparé RIA15, zone Ex, boîtier de terrain alu"

Matériau du boîtier de terrain : alu

D'autres versions de boîtier sont disponibles via la structure du produit RIA15.

Disponible également comme accessoire, pour plus de détails, voir Information technique TI01043K et manuel de mise en service BA01170K

10.5.1 Résistance de communication HART

☑ 33 Dimensions de la résistance de communication HART, unité de mesure : mm (in)

Une résistance de communication est nécessaire pour la communication HART. Si elle n'est pas déjà présente (p. ex. dans l'alimentation RMA42, RN221N, RNS221, ...), elle peut être commandée avec l'appareil via la structure du produit, caractéristique 620 "Accessoires fournis" : option R6 "Résistance de communication HART Ex / non Ex".

11 Caractéristiques techniques

11.1 Caractéristiques techniques supplémentaires

Pour plus de caractéristiques techniques, voir "Information technique FMG50"

11.2 Documentation complémentaire

La documentation complémentaire est disponible sur nos pages produit à l'adresse **"www.fr.endress.com"**

- Information technique
- Manuel "Description des fonctions de l'appareil"
- Manuel de sécurité fonctionnelle :
- Documentation spéciale "Heartbeat Verification + Monitoring"

11.2.1 Modulateur FHG65

BA00373F

11.2.2 Conteneur de source FQG60

TI00445F

11.2.3 Conteneur de source FQG61, FQG62

TI00435F

11.2.4 Conteneur de source FQG63

TI00446F

11.2.5 Conteneur de source FQG66

TI01171F BA01327F

11.2.6 Dispositif de montage FHG51

SD02533F (dispositif de fixation pour mesure de densité avec cage de protection)
 SD02534F (dispositif de fixation pour mesure de densité avec cage de protection)
 SD02543F (dispositif de fixation pour mesure de densité)
 SD02544F (dispositif de fixation pour mesure de densité)

11.2.7 Dispositif de montage pour Gammapilot FMG50

SD02454F

11.2.8 Écran thermique pour Gammapilot FMG50

D02472F

11.2.9 Capot de protection climatique pour boîtier à double compartiment

D02424F

11.2.10 Afficheur VU101 Bluetooth®

SD02402F

11.2.11 Afficheur de process RIA15

TI01043K

11.2.12 Memograph M, RSG45

TI01180R

11.2.13 Collimateur (côté capteur) pour Gammapilot FMG50

en préparation

12 Certificats et agréments

La disponibilité des agréments et des certificats peut être vérifiée tous les jours via le Configurateur de produit.

12.1 Sécurité fonctionnelle

SIL 2/3 selon IEC 61508, voir : "Manuel de sécurité fonctionnelle"

FY01007F

12.2 Heartbeat Monitoring + Verification

Heartbeat Technology offre une fonctionnalité de diagnostic grâce à l'autosurveillance continue, à la transmission de variables mesurées supplémentaires à un système de Condition Monitoring et à la vérification in situ des appareils de mesure dans l'application. Documentation spéciale "Heartbeat Monitoring + Verification"

12.3 Agrément Ex

Les certificats Ex disponibles sont indiqués dans les informations de commande. Respecter les Conseils de sécurité (XA) et les Dessins de contrôle (ZD) associés.

12.3.1 Smartphones et tablettes antidéflagrants

Seuls des appareils mobiles avec certificat Ex peuvent être utilisés en zone explosible.

12.4 Autres normes et directives

IEC 60529

Indices de protection du boîtier (code IP)

IEC 61010

Consignes de sécurité pour les appareils électriques de mesure, de commande, de régulation et de laboratoire

• IEC 61326

Émissivité (équipement de classe B), immunité aux interférences (Annexe A – domaine industriel)

• IEC 61508

Sécurité fonctionnelle des systèmes électriques/électroniques/électroniques programmables relatifs à la sécurité

NAMUR

Groupement de normes pour la technique de mesure et de régulation dans l'industrie chimique

12.5 Certificats

Les certificats sont disponibles via le configurateur de produit : www.fr.endress.com/fr/instrumentation-terrain-sur-mesure/filtres-categories-appareilsterrain Choisir Niveau -> Radiométrique ->Gammapilot FMG50
12.6 Marquage CE

Le système de mesure remplit les exigences légales des directives UE. Endress+Hauser confirme que l'appareil a passé les tests avec succès en apposant le marquage CE.

12.7 EAC

Agrément pour EAC

12.8 Sécurité antidébordement

WHG (Loi allemande sur la protection des eaux de surface) pour la détection de seuil

www.addresses.endress.com

