
Natural gas processing: H₂S in propane NGL fractionation

NGL fractionation process

Benefits at a glance

- Fast response to H₂S concentration changes
- Patented differential spectroscopy technique measures H₂S at low ppm levels in propane
- Low maintenance and OPEX costs – no cylinders of carrier and combustion gases or lead acetate tape
- Laser-based measurement is highly selective and accurate for H₂S in propane

Fractionation and recovery of NGLs

Natural gas from some geological formations contains natural gas liquids (NGLs); ethane, propane, butane and a mix of C5+ liquid condensates. These NGL compounds are commercially valuable as feedstocks for production of petrochemicals, octane-boosting gasoline additives, and for use as fuels. Cryogenic processing is used to separate and recover NGLs from natural gas using a series of fractionation columns.

Measurement of H₂S to meet purity specifications

The purity specifications for propane and other NGL fractionation products are based on their intended use and downstream processing. Contaminants including H₂S, CO₂, and H₂O are measured in NGL fractionation products to ensure purity specifications are met and documented as required in tariff and sales agreements between suppliers, carriers and end users.

Endress+Hauser's solution

Tunable diode laser absorption spectroscopy (TDLAS) is a SpectraSensors technology proven highly effective for this important measurement. TDLAS analyzers have an exceptionally fast response to changes in H₂S concentration, an important performance characteristic for monitoring H₂S in the outlet of a depropanizer and at downstream custody transfer points. Endress+Hauser's patented differential spectroscopy technique enables detection and measurement of low ppm levels of H₂S in propane. Laser and detector components are isolated and protected from process gas and contaminants avoiding fouling and corrosion and ensuring stable long-term operation and accurate measurements in the field.

Application data			
Target components	H ₂ S in propane		
Typical measurement ranges	0-20 ppmv*		
Typical repeatability	±1 ppmv**		
Measurement response time	1 to ~60 seconds*		
Principle of measurement	Differential tunable diode laser absorption spectroscopy (TDLAS) (H_2S) scrubber included)		
Validation	Certified blend of H ₂ S in nitrogen		

^{*} Consult factory for alternate ranges.

^{**} Repeatability is based on a single stream composition with minimal variation and which falls within the table below. If the stream composition varies, the factory should be consulted for specification.

Typical background stream composition				
Component	Minimum (Mol%)	Typical (Mol%)	Maximum (Mol%)	
Methane (C1)	0	0	1	
Ethane (C2)	0	1	2	
Propane (C3)	90	97	100	
Butanes and heavier (C4+)	0	2	8	
Carbon dioxide (CO ₂)	0	100 ppmv	250 ppmv	
Hydrogen sulfide (H ₂ S)	0	10 ppmv	100 ppmv	

The background stream composition must be specified for proper calibration and measurement performance. Specify the typical composition, along with the minimum and maximum expected values for each component, especially H_2S , the measured component. Other stream compositions may be allowable with approval from Endress+Hauser.

www.addresses.endress.com