Operating Instructions

Memograph M, RSG45

Advanced Data Manager
Table of contents

1. **About this document** ... 6
 1.1. Document function .. 6
 1.2. Symbols .. 6
 1.2.1. Safety symbols 6
 1.2.2. Electrical symbols 6
 1.2.3. Symbols for certain types of information 7
 1.2.4. Symbols in graphics 7
 1.3. Terminology .. 7
 1.4. Registered trademarks 8
2. **Basic safety instructions** 8
 2.1. Requirements concerning the staff 8
 2.2. Intended use ... 9
 2.3. Workplace safety 9
 2.4. Operational safety 9
 2.5. Product safety ... 9
 2.6. Safety information for desktop version (option) ... 10
 2.7. IT security .. 10
3. **Product description** 10
 3.1. Product design .. 10
4. **Incoming acceptance and product identification** 10
 4.1. Incoming acceptance 10
 4.2. Scope of delivery 10
 4.3. Product identification 11
 4.3.1. Nameplate ... 11
 4.3.2. Name and address of manufacturer 11
 4.3.3. Storage and transport 11
5. **Mounting** .. 12
 5.1. Mounting requirements 12
 5.1.1. Installation dimensions for the panel-mounted device 12
 5.1.2. Mounting location and installation dimensions for the DIN rail version 12
 5.2. Mounting the measuring device 14
 5.2.1. Mounting the panel-mounted device 14
 5.2.2. Mounting and disassembling the DIN rail version 15
 5.3. Post-mounting check 16
6. **Electrical connection** 16
 6.1. Connecting requirements 16
 6.2. Connecting instructions 17
 6.2.1. Cable specification 17
 6.3. Connecting the measuring device 17
 6.3.1. Connections ... 17
6.3.2. Electrical connection, terminal assignment 18
6.3.3. Connection example: Auxiliary voltage output as transmitter power supply for 2-wire sensors 23
6.3.4. Connection example: Auxiliary voltage output as transmitter power supply for 4-wire sensors 24
6.3.5. Connection example: HART® input in a point-to-point connection 25
6.3.6. Connection example: HART® input in a Multidrop connection 25
6.3.7. RS232/RS485 interface (CPU card, slot 0) 26
6.3.8. Ethernet connection (CPU card, slot 0) 27
6.3.9. Option: Anybus® interface (CPU card, slot 0) 28
6.3.10. USB connection, type A (host) (CPU card, slot 0) ... 28
6.3.11. Front of device (version with navigator and front interfaces) 29
6.3.12. General information on USB devices 29
6.4. Post-connection check 31
7. **Operation options** 32
 7.1. Overview of operation options 32
 7.2. Structure and function of the operating menu 32
 7.2.1. Operating menu for operators and maintenance personnel 33
 7.2.2. Operating menu for experts 34
 7.2.3. Submenus and users 34
 7.3. Measured value display and operating elements 36
 7.3.1. Measured value display and operating elements on panel-mounted device 36
 7.3.2. Operating elements of the DIN rail version 37
 7.4. Display representation of symbols used in operation ... 38
 7.4.1. Symbols in operating menus 39
 7.4.2. Symbols in the event logbook 40
 7.5. Entering text and numbers (virtual keyboard) 40
 7.6. Channel color assignment 40
 7.7. Access to the operating menu via the local display ... 41
 7.8. Device access via operating tools 41
 7.8.1. Field Data Manager (FDM) analysis software (SQL database support) 41
 7.8.2. Web server .. 41
 7.8.3. OPC server (optional) 41
12.10 Simulation .. 89
 12.10.1 Test barcode reader 89
 12.10.2 E-mail test 89
 12.10.3 Test WebDAV client 89
 12.10.4 Test telealarm 89
 12.10.5 Test time synchronization/SNTP 90
 12.10.6 Test universal output 90
 12.10.7 Relay test 90
12.11 HART® diagnostics 90
12.12 PROFINET diagnostics (option) 90
12.13 Diagnostics EtherNet/IP (option) 90
12.14 Initializing the modem 90
12.15 GSM terminal 91
12.16 Status telealarm 91
12.17 Resetting the measuring device 91
12.18 Clear memory 91
12.19 Reset analysis 91
12.20 Firmware history 91
13 Maintenance .. 92
 13.1 Updating the device software (‘firmware’) 92
 13.2 Instructions for enabling a software option 92
 13.3 Cleaning ... 92
14 Repair .. 93
 14.1 General notes 93
 14.2 Spare parts ... 93
 14.3 Return .. 95
 14.4 Disposal .. 95
 14.4.1 IT security 95
 14.4.2 Removing the measuring device 96
 14.4.3 Disposing of the measuring device 96
15 Accessories ... 97
 15.1 Device-specific accessories 97
16 Technical data .. 100
 16.1 Function and system design 100
 16.2 Input ... 103
 16.3 Output ... 108
 16.4 Power supply 110
 16.5 Performance characteristics 119
 16.6 Mounting ... 119
 16.7 Environment ... 122
 16.8 Mechanical construction 122
 16.9 Display and operating elements 124
 16.10 Certificates and approvals 128
 16.11 Ordering information 128
 16.12 Supplementary documentation 129
17 Appendix ... 130
 17.1 Operating items in the ‘Expert’ menu 130
 17.1.1 ‘System’ submenu 130
 17.1.2 ‘Inputs’ submenu 152
 17.1.3 ‘Outputs’ submenu 183
 17.1.4 ‘Communication’ submenu 189

Index .. 275

17.1.5 ‘Application’ submenu 213
17.1.6 ‘Diagnostics’ submenu 270
1 About this document

1.1 Document function

These Operating Instructions contain all the information that is required in the various phases of the device's life cycle: from product identification, incoming acceptance and storage, to mounting, connection, operation fundamentals and commissioning through to troubleshooting, maintenance and disposal.

Integrated Operating Instructions

At the push of a button, the device displays operating instructions directly on the screen. This manual complements the operating instructions in the device and explains what is not directly described in the operating instructions.

1.2 Symbols

1.2.1 Safety symbols

⚠️ DANGER
This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

⚠️ WARNING
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

⚠️ CAUTION
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

⚠️ NOTICE
This symbol contains information on procedures and other facts which do not result in personal injury.

1.2.2 Electrical symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>←→</td>
<td>Direct current</td>
</tr>
<tr>
<td>~</td>
<td>Alternating current</td>
</tr>
<tr>
<td>△</td>
<td>Direct current and alternating current</td>
</tr>
</tbody>
</table>
| ⌚ | Ground connection
A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system. |
| ⚪ | Protective Earth (PE)
A terminal which must be connected to ground prior to establishing any other connections.
The ground terminals are situated inside and outside the device:
• Inner ground terminal: Connects the protective earth to the mains supply.
• Outer ground terminal: Connects the device to the plant grounding system. |
1.2.3 Symbols for certain types of information

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| ![Permitted](image) | Permitted
Procedures, processes or actions that are permitted. |
| ![Preferred](image) | Preferred
Procedures, processes or actions that are preferred. |
| ![Forbidden](image) | Forbidden
Procedures, processes or actions that are forbidden. |
| ![Tip](image) | Tip Indicates additional information. |
| ![Reference to documentation](image) | Reference to documentation |
| ![Reference to page](image) | Reference to page |
| ![Reference to graphic](image) | Reference to graphic |
| ![Notice or individual step to be observed](image) | Notice or individual step to be observed |
| ![Series of steps](image) | Series of steps |
| ![Result of a step](image) | Result of a step |
| ![Help in the event of a problem](image) | Help in the event of a problem |
| ![Visual inspection](image) | Visual inspection |

1.2.4 Symbols in graphics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3,...</td>
<td>Item numbers</td>
</tr>
<tr>
<td></td>
<td>Series of steps</td>
</tr>
<tr>
<td>A, B, C, ...</td>
<td>Views</td>
</tr>
<tr>
<td>A-A, B-B, C-C, ...</td>
<td>Sections</td>
</tr>
<tr>
<td></td>
<td>Flow direction</td>
</tr>
</tbody>
</table>
| ![Hazardous area](image) | Hazardous area
Indicates a hazardous area. |
| ![Safe area (non-hazardous area)](image) | Safe area (non-hazardous area)
Indicates a non-hazardous area. |

1.3 Terminology

To improve clarity, abbreviations or synonyms are used in these instructions for the following terms:

- **Endress+Hauser:**
 Term used in these instructions: "Manufacturer" or "Supplier"
- **Memograph M RSG45:**
 Term used in these instructions: "Device" or "Measuring device"
1.4 Registered trademarks

HART®
Registered trademark of the HART FieldComm Group, Austin, USA

PROFIBUS®
Registered trademark of the PROFIBUS Nutzerorganisation e.V. (PROFIBUS User Organization), Karlsruhe, Germany

PROFINET®
Registered trademark of PROFIBUS & PROFINET International, Karlsruhe, Germany

Modbus®
Registered trademark of SCHNEIDER AUTOMATION, INC.

EtherNet/IP™
Registered trademark of ODVA, INC.

Internet Explorer®, Excel™
Registered trademarks of the Microsoft Corporation

Mozilla Firefox®
Registered trademark of Mozilla Foundation

Opera®
Registered trademark of Opera Software ASA.

Google Chrome™
Registered trademark of Google INC.

2 Basic safety instructions

Reliable and safe operation of the device is guaranteed only if the user reads these Operating Instructions and complies with the safety instructions they contain.

Requirements concerning operating staff to ensure compliance with FDA 21 CFR Part 11:

In order to fully comply with the requirements of 21 CFR Part 11, the operators/users must be properly trained.

2.1 Requirements concerning the staff

The personnel for installation, commissioning, diagnostics and maintenance must fulfill the following requirements:

- Trained, qualified specialists: must have a relevant qualification for this specific function and task
- Are authorized by the plant owner/operator
- Are familiar with federal/national regulations
- Before beginning work, the specialist staff must have read and understood the instructions in the Operating Instructions and supplementary documentation as well as in the certificates (depending on the application)
- Following instructions and basic conditions

The operating personnel must fulfill the following requirements:

- Being instructed and authorized according to the requirements of the task by the facility's owner-operator
- Following the instructions in these Operating Instructions
2.2 Intended use
This device is intended for the electronic capture, display, recording, analysis, remote transmission and archiving of analog and digital input signals.

- The manufacturer accepts no liability for damages resulting from incorrect use or use other than that designated. It is not permitted to convert or modify the device in any way.
- The device is designed for installation in a panel and must only be operated in an installed state.

2.3 Workplace safety
For work on and with the device:
▶ Wear the required personal protective equipment according to national regulations.

If working on and with the device with wet hands:
▶ Due to the increased risk of electric shock, wear suitable gloves.

2.4 Operational safety
Risk of injury!
▶ Operate the device only if it is in proper technical condition, free from errors and faults.
▶ The operator is responsible for interference-free operation of the device.

Modifications to the device
Unauthorized modifications to the device are not permitted and can lead to unforeseeable dangers:
▶ If modifications are nevertheless required, consult with the manufacturer.

Repair
To ensure continued operational safety and reliability:
▶ Carry out repairs on the device only if they are expressly permitted.
▶ Observe federal/national regulations pertaining to the repair of an electrical device.
▶ Use only original spare parts and accessories from the manufacturer.

Hazardous area
To eliminate danger to persons or the facility when the device is used in the hazardous area (e.g. explosion protection):
▶ Check the nameplate to verify if the device ordered can be put to its intended use in the hazardous area.
▶ Observe the specifications in the separate supplementary documentation that is an integral part of these instructions.

2.5 Product safety
This measuring device is designed in accordance with good engineering practice to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate.

It meets general safety standards and legal requirements. It also complies with the EC directives listed in the device-specific EC Declaration of Conformity. The manufacturer confirms this by affixing the CE mark to the device.
2.6 Safety information for desktop version (option)
- The mains plug should only be inserted into a socket with a ground contact.
- The protective effect may not be suspended by an extension cable without a protective ground.
- Relay outputs: \(U_{\text{max}} = 30 \, V_{\text{eff}} \, (AC) / 60 \, V \, (DC) \)

2.7 IT security
The manufacturer only provides a warranty if the device is installed and used as described in the Operating Instructions. The device is equipped with security mechanisms to protect it against any inadvertent changes to the device settings.
IT security measures in line with operators' security standards and designed to provide additional protection for the device and device data transfer must be implemented by the operators themselves.

3 Product description

3.1 Product design
This device is best suited for the electronic acquisition, display, recording, analysis, remote transmission and archiving of analog and digital input signals.
The device is intended for installation in a panel or cabinet. Operation in a desktop or field housing is possible as an option.
In addition, the 'DIN rail' housing option is available for DIN rail mounting.

4 Incoming acceptance and product identification

4.1 Incoming acceptance
On receipt of the goods, check the following points:
- Is the packaging or the content damaged?
- Is the delivery complete? Compare the scope of delivery against the information on your order form.

4.2 Scope of delivery
The scope of delivery of the device comprises:
- Device (with terminals, as per order)
- Panel-mounted device: 2 screw fastening clips
- Version with navigator and front interfaces or DIN rail version: USB cable
- Panel-mounted device: sealing rubber towards the panel wall
- "Industrial Grade" SD card, industry standard:
 Panel-mounted device with navigator and front interfaces: card is located in the SD slot behind the flap on the front of the device (optional).
 Panel-mounted device with stainless steel front and touchscreen: card is located in the device and cannot be replaced or retrofitted.
 DIN rail version: card is located in the SD slot (optional).
• “Field Data Manager (FDM)” analysis software on DVD (Essential, Demo or Professional version, depending on order)
• Delivery note
• Multilanguage Brief Operating Instructions, hard copy
• Ex Safety Instructions, hard copy (optional)

4.3 Product identification

4.3.1 Nameplate

Compare the nameplate with the following diagram:

1. Device designation, manufacturer details
2. Order code, serial number, extended order code
3. Power supply, mains frequency and maximum power consumption
4. Ambient temperature range
5. Firmware version; MAC address (Ethernet)
6. Fieldbus interface with MAC address (optional)
7. Device approvals
8. Degree of protection of the device
9. Approval in hazardous area (optional) with number of the relevant Ex documentation (XA...)
10. TAG name (optional); 2D-matrix code

4.3.2 Name and address of manufacturer

<table>
<thead>
<tr>
<th>Name of manufacturer:</th>
<th>Endress+Hauser Wetzer GmbH + Co. KG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address of manufacturer:</td>
<td>Obere Wank 1, D-87484 Nesselwang</td>
</tr>
<tr>
<td>Model/type reference:</td>
<td>RSG45</td>
</tr>
</tbody>
</table>

4.4 Storage and transport

Compliance with the permitted environmental and storage conditions is mandatory. Precise specifications are provided in the "Technical data" section.

Please note the following:
• Pack the device so that is protected against impact for storage and transport. The original packaging provides optimum protection.
• The permitted storage temperature is –20 to +60 °C (–4 to +140 °F)
5 Mounting

5.1 Mounting requirements

NOTICE
Overheating due to buildup of heat in the device
- To avoid heat buildup, always ensure that the device is sufficiently cooled.

The device is designed for use in a panel or in the control cabinet.

The device must be installed in a pressurized enclosure system for operation in the hazardous area. To ensure safe installation, it is essential to follow the installation instructions for the cabinet and the installation instructions in the Ex-related Safety Instructions (XA).

- Ambient temperature range: –10 to +50 °C (14 to 122 °F)
- Climate class as per IEC 60654-1: Class B2
- Degree of protection: IP65, NEMA 4 at front / IP20 rear of housing

5.1.1 Installation dimensions for the panel-mounted device
- Installation depth (excluding terminal cover): approx. 159 mm (6.26 in) for device incl. terminals and fastening clips.
- Installation depth including terminal cover (option): approx. 198 mm (7.8 in)
- Panel cutout: 138 to 139 mm (5.43 to 5.47 in) x 138 to 139 mm (5.43 to 5.47 in)
- Panel thickness: 2 to 40 mm (0.08 to 1.58 in)
- Viewing angle range: 50° in all directions from the display central axis
- A minimum distance of 12 mm (0.47 in) between the devices must be observed if aligning the devices vertically above one another or horizontally beside one another.
- The grid dimension of the panel cutouts for multiple devices must be at least 208 mm (8.19 in) horizontally and at least 162 mm (6.38 in) vertically (tolerance not considered).
- Securing to DIN 43 834

5.1.2 Mounting location and installation dimensions for the DIN rail version

The device without a display is designed for DIN rail mounting.

The DIN rail device is **not** approved for operation in the hazardous area.
Dimensions

- Installation depth: approx. 90 mm (3.54 in) for device incl. terminals (w/o terminal cover).
- Mounted on DIN rail as per IEC 60715
- The devices can be arranged horizontally beside one another without clearance between the devices.
5.2 Mounting the measuring device

5.2.1 Mounting the panel-mounted device

Mounting tool: For installation in the panel, all you need is a screwdriver.

A Version with navigator and front interfaces
B Version with stainless steel front and touchscreen
C Grid dimensions of panel cutouts for multiple devices
Panel mounting

1. From the rear of the device, push the sealing rubber (B) (supplied) as far as the front frame of the device (A).
2. Slide the device (A) through the panel cutout from the front (C). To avoid the buildup of heat, maintain a distance of >12 mm (>0.47 in) from walls and other devices.
3. Hold the device (A) level and hook the fastening clips (D) into the openings (1 x left, 1 x right).
4. Evenly tighten the screws on the fastening clips (D) using a screwdriver to guarantee a secure seal to the panel (torque: 100 Ncm).

5.2.2 Mounting and disassembling the DIN rail version

1. Set the device on the top-hat rail from below.
2. Swivel the device into the end position by pushing the device gently upwards and turning it towards the carrier rail.
3. Lower the device gently to release it. The device is now engaged on the DIN rail. Disassembly is the reverse of the assembly sequence.
5.3 Post-mouting check

Panel-mounted device:
- Is the sealing ring undamaged?
- Does the seal run all around the housing collar?
- Are the fastening clips tightened?
- Is the device firmly seated in the center of the panel cutout?

DIN rail version:
Check that the device is firmly seated on the DIN rail

6 Electrical connection

6.1 Connecting requirements

![WARNING]
Danger! Electric voltage!
- The entire connection of the device must take place while the device is de-energized.
- The mixed connection of safety extra-low voltage and dangerous contact voltage to the relay is not permitted.
- Apart from the relays and the supply voltage, only energy-limited circuits according to IEC/EN 61010-1 may be connected.

Danger if protective ground is disconnected
- The ground connection must be made before all other connections.

![NOTICE]
Cable heat load
- Use suitable cables for temperatures of 5 °C (9 °F) above ambient temperature.

Incorrect supply voltage can damage the device or cause malfunctions
- Before commissioning the device, make sure that the supply voltage matches the voltage specifications on the nameplate.

Check emergency shutdown for device
- Provide suitable switch or circuit breaker in building installation. This switch must be provided close to the device (within easy reach) and marked as a circuit breaker.

Protect the device from overload
- Provide overload protection (nominal current = 10 A) for power cable.

Incorrect wiring may result in the device being destroyed
- Note terminal designation on the rear of the device.

Energy-rich transients in the case of long signal lines
- Install suitable overvoltage protection (e.g. E+H HAW562) upstream.

Special requirements according to FDA 21 CFR Part 11:
- The user must have the appropriate skills and qualifications to connect the device. Connection errors can only be prevented in this way.
- The user is responsible for selecting the right input ranges and for connecting suitable sensors.
- Users must ensure that the connected sensors cannot be tampered with by making sure they are suitably mounted and wired.
- An optional terminal cover is available to prevent tampering at the device terminals and terminal temperature measurement. It is the responsibility of the user to verify that the device is correctly installed and sealed following validation.
- The user is responsible for compliance with the EMC limit values at the installation location (see technical data).
6.2 Connecting instructions

6.2.1 Cable specification

Cable specification, spring terminals

All connections on the rear of the device are designed as pluggable screw or spring terminal blocks with reverse polarity protection. This makes the connection very quick and easy. The spring terminals are unlocked with a slotted screwdriver (size 0).

Please note the following when connecting:

- Wire cross-section, auxiliary voltage output, digital I/O and analog I/O: max. 1.5 mm\(^2\) (14 AWG) (spring terminals)
- Wire cross-section, mains: max. 2.5 mm\(^2\) (13 AWG) (screw terminals)
- Wire cross-section, relays: max. 2.5 mm\(^2\) (13 AWG) (spring terminals)
- Stripping length: 10 mm (0.39 in)

No ferrules must be used when connecting flexible wires to spring terminals.

Shielding and grounding

Optimum electromagnetic compatibility (EMC) can only be guaranteed if the system components and, in particular, the lines - both sensor lines and communication lines - are shielded and the shield forms as complete a cover as possible. A shielded line must be used for sensor lines that are longer than 30 m. A shield coverage of 90% is ideal. In addition, make sure not to cross sensor lines and communication lines when routing them. Connect the shield as often as possible to the reference ground to ensure optimum EMC protection for the different communication protocols and the connected sensors.

To comply with requirements, three different types of shielding are possible:

- Shielding at both ends
- Shielding at one end on the supply side with capacitance termination at the device
- Shielding at one end on the supply side

Experience shows that the best results with regard to EMC are achieved in most cases in installations with one-sided shielding on the supply side (without capacitance termination at the device). Appropriate internal device wiring measures must be taken to allow unrestricted operation when EMC interference is present. These measures have been taken into account for this device. Operation in the event of disturbance variables as per NAMUR NE21 is thus guaranteed.

Where applicable, national installation regulations and guidelines must be observed during the installation! Where there are large differences in potential between the individual grounding points, only one point of the shielding is connected directly with the reference ground.

If the shielding of the cable is grounded at more than one point in systems without potential matching, mains frequency equalizing currents can occur. These can damage the signal cable or significantly impact signal transmission. In such cases the shielding of the signal cable is to be grounded on one side only, i.e. it may not be connected to the ground terminal of the housing. The shield that is not connected should be insulated.

6.3 Connecting the measuring device

6.3.1 Connections
6.3.2 Electrical connection, terminal assignment

All connection examples are illustrated using the panel version. The connections on the DIN rail version are identical.
Circuit diagram

- **Power supply**
 - 100-230 VAC (±10% / 50 - 60 Hz)
 - 24 V DC/AC (±10% / 50 / 60 Hz)

- **Analog outputs (O)**
 - (Selectable in unit setup)
 - Rel. max. 250 V / 3 A
 - a) 0...5 V, 1...5 V, 0...10 V, ±10 V, ±30 V
 - b) 0...1 V, ±150 mV, ±1 V

- **Analog inputs**
 - RTD
 - I
 - U
 - TC
 - Pulse/frequency

- **Digital in (D)**

- **Termination resistor** (typical 120 Ω)

- **Further units**
 - Analog
 - Power supply

- **Slot 6**: Power supply slot (standard)
- **Slot 5**: analog input / HART 17-20 or digital-I/O (option)
- **Slot 4**: analog input / HART 13-16 (option)
- **Slot 3**: analog input / HART 9-12 (option)
- **Slot 2**: analog input / HART 5-8 (option)
- **Slot 1**: analog input / HART 1-4 (option)
- **Slot 0**: CPU (standard)

- **RS 232**
 - To modem: Cable with 9 pol. Sub-D socket
 - To PC: Cable with 9 pol. Sub-D plug

- **RS 485**
 - 24 V Out: max. 250 mA

For connection examples of the HART® inputs (optional), see the Operating Instructions → 25
Supply voltage (power unit, slot 6)

<table>
<thead>
<tr>
<th>Power unit type</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-230 VAC</td>
<td>L+</td>
</tr>
<tr>
<td></td>
<td>Phase L</td>
</tr>
<tr>
<td>24 V AC/DC</td>
<td>L+</td>
</tr>
<tr>
<td></td>
<td>Phase L or +</td>
</tr>
</tbody>
</table>

Relay (power unit, slot 6)

<table>
<thead>
<tr>
<th>Type</th>
<th>Terminal (max. 250 V, 3 A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm relay 1</td>
<td>R11</td>
</tr>
<tr>
<td>Changeover contact</td>
<td>Normally closed contact (NC)</td>
</tr>
<tr>
<td>Relay 2 to 6</td>
<td>Rx1</td>
</tr>
<tr>
<td>Switching contact</td>
<td>Normally open contact (NO)</td>
</tr>
</tbody>
</table>

1) NC = normally closed (breaker)
2) NO = normally open (maker)

The open or close function (= activation or deactivation of the relay coil) in a limit event can be configured in the setup: 'Setup -> Advanced setup -> Outputs -> Relay -> Relay x'. However, in the event of a power failure, the relay adopts its quiescent switch state regardless of the setting programmed.

Digital inputs; auxiliary voltage output (power unit, slot 6)

<table>
<thead>
<tr>
<th>Type</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital input 1 to 6</td>
<td>D11 to D61</td>
</tr>
<tr>
<td>Digital input 1 to 6 (+)</td>
<td>Ground (-) for digital inputs 1 to 6</td>
</tr>
</tbody>
</table>
Auxiliary voltage output, not stabilized, max. 250 mA

<table>
<thead>
<tr>
<th>Type</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>24V Out -</td>
<td>Ground</td>
</tr>
<tr>
<td>24V Out +</td>
<td>+ 24V (±15%)</td>
</tr>
</tbody>
</table>

> If the auxiliary voltage is to be used for the digital inputs, the **24 V out** - terminal of the auxiliary voltage output must be connected with the **GND1** terminal.

Analog inputs (slot 1-5)

The first digit (x) of the two-digit terminal number corresponds to the associated channel:

<table>
<thead>
<tr>
<th>Type</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>x2</td>
</tr>
<tr>
<td>Current/pulse/frequency input</td>
<td>(+)</td>
</tr>
<tr>
<td>Voltage > 1V</td>
<td>(+)</td>
</tr>
<tr>
<td>Voltage ≤ 1V</td>
<td>(+)</td>
</tr>
<tr>
<td>Resistance thermometer RTD (2-wire)</td>
<td>(A)</td>
</tr>
<tr>
<td>Resistance thermometer RTD (3-wire)</td>
<td>(A)</td>
</tr>
<tr>
<td>Resistance thermometer RTD (4-wire)</td>
<td>(A)</td>
</tr>
<tr>
<td>Thermocouples TC</td>
<td>(+)</td>
</tr>
</tbody>
</table>

1) If a universal input is used as a frequency or pulse input, a series resistor must be used in series connection with the voltage source. Example: 1.2 kΩ series resistor at 24 V
HART® inputs (slot 1-5)

The first digit (x) of the two-digit terminal number corresponds to the associated channel:

<table>
<thead>
<tr>
<th>Type</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x1</td>
</tr>
<tr>
<td>HART® (4 to 20 mA)</td>
<td>SHD</td>
</tr>
</tbody>
</table>

- A 250 Ω communication resistor (load) is installed on the device side between terminals x4 and x5.
- A 10 Ω resistor (shunt) is installed on the device side at the current input between terminals x5 and x6.
- Terminals x2 and x3 (H_1 and H_2) are jumpered internally.
- The internal HART® modem is located between terminals x2/x3 and x6.

Relay extension (digital card, slot 5)

<table>
<thead>
<tr>
<th>Type</th>
<th>Terminal (max. 250 V, 3 A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 7, 8</td>
<td>RA</td>
</tr>
<tr>
<td>Relay 9, 10</td>
<td>RE</td>
</tr>
<tr>
<td>Relay 11, 12</td>
<td>RI</td>
</tr>
<tr>
<td>Switching contact</td>
<td>Normally open contact (1)</td>
</tr>
</tbody>
</table>

1) NO
2) NO

The open or close function (= activation or deactivation of the relay coil) in a limit event can be configured in the setup: Setup -> Advanced setup -> Outputs -> Relay -> Relay x. However, in the event of a power failure, the relay adopts its quiescent switch state regardless of the setting programmed.

Analog outputs (digital card, slot 5)

<table>
<thead>
<tr>
<th>Type</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog output 1-2</td>
<td>O15</td>
</tr>
<tr>
<td>Analog output 1 (+)</td>
<td>Ground, analog output 1 (-)</td>
</tr>
</tbody>
</table>
Extension of digital inputs (digital card, slot 5)

<table>
<thead>
<tr>
<th>Type</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital input 7 to 14</td>
<td>D71 to DE1</td>
</tr>
<tr>
<td></td>
<td>Ground (-) for digital inputs 7 to 14</td>
</tr>
<tr>
<td></td>
<td>Ground (-) for digital inputs 7 to 14</td>
</tr>
</tbody>
</table>

If the auxiliary voltage is to be used for the digital inputs, the 24 V out - terminal of the auxiliary voltage output (power unit, slot 6) must be connected with the GND2 terminal.

6.3.3 Connection example: Auxiliary voltage output as transmitter power supply for 2-wire sensors

Connecting the auxiliary voltage output when using as a transmitter power supply for 2-wire sensors in the current measuring range

1 Sensor 1 (e.g. Cerabar from Endress+Hauser)
2 Sensor 2
3 External indicator (optional) (e.g. RIA16 from Endress+Hauser)
6.3.4 Connection example: Auxiliary voltage output as transmitter power supply for 4-wire sensors

10 Connecting the auxiliary voltage output when using as a transmitter power supply for 4-wire sensors in the current measuring range

1 Sensor 1 (e.g. temperature switch TTR31 from Endress+Hauser)
2 Sensor 2
3 External indicator (optional) (e.g. RIA16 from Endress+Hauser)
6.3.5 Connection example: HART® input in a point-to-point connection

![Connection diagram](A0024864)

11 Connection example: HART® inputs in a point-to-point connection
1. Active 4-wire sensor (slave)
2. Power supply for 4-wire sensor
3. Power supply (electricity source) for actuator
4. Actuator (e.g. adjuster or valve)
5. Passive 2-wire sensor (slave)
6. Power supply (supply point) for sensor.

The internal auxiliary voltage (24 V OUT) can also be used as the transmitter power supply.

6.3.6 Connection example: HART® input in a Multidrop connection

Information on HART® Multidrop topology:

- The analog signal is not available for the process variable. Only the digital signal is used.
- Multidrop topology is **not** recommended for time-critical applications due to the slower update rate.
- The device supports a maximum of 5 sensors per current loop. The address should be in the 1 to 15 range (compatibility with HART®5).

![Connection diagram](A0024860)

12 Connection example: HART® input in a Multidrop connection
1. Sensor (slave 1)
2. Sensor (slave 2)
3. Sensor (slave 3-5)

The internal auxiliary voltage (24 V OUT) can also be used as the transmitter power supply.
6.3.7 RS232/RS485 interface (CPU card, slot 0)

Use shielded signal lines for serial interfaces!

A combined RS232/RS485 connection is available on a shielded SUB D9 socket. This can be used for data transfer and to connect a modem. For communication via modem, we recommend an industrial modem with a watchdog function.

<table>
<thead>
<tr>
<th>Type</th>
<th>Pin of the SUB-D9 socket</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>RS232 assignment</td>
<td>RS485 assignment</td>
</tr>
<tr>
<td>TxD (data output)</td>
<td>GND</td>
</tr>
<tr>
<td>RxD (data input)</td>
<td>GND</td>
</tr>
<tr>
<td>GND</td>
<td>RxD/TxD –</td>
</tr>
<tr>
<td></td>
<td>RxD/TxD +</td>
</tr>
</tbody>
</table>

Unoccupied connections should be left empty.

Maximum cable length:
- RS232: 2 m (6.6 ft)
- RS485: 1000 m (3280 ft)

Only one interface can be used at any one time (RS232 or RS485).

Option: Modbus RTU master

As a Modbus master, the device can interrogate other Modbus slaves via RS485. The Modbus RTU master can be operated in parallel with the Profibus DP slave, EtherNet/IP adapter, PROFINET I/O device or Modbus TCP slave.
Up to 40 analog inputs can be transmitted via Modbus and stored in the device.

Option: Modbus RTU slave

The device can be interrogated as a Modbus slave by another Modbus master via RS485. Up to 40 analog inputs and 20 (14 real + 6 virtual) digital inputs can be transmitted via Modbus and stored in the device.

A Modbus RTU master and RTU slave cannot be operated in parallel.

Remote interrogation with analog or GSM/GPRS wireless modem:

Analog modem:

An analog modem for industrial use (e.g. Devolo or WESTERMO), which is connected to the RS232 interface with a special modem cable (see accessories → 97), is recommended.

GSM/GPRS wireless modem:

A GSM/GPRS wireless modem for industrial use (e.g. Cinterion, INSYS or WESTERMO, incl. antenna and power unit), which is connected to the RS232 interface with a special modem cable (see accessories → 97), is recommended. Important: the wireless modem needs a SIM card and data transfer subscription. In addition, it must be possible to deactivate the PIN prompt.

If the Web server is operated via a wireless modem, this may result in high provider costs as data are transmitted continuously.

6.3.8 Ethernet connection (CPU card, slot 0)

The Ethernet interface can be used to integrate the device via a hub or switch into a PC network (TCP/IP Ethernet). A standard patch cable (e.g. CAT5E) can be used for the connection. Using DHCP, the device can be fully integrated into an existing network without the need for additional configuration. The device can be accessed from every PC in the network.

- **Standard:** 10/100 Base T/TX (IEEE 802.3)
- **Socket:** RJ-45
- **Max. cable length:** 100 m
- **Galvanic isolation; test voltage:** 500 V

The following functions are implemented:

- Data communication with PC software (analysis software, configuration software, OPC server)
- Web server

Meaning of the LEDs

Beneath the Ethernet connection there are two light emitting diodes which indicate the status of the Ethernet interface.

- **Yellow LED:** link signal; is lit when the device is connected to a network. If this LED is not lit, communication is not possible.
- **Green LED:** Tx/Rx; flashes irregularly if the device is transmitting or receiving data.

Requirements with regard to a network printer

The printer must support PCL5c (or higher). Laser jet and ink jet printers are supported. The printouts are always color printouts (if supported by the printer). The printout has different shades of gray if you use a black/white printer.

Reference list: HP Color LaserJet CP1515n, HP Color LaserJet Pro CP1525n, Kyocera FS-C5015N.

GDI printers are not supported!
Option: Ethernet Modbus TCP master

As a Modbus master, the device can interrogate other Modbus slaves via Ethernet. The Modbus TCP master can be operated in parallel with the Profibus DP slave, Modbus RTU, Modbus TCP slave, EtherNet/IP adapter or PROFINET I/O device.

Up to 40 analog inputs can be transmitted via Modbus and stored in the device.

Option: Ethernet Modbus TCP slave

The Modbus TCP interface is used to connect to higher-ranking SCADA systems (Modbus master) to transmit all measured values and process values.

Up to 40 analog inputs and 20 (14 real + 6 virtual) digital inputs can be transmitted via Modbus and stored in the device.

6.3.9 Option: Anybus® interface (CPU card, slot 0)

PROFIBUS–DP slave:

The device can be integrated into a fieldbus system as per the PROFIBUS–DP standard by means of the PROFIBUS–DP interface. Up to 40 analog inputs and 20 (14 real + 6 virtual) digital inputs can be transmitted via PROFIBUS–DP and stored in the device. For bidirectional communication in cyclic data transfer. Connection via Sub-D socket.

Baud rate: maximum 12 Mbit/s

EtherNet/IP adapter (slave):

Up to 40 analog inputs and 20 (14 real + 6 virtual) digital inputs can be transmitted via EtherNet/IP and stored in the device. The built-in module corresponds to I/O server category (Level 2). It has an integrated 2-port switch, thereby supporting EtherNet/IP communication with line or ring topology. Connection via 2 RJ45 standard sockets.

PROFINET I/O device:

Up to 40 analog inputs and 20 (14 real + 6 virtual) digital inputs can be transmitted via PROFINET IO and stored in the device. The 2-port module for Profinet IO meets compliance class B. The integrated switch enables communication in line or ring topologies without an additional external switch. Connection via 2 RJ45 standard sockets.

6.3.10 USB connection, type A (host) (CPU card, slot 0)

Two USB-2.0 ports are available (panel version) or one USB-2.0 port is available (DIN rail version) on shielded USB-A sockets. A USB stick as a memory medium, for example, can be connected to these ports. An external keyboard/mouse for device operation, a USB hub, a barcode reader or a printer (PCL5c or higher) may also be connected.
6.3.11 Front of device (version with navigator and front interfaces)

USB connection type A (host)
A USB 2.0 port is available on a shielded USB A socket at the front of the device. A USB stick as a memory medium, for example, can be connected to this port. An external keyboard/mouse for device operation, a USB hub, a barcode reader or a printer (PCL5c or higher) may also be connected.

USB connection type B (function)
A USB 2.0 port is available on a shielded USB B socket at the front of the device. This can be used to connect the device for communication with a laptop, for example. → 43

USB-2.0 is compatible with USB-1.1 or USB-3.0, i.e. communication is possible.

Requirements for the SD card
Industrial grade SD-HC cards with max. 32 GB are supported.

Use only the industrial grade SD cards described in the "Accessories" section of the Operating Instructions. These have been tested by the manufacturer and are guaranteed to function faultlessly in the device. → 97

The SD card must be formatted to FAT or FAT32. NTFS format is not readable.

6.3.12 General information on USB devices
The USB devices are detected by the "plug-and-play" function. If several devices of the same type are connected, only the USB device that was connected first is available. Settings for the USB devices are made in the setup. A maximum of 8 external USB devices (incl. USB hub) can be connected if they do not exceed the maximum load of 500 mA. If overloaded, the corresponding USB devices are automatically disabled. An active USB hub can be used for higher power ratings.
Requirements with regard to the USB stick
There is no guarantee that all manufacturers' USB sticks will function faultlessly. That is why an industrial grade SD card is recommended to ensure the reliable recording of data.

The USB stick must be formatted to FAT or FAT32. NTFS format is not readable. The system supports only USB sticks with max. 32 GB.

The USB stick must not be connected to the device via a USB hub. Interference from other USB devices may result in data loss.

Requirements with regard to an external USB keyboard
The system only supports keyboards which can be addressed using generic drivers (HID keyboard - Human Interface Device). Special keys are not supported (e.g. Windows keys). Users can only enter characters that are available in the input character set of the device. All unsupported characters are rejected. It is not possible to connect a wireless keyboard. The following keyboard layouts are supported: DE, CH, FR, USA, USA International, UK, IT.

Requirements with regard to an external USB barcode reader
The connected barcode reader has to act like a HID keyboard (human interface device) (universal keyboard driver). The barcode reader must complete every barcode with a carriage return (0x0D) + line feed (0x0A).

Checking the barcode reader at a PC
Before connecting the barcode reader to the device, it should be checked at a Windows® PC.

1. Connect the barcode reader to the PC and wait until Microsoft Windows® recognizes the device as a HID keyboard and installs it (check with the Windows Device Manager).

2. Configure the barcode reader as specified in the Operating Instructions of the barcode reader.

3. Start the Notepad (editor).

4. Using the barcode reader, read in a barcode (as it is used later) and check it.

5. Do not connect the barcode reader to the device until the barcode reader has been correctly configured and tested on the PC.

6. Select the character set at the device under 'Setup -> Advanced setup -> System -> Barcode reader -> Character set'. The following character sets are supported: DE, CH, FR, USA, USA International, UK, IT. Note: This setting has to be identical to the configuration of the barcode reader! The system only reads characters that are available in the entry character set of the device. All other characters are rejected.

7. The barcode reader should also be tested at the device via 'Main menu -> Diagnostics -> Simulation -> Test barcode reader' (function not available with DIN rail version).

If problems arise, please contact the manufacturer of the barcode reader.

Reference list: Datalogic Gryphon D230, Metrologic MS5100 Eclipse Series, Symbol LS2208, Datalogic Quickscan 1, Godex GS220, Honeywell Voyager 9590.

Requirements with regard to an external USB printer
The printer must support PCL5c (or higher). Laser jet and ink jet printers are supported. The printouts are always color printouts (if supported by the printer). The printout has different shades of gray if you use a black/white printer.
Reference list: HP Color LaserJet CP1515n, HP Color LaserJet Pro CP1525n, Kyocera FS-C5015N.

GDI printers are not supported!

6.4 Post-connection check

<table>
<thead>
<tr>
<th>Device condition and specifications</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are cables or the device damaged?</td>
<td>Visual inspection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical connection</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the supply voltage match the specifications on the nameplate?</td>
<td>-</td>
</tr>
<tr>
<td>Are all terminals firmly engaged in their correct slot?</td>
<td>-</td>
</tr>
<tr>
<td>Are the mounted cables strain-relieved?</td>
<td>-</td>
</tr>
<tr>
<td>Are the power supply and signal cables correctly connected?</td>
<td>See connection diagram and device.</td>
</tr>
</tbody>
</table>
7 Operation options

7.1 Overview of operation options
The device can be operated directly onsite with the navigator and USB keyboard/mouse (only panel-mounted device) or via interfaces (serial, USB, Ethernet) and operating tools (Web server); FieldCare/DeviceCare configuration software).

The DIN rail device is operated exclusively via the operating tools.

7.2 Structure and function of the operating menu

The layout and structure of the operating menu can differ slightly in parts on the Web server.
7.2.1 Operating menu for operators and maintenance personnel
7.2.2 Operating menu for experts

Expert
- Enter Access code
- Direct Access
- System
 - +Clear memory
 - +Expert functions
- Inputs
 - (see before)
 - +Expert functions
- Outputs
 - (see before)
 - +Expert functions
- Communication
 - (see before)
 - +Expert functions
- Application
 - (see before)
 - +Expert functions
- Diagnostics
 - Diagnosis list
 - Event logbook
 - Device information
 - Simulation

7.2.3 Submenus and users

Certain parts of the menu are assigned to certain user roles. Each user role corresponds to typical tasks within the lifecycle of the device.

<table>
<thead>
<tr>
<th>User role</th>
<th>Typical tasks</th>
<th>Menu</th>
<th>Content/meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Tasks during operation:</td>
<td>"Operation"</td>
<td>Contains all the parameters that are required in ongoing operation: configuration of the measured value display (displayed values, display format, etc.).</td>
</tr>
<tr>
<td></td>
<td>• Configuration of the display.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Reading measured values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td>Commissioning:</td>
<td>"Setup"</td>
<td>Contains all parameters for commissioning:</td>
</tr>
<tr>
<td></td>
<td>• Configuration of the measurement.</td>
<td></td>
<td>- Change date/time</td>
</tr>
<tr>
<td></td>
<td>• Configuration of data processing.</td>
<td></td>
<td>- "Advanced setup" submenu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contains additional submenus and parameters:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• System: Basic settings required for operating the device.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Inputs: Settings for analog and digital inputs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Outputs: Setup required only if outputs (e.g. relays) are to be used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Communication: Settings required if the USB, RS232, RS485 or Ethernet interface or the HART® inputs of the device are used (PC operation, serial data read-out, modem operation, etc.).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Application: Various application-specific settings (e.g. group settings, limit values, etc.).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Once values have been set for these parameters, the measurement should generally be completely configured.</td>
</tr>
<tr>
<td>User role</td>
<td>Typical tasks</td>
<td>Menu</td>
<td>Content/meaning</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Troubleshooting:</td>
<td>• Diagnosing and eliminating process errors.</td>
<td>"Diagnostics"</td>
<td>Contains all parameters for detecting and analyzing errors:</td>
</tr>
<tr>
<td></td>
<td>• Interpretation of device error messages and correcting associated errors.</td>
<td></td>
<td>• Diagnosis list</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All diagnosis messages are listed in chronological order.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Event logbook</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Events such as alarm set point infringement and power failure are listed in the correct time sequence.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Device information</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Displays important device information (e.g. serial number, firmware version, device options for hardware and software, memory information, etc.).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Measured values</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Display of current measured values of the device.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Displays the current status of the outputs e.g. switch status of relay outputs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Simulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Various functions/signals can be simulated for test purposes here.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note: In Simulation mode, normal recording of the measured values is interrupted and the intervention is logged in the event log.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• HART®</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Displays the exact device information of a selected HART® device and the HART® communication signal quality.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Initialize modem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Initializes the modem connected to the serial interface (for automatic call answering).</td>
</tr>
</tbody>
</table>

Expert

Tasks that require detailed knowledge of the function of the device:

• Commissioning measurements under difficult conditions.
• Optimal adaptation of the measurement to difficult conditions.
• Detailed configuration of the communication interface.
• Error diagnostics in difficult cases.

"Expert" menu:

Contains all the parameters of the device (including those that are already contained in one of the other submenus). The expert menu is protected by a code. Factory setting: 0000. This menu is structured according to the function blocks of the device:

• "System" submenu |
| Contains all higher-level device parameters that do not pertain either to the measurement or measured value communication. |

• "Inputs" submenu |
| Contains all parameters for configuring the analog and digital inputs. |

• "Output" submenu |
| Contains all parameters for configuring the outputs (e.g. relays). |

• "Communication" submenu |
| Contains all parameters for configuring the communication interfaces. |

• "Application" submenu |
| Contains all parameters for configuring application-specific settings (e.g. group settings, limit values etc.). |

• "Diagnostics" submenu |
| Contains all parameters to detect and analyze operational errors. |
7.3 Measured value display and operating elements

7.3.1 Measured value display and operating elements on panel-mounted device

Item No. | Operating function (display mode = display of measured values)
| Setup mode = operation in the Setup menu |
|---|---|
a | Slot for SD card |
b | USB B socket "Function" e.g. to connect to PC or laptop |
c | USB A socket "Host" e.g. for USB memory stick, external keyboard, barcode reader or printer |
d | LED at SD slot. Yellow LED lit or flashing when the device writes to the SD card or reads it.
 \[\text{Do not remove the SD card if the LED is lit or flashing! Risk of data loss!}\] |

1 | "Navigator": jog/shuttle dial for operating with additional press/hold function.
 In display mode: turn the dial to switch between the various signal groups. Press the dial to display the main menu.
 In setup mode or in a selection menu: turn the dial anticlockwise to move the bar or the cursor upwards or to the left, changes the parameter. Turning clockwise moves the bar or cursor down or to the right, changes the parameter. Press = select highlighted function, start parameter change (ENTER key). |

2 | Functions of LED indicators (according to NAMUR NE44:)
 - Green LED (top) lit: power supply OK
 - Red LED (bottom) flashing: maintenance required, caused by external factor (e.g. cable open circuit etc.) or a message/notification requiring acknowledgment is pending, calibration is running. |

3 | Variable "soft keys" 1-4 (from left to right) |

4 | Function indicator of "soft keys" |

5 | In display mode: current group name, type of analysis;
 In setup mode: name of the current operating item (dialog title) |
<table>
<thead>
<tr>
<th>Item No.</th>
<th>Operating function (display mode = display of measured values) (Setup mode = operation in the Setup menu)</th>
</tr>
</thead>
</table>
| 6 | In display mode: displays current date/time
 | In setup mode: -- |
| 7 | In display mode: user ID (if function is active)
 | In setup mode: -- |
| 8 | In display mode: alternating display indicating the percentage space on the SD card or USB stick that has already been used.
 | Status symbols are also displayed in alternation with the memory information (e.g. simulation mode, data storage active, operation lock, batch active)
 | In setup mode: the current “direct access” operating code is displayed |
| 9 | In display mode: window for measured value display (e.g. curve display).
 | Display of current measured values and the status in the event of an error/alarm condition. In the case of counters, the type of counter is displayed as a symbol. If a measuring point has limit value status, the corresponding channel identifier is highlighted in red (quick detection of limit value violations). During a limit value violation and device operation, the acquisition of measured values continues uninterrupted. |
| 9 | In setup mode: display of operating menu |
| 10 | In display mode: alternating status display (e.g. set zoom range) of the analog or digital inputs in the appropriate color of the channel.
 | In setup mode: different information is displayed here depending on the display type. |

7.3.2 Operating elements of the DIN rail version

![Device front of the DIN rail version](image)
1. DIP switches

The behavior of the Ethernet interface is configured via DIP switches (left = OFF, right = ON).

For a detailed description of the DIP switch functions → 50

Function of the DIP switches (1 = top, 12 = bottom):
- DIP switches 1-8: configuration of IP address in last octet (e.g. 192.168.1.212)
- DIP switch 9:
 - OFF = setup change not locked
 - ON = setup locked
- DIP switch 10:
 - OFF = default / OFF
 - ON = service addressing
- DIP switch 11 for the configuration of the USB-B interface:
 - OFF = USB standard
 - ON = Ethernet via USB (Web server)
- DIP switch 12: not assigned

The DIN rail version is supplied with the following Ethernet settings:
- IP address: 192.168.1.212; subnet mask: 255.255.255.0; gateway: 0.0.0.0

2. Ethernet interface

3. USB B socket "Function" e.g. to connect to PC or laptop

4. Functions of LED indicators (according to NAMUR NE44:)
- Green LED (top) lit: power supply OK
- Red LED (bottom) flashing: maintenance required, caused by external factor (e.g. cable open circuit etc.) or a message/notification requiring acknowledgment is pending, calibration is running.

5. Cyclic storage is completed via the 'Remove SD card safely' button, the LED (d) goes out. The SD card can now be removed.

If the SD card is not removed within 5 minutes, the write cycles start again.

6. USB A socket "Host" e.g. for USB memory stick or printer

If a USB stick is inserted, data that have not yet been saved are copied to the stick automatically. The red LED on the USB socket flashes while the data are being copied to the stick.

Do not remove the USB stick when the red LED is flashing! Risk of data loss!

If an error occurs (e.g. USB stick full or defective), the red LED is lit constantly. Remove the USB stick and replace it.

7. LED at SD slot. Yellow LED lit or flashing when the device writes to the SD card or reads it.

Do not remove the SD card if the LED is lit or flashing! Risk of data loss!

8. Slot for SD card

9. Anybus® interface (option)

10. Serial RS232/RS485 interface

7.4 Display representation of symbols used in operation

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Symbols for counters:</td>
<td></td>
</tr>
<tr>
<td>Σ1, Σ2, Σ3, Σ4</td>
<td>Intermediate analysis 1 to 4 / external analysis 1 to 4</td>
<td></td>
</tr>
<tr>
<td>ΣD</td>
<td>Daily analysis</td>
<td></td>
</tr>
<tr>
<td>ΣW</td>
<td>Weekly analysis</td>
<td></td>
</tr>
<tr>
<td>ΣM</td>
<td>Monthly analysis</td>
<td></td>
</tr>
<tr>
<td>ΣY</td>
<td>Annual analysis</td>
<td></td>
</tr>
</tbody>
</table>
Item No. | Function | Description
---|---|---
| | Totalizer |

Channel-related symbols:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>⧸</td>
<td>Violation of lower limit value</td>
</tr>
<tr>
<td>⧺</td>
<td>Violation of upper limit value or limit value on counter</td>
</tr>
<tr>
<td>⧹</td>
<td>Violation of upper and lower limit values at the same time</td>
</tr>
<tr>
<td>☢</td>
<td>"Out of specification"
e.g. input signal too high/low</td>
</tr>
<tr>
<td>☢</td>
<td>Error message "Failure detected"
An operating error has occurred. The measured value is no longer valid (e.g. a channel not displayed in the current group is defective).</td>
</tr>
<tr>
<td>⌇</td>
<td>"Maintenance required"
Maintenance is required. The measured value remains valid.</td>
</tr>
<tr>
<td>⌇</td>
<td>Error, measured value not displayed.
Possible causes: Sensor / input error, line break, invalid value, input signal too high/low</td>
</tr>
</tbody>
</table>

Symbol for status signals:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☢</td>
<td>"Device locked"
Setup is locked via a control input. Disable setup lock via a control input.</td>
</tr>
<tr>
<td>☢</td>
<td>"Out of specification"
The device is being operated outside its technical specifications (e.g. during startup or cleaning).</td>
</tr>
<tr>
<td>☢</td>
<td>"Function check"
The device is in Service mode.</td>
</tr>
<tr>
<td>⌇</td>
<td>"Maintenance required"
Maintenance is required. The measured value remains valid.</td>
</tr>
<tr>
<td>☢</td>
<td>Error message "Failure detected"
An operating error has occurred. The measured value is no longer valid (e.g. a channel not displayed in the current group is defective).</td>
</tr>
<tr>
<td>⌇</td>
<td>"External communication"
The device is communicating externally (e.g. via Modbus).</td>
</tr>
<tr>
<td>☢</td>
<td>"Simulation"
Simulation is active.</td>
</tr>
<tr>
<td>☢</td>
<td>"Historical data"
Historical data are currently shown on screen.</td>
</tr>
</tbody>
</table>

7.4.1 Symbols in operating menus

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⠔</td>
<td>Symbol for setup</td>
</tr>
<tr>
<td>⠔</td>
<td>Symbol for diagnostics</td>
</tr>
<tr>
<td>⠔</td>
<td>Symbol for expert setup</td>
</tr>
<tr>
<td>☢</td>
<td>Symbol for user administration according to "FDA 21 CFR Part 11"</td>
</tr>
<tr>
<td>☢</td>
<td>"Back"
The function "Back" appears at the end of each menu/submenu.
Press "Back" briefly to go up one level in the menu structure.</td>
</tr>
<tr>
<td>⠔</td>
<td>Press and hold "Back" (>3 sec.) to quit the menu immediately. The devices switches to Display mode.</td>
</tr>
</tbody>
</table>
7.4.2 Symbols in the event logbook

- Setup changes
- Power on
- Power off
- Limit value on
- Limit value off
- 1 Digital on (on/off message)
- 0 Digital off (on/off message)
- Service
- User administration
- Texts saved / comments added
- Acknowledging message
- Back
- Continue searching

7.5 Entering text and numbers (virtual keyboard)

A virtual keyboard is available for entering text and numbers. This is opened automatically if needed. The appropriate character is selected by turning and pressing the navigator, or by using the touchscreen or mouse.

The following characters are available for entering customized text:

0-9 a-z A-Z = + - * / \ ¼ ½ ¾ () [] < > { } I ? ! ` " ' ^ % ° . , : _ µ & # $ € @ § £ ¥ ~

- Jump one position to the left.
- Jump one position to the right.
- Delete backwards.
- Delete forwards.
- Delete all.
- Reject entry.
- Accept entry.

7.6 Channel color assignment

Channel color assignment is performed in the main menu under "Setup -> Advanced setup -> Application -> Signal groups -> Group x". 8 predefined colors are available per group and can be assigned to the desired channels.
7.7 Access to the operating menu via the local display

Using the "Navigator" (jog/shuttle dial with additional press/hold function), the "soft keys" or touch control (optional) all settings can be made directly onsite at the device.

7.8 Device access via operating tools

7.8.1 Field Data Manager (FDM) analysis software (SQL database support)

The PC analysis software offers external, centralized data management with visualization for recorded data. The analysis software enables the complete archiving of all measuring point data e.g. measured values, diagnostic events and protocols. The analysis software stores data in an SQL database. The database can be operated locally or in a network (client/server). Access is via RS232/RS485, USB or Ethernet interface (network).

Function scope:
- Export of saved data (measured values, analyses, event log)
- Visualization and processing of saved data (measured values, analyses, event log)
- Safe archiving of exported data in a SQL database

The following versions of the software are available:
- Essential version (free, with limited functionalities)
- Professional version (see Accessories → 97)
- Demo version (time-limited Professional version)

An "Essential" version of the analysis software is supplied with the device.

For details, see the Operating Instructions on the analysis software DVD provided.

7.8.2 Web server

A Web server is integrated into the device. This makes the current measured values of the device available in real time. Access is via an Ethernet interface from a PC in the network via the standard browser. The installation of additional software is not required. Alternatively, the Web server can be operated in a point-to-point connection (Ethernet over USB) with a standard USB cable via the USB B port. → 43

The Web server offers the following range of functions:
- Display of current and historical data and measured value curves via a standard Web browser → 62
- Easy configuration without additional installed software → 46
- Remote access to device and diagnostic information

7.8.3 OPC server (optional)

The OPC server makes it possible to access data on the device. These data are made available to OPC clients in real time. The OPC server meets the requirements of the OPC specifications regarding the supply of data to an OPC client. Access is via RS232/RS485, USB or Ethernet interface (network). Communication takes place using automatic device detection; the operator does not need to make any additional settings. The OPC server enables the flexible and powerful exchange of data and is easy and convenient to use.
The following instantaneous values can be provided:
- Analog channels
- Digital channels
- Mathematics
- Totalizer

For details, see Operating Instructions BA00223R/09/xx

7.8.4 FieldCare/DeviceCare configuration software

Function scope
The configuration software is an FDT/DTM-based system asset management tool. It can configure all smart field devices in a system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition. Access is via USB or Ethernet interface (network).

Typical functions:
- Device configuration
- Loading and saving device data (upload/download)
- Documentation of the measuring point

Download at: www.endress.com/download

Overview of device description files (DTM)
Information and files are available free of charge at:

See online at: www.de.endress.com/fieldcare
8 System integration

8.1 Integrating the measuring device in the system

8.1.1 General notes
The device has (optional) fieldbus interfaces for exporting process values. Measured values and statuses can also be transmitted to the device via fieldbus.
Note: Counters cannot be transferred.
Depending on the bus system, alarms or faults occurring during data transmission are displayed (e.g. status byte).
The process values are transferred in the same units that are used to display the values on the device.

Information on compliance with FDA 21 CFR Part 11 requirements when using fieldbus systems:
If no measured values are received via fieldbus, the device activates a potential-free switch contact (e.g. relay) following an adjustable timeout. The evaluation of the switching contact is the responsibility of the user.

8.1.2 Ethernet
Setup → Advanced setup → Communication → Ethernet
The IP address can be entered manually (fixed IP address) or assigned automatically using DHCP.
The port for data communication is preset to 8000. The port can be changed in the Expert → Communication → Ethernet menu.
The following functions are implemented:
• Data communication with PC software (analysis software, configuration software, OPC server)
• Web server
The following connections are possible at the same time:
• 1x Port 8000 (configuration software, OPC server or analysis software)
• 1x Port 8002 (OPC server only)
• 1x Port 5094 (HART® IP)
• 4x Modbus slave TCP
• 5x Web server

Ports can be changed!
As soon as the maximum number of connections has been reached, new connection attempts are blocked until an existing connection has been terminated.

8.1.3 Web server with "Ethernet over USB" function
To provide easy and efficient access via Web server for operation, setup and commissioning, the USB-B interface can be switched to the "Ethernet over USB" mode. Ethernet communication is established here via the USB interface. This has the advantage that the Ethernet interface in the case of commissioning laptops, for example, does not need to be reconfigured (IP address, ports, etc.). Instead, a standard USB cable can be used
to establish a point-to-point connection. The Web server itself retains its complete range of functionality.

Important information:
- Do not connect several devices via USB to a laptop/PC at the same time
- The PC should not be connected to "Ethernet via USB" (USB-B connector on front panel of device) and a standard Ethernet network (RJ45 connector on rear panel of device) simultaneously if both connections use the same address parameters.
- Driver software (EH ECM device) must be installed on the PC.
- The 'Ethernet over USB' mode is not a gateway, i.e. the Ethernet/RJ45 and USB networks are separate from each other (no two-way access).
- The USB cable should be disconnected from the device for at least 10 s before being reconnected (prevention of errors due to response time of system)
- It takes at least 10 s before the USB driver is activated by Windows and communication with the device is possible.
- Initialization of the USB interface takes place when the PC and device are connected via a USB cable.

Supported services/functions
The following services/functions are provided via the USB interface:
- Web server
- CDI TCP (port 8000)
- WebDAV server

All other services/functions are available only by Ethernet via RJ45!

Driver installation at PC end
To use the Web server via USB, a driver must be installed once at the PC end.

1. The driver can be found under `\Drivers\USB_ECM` on the Field Data Manager (FDM) software DVD supplied.
3. Execute the "setup.exe" and follow the instructions.

The necessary drivers are installed.

From version V1.04.01 of the Field Data Manager (FDM) software provided, the driver is automatically installed with the PC software.

The driver can be installed directly from the DVD without first having to copy the files to the PC.

Changing the USB-B mode to "Ethernet over USB" (panel version)
Communication can be established only if the device has been configured accordingly.

1. Supply power to the device, restart and wait for start screen.
2. Open dropdown menu under "Setup → Advanced setup → Communication → Function USB-B".
3. "Always USB" option: USB-B is always set to Standard USB.
4. "Always Ethernet over USB" option: Ethernet over USB is always set.
5. "By user input" option: A prompt for the mode (option) appears once a USB cable is plugged in.

The device is now ready to establish a connection.

Changing the USB-B mode to "Ethernet over USB" (DIN rail version)
Communication can be established only if the device has been configured accordingly.

1. Change the position of the DIP switch (9) from "USB-B" to "IP". The device is now set to "Always Ethernet over USB"

The device is now ready to establish a connection.
Establishing communication

1. Using a standard USB cable, connect the device at the USB-B interface to any of the PC's USB interfaces.

2. With "Always Ethernet over USB" function: The Web server can be started immediately.

3. With 'By user input' function: Once the USB cable has been plugged into the device, the 'Select USB function' dropdown menu appears. Then select 'Ethernet over USB' on the device. The device returns the IP address.

4. Open the browser, enter http://192.168.1.212 and follow the instructions from section → 64

The device is now ready to communicate with the Web server.

The IP address of the Web server via USB is set permanently to http://192.168.1.212

If the USB cable is already connected to a PC when the device starts up, there is no prompt even if the 'By user input' option is selected. Instead, the previously selected functionality is used.

8.1.4 Modbus RTU/TCP slave

The device can be connected to a Modbus system via RS485 or Ethernet interface. The general settings for the Ethernet connection are made in the Setup → Advanced setup → Communication → Ethernet menu. Modbus communication is configured in the Setup → Advanced setup → Communication → Modbus Slave menu.

Up to 40 analog inputs and 20 digital inputs can be transmitted via Modbus and stored in the device.

<table>
<thead>
<tr>
<th>Menu position</th>
<th>RTU (RS485)</th>
<th>Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device address:</td>
<td>1 to 247</td>
<td>IP address manual or automatic</td>
</tr>
<tr>
<td>Baud rate:</td>
<td>9600/19200/38400/57600/115200</td>
<td>-</td>
</tr>
<tr>
<td>Parity:</td>
<td>Even/Odd/None</td>
<td>-</td>
</tr>
<tr>
<td>Stop bits:</td>
<td>1/2</td>
<td>-</td>
</tr>
<tr>
<td>Port:</td>
<td>-</td>
<td>502</td>
</tr>
</tbody>
</table>

Transfer of values

The actual Modbus TCP protocol is located between layer 5 to 6 in the ISO/OSI model.

To transfer a value, 3 registers of 2 bytes each (2-byte status + 4-byte float) or 5 registers of 2 bytes each (2-byte status + 8-byte double) are used.

For more information about Modbus, see the supplementary documentation.

9 Commissioning

9.1 Function check

Perform the following checks prior to commissioning:

- 'Post-mounting check' checklist → 16.
- 'Post-connection check' checklist → 31.
9.2 Switching on the measuring device

After the operating voltage is applied, the green LED lights up and the device is ready for operation.

If you are commissioning the device for the first time, program the setup as described in the following sections of the Operating Instructions.

If you are commissioning a device that is already configured or preset, the device starts measuring immediately as defined in the settings. The values of the channels currently activated are shown on the display.

Remove the protective film from the display as this would otherwise affect the readability of the display.

9.3 Setting the operating language

Factory setting: English or ordered local language

Version with stainless steel front and touchscreen, or when operating with the external USB mouse:

Calling the main menu, configuring the operating language:

1. Press or click the 'Menu' soft key at the bottom edge of the screen
2. The main menu appears on the display with the 'Sprache/Language' option
3. To change the default language setting: press or click 'Sprache/Language' and select the desired language from the drop-down menu
4. Use 'Back' or 'ESC' to quit the main menu

The operating language has been changed.

Version with navigator and front interfaces:

Calling the main menu, configuring the operating language:

1. Press the navigator
2. The main menu appears on the display with the 'Sprache/Language' option
3. To change the set language: Press the navigator, turn the navigator to select the desired language and press the navigator to apply the change.
4. Use 'Back' or 'ESC' to quit the main menu

The operating language has been changed.

The function 'Back' appears at the end of each menu/submenu.

Press 'Back' briefly to go up one level in the menu structure.

To quit the menu immediately and return to the measured value display, press and hold 'Back' (>3 sec.). The changes made are accepted and saved.

DIN rail version:

The operating language can only be changed via the Web server (Setup) or configuration software (DTM).

9.4 Configuring the measuring device (Setup menu)

Access to the setup is enabled when the device leaves the factory and can be locked in various ways e.g. by entering a 4-digit access code or by user administration.

When locked, basic settings can be checked but not changed. The device can also be put into operation and configured via the PC.
Device configuration options:
- Setup directly at the device (panel-mounted device only)
- Setup via SD card or USB stick by transferring the parameters stored on it
- Setup via Web server using Ethernet or Ethernet over USB
- Setup via FieldCare/DeviceCare configuration software

Information on configuration using FieldCare/DeviceCare configuration software
- Offline configuration: Most of the parameters are available (depending on the device configuration).
- Online configuration: Only parameters labeled "Online configuration" are available.

9.4.1 Step-by-step: to the first measured value

Procedure and necessary settings:
1. Check the date/time in the main menu under "Setup" and set it if necessary
2. Make settings for the interfaces and communication in the main menu under "Setup -> Advanced setup -> Communication"
3. Create universal or digital inputs in the main menu under "Setup -> Advanced setup -> Inputs -> Universal inputs/Digital inputs": Add input: select "Universal input x" or "Digital input x" with which the input signal should be detected. Then select and configure the new input that has been created.
4. Activate relays or analog outputs (optional) in the main menu under "Setup -> Advanced setup -> Outputs"
5. Assign activated inputs to a group in the main menu under "Setup -> Advanced setup -> Application -> Signal groups -> Group x"
6. Use 'Back' or 'ESC' to quit the main menu. The changes made are accepted and saved. The device is in the measured value display mode and displays the measured values.

9.4.2 Step-by-step: set or delete the limit values

Procedure for setting limit values:
1. Open the limit values in the main menu under "Setup -> Advanced setup -> Application -> Limits"
2. Add a limit value: select "Yes"
3. Select and configure "Limit value x"
4. Use 'Back' or 'ESC' to quit the main menu. The changes made are accepted and saved. The device is in the measured value display mode and displays the measured values.

Procedure for deleting limit values:
1. Open the limit values in the main menu under "Setup -> Advanced setup -> Application -> Limits"
2. Delete a limit value: select "Yes"
3. Select the limit value to be deleted from the list
4. Use 'Back' or 'ESC' to quit the main menu. The changes made are accepted and saved. The device is in the measured value display mode and displays the measured values.
9.4.3 Step-by-step: read HART® values (option)

Procedure for reading measured values from a HART® device/sensor:

1. Make settings for HART® communication (HART® master, connection attempts) under "Setup -> Advanced setup -> Communication -> HART"
2. Add new value to be read by selecting "Add value -> Yes"
3. Open the configuration for "Value x"
4. Select the physical interface to which the HART® device is connected "Connection -> Channel x"
5. Set the address of the connected device, the HART® value to be read and the channel identifier
6. Activate the universal input in the main menu under "Setup -> Advanced setup -> Inputs -> Universal inputs"
7. Select the "HART" signal type and assign the previously defined HART® values. Select using the channel identifier of the HART® value.
8. Other settings for the universal input are made in the same way as for standard analog inputs.
9. Assign activated inputs to a group in the main menu under "Setup -> Advanced setup -> Application -> Signal groups -> Group x"
10. Use ‘Back’ or ‘ESC’ to quit the main menu. The changes made are accepted and saved. The device is in the measured value display mode and displays the measured values.

9.4.4 Step-by-step: HART® communication between an FDT Frame application (FieldCare) and a HART® device/sensor (optional)

The RSG45 HART® CommDTM enables HART® communication between a PC with an FDT Frame application and a HART® device. At this point, the RSG45 acts as a gateway/modem between the PC and the HART® devices that are connected to the HART® input cards of the RSG45. Communication between the PC and the RSG45 is via the TCP/IP protocol only.

Procedure for establishing a connection:

1. Start RSG45 HART® CommDTM in the FDT Frame application
2. Set the communication parameters, IP address of Memograph M RSG45, port for HART® communication and scan range (scan range 0 for a point-to-point connection)
3. Open the "Create network" menu to call up the "Select communication channel" dialog field to select the channel
4. Tick the check box beside the slot/channel to which one or more HART® devices are connected. Select "OK" to confirm the menu and start the scan.
5. All HART® devices that are found are displayed in the FDT Frame application and can now be accessed.

Detailed help is provided with the RSG45 HART® CommDTM.
9.4.5 Device setup

In the "Setup" menu and in the "Advanced setup" submenu, you will find the most important settings for the device:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Possible settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change date/time</td>
<td>UTC time zone</td>
<td>Change the date and time.</td>
</tr>
<tr>
<td></td>
<td>dd.mm.yyyy hh:mm:ss</td>
<td></td>
</tr>
<tr>
<td>Advanced setup</td>
<td>Advanced settings for the device e.g. system settings,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>inputs, outputs, communication, application etc.</td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>Basic settings that are needed to operate the device,</td>
<td>Basic settings that are needed to operate the device,</td>
</tr>
<tr>
<td></td>
<td>(e.g. date/time, security, memory management,</td>
<td>(e.g. date/time, security, memory management,</td>
</tr>
<tr>
<td></td>
<td>messages, etc.)</td>
<td>messages, etc.)</td>
</tr>
<tr>
<td>Inputs</td>
<td>Settings for the analog and digital inputs.</td>
<td>Settings for the analog and digital inputs.</td>
</tr>
<tr>
<td>Outputs</td>
<td>Settings only required if outputs (e.g. relays or</td>
<td>Settings only required if outputs (e.g. relays or</td>
</tr>
<tr>
<td></td>
<td>analog outputs) are to be used.</td>
<td>analog outputs) are to be used.</td>
</tr>
<tr>
<td>Communication</td>
<td>Settings required if the USB, RS232/RS485 or Ethernet</td>
<td>Settings required if the USB, RS232/RS485 or</td>
</tr>
<tr>
<td></td>
<td>interface of the device is to be used (PC operation,</td>
<td>Ethernet interface of the device is to be used (PC operation, serial data</td>
</tr>
<tr>
<td></td>
<td>serial data export, modem operation, etc.).</td>
<td>export, modem operation, etc.).</td>
</tr>
<tr>
<td></td>
<td>The different interfaces (USB, RS232/RS485, Ethernet)</td>
<td>The different interfaces (USB, RS232/RS485, Ethernet) can be operated in</td>
</tr>
<tr>
<td></td>
<td>can be operated in parallel.</td>
<td>parallel. However, simultaneous use of the RS232 and RS485 interface is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>not possible.</td>
</tr>
<tr>
<td>Application</td>
<td>Various application-specific settings (e.g. group</td>
<td>Various application-specific settings (e.g. group</td>
</tr>
<tr>
<td></td>
<td>settings, limit values, etc.).</td>
<td>settings, limit values, etc.).</td>
</tr>
</tbody>
</table>

For a detailed overview of all the operating parameters, please refer to the Appendix of the Operating Instructions. → 130

9.4.6 Setup via SD card or USB stick

An existing device configuration ("Setup data" *.DEH) from another Memograph M RSG45 or from FieldCare/DeviceCare can be uploaded directly to the device.

Import new setup directly at the device: The function used to load the setup data can be found in the main menu under "Operation -> SD card (or USB stick) -> Load setup -> Select directory -> Next".

In the case of the DIN rail version, the setup can only be uploaded to the device using an SD card.

9.4.7 Setup via Web server

To configure the device via the Web server, connect the device to a PC via Ethernet (or Ethernet over USB).

Please observe the information and communication settings for Ethernet (or Ethernet over USB) and the Web server under → 43.

To configure the device via a Web server, Administrator or Service authentication is required. ID and password administration is performed in the main menu under "Setup -> Advanced setup -> Communication -> Ethernet -> Configuration Web server -> Authentication".

ID default value: admin; Password: admin

Note: The password should be changed during commissioning!

If security settings are according to "FDA 21 CFR Part 11", you must have Administrator rights to configure the device via a Web server.
Establishing a connection and setup

Procedure for setting up a connection:

1. Connect the device to the PC via Ethernet (or Ethernet over USB).
2. Start the browser on the PC; enter the IP address: http://<IP address> to open the Web server for the device. Note: Leading zeros in IP addresses must not be entered (e.g. enter 192.168.1.11 instead of 192.168.001.011).
3. Enter the ID and password, and confirm each by clicking "OK" (see also the "Web server" section of the Operating Instructions → 64)
4. The Web server shows the instantaneous value display of the device. In the Web server taskbar, click "Menu -> Setup -> Advanced setup".
5. Start the configuration

Procedure for establishing a connection with the DIN rail version:

Version 1: via Web server/USB (requires a USB driver)

1. Set DIP switch 11 (USB-B/IP) to IP (ON)
2. Connect the USB and open the Web server using the Web browser (IP 192.168.1.212)
3. Configure the device under "Expert -> Communication -> Ethernet" (fixed IP address or DHCP)

Note: DIP switches 10 and 11 should not be set to ON simultaneously. In this case, only Ethernet or USB may be connected.

DHCP: The IP address assigned by DHCP is determined under "Network" (the device must be connected via Ethernet).

If DIP switches 1 to 8 are all set to ON or OFF, software addressing is active. In all other cases hardware addressing is active. The first 3 octets are therefore used by the software IP address (DHCP = off). The last octet must be configured via the DIP switches.

The USB driver must be installed.

If the position of DIP switch 11 (USB-B/IP) is changed, the USB cable must be disconnected from the device for at least 10 seconds.

Procedure for establishing a connection with the DIN rail version:

Version 2: via DTM/USB

1. Set DIP switch 11 (USB-B/IP) to USB-B (OFF)
2. Connect the USB
3. Open the DTM (offline parameterization) and configure the device under “Expert -> Communication -> Ethernet” (fixed IP address or DHCP)

DIP switches 10 and 11 should not be set to ON simultaneously. In this case, only Ethernet or USB may be connected.

DHCP: The IP address assigned by DHCP can be viewed in the online configuration under "Diagnostics -> Device information -> Ethernet" (the device must be connected by Ethernet).

If DIP switches 1 to 8 are all set to ON or OFF, software addressing is active. In all other cases hardware addressing is active. The first 3 octets are therefore used by the software IP address (DHCP = off). The last octet must be configured via the DIP switches.

The PC must be configured correctly (see also the procedure for “Point-to-point connection”)

The USB driver must be installed.

If the position of DIP switch 11 (USB-B/IP) is changed, the USB cable must be disconnected from the device for at least 10 seconds.

Procedure for establishing a connection with the DIN rail version:

Version 3: via Ethernet

1. Set DIP switch 10 (Service) to ON
2. Connect the Ethernet cable (point-to-point connection; a crossover cable is not required)
3. Now configure the device via the IP address 192.168.1.212 by Web server or DTM (see version 1 and 2)
4. Following configuration, set DIP switch 10 back to OFF. It is now possible to communicate with the device via the configured IP address.

DIP switches 10 and 11 should not be set to ON simultaneously. In this case, only Ethernet or USB may be connected.

With this method it is not possible to determine which DHCP address the device has received. DHCP should be disabled for this reason. Alternatively, a network administrator must determine the IP address via the MAC address.

The PC must be configured correctly (see also the procedure for “Point-to-point connection”)

The USB driver must be installed.

If DIP switches 1 to 8 are all set to ON or OFF, software addressing is active. In all other cases hardware addressing is active. The first 3 octets are therefore used by the software IP address (DHCP = off). The last octet must be configured via the DIP switches.

Continue with device configuration in accordance with the Operating Instructions for the device. The complete Setup menu i.e. all of the parameters listed in the Operating Instructions, can also be found on the Web server. After configuration, accept the setup with "Save settings".

Procedure to establish a direct connection via Ethernet (point-to-point connection):
NOTICE
Undefined switching of outputs and relays

- When configuring using a Web server, the device may adopt undefined states! This may result in the undefined switching of outputs and relays.

An existing device configuration (‘Setup data*.DEH) from another Memograph M RSG45 or from FieldCare/DeviceCare can be uploaded directly to the device via the Web server.

Procedure for uploading a new setup via the Web server:

1. Establish a connection to the device via the Web server → 50
2. Click “Data management -> Import device settings” in the Web server function bar
3. Select the setup file and press "OK" to confirm
4. The file is transferred, checked and accepted
5. Once the device settings are accepted, information to this effect is displayed in the Web server.

9.4.8 Setup via FieldCare/DeviceCare configuration software

To configure the device using the configuration software, connect the device to your PC via USB or Ethernet.

Download at: www.endress.com/download

Establishing a connection and setup

Continue with device configuration in accordance with the Operating Instructions for the device.

Information on configuration using FieldCare/DeviceCare configuration software

- Offline configuration: Most of the parameters are available (depending on the device configuration).
- Online configuration: Only parameters labeled 'Online configuration' are available. → 130

NOTICE
Undefined switching of outputs and relays

- During configuration using the configuration software, the device may assume undefined statuses! This may result in the undefined switching of outputs and relays.

9.5 Advanced settings (Expert menu)

The Expert menu is protected by the code "0000". If an access code is set up under "Setup -> Advanced setup -> System -> Security -> Protected by -> Access code", this must be entered here.

If security settings are according to ‘FDA 21 CFR Part 11’, you must be logged in as a user with Administrator rights to access the Expert menu.

The "Expert" menu contains all of the device settings:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Possible settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access</td>
<td>000000-000</td>
<td>Direct access to parameters (fast access)</td>
</tr>
<tr>
<td>System</td>
<td></td>
<td>Basic settings that are needed to operate the device, (e.g. date/time, security, memory management, messages, etc.)</td>
</tr>
<tr>
<td>Inputs</td>
<td></td>
<td>Settings for the analog and digital inputs.</td>
</tr>
</tbody>
</table>
Parameter | Possible settings | Description
--- | --- | ---
Outputs | Settings only required if outputs (e.g. relays or analog outputs) are to be used. |
Communication | Settings required if the USB, RS232/RS485 or Ethernet interface of the device is to be used (PC operation, serial data export, modem operation, etc.). The different interfaces (USB, RS232/RS485, Ethernet) can be operated in parallel. However, simultaneous use of the RS232 and RS485 interface is not possible. |
Application | Define various application-specific settings (e.g., group settings, limit values, etc.). |
Diagnosis | Device information and service functions for a quick device check. |

A detailed overview of all the operating parameters is provided in the appendix at the end of the Operating Instructions. → 130

9.6 Configuration management

You can save the setup data ("Configuration") to an SD card or a USB stick, to a PC drive via the Web server, or store them in a database using the configuration software. This allows additional devices to be configured very easily using the same settings.

Save setup: The function used to save the setup files can be found in the main menu under "Operation -> SD card (or USB stick) -> Save setup”.

CAUTION

If the SD card or USB stick are removed directly:

Risk of data loss on SD card or USB stick

- To remove the SD card or the USB stick, always select "Operation -> SD card (or USB stick) -> Safe removal" in the main menu!

Procedure for saving a setup via the Web server:

1. Establish a connection to the device via the Web server → 50
2. Click "Data management -> Save device settings" in the Web server function bar
3. Select the setup file
4. Transfer the file
5. Verify and accept
6. Once the device settings are accepted, information to this effect is displayed in the Web server.

The function for saving the setup data must be enabled at the device for the Web server under "Setup -> Advanced setup -> Communication -> Ethernet -> Configuration Web server; Setup -> Yes".

9.7 Simulation

Various functions/signals can be simulated for test purposes here.
NOTICE
Selecting simulation: Simulation of the relays and the WebDAV client can be found in the main menu under "Diagnostics -> Simulation". The simulation of the measured values can be found in the main menu under "Expert -> Diagnostics -> Simulation". Only the simulated values are recorded during simulation. The simulation is recorded in the event logbook.
- Do not start simulation if measured value recording must not be interrupted!

9.8 Access protection and security concept

To protect the setup from unauthorized access following commissioning, there are many options to ensure access protection to the setup settings and the user entries. Access and authorizations can be configured and assigned passwords.

Hardware protection (digital input, DIP switch) and password protection can be used redundantly.

The user of the device is responsible for access protection and the security concept. In addition to the device functions listed, user policies and procedures, in particular, must also be applied (e.g. password allocation, password sharing, physical access barriers, etc.).

The following protection options and functionalities are available:
- Protection per control input
- Protection via access code
- Protection via user roles
- Protection via user administration according to 'FDA 21 CFR Part 11'
- Protection via DIP switches (DIN rail version)

Overview of access protection and security concept

<table>
<thead>
<tr>
<th>Access protection</th>
<th>User</th>
<th>Setup changes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open access</td>
<td>-</td>
<td>Permitted</td>
<td>No protection, not recommended, all setup and system settings are accessible.</td>
</tr>
<tr>
<td>Control input</td>
<td>-</td>
<td>Permitted</td>
<td>Access protection via digital input (e.g. via key switch), all setup and system settings are accessible if input actuated.</td>
</tr>
<tr>
<td>Access code</td>
<td>-</td>
<td>Permitted</td>
<td>Access protection via access code, access authorization (distribution of access code) must be defined via (in-house) regulations and securely controlled. All setup and system settings can be accessed after entering the access code.</td>
</tr>
<tr>
<td>Password-protected user roles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administrator</td>
<td>Permitted</td>
<td>Access protection via administrator password, all setup and system settings can be accessed after entering the password.</td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td>Permitted</td>
<td>Access protection via service password, all setup and system settings can be accessed after entering the password, advanced functions (e.g. preset) are possible in the service mode.</td>
<td></td>
</tr>
<tr>
<td>Operator</td>
<td>Locked</td>
<td>All setup and system settings are locked, access to device information and display values after entering the password.</td>
<td></td>
</tr>
<tr>
<td>FDA 21 CFR Part 11 User Administration password-protected</td>
<td></td>
<td></td>
<td>Protection levels and access authorization can be defined via 5 levels of access (in accordance with FDA 21 Part 11 User Administration). Access authorization (distribution of passwords) must be defined via (in-house) regulations and securely controlled. The user logs in with his user name and the password he has been assigned. All actions are logged in a tamper-proof manner in the audit trail (logbook) in accordance with the FDA.</td>
</tr>
<tr>
<td>Access protection</td>
<td>User</td>
<td>Setup changes</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Administrator</td>
<td>Permitted</td>
<td></td>
<td>No protection, all setup and system settings are freely accessible.</td>
</tr>
<tr>
<td>Main user</td>
<td>Locked</td>
<td>Setup and system settings are locked. Limit value changes, data entries, confirmation of registration, etc. are allowed.</td>
<td></td>
</tr>
<tr>
<td>User Level 1</td>
<td>Locked</td>
<td>Setup, limit value and system settings are locked, data entries (e.g. text entries), registration confirmation, etc. are allowed.</td>
<td></td>
</tr>
<tr>
<td>User Level 2</td>
<td>Locked</td>
<td>Data entries and setup, limit value and system settings are locked. Display function for device status and measured values, registration confirmation are allowed.</td>
<td></td>
</tr>
<tr>
<td>User Level 3</td>
<td>Locked</td>
<td>No data entries possible, display function only for device status and measured values.</td>
<td></td>
</tr>
<tr>
<td>DIP switches (DIN rail device)</td>
<td>-</td>
<td>Permitted</td>
<td>Access protection via DIP switch at front (limited protection); protection level can be increased by additional external measures (e.g. locked control cabinet). All setup and system settings can be accessed when the DIP switch is set to "Access permitted".</td>
</tr>
</tbody>
</table>

In order to change any parameter, the correct code must first be entered or the device must be unlocked using the control input.

Setup lock via control input: The settings for the control input can be found in the main menu under "Setup -> Advanced setup -> Inputs -> Digital inputs -> Digital input X -> Function: Control input; Action: Lock setup".

It is preferable to lock the setup using a control input.

Setting up an access code: The settings for the access code can be found in the main menu under "Setup -> Advanced setup -> System -> Security -> Protected by -> Access code". Factory setting: "Open access", i.e. modifications can always be made.

Make a note of the code and store in a safe place.

Setting up user roles: The settings for the user roles (operator, admin and service) are provided in the main menu under "Setup -> Advanced setup -> System -> Security -> Protected by -> User roles". Factory setting: 'Open access', i.e. modifications can always be made.

The passwords should be changed during commissioning.

Make a note of the code and store in a safe place.

Setting up user administration according to "FDA 21 CFR Part 11": The settings for user administration can be found in the main menu under "Setup -> Advanced setup -> System -> Security -> Protected by -> FDA 21 CFR Part 11". Factory setting: 'Open access', i.e. modifications can always be made.

9.9 HTTPS Web server setup

To operate the HTTPS Web server, an X.509 certificate and a suitable private key must be installed on the device. For security reasons, installation is via a USB stick only.

The certificate that is preinstalled on the device when delivered from the factory should not be used!

Server certificates cannot be installed via the "USB stick/import SSL certificates" function!
Prerequisites
Private key:
- X.509 PEM file (Base64 encoded)
- RSA key with max. 2048 bit
- May not be password-protected

Certificate:
- X.509 file (Base64 encoded PEM or binary DER format)
- V3 incl. extension required
- Signed by a certification authority (CA) or sub-certification authorities (recommended), self-signed where necessary.

Certificate and private key can be created or converted using openssl (https://www.openssl.org) for example. Contact your IT administrator to create the corresponding files.

Tip: More information on this topic is provided in our How To Videos under https://www.youtube.com/endresshauser

Installation:
1. Copy the private key onto a USB stick into the root directory. File name: key.pem
2. Copy the certificate onto a USB stick into the root directory. File name: cert.pem or cert.der
3. Connect the USB stick to the device. The private key and the certificate are installed automatically. The installation is logged in the event logbook.
4. Remove the USB stick using the "Safe removal" function

Notes:
- In the DIN rail version, the device will automatically copy any data not yet saved to the USB stick
- The device may have to be restarted for the browser to use the new certificate
- Delete the private key from the USB stick following installation
- Keep the private key in a safe place
- Use the private key and the certificate for one device only
- To prevent unauthorized use, it is possible to disable the USB A port on the device. In this way, an attacker cannot replace the certificate or the private key ('Denial of Service'). If necessary, install a perimeter guard to prevent access to the device.

Checking certificates
You can check the certificate via "Main menu -> Diagnostics -> Device information -> SSL certificates". For this purpose, select the "Server certificate" point under the certificate.

Replace the certificate in good time before it expires. The device will display a diagnostic message 14 days before the certificate expires.

Uninstalling certificates and the private key
You can check the certificate via "Main menu -> Diagnostics -> Device information -> SSL certificates". For this purpose, select the "Server certificate" point under the certificate. You can delete the certificate here.

In this case, the preinstalled certificate is reused.

Using self-signed certificates
Self-signed certificates must be stored in the PC's certificate memory under "Trusted Root Certification Authorities" so that the browser does not display a warning.

Alternatively, an exception can be saved in the browser.
9.10 TrustSens Calibration Monitoring

Available in conjunction with iTHERM TrustSens TM371 / TM372.

Application package:
- Up to 20 iTHERM TrustSens TM371 / TM372 devices can be evaluated via the HART interface
- Self-calibration data displayed on screen or via the Web server
- Generation of a calibration history
- Creation of a calibration protocol as an RTF file directly at the RSG45
- Evaluation, analysis and further processing of the calibration data using "Field Data Manager" (FDM) analysis software

Enable the function: Self-calibration monitoring is switched on under **Expert → Application → Monitor self-calibration.**

For more information, see additional Operating Instructions → **BA01887R**
10 Fulfilling requirements in accordance with "FDA 21 CFR Part 11"

10.1 General notes

Before applying electronic signatures the Office of Regional Operations (HFC-100) 5600 Fishers Lane Rockville, MD 20857 USA

is to be informed, by means of an informal letter with handwritten signature, that the company intends to use electronic documents/signatures in future. Administrators and users must be instructed / trained in accordance with 21 CFR 11 or must already possess the relevant knowledge or qualifications. Commercial software used in electronic recording systems in accordance with 21 CFR 11 must be validated. The suitability of the device and the associated PC software (incl. operating system) for the application in question must be specified, validated, and documented (e.g. with regard to data confidentiality, printout of the device parameters, security backup of the set parameters, assignment of access authorizations in the PC software, suitability of the software used for commercial purposes – such as operating system, etc.).

The identity of the relevant person must be verified before assigning / determining the electronic signature (or elements of this electronic signature, e.g. unique ID / initialization password). The administrator must ensure and document the uniqueness of the ID and its correct assignment to the relevant person. Electronic signatures may only be used by authorized users. They must not be passed on to third parties. Administrators and users must undertake not to misuse their user IDs and passwords (including initialization passwords).

Written procedural instructions, which make individuals responsible for all actions carried out using their electronic signature, must be drawn up and observed so as to provide a deterrent mechanism for the falsification of documents and signatures.

Suitable checks of system documentation must be made (distribution, access, and use of documentation for system operation and maintenance). Revision and change control procedures must be implemented for the system documentation in which the chronological order of the development and change to system documentation is documented. The system is not intended for use in Internet applications/open systems.
NOTICE

The user is responsible for observing the following instructions for ensuring compliance with FDA 21 CFR Part 11:

- The scope of application for this FDA 21 CFR Part 11 evaluation refers to the Memograph M RSG45 and the associated Field Data Manager (FDM) PC software, which have been produced and tested by the manufacturer. The overall system must be subjected to a final evaluation by the end user.
- Recordings from the device and the associated PC software in accordance with "FDA Guidance for Industry: Computerized Systems Used in Clinical Investigations: 2007" cannot be used for clinical studies.
- In order to satisfy the requirements of FDA 21 CFR Part 11 with regard to the electronic signature, the device may only be read out with the associated Field Data Manager (FDM) PC software.
- The device and the associated PC software do not take into account the requirements of FDA 21 CFR Part 11, §11.30 for "Open systems". Operation within the context of an open system must be excluded.
- The operator must take suitable management precautions to prevent the loss of password access data/authentication data.
- The printer must be connected correctly and its long-term function guaranteed, even in the event of local changes (e.g. network printer).
- Due to the aging of components, the device must be calibrated at regular intervals.
- Regular maintenance must also be carried out.
- Measures must be taken to prevent the device from being moved (e.g. physical protection).
- No data will be recorded in the event of a power failure.
- The battery buffer for the backup clock is checked and, where necessary, a warning issued.
- Wireless transmission may not be used between the device and the PC software. In the case of wired transmission, operation is only permitted within the closed company network. This must be checked during the validation of the complete system.

NOTICE

The user is responsible for observing the following instructions for ensuring compliance with FDA 21 CFR Part 11:

Requirements for connected hardware components:

- Associated hardware components (e.g. a PC connected to the device) are part of the system but must be provided by the user. Backup measures designed to prevent hard disk defects or a memory overrun are the responsibility of the user.
- Wired peripherals, such as a USB keyboard for the device or a keyboard for the PC, can be scanned in using "Keylogger". It is the user's responsibility to prevent the use of so-called "sniffers".
10.2 Important device settings

NOTICE

In order to satisfy the requirements from 21 CFR 11, certain device functions are required. In particular, some user administration settings must be made:

- Activate user administration and password protection according to FDA 21 CFR Part 11: In the main menu go to "Setup -> Advanced setup > System -> Security -> Protected by -> FDA 21 CFR Part 11"
- Create a user: In the main menu go to "User administration -> Create user account" to create a new user.
- Make general user administration settings and define password rules: In the main menu go to "User administration -> General". Recommendation: Password valid for 60 days in order to prevent it from becoming too familiar to the user.
- Assign the permitted rights to users in the main menu under "User administration -> General -> User rights"
- All changes to the device are automatically recorded in the event logbook. The event logbook can be opened from the main menu under "Diagnostics -> Event logbook"

NOTICE

The user is responsible for observing the following instructions for ensuring compliance with FDA 21 CFR Part 11:

Requirements for the device:

- The device must be regarded as a closed system.
- Administrator rights are required to change the configuration. The device must be locked via hardware protection (terminal cover) and a digital input assigned. Changes are documented in the event logbook / audit trail. The event logbook can be opened from the main menu under "Diagnostics -> Event logbook".
- User administration with ID and password must be active.
- All changes must always be documented with the user's name in the event logbook. It is essential that user administration is active for this. All users must be created accordingly under User administration.
- All settings relating to password complexity and validity period are the responsibility of the administrator.
- During commissioning, the special requirements for the admin role must be taken into account (stricter password rules). User administration can only be disabled by the administrator. Under certain circumstances the administrator may lock users out of the system or sabotage user administration.
- The initial password set by the administrator must be changed on the first login (configurable).
- If the wrong password is entered repeatedly (max. number of attempts is adjustable), access is blocked and an alarm can be sent by e-mail.
- After setting up/using the device, the user must log out. Automatic logout after a configurable time must be activated.
- Communication interfaces can be blocked by the administrator. The interface for using the modem must be switched off.
- Hardware locking must be performed for the device update. This ensures that only the administrator can perform a firmware update.
- Any manipulation of the time synchronization is the responsibility of the user.
- In order to prevent a loss of data, the data must be read out regularly from the memory. Administrator rights are required in order to delete the internal memory. A hardware lock can also be used to prevent the memory from being deleted.
- The device produces a diagnosis list in which faults are documented. The diagnosis list must be checked regularly; this can be done in the main menu under "Diagnostics -> Diagnosis list".
- Proof testing of the error log is recommended; this is done from the main menu under "Diagnostics -> Device information -> Error log".
The user is responsible for observing the following instructions for ensuring compliance with FDA 21 CFR Part 11:

Requirements for the external memory:

- The external storage medium (SD card/USB stick) must only be removed using the function "Operation -> SD card/USB stick -> Remove safely".
- In contrast to the protected data format, which features CRC16 protective measures, the stored data can be manipulated when using the open format (*.csv).
- In order to prevent unauthorized access (e.g. through theft), the external memory can also be disabled or removed.

10.3 Important settings in the Field Data Manager (FDM)

PC software

The user is responsible for observing the following instructions for ensuring compliance with FDA 21 CFR Part 11:

- Modem operation cannot be implemented as a closed system.
- User administration must be active in order to record the user names in the audit trail.
- The password must be changed on the first login.
- If the administrator forgets the password, a master password, which is only valid for a limited period, may be used. Access is granted to the user on request and following authorization.
- If a user does not log out, an automatic lockout (screensaver) is activated via the Windows® system setting.
- It is possible to use the Field Data Manager PC software without identification or password protection, but this is not compliant with FDA 21 CFR Part 11.
- The ending of the automatic system service must be controlled via Windows® user rights.
- Since the PC date/time is used for the audit trail, it is theoretically possible to manipulate the time stamp. This must be prevented by the user by means of Windows® user rights.
- Regular backups and preventive maintenance (e.g. by means of software updates) must be carried out.
- It is important to ensure that no data can be intercepted or manipulated during communication between the device and the database.

NOTICE

In order to satisfy the requirements according to FDA 21 CFR Part 11, certain functions are required in the associated PC software. In particular, some user administration settings must be made.

- Use only operating systems with user administration (e.g. MS Windows® 2000/XP/Vista/7/8).
- Create an administrator: Create an administrator under "Extras -> User administration".
- Activate user administration and password protection according to FDA 21 CFR Part 11: Under "Extras -> Settings -> User administration" select "Activate user management" and "Password protection in compliance with FDA 21 CFR Part 11". The software applies the settings following a restart.
- Additional users can now be created under "Extras -> User administration" with the corresponding access roles.
- All changes made to the software are recorded in the "Audit trail". This can be opened via "Extras -> Audit trail".
- Where appropriate, use the high-performance automatic functions of the PC software (e.g. automatic read out, automatic backup function, automatic e-mail alert).
- Note: Detailed instructions can be found on the DVD provided with the PC software.
11 Operation

The "Operation" menu is geared towards the tasks and activities of the operator. It contains all the parameters that are needed in ongoing operation. Historical values and analyses, for example, can be displayed in the "Operation" menu and display settings can be made. Any settings made for the local display have no effect on the measurement section or the configured device parameters, however.

The device's simple operating concept and the integrated help function enables you to perform operation for many applications without the need for hardcopy operating instructions.

11.1 Reading-out and changing the Ethernet setting address

To establish communication with the device via Ethernet, the following settings must be known or modified where necessary:

Display IP/MAC address (only if DHCP is enabled): For the device's IP or MAC address, see the main menu under "Diagnostics -> Device information -> Ethernet".

Display/change Ethernet settings: For the device's Ethernet settings, see the main menu under "Setup -> Advanced setup -> Communication -> Ethernet".

In the case of the DIN rail version: These settings can only be accessed by Web server under "Menu -> Diagnostics -> Device information -> Ethernet".

Procedure to establish a direct connection via Ethernet (point-to-point connection):
1. Configure the PC (depends on operating system): e.g. IP address: 192.168.1.1; subnet mask: 255.255.255.0; gateway: 192.168.1.1
2. Disable DHCP on the device
3. Make communication settings on the device: e.g. IP address: 192.168.1.2; subnet mask: 255.255.255.0; gateway: 192.168.1.1

A crossover cable is not required.

11.2 Reading off the device locking status

If setup is locked via a control input, a padlock symbol appears on the top right of the screen. The setup must first be unlocked via the control input before device parameters can be edited.

Setup lock via control input: For the settings for the control input, see the main menu under "Setup -> Advanced setup -> Inputs -> Digital inputs -> Digital input X -> Function: Control input; Action: Lock setup".

If setup is locked via the access code, all the operating parameters can be displayed, and can also be edited as soon as the access code is entered.

In the case of the DIN rail version: These settings can only be accessed by Web server under "Setup -> Advanced setup -> Inputs -> Digital inputs -> Digital input X -> Function: Control input; Action: Lock setup".
11.3 Reading off measured values (display devices)

- Slot for SD card
- USB B socket "Function" e.g. to connect to PC or laptop
- USB A socket "Host" e.g. for USB memory stick, external keyboard, barcode reader or printer
- Yellow LED for read/write access to the SD card
- Navigator: press briefly to open the main menu and confirm messages (=Enter); press for longer to open the online help
- Green LED (top) lit: power supply present. Red LED (bottom) flashing: maintenance required
- Variable "soft keys" 1 to 4 (from left to right)
- Function indicator of the "soft keys"
- Header: group name, analysis type
- Header: current date/time
- User ID (when function is active)
- Header: alternating display indicating the percentage space on the SD card or USB stick that has already been used. The display alternates between displaying memory information and status symbols.
- Area for measured value display (e.g. curve display). Display of current measured values and the status in the event of an error/alarm condition. In the case of counters, the type of counter is displayed as a symbol.
- Status bar

An overview of all the symbols and icons is provided in the "Operation options" section. → 38

If a measuring point has limit value status, the corresponding channel identifier is highlighted in red (quick detection of limit value violations). During a limit value violation and device operation, the acquisition of measured values continues uninterrupted.

Information on how to rectify a problem if an error occurs is provided in the "Troubleshooting" section. → 82
11.4 Web server

The device features an integrated Web server, which enables access via Ethernet (or Ethernet over USB). The Web server is used for convenient device commissioning and configuration and to visualize measured values. Access is possible from any access point when the device is connected to an Ethernet network. An appropriate IT infrastructure, security measures etc. must be implemented in accordance with the requirements of the plant. Point-to-point access via Web server and Ethernet via USB is particularly well-suited for service purposes.

While the DIN rail device version can be operated and configured using the FieldCare and DeviceCare software tools, it is preferably configured and operated via the Web server.

Activation of the Web server in the menu Setup → Advanced setup → Communication → Ethernet → Web server → Yes or menu Expert → Communication → Ethernet → Web server → Yes

The Web server port is preset to 80. The port can be changed in the Expert → Communication → Ethernet menu.

If the network is protected by a firewall, the port may need to be activated.

The following web browsers are supported:
- MS Internet Explorer 11 and higher
- MS Edge
- Mozilla Firefox 52.1.0 and higher
- Opera 12.x and higher
- Google Chrome 66 and higher

A minimum resolution of 1920x1080 (full HD) is recommended.

In order to use the full functionality of the Web server, it is recommended that the latest version of the browser is used. To access the device via a Web server, you must have Administrator, Service or Operator authentication.

The Web server is not optimized for visualization on smartphones.

When delivered, the following default values are set for the user roles in the device and Web server:
- ID: admin; password: admin
- ID: service; password: service
- ID: operator; password: operator

FDA role-based access protection is not pre-defined. Proceed as follows: perform a basic setup logged in as "admin" and then enable "FDA compliant" access protection.

Note: Passwords should be changed during commissioning!

The ID and password can be changed in the main menu under "Setup -> Advanced setup -> Communication -> Ethernet -> Configuration Web server -> Authentication".

11.4.1 Access to the Web server via HTTP (HTML)

When using an Internet browser, it suffices to enter the address http://<IP address> to display the information as HTML in the browser.

Note: Leading zeros in IP addresses must not be entered (e.g. enter 192.168.1.11 instead of 192.168.001.011).

As in the case of the display, you can alternate between the display groups in the Web server. The measured values are automatically updated. In addition to the measured values, status and limit value flags are displayed.
11.4.2 Access to the Web server via XML

XML format is available in addition to HTML format and contains all measured values of a group. This can be integrated into additional systems as the user wishes.

The XML file is available in ISO-8859-1 (Latin-1) coding at http://<IP address>/values.xml (alternative: http://<IP address>/xml). However, some special characters, such as the Euro symbol, cannot be displayed in this file. Texts such as digital statuses are not transmitted.

Note: Leading zeros in IP addresses must not be entered (e.g. enter 192.168.1.11 instead of 192.168.001.011).

The decimal point is always displayed as a period in the XML file. All times are given in UTC. The time difference in minutes is noted in the following entry.

The structure of the channel values for the XML file is explained as follows:

```
<device id="AI01IV" tag="Channel 1" type="INTRN">
  <v1>50.0</v1>
  <u1>%</u1>
  <vtime>20130506-140903</vtime>
  <vstslvl1>0</vstslvl1>
  <hlsts1>L</hlsts1>
  <param><min>0.0</min><max>100.0</max><hh></hh><hi></hi><lo></lo><ll></ll></param>
  <tag>Channel 1</tag>
  <man>Manufacturer</man>
</device>
```

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>device id</td>
<td>Unique ID of measuring point</td>
</tr>
<tr>
<td>tag</td>
<td>Channel ident.</td>
</tr>
<tr>
<td>type</td>
<td>Data type (INTRN, MODBUS)</td>
</tr>
<tr>
<td>v1</td>
<td>Measured value of channel as a decimal value</td>
</tr>
<tr>
<td>u1</td>
<td>Unit of measured value</td>
</tr>
<tr>
<td>vtime</td>
<td>Date and time</td>
</tr>
<tr>
<td>vstslvl1</td>
<td>Error level</td>
</tr>
<tr>
<td>hlsts1</td>
<td>Limit value status (H = upper limit value, L = lower limit value, LH = upper and lower limit value violation)</td>
</tr>
<tr>
<td>param</td>
<td>Parameter (optional)</td>
</tr>
<tr>
<td>min</td>
<td>Lower zoom</td>
</tr>
<tr>
<td>max</td>
<td>Upper zoom</td>
</tr>
<tr>
<td>hh</td>
<td>Upper alarm limit</td>
</tr>
<tr>
<td>hi</td>
<td>Upper warning limit</td>
</tr>
<tr>
<td>lo</td>
<td>Lower warning limit</td>
</tr>
<tr>
<td>ll</td>
<td>Lower alarm limit</td>
</tr>
<tr>
<td>MAN</td>
<td>Manufacturer</td>
</tr>
</tbody>
</table>

11.4.3 Setup, operation and service via the Web server

Establish a connection to the Web server:

1. Connect the PC to the device via Ethernet (or Ethernet over USB)
2. Start the browser on the PC
3. Enter the device’s IP address in the browser http://<ip address>
4. Log in with the ID and password

The startup screen of the Web server appears.
General information regarding the **Device name**, **Device tag** and **Status signal** is displayed in the top section of the Web server. The following functions can be accessed in the middle of the screen:

Health status – Measured values – Menu – Data management - Network.

Clicking the functions calls up the following submenus. The submenus are closed by selecting "Cancel" or by clicking "Back" several times.

Health status (advanced device status)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device information</td>
<td>Advanced device status, Ethernet settings, hardware configuration, device options, memory information, SSL certificate</td>
</tr>
<tr>
<td>Confirm messages</td>
<td>Submenu to confirm system messages</td>
</tr>
<tr>
<td>Event logbook</td>
<td>Submenu for the event logbook</td>
</tr>
</tbody>
</table>

Measured values (choice of measured value display)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instantaneous values</td>
<td>Measured values are displayed as numerical instantaneous values, the signal groups can be selected as tabs here</td>
</tr>
<tr>
<td>Instantaneous values as curves</td>
<td>The measured values are displayed as curves</td>
</tr>
<tr>
<td>History</td>
<td>Displays a history of the measured values</td>
</tr>
</tbody>
</table>

Menu

The menu structure displayed in the Web server corresponds largely to the menu structure in the device → 33

Data management

Update functions and parameters relating to the firmware, load/save setup, save setup as RTF, import SSL certificates

Network

Displays the Ethernet parameters (IP address, subnet mask, gateway, domain)
Displays the current measured values and history data

Under **Measured values** a selection window appears for **Instantaneous values** – **Instantaneous values as curves** – **History**. Click to display the corresponding display function.

Current measured values can also be called up via the Web server without logging in with the address http://<IP address>/iv. Device configuration is **not** possible in this case, however.

Note: The browser must support HTML5.

Optional command parameters:
- Syntax: `http://<ip address>/iv?group=<x>&refresh=<y>
- group=<x> where x = 1 to 10
- refresh=<y> where y = 3 to 3600 in seconds

Note: Pay attention to lower and upper case if using an optional parameter.

This function can be disabled in the setup. If this function is disabled, the option to export instantaneous values to XML is also disabled for security reasons.

Instantaneous values

The current measured values are displayed in numerical format. Clicking the tabs displays the signal groups defined in the setup.

Instantaneous values as curves

The current measured values are displayed as a curve and numerically over the time axis. The refresh rate can be set in a selection window. The display mode can be set to full screen. Clicking the tabs displays the signal groups defined in the setup.

Display functions

If the cursor is moved over one of the curves, the instantaneous value of the current point in the curve is displayed with the time stamp and unit. Channels can be displayed and hidden using the channel checkboxes in the legend.
History (logged measured values)
Clicking the **History** button loads the data previously logged. This may take a few seconds depending on the data connection (USB, Ethernet, WLAN) and the number of measuring channels. The data for each channel is loaded to display the content of one screen. The logged (history) values are displayed as a curve and numerically over the time axis. The display mode can be set to full screen. Clicking the tabs displays the signal groups defined in the setup.

Display functions
If the cursor is moved over one of the curves, the instantaneous value of the current point in the curve is displayed with the time stamp and unit. Channels can be displayed and hidden using the channel checkboxes in the legend.

Moving the dashed cursor line along the time axis updates the numerical display of the measured values accordingly (on right).

Go to Enter a point in time. The history is reloaded. If you enter a time for which no measured values are available, the next possible time where measured values are available is displayed.

Search older: The information displayed moves half a screen to the left (displays older measured values). Press the << button to move the information one entire screen to the left (older measured values).

Search newer: The information displayed moves half a screen to the right (displays more recent measured values). Press the >> button to shift the information one entire screen to the right (more recent measured values).

Note: If no measured values were recorded for a certain range of time (e.g. as there was no power supply), this is indicated by a symbol at the top of the window. The curves jump accordingly.
11.4.4 Remote control via the Web server

This function is not supported by the DIN rail version.

The device can be remotely controlled via the Web server. In the Web server, the remote control function can be found under "Measured values -> Remote control". Here the display shown corresponds directly to the device display. The device is operated using buttons below this display. The interval for refreshing the display can be set in the "Refresh" menu.

Enabling remote control on the device:
1. In the menu Setup -> Advanced setup -> Communication -> Ethernet -> Configuration Web server -> Remote control, select "Yes" or under
2. Expert -> Communication -> Ethernet -> Configuration Web server -> Remote control, select "Yes".

11.5 Changing the group

The group to be displayed can be changed in the main menu under "Operation -> Change group". Alternatively, the group can also be changed by turning the navigator.

Version with stainless steel front and touchscreen:

The active groups can be changed with a horizontal 'swiping' movement.

For the DIN rail version: The active groups can only be queried and changed via the Web server under "Measured values -> Instantaneous values as curves / Instantaneous values as curves / History". The groups are created as tabs and can be selected by mouse click.

Only the active groups are displayed here. The settings for this can be made in the main menu under "Setup -> Advanced setup -> Application -> Signal groups -> Group x".

11.6 Locking operation

This function is not supported by the DIN rail version.
Local operation can be blocked in the main menu under "Operation -> Lock operation" to prevent unintended or incorrect operation (e.g. when cleaning the device).

- The device is unlocked by pressing the navigator or the OK operating key for 3 s. When using an external keyboard, the device is unlocked with the key combination 'Ctrl-Alt-Del'.

11.7 Login / logout

Log onto the device or log off the user currently logged on.

- Only for active user administration (FDA 21 CFR Part 11) or role-based access protection → 54

11.8 Changing the password

Change the user password.

- The access concept (free/access code/user roles/FDA) must first be defined: "Menu -> Expert -> System -> Security -> Protected by -> FDA 21 CFR Part 11" → 54

The password can also be changed via the Web server under "Data management -> Change password".

11.9 SD card/USB stick

11.9.1 Function of SD card or USB stick

Without affecting the internal memory, data packets are copied block by block (min. 1 x daily, midnight) to the SD card. Tests are also made to determine whether the data have been written without any errors. Once a new SD card is inserted, the device starts saving the data automatically after 5 minutes. The use of a USB stick is only recommended if certain data ranges should be copied.

For the panel version: The USB stick is **not** used for storing the measured values continuously, i.e. it is **not** automatically updated.
Data are saved in two different folders on the storage media depending on the storage method:

- All data are copied cyclically to the rec_data_<Device name> folder if a data packet is complete or the function "Update" is activated under "Operation -> SD card/USB stick -> Update".
- The data for the selected time range that was selected under "Operation -> SD card / USB stick -> Save measured value" are copied to the rng_data_<device name> folder. Copying these data does not affect the storage of the data in the rec_data_<device name> folder.

- Only use new, formatted SD cards that are recommended by the manufacturer (see "Accessories" → 97).
- During normal operation, the used memory space on the SD card or USB stick is displayed on the top right of the display ('SD: xx%' or "USB: xx"). Dashes "–" on this display mean that no SD card is inserted.
- The SD card must not be write-protected.
- Prior to removing the external data carrier, select "Operation -> SD card/USB stick -> Update". The current data block is closed and saved to the external data carrier. This ensures that all the current data (up until the last save) is included on the data carrier.
- Depending on the device configuration (see "Setup -> Advanced setup -> System -> Ext. memory -> Warning at"), an acknowledgeable message on the display notifies the user that the external data carrier has to be changed before the data carrier is 100 % full.
- The device keeps track of which data have already been copied onto the SD card or USB stick. If the data carrier is not changed in time or if no SD card is inserted, the new external data carrier is filled with the missing data from the internal memory - insofar as the data are still in the memory. As measured value acquisition/recording is assigned the highest priority, it may take several minutes in this case for the data to be copied from the internal memory to the SD card or USB stick.

11.9.2 DIN rail version: function of SD card or USB stick

USB A socket 'Host' e.g. for USB memory stick or printer

If a USB stick is inserted, data that have not yet been saved are copied to the stick automatically. The red LED flashes while data are being copied to the stick.

Do not remove the USB stick when the red LED is flashing! Risk of data loss!

If an error occurs (e.g. USB stick full or defective), the red LED is lit constantly. Remove the USB stick and replace it.

SD card

Cyclic storage is completed via the "Safe SD card removal" button, the LED (d) goes out. The SD card can now be removed.

If the SD card is not removed within 5 minutes, the write cycles start again.

LED at SD slot. Yellow LED lit or flashing when the device writes to the SD card or reads it.

Do not remove the SD card if the LED is lit or flashing! Risk of data loss!

11.9.3 Functions relating to the SD card or USB stick

These functions are **not** supported by the DIN rail version.
For functions to save measured data and device settings on a removable medium, see the main menu under **Operation -> SD card / USB stick** (only if an SD card or USB stick is provided).

Remove safely:
All internal access is terminated to ensure safe removal of the storage medium from the device. A message is displayed when the storage media can be removed. If the SD card is not removed, the device automatically starts to save data to the storage medium again after 5 minutes.

⚠ Only remove the data storage medium using this function; otherwise data may be lost!

Update:
Measurement data not yet saved on the storage medium are now saved. This may take a moment. Measured value acquisition is running in parallel and has top priority.

Data from several devices can be saved onto one storage medium.

- **Save measured values:**
 A user-definable time range can be saved on the data storage medium.

- **Load setup:**
 Loads device settings (setup) from the storage medium onto the device.

- **Save setup:**
 All device settings (setup) are saved onto the storage medium. They can be archived or used for other devices.

- **Save setup as RTF:**
 Saves the setup on the storage medium in a readable format as an RTF file (rich text format).
 The RTF file can be opened and formatted using suitable word processing software (e.g. MS Word), allowing printouts to be easily made.

- **Screenshot:**
 Save the current measured value display as a bitmap on the SD card or USB stick.

- **Update firmware:**
 Loads new firmware onto the device. Only visible if a firmware file is provided on the SD card or USB stick.

⚠ Caution: The device will restart. Save the setup and measured values beforehand on the SD card or USB stick.

- **Process screens:**
 Load, export or delete process screens.
 Load: Loads a process screen from the external storage medium into device memory.
 Export: Saves the process screen in the device onto the external storage medium to transfer it to another device.
 Delete: Deletes the selected process screen from device memory.
 Procedure for creating and processing process screens: → 73

- **Load user administration:**
 Loads all settings and user accounts from the storage medium to the device. The file has the extension ".ids2".

⚠ Caution: Any existing settings/accounts are overwritten!
- **Save user administration:**
 Saves all settings and user accounts to the storage medium. The file has the extension ".ids2".

- **User administration as RTF:**
 Saves the user administration on the storage medium in a readable format as an RTF file (rich text format).

- **Import SSL certificate:**
 Uploads an SSL certificate (X.509) to the device. Certificates are needed to establish an SSL connection in order to send e-mails in an encrypted manner for example. Certificates are available from your network administrator or provider. The following are supported: DER, CER and CRT (binary or Base64-encoded).
 Only visible if an SSL certificate is provided on the SD card or USB stick.

Creating a process screen using the process picture generator

1. This function is **not** supported by the DIN rail version.

2. The DVD provided with the Field Data Manager (FDM) software includes a process picture generator.
 This program allows the user to generate a process screen quickly and easily.

Start the process picture generator and create the first project:

1. Copy the entire `ProcessPictureGenerator` directory from the DVD to a local directory on the PC
2. Alternatively, unzip the downloaded ZIP file in a local directory on the PC
3. Double-click on the `FieldDiagramer.exe` application it contains
4. The process picture generator is started and a new project is created
5. Select all fields required for the project such as project name, device type, etc. as well as the background picture
6. Edit the process screen accordingly
7. Use the function "File -> Save" to save the current project
8. Using the "File -> Export" function, save the process screen ("PP_GROUP_<xx>.bmp") with the necessary INI file ("PP_GROUP_<xx>.ini") to a USB stick or an SD card. Note: The 'xx' in the file name stands for the group (01 to 10).
9. Remove the USB stick or SD card from the PC

Further help can be called directly from the help menu of the process picture generator.

Load the process screen in the device:

1. Plug the USB stick or the SD card containing the generated process screen into the device
2. In the main menu under "Operation -> SD card / USB stick -> Process screen -> Group", select the group to which the process screen is to be assigned
3. In the main menu under "Operation -> SD card / USB stick -> Process screen -> Load", select the desired process screen and upload it to the device
4. In the main menu under "Operation -> Change display mode", change the display mode to "Process screen".

Editing process screens on the device

Process screens can be edited on the device.
The following functions are possible:

- Add channels to/remove channels from the process screen
- Change the position, font size, and alignment
- Delete the process screen

Call up the Context menu: In the measured value display, press the navigator or "Menu" for longer than 3s.

The "Process screen" submenu can be accessed in the context menu that now opens:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter/description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Edit" submenu</td>
<td>Edit the process screen currently displayed (position, font size, etc.).</td>
</tr>
<tr>
<td>"Channel 1-8" submenu</td>
<td>Edit the selected channel of the process screen (enable, change position/font size etc.).</td>
</tr>
<tr>
<td>Display in the process screen</td>
<td>Switch the channel in the process screen on or off. Note: Does not affect measured value storage/configuration. Options: No, yes; factory setting: no</td>
</tr>
<tr>
<td>Channel ident.</td>
<td>Specify whether the channel identifier should be displayed in addition to the measured value. The channel identifier is displayed above the measured value. Options: No, yes; factory setting: no</td>
</tr>
<tr>
<td>Alignment</td>
<td>Specify how the measured value should be aligned.</td>
</tr>
<tr>
<td>x-position</td>
<td>Selection of the x-position where the measured value is to be displayed. User entry: 0 to 799 pixels; factory setting: 10</td>
</tr>
<tr>
<td>y-position</td>
<td>Selection of the y-position where the measured value is to be displayed. User entry: 0 to 450 pixels; factory setting: 50 (channel 1) to 260 (channel 8)</td>
</tr>
<tr>
<td>Font size</td>
<td>Selection of the font size in which the measured value is to be displayed. Options: Small, medium, large, very large; factory setting: large</td>
</tr>
<tr>
<td>Accept changes</td>
<td>Saves the changes to the process screen in the device memory.</td>
</tr>
<tr>
<td>Delete</td>
<td>Deletes the selected process screen from the device memory. The device then changes to the curve display.</td>
</tr>
</tbody>
</table>

11.9.4 Notes on e-mail encryption

In addition to sending unencrypted e-mails, it is also possible to send encrypted e-mails via SSL (TLS). To do so, you can choose either of two ways:

- **By SMTPS:** fully encrypted via port 465.
 - The complete connection runs over TLS. The port is 465 by default but this value can be changed in the Setup.
- **Via port 25 or 587 using STARTTLS.**
 - With this method the device first establishes a plain SMTP connection via port 25 and continues this connection following agreement and switchover to encryption.

The required process can be selected as follows: **Setup -> Advanced setup -> Application -> E-mail -> Server requires SSL** or under **Expert -> Application -> E-mail -> Server requires SSL**.
TLS V1.0 (=SSL 3.1), V1.1 and V1.2 are supported. Older standards are not supported. The encryption method is automatically agreed with the counterparty.

A certificate must be installed in order to be able to send encrypted e-mails. These certificates can be obtained from your e-mail service provider. The following file formats are supported:
- *.*.CER: DER- or Base64-encoded certificate
- *.*.CRT: DER- or Base64-encoded certificate
- *.*.DER: DER-encoded certificate

The file name of the certificate may only contain the following characters: a...z, A...Z, 0...9, +, -, _, #, (,), !

To establish an SSL connection, the device automatically selects the certificate that best suits the counterparty from all the installed certificates. An error message is displayed if the device does not have any of the required certificates.

When e-mail encryption is enabled, no e-mails can be sent if a valid certificate is not available or if the certificate has expired.

11.9.5 Notes on WebDAV encryption

In addition to sending unencrypted data to the WebDAV server, it is also possible to send encrypted data via SSL (TLS). All data are sent in encrypted format via the SSL port of the external WebDAV server.

The complete connection runs over TLS. The port is 80 by default but this value can be changed in the Setup. The procedure to be used can be selected as follows: "Setup -> Advanced setup -> Application -> WebDAV Client -> Enable -> Yes (SSL)" or under "Expert -> Application -> WebDAV Client -> Enable -> Yes (SSL)".

TLS V1.0 (=SSL 3.1), V1.1 and V1.2 are supported. Older standards are not supported. The encryption method is automatically agreed with the counterparty.

A certificate must be installed in order to be able to send encrypted data. These certificates can be obtained from your WebDAV server service provider. The following file formats are supported:
- *.*.CER: DER- or Base64-encoded certificate
- *.*.CRT: DER- or Base64-encoded certificate
- *.*.DER: DER-encoded certificate

The file name of the certificate may only contain the following characters: a...z, A...Z, 0...9, +, -, _, #, (,), !

To establish an SSL connection, the device automatically selects the certificate that best suits the counterparty from all the installed certificates. An error message is displayed if the device does not have any of the required certificates.

When WebDAV client encryption is enabled, no data can be sent if a valid certificate is not available or if the certificate has expired.

11.9.6 SSL certificates

Importing an SSL certificate

Installing a certificate via SD card or USB stick:
1. Copy a certificate on a PC to an SD card or USB stick
2. Insert the SD card or USB stick into the device
3. In the main menu, select "Operation -> SD card (or USB stick) -> Import SSL certificate"
4. Select the required certificate from the list and follow the dialog on the display.
Installing a certificate via the Web server:

1. On the Web server, select "Data management --> Import SSL certificate"
2. Select the file
3. Start the process by clicking OK

Up to 3 certificates can be installed simultaneously.

Verifying the installed SSL certificates

The installed certificates can be verified in the main menu under "Diagnostics --> Device information --> SSL certificates". The most important certificate information, e.g. subject key ID, organization and validity period, are displayed in the parameter list.

Not all fields are completed on all the certificates. This is because the parties issuing the certificates do not make all the information available.

Deleting an SSL certificate

In the main menu select the certificate to be deleted under "Diagnostics --> Device information --> SSL certificate --> Certificate" and select "Yes" under "Delete certificate".

Period of validity of certificates

Certificates are valid for a defined period (valid from ... to ...). The device checks the certificate validity once a day or each time the device is rebooted. 14 days before the certificate expires the device notifies the user daily (by e-mail, screen display, entry in event log) that the certificate will expire shortly.

If the certificate has expired the alarm relay switches (if activated) and a message is displayed on the screen. An entry is also made in the event log. If a certificate is deleted all errors related to this certificate are reset.

11.10 Show data logging

For the DIN rail version, see → 67

You can scroll through the saved measured values in the main menu under "Operation --> History". Turn the navigator clockwise or counterclockwise to scroll back and forth between the measured value curves. Press the navigator to make other settings for the historical data display (e.g. scroll speed, time scaling or change display mode) or to quit the historical data function.

Version with stainless steel front and touchscreen:

The measured value curves can be scrolled back and forth with a horizontal "swiping" movement.

The gray header on the screen and the symbol in the status bar indicate that historical values are being displayed. In the instantaneous value display the color of the header is blue.

11.10.1 Historical data: changing a group

It is possible to change the group to be displayed in the historical data under "Operation --> Change group" in the data history.
11.10.2 Historical data: Scroll speed
It is possible to change the scroll speed in the historical data under "Operation -> Scroll speed" in the data history.

The scroll speed can also be set via the soft key with the arrow symbol < or >. The speed can be changed from < (slow) to <<<< (fast) by pressing the soft key repeatedly.

11.10.3 Historical data: Time scaling
It is possible to scale the displayed time range in the historical data under "Operation -> Time scaling" in the data history.

Notes:
- "1:1" option: Every measured value is displayed.
- "1:n" option: Only every nth measured value is displayed (increases the displayed time range).
- No interpolation is performed, nor is the mean value determined.
- If the value for "n" is large, this can result in extended loading times.
- Time scaling does not affect the process for storing the measured value.
- The time range displayed per screen for the currently set time scaling is also displayed in the menu.

11.10.4 Historical data: Time range displayed
The displayed time range is shown in the historical data under "Operation -> Time range displayed" in the data history. This tells the user which time range is displayed per screen in the standard memory cycle.

If the alarm cycle differs from the standard memory cycle, this is not taken into consideration.

11.10.5 Historical data: Screenshot
The current measured value display can be saved as a bitmap to an SD card or USB stick in the historical data under "Operation -> Screenshot".

11.10.6 Historical data: Change the display mode
For the DIN rail version, see → 67

It is possible to change the display mode of the active group in the historical data under "Operation -> Change display mode" in the data history.

The following display modes are possible: Curve, Curve in ranges, Waterfall, Waterfall in ranges, and Circular chart.

The various display modes have no influence on the signal recording.

11.10.7 Historical data: Store text
A predefined text can be selected or a user-defined text can be saved in the historical data under "Operation -> Store text". This text is assigned to a definable point in time.

11.11 Signal analysis
The analyses saved in the device are displayed in the main menu under "Operation -> Signal analysis".
• **Actual intermediate analysis:**
The current (i.e. not yet completed) intermediate analysis can be displayed here.
• **External analysis 1-4:**
 Current (i.e. not yet completed) external analyses can be displayed here.
• **Actual day:**
The current (i.e. not yet completed) daily analysis can be displayed here.
• **Actual week:**
The current (i.e. not yet completed) weekly analysis can be displayed here.
• **Actual month:**
The current (i.e. not yet completed) monthly analysis can be displayed here.
• **Actual year:**
The current (i.e. not yet completed) annual analysis can be displayed here.
• **Search:**
 Search and display of analyses. Select which analyses the system should search for/ display: Intermediate analysis, Daily analysis, Monthly analysis, Annual analysis.

11.12 **Search in trace**
In the main menu, the internal memory can be searched for events or times under "Operation -> Search in trace".

For the DIN rail version, see → 67

Search for events: The event logbook forms the basis for searches for events. To search more easily for certain events (e.g. setup changes), the search filter can be used to select and search for the desired events. In the standard all events are shown. In the event list displayed, it is possible to select an event and go directly to this point in the history (if still in the memory).

Search for time: When searching for a time in the past, the user can enter a date and a time to specify when the system should start displaying historical data. Once the date/time have been entered and confirmed, the display goes to the selected time in the active group.

11.13 **Changing the display mode**
The display mode of the active group can be changed in the main menu under "Operation -> Change display mode".

The following display modes are possible: Curve, Curve in ranges, Waterfall, Waterfall in ranges, Bargraph, Digital display, Instrument display, Circular chart and Process screen.

The various display modes have no influence on the signal recording.

11.14 **Store text**
A predefined text can be selected, or a user-defined text can be saved, in the main menu under "Operation -> Store text". This text is assigned to a definable point in time.

11.15 **Printout**
This function is not supported by the DIN rail version.

The device settings, user administration data, event log, current measured values or a screenshot of the measured value display can be printed out in the main menu under "Operation -> Printout".
NOTICE
Due to technical restrictions, the printout from the device is always in English when using the following operating languages: Polish, Russian, Swedish, Czech, Japanese, and Chinese.

Printout via PC:
- The device settings or user administration can be saved in the set language in the form of an RTF file and printed out from the PC.

NOTICE
Due to technical restrictions, the event log cannot be printed out from the device when using the following operating languages: Polish, Russian, Swedish, Czech, Japanese, and Chinese.

Printout via PC:
- The event log can be printed out via the Field Data Manager (FDM) software. Alternatively the event log can be saved as a CSV file and printed out from the PC.

11.16 Adjusting the brightness of the display

This function is not supported by the DIN rail version.

You can adjust the brightness of the display in the main menu under "Operation -> Adjust brightness":

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Possible settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjust brightness</td>
<td>0-100</td>
<td>Sets the brightness of the display</td>
</tr>
<tr>
<td></td>
<td>Default: 80</td>
<td></td>
</tr>
</tbody>
</table>

11.17 Limit values

This function is not supported by the DIN rail version.

It is possible to change the limit values during operation in the main menu under "Operation -> Limits".

This function must be enabled beforehand in the main menu under "Expert -> Application -> Limits -> Change limits: outside of setup also".

Detailed description of the limit values: → 245

11.18 WebDAV client

The function of the WebDAV client is to transmit recorded data automatically to a connected WebDAV server (e.g. NAS drive). The recorded data are sent to the connected WebDAV server cyclically every 15 minutes. The generated files correspond to the files that are automatically saved to the SD card.

The client is configured via "Setup -> Advanced setup -> Application -> WebDAV Client". The settings under "Setup -> Advanced setup -> System -> External memory" are also used, with the exception of the settings for the SD card (Memory build-up, Warning and Relays). The memory is regarded as a stack memory.

Detailed description of the parameters: → 269

Note: With the WebDAV client, the data are transmitted to the WebDAV server in accordance with the selection made in the .CSV or "Protected format".

11.18.1 Access to the WebDAV server via HTTP (HTML)

Address entry in browser: http://<ip-address>/webdav
The data are updated cyclically every 15 minutes. The data are automatically updated each time a user logs in.

Note: Leading zeros in IP addresses must not be entered (e.g. enter 192.168.1.11 instead of 192.168.001.011).

Administrator or service authentication is required. ID and password administration is performed in the main menu under "Setup -> Advanced setup -> Communication -> Ethernet -> Configuration Web server -> Authentication".

ID default value: admin; Password: admin

Note: The password should be changed during commissioning!

If security is activated in accordance with "FDA 21 CFR Part 11", authentication as a user with administrator rights is required in order to establish a connection.

Note: For devices with a stainless steel front and touchscreen, the data are always made available in 'Protected format' via the WebDAV server.

11.19 Data analysis and visualization with the Field Data Manager software (FDM) provided

The analysis software offers centralized data management with visualization for recorded data.

This enables the data of a measuring point to be fully archived, e.g.:
- Measured values
- Diagnostic events
- Protocols

The analysis software stores data in an SQL database. The database can be operated locally or in a network (client/server). The free Postgre™SQL database supplied on the DVD can be installed and used.

For details, see the Operating Instructions on the analysis software DVD provided.

11.19.1 Structure/layout of a CSV file

The CSV files are comprised as follows:

<table>
<thead>
<tr>
<th>File name (=serial number + file number + configuration number + date and start time + data type)</th>
<th>Description</th>
<th>Coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>H4000504428 0000000279 0000000185 2013-11-07 11-18-00 GROUP01.csv</td>
<td>Contains all the measured values of the group from the starting time indicated in the file name. An individual CSV file is created for each group.</td>
<td>ANSI</td>
</tr>
<tr>
<td>H4000504428 0000000279 0000000185 2013-11-07 11-30-00 ANALYSIS01.csv</td>
<td>Contains the signal analyses of the active channels from the starting time indicated in the file name. An individual CSV file is created for every analysis (01 - 04).</td>
<td>ANSI</td>
</tr>
<tr>
<td>H4000504428 0000000279 2013-11-07 11-18-34 EVENTS.csv</td>
<td>Contains the event log from the starting time indicated in the file name.</td>
<td>Unicode UTF-8 (see the notes in the following section)</td>
</tr>
</tbody>
</table>

Meaning of the values under "Status" and "Limit" when analyzing a group:

<table>
<thead>
<tr>
<th>Status of the channel:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: OK</td>
</tr>
<tr>
<td>1: Cable open circuit</td>
</tr>
</tbody>
</table>
Status of the channel:

- 2: Input signal too high
- 3: Input signal too low
- 4: Invalid measured value
- 6: Error value, i.e. not the calculated value (for mathematics if an input variable is invalid)
- 7: Sensor/input error
- Bit 8: Not assigned
- Bit 9: Alarm storage
- Bit 10..13: Not assigned
- Bit 14: Use error value
- Bit 15: Not assigned

General status:

- 1: High speed storage is active
- 2: Additional hour for summer/normal time changeover

Note: A combination of 1 and 2 is also possible.

Status of the limit value ("Limit"):

- 0: OK, no limit value has been violated
- Bit 0: Lower limit value
- Bit 1: Upper limit value
- Bit 2: Increasing gradient
- Bit 4: Decreasing gradient

Note: A combination is also possible.

11.19.2 Importing UTF-8-encoded CSV files into spreadsheets

You might encounter problems displaying information if importing UTF-8-encoded CSV files directly into more recent versions of MS Excel™ (2007 and higher).

Importing CSV data from the event logbook ("Events") into MS Excel™ (version 2007 and higher):

1. In the menu select "Data -> Get external data - From text"
2. MS Office 365 and higher: In the menu select "Data -> From text/CSV"
3. Select the CSV file
4. Follow the instructions in the wizard
5. Select file origin "Unicode UTF-8"
Diagnostics and troubleshooting

The following section contains an overview of possible causes of errors to provide initial assistance during troubleshooting.

12.1 General troubleshooting

WARNING

Danger! Electric voltage!

- Do not operate the device in an open condition for error diagnosis!

<table>
<thead>
<tr>
<th>Display</th>
<th>Cause</th>
<th>Remedial action</th>
</tr>
</thead>
<tbody>
<tr>
<td>No measured value display; no LED lit</td>
<td>No supply voltage connected</td>
<td>Check the device supply voltage.</td>
</tr>
<tr>
<td></td>
<td>Supply voltage is applied; device or power unit is defective</td>
<td>Replace the power unit or device.</td>
</tr>
<tr>
<td>Diagnostic message is displayed</td>
<td>For a list of diagnostic messages, see the next section.</td>
<td></td>
</tr>
</tbody>
</table>

Dead pixels: Dead pixels refer to pixels on LCD and TFT displays that are defect due to the technology or manufacturing techniques used. The TFT display used can have up to 10 dead pixels (Class III as per ISO 13406-2). These dead pixels do not entitle the user to a warranty claim.

12.2 Troubleshooting

The Diagnostics menu is used for the analysis of the device functions and offers comprehensive assistance during troubleshooting. Always proceed as follows to locate the cause of device errors or alarms.

General troubleshooting procedure

1. Open diagnosis list: lists the 30 most recent diagnostic messages. This can be used to determine which errors are currently present and whether an error has repeatedly occurred.

2. Diagnosis of current measured values: Verify the input signals by displaying the current or scaled measuring ranges. To verify calculations, call up calculated auxiliary variables if necessary.

3. Most errors can be rectified by performing steps 1 and 2. If the error persists follow the troubleshooting instructions in the following sections.

4. If this does not rectify the problem, contact the Service Department. Any time you contact the Service Department please always have the error number and the information in the main menu under "Diagnostics -> Device information" (program name, serial number etc.) to hand.

The contact data for your Endress+Hauser representative can be found on the Internet at www.endress.com/worldwide.

12.2.1 Device error/alarm relay

One relay can be used as an alarm relay. If the device detects a system error (e.g. hardware defect) or a malfunction (e.g. cable open circuit), the selected output/relay switches. The alarm relay is assigned in the main menu under "Setup -> Advanced setup -> System -> Fault switching -> Relay x". **Factory setting: Relay 1.**

This 'alarm relay' switches if 'F'-type or 'S'-type errors occur, i.e. 'M'-type or 'C'-type errors do not switch the alarm relay.
12.3 Diagnostic information on the local display

The diagnostic message consists of a diagnostic code and a message text.

The diagnostic code is made up of the error category as per Namur NE 107 and the message number.

Error category (letter in front of the message number)

- **F** = Failure. A malfunction has been detected.
 The measured value of the affected channel is no longer reliable. The cause of the malfunction is to be found in the measuring point. If a controller is connected, it should be switched to manual mode. An alarm relay can be assigned to this error category in the Advanced setup.

- **M** = Maintenance required. Action must be taken as soon as possible.
 The device still measures correctly. Immediate measures are not necessary. Proper maintenance efforts may prevent a possible malfunction in the future.

- **S** = Out of specification. The measuring point is being operated outside specifications.
 Operation is still possible. There is the risk of increased wear, a shorter operating life or less accurate measurements. The cause of the problem is to be found outside the measuring point.

- **C** = Function check. The device is in Service mode.

<table>
<thead>
<tr>
<th>Diagnostic code</th>
<th>Message text</th>
<th>Description</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>F100</td>
<td>Sensor/input error!</td>
<td>Sensor/input error!</td>
<td>Check connections and parameters</td>
</tr>
<tr>
<td>F101</td>
<td>Open circuit</td>
<td>Open circuit</td>
<td>Check connections</td>
</tr>
<tr>
<td>F105</td>
<td>Invalid value!</td>
<td>Measured value is invalid (when calculating --> NAN)</td>
<td>Check connections and process variables</td>
</tr>
<tr>
<td>F201</td>
<td>Device fault</td>
<td>Device error</td>
<td>Contact the Service Department</td>
</tr>
<tr>
<td>F261</td>
<td>Error: RAM</td>
<td>No access to RAM</td>
<td>Contact the Service Department</td>
</tr>
<tr>
<td>F261</td>
<td>Error: Flash</td>
<td>No access to flash</td>
<td>Contact the Service Department</td>
</tr>
<tr>
<td>F261</td>
<td>Error: SRAM</td>
<td>No access to SRAM</td>
<td>Contact the Service Department</td>
</tr>
<tr>
<td>F261</td>
<td>Analog card x is out of order!</td>
<td>Hardware defect detected</td>
<td>Contact the Service Department, replace card</td>
</tr>
<tr>
<td>F261</td>
<td>HART card out of order!</td>
<td>Hardware defect detected</td>
<td>Contact the Service Department, replace card</td>
</tr>
<tr>
<td>F261</td>
<td>Power supply out of order!</td>
<td>Hardware defect detected</td>
<td>Contact the Service Department, replace power unit</td>
</tr>
<tr>
<td>F261</td>
<td>Digital card out of order!</td>
<td>Hardware defect detected</td>
<td>Contact the Service Department, replace card</td>
</tr>
<tr>
<td>F261</td>
<td>Fieldbus card out of order!</td>
<td>Hardware defect detected</td>
<td>Check contacts of Anybus card, contact the Service Department</td>
</tr>
<tr>
<td>M262</td>
<td>Fieldbus module is obsolete. Please replace the hardware!</td>
<td>The installed fieldbus module is not approved for this firmware version.</td>
<td>Replace the hardware or downgrade the firmware (not recommended).</td>
</tr>
<tr>
<td>M284</td>
<td>Firmware update</td>
<td>Firmware has been updated</td>
<td>No action required. Message can be acknowledged.</td>
</tr>
<tr>
<td>M290</td>
<td>Internal flash reaches the end of its lifetime. Please replace device.</td>
<td>The internal flash memory is defective.</td>
<td>Replace device</td>
</tr>
<tr>
<td>F301</td>
<td>Error: Cannot load setup</td>
<td>Setup defective</td>
<td>Switch the device off and then on again, re-configure, contact the Service Department if necessary</td>
</tr>
<tr>
<td>M302</td>
<td>Setup restored from backup</td>
<td>Setup has been loaded from backup</td>
<td>Check setup</td>
</tr>
<tr>
<td>F303</td>
<td>Error: Device data</td>
<td>Device data defective</td>
<td>Contact the Service Department</td>
</tr>
<tr>
<td>M304</td>
<td>Backup: Device data</td>
<td>Device data defective. However it was possible to continue working with the backup data.</td>
<td>Check settings (e.g. serial number)</td>
</tr>
<tr>
<td>F307</td>
<td>Error: Customer preset value defective</td>
<td>Customer preset value defective</td>
<td></td>
</tr>
<tr>
<td>Diagnostic code</td>
<td>Message text</td>
<td>Description</td>
<td>Remedy</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>F309</td>
<td>Error: Date/time is not set</td>
<td>Invalid date/time (e.g. internal battery is empty)</td>
<td>Device was switched off too long. The date/time must be set again. Battery might need to be replaced (contact the Service Department).</td>
</tr>
<tr>
<td>F310</td>
<td>Error: Cannot save setup</td>
<td>The setup could not be saved</td>
<td>Contact the Service Department</td>
</tr>
<tr>
<td>F311</td>
<td>Error: Device data</td>
<td>The device data could not be saved</td>
<td>Contact the Service Department</td>
</tr>
<tr>
<td>F312</td>
<td>Error: Calibration data defective</td>
<td>The calibration data could not be saved</td>
<td>Contact the Service Department</td>
</tr>
<tr>
<td>F312</td>
<td>Analog card x is not calibrated!</td>
<td>Analog card x is not calibrated! The device works with default values, i.e. the measured values may be inaccurate under certain circumstances.</td>
<td>Contact the Service Department</td>
</tr>
<tr>
<td>M313</td>
<td>SRAM has been defragmented</td>
<td>SRAM was defragmented after firmware update</td>
<td>No action required. Message can be acknowledged.</td>
</tr>
<tr>
<td>F314</td>
<td>Error: Option code</td>
<td>Activation code is no longer correct (incorrect serial number/program name). Option was disabled and setup preset has been performed.</td>
<td>Enter new code</td>
</tr>
<tr>
<td>M315</td>
<td>No IP address could be obtained from the DHCP server!</td>
<td>No IP address could be obtained from the DHCP server!</td>
<td>Check the network cable</td>
</tr>
<tr>
<td>M316</td>
<td>Invalid MAC address!</td>
<td>No or incorrect MAC address</td>
<td>Contact the Service Department</td>
</tr>
<tr>
<td>M317</td>
<td>Battery voltage < 2.5 V. Please replace battery!</td>
<td></td>
<td>Battery needs to be replaced (contact the Service Department)</td>
</tr>
<tr>
<td>F348</td>
<td>Firmware cannot be updated: - Checksum incorrect - Firmware incompatible!</td>
<td>Firmware update has been aborted because the firmware file is damaged or is not compatible with this device</td>
<td>Contact the Service Department</td>
</tr>
<tr>
<td>M350</td>
<td>Measured value acquisition interrupted for calibration/service work. Measured value acquisition restarted.</td>
<td>Measured value acquisition was interrupted/reactivated for service/maintenance purposes. Causes include: - Calibration of inputs/outputs - Firmware update</td>
<td>No action required. Message can be acknowledged.</td>
</tr>
<tr>
<td>M351</td>
<td>The device is restarted.</td>
<td>The device is rebooting. Causes include: - Following a firmware update - Change to device options</td>
<td>No action required. Message can be acknowledged.</td>
</tr>
<tr>
<td>F431</td>
<td>Error: Calibration</td>
<td>Calibration data missing</td>
<td>Contact the Service Department</td>
</tr>
<tr>
<td>M502</td>
<td>Device is locked!</td>
<td>Device is locked! The message appears when an attempt is made to update the firmware, for example</td>
<td>Check lock per digital channel</td>
</tr>
<tr>
<td>F510</td>
<td>Setup was corrected.</td>
<td>The device has discovered that the configuration is no longer correct. All the parameters concerned have been reset to the factory default settings. Possible causes: - Input cards have been removed or replaced by another type - An input card is no longer working correctly A firmware update has caused compatibility problems. Note: This error message appears each time the device is restarted until at least one change has been made to the configuration.</td>
<td>Check the configuration of the device. If hardware has been replaced, no other action is needed (recommendation: change the operating language so that the error message no longer appears after the next restart).</td>
</tr>
<tr>
<td>F510</td>
<td>User administration was corrected</td>
<td>The device detected that the user administration settings were no longer correct. All the parameters concerned have been reset to the factory default settings.</td>
<td></td>
</tr>
<tr>
<td>Diagnostic code</td>
<td>Message text</td>
<td>Description</td>
<td>Remedy</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>M520</td>
<td>SMTP: Name could not be resolved (DNS)! SNTP: Name could not be resolved (DNS)!</td>
<td>Problem with name resolution (DNS). SMTP: e-mail SNTP: time synchronization</td>
<td>Check the corresponding settings</td>
</tr>
<tr>
<td>F526</td>
<td>• Support points not OK! • Support points: x-value exists more than once • Upper and lower support points are identical</td>
<td>Support points entered for the linearization table are not plausible.</td>
<td>Check support points</td>
</tr>
<tr>
<td>M528</td>
<td>Setup is not compatible with this firmware</td>
<td>An attempt was made to load a setup which is not compatible with this firmware (e.g. another device type)</td>
<td>Check whether the correct file has been selected.</td>
</tr>
<tr>
<td>M530</td>
<td>Cannot copy setup.</td>
<td>An error occurred when a setup was loaded from an SD card or USB stick An error occurred when a setup was saved to an SD card or USB stick</td>
<td>Replace the SD card or USB stick Setup file defective?</td>
</tr>
<tr>
<td>F537</td>
<td>EtherNet/IP: IP address conflict identified</td>
<td>The IP address configured for EtherNet/IP is already being used by another device</td>
<td>Check the IP configuration and change it as necessary</td>
</tr>
<tr>
<td>F537</td>
<td>EtherNet/IP: IP configuration not accepted at all or in part</td>
<td>At least one setting for the IP address, subnet mask and/or gateway is incorrect and has not been accepted.</td>
<td>Check the IP configuration and change it as necessary</td>
</tr>
<tr>
<td>S901</td>
<td>Input signal too small</td>
<td>Input signal too small</td>
<td>Check connections and parameters. Check connected sensor/transmitter.</td>
</tr>
<tr>
<td>S902</td>
<td>Input signal too high</td>
<td>Input signal too high</td>
<td>Check connections and parameters. Check connected sensor/transmitter.</td>
</tr>
<tr>
<td>M905</td>
<td>Limit x</td>
<td>Limit x has been violated</td>
<td>Note: Error number only occurs if e-mails are sent</td>
</tr>
<tr>
<td>M906</td>
<td>End limit x</td>
<td>Limit x no longer violated</td>
<td>Note: Error number only occurs if e-mails are sent</td>
</tr>
<tr>
<td>F907</td>
<td>Error DP flow</td>
<td>Error during DP flow calculation</td>
<td></td>
</tr>
<tr>
<td>F910</td>
<td>This software is not enabled for this device.</td>
<td>The current firmware is not enabled for this hardware</td>
<td>Contact the Service Department</td>
</tr>
<tr>
<td>M913</td>
<td>DP Flow: outside ISO 5167!</td>
<td>Error during DP flow calculation</td>
<td></td>
</tr>
<tr>
<td>M914</td>
<td>DP Flow: density calculation!</td>
<td>Error during DP flow calculation</td>
<td></td>
</tr>
<tr>
<td>M920</td>
<td>Too many messages that need to be acknowledged!</td>
<td>There are too many messages that need to be acknowledged. Another message could not be added.</td>
<td>Acknowledge messages</td>
</tr>
<tr>
<td>M921</td>
<td>SD card x% full.</td>
<td>External memory is full</td>
<td>Replace SD card</td>
</tr>
<tr>
<td>M922</td>
<td>No cyclic value readout</td>
<td>The instantaneous values were not read out for a set time</td>
<td></td>
</tr>
<tr>
<td>M922</td>
<td>No cyclic transfer</td>
<td>The device was not read out via fieldbus for a configurable time</td>
<td>Check the communication of the fieldbus. Check PLC.</td>
</tr>
<tr>
<td>M923</td>
<td>Error printing!</td>
<td>Various problems while printing, e.g.: • Printer spooler is full • Printer needs paper! • Printer is not ready! • Replace toner/ink!</td>
<td>Check printer status at the printer.</td>
</tr>
<tr>
<td>M924</td>
<td>Error accessing SD card! Error accessing USB stick! SD card is not or wrong formatted! USB stick is not or wrong formatted!</td>
<td>Impossible to access the removable data medium. Causes include: Memory is larger than 32 GB Invalid format (only FAT or FAT32 are permitted)</td>
<td>Check/replace removable data medium</td>
</tr>
<tr>
<td>M925</td>
<td>SD card is write-protected!</td>
<td>SD card is write-protected!</td>
<td>Remove write protection</td>
</tr>
<tr>
<td>Diagnostic code</td>
<td>Message text</td>
<td>Description</td>
<td>Remedy</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>M927</td>
<td>Insufficient space free on data storage medium!</td>
<td>An attempt was made to save to the SD card or USB stick (setup, screenshot, etc.), but not enough free memory space is available.</td>
<td>Use other SD card/USB stick. Delete files that are no longer needed from the SD card/USB stick.</td>
</tr>
<tr>
<td>M927</td>
<td>Insufficient space free on data storage medium!</td>
<td>An attempt was made to save to the WebDAV server but not enough free memory space is available.</td>
<td>Use other WebDAV server. Delete files that are no longer needed from the WebDAV server.</td>
</tr>
<tr>
<td>F929</td>
<td>File is damaged!</td>
<td>The file that should be loaded is damaged/invalid (e.g. wrong checksum). This message can occur in connection with the following actions, for instance: • Loading setup from SD card/USB stick • Firmware update • Load process screens</td>
<td>Create file again, use other storage medium.</td>
</tr>
<tr>
<td>M940</td>
<td>E-mail could not be sent! (x)</td>
<td>E-mail could not be sent! Optional: Error code (x) from server: e.g.: • 451: Requested action aborted: local processing error • 554: Transaction failed. Possible reason: e-mail was not sent as suspected of being SPAM • 1: No free buffer • 2: No receiver specified</td>
<td>Check settings/network connection. 451: Try again. 554: Use other e-mail provider.</td>
</tr>
<tr>
<td>M941</td>
<td>No connection to the e-mail server!</td>
<td>A connection to the e-mail server could not be established because: • The entered connection data are incorrect • The connection is lost</td>
<td>Check settings/network connection.</td>
</tr>
<tr>
<td>M942</td>
<td>SMTP: Fault occurred (x).</td>
<td>An error occurred when sending an e-mail. x= error code: 0: TCP/IP connection was denied 3: TCP/IP connection error 4: SMTP server denied 6: Error during authentication 7: Connection unexpectedly lost 8: Server responded with error code 9: Timeout 10: Internal protocol error</td>
<td>Check settings/network connection.</td>
</tr>
<tr>
<td>M944</td>
<td>SMTP: authentication failed!</td>
<td></td>
<td>Check settings/network connection.</td>
</tr>
<tr>
<td>M945</td>
<td>SNTP: Time was not synchronized!</td>
<td>Time could not be synchronized via SNTP. Possible reasons: • SNTP server temporarily unavailable • Settings not correct</td>
<td>Check settings. Check whether the error occurs often. If it does, choose another time server.</td>
</tr>
<tr>
<td>M945</td>
<td>SNTP server 1 not responding. Try server 2.</td>
<td>Time could not be synchronized via SNTP. Possible reasons: • SNTP server temporarily unavailable • Settings not correct</td>
<td>Check settings. Check whether the error occurs often. If it does, choose another time server.</td>
</tr>
<tr>
<td>M946</td>
<td>Screenshot could not be saved (x)!</td>
<td>Screenshot could not be created. Possible causes (x): 0: Error when writing 1: Insufficient free space 2: Bitmap could not be created 3: SD card/USB stick not available or not yet ready</td>
<td>Check/replace the SD card or USB stick.</td>
</tr>
<tr>
<td>M947</td>
<td>Modem could not be initialized! Check the cable and modem.</td>
<td>The connected modem could not be initialized by the device.</td>
<td>Check the cable and modem.</td>
</tr>
<tr>
<td>Diagnostic code</td>
<td>Message text</td>
<td>Description</td>
<td>Remedy</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| M950 | Cannot load SSL certificate. | Cannot load SSL certificate. Cause:
• Invalid file format
• File is damaged | Use a certificate with a valid file format
Import certificate to device again |
| F951 | SSL certificate '...' has expired! | Certificates have an expiry date, i.e. they must be renewed from time to time. | Install a new certificate |
| M952 | SSL certificate '...' expires on ...! | The device warns the user shortly before the certificate expires. | Install a new certificate |
| M953 | x certificates have already been installed. Delete certificates that are no longer required. | The device can manage a maximum of 3 X.509 certificates. | Delete a certificate that is already installed and no longer required |
| M954 | SSL certificate not found: key ID = ... | Unable to establish an SSL connection as a suitable certificate is not installed. | Install a suitable certificate |
| M955 | SSL connection denied! | | |
| M956 | Incorrect password. Your user account has been locked! | Incorrect password. User account has been locked! | Contact the administrator to unfreeze the account. |
| M956 | Incorrect password. Your user account has been locked for 10 minutes! | An incorrect password was entered and the account is locked temporarily. | Wait until the temporary block has been disabled or contact your administrator. |
| M957 | Wet steam alarm | Warning for wet steam alarm | Check the application (pressure, temperature inputs) |
| M965 | SMS could not be sent! | SMS could not be sent because:
• The entered connection data are incorrect
• There is no connection to the service provider | Check connections and communication settings |
| M971 | No channels assigned to batch x! | The batch functionality was switched on but no channels were assigned to the batch. | Check group settings |
| M980 | No connection to the WebDAV server | A connection to the WebDAV server could not be established because the entered connection data are incorrect or the connection has been interrupted. | Check settings/network connection |
| M981 | WebDAV: authentication failed! | | Check settings |
| M982 | WebDAV: directory or file could not be created! | Configured directory path not available. | Create a directory manually in the WebDAV server |
| M983 | WebDAV: Fault | An unassigned error has occurred. The error is displayed in English. | |
| M984 | No Ethernet connection. | The device is not connected by an Ethernet cable. | Establish cable connection. |
| M985 | The test cannot be carried out because data are currently being copied by WebDAV. | | Repeat later |
| M988 | Server certificate cannot be loaded. Invalid format. | The file must be Base64-encoded. Format: X.509 certificate V3 incl. extension | Create the certificate again according to the specifications |
| M989 | Private key cannot be loaded. Invalid size/format. | The file must be Base64-encoded. Only RSA keys with max. 2048 bits are supported. | Create the certificate again according to the specifications |
| M990 | Server certificate cannot be installed. | General error. Unable to read or write to file. | Check the files on the USB stick and create again if necessary. If the error persists, contact the Service Department. |
Diagnostics and troubleshooting

Memograph M, RSG45

HART® error messages

<table>
<thead>
<tr>
<th>Diagnostic code</th>
<th>Message text</th>
<th>Description</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>M490</td>
<td>Channel x: Max. 5 devices may be connected per channel in Multidrop mode.</td>
<td>Max. 5 HART® devices may be connected to the input</td>
<td>Use other channels</td>
</tr>
<tr>
<td>M960</td>
<td>Value uncertain/communication faulty</td>
<td>In the case of fieldbus systems: The status of the value is uncertain. In the case of HART®: The current value is used instead of the digital value</td>
<td></td>
</tr>
</tbody>
</table>
| M970 | Multi-master collision | | • Check additional master in HART® network (e.g. handheld)
• Check master settings (secondary/primary) |
| M986 | Unable to read out self-calibration: channel=x, device address=y | The device was unable to read out the necessary data for determining the self-calibration. | Check the settings, check communication with the HART device |
| M987 | The device does not support self-calibration: channel=x, device address=y | The connected device was replaced during operation. This device does not support self-calibration, however. | |

12.4 Pending, current diagnostic messages

The diagnostic message that is currently active, the last diagnostic message and the last device restart are displayed in the main menu under "Diagnostics -> Actual diagnostics", "Diagnostics -> Last diagnostics" or under "Diagnostics -> Last restart".

12.5 Diagnosis list

The last 30 diagnostic messages are displayed in the main menu under "Diagnostics -> Diagnosis list" (messages with Fxxx, Sxxx or Mxxx-type error numbers).

The diagnosis list is designed as a ring memory, i.e. when the memory is full the oldest messages are automatically overwritten (no message).

The following information is saved:
- Error number
- Error text
- Date/time

12.6 Event logbook

Events such as alarm set point infringement and power failure are displayed in the correct time sequence. It can be found in the main menu under "Diagnostics -> Event logbook". Individual events can be selected and details displayed.

12.7 Device information

Important device information, e.g. serial number, firmware version, device name, device options, memory information, SSL certificates etc. are displayed in the main menu under "Diagnostics -> Device information".

For further information open the online help on the device.
12.8 Diagnostics of measured values
Displays the current measured values in the main menu under "Diagnostics -> Measured values". The input signals can be verified here by displaying the scaled and calculated values. To verify calculations, call up calculated auxiliary variables if necessary.

12.9 Diagnostics of outputs
Displays the current states of the outputs (analog outputs, relays) in the main menu under "Diagnostics -> Outputs".

12.10 Simulation
Various functions/signals can be simulated for test purposes here.

NOTICE
Invoke simulation: for the simulation of the relays, see the main menu under "Diagnostics -> Simulation". For the simulation of the measured values, see the main menu under "Expert -> Diagnostics -> Simulation". Only the simulated values are recorded during simulation. The simulation is recorded in the event logbook.

- Do not start simulation if measured value recording must not be interrupted!

12.10.1 Test barcode reader
This function is **not** supported by the DIN rail version.

The function (e.g. character set) of the barcode reader can be tested in the main menu under "Diagnostics -> Simulation -> Test barcode reader".

Only visible if a barcode reader is connected.

12.10.2 E-mail test
A test mail can be sent to the selected recipient in the main menu under "Diagnostics -> Simulation -> E-mail".

At least one e-mail address must be set beforehand.

12.10.3 Test WebDAV client
A test file can be sent to the selected WebDAV server in the main menu under "Diagnostics -> Simulation -> WebDAV Client".

The settings for the WebDAV server to be addressed must be set beforehand under "Setup -> Advanced setup -> Application -> WebDAV Client".

12.10.4 Test telealarm
The telealarm functionality can be tested in the main menu under "Diagnostics -> Simulation -> Test telealarm". During this test, alarms are simulated and triggered.

Only possible for the 'Telealarm' device option.

For detailed descriptions of this device option, see the associated documentation.
12.10.5 Test time synchronization/SNTP

Time synchronization (SNTP setting) can be tested in the main menu under "Diagnostics -> Simulation -> SNTP".

SNTP must be enabled beforehand in the main menu under "Setup -> Advanced setup -> System -> Date/time set-up -> SNTP".

Note: The test can take some time.

12.10.6 Test universal output

The active analog and pulse outputs can be tested in the main menu under "Diagnostics -> Simulation -> Universal output".

12.10.7 Relay test

The relay selected under "Diagnostics -> Simulation -> Relay x" can be switched manually in the main menu.

12.11 HART® diagnostics

Displays the device information and status of the connected HART® devices/sensors in the main menu under "Diagnostics -> HART".

Note: It can take several seconds until all the information regarding the device/sensor is available!

Caution: Measured value acquisition slows down as additional information has to be read out.

For further information open the online help on the device.

12.12 PROFINET diagnostics (option)

Display PROFINET diagnostics information in the main menu under "Diagnostics -> PROFINET".

12.13 Diagnostics EtherNet/IP (option)

Display EtherNet/IP diagnostics information in the main menu under "Diagnostics -> EtherNet/IP".

12.14 Initializing the modem

Initializes the modem connected (to automatically answer calls). The modem must support the complete AT command syntax.

- Set the baud rate in the main menu under "Setup -> Advanced setup -> Communication -> Serial interface" and select "RS232" as the interface type.
- Connect the modem to the RS232 interface of the device. For this purpose only use the modem cable, which is available as an accessory.

A GSM modem can only be initialized if a SIM card is inserted and the PIN is entered or the prompt to enter the PIN has been disabled.
12.15 **GSM terminal**
Information on the reception quality.

⚠️ Only possible for the 'Telealarm' device option.
For detailed descriptions of this device option, see the associated documentation.

12.16 **Status telealarm**
Information on the status of individual alarms.

⚠️ Only possible for the 'Telealarm' device option.
For detailed descriptions of this device option, see the associated documentation.

12.17 **Resetting the measuring device**
The device can be reset to the as-delivered state with a PRESET. This function should only be performed by a service technician.

The function can be found in the main menu under "Expert -> System -> PRESET".

⚠️ PRESET is only visible under 'Expert' once the service code has been entered.

Procedure for resetting the measuring device
The PRESET returns all parameters to the factory default setup! The internal memory content is deleted!

- Save the setup and measured values on the USB stick or SD card. Then perform a PRESET.
 - The device is reset to the factory default settings.

12.18 **Clear memory**
The internal memory should be cleared after commissioning so that the analysis software does not contain any unnecessary data.

12.19 **Reset analysis**
The analyses should be reset after commissioning so that the analysis software does not contain any unnecessary data.

12.20 **Firmware history**
Overview of unit software history:

<table>
<thead>
<tr>
<th>Unit software Version / date</th>
<th>Software changes</th>
<th>FDM analysis software version</th>
<th>Version of OPC server</th>
<th>Operating Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V02.00.00 / 08.2015</td>
<td>Original software</td>
<td>V01.03.00.00 and higher</td>
<td>V5.00.03.00 and higher</td>
<td>BA01338R/09/01.15</td>
</tr>
<tr>
<td>V2.01.00 / 04.2016</td>
<td>Extended functionality/bug fixes</td>
<td>V01.03.01.00 and higher</td>
<td>V5.00.03.00 and higher</td>
<td>BA01338R/09/02.16</td>
</tr>
<tr>
<td>V2.01.05 / 11.2016</td>
<td>Extended functionality/bug fixes</td>
<td>V01.03.01.01 and higher</td>
<td>V5.00.03.00 and higher</td>
<td>BA01338R/09/03.16</td>
</tr>
</tbody>
</table>
13 Maintenance

No special maintenance work is required for the device.

13.1 Updating the device software ("firmware")

Updating the device software ("firmware") via USB stick, SD card or Web server.

- The function to update the firmware via the Web server must be enabled beforehand under "Expert -> Communication -> Ethernet -> Configuration Web server".

There are two ways to update the firmware:
- In the main menu under "Operation -> SD card or USB stick -> Update firmware"
- In the Web server under "Data management -> Update firmware"

- It is advisable to save the setup and measured values beforehand on the SD card or USB stick.
- The device software ("firmware") should only be updated by a service technician.
- The device will restart following the firmware update.
- If an older firmware version (< V2.04.00) is installed on the device, the internal memory must then be cleared under "Expert -> System".
- Only special, approved firmware versions may be installed for the "EtherNet/IP" and "PROFINET" options. For detailed descriptions of these device options, see the associated documentation.

13.2 Instructions for enabling a software option

Various device options can be enabled via an activation code. Available device options can be ordered as an accessory → 97. Once you place your order, you will receive instructions on how to activate the option and a code which must be entered under "Main menu -> Expert -> System -> Device options -> Activation code".

13.3 Cleaning

The front of the housing can be cleaned with a clean dry or damp cloth.
14 Repair

14.1 General notes

Repairs that are not described in these Operating Instructions must only be carried out directly by the manufacturer or by the service department.

Always quote the serial number of the device when ordering spare parts! Installation instructions are included with the spare part.

14.2 Spare parts

Information on accessories and spare parts that are currently available for the product can be found online at: www.endress.com/spareparts_consumables → access to specific device information → enter serial number.

List of spare parts for panel version:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power unit 24 V AC/DC for slot 6</td>
<td>XPR0011-NB</td>
</tr>
<tr>
<td>2</td>
<td>Power unit 100-230 V AC (+/-10%) for slot 6</td>
<td>XPR0011-NA</td>
</tr>
<tr>
<td>3</td>
<td>Housing seal</td>
<td>XPR0011-A1</td>
</tr>
<tr>
<td>4</td>
<td>Digital card extension (8x digital inputs + 6x relays + 2x analog outputs) for slot 5 (rear panel must also be ordered with the extension)</td>
<td>XPR0011-A7</td>
</tr>
<tr>
<td>5</td>
<td>Rear panel analog (incl. imprint)</td>
<td>XPR0011-A2</td>
</tr>
<tr>
<td>6</td>
<td>Rear panel analog + digital (incl. imprint)</td>
<td>XPR0011-A3</td>
</tr>
<tr>
<td>7</td>
<td>Terminal cover can be sealed for panel-mounted housing</td>
<td>XPR0011-A5</td>
</tr>
<tr>
<td>8</td>
<td>Analog card (4 channels) for slots 1-5</td>
<td>XPR0011-A6</td>
</tr>
<tr>
<td>9</td>
<td>HART® card (4 channels) for slots 1-5</td>
<td>XPR0011-A4</td>
</tr>
<tr>
<td>10</td>
<td>Housing fastening unit, short (1 pc)</td>
<td>71035184</td>
</tr>
</tbody>
</table>
List of spare parts, DIN rail version:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power unit 24 V AC/DC incl. relay for slot 6</td>
<td>XPR0011-ND</td>
</tr>
<tr>
<td>1</td>
<td>Power unit 100-230 V AC (+/-10%) incl. relay for slot 6</td>
<td>XPR0011-NC</td>
</tr>
<tr>
<td>2</td>
<td>Connection board, reverse side (DIN rail)</td>
<td>71412098</td>
</tr>
<tr>
<td>3</td>
<td>CPU card + software with interfaces for slot 0 (2-piece)</td>
<td>XPR0013-xxxxCx</td>
</tr>
<tr>
<td>4</td>
<td>Digital card extension (8x digital input + 6x relay + 2x analog output) for</td>
<td>XPR0011-A7</td>
</tr>
<tr>
<td></td>
<td>slot 5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Analog card (4 channels) for slots 1-5</td>
<td>XPR0011-A6</td>
</tr>
<tr>
<td>5</td>
<td>HART® card (4 channels) for slots 1-5</td>
<td>XPR0011-A4</td>
</tr>
<tr>
<td>6</td>
<td>Terminal cover can be sealed for DIN rail version</td>
<td>XPR0011-A8</td>
</tr>
</tbody>
</table>

General spare parts list:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RS232/RS485 adapter set, DIN rail, 230 V AC, galvanic isolation +</td>
<td>RSG40A-S6</td>
</tr>
<tr>
<td></td>
<td>interface cable for PC/modem</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RS232/RS485 adapter set, DIN rail, 150 V AC, galvanic isolation +</td>
<td>RSG40A-S7</td>
</tr>
<tr>
<td></td>
<td>interface cable for PC/modem</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"Industrial Grade" SD card, industry standard, 1 GB</td>
<td>71213190</td>
</tr>
<tr>
<td></td>
<td>Terminals:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plug-in terminal, 3-pin for mains connection 'N L PE' RM5.08 – orange</td>
<td>71123475</td>
</tr>
<tr>
<td></td>
<td>color at slot 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-pin terminal for power supply at slot 6</td>
<td>50078843</td>
</tr>
<tr>
<td></td>
<td>Plug-in terminal, 3-pin FKC2.5/3-ST-5.08 for relay 1 (changeover) at slot</td>
<td>71037408</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plug-in terminal, 4-pin FMC1.5/4-ST-3.5 for digital card extension slot 5</td>
<td>71037350</td>
</tr>
<tr>
<td></td>
<td>(analog outputs)</td>
<td></td>
</tr>
</tbody>
</table>
Product structure for option retrofit

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Order code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Option retrofit (please enter the serial number)</td>
<td>XPR0012-_ _ _ _</td>
</tr>
<tr>
<td></td>
<td>DIN rail version: If one of the two CPU cards is replaced/removed, data may be lost and the time must be reset!</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Without software application</td>
<td>XPR0012-A _ _ _</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>XPR0012-B _ _ _</td>
</tr>
<tr>
<td></td>
<td>Tele-alarm + mathematics</td>
<td>XPR0012-C _ _ _</td>
</tr>
<tr>
<td></td>
<td>Batch + mathematics</td>
<td>XPR0012-D _ _ _</td>
</tr>
<tr>
<td></td>
<td>Wastewater + RSB + tele-alarm + mathematics</td>
<td>XPR0012-E _ _ _</td>
</tr>
<tr>
<td></td>
<td>Energy software, water + steam + mathematics</td>
<td>XPR0012-F _ _ _</td>
</tr>
<tr>
<td></td>
<td>Tele-alarm + energy software + water + steam + mathematics</td>
<td>XPR0012-G _ _ _</td>
</tr>
<tr>
<td></td>
<td>Communication Master functionality:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>XPR0012-_ A _ _</td>
</tr>
<tr>
<td></td>
<td>Standard + Modbus RTU/TCP master, max. 40 x analog</td>
<td>XPR0012-_ B _ _</td>
</tr>
<tr>
<td></td>
<td>Communication Slave functionality:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>XPR0012-_ _ A _</td>
</tr>
<tr>
<td></td>
<td>Standard + Modbus RTU/TCP slave, max. 40 x analog</td>
<td>XPR0012-_ _ B _</td>
</tr>
<tr>
<td></td>
<td>Option:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>XPR0012-_ _ _ A</td>
</tr>
</tbody>
</table>

1. The software option can be enabled directly on the device. After ordering the option, instructions are delivered with a code that must be entered.

14.3 Return

The requirements for safe device return can vary depending on the device type and national legislation.

1. Refer to the website for more information: http://www.endress.com/support/return-material
2. Return the device if repairs or a factory calibration are required, or if the wrong device was ordered or delivered.

14.4 Disposal

14.4.1 IT security

Observe the following instructions before disposal:

1. Clear data
2. Reset the device
3. Delete/change passwords
4. Delete user
5. Carry out alternative or complementary measures to destroy the storage medium

14.4.2 Removing the measuring device

1. Switch off the device
2. Carry out the mounting and connection steps from the 'Mounting the measuring device' and 'Connecting the measuring device' sections in reverse order. Observe the safety instructions.

14.4.3 Disposing of the measuring device

If required by the Directive 2012/19/EU on waste electrical and electronic equipment (WEEE), the product is marked with the depicted symbol in order to minimize the disposal of WEEE as unsorted municipal waste. Do not dispose of products bearing this marking as unsorted municipal waste. Instead, return them to Endress+Hauser for disposal under the applicable conditions.
15 Accessories

Always quote the serial number of the device when ordering accessories! Installation instructions are provided with the accessory!

Various accessories, which can be ordered with the device or subsequently from Endress + Hauser, are available for the device. Detailed information on the order code in question is available from your local Endress + Hauser sales center or on the product page of the Endress + Hauser website: www.endress.com.

15.1 Device-specific accessories

Description	Order No.
"Industrial Grade" SD card, industry standard, 1GB	71213190
Field Data Manager analysis software with SQL database support (1 x workstation license, Professional version)	MS20-A1
OPC server software (full version on CD)	RX020-11

Description	Order No.
Accessories for RXU10 data manager	RXU10- _
Identifier:	
Cable set RS232 for connection to PC or modem	RXU10-B _
USB - RS232 converter	RXU10-E _
Cable USB-A - USB-B, 1.8 m (5.9 ft)	RXU10-F _
Configuration software "FieldCare Device Setup" + USB cable	RXU10-G _

Description	Order No.
Field housing IP65 (for panel-mounted device)	RXU10-H _

Dimensions in mm (in)
Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktop housing (for panel-mounted device), cable with Schuko plug</td>
<td>RXU10-I_</td>
</tr>
<tr>
<td>Desktop housing (for panel-mounted device), cable with US plug</td>
<td>RXU10-J_</td>
</tr>
<tr>
<td>Desktop housing (for panel-mounted device), cable with Swiss plug</td>
<td>RXU10-K_</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Version:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>RXU10-_1</td>
</tr>
<tr>
<td>Neutral</td>
<td>RXU10-_2</td>
</tr>
</tbody>
</table>

Dimensions in mm (in)

- 20

Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal cover can be sealed (for panel-mounted device)</td>
<td>XPR0011-A5</td>
</tr>
<tr>
<td>An optional terminal cover is available to prevent tampering at the device terminals and terminal temperature measurement.</td>
<td></td>
</tr>
</tbody>
</table>
Terminal cover can be sealed (for DIN rail version)
An optional terminal cover is available to prevent tampering at the device terminals and terminal temperature measurement.

<table>
<thead>
<tr>
<th>Description</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal cover can be sealed (for DIN rail version)</td>
<td>XPR0011-A8</td>
</tr>
<tr>
<td>An optional terminal cover is available to prevent tampering at the device</td>
<td></td>
</tr>
<tr>
<td>terminals and terminal temperature measurement.</td>
<td></td>
</tr>
</tbody>
</table>
16 Technical data

16.1 Function and system design

Measuring principle
Electronic acquisition, display, recording, analysis, remote transmission and archiving of analog and digital input signals as well as calculated values.

Panel version: Device with display and operating keys for installation in a panel or control cabinet door. There is also the option of operating it in a desktop housing or field housing.

Panel version with stainless steel front: Device with touch screen (no operating keys) for installation in a panel or a cabinet door. There is also the option of operating it in a desktop housing or field housing.

DIN rail version: Device without a display or operating keys for mounting on a DIN rail.

Measuring system
Multichannel data recording system with multicolor TFT display (order option, 178 mm (7 in) screen size), internal memory, external memory (SD card and USB stick), galvanically isolated universal inputs (U, I, TC, RTD, pulse, frequency), HART® inputs, digital inputs, transmitter power supply, limit relays, digital and analog outputs, communication interfaces (USB, Ethernet, RS232/485), optionally available with Modbus, Profinet I/O or PROFINET I/O or EtherNet/IP.

An Essential Version of the Field Data Manager (FDM) software is included for SQL-supported data analysis at the PC.

The number of inputs available in the basic device can be individually increased using a maximum of 5 plug-in cards. The device supplies power directly to connected two-wire transmitters. The device is configured and operated via the navigator (jog/shuttle dial) or by touchscreen (optional) using the integrated Web server and a PC, an external USB keyboard or mouse or with the FieldCare / DeviceCare configuration software. Online help supports the user during local operation.

Ex version:
- The hazardous area version (Ex version) is only available in conjunction with the stainless steel front and touch control.
- In this version, the SD card is integrated in the device and cannot be removed. The card can be read out using the Field Data Manager (FDM) software supplied via USB or Ethernet or via WebDAV.

Application packages / software options
In the standard version, the Advanced Data Manager has a variety of functions, including an end-to-end safety concept to meet the requirements of FDA 21 CFR Part 11. The following application packages are available to help users meet the requirements of their applications and save time:

- Mathematics
- Telealarm
- Batch management
- Wastewater + RSB (rain spillway basin)
- Energy calculation

The application packages contain the standard functions and the specific package functions. The individual packages can be largely combined as the user requires. The application packages can also be activated retroactively by entering the activation code.
Standard functions
- Signal analysis: external, 1 min to 12 h, day, week, month, year
- Web server
- User administration compliant with FDA 21 CFR Part 11
- Event log/audit trail
- Process screen
- Operation time counter
- Text entry/comments
- Change language
- Time synchronization
- Linearization
- Access protection through release code
- E-mail notification in event of alarms and limit violation
- Encrypted e-mail transmission via SSL (TLS)
- Operation via external USB keyboard and mouse
- External USB or network printer

Mathematics
With the mathematics package, measured values of the inputs or the results of other math channels can be linked mathematically. A formula with up to 200 characters can be created using a formula editor. Once entered, the user can then check the plausibility of the formula.

Functions:
- 12 math channels
- Mathematics functions via formula editor
- Basic arithmetic operations, relational operators, logic operations and functions

Telealarm software
The Telealarm software facilitates user mobility, allowing users to respond to events while they are on the road. E-mails or SMS messages triggered by process alarms or other important process events can be sent to several recipients simultaneously or automatically forwarded to a recipient/destination. Messages can be confirmed, relays controlled remotely and current values queried by cellular phone. The Advanced Data Manager with GSM (GPRS) or Ethernet is ideal both for environmental applications to monitor unstaffed outstations, and for tank monitoring applications.

The Telealarm software contains the mathematics package.

Functions:
- Advanced SMS/e-mail notification in the event of an alarm
- Instantaneous values queried by cellular phone
- Remote relay switching
- Alarm confirmation by SMS

Batch software
Batch management allows users to reliably record and visualize discontinuous processes. User-definable or externally controlled analysis intervals are possible for up to four batches simultaneously. Batches are assigned batch-specific values and the measured data, the start, end and duration of every batch, along with the current batch status, are displayed on the device and in the Field Data Manager software. At the end of the batch, batch information is automatically printed out directly at the device (USB or network printer) or is printed out via a PC with the Field Data Manager software.

The batch software contains the mathematics package.
Functions:
- Batch report for 4 batches simultaneously
- USB barcode reader
- Automatic batch printout
- Preset counter

Wastewater + RSB (rain spillway basin)

The water/wastewater software supports operations monitoring of the water/wastewater sewage network to obtain information about the quality and efficiency of the plant. The daily, weekly, monthly and yearly maximum and minimum value is determined per quantity channel. Infiltration water recording and the monitoring of rain spillway basins for reservoir and overflow events are also functions of this software option.

The water/wastewater software contains the mathematics package and the telealarm software.

Functions:
- Rain spillway basin (reservoir/overflow)
- Highest and lowest values for quantities
- Highest and lowest values from ¼-hourly averages
- Determination of infiltration water

Energy package (water + steam)

The energy package allows users to calculate the mass and energy flow in water and steam applications on the basis of the flow, pressure and temperature (or temperature differential). Furthermore, energy calculations are also possible using glycol-based refrigerant media.

By balancing the results against one another or by linking the results to other input variables (e.g. gas flow, electr. energy), users can calculate overall balances, efficiency levels etc. These values are important indicators for the quality of the process and form the basis for process optimization and maintenance.

The internationally recognized standard IAPWS-IF 97 is used to calculate the thermodynamic state variables of water and steam.

In the energy software, it is also possible to compensate differential pressure flow measurement (‘DP-Flow’). The calculation of flow based on the differential pressure method is a special form of flow measurement. Volumes or mass flow rates that are determined using the DP method require specific correction. By solving the calculation equations listed in the standard in an iterative manner, highly accurate results for DP flow measurements can be achieved. The measurement (orifice plate, nozzle, Venturi pipe) is performed in accordance with ISO5167. Flow measurement based on the dynamic pressure method uses the interrelation between differential pressure and flow.

The energy package contains the mathematics package.

Additional functions:
- 12 math channels
 (Channels 1-8: energy-specific formulas and formula editor, channels 9-12: formula editor)
- Heat quantity + mass calculation for water and steam applications
- Efficiency calculation

TrustSens Calibration Monitoring

Available in conjunction with iTHERM TrustSens TM371 / TM372.
Application package:
- Up to 20 iTHERM TrustSens TM371 / TM372 can be monitored via the HART interface
- Self-calibration data displayed on screen or via the Web server
- Generation of a calibration history
- Creation of a calibration protocol as an RTF file directly at the RSG45
- Evaluation, analysis and further processing of the calibration data using "Field Data Manager" (FDM) analysis software

<table>
<thead>
<tr>
<th>Dependability</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depending on the device version, the mean time between failures (MTBF) is between 52 years and 16 years (calculated based on SN29500 standard at 40°C)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maintainability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery-backed time and data memory. It is advisable to have the backup battery replaced by a service technician after 10 years.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Real time clock (RTC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic or manual summer time changeover</td>
</tr>
<tr>
<td>Battery buffer. It is advisable to have the backup battery replaced by a service technician after 10 years.</td>
</tr>
<tr>
<td>Drift: <10 min./year.</td>
</tr>
<tr>
<td>Time synchronization possible via SNTP or via digital input.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard diagnostic functions as per Namur NE 107</th>
</tr>
</thead>
<tbody>
<tr>
<td>The diagnostic code is made up of the error category as per Namur NE 107 and the message number.</td>
</tr>
</tbody>
</table>
- Cable open circuit, short-circuit |
- Incorrect wiring |
- Internal device errors |
- Overrange/underrange detection |
- Ambient temperature out-of-range detection |

<table>
<thead>
<tr>
<th>Device error/alarm relay</th>
</tr>
</thead>
<tbody>
<tr>
<td>One relay can be used as an alarm relay. If the device detects a system error (e.g. hardware defect) or a fault (e.g. cable open circuit), the selected relay switches.</td>
</tr>
<tr>
<td>This "alarm relay" switches if the device status is "F" (Failure). If the device status is "M" (Maintenance required), the alarm relay does not switch.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded data are saved in a tamper-proof format and can be exported and archived with manipulation protection using the Field Data Manager software.</td>
</tr>
</tbody>
</table>

16.2 Input

<table>
<thead>
<tr>
<th>Measured variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog universal inputs</td>
</tr>
<tr>
<td>Standard version without universal inputs. Optional multifunction cards (slot 1-5) with 4 universal inputs (4/8/12/16/20) each.</td>
</tr>
<tr>
<td>You are free to choose between the following measured variables for each universal input: U, I, RTD, TC, pulse input or frequency input.</td>
</tr>
<tr>
<td>Integration of input variable for totalization e.g. flow (m³/h) in quantity (m³).</td>
</tr>
</tbody>
</table>
HART® inputs
Standard version without HART® inputs. Optional HART® input cards (slot 1-5) with 4 inputs (4/8/12/16/20) each.
Both the digital HART® values and the 4 to 20 mA signal can be evaluated at every input.
The 4 HART® values (PV, SV, TV, QV) of a sensor can be evaluated and the analog HART® value (PV) can be measured via the digital HART® signal. Up to 40 digital HART® values can be recorded in total. It is possible to access the HART® sensor in the field from a PC tool (e.g. FieldCare). In this way, the sensor can be configured from the control room and the status information of the sensor can be analyzed/displayed. The Memograph M acts as a HART® Gateway.

Access to the connected sensors is only possible if the device is connected by Ethernet. Port 5094 must be open in the firewall.

Digital inputs
Standard version: 6 digital inputs
Optional digital card (slot 5): 8 additional digital inputs, 6 additional relays and 2 analog outputs

Mathematics channels
12 math channels (optional). Mathematics functions can be freely edited via a formula editor.
Integration of calculated values e.g. for totalization.

Limit values
60 limit values (individual channel assignment)

Calculated process variables
The values of the universal and HART® inputs can be used to perform calculations in the math channels.
The results of the math channels can also be used for calculations in other math channels.

Measuring range
According to IEC 60873-1: An additional display error of ±1 digit is permitted for every measured value.

User-definable measuring ranges per universal input of the multifunction card:

<table>
<thead>
<tr>
<th>Measured variable</th>
<th>Measuring range</th>
<th>Maximum measured error of measuring range (oMR), temperature drift</th>
<th>Input resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current (I)</td>
<td>0 to 20 mA; 0 to 20 mA quadratic 0 to 5 mA 4 to 20 mA; 4 to 20 mA quadratic ±20 mA Overrange: up to 22 mA or -22 mA</td>
<td>±0.1% oMR Temperature drift: ±0.01%/K oMR</td>
<td>Load: 50 Ω ±1 Ω</td>
</tr>
<tr>
<td>Voltage (U) >1 V</td>
<td>0 to 10 V; 0 to 10 V quadratic 0 to 5 V 1 to 5 V; 1 to 5 V quadratic ±10 V ±30 V</td>
<td>±0.1% oMR Temperature drift: ±0.01%/K oMR</td>
<td>≥1 MΩ</td>
</tr>
<tr>
<td>Voltage (U) ≤1 V</td>
<td>0 to 1 V; 0 to 1 V quadratic ±1 V ±150 mV</td>
<td>±0.1% oMR Temperature drift: ±0.01%/K oMR</td>
<td>≥2.5 MΩ</td>
</tr>
</tbody>
</table>
Measured variable

<table>
<thead>
<tr>
<th>Measured variable</th>
<th>Measuring range</th>
<th>Maximum measured error of measuring range (oMR), temperature drift</th>
<th>Input resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance thermometer (RTD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt100: -20 to 850 °C (-328 to 1562 °F) (IEC 60751:2008, α=0.00385)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt100: -20 to 510 °C (-328 to 950 °F) (JIS C 1604:1984, α=0.00391)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt100: -20 to 850 °C (-328 to 1562 °F) (JIS C 1604:1984, α=0.00391)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt500: -20 to 510 °C (-328 to 950 °F) (JIS C 1604:1984, α=0.00391)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt1000: -20 to 600 °C (-328 to 1112 °F) (IEC 60751:2008, α=0.00385)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt1000: -20 to 510 °C (-328 to 950 °F) (JIS C 1604:1984, α=0.00391)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu50: -50 to 200 °C (-58 to 392 °F) (GOST 6651-94, α=4260)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu50: -200 to 200 °C (-328 to 392 °F) (GOST 6651-94, α=4280)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt50: -200 to 1100 °C (-328 to 2012 °F) (GOST 6651-94, α=0.00391)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu100: -200 to 200 °C (-328 to 392 °F) (GOST 6651-94, α=4280)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt46: -200 to 1100 °C (-328 to 2012 °F) (GOST 6651-94, α=0.00391)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu53: -200 to 200 °C (-328 to 392 °F) (GOST 6651-94, α=4280)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type J (Fe-CuNi): -210 to 1200 °C (-346 to 2192 °F) (IEC 60584:2013)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type K (NiCr-Ni): -280 to 1300 °C (-454 to 2372 °F) (IEC 60584:2013)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type L (NiCr-CuNi): -200 to 800 °C (-328 to 1472 °F) (GOST R 6858:2001)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type L (Fe-CuNi): -200 to 900 °C (-328 to 1652 °F) (DIN 43710-1985)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type T (Cu-CuNi): -270 to 400 °C (-454 to 752 °F) (IEC 60584:2013)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type A (W5Re-W20Re): 0 to 2500 °C (32 to 4532 °F) (ASTM E 988-96)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type B (Pt30Rh-Pt): 42 to 1820 °C (107.6 to 3308 °F) (IEC 60584:2013)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type C (W5Re-W26Re): 0 to 2315 °C (32 to 4199 °F) (ASTM E 988-96)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type D (W3Re-W25Re): 0 to 2315 °C (32 to 4199 °F) (ASTM E 988-96)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type E (Pt13Rh-Pt): -50 to 1768 °C (-58 to 3214 °F) (IEC 60584:2013)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type F (Pt10Rh-Pt): -50 to 1768 °C (-58 to 3214 °F) (IEC 60584:2013)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) If a universal input is used as a frequency or pulse input, a series resistor must be used in series connection with the voltage source. Example: 1.2 kΩ series resistor at 24 V

Current measuring range of the HART® card:

<table>
<thead>
<tr>
<th>Measured variable</th>
<th>Measuring range</th>
<th>Maximum measured error of measuring range (oMR), temperature drift</th>
<th>Input impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current (I)</td>
<td>4 to 20 mA</td>
<td>±0.1% oMR Temperature drift: ±0.01%/K oMR</td>
<td>Load: 10 Ω ±1 Ω</td>
</tr>
<tr>
<td>Overrange: up to 22 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pulse input (I) 1)

| Min. pulse length | 40 μs, max. 12.5 kHz | 0 to 7 mA = LOW; 13 to 20 mA = HIGH | | Load: 50 Ω ±1 Ω |

Frequency input (I) 1)

| 0 to 10 kHz, overrange: up to 12.5 kHz | 0 to 7 mA = LOW; 13 to 20 mA = HIGH | ±0.02% @ f < 100 Hz of reading ±0.01% @ f ≥ 100 Hz of reading | | Temperature drift: 0.01% of measured value over the entire temperature range |
Maximum load and additional input parameters of the multifunction cards

Limit values for input voltage and current as well as cable open circuit detection/line influence/temperature compensation:

<table>
<thead>
<tr>
<th>Measured variable</th>
<th>Limit values (steady-state, without destroying input)</th>
<th>Cable open circuit detection/line influence/temperature compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current (I)</td>
<td>Maximum permitted input voltage: 2.5 V, maximum permitted input current: 50 mA</td>
<td>4 to 20 mA range with disengageable cable open circuit monitoring to NAMUR NE43. The following error ranges apply when NAMUR NE43 monitoring is switched on: ≤3.8 mA: underrange ≥20.5 mA: overrange ≤3.6 mA or ≥21.0 mA: open circuit (display shows: – – – –)</td>
</tr>
<tr>
<td>Pulse, frequency (I)</td>
<td>Maximum permitted input voltage: 2.5 V, maximum permitted input current: 50 mA</td>
<td>No cable open circuit monitoring</td>
</tr>
<tr>
<td>Voltage (U) >1 V</td>
<td>Maximum permitted input voltage: 35 V, maximum permitted input current: 50 mA</td>
<td>1 to 5 V range with disengageable cable open circuit monitoring: <0.8 V or >5.2 V: cable open circuit (display shows: – – – –)</td>
</tr>
<tr>
<td>Voltage (U) ≤1 V</td>
<td>Maximum permitted input voltage: 24 V, maximum permitted input current: 50 mA</td>
<td></td>
</tr>
<tr>
<td>Resistance thermometer (RTD)</td>
<td>Measuring current: ≤1 mA</td>
<td>Maximum barrier resistance (or line resistance): 4-wire: max. 200 Ω, 3-wire: max. 40 Ω Maximum influence of barrier resistance (or line resistance) for Pt100, Pt500 and Pt1000: 4-wire: 2 ppm/Ω, 3-wire: 20 ppm/Ω Maximum influence of barrier resistance (or line resistance) for Pt46, Pt50, Cu50, Cu53, Cu100 and Cu500: 4-wire: 6 ppm/Ω, 3-wire: 60 ppm/Ω Cable open circuit monitoring if any connection is interrupted.</td>
</tr>
<tr>
<td>Thermocouples (TC)</td>
<td>Maximum permitted input voltage: 24 V, maximum permitted input current: 50 mA</td>
<td>Influence of line resistance: <0.001%/Ω Error, internal temperature compensation: ≤ 2 K</td>
</tr>
</tbody>
</table>

Maximum load and additional input parameters of the HART® cards

Limit values for input voltage and current as well as cable open circuit detection:

<table>
<thead>
<tr>
<th>Measured variable</th>
<th>Limit values (steady-state, without destroying input)</th>
<th>Cable open circuit detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current (I)</td>
<td>Maximum permitted input voltage: 0.5 V, maximum permitted input current: 50 mA</td>
<td>4 to 20 mA range with disengageable cable open circuit monitoring to NAMUR NE43. The following error ranges apply when NAMUR NE43 monitoring is switched on: ≤3.8 mA: underrange ≥20.5 mA: overrange ≤3.6 mA or ≥21.0 mA: open circuit (display shows: – – – –)</td>
</tr>
</tbody>
</table>

Scan rate
Current/voltage/pulse/frequency input: 100 ms per channel
Thermocouples and resistance thermometers: 1 s per channel

Data storage / save cycle
Choose from the following for the memory cycle: off / 100 ms / 1s / 2s / 3s / 4s / 5s / 10s / 15s / 20s / 30s / 1min / 2min / 3min / 4min / 5min / 10min / 15min / 30min / 1h
Highspeed storage (100 ms) can be selected for up to 8 channels in Group 1 only.
Highspeed storage is not available in the energy package (option).
Typical logging duration

Prerequisites for following tables:
- No limit value violation / integration
- Digital input not used
- Signal analysis 1: off, 2: day, 3: month, 4: year
- No active mathematics channels

Frequent entries in the event log reduce the memory availability!

256 MB internal memory:

<table>
<thead>
<tr>
<th>Analog inputs</th>
<th>Channels in groups</th>
<th>Storage cycle (weeks, days, hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5 min</td>
</tr>
<tr>
<td>1</td>
<td>1/0/0/0/0/0/0/0/0/0/0</td>
<td>1796, 6, 13</td>
</tr>
<tr>
<td>4</td>
<td>4/0/0/0/0/0/0/0/0/0/0</td>
<td>1319, 2, 23</td>
</tr>
<tr>
<td>8</td>
<td>4/4/0/0/0/0/0/0/0/0/0</td>
<td>661, 4, 3</td>
</tr>
<tr>
<td>12</td>
<td>4/4/4/0/0/0/0/0/0/0/0</td>
<td>441, 3, 8</td>
</tr>
<tr>
<td>20</td>
<td>4/4/4/4/0/0/0/0/0/0/0</td>
<td>269, 0, 15</td>
</tr>
</tbody>
</table>

External memory, 1 GB SD card:

<table>
<thead>
<tr>
<th>Analog inputs</th>
<th>Channels in groups</th>
<th>Storage cycle (weeks, days, hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5 min</td>
</tr>
<tr>
<td>1</td>
<td>1/0/0/0/0/0/0/0/0/0/0/0</td>
<td>12825, 5, 20</td>
</tr>
<tr>
<td>4</td>
<td>4/0/0/0/0/0/0/0/0/0/0/0</td>
<td>8672, 5, 12</td>
</tr>
<tr>
<td>8</td>
<td>4/4/0/0/0/0/0/0/0/0/0/0</td>
<td>4343, 1, 1</td>
</tr>
<tr>
<td>12</td>
<td>4/4/4/0/0/0/0/0/0/0/0/0</td>
<td>2896, 6, 13</td>
</tr>
<tr>
<td>20</td>
<td>4/4/4/4/0/0/0/0/0/0/0/0</td>
<td>1738, 6, 4</td>
</tr>
</tbody>
</table>

The available storage capacity of the internal and external memory can be displayed in the main menu under "Diagnostics → Device information → Memory information". The storage capacity depends on the specific device set-up.

Converter resolution
24 bit

Totalization
The interim, daily, weekly, monthly and yearly value and the total value can be determined (15-digit, 64 bit).

Analysis
Recording of quantity/operating time (standard function), also a min/max/median analysis within the set time frame.

Digital inputs

<table>
<thead>
<tr>
<th>Input level</th>
<th>Logical "0" (corresponds to -3 to +5 V), activation with logical "1" (corresponds to +12 to +30 V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input frequency</td>
<td>max. 25 Hz</td>
</tr>
</tbody>
</table>
Technical data

Memograph M, RSG45

<table>
<thead>
<tr>
<th>Technical Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse length</td>
<td>Min. 20 ms (pulse counter)</td>
</tr>
<tr>
<td>Pulse length</td>
<td>Min. 100 ms (control input, messages, operating time)</td>
</tr>
<tr>
<td>Input current</td>
<td>max. 2 mA</td>
</tr>
<tr>
<td>Input voltage</td>
<td>Max. 30 V</td>
</tr>
</tbody>
</table>

Selectable functions

- Functions of the digital input: control input, ON/OFF event, pulse counter (15-digit, 64 bit), operational time, event+operation time, quantity from time, Profibus DP, EtherNet/IP, PROFINET.
- Functions of the control input: start recording, screensaver on, lock setup, time synchronization, change group, limit value monitoring on/off, individual LV on/off, block keyboard/navigator, start/stop analysis.
- Additionally for the batch software option: reset batch number, batch limit values on/off.

16.3 Output

Auxiliary voltage output

The auxiliary voltage output can be used for loop power supply or to control the digital inputs. The auxiliary voltage is short-circuit proof and galvanically isolated.

<table>
<thead>
<tr>
<th>Output voltage</th>
<th>24 V<sub>DC</sub> ±15%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output current</td>
<td>Max. 250 mA</td>
</tr>
</tbody>
</table>

Analog and pulse outputs

Optional digital card (slot 5): 2 analog outputs which can be operated as current or pulse outputs.

Analog output (current output)

- Output current: 0/4 to 20 mA with 10% overrange
- Max. output voltage: approx. 16 V
- Accuracy: ≤0.1% of end of range value
- Temperature drift: ≤0.015%/K of end of range value
- Resolution: 13 Bit
- Load: 0 to 500 Ω
- Error signal as per NAMUR NE43: 3.6 mA or 21 mA can be configured

Digital output (pulse output)

- Output voltage:
 - ≤5 V corresponds to LOW
 - ≥12 V corresponds to HIGH
- Short-circuit proof (maximum 25 mA)
- Speed: max. 1000 pulses/s
- Pulse width: 0.5 to 1000 ms

> The pulse pause is at least as long as the pulse width.
Load: ≥1 kΩ

Relay outputs
A mix of low voltage (230 V) and safety extra low voltage (SELV circuits) is not permitted at the connections of the relay contacts.

Alarm relay
1 alarm relay with changeover contact.

Standard relay
5 relays with NO contact, e.g. for limit value messages (can be configured as NC contact).

Optional relays
Optional digital card (slot 5): 6 additional relays with NO contact e.g. for limit value alarms (can be configured as an NC contact).

Relay switching capacity
- Max. relay switching capacity: 3 A @ 30 V DC
- Max. relay switching capacity: 3 A @ 250 V AC
- Min. switching load: 300 mW

Switching cycles
>10⁵

Galvanic isolation
All inputs and outputs are galvanically isolated from each other and designed for the following test voltages:

<table>
<thead>
<tr>
<th></th>
<th>Relay</th>
<th>Digital in</th>
<th>Analog in/HART®</th>
<th>Analog out</th>
<th>Ethernet</th>
<th>RS232/RS485</th>
<th>USB</th>
<th>Auxiliary voltage output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay</td>
<td>500 VDC</td>
<td>2 kV DC</td>
</tr>
<tr>
<td>Digital in</td>
<td>2 kV DC</td>
<td>500 VDC</td>
</tr>
<tr>
<td>Analog in/HART®</td>
<td>2 kV DC</td>
<td>500 VDC</td>
</tr>
<tr>
<td>Analog out</td>
<td>2 kV DC</td>
<td>500 VDC</td>
</tr>
<tr>
<td>Ethernet</td>
<td>2 kV DC</td>
<td>500 VDC</td>
<td>500 VDC</td>
<td>500 VDC</td>
<td>-</td>
<td>500 VDC</td>
<td>500 VDC</td>
<td>500 VDC</td>
</tr>
<tr>
<td>RS232/RS485</td>
<td>2 kV DC</td>
<td>500 VDC</td>
<td>500 VDC</td>
<td>500 VDC</td>
<td>-</td>
<td>Galvanically connected</td>
<td>500 VDC</td>
<td>500 VDC</td>
</tr>
<tr>
<td>USB</td>
<td>2 kV DC</td>
<td>500 VDC</td>
</tr>
<tr>
<td>Auxiliary voltage output</td>
<td>2 kV DC</td>
<td>500 VDC</td>
</tr>
</tbody>
</table>

1) Test voltage applies between inputs on power unit (terminals D11 to D61) to inputs on optional digital card (terminals D71 to DE1). The inputs are galvanically connected on the same plug-in connector.
Cable specification, spring terminals

All connections on the rear of the device are designed as pluggable screw or spring terminal blocks with reverse polarity protection. This makes the connection very quick and easy. The spring terminals are unlocked with a slotted screwdriver (size 0).

Please note the following when connecting:
- Wire cross-section, auxiliary voltage output, digital I/O and analog I/O: max. 1.5 mm² (14 AWG) (spring terminals)
- Wire cross-section, mains: max. 2.5 mm² (13 AWG) (screw terminals)
- Wire cross-section, relays: max. 2.5 mm² (13 AWG) (spring terminals)
- Stripping length: 10 mm (0.39 in)

No ferrules must be used when connecting flexible wires to spring terminals.

Shielding and grounding

Optimum electromagnetic compatibility (EMC) can only be guaranteed if the system components and, in particular, the lines - both sensor lines and communication lines - are shielded and the shield forms as complete a cover as possible. A shielded line must be used for sensor lines that are longer than 30 m. A shield coverage of 90% is ideal. In addition, make sure not to cross sensor lines and communication lines when routing them. Connect the shield as often as possible to the reference ground to ensure optimum EMC protection for the different communication protocols and the connected sensors.

To comply with requirements, three different types of shielding are possible:
- Shielding at both ends
- Shielding at one end on the supply side with capacitance termination at the device
- Shielding at one end on the supply side

Experience shows that the best results with regard to EMC are achieved in most cases in installations with one-sided shielding on the supply side (without capacitance termination at the device). Appropriate internal device wiring measures must be taken to allow unrestricted operation when EMC interference is present. These measures have been taken into account for this device. Operation in the event of disturbance variables as per NAMUR NE21 is thus guaranteed.

Where applicable, national installation regulations and guidelines must be observed during the installation! Where there are large differences in potential between the individual grounding points, only one point of the shielding is connected directly with the reference ground.

If the shielding of the cable is grounded at more than one point in systems without potential matching, mains frequency equalizing currents can occur. These can damage the signal cable or significantly impact signal transmission. In such cases the shielding of the signal cable is to be grounded on one side only, i.e. it may not be connected to the ground terminal of the housing. The shield that is not connected should be insulated!

16.4 Power supply
Connections: back of device, panel version (left), DIN rail version (right)

- Slot 6: Power supply with relays
- Slot 5: Multifunction card or HART® card (channels 17-20) or digital card
- Slot 4: Multifunction card or HART® card (channels 13-16)
- Slot 3: Multifunction card or HART® card (channels 9-12)
- Slot 2: Multifunction card or HART® card (channels 5-8)
- Slot 1: Multifunction card or HART® card (channels 1-4)
- Slot 0: CPU card with interfaces

Supply voltage
- Extra-low voltage power supply unit ±24 V AC/DC (-10% / +15%) 50/60Hz
- Low voltage power supply unit 100 to 230 V AC (±10%) 50/60Hz

Note: Overcurrent protection (rated current ≤ 10 A) must be installed for the power cable.

Power consumption
- 100 to 230 V: max. 47 VA
- 24 V: max. 30 VA

The power actually consumed depends on the individual operating state and the device version (LPS, USB, brightness of screen, number of channels, etc). The active power here is approx. 3 W to 25 W.

Power supply failure
- Battery-backed time and data memory. The device starts automatically following a power failure.

Electrical connection
- Details about the electrical connection: → 17

All connection examples are illustrated using the panel version. The connections on the DIN rail version are identical.
Technical data

Memograph M, RSG45

Circuit diagram

1. **Power supply**
 - 100-230 VAC
 - 50/60 Hz
 - 24 V DC

2. **Analog outputs (O)**
 - Selectable in unit setup
 - 0...20 mA, 4...20 mA, 0...5 mA, ±20 mA

3. **Analog inputs**
 - RTD
 - I
 - U
 - TC
 - Pulse/frequency

4. **Digital in (D)**
 - 24 V DC

5. **RS 232**
 - To modem: 9 pol. Sub-D socket
 - To PC: 9 pol. Sub-D plug

6. **RS 485**
 - +
 - -

7. **Further units**
 - Ref. 250 V / 3 A
 - Relative max.

8. **Termination resistors**
 - (typical 120 Ω)

9. **Analog inputs**
 - LED yellow
 - LED green
 - Pulse/frequency
 - Slot 6: Power supply slot (standard)
 - Slot 5: analog input / HART 17-20 or digital-I/O (optional)
 - Slot 4: analog input / HART 13-16 (optional)
 - Slot 3: analog input / HART 9-12 (optional)
 - Slot 2: analog input / HART 5-8 (optional)
 - Slot 1: analog input / HART 1-4 (optional)

10. **Slot 0: CPU**
 - (standard)

11. **Analog outputs (O)**
 - Selectable in unit setup

12. **Pulse frequency**
 - LOW = 0.7 mA
 - HIGH = 13...20 mA

Notes

- For connection examples of the HART® inputs (optional), see the Operating Instructions → 25

Endress+Hauser
Supply voltage (power unit, slot 6)

<table>
<thead>
<tr>
<th>Power unit type</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-230 VAC</td>
<td>L+</td>
</tr>
<tr>
<td></td>
<td>N-</td>
</tr>
<tr>
<td></td>
<td>PE</td>
</tr>
<tr>
<td>Phase L</td>
<td>Zero conductor N</td>
</tr>
<tr>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>24 V AC/DC</td>
<td>L+</td>
</tr>
<tr>
<td></td>
<td>N-</td>
</tr>
<tr>
<td></td>
<td>PE</td>
</tr>
<tr>
<td>Phase L or +</td>
<td>Zero conductor N or -</td>
</tr>
<tr>
<td>Ground</td>
<td></td>
</tr>
</tbody>
</table>

Relay (power unit, slot 6)

<table>
<thead>
<tr>
<th>Type</th>
<th>Terminal (max. 250 V, 3 A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm relay 1</td>
<td>R11</td>
</tr>
<tr>
<td>Changeover contact</td>
<td>Normally closed contact (NC) 1</td>
</tr>
<tr>
<td>Relay 2 to 6</td>
<td>Rx1</td>
</tr>
<tr>
<td>Switching contact</td>
<td>Normally open contact (NO 2)</td>
</tr>
</tbody>
</table>

1) NC = normally closed (breaker)
2) NO = normally open (maker)

The open or close function (= activation or deactivation of the relay coil) in a limit event can be configured in the setup: 'Setup -> Advanced setup -> Outputs -> Relay -> Relay x'. However, in the event of a power failure, the relay adopts its quiescent switch state regardless of the setting programmed.

Digital inputs; auxiliary voltage output (power unit, slot 6)

<table>
<thead>
<tr>
<th>Type</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital input 1 to 6</td>
<td>D11 to D61</td>
</tr>
<tr>
<td>Digital input 1 to 6 (+)</td>
<td>Ground (-) for digital inputs 1 to 6</td>
</tr>
</tbody>
</table>
If the auxiliary voltage is to be used for the digital inputs, the 24 V out - terminal of the auxiliary voltage output must be connected with the GND1 terminal.

Analog inputs (slot 1-5)
The first digit (x) of the two-digit terminal number corresponds to the associated channel:

<table>
<thead>
<tr>
<th>Type</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current/pulse/frequency input</td>
<td>(+) (-)</td>
</tr>
<tr>
<td>Voltage > 1V</td>
<td>(+)</td>
</tr>
<tr>
<td>Voltage ≤ 1V</td>
<td>(+) (-)</td>
</tr>
<tr>
<td>Resistance thermometer RTD (2-wire)</td>
<td>[A] (B)</td>
</tr>
<tr>
<td>Resistance thermometer RTD (3-wire)</td>
<td>[A] b (sense) (B)</td>
</tr>
<tr>
<td>Resistance thermometer RTD (4-wire)</td>
<td>[A] a (sense) b (sense) (B)</td>
</tr>
<tr>
<td>Thermocouples TC</td>
<td>(+) (-)</td>
</tr>
</tbody>
</table>

1) If a universal input is used as a frequency or pulse input, a series resistor must be used in series connection with the voltage source. Example: 1.2 kΩ series resistor at 24 V
HART® inputs (slot 1-5)

The first digit (x) of the two-digit terminal number corresponds to the associated channel:

<table>
<thead>
<tr>
<th>Type</th>
<th>Terminal</th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
<th>x5</th>
<th>x6</th>
</tr>
</thead>
<tbody>
<tr>
<td>HART® (4 to 20 mA)</td>
<td>SHD</td>
<td>H_1</td>
<td>H_2</td>
<td>R_com</td>
<td>I+</td>
<td>I-</td>
<td></td>
</tr>
</tbody>
</table>

- A 250 Ω communication resistor (load) is installed on the device side between terminals x4 and x5.
- A 10 Ω resistor (shunt) is installed on the device side at the current input between terminals x5 and x6.
- Terminals x2 and x3 (H_1 and H_2) are jumpered internally.
- The internal HART® modem is located between terminals x2/x3 and x6.

Relay extension (digital card, slot 5)

<table>
<thead>
<tr>
<th>Type</th>
<th>Terminal (max. 250 V, 3 A)</th>
<th>RA</th>
<th>RB</th>
<th>RC</th>
<th>RD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 7, 8</td>
<td></td>
<td>RE</td>
<td>RF</td>
<td>RG</td>
<td>RH</td>
</tr>
<tr>
<td>Relay 9, 10</td>
<td></td>
<td>RE</td>
<td>RF</td>
<td>RG</td>
<td>RH</td>
</tr>
<tr>
<td>Relay 11, 12</td>
<td></td>
<td>RI</td>
<td>RJ</td>
<td>RK</td>
<td>RL</td>
</tr>
</tbody>
</table>

Switching contact
- Normally open contact (1)
- Normally open contact (2)

1) NO
2) NO

The open or close function (= activation or deactivation of the relay coil) in a limit event can be configured in the setup: ‘Setup -> Advanced setup -> Outputs -> Relay -> Relay x’. However, in the event of a power failure, the relay adopts its quiescent switch state regardless of the setting programmed.

Analog outputs (digital card, slot 5)

<table>
<thead>
<tr>
<th>Type</th>
<th>Terminal</th>
<th>O15</th>
<th>O16</th>
<th>O25</th>
<th>O26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog output 1-2</td>
<td></td>
<td>Analog output 1 (+)</td>
<td>Ground, analog output 1 (-)</td>
<td>Analog output 2 (+)</td>
<td>Ground, analog output 2 (-)</td>
</tr>
</tbody>
</table>
Extension of digital inputs (digital card, slot 5)

<table>
<thead>
<tr>
<th>Type</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital input 7 to 14</td>
<td>D71 to DE1</td>
</tr>
<tr>
<td>Digital input 7 to 14 (+)</td>
<td>Ground (-) for digital inputs 7 to 14</td>
</tr>
</tbody>
</table>

If the auxiliary voltage is to be used for the digital inputs, the 24 V out - terminal of the auxiliary voltage output (power unit, slot 6) must be connected with the GND2 terminal.

Device plug
- Panel-mounted device/DIN rail version: connected to mains via plug-in screw terminals with reverse polarity protection
- Desktop version (option): connected to mains via IEC connector

Overvoltage protection
To avoid high-energy transients on long signal cables, connect a suitable surge arrester upstream (e.g. E+H HAW562) in series upstream.

Connection data interface, communication

USB interfaces:
1. **1 x USB port type A (host) on the front of device (only for version with navigator and front interfaces)**

 A USB 2.0 port is available on a shielded USB A socket at the front of the device. A USB stick as a memory medium, for example, can be connected to this port. An external keyboard/mouse for device operation, a USB hub, a barcode reader or a printer (PCL5c or higher) may also be connected.

2. **1 x USB port type B (function) on the front of device (only for version with navigator and front interfaces)**

 A USB 2.0 port is available on a shielded USB B socket at the front of the device. This can be used to connect the device for communication with a laptop, for example.

3. **2 x USB port type A (host) on the rear of the device (standard)**

 Two USB 2.0 ports are available on shielded USB A sockets at the rear of the device. A USB stick as a memory medium, for example, can be connected to these ports. An external keyboard/mouse for device operation, a USB hub, a barcode reader or a printer (PCL5c or higher) may also be connected.

- USB-2.0 is compatible with USB-1.1 or USB-3.0, i.e. communication is possible.
- The assignment of the USB interfaces complies with the standard such that shielded standard cables with a maximum length of 3 meters (9.8 ft) can be used here.
- The USB devices are detected by the "plug-and-play" function. If several devices of the same type are connected, only the USB device that was connected first is available.
- A maximum of 8 external USB devices (incl. USB hub) can be connected if they do not exceed the maximum load of 500 mA. If overloaded, the corresponding USB devices are automatically disabled. An active USB hub can be used for higher power ratings.
Reference list for USB printers:
HP Color LaserJet CP1515n, HP Color LaserJet Pro CP1525n, ECOSYS P6021cdn.

The printer must support PCL5c (or higher). GDI printers are not supported!

Reference list for USB barcode readers:
Datalogic Gryphon D230; Metrologic MS5100 Eclipse Series; Symbol LS2208, Datalogic Quickscan 1, Godex GS220, Honeywell Voyager 9590.

Ethernet interface (standard):
Ethernet interface on back, 10/100 Base-T, plug type RJ45. The Ethernet interface can be used to integrate the device via a hub or switch into a PC network (TCP/IP Ethernet). A standard patch cable (e.g. CAT5E) can be used for the connection. Using DHCP, the device can be fully integrated into an existing network without the need for additional configuration. The device can be accessed from every PC in the network. Normally only the automatic assignment of the IP address must be configured at the client. When the device is started, it can automatically retrieve the IP address, subnet mask and gateway from a DHCP server. If a DHCP is not used, these settings must be made directly in the device (depends on the specific network). Two Ethernet function LEDs are located on the rear of the device.

The following functions are implemented:
- Data communication with PC software (analysis software, configuration software, OPC server)
- Web server
- WebDAV (Web-based Distributed Authoring and Versioning) is an open standard for the provisioning of files via the HTTP protocol. The data saved on the device's SD card can be read out using a PC. A Web browser or a WebDAV client can be selected as the network drive for this on the PC side.

Requirements with regard to a network printer:

Network printer reference list:
HP Color LaserJet CP1515n, HP Color LaserJet Pro CP1525n, ECOSYS P6021cdn.

The printer must support PCL5c (or higher). GDI printers are not supported!

Ethernet Modbus TCP master (option):
As a Modbus master, the device can interrogate other Modbus slaves via Ethernet. The Modbus TCP can be operated in parallel with the Profibus DP slave, Modbus RTU/TCP slave or PROFINET I/O Device.
Up to 40 analog inputs can be transmitted via Modbus and stored in the device.

Ethernet Modbus TCP slave (option):
Connection to SCADA systems (Modbus master).
Up to 40 analog inputs and 20 (14 real + 6 virtual) digital inputs can be transmitted via Modbus and stored in the device.

Serial RS232/RS485 interface:
A combined RS232/RS485 connection is available on a shielded SUB D9 socket at the rear of the device. This can be used for data transfer and to connect a modem. For communication via modem, we recommend an industrial modem with a watchdog function.
Technical data

Memograph M, RSG45

- The following baud rates are supported: 9600, 19200, 38400, 57600, 115200
- Max. cable length with a shielded cable: 2 m (6.6 ft) (RS232), or 1000 m (3281 ft) (RS485)

Only one interface can be used at any one time (RS232 or RS485).

Modbus RTU master (option):
As a Modbus master, the device can interrogate other Modbus slaves via RS485. The Modbus RTU master can be operated in parallel with the Profibus-DP slave, PROFINET I/O Device or Modbus TCP slave.
Up to 40 analog inputs can be transmitted via Modbus and stored in the device.

Modbus RTU slave (option):
The device can be interrogated as a Modbus slave by another Modbus master via RS485.
Up to 40 analog inputs and 20 (14 real + 6 virtual) digital inputs can be transmitted via Modbus and stored in the device.

A Modbus RTU master and RTU slave cannot be operated in parallel.

Remote interrogation with analog or GSM/GPRS wireless modem:

Analog modem:
An analog modem for industrial use (e.g. Devolo or WESTERMO), which is connected to the RS232 interface with a special modem cable (see accessories → 97), is recommended.

GSM/GPRS wireless modem:
A GSM/GPRS wireless modem for industrial use (e.g. Cinterion, INSYS or WESTERMO, incl. antenna and power unit), which is connected to the RS232 interface with a special modem cable (see accessories → 97), is recommended. Important: the wireless modem needs a SIM card and data transfer subscription. In addition, it must be possible to deactivate the PIN prompt.

If the Web server is operated via a wireless modem, this may result in high provider costs as data are transmitted continuously.

AnyBus® interface (CPU card, slot 0, optional)

PROFIBUS–DP slave:
The device can be integrated into a fieldbus system as per the PROFIBUS–DP standard by means of the PROFIBUS-DP interface. Up to 40 analog inputs and 20 (14 real + 6 virtual) digital inputs can be transmitted via PROFIBUS-DP and stored in the device. Bidirectional communication with cyclic data transfer is possible. Connection via Sub-D socket.
Baud rate: maximum 12 Mbit/s

EtherNet/IP adapter (slave):
Up to 40 analog inputs and 20 (14 real + 6 virtual) digital inputs can be transmitted via EtherNet/IP and stored in the device. The built-in module corresponds to I/O server category (Level 2). It has an integrated 2-port switch, thereby supporting EtherNet/IP communication in line or ring topologies. Connection via 2 RJ45 standard sockets.

PROFINET I/O device:
Up to 40 analog inputs and 20 (14 real + 6 virtual) digital inputs can be transmitted via PROFINET IO and stored in the device. The 2-port module for PROFINET IO meets compliance class B. The integrated switch enables communication in line or ring topologies without an additional external switch. Connection via 2 RJ45 standard sockets.
16.5 Performance characteristics

<table>
<thead>
<tr>
<th>Response time</th>
<th>Input</th>
<th>Output</th>
<th>Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current, voltage, pulse</td>
<td>Relays, OC, analog output</td>
<td>≤ 550</td>
<td></td>
</tr>
<tr>
<td>RTD</td>
<td>Relays, OC, analog output</td>
<td>≤ 1150</td>
<td></td>
</tr>
<tr>
<td>TC 1)</td>
<td>Relays, OC, analog output</td>
<td>≤ 1550</td>
<td></td>
</tr>
<tr>
<td>Cable open circuit detection, current input</td>
<td>Relays, OC, analog output</td>
<td>≤ 1150</td>
<td></td>
</tr>
<tr>
<td>Sensor error RTD, TC</td>
<td>Relays, OC, analog output</td>
<td>≤ 5000</td>
<td></td>
</tr>
<tr>
<td>Digital input</td>
<td>Relays, OC, analog output</td>
<td>≤ 350</td>
<td></td>
</tr>
<tr>
<td>HART® input</td>
<td>Relays, OC, analog output</td>
<td>Non-deterministic</td>
<td></td>
</tr>
</tbody>
</table>

1) If internal measuring point temperature compensation is used, otherwise values as for voltage

<table>
<thead>
<tr>
<th>Reference operating conditions</th>
<th>Reference temperature</th>
<th>25 °C (77 °F) ±5 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm-up period</td>
<td>120 min.</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>20 to 60 % rel. humidity</td>
<td></td>
</tr>
</tbody>
</table>

| Hysteresis | Can be configured for limit values in the setup |
| Long-term drift | As per IEC 61298-2: max. ±0.1%/year (of measuring range) |

16.6 Mounting

Panel mounting: mounting location and installation dimensions

The device with a display is designed for use in a panel. The device must be installed in a pressurized enclosure system for operation in the hazardous area. To ensure safe installation, it is essential to follow the installation instructions for the cabinet and the installation instructions in the Ex-related Safety Instructions (XA).
Panel mounting and dimensions in mm (in).

A Version with navigator and front interfaces
B Version with stainless steel front and touchscreen
C Grid dimensions of panel cutouts for multiple devices

Dimensions
- Installation depth (excluding terminal cover): approx. 159 mm (6.26 in) for device incl. terminals and fastening clips.
- Installation depth including terminal cover (option): approx. 198 mm (7.8 in)
- Panel cutout: 138 to 139 mm (5.43 to 5.47 in) x 138 to 139 mm (5.43 to 5.47 in)
- Panel thickness: 2 to 40 mm (0.08 to 1.58 in)
- Viewing angle range: 50° in all directions from the display central axis
- A minimum distance of 12 mm (0.47 in) between the devices must be observed if aligning the devices vertically above one another or horizontally beside one another.
- The grid dimension of the panel cutouts for multiple devices must be at least 208 mm (8.19 in) horizontally and at least 162 mm (6.38 in) vertically (tolerance not considered).
- Securing to DIN 43 834
Mounting location and installation dimensions for the DIN rail version

The device without a display is designed for DIN rail mounting.

The DIN rail device is not approved for operation in the hazardous area.

Dimensions
- Installation depth: approx. 90 mm (3.54 in) for device incl. terminals (w/o terminal cover).
- Mounted on DIN rail as per IEC 60715
- The devices can be arranged horizontally beside one another without clearance between the devices.
Field housing assembly and design (optional)
As an option, the panel-mounted device can be ordered ready-mounted in a field housing with IP65.
Dimensions (B x H x D) approx.: 320 mm (12.6 in) x 320 mm (12.6 in) x 254 mm (10 in)

Desktop housing assembly and design (optional)
As an option, the panel-mounted device can be ordered ready-mounted in a desktop housing.
Dimensions (B x H x D) approx.: 293 mm (11.5 in) x 188 mm (7.4 in) x 213 mm (8.39 in)
(dimensions with bracket, feet and installed device)

16.7 Environment

Ambient temperature range
-10 to +50 °C (14 to 122 °F)

Storage temperature
-20 to +60 °C (−4 to +140 °F)

Humidity
5 to 85 %, non-condensing

Climate class
To IEC 60654-1: Class B2

Electrical safety
Class I equipment, overvoltage category II
Pollution level 2

Operating altitude
< 2,000 m (6,561 ft) above MSL

Degree of protection

Front of panel-mounted device	IP65 / NEMA 4 (UL50 type 4)
Back of panel-mounted device (terminal side)	IP20
DIN rail version	IP20 (overall device)

Electromagnetic compatibility

EMC in accordance with all relevant requirements of the IEC/EN 61326 series and NAMUR NE21. For details, refer to the Declaration of Conformity.

- Interference immunity: as per IEC/EN 61326 series (industrial environment) / NAMUR NE21
 Maximum measured error <1% of measuring range
- Interference emissions: as per IEC 61326-1 Class A

16.8 Mechanical construction

Design, dimensions
Information about design and dimensions → 119
Weight
- Panel-mounted device with navigator and front interfaces (with maximum configuration): approx. 2.7 kg (5.9 lbs)
- Panel-mounted device with stainless steel front and touchscreen (with maximum configuration): approx. 3.2 kg (7 lbs)
- DIN rail version: approx. 1.8 kg (3.97 lbs)
- Desktop housing (excluding device): approx. 2.3 kg (5 lbs)
- Field housing (excluding device): approx. 4 kg (8.8 lbs)

Materials

<table>
<thead>
<tr>
<th>Panel-mounted device with navigator and front interfaces</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Front frame</td>
<td>Zinc die cast GD-Z410, powder-coated</td>
</tr>
<tr>
<td>Display glass</td>
<td>Transparent Makrolon® plastic (FR clear 099) UL94-V2</td>
</tr>
<tr>
<td>Flap; jog/shuttle dial ("Navigator")</td>
<td>Plastic ABS UL94-V2</td>
</tr>
<tr>
<td>Membrane keypad</td>
<td>Polyester membrane PC-ABS UL94-V2</td>
</tr>
<tr>
<td>Intermediate frame (front towards control panel)</td>
<td>Plastic PA6-GF20 UL94-V2</td>
</tr>
<tr>
<td>Seal towards panel wall; seal in flap; seal towards navigator</td>
<td>Rubber EPDM 70 Shore A</td>
</tr>
<tr>
<td>Casing; rear panel</td>
<td>Galvanized sheet steel St 12 ZE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel-mounted device with stainless steel front and touchscreen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Front frame</td>
<td>AISI 316L</td>
</tr>
<tr>
<td>Display glass</td>
<td>6 mm single-pane safety glass (soda-lime glass)</td>
</tr>
<tr>
<td>Intermediate frame (front towards control panel)</td>
<td>Plastic PA6-GF20 UL94-V2</td>
</tr>
<tr>
<td>Seal towards control panel wall</td>
<td>Rubber EPDM 70 Shore A</td>
</tr>
<tr>
<td>Window seal between front frame and glass</td>
<td>Rubber EPDM 60 Shore A</td>
</tr>
<tr>
<td>Casing; rear panel</td>
<td>Galvanized sheet steel St 12 ZE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIN rail version</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Retaining bracket</td>
<td>EN AW 6060 T66 / AlMgSi0.5 F22</td>
</tr>
<tr>
<td>Casing; front</td>
<td>Galvanized sheet steel St 12 ZE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Designation</th>
<th>Short form</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISI 316L (corresponds to 1.4404 or 1.4435)</td>
<td>X2CrNiMo17-13-2, X2CrNiMo18-14-3</td>
<td>Austenitic, stainless steel High corrosion resistance in general</td>
</tr>
</tbody>
</table>

All materials are silicone-free.

Materials of desktop housing
- Housing half-panels: sheet steel, electrolytically plated (powder-coated)
- Side sections: aluminum extruded section (powder-coated)
- Section ends: colored polyamide
- Feet: colored polyamide, fiber-glass reinforced

Field housing materials
- Housing (front frame, door, base frame, side parts): thermoplastic polycarbonate PC
- Front panel and wall mounting: chrome-nickel stainless steel 1.4301 V2A
16.9 Display and operating elements

Operating concept

The description for local operation does not apply for the DIN rail version, as this has neither a display screen nor operating elements. The description for remote configuration applies for all versions.

The device can be operated directly onsite, or via remote configuration with the PC via interfaces and operating tools (Web server, configuration software).

Web server

A Web server is integrated into the device. The Web server offers the following range of functions:

- Easy configuration without additional installed software
- Instantaneous value display and diagnostics information
- Display of current measured value curves via Web browser (remote control)
- Display of historical measured data in numerical format or as a curve
- Display of events and logbook entries
- Loading/saving of device configuration
- Device firmware update
- Printout of device configuration

Integrated operating instructions

The device’s simple operating concept enables you to perform commissioning for many applications without the need for hardcopy operating instructions. The device has an integrated help function and displays operating instructions directly on screen.

Local operation

Display elements on panel-mounted device

Type

Wide-screen TFT color graphic display (optionally with touch control)

Size (diagonal screen measurement)

178 mm (7”)

Resolution

Wide VGA 384,000 pixels (800 x 480 pixels)

Backlight

50,000 h half value time (= half brightness)

Number of colors

262,000 viewable colors, 256 colors used

Viewing angle

Max. viewing angle range: 50° in all directions from the display central axis

Screen display

- Users can choose between black or white for the background color
- Active channels can be assigned to up to 10 groups. These groups can be given a name, e.g. “Temp. boiler 1” or “Daily averages” so that they can be uniquely identified.
- Scales linear or logarithmic
- Measured value history: quick retrieval of historic data with zoom function
- Pre-formatted display formats, such as horizontal or vertical curves, instrument display, circular chart, process screen, bargraph or digital display.
Measured value display and operating elements

Measured value display and operating elements on panel-mounted device

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Operating function (display mode = display of measured values) (Setup mode = operation in the Setup menu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Slot for SD card</td>
</tr>
<tr>
<td>b</td>
<td>USB B socket "Function" e.g. to connect to PC or laptop</td>
</tr>
<tr>
<td>c</td>
<td>USB A socket "Host" e.g. for USB memory stick, external keyboard, barcode reader or printer</td>
</tr>
<tr>
<td>d</td>
<td>LED at SD slot. Yellow LED lit or flashing when the device writes to the SD card or reads it. Do not remove the SD card if the LED is lit or flashing! Risk of data loss!</td>
</tr>
</tbody>
</table>

1. **Navigator**: jog/shuttle dial for operating with additional press/hold function.
 - In display mode: turn the dial to switch between the various signal groups. Press the dial to display the main menu.
 - In setup mode or in a selection menu: turn the dial anticlockwise to move the bar or the cursor upwards or to the left, changes the parameter. Turning clockwise moves the bar or cursor down or to the right, changes the parameter. Press = select highlighted function, start parameter change (ENTER key).

2. Functions of LED indicators (according to NAMUR NE44:)
 - Green LED (top) lit: power supply OK
 - Red LED (bottom) flashing: maintenance required, caused by external factor (e.g. cable open circuit etc.) or a message/notification requiring acknowledgment is pending, calibration is running.

3. Variable "soft keys" 1-4 (from left to right)

4. Function indicator of "soft keys"

5. In display mode: current group name, type of analysis;
 - In setup mode: name of the current operating item (dialog title)

6. In display mode: displays current date/time
 - In setup mode: --
Technical data

Memograph M, RSG45

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Operating function (display mode = display of measured values) (Setup mode = operation in the Setup menu)</th>
</tr>
</thead>
</table>
| 7 | In display mode: user ID (if function is active)
In setup mode: -- |
| 8 | In display mode: alternating display indicating the percentage space on the SD card or USB stick that has already been used
Status symbols are also displayed in alternation with the memory information (e.g. simulation mode, data storage active, operation lock, batch active)
In setup mode: the current 'direct access' operating code is displayed |
| 9 | In display mode: window for measured value display (e.g. curve display).
Display of current measured values and the status in the event of an error/alarm condition. In the case of counters, the type of counter is displayed as a symbol.
If a measuring point has limit value status, the corresponding channel identifier is highlighted in red (quick detection of limit value violations). During a limit value violation and device operation, the acquisition of measured values continues uninterrupted.
In setup mode: display of operating menu |
| 10 | In display mode: alternating status display (e.g. set zoom range) of the analog or digital inputs in the appropriate color of the channel.
In setup mode: different information is displayed here depending on the display type. |

Operating elements of the DIN rail version

![Device front of the DIN rail version](image)

27 Device front of the DIN rail version

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Operating function</th>
</tr>
</thead>
</table>
| 1 | DIP switches
The behavior of the Ethernet interface is configured via DIP switches (left = OFF, right = ON).
For a detailed description of the DIP switch functions → 50
Function of the DIP switches (1 = top, 12 = bottom):
- DIP switches 1-8: configuration of IP address in last octet (e.g. 192.168.1.212)
- DIP switch 9:
 OFF = setup change not locked
 ON = setup locked
- DIP switch 10:
 OFF = default / OFF
 ON = service addressing
- DIP switch 11 for the configuration of the USB-B interface:
 OFF = USB standard
 ON = Ethernet via USB (Web server)
- DIP switch 12: not assigned

The DIN rail version is supplied with the following Ethernet settings:
IP address: 192.168.1.212; subnet mask: 255.255.255.0; gateway: 0.0.0.0 |
| 2 | Ethernet interface |
Technical data

Item No. Operating function

3. USB B socket "Function" e.g. to connect to PC or laptop

4. Functions of LED indicators (according to NAMUR NE44):
 - Green LED (top) lit: power supply OK
 - Red LED (bottom) flashing: maintenance required, caused by external factor (e.g. cable open circuit etc.) or a message/notification requiring acknowledgment is pending, calibration is running.

5. Cyclic storage is completed via the "Remove SD card safely" button, the LED (d) goes out. The SD card can now be removed.
 - If the SD card is not removed within 5 minutes, the write cycles start again.

6. USB A socket "Host" e.g. for USB memory stick or printer
 - If a USB stick is inserted, data that have not yet been saved are copied to the stick automatically. The red LED on the USB socket flashes while the data are being copied to the stick.
 - **Do not remove the USB stick when the red LED is flashing! Risk of data loss!**
 - If an error occurs (e.g. USB stick full or defective), the red LED is lit constantly. Remove the USB stick and replace it.

7. LED at SD slot. Yellow LED lit or flashing when the device writes to the SD card or reads it.
 - **Do not remove the SD card if the LED is lit or flashing! Risk of data loss!**

8. Slot for SD card

9. Anybus® interface (option)

10. Serial RS232/RS485 interface

Languages

The following languages can be selected in the operating menu: German, English, Spanish, French, Italian, Dutch, Swedish, Polish, Portuguese, Czech, Russian, Japanese, Chinese (Traditional), Chinese (Simplified)

Remote operation

Device access via operating tools

Device configuration and measured value retrieval can also be done via interfaces. The following operating tools are available for this purpose:

<table>
<thead>
<tr>
<th>Operating tool</th>
<th>Functions</th>
<th>Access via</th>
</tr>
</thead>
</table>
| "Field Data Manager (FDM)", analysis software, SQL database support (included in the delivery) | • Export of saved data (measured values, analyses, event log)
• Visualization and processing of saved data (measured values, analyses, event log)
• Safe archiving of exported data in a SQL database | RS232/RS485, USB, Ethernet |
| Web server (integrated into the device; access via browser) | • Display of current and historical data and measured value curves via the Web browser
• Easy configuration without additional installed software
• Remote access to device and diagnostic information | Ethernet, or Ethernet via USB |
| OPC server (optional) | The following momentary values can be provided:
• Analog channels
• Digital channels
• Mathematics
• Totalizer | RS232/RS485, USB, Ethernet |
| "FieldCare / DeviceCare configuration software | • Device configuration
• Loading and saving of device configurations (upload/download)
• Documentation of the measuring point | USB, Ethernet |
16.10 Certificates and approvals

For certificates and approvals valid for the device: see the data on the nameplate

Approval-related data and documents: www.endress.com/deviceviewer → (enter the serial number)

<table>
<thead>
<tr>
<th>CE mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>The product meets the requirements of the harmonized European standards. As such, it complies with the legal specifications of the EC directives. The manufacturer confirms successful testing of the product by affixing to it the CE-mark.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electronic recording/electronic signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDA 21 CFR Part 11</td>
</tr>
<tr>
<td>The device meets the requirements of the "Food and Drug Administration" for electronic recording/electronic signature.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Certifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>• HART® certification (HCF)</td>
</tr>
<tr>
<td>• PROFINET certification</td>
</tr>
<tr>
<td>• EtherNet/IP certification</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other standards and guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>• IEC 60529:</td>
</tr>
<tr>
<td>Degrees of protection provided by enclosures (IP code)</td>
</tr>
<tr>
<td>• IEC/EN 61010-1:</td>
</tr>
<tr>
<td>Safety requirements for electrical equipment for measurement, control, and laboratory use</td>
</tr>
<tr>
<td>• IEC/EN 61326 series:</td>
</tr>
<tr>
<td>Electromagnetic compatibility (EMC requirements)</td>
</tr>
</tbody>
</table>

16.11 Ordering information

The hazardous area version (Ex version) is only available in conjunction with the stainless steel front and touch control.

Ordering information

Detailed ordering information is available for your nearest sales organization www.addresses.endress.com or in the Product Configurator under www.endress.com:

1. Click Corporate
2. Select the country
3. Click Products
4. Select the product using the filters and search field
5. Open the product page

The Configuration button to the right of the product image opens the Product Configurator.

Product Configurator - the tool for individual product configuration

• Up-to-the-minute configuration data
• Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
• Automatic verification of exclusion criteria
• Automatic creation of the order code and its breakdown in PDF or Excel output format
• Ability to order directly in the Endress+Hauser Online Shop
Scope of delivery

The scope of delivery of the device comprises:

- Device (with terminals, as per order)
- Panel-mounted device: 2 screw fastening clips
- Version with navigator and front interfaces or DIN rail version: USB cable
- Panel-mounted device: sealing rubber towards the panel wall
- "Industrial Grade" SD card, industry standard:
 - Panel-mounted device with navigator and front interfaces: card is located in the SD slot behind the flap on the front of the device (optional).
 - Panel-mounted device with stainless steel front and touchscreen: card is located in the device and cannot be replaced or retrofitted.
 - DIN rail version: card is located in the SD slot (optional).
- "Field Data Manager (FDM)" analysis software on DVD (Essential, Demo or Professional version, depending on order)
- Delivery note
- Multilanguage Brief Operating Instructions, hard copy
- Ex Safety Instructions, hard copy (optional)

16.12 Supplementary documentation

Standard documentation

- Technical Information for Memograph M RSG45: TI01180R
- Operating Instructions for Memograph M RSG45: BA01338R
- Brief Operating Instructions for Memograph M RSG45: KA01177R
- System components and data manager - solutions to complete your measuring point: FA00016K

Supplementary device-dependent documentation

- Competence brochure PROFIBUS® - process automation with digital fieldbus technology: CP00005S
- Operating Instructions for Memograph M RSG45 with telealarm: BA01387R
- Operating Instructions for Memograph M RSG45 with Modbus RTU / TCP slave: BA01388R
- Operating Instructions for Memograph M RSG45 with Modbus RTU / TCP master: BA01390R
- Operating Instructions for Memograph M RSG45 with wastewater + RSB (rain spillway basin) option: BA01337R
- Operating Instructions for Memograph M RSG45 with batch software: BA01411R
- Operating Instructions for Memograph M RSG45 with energy option: BA01412R
- Operating Instructions for Memograph M RSG45 with EtherNet/IP® adapter: BA01413R
- Operating Instructions for Memograph M RSG45 with PROFIBUS® DP slave: BA01414R
- Operating Instructions for Memograph M RSG45 with PROFINET: BA01415R
- Operating Instructions for Memograph M RSG45 with TrustSens Calibration Monitoring: BA01887R
- Ex-related additional documentation:
 - ATEX II2G Ex px IIC T4 Gb, ATEX II2D Ex pD IIC T135°C Db: XA01362R
17 Appendix

17.1 Operating items in the "Expert" menu

The parameter groups for the Expert setup contain all the parameters of the operating menus: System, Input and Output Setup, Communication, Application, Diagnostics as well as other parameters that are reserved for experts only.

For most settings, the 'Setup' or 'Expert' menu must be quit before the settings are adopted. However settings such as the date/time are accepted immediately.

Information on configuration using FieldCare/DeviceCare configuration software
- Offline configuration: Most of the parameters are available (depending on the device configuration).
- Online configuration: Only parameters labeled 'Online configuration' are available.

Direct access

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Direct access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Direct access to active operating items (rapid access). Entering the direct access code takes you directly to the desired operating parameter. The direct access code is displayed in the Setup menu on the top right of the display (e.g. 000000-000).</td>
</tr>
<tr>
<td>Text entry</td>
<td>(e.g. 000000-000)</td>
</tr>
</tbody>
</table>

17.1.1 "System" submenu

Basic settings that are needed to operate the device (e.g. date, time, etc.)

Language

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access code:</td>
<td>010000-000</td>
</tr>
<tr>
<td>Description</td>
<td>Select the operating language of the device.</td>
</tr>
<tr>
<td>Selection</td>
<td>German, English, Spanish, French, Italian, Dutch, Polish, Portuguese, Russian, Swedish, Czech, Japanese, Chinese (Simplified), Chinese (Traditional)</td>
</tr>
<tr>
<td>Factory setting</td>
<td>English; or preset to customer's preferred language</td>
</tr>
</tbody>
</table>

Device tag

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Device tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access code:</td>
<td>000031-000</td>
</tr>
<tr>
<td>Description</td>
<td>Individual device tag</td>
</tr>
</tbody>
</table>
User entry
Text entry (max. 32 characters)

Factory setting
Unit 1

Temp. unit

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Temp. unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access code</td>
<td>100001-000</td>
</tr>
</tbody>
</table>

| Description | Selection of temperature unit. All directly connected thermocouples or resistance thermometers (RTD) are displayed in the preset engineering units. |
| Selection | °C, °F, K |

| Factory setting | °C |

Decimal separator

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Decimal separator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access code</td>
<td>100003-000</td>
</tr>
</tbody>
</table>

| Description | Select in which form the decimal separator character is to be displayed. |
| Selection | Comma, point |

| Factory setting | Comma |

Fault switching

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Fault switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access code</td>
<td>100002-000</td>
</tr>
</tbody>
</table>

Description	If the device detects a system error (e.g. hardware defect) or a fault (e.g. cable open circuit), the selected output switches.
Selection	Not used, Relay x
	All the available relays are displayed.

| Factory setting | Relay 1 |

Keyboard layout

- This function is **not** supported by the **DIN rail version**.
Appendix

Memograph M, RSG45

Navigation

Expert → System → Keyboard layout
Direct access code: 100020/000

Description
Please select the keyboard layout. Only relevant if external keyboard is used.

Selection
Germany, Switzerland, France, USA, USA International, UK, Italy

Factory setting
Germany

Swap mouse buttons

⚠️ This function is not supported by the DIN rail version.

Navigation

Expert → System → Swap mouse buttons
Direct access code: 100050/000

Description
Swap function of left and right mouse button.

Selection
No, Yes

Factory setting
No

Paper size

Navigation

Expert → System → Paper size
Direct access code: 540004/000

Description
Please select the paper size of your printer.

Selection
DIN A4, US Letter

Factory setting
DIN A4

Lock operation

⚠️ This function is not supported by the DIN rail version.

Navigation

Expert → System → Lock operation
Direct access code: 100060/000

Description
Local operation is locked in cases of inactivity once the set time has elapsed to prevent inadvertent operation (e.g. when cleaning the device). The device is unlocked by pressing the navigator or the OK operating key for 3 s. When using an external keyboard, the device is unlocked with the key combination "Ctrl-Alt-Del".
Selection
Never, After 2 (5, 10, 15) minutes

Factory setting
After 5 minutes

LED mode

Navigation
Expert → System → LED mode
Direct access code: 100005/000

Description
NAMUR NE 44+: As per NAMUR NE 44, with red LED in the event of a limit value violation.

Selection
NAMUR NE 44, NAMUR NE 44+

Factory setting
NAMUR NE 44

PRESET

Navigation
Expert → System → PRESET
Direct access code: 000044-000

Description
Caution: Resets all the parameters to the factory settings!

Only visible/editable if the service code has been entered.

Selection
No, Factory reset, Customer setting

Clear memory

Navigation
Expert → System → Clear memory
Direct access code: 059000-000

Description
Delete internal memory

Note: In the version with stainless steel front and touchscreen the internal SD card is also cleared.

Selection
No, Yes

Confirm deletion
Appendix

Memograph M, RSG45

Navigation

`Expert → System → Confirm deletion`

Direct access code: 059001-000

Description

Please confirm that you want to clear the memory.

Selection

No, Yes

Factory setting

No

"Date/time setup" (submenu)

Navigation

`Expert → System → Date/time setup`

Description

Contains settings for date/time.

Date format

Navigation

`Expert → System → Date/time setup → Date format`

Direct access code: 110000-000

Description

Select in which format the date is to be set and displayed.

Selection

DD.MM.YYYY, MM/DD/YYYY, YYYY-MM-DD

Factory setting

DD.MM.YYYY

Time format

Navigation

`Expert → System → Date/time setup → Time format`

Direct access code: 110001-000

Description

Select in which format the time is to be set and displayed.

Selection

24 hour, 12 hour AM/PM

Factory setting

24 hour

"Date/time" submenu

(Online configuration)

Navigation

`Expert → System → Date/time setup → Date/time`

Description

Contains parameters for setting the date/time.
UTC time zone
(Online configuration)

Navigation
Expert → System → Date/time setup → Date/time → UTC time zone
Direct access code: 120000-000

Description
Display of the current UTC time zone is on (UTC = universal time coordinated).

Current date/time
(Online configuration)

Navigation
Expert → System → Date/time setup → Date/time → Current date/time
Direct access code: 120003-000

Description
Displays the current date and the current time.

"Change date/time" submenu
(Online configuration)

Description
Contains parameters for changing the date/time.

Navigation
Expert → System → Date/time setup → Change date/time

UTC time zone
(Online configuration)

Navigation
Expert → System → Date/time setup → Date/time → Change date/time → UTC time zone
Direct access code: 120010-000

Description
Set your UTC time zone (UTC = universal time coordinated).

Selection
-12:00, -11:00: Samoa, -10:00: Hawaii, -09:30: Marquesas, -09:00: Alaska, -08:00: LA, -07:00: Denver, -06:00: Chicago, -05:00: New York, -04:00: Caracas, -03:30: St.John’s, -03:00: Brasilia, -02:00: Atlantic, -01:00: Azores, +00:00: London, +01:00: Berlin, +02:00: Cairo, +03:00: Moscow, +03:30: Tehran, +04:00: Abu Dhabi, +04:30: Kabul, +05:00: Islamabad, +05:30: New Delhi, +05:45: Kathmandu, +06:00: Dhaka, +06:30: Pyinmana, +07:00: Bangkok, +08:00: Peking, +08:45, +09:00: Tokyo, +09:30: Adelaide, +10:00: Canberra, +10:30: Lord-Howe, +11:00:Solom.Isl., +11:30: Norfolk, +12:00: Auckland, +12:45: Chatham, +13:00, +14:00

Date/time
(Online configuration)
Appendix

Navigation

Expert → System → Date/time setup → Date/time → Change date/time → Date/time
Direct access code: 120013-000

Description
Set the current date and time for the unit here.

User entry
Date/time in set format

"NT/ST changeover" submenu

Navigation

Expert → System → Date/time setup → NT/ST changeover

Description
Contains settings for normal time/summer time changeover.

NT/ST changeover

Navigation

Expert → System → Date/time setup → NT/ST changeover → NT/ST changeover
Direct access code: 110002-000

Description
Function for summer/normal time changeover.
Automatic: Changes to the local regional regulations;
Manual: Changeover times can be set in the following addresses;
Off: No changeover times required.

Selection
Off, Manual, Automatic

Factory setting
Automatic

NT/ST region

Navigation

Expert → System → Date/time setup → NT/ST changeover → NT/ST region
Direct access code: 110003-000

Description
Selects the regional settings for summer/normal time changeover.
Only visible if NT/ST changeover = Automatic.

Selection
Europe, USA

Factory setting
Europe

Begin summer time

Occurrence
| **Navigation** | Expert → System → Date/time setup → NT/ST changeover → Occurrence
| Direct access code: 110005-000 |
| **Description** | Day, when in the spring a change from normal to summer time occurs.
| **Selection** | 1., 2., 3., 4., Last |
| **Factory setting** | Last |

Day

| **Navigation** | Expert → System → Date/time setup → NT/ST changeover → Day
| Direct access code: 110006-000 |
| **Description** | Day, when in the spring a change from normal to summer time occurs.
| **Selection** | Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday |
| **Factory setting** | Sunday |

Month

| **Navigation** | Expert → System → Date/time setup → NT/ST changeover → Month
| Direct access code: 110007-000 |
| **Description** | Month, when in the spring a change from normal to summer time occurs.
| **Selection** | January, February, March, April, May, June, July, August, September, October, November, December |
| **Factory setting** | March |

Date

| **Navigation** | Expert → System → Date/time setup → NT/ST changeover → Date
| Direct access code: 110008-000 |
| **Description** | Date next spring when a change from normal to summer time occurs.
Only visible if NT/ST changeover = Automatic or Manual. Cannot be edited. |
Time

Navigation

Expert → System → Date/time setup → NT/ST changeover → Time
Direct access code: 110009-000

Description

Time at which the changeover from normal time to summer time is forwarded by one hour (format: hh:mm).

User entry

Time in set time format

Factory setting

02:00

End summer time

Occurrence

Navigation

Expert → System → Date/time setup → NT/ST changeover → Occurrence
Direct access code: 110011-000

Description

Day, when in the autumn a change from summer to normal time occurs.

Selection

1., 2., 3., 4., Last

Factory setting

Last

Day

Navigation

Expert → System → Date/time setup → NT/ST changeover → Day
Direct access code: 110012-000

Description

Day, when in the autumn a change from summer to normal time occurs.

Selection

Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday

Factory setting

Sunday
Month

Navigation
Expert → System → Date/time setup → NT/ST changeover → Month
Direct access code: 110013-000

Description
Month, when in the autumn a change from summer to normal time occurs. Visible for NT/ST changeover = Automatic or Manual. Only editable if NT/ST changeover = Manual.

Selection
January, February, March, April, May, June, July, August, September, October, November, December

Factory setting
October

Date

Navigation
Expert → System → Date/time setup → NT/ST changeover → Date
Direct access code: 110014-000

Description
Date next autumn when summer time changes back to normal time. Only visible if NT/ST changeover = Automatic or Manual. Cannot be edited.

Time

Navigation
Expert → System → Date/time setup → NT/ST changeover → Time
Direct access code: 110015-000

Description
Time at which the changeover from summer time to normal time is turned back by one hour (in the set time format). Visible for NT/ST changeover = Automatic or Manual. Only editable if NT/ST changeover = Manual.

User entry
Time in set time format

Factory setting
02:00

“SNTP” submenu

Navigation
Expert → System → Date/time setup → SNTP

Description
Contains settings for time synchronization using the Simple Network Time Protocol (SNTP).
SNTP

Navigation
Expert → System → Date/time setup → SNTP
Direct access code: 110020-000

Description
If switched on, time synchronization is carried out via SNTP once a day.
Note: Only possible via Ethernet.
Port 123 must be open in the firewall. The user/network administrator is responsible for the accuracy of the time server.

Selection
No, Yes

Factory setting
No

SNTP server 1

Navigation
Expert → System → Date/time setup → SNTP server → SNTP server 1
Direct access code: 110021-000

Description
Please specify the address of the time server (or the IP address).
Note: The DNS server must be configured (see Communication/Ethernet).
Your administrator can provide the address where necessary.

User entry
Text field

SNTP server 2

Navigation
Expert → System → Date/time setup → SNTP server → SNTP server 2
Direct access code: 110025-000

Description
Shows the IP address of the time server if it was automatically allocated via DHCP. Non-editable display text.
An attempt is always made to synchronize the time via SNTP server 1 first (provided it is configured)
DHCP must be switched on (see Communication/Ethernet).
DHCP server: Option 42

"Security" submenu

Navigation
Expert → System → Security

Description
Contains settings that protect the device against unauthorized operation and configuration.
Protected by

Navigation
- Expert → System → Security → Protected by
- Direct access code: 100000-000

Description
Configure how the device should be protected.

Selection
- Open access, access code, FDA 21 CFR Part 11, user roles

Factory setting
- Open access

Access code

Navigation
- Expert → System → Security → Access code
- Direct access code: 100000-000

Description
Using this code, setup access can be protected from unauthorized persons. In order to change any parameter the correct code must be entered. Factory setting: "0", i.e. changes can be made at any time.

Hint: Make a note of the code and store in a safe place.

Only visible if "Protected by" = "Access code"

User entry
- 4-digit number

Factory setting
- 0

Set point code

Navigation
- Expert → System → Security → Set point code
- Direct access code: 100030-000

Description
If the unit is protected by an access code a set point code can also be defined. The user can change the set points once the set point code is entered. All other operating positions remain locked, however.

Only visible if an activation code has been defined.

Factory default: "0" means that alarm set points can only be changed by entering the access code.

⚠️ Alarm set point code and access code should not be identical!

User entry
- 4-digit number

Factory setting
- 0
Lock hardware

Navigation

- Expert → System → Security → Lock hardware
- Direct access code: 100099-000

Description

Device functions/interfaces that are not used can be switched off for security reasons.

Fieldbus systems may also be affected in the case of Ethernet or the serial interface. Please follow the operating instructions.

Selection

Panel version: Ethernet (all ports/services), USB A socket front, USB A socket back, USB B socket front, serial interface, SD card
DIN rail version: Ethernet (all ports/services), USB A socket, USB B socket, serial interface, SD card

Factory setting

No lock

"Authentication" submenu

Navigation

- Expert → System → Security → Authentication

Description

Define the passwords for the various user roles to allow device access. Only visible if "Protected by" = "User roles"

Operator

| ID: operator
| Password |

Navigation

- Expert → System → Security → Authentication → Password
- Direct access code: 470105/000

Description

Enter a password for this user account.

Selection

Text entry max. 12 characters

Factory setting

operator

Administrator

| ID: admin
| Password |

Navigation

- Expert → System → Security → Authentication → Password
- Direct access code: 470102/000

Description

Enter a password for this user account.
Selection
Text entry max. 12 characters

Factory setting
admin

Service ID: service

Password

Navigation
Expert → System → Security → Authentication → Password
Direct access code: 470101/000

Description
Enter a password for this user account.

Selection
Text entry max. 12 characters

Factory setting
service

"External memory" submenu

Navigation
Expert → System → External memory

Description
Settings for the external data carrier, amongst other things which data is to be stored in which format on the external data carrier.

Save as

Navigation
Expert → System → External memory → Save as
Direct access code: 140000-000

Description
"Protected format": All data is stored in a manipulation protected encrypted format. This data can only be visualized by the PC analysis software supplied.
"Open format": Data is stored in a CSV format, this can be opened by a number of different programs (for e.g. MS Excel) (Attention: no manipulation security).

Selection
Protected format, Open format (*.csv)

Note: For the device version with stainless steel front and touch operation, only the selection "Protected format" is possible!

Factory setting
Protected format

SD card
Memory build-up

Navigation

Expert → System → External memory → Memory build-up
Direct access code: 140001-000

Description

"Stack memory": No more data can be stored once the data carrier is full.
"Ring memory": Once the data carrier is full the oldest data is deleted so that new data can be stored (First in first out (FIFO)).

The "Ring memory" setting refers only to the automatic storage of measured values. Manual save functions ("Operation -> SD card -> Update/Save measured values") are not affected.

Selection

Stack memory, Ring memory (FIFO)

"Ring memory" can be selected only if "Save as" is set to "Protected format" (and not "CSV").

Factory setting

Stack memory

Warning at

Navigation

Expert → System → External memory → Warning at
Direct access code: 140005-000

Description

Issues a warning before the data carrier is x% full.
A warning is indicated on the device and this is also stored in the event buffer.
A relay can also be switched.

Only for external SD card (does not apply to USB stick)!

User entry

0 to 99%

Factory setting

90

Switches relay

Navigation

Expert → System → External memory → Switches relay
Direct access code: 140006-000

Description

When the warning "Data carrier full" is displayed a relay can also be switched on.

Selection

Not used, Relay x
All the available relays are displayed.

Factory setting

Not used
CSV settings

Also configurable if 'Protected format' is set.

Separator for CSV

Navigation
- Expert → System → External memory → Separator for CSV
- Direct access code: 140002-000

Description
Configure which separator is used by your application (e.g. in Excel = semicolon).

Selection
Comma, Semicolon

Factory setting
Semicolon

Date/time

Navigation
- Expert → System → External memory → Date/time
- Direct access code: 140003-000

Description
Please select if the date and time should be stored in one column or separate columns when data is saved in CSV format files.

Selection
One column, Separate columns

Factory setting
Separate columns

Operational time

Navigation
- Expert → System → External memory → Operational time
- Direct access code: 140004-000

Description
Please select in which format operation times will be stored/displayed.

Selection
0 seconds, 0.0000 hours, 0.00000 days, 0000h00:00

Factory setting
0000h00:00

"Messages" submenu

Navigation
- Expert → System → Messages
Acknowledging messages

Navigation

- Expert → System → Messages → Acknowledging messages
- Direct access code: 100040-000

Description

The time the message is acknowledged can be saved in the events list.

This setting cannot be altered if the user administration system is activated (FDA 21 CFR Part 11).

Selection

- Do not save, Save

Factory setting

- Do not save

Switches relay

Navigation

- Expert → System → Messages → Switches relay
- Direct access code: 100042-000

Description

A relay can be switched as soon as a message that has to be confirmed is displayed (e.g. on/off message, device errors etc.). The relay takes the initial state as soon as all messages have been confirmed.

Selection

- Not used, Relay x

Factory setting

- Not used

This function is **not** supported by the **DIN rail version**.

Navigation

- Expert → System → Screensaver

Description

To increase the life span of the LCD the rear illumination can be switched off (= screensaver).
Navigation

Expert → System → Screensaver → Screensaver
Direct access code: 160000-000

Description

"Switched off": LCD is always switched on.
“Switch on for x min.”: Display goes dark after x minutes. All other functions remain in operation. Press an operating key: Illumination is switched back on.
"Switched daily": Enter time span.

Selection

Switched off, On after 10 min, On after 30 min, On after 60 min, Switched daily, Control input

Factory setting

Switched off
This setting has no effect if the screensaver is controlled by a digital input.

ON daily from

Navigation

Expert → System → Screensaver → ON daily from
Direct access code: 160001-000

Description

Set time (hh:mm) as of when the screensaver should be switched on (e.g. shift end time).

The screensaver is switched off as soon as the device is operated via onsite operation. After 1 min of inactivity it switches back on automatically.

Only visible if screensaver = Switched daily

User entry

Time (hh:mm)

Factory setting

20:00

OFF daily from

Navigation

Expert → System → Screensaver → OFF daily from
Direct access code: 160002-000

Description

Set time (hh:mm) as of when the screensaver should be switched off (e.g. shift start time).

Only visible if screensaver = Switched daily

User entry

Time (hh:mm)

Factory setting

07:00

Alarm response

Navigation

Expert → System → Screensaver → Alarm response
Direct access code: 160003-000
Appendix

Memograph M, RSG45

Description

"Off on alarm": If limit value violations occur or status signal "Maintenance required (Mxxx)" or "Function check (Cxxx)" is active, the screensaver will be automatically deactivated.

"Always on": If limit value violations occur or status signal "Maintenance required (Mxxx)" or "Function check (Cxxx)" is active, the screensaver will not be deactivated.

Active messages that require acknowledgment or an active status signal "Failure (Fxxx)" or "Out of specification (Sxxx)" deactivate the screensaver always.

Selection

Off on alarm, Always on

Factory setting

Off on alarm

Barcode reader **submenu**

This function is not supported by the DIN rail version.

Navigation

Expert → System → Barcode reader

Description

Settings for barcode reader (only relevant if a USB barcode reader is connected to the device).

Notes on operating a barcode reader: it must behave like a HID keyboard; texts must be terminated with a carriage return.

Character set

Navigation

Expert → System → Barcode reader → Character set

Direct access code: 100021-000

Description

Please select the keyboard layout.

Selection

Germany, Switzerland, France, USA, USA International, UK, Italy

Factory setting

Germany

Save as event

Navigation

Expert → System → Barcode reader → Save as event

Direct access code: 100022-000

Description

The device can save texts read in using a barcode reader in the events list.

Texts are stored as events if one of the following conditions is NOT met:

- A command sequence was read in
- The dialog where batch information is input is active
- The dialog for testing the barcode reader is active
- The "Save text" function is executed

Selection

No, Yes
Timeout sequences

Navigation
- Expert → System → Barcode reader → Timeout sequences
 Direct access code: 100023-000

Description
Specify the number of seconds after which a command sequence is canceled if the necessary data are not read in.

User entry
Time in seconds (10-180)

Factory setting
30

"Device options" submenu

Navigation
- Expert → System → Device options

Description
Hardware and software options of the device.

Activation code
(Online configuration)

Navigation
- Expert → System → Device options → Activation code
 Direct access code: 000057-000

Description
Here, you can enter a code to enable the device options.
The options that can be retrofitted are listed under "spare parts" → 95
Note: When an activation code is entered, the device is restarted in order to enable the new option.

- The activation code entered is not displayed, i.e. this parameter is always empty following a restart.
- Pay attention to case-sensitivity.

User entry
Text

Slot 1
(Online configuration)

Navigation
- Expert → System → Device options → Slot 1
 Direct access code: 990000-000
| Description | Shows hardware or software options.
| | Cannot be edited.
| | The assignment can be specified in the PC operating software for offline configuration. |
| Selection | Not assigned, Universal inputs, HART |

Slot 2
(Online configuration)

| Navigation | Expert → System → Device options → Slot 2
| | Direct access code: 990001-000 |
| Description | Shows hardware or software options.
| | Cannot be edited.
| | The assignment can be specified in the PC operating software for offline configuration. |
| Selection | Not assigned, Universal inputs, HART |

Slot 3
(Online configuration)

| Navigation | Expert → System → Device options → Slot 3
| | Direct access code: 990002-000 |
| Description | Shows hardware or software options.
| | Cannot be edited.
| | The assignment can be specified in the PC operating software for offline configuration. |
| Selection | Not assigned, Universal inputs, HART |

Slot 4
(Online configuration)

| Navigation | Expert → System → Device options → Slot 4
| | Direct access code: 990003-000 |
| Description | Shows hardware or software options.
| | Cannot be edited.
| | The assignment can be specified in the PC operating software for offline configuration. |
| Selection | Not assigned, Universal inputs, HART |
Slot 5
(Online configuration)

Navigation
Expert → System → Device options → Slot 5
Direct access code: 990004-000

Description
Shows hardware or software options.
Cannot be edited.

The assignment can be specified in the PC operating software for offline configuration.

Selection
Not assigned, Universal inputs, Digital inputs, HART

Communication
(Online configuration)

Navigation
Expert → System → Device options → Communication
Direct access code: 990006-000

Description
Shows hardware or software options.
Cannot be edited.

Selection
USB + Ethernet, USB + Ethernet + RS232/485

Fieldbus
(Online configuration)

Navigation
Expert → System → Device options → Fieldbus
Direct access code: 990005-000

Description
Shows hardware or software options.
Cannot be edited.

Selection
Not available, Modbus Slave, Profibus DP, EtherNet/IP, PROFINET

Modbus Master
(Online configuration)

Navigation
Expert → System → Device options → Modbus Master
Direct access code: 990008-000
Appendix

Memograph M, RSG45

Description
Shows hardware or software options.
Cannot be edited.

Detailed descriptions of this device option can be found in the associated documentation.

Selection
No, Yes

Application
(Online configuration)

Navigation
Expert → System → Device options → Application
Direct access code: 990007-000

Description
Shows hardware or software options.
Cannot be edited.

Selection
Standard, Maths, Telealarm, Telealarm + wastewater, Batch, Telealarm + batch, Energy, Energy + Telealarm

Front of housing
(Online configuration)

Navigation
Expert → System → Device options → Front of housing
Direct access code: 990009-000

Description
Shows hardware or software options.
Cannot be edited.

Selection
DIN rail; With interfaces; Stainless steel without interfaces

17.1.2 "Inputs" submenu
Settings for the analog and digital inputs.

"Universal inputs" submenu

Navigation
Expert → System → Inputs → Universal inputs

Description
Settings for the connected measuring points.

Add input

Navigation
Expert → System → Inputs → Universal inputs → Add input
Direct access code: 222000/000
Description
Addition of an input that must be switched on and configured according to the input signal.

Selection
No, Universal input x

Factory setting
No

Delete input

| Navigation | Expert → System → Inputs → Universal inputs → Delete input |
| Direct access code: | 222001/000 |

Description	Delete an input configuration.
Selection	No, Universal input x
Factory setting	No

"Universal input x" submenu

| Navigation | Expert → System → Inputs → Universal inputs → Universal input x |

| Description | View or change settings for the selected channel. |
| x = place holder for selected universal input |

Signal

| Navigation | Expert → Inputs → Universal inputs → Universal input x → Signal |
| Direct access code: | 220000-0xx |
| Examples: Universal input 1: 220000-000; Universal input 12: 220000-011 |

| Description | Select the type of signal connected (current, voltage, etc.). The channel is switched off if no signal type is selected (factory default). |

| Selection | Switched off, Current, Voltage, Resistance thermometer, Thermocouple, Pulse counter, Frequency input, Profibus DP (Option), Modbus Slave (option), Modbus Master (option), HART (option), EtherNet/IP (option), PROFINET (option) |

| Factory setting | Switched off |

Range
Navigation

Expert → Inputs → Universal inputs → Universal input x → Range
Direct access code: 220001-0xx
Examples: Universal input 1: 220001-000; Universal input 12: 220001-011

Description
Select the input range or which resistance thermometer/thermocouple is connected. The respective terminal layout can be found in the operating manual or on the rear of the unit. Only visible if signal ≠ Switched off

Selection
Switched off
Current: 4-20 mA, 0-20 mA, 0-5 mA, 0-20 mA squared, 4-20 mA squared, ±20 mA
Voltage: 0-1 V, 0-10 V, 0-5 V, 1-5 V, ±150 mV, ±1 V, ±10 V, ±30 V, 0-1 V squared, 0-10 V squared, 1-5 V squared
Resistence thermometer: Pt100 (IEC), Pt100 (JIS), Pt100 (GOST), Pt500 (IEC), Pt500 (JIS), Pt1000 (IEC), Pt1000 (JIS), Pt46 (GOST), Pt50 (GOST), Cu50 (GOST, a=4260), Cu50 (GOST, a=4280), Cu53 (GOST, a=4280), Cu100 (GOST, a=4280)
Thermocouple: Type A (W5Re-W20Re), type B (Pt30Rh-Pt6Rh), type C (W5Re-W26Re), type D (W3Re-W25Re), type J (Fe-CuNi), type K (NiCr-Ni), type L (Fe-CuNi), type L (NiCr-CuNi, GOST), type N (NiCrSi-NiSi), type R (Pt13Rh-Pt), type S (Pt10Rh-Pt), type T (Cu-CuNi)
Pulse counter
Frequency input
Profibus DP (option)
Modbus (option)
Modbus Master (option)
HART (option)
EtherNet/IP (option)
PROFINET (option)

Factory setting
Switched off

Value

Navigation

Expert → Inputs → Universal inputs → Universal input x → Value
Direct access code: 220023-0xx
Examples: Universal input 1: 220023-000; Universal input 12: 220023-011

Description
Specify the value, which was read out digitally via HART, that should be recorded/processed.
Only visible if signal = HART

Selection
Switched off, Value x
All the available values are displayed.

Factory setting
Switched off

Measured value type

Navigation

Expert → Inputs → Universal inputs → Universal input x → Measured value type
Direct access code: 220022-0xx
Examples: Universal input 1: 220022-000; Universal input 12: 220022-011
Description
Type of measured value received. Only visible if signal = HART or Modbus Master.

Selection
Instantaneous value, Counter

Factory setting
Instantaneous value

Connection

Navigation
Expert → Inputs → Universal inputs → Universal input x → Connection
Direct access code: 220002-0xx
Examples: Universal input 1: 220002-000; Universal input 12: 220002-011

Description
Specify whether RTDs are connected as 2-, 3- or 4-wire systems. Only visible if signal = Resistance thermometer

Selection
2-wire, 3-wire, 4-wire

Factory setting
4-wire

Transmission protocol

Navigation
Expert → Inputs → Universal inputs → Universal input x → Transmission protocol
Direct access code: 220049-0xx
Examples: Universal input 1: 220049-000; Universal input 12: 220049-011

Description
Modbus TCP: Addressing Modbus TCP slaves. Modbus TCP with slave address: Addressing gateways which use a table to link the address to the right slave. Modbus RTU via TCP: Transmission of the pure Modbus RTU protocol with CRC sum. Used in signal converters for Ethernet -> RS485. Only visible if signal = Modbus Master

Selection
Modbus TCP, Modbus TCP with slave address, Modbus RTU over TCP

Factory setting
Modbus TCP

IP address

Navigation
Expert → Inputs → Universal inputs → Universal input x → IP address
Direct access code: 220041-0xx
Examples: Universal input 1: 220041-000; Universal input 12: 220041-011

Description
Address of Modbus slave Only visible if signal = Modbus Master
User entry

<table>
<thead>
<tr>
<th>Description</th>
<th>User entry</th>
<th>Factory setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td></td>
<td>0.0.0.0</td>
</tr>
</tbody>
</table>

Port

Navigation

Expert → Inputs → Universal inputs → Universal input x → Port

Direct access code: 220048-0xx

Examples: Universal input 1: 220048-000; Universal input 12: 220048-011

Description

Modbus slave port

Only visible if signal = Modbus Master

User entry

Number (max. 5 digits)

Factory setting

502

Slave address

Navigation

Expert → Inputs → Universal inputs → Universal input x → Slave address

Direct access code: 220040-0xx

Examples: Universal input 1: 220040-000; Universal input 12: 220040-011

Description

Address of Modbus slave

Only visible if signal = Modbus Master

User entry

Number (1 to 255)

Factory setting

1

Readout function

Navigation

Expert → Inputs → Universal inputs → Universal input x → Readout function

Direct access code: 220042-0xx

Examples: Universal input 1: 220042-000; Universal input 12: 220042-011

Description

Modbus function with which the registers are to be read out.

Only visible if signal = Modbus Master

Selection

Read Input Register (3xxxxx), Read Holding Register (4xxxxx)

Factory setting

Read Input Register (3xxxxx)
Register address

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Register address
- Direct access code: 220043-0xx
- Examples: Universal input 1: 220043-000; Universal input 12: 220043-011

Description
Register address 1-65535
- Only visible if signal = Modbus Master

User entry
Number (1 to 65535)

Factory setting
1

Data type

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Data type
- Direct access code: 220044-0xx
- Examples: Universal input 1: 220044-000; Universal input 12: 220044-011

Description
Describes the data type of the value received and its sequence of bytes.
- Only visible if signal = Modbus Master

Selection
- INT16, UINT16, INT32_B, INT32_L, UINT32_B, UINT32_L, FLOAT_B, FLOAT_L, DOUBLE_B, DOUBLE_L

Factory setting
FLOAT_B

Channel ident.

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Channel ident.
- Direct access code: 220003-0xx
- Examples: Universal input 1: 220003-000; Universal input 12: 220003-011

Description
Name of the measuring point connected to this input.
- Only visible if signal ≠ Switched off

User entry
Text (16 characters)

Factory setting
Channel x

Plot type
Appendix

Memograph M, RSG45

Navigation

Expert → Inputs → Universal inputs → Universal input x → Plot type
Direct access code: 220016-0xx
Examples: Universal input 1: 220016-000; Universal input 12: 220016-011

Description

The analog inputs are scanned in a 100ms cycle. Dependent on the store cycle the selected data is selected, stored and displayed from the scanned values.

Selection

Instantaneous value, Average, Minimum value, Maximum value, Minimum + Maximum, Counter, Current value + Counter

Factory setting

Average

Time base

Navigation

Expert → Inputs → Universal inputs → Universal input x → Time base
Direct access code: 220025-0xx
Examples: Universal input 1: 220025-000; Universal input 12: 220025-011

Description

A current value can be determined from the counter reading with the aid of the time base e.g. input liters, time base = second → current value = liters/second.
Only visible if signal = "Pulse counter" and plot type = "Current value + Counter"

Selection

Second (s), Minute (min), Hour (h), Day (d)

Factory setting

Second (s)

Engineering unit

Navigation

Expert → Inputs → Universal inputs → Universal input x → Engineering unit
Direct access code: 220004-0xx
Examples: Universal input 1: 220004-000; Universal input 12: 220004-011

Description

Specify the technical (physical) unit for the measuring point connected to this input. Only visible if signal ≠ Switched off

User entry

Text (6 characters)

Unit/dimension counter

Navigation

Expert → Inputs → Universal inputs → Universal input x → Unit/dimension counter
Direct access code: 220024-00x
Examples: Universal input 1: 220024-000; Universal input 12: 220024-011

Description

Technical unit of the count input, e.g. gal, cf, Only visible if signal = "Pulse counter" and plot type = "Current value + Counter"
User entry
Text (max. 6 characters)

Pulse counter

Navigation
Expert → Inputs → Universal inputs → Universal input x → Pulse counter
Direct access code: 220017-0xx
Examples: Universal input 1: 220017-000; Universal input 12: 220017-011

Description
Specify whether the pulse counter is a fast or slow (up to max. 25 Hz) counter. For example if the number of state changes from a relay are to be monitored then you must set "up to 25Hz".
Only visible if signal = Pulse counter

Selection
Up to 13kHz, Up to 25Hz

Factory setting
Up to 13kHz

Pulse value

Navigation
Expert → Inputs → Universal inputs → Universal input x → Pulse value
Direct access code: 220010-0xx
Examples: Universal input 1: 220010-000; Universal input 12: 220010-011

Description
Factor, that when multiplied by the input signal results in the required physical value.
Example: 1 pulse equals 5 m³ -> enter a "5".
Only visible if signal = Pulse counter

User entry
Number, max. 8 digits

Factory setting
1

Calc. factor

Navigation
Expert → Inputs → Universal inputs → Universal input x → Calc. factor
Direct access code: 220045-0xx
Examples: Universal input 1: 220045-000; Universal input 12: 220045-011

Description
Factor for converting the counter (e.g. the transmitter returns m³/100 -> desired unit is m³ --> enter 0.01 as the factor)
Only visible if signal = Modbus Master

User entry
Number (max. 15 digits)

Factory setting
1.0
Decimal point

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Decimal point
- Direct access code: 220005-0xx
- Examples: Universal input 1: 220005-000; Universal input 12: 220005-011

Description
Number of places after decimal point for the display.
Only visible if signal ≠ Switched off

Selection
None, One (X.Y), Two (X.YY), Three (X.YYY), Four (X.YYYY), Five (X.YYYYY)

Factory setting
One (X.Y)

Start value range

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Start value range
- Direct access code: 220046-0xx
- Examples: Universal input 1: 220046-000; Universal input 12: 220046-011

Description
Scaling of the Modbus value
Here, enter the lower-range value for the scale which corresponds to the start of the measuring range.
Only visible if signal = Modbus Master

User entry
Number (max. 8 digits)

Factory setting
0

End value range

Navigation
- Expert → Inputs → Universal inputs → Universal input x → End value range
- Direct access code: 220047-0xx
- Examples: Universal input 1: 220047-000; Universal input 12: 220047-011

Description
Scaling of the Modbus value
Here, enter the upper-range value for the scale which corresponds to the end of the measuring range.
Only visible if signal = Modbus Master

User entry
Number (max. 8 digits)

Factory setting
100

Lower frequency
Lower frequency

Navigation
Expert → Inputs → Universal inputs → Universal input x → Lower frequency
Direct access code: 220018-0xx
Examples: Universal input 1: 220018-000; Universal input 12: 220018-011

Description
Configure the lower frequency that corresponds to the start of the measuring range.
Only visible if signal = Frequency input

User entry
0 to 12500 (Hz)

Factory setting
5.0 (Hz)

Range start

Navigation
Expert → Inputs → Universal inputs → Universal input x → Range start
Direct access code: 220006-0xx
Examples: Universal input 1: 220006-000; Universal input 12: 220006-011

Description
Transmitters convert the physical measured variable to standardized signals. Enter the start of the measuring range here.
- The start and end of the measuring range may not be identical.
- The start of the measuring range can also be larger than the end (e.g. for deep wells).
- The parameter can be defined independently of the number of decimal places configured for the measured value as these are only taken into consideration for the display.

User entry
Number (max. 8 digits)

Factory setting
0 (Depends on the input signal selected)

Upper frequency

Navigation
Expert → Inputs → Universal inputs → Universal input x → Upper frequency
Direct access code: 220019-0xx
Examples: Universal input 1: 220019-000; Universal input 12: 220019-011

Description
Configure the upper frequency that corresponds to the end of the measuring range.
Only visible if signal = Frequency input

User entry
0 to 12500 (Hz)

Factory setting
1000.0 (Hz)

Meas. range end
Description

Transmitters convert the physical measured variable to standardized signals. Enter the end of the measuring range here.

- The start and end of the measuring range may not be identical.
- The end of the measuring range can also be smaller than the start (e.g. for deep wells).
- The parameter can be defined independently of the number of decimal places configured for the measured value as these are only taken into consideration for the display.

User entry

Number (max. 8 digits)

Factory setting

100 (Depends on the input signal selected)

Zoom start

Description

If the whole value range is not used, you can configure the lower value of the required section here. The zoom has no influence on the storage.

- The zoom can also be set outside the measuring range. The only restriction is that the start and end of the zoom may not be identical.
- If the signal or the range is changed, the zoom is corrected if it no longer fits the measuring range.
- The zoom start can also be larger than the zoom end. The device will automatically rotate the values on the display.

User entry

Number (max. 8 digits)

Factory setting

0 (Depends on the input signal selected)

Zoom end

Description

Like 'Zoom start'. Enter the upper value of the required range here.

- The zoom can also be set outside the measuring range. The only restriction is that the start and end of the zoom may not be identical.
- If the signal or the range is changed, the zoom is corrected if it no longer fits the measuring range.
- The zoom end can also be smaller than the zoom start. The device will automatically rotate the values on the display.
User entry Number (max. 8 digits)

Factory setting 100 (Depends on the input signal selected)

Damping

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Damping
- Direct access code: 220008-0xx
- Examples: Universal input 1: 220008-000; Universal input 12: 220008-011

Description
The more unwanted interference there is on the measurement signal the higher the value that should be entered here. Result: Fast changes will be damped/suppressed.
Only visible if signal = Current, Voltage, Resistance thermometer or Thermocouple

User entry 0 to 999.9 s

Factory setting
- Current, voltage: 0.0 s
- Resistance thermometer, thermocouple: 0.2 s

Comparison point

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Comparison point
- Direct access code: 220013-0xx
- Examples: Universal input 1: 220013-000; Universal input 12: 220013-011

Description
Intern: Compensation of the voltage error by measuring the terminal temperature.
Extern: Compensation of the voltage error by using an external controlled comparison measurement point.
Only visible if signal = Thermocouple

Selection
Internal, External

Factory setting
Internal

Comparison temp.

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Comparison temp.
- Direct access code: 220014-0xx
- Examples: Universal input 1: 220014-000; Universal input 12: 220014-011

Description
Settings for the external comparison temperature (only when connecting thermocouples).
Only visible if comparison point = External

User entry 0 to 99999999 (Depends on the temperature unit selected)

Factory setting
0 (Depends on the temperature unit selected)
Totalizer
(Online configuration)

Navigation

> Expert → Inputs → Universal inputs → Universal input x → Totalizer

Direct access code: 220015-0xx

Examples: Universal input 1: 220015-000; Universal input 12: 220015-011

Description

Initial setting for the totalizer. Useful when continuing measurements recorded to date with an (electro)-mechanical counter.

Only visible if signal = Pulse counter or counter for Modbus Master

User entry

Number (max. 15 digits)

Factory setting

0

"Linearization" submenu

Navigation

> Expert → Inputs → Universal inputs → Universal input x → Linearization

Description

Contains settings for linearization.

Only current and voltage inputs can be linearized.

Linearization

Navigation

> Expert → Inputs → Universal inputs → Universal input x → Linearization → Linearization

Direct access code: 230000-0xx

Examples: Universal input 1: 230000-000; Universal input 12: 230000-011

Description

Specify whether this analog input should be linearized.

Selection

No, Yes

Factory setting

No

Number of points

Navigation

> Expert → Inputs → Universal inputs → Universal input x → Linearization → Number of points

Direct access code: 230001-0xx

Examples: Universal input 1: 230001-000; Universal input 12: 230001-011
Description
Specify how many support points your linearization table has.

Note: The first and last point must always correspond to the start and end of the measuring range respectively.

User entry
2 to 32

Factory setting
2

Dim. linearized value

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Linearization → Dim. linearized value
- Direct access code: 230002-0xx
- Examples: Universal input 1: 230002-000; Universal input 12: 230002-011

Description
Unit/dimension for the linearized value.

User entry
Text (max. 6 characters)

Zoom start

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Linearization → Zoom start
- Direct access code: 230003-0xx
- Examples: Universal input 1: 230003-000; Universal input 12: 230003-011

Description
If the total transmitter range is not used, you can enter the lower value of the required section here (higher resolution).
Example: Transmitter 0-14 pH, required section: 5-9 pH. Set "5" here. The zoom has no influence on the storage.

User entry
0 to 9999999

Factory setting
0

Zoom end

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Linearization → Zoom end
- Direct access code: 230004-0xx
- Examples: Universal input 1: 230004-000; Universal input 12: 230004-011

Description
Like "Zoom start". Enter the upper value of the required range here.
Example: Transmitter 0-14 pH, required section: 5-9 pH. Here: "9".

User entry
0 to 9999999

Factory setting
100
Points

Navigation

Expert → Inputs → Universal inputs → Universal input x → Linearization → Points

Description

Enter the support points of the linearization table here.
Note: The first and last point must always correspond to the start and end of the measuring range respectively. The support points can only be viewed in the PC software here. To change the support points use the "Edit table" switch.

Sort table

Navigation

Expert → Inputs → Universal inputs → Universal input x → Linearization → Points → Sort table
Direct access code: 230020-0xx
Examples: Universal input 1: 230020-000; Universal input 12: 230020-011

Description

You can sort the linearization table here.

Selection

No, Yes

Factory setting

No

Check table

Navigation

Expert → Inputs → Universal inputs → Universal input x → Linearization → Points → Check table
Direct access code: 230008-0xx
Examples: Universal input 1: 230008-000; Universal input 12: 230008-011

Description

Here you can check whether the linearization table has been entered correctly.

Selection

No, Yes

Factory setting

No

x-value (1 to 32)

Navigation

Expert → Inputs → Universal inputs → Universal input x → Linearization → Points → x-value (1 to 32)
Direct access code, x-value 1: 230100-0xx
Direct access code, x-value 2: 230102-0xx
Examples: Universal input 1, x-value 1: 230100-000; Universal input 12, x-value 1: 230100-011

Description

x-value for the linearization (value from the device input). e.g. 10 cm corresponds to 20 liters --> enter 10.

User entry

0 to 9999999
y-value (1 to 32)

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Linearization → Points → y-value (1 to 32)
- Direct access code, y-value 1: 230101-0xx
- Direct access code, y-value 2: 230103-0xx
- Examples: Universal input 1, y-value 1: 230101-000; Universal input 12, y-value 1: 230101-011

Description
Enter the y-value that the measured x-value corresponds to e.g. 10 cm corresponds to 20 liters --> enter 20.

User entry
0 to 9999999

Factory setting
0

"Meas.val. corrct." submenu

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Meas.val. corrct.

Description
Determining the correction values to balance measurement tolerances.

Proceed as follows:
- Measure the current value at the lower measurement range.
- Measure the current value at the upper measurement range.
- Enter the lower and upper target and actual value.

Offset

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Meas.val. corrct. → Offset
- Direct access code: 220050-0xx
- Examples: Universal input 1: 220050-000; Universal input 12: 220050-011

Description
This offset is only effective on the analog input signal (no maths/bus channels).
Only visible if signal = Resistance thermometer or Thermocouple

User entry
Number (max. 8 digits)

Factory setting
0

Correction RPT
Appendix

Navigation

- Expert → Inputs → Universal inputs → Universal input x → Meas.val. corrct. → Correction RPT
- Direct access code: 220057-0xx
- Examples: Universal input 1: 220057-000; Universal input 12: 220057-011

Description

Rear panel temperature correction value for this analog input (only required for thermocouples).

- Only visible/editable if the service code has been entered.

User entry

- Number (max. 8 digits)

Factory setting

- -3.0 for slot 1+2
- -3.2 for slot 3
- -3.5 for slot 4+5

Range start

Target value

- Expert → Inputs → Universal inputs → Universal input x → Meas.val. corrct. → Target value
- Direct access code: 220052-0xx
- Examples: Universal input 1: 220052-000; Universal input 12: 220052-011

Description

Enter the lower set point here (e.g. measuring range 0°C to 100°C: 0°C).

- Only visible if signal = Current or Voltage

User entry

- Number (max. 8 digits)

Factory setting

- 0

Actual value

- Expert → Inputs → Universal inputs → Universal input x → Meas.val. corrct. → Actual value
- Direct access code: 220053-0xx
- Examples: Universal input 1: 220053-000; Universal input 12: 220053-011

Description

Enter the lower value actually measured here (e.g. measuring range 0°C to 100°C: measured value 0.5°C).

- Only visible if signal = Current or Voltage

User entry

- Number (max. 8 digits)

Factory setting

- 0

168

Endress+Hauser
Meas. range end

Target value

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Meas.val. corrct. → Target value
- Direct access code: 220055-0xx
- Examples: Universal input 1: 220055-000; Universal input 12: 220055-011

Description
Enter the upper set point here (e.g. measuring range 0°C to 100°C: 100°C).
Only visible if signal = Current or Voltage

User entry
Number (max. 8 digits)

Factory setting
100

Actual value

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Meas.val. corrct. → Actual value
- Direct access code: 220056-0xx
- Examples: Universal input 1: 220056-000; Universal input 12: 220056-011

Description
Enter the upper value actually measured here (e.g. measuring range 0°C to 100°C: measured value 100.5°C).
Only visible if signal = Current or Voltage

User entry
Number (max. 8 digits)

Factory setting
100

"Totalization" submenu

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Totalization

Description
Set up only required for totalization of flow or power consumption.

Totalization

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Totalization → Totalization
- Direct access code: 220030-0xx
- Examples: Universal input 1: 220030-000; Universal input 12: 220030-011
Description
By totalizing the analog signal (e.g. flow rate in m³/h) quantities (in m³) can be calculated.

Selection
No, Yes

Factory setting
No

Totalization base

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Totalization → Totalization base
- Direct access code: 220031-0xx
- Examples: Universal input 1: 220031-000; Universal input 12: 220031-011

Description
Select the required time base. Example: ml/s → time base seconds (s); m³/h → time base hours (h).
Only visible if totalization = Yes

Selection
Second (s), Minute (min), Hour (h), Day (d)

Factory setting
Second (s)

Unit

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Totalization → Unit
- Direct access code: 220032-0xx
- Examples: Universal input 1: 220032-000; Universal input 12: 220032-011

Description
Enter the unit for the calculated quantity (e.g. "m³").
Only visible if totalization = Yes

User entry
Text (max. 6 characters)

Low flow cut off

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Totalization → Low flow cut off
- Direct access code: 220033-0xx
- Examples: Universal input 1: 220033-000; Universal input 12: 220033-011

Description
If the volume flow recorded is below the set value, these quantities are not added to the counter.
If the input is scaled from 0 to y, or if the pulse input is used, all values that are smaller than the set value are not recorded.
If the input is scaled from -x to +y, all values around the zero point (e.g. also negative values) are not recorded.
Only visible if totalization = Yes
User entry
Number (max. 8 digits)

Factory setting
0

Calc. factor

Navigation
Expert → Inputs → Universal inputs → Universal input x → Totalization → Calc. factor
Direct access code: 220034-0xx
Examples: Universal input 1: 220034-000; Universal input 12: 220034-011

Description
Factor for calculating the integrated value (e.g. the transmitter delivers l/s -> totalization base = second -> engineering unit required is m³ --> enter factor 0.001)
Only visible if totalization = Yes

User entry
Number (max. 8 digits)

Factory setting
1.0

Totalizer
(Online configuration)

Navigation
Expert → Inputs → Universal inputs → Universal input x → Totalization → Totalizer
Direct access code: 220035-0xx
Examples: Universal input 1: 220035-000; Universal input 12: 220035-011

Description
Initial setting for the totalizer. Useful when continuing measurements recorded to date with an (electro)-mechanical counter.
Only visible if totalization = Yes

User entry
Number (max. 15 digits)

Factory setting
0

"Fault mode" submenu

In the event of an error the alarm relay is switched if so configured → 131

Navigation
Expert → Inputs → Universal inputs → Universal input x → Fault mode

Description
Contains settings that define how this channel is to react under fault conditions (e.g. cable open circuit, over range).

NAMUR NE 43
Cable open circuit

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Fault mode → Cable open circuit
- Direct access code: 220060-0xx
- Examples: Universal input 1: 220060-000; Universal input 12: 220060-011

Description
- Cable open circuit detection
- Only visible if signal = "Voltage" and range = "1-5 V" or "1-5 V squared".

Selection
- Off, On

Factory setting
- On

Lower error value

Navigation
- Expert → Inputs → Universal inputs → Universal input x → Fault mode → Lower error value
- Direct access code: 220065-0xx
- Examples: Universal input 1: 220065-000; Universal input 12: 220065-011

Description
- When NE43 is switched off, defines the value that must be undershot for the device to output an error.
- Only visible if signal = "Current", range = "4-20 mA" and NAMUR NE 43 = "Off"

User entry
- Number (max. 8 digits); 0 to 4 mA

Factory setting
- 3.9mA

Upper error value
Navigation

Expert → Inputs → Universal inputs → Universal input x → Fault mode → Upper error value

Direct access code: 220066-0xx

Examples: Universal input 1: 220066-000; Universal input 12: 220066-011

Description

When NE43 is switched off, defines the value that must be exceeded for the device to output an error.

Only visible if signal = "Current"; range = "4-20 mA" and NAMUR NE 43 = "Off"

User entry

Number (max. 8 digits); 20 to 22mA

Factory setting

20.8mA

Time delay

Expert → Inputs → Universal inputs → Universal input x → Fault mode → Time delay

Direct access code: 220064-0xx

Examples: Universal input 1: 220064-000; Universal input 12: 220064-011

Description

The device only reacts (e.g. relay switch) when this condition, open circuit/under range/over range, has been operational for the preset time.

Only visible if NAMUR NE 43 = On

User entry

0 to 99 s

Factory setting

0s

On error

Expert → Inputs → Universal inputs → Universal input x → Fault mode → On error

Direct access code: 220061-0xx

Examples: Universal input 1: 220061-000; Universal input 12: 220061-011

Description

Configure what value the device should continue working with (for calculations) if the measured value is not valid (e.g. cable open circuit).

In the event of an error value, all the dependent calculations are flagged accordingly as "error value". Counters are not flagged, however!

Selection

Invalid calculation, Error value

Factory setting

Invalid calculation
Navigation

Expert → Inputs → Universal inputs → Universal input x → Fault mode → Error value

Direct access code: 220062-0xx

Examples: Universal input 1: 220062-000; Universal input 12: 220062-011

Description
The device continues calculating with this value in the event of an error.
Only visible if on error = Error value

User entry
Number (max. 8 digits)

Factory setting
0

Save event

Expert → Inputs → Universal inputs → Universal input x → Fault mode → Save event

Direct access code: 220063-0xx

Examples: Universal input 1: 220063-000; Universal input 12: 220063-011

Description
Stores a message in the event log when a fault occurs.

Selection
No, Yes

Factory setting
No

Copy settings

Expert → Inputs → Universal inputs → Universal input x → Copy settings

Direct access code: 220200-0xx

Examples: Universal input 1: 220200-000; Universal input 12: 220200-011

Description
Copies settings from actual channel to selected channel.

Selection
Switched off, Universal input x

Users can choose from all the available universal inputs.

Factory setting
Switched off

Digital inputs → Digital input x submenu

Expert → Inputs → Digital inputs → Digital input x

Description
Setting up only required if the digital inputs (e.g. events) are to be used.

\(x = \) place holder for selected digital input

Add input
Navigation
Expert → System → Digital inputs → Add input
Direct access code: 252000/000

Description
Addition of a digital input that must be configured according to the function.

Selection
No, Digital input x

Factory setting
No

Delete input

Navigation
Expert → System → Digital inputs → Delete input
Direct access code: 252001/000

Description
Delete an input configuration.

Selection
No, Digital input x

Factory setting
No

Function

Navigation
Expert → Inputs → Digital inputs → Digital input x → Function
Direct access code: 250000-00x
Examples: Digital input 1: 250000-000; Digital input 6: 250000-005

Description
Select the required function. Digital inputs are High active; this means the described effect is achieved by a high input.
Low = -3 to +5 V
High = +12 to +30 V

Selection
Switched off, Control input, On/off event, Pulse counter, Operational time, Event + operation time, Quantity from time, Profibus DP (option), Modbus slave (option), EtherNet/IP (option), PROFINET (option)

Factory setting
Switched off

Function

Navigation
Expert → Inputs → Digital inputs → Digital input x → Function
Direct access code: 250014-00x
Examples: Digital input 1: 250014-000; Digital input 6: 250014-005

Description
Specifies how the data from the fieldbus is interpreted/processed.
Visible only if function = Profibus DP, Modbus slave, EtherNet/IP, PROFINET
Selection

Switched off, Control input, On/off event, Pulse counter, Operational time, Event + operation time, Quantity from time

Factory setting

Switched off

Channel ident.

Navigation

Expert → Inputs → Digital inputs → Digital input x → Channel ident.

Direct access code: 250001-00x

Examples: Digital input 1: 250001-000; Digital input 6: 250001-005

Description

Measurement point name (e.g. "Pump") or description of the function of this input (e.g. "Fault message").

Only visible if function ≠ Switched off

User entry

Text (max. 16 characters)

Factory setting

Digital x

Engineering unit

Navigation

Expert → Inputs → Digital inputs → Digital input x → Engineering unit

Direct access code: 250002-00x

Examples: Digital input 1: 250002-000; Digital input 6: 250002-005

Description

Technical unit of the count input, e.g. gal, cf, ...

Only visible if function = Pulse counter or Quantity from time

User entry

Text (max. 6 characters)

Decimal point

Navigation

Expert → Inputs → Digital inputs → Digital input x → Decimal point

Direct access code: 250004-00x

Examples: Digital input 1: 250004-000; Digital input 6: 250004-005

Description

Number of places after decimal point for the display.

Only visible if function = Pulse counter or Quantity from time

Selection

None, One (X.Y), Two (X.YY), Three (X.YYY), Four (X.YYYY), Five (X.YYYYY)

Factory setting

One (X.Y)
Input factor in

Navigation
- Expert → Inputs → Digital inputs → Digital input x → Input factor in
- Direct access code: 250019-00x
- Examples: Digital input 1: 250019-000; Digital input 6: 250019-005

Description
Defines if the set up factor is respective to 1 second or 1 hour.
Only visible if function = Quantity from time

Selection
Seconds, Hours

Factory setting
Seconds

Pulse value

Navigation
- Expert → Inputs → Digital inputs → Digital input x → Pulse value
- Direct access code: 250005-00x
- Examples: Digital input 1: 250005-000; Digital input 6: 250005-005

Description
Factor, that when multiplied by the input signal results in the required physical value.
Examples:
1 pulse equals 5 m³ -> enter "5" here.
Only visible if function = Pulse counter

User entry
Number (max. 8 digits)

Factory setting
1

1 second=/1 hour= (depends on the setting in "Input factor in")

Navigation
- Expert → Inputs → Digital inputs → Digital input x → 1 second= / 1 hour=
- Direct access code: 250005-00x
- Examples: Digital input 1: 250005-000; Digital input 6: 250005-005

Description
Factor, that when multiplied by the operating time results in the required physical value.
Examples:
1 second equals 8 l -> enter "8" here.
Only visible if function = Quantity from time

User entry
Number (max. 8 digits)

Factory setting
1

Time delay
Appendix

Memograph M, RSG45

Navigation

Expert → Inputs → Digital inputs → Digital input x → Time delay
Direct access code: 250017-00x
Examples: Digital input 1: 250017-000; Digital input 6: 250017-005

Description

The high signal must be active for at least the preset time before the device changes the channel from low to high.
The change from high to low is always immediate.
Only visible if function = Control input, On/off event, Event+operation time

User entry

0 to 99 999 s

Factory setting

0

Action

Expert → Inputs → Digital inputs → Digital input x → Action
Direct access code: 250003-00x
Examples: Digital input 1: 250003-000; Digital input 6: 250003-005

Description

Set up the function of the control input.
Only visible if function = Control input

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start/stop recording</td>
<td>The device only saves data as long as a high signal is present</td>
</tr>
<tr>
<td>Screensaver on</td>
<td>Switches backlighting/display off, low = off, high = on</td>
</tr>
<tr>
<td></td>
<td>This function is not supported by the DIN rail version.</td>
</tr>
<tr>
<td>Lock setup</td>
<td>The user can only change the setup if a low signal is present</td>
</tr>
<tr>
<td>Time synchronization</td>
<td>If a high signal is applied, the device rounds the system time up or down (only for Low→ High change): 0 to 29 → round down; 30 to 59 → round up</td>
</tr>
<tr>
<td>Change group (panel-mounted device only)</td>
<td>The display switches to the next active group in the event of a Low→High change.</td>
</tr>
<tr>
<td>Set point monitoring on/off</td>
<td>The entire set point monitoring function of the device can be switched on (for 'High') or switched off (for 'Low').</td>
</tr>
<tr>
<td>Individual LV on/off</td>
<td>Monitoring for a selected limit value can be switched on (for 'High') or switched off (for 'Low').</td>
</tr>
<tr>
<td>Block keyboard/navigator</td>
<td>The device can only be operated if a low signal is present. Otherwise all key activation and navigator actions are discarded.</td>
</tr>
<tr>
<td></td>
<td>This function is not supported by the DIN rail version.</td>
</tr>
<tr>
<td>Start/stop analysis 1-4</td>
<td>Starts/ends one of the max. 4 external analyses (the analysis runs only as long as the signal is high). Measured value acquisition for the graphic display continues. Batches are also started/ended with this function. Note: This function is not available in the case of batch and control input via a maths channel.</td>
</tr>
<tr>
<td>Reset batch number x (option)</td>
<td>Resets the automatically generated batch number (1..x) to 0 (in the event of a LowHigh change).</td>
</tr>
<tr>
<td>Batch x limit values on/off</td>
<td>Switches the limits of batch x on/off. The limits relating to the batch are determined based on the group settings (via the channels assigned to the batch). If a channel is assigned to several batches, the limits for this channel are not disabled. (option)</td>
</tr>
</tbody>
</table>
Selection

Switched off, Start/stop recording, Screensaver on, Lock setup, Time synchronization, Change group, Set point monitoring on/off, Individual LV on/off, Block keyboard/navigator, Start/stop analysis x, Reset batch no. x, Batch x limits on/off

Factory setting

Switched off

Group

Navigation

Expert → Inputs → Digital inputs → Digital input x → Group
Direct access code: 250015-00x
Examples: Digital input 1: 250015-000; Digital input 6: 250015-005

Description

Choose the group which should be displayed in the event of a change from Low->High. Alternatively the next active group can be displayed. Only visible if function = Control input and action = Change group

Selection

Change automatically, Group x

Factory setting

Change automatically

Set point

Navigation

Expert → Inputs → Digital inputs → Digital input x → Set point
Direct access code: 250016-00x
Examples: Digital input 1: 250016-000; Digital input 6: 250016-005

Description

Select the set point which should be switched on or off by means of this control input. Only visible if function = Control input and action = Individual LV on/off

Selection

Switched off, Universal input xx, Digital input xx, Math xx, Limit xx, Relay xx

Factory setting

Change automatically

Switches relay

Navigation

Expert → Inputs → Digital inputs → Digital input x → Switches relay
Direct access code: 250006-00x
Examples: Digital input 1: 250006-000; Digital input 6: 250006-005

Description

Switches the respective relay when the digital input is low or high. Please take note of the connection hints in the operating manual! Only visible if function = Control input, On/off event, Event+operation time

Selection

Not used, Relay x
All the available relays are displayed.
Factory setting

Not used

Description 'H'

Navigation

- Expert → Inputs → Digital inputs → Digital input x → Description 'H'
- Direct access code: 250007-00x
- Examples: Digital input 1: 250007-000; Digital input 6: 250007-005

Description

Condition description when the digital input is active. This text is both shown on the display and saved to memory. Only visible if function = Control input, On/off event, Event+operation time

User entry

Text (max. 6 characters)

Factory setting

On

Description 'L'

Navigation

- Expert → Inputs → Digital inputs → Digital input x → Description 'L'
- Direct access code: 250008-00x
- Examples: Digital input 1: 250008-000; Digital input 6: 250008-005

Description

Condition description when the digital input is not active. This text is both shown on the display and saved to memory. Only visible if function = Control input, On/off event, Event+operation time

User entry

Text (max. 6 characters)

Factory setting

Off

Save event

Navigation

- Expert → Inputs → Digital inputs → Digital input x → Save event
- Direct access code: 250009-00x
- Examples: Digital input 1: 250009-000; Digital input 6: 250009-005

Description

Determines whether the condition change from low to high or high to low is stored in the event log.

- Requires higher memory capacity.

Only visible if function = Control input, On/off event, Event+operation time

Selection

No, Yes, only 'On' message

Factory setting

Yes
Event message

Navigation

- Expert → Inputs → Digital inputs → Digital input x → Event message
- Direct access code: 250018-00x
- Examples: Digital input 1: 250018-000; Digital input 6: 250018-005

Description

- "Do not acknowledge": No message is shown if the digital input switches.
- "Acknowledge": A message window is shown on the screen which has to be acknowledged by operating a push button.
- Only visible if function = Control input, On/off event, Event+operation time
- In the case of the DIN rail version, the message can only be acknowledged via the Web server!

Selection

- Do not acknowledge, Acknowledge

Factory setting

- Do not acknowledge

Event text L→H

Navigation

- Expert → Inputs → Digital inputs → Digital input x → Event text L→H
- Direct access code: 250010-00x
- Examples: Digital input 1: 250010-000; Digital input 6: 250010-005

Description

- Description of condition change from low to high. Event text is stored (e.g. Start filling).
- If no event text is set, the device generates an automatic event text (factory setting), e.g. digital 1 L→H.
- Only visible if function = Control input, On/off event, Event+operation time

User entry

- Text (max. 22 characters)

Event text H→L

Navigation

- Expert → Inputs → Digital inputs → Digital input x → Event text H→L
- Direct access code: 250011-00x
- Examples: Digital input 1: 250011-000; Digital input 6: 250011-005

Description

- Description of condition change from high to low. Event text is stored (e.g. Stop filling).
- If no event text is set, the device generates an automatic event text (factory setting), e.g. digital 1 H→L.
- Only visible if function = Control input, On/off event, Event+operation time

User entry

- Text (max. 22 characters)
Record duration

Navigation

- Expert → Inputs → Digital inputs → Digital input x → Record duration
- Direct access code: 250012-00x
- Examples: Digital input 1: 250012-000; Digital input 6: 250012-005

Description

The duration between 'On' and 'Off' can be recorded. The duration is appended to the "Off" event text (<hhhh>h<mm>:<ss>).

Power failure times do not affect the duration. If the digital channel was 'on' before the power failure and is still 'on' after the power failure, the duration continues.

Only visible if function = Control input, On/off event, Event+operation time

Selection

- No, Yes

Factory setting

- No

Totalizer

(Online configuration)

Navigation

- Expert → Inputs → Digital inputs → Digital input x → Totalizer
- Direct access code: 250013-00x
- Examples: Digital input 1: 250013-000; Digital input 6: 250013-005

Description

Initial setting for the totalizer. Useful when continuing measurements recorded to date with an (electro)-mechanical counter.

Only visible if function = Pulse counter, Operational time, Event+operation time or Quantity from time

User entry

- Number (max. 15 digits)

Factory setting

- 0

Copy settings

Navigation

- Expert → Inputs → Digital inputs → Digital input x → Copy settings
- Direct access code: 250200-00x
- Examples: Digital input 1: 250200-000; Digital input 6: 250200-005

Description

Copies settings from actual channel to selected channel.

Selection

- No, Digital input x

Users can choose from all the available digital inputs.

Factory setting

- No
17.1.3 "Outputs" submenu
Setting up only required if outputs (e.g. relays) are to be used.

"Universal output x" submenu

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Outputs → Universal output x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Settings for the universal output selected (current or pulse output).</td>
</tr>
</tbody>
</table>

Signal

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Outputs → Universal output x → Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access code: 340000-00x</td>
<td></td>
</tr>
<tr>
<td>Examples: Universal output 1: 340000-000; Universal output 2: 340000-001</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Select the output signal for this channel.</td>
</tr>
<tr>
<td>Selection</td>
<td>Switched off, 4-20 mA, 0-20 mA, Pulse output</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Switched off</td>
</tr>
</tbody>
</table>

Reference channel

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Outputs → Universal output x → Reference channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access code: 340001-00x</td>
<td></td>
</tr>
<tr>
<td>Examples: Universal output 1: 340001-000; Universal output 2: 340001-001</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Select the input to which the analog output refers.</td>
</tr>
<tr>
<td>Selection</td>
<td>Switched off, Universal input x, Digital input x, Maths x, Limit x, Relay x</td>
</tr>
<tr>
<td>All active inputs are available for selection.</td>
<td></td>
</tr>
<tr>
<td>Factory setting</td>
<td>Switched off</td>
</tr>
</tbody>
</table>

Start value

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Outputs → Universal output x → Start value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access code: 340003-00x</td>
<td></td>
</tr>
<tr>
<td>Examples: Universal output 1: 340003-000; Universal output 2: 340003-001</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Configure what value corresponds to 0/4 mA.</td>
</tr>
<tr>
<td>Only visible if signal = 4-20 mA or 0-20 mA.</td>
<td></td>
</tr>
<tr>
<td>User entry</td>
<td>Number (max. 8 characters)</td>
</tr>
</tbody>
</table>
Factory setting

0

Full scale value

Navigation

Expert → Outputs → Universal output x → Full scale value
Direct access code: 340004-00x
Examples: Universal output 1: 340004-000; Universal output 2: 340004-001

Description

Configure what value corresponds to 20 mA.
Only visible if signal = 4-20 mA or 0-20 mA.

User entry

Number (max. 8 characters)

Factory setting

100

Damping/filter

Navigation

Expert → Outputs → Universal output x → Damping/filter
Direct access code: 340005-00x
Examples: Universal output 1: 340005-000; Universal output 2: 340005-001

Description

Time constant of the first order low pass for the output signal. This is used to prevent strong fluctuations of the output signal.
Only visible if signal = 4-20 mA or 0-20 mA.

User entry

0 to 999.9 s

Factory setting

0.0 s

Pulse value

Navigation

Expert → Outputs → Universal output x → Pulse value
Direct access code: 340006-00x
Examples: Universal output 1: 340006-000; Universal output 2: 340006-001

Description

The pulse value specifies what quantity an output pulse corresponds to (e.g. 1 pulse = 5 liters).
Only visible if signal = Pulse output

User entry

Number (min. 0.000001; max. 8 characters)

Factory setting

1
Pulse width

Navigation

Expert → Outputs → Universal output x → Pulse width
Direct access code: 340007-00x
Examples: Universal output 1: 340007-000; Universal output 2: 340007-001

Description
The pulse width limits the maximum possible output frequency of the pulse output. Define a fixed or dynamic pulse width.
Only visible if signal = Pulse output

Selection
User-defined, Dynamic (max. 1000ms)

Factory setting
User-defined

Pulse width

Navigation

Expert → Outputs → Universal output x → Pulse width
Direct access code: 340008-00x
Examples: Universal output 1: 340008-000; Universal output 2: 340008-001

Description
You can set the pulse width in the range from 0.5 to 1000 ms here.
Only visible if signal = Pulse output

Value
0.5 to 1000 ms

Factory setting
100 ms

"Meas.val. corrct." submenu

Navigation

Expert → Outputs → Universal output x → Meas.val. corrct.

Description
Here, you can correct the output current value (necessary only if the device that carries out the further processing cannot compensate for any measurement section tolerances).
Proceed as follows:
1. On the connected device, read out the displayed value in both the upper and lower measuring range.
2. Enter the lower and upper target and actual value.
Only visible if signal = 4-20 mA or 0-20 mA.

Lower correction value

Target value
Navigation

- **Expert → Outputs → Universal output x → Meas.val. corrc. → Lower correction value → Target value**
- **Direct access code: 340021-00x**
- **Examples: Universal output 1: 340021-000; Universal output 2: 340021-001**

Description
Enter the lower set point here.
Only visible if signal = 4-20 mA or 0-20 mA.

User entry
Number (max. 8 characters)

Factory setting
0

Actual value

Navigation

- **Expert → Outputs → Universal output x → Meas.val. corrc. → Lower correction value → Actual value**
- **Direct access code: 340022-00x**
- **Examples: Universal output 1: 340022-000; Universal output 2: 340022-001**

Description
Here, enter the lower actual value which is displayed at the connected device.
Only visible if signal = 4-20 mA or 0-20 mA.

User entry
Number (max. 8 characters)

Factory setting
0

Upper correction value

Target value

Navigation

- **Expert → Outputs → Universal output x → Meas.val. corrc. → Upper correction value → Target value**
- **Direct access code: 340024-00x**
- **Examples: Universal output 1: 340024-000; Universal output 2: 340024-001**

Description
Enter the upper set point here.
Only visible if signal = 4-20 mA or 0-20 mA.

User entry
Number (max. 8 characters)

Factory setting
100

Actual value

Navigation

- **Expert → Outputs → Universal output x → Meas.val. corrc. → Upper correction value → Actual value**
- **Direct access code: 340025-00x**
- **Examples: Universal output 1: 340025-000; Universal output 2: 340025-001**

186
Description

Here, enter the upper actual value which is displayed at the connected device. Only visible if signal = 4-20 mA or 0-20 mA.

User entry

Number (max. 8 characters)

Factory setting

100

"Fault mode" submenu

Navigation

Expert → Outputs → Universal output x → Fault mode

Description

Configure how the analog output should behave in the event of an error (e.g. if the input channel has a cable open circuit). Only visible if signal = 4-20 mA or 0-20 mA.

NAMUR NE 43

Navigation

Expert → Outputs → Universal output x → Fault mode → NAMUR NE 43

Direct access code: 340015-00x
Examples: Universal output 1: 340015-000; Universal output 2: 340015-001

Description

Activate/deactivate the 4-20 mA loop output as per NAMUR recommendation NE 43. The following error ranges apply when NAMUR NE43 is switched on:

≤3.8 mA: underrange
≥20.5 mA: overrange
≤ 3.6 mA or ≥ 21.0 mA: cable open circuit

Only visible if signal = 4-20 mA or 0-20 mA.

Selection

Off, On

Factory setting

On

On error

Navigation

Expert → Outputs → Universal output x → Fault mode → On error

Direct access code: 340016-00x
Examples: Universal output 1: 340016-000; Universal output 2: 340016-001

Description

What value should the output adopt in the event of an error (e.g. cable break or calculated value invalid)? Only visible if signal = 4-20 mA or 0-20 mA.

Selection

Invalid calculation, Error value

Factory setting

Invalid calculation
Navigation

Expert → Outputs → Universal output x → Fault mode → Error value
Direct access code: 340017-00x
Examples: Universal output 1: 340017-000; Universal output 2: 340017-001

Description

This value is output in the event of an error. Note: Must be between 0 and 22 mA. Only visible if signal = 4-20 mA or 0-20 mA.

User entry

0 to 22 mA

Factory setting

0 mA

"Relay x" submenu

Navigation

Expert → Outputs → Relay x

Description

Contains setup for the selected relay
\[x = \text{place holder for selected relay}\]

Operating mode

Navigation

Expert → Outputs → Relay x → Operating mode
Direct access code: 330000-00x
Examples: Relay 1: 330000-000; Relay 6: 330000-005

Description

Relay function:
NC contact: The relay is closed in its quiescent state (maximum safety).
NO contact: The relay is open in its quiescent state.

Selection

NO contact, NC contact

Factory setting

NO contact

Identifier

Navigation

Expert → Outputs → Relay x → Identifier
Direct access code: 330001-00x
Examples: Relay 1: 330001-000; Relay 6: 330001-005

Description

Presettable relay identifier.

User entry

Text (max. 16 characters)

Factory setting

Relay x

Remote controlled
Navigation

- Expert → Outputs → Relay x → Remote controlled
- Direct access code: 330002-00x
- Examples: Relay 1: 330002-000; Relay 6: 330002-005

Description

Configure whether the relay may be controlled remotely (e.g. PC or SMS). Only visible with the 'Telealarm' option.

Selection

- No, Yes

Factory setting

- No

17.1.4 "Communication" submenu

Set-up required if you are using the USB, RS232, RS485 or Ethernet interface of the unit (PC operation, serial data read-out, modem operation, etc.).

The various interfaces can be operated in parallel.

Timeout cycl. readout

Navigation

- Expert → Communication → Timeout
- Direct access code: 150200-000

Description

Monitors whether measured values are read out cyclically via OPC or Fieldbus. Timeout is modifiable between 1 and 99 seconds. 0 seconds means that the functionality is inactivated.

User entry

- 0 to 99 s

Factory setting

- 0 s

Switches

Navigation

- Expert → Communication → Switches
- Direct access code: 150201-000

Description

After the given timeout the dedicated relay/OC is active while no readout of actual measured values are in process.

Selection

- Not used, Relay x
- All the available relays are displayed.

Factory setting

- Not used

Timeout fieldbus
Navigation

- **Expert → Communication → Timeout fieldbus**
 Direct access code: 150210-000

Description

Time within which measured values must be received via fieldbus (otherwise an error will be set). Not relevant if only measured values are read out.

User entry

1 to 99s

Factory setting

10 s

Function USB-B

- **This function is not supported by the DIN rail version.**

Navigation

- **Expert → Communication → Function USB-B**
 Direct access code: 012001-000

Description

Determines the operating mode of the USB interface if a cable is connected to the device.

Selection

- Always USB
- Always Ethernet over USB
- By user input

Factory setting

Always USB

"Ethernet" submenu

- **Expert → Communication → Ethernet**

Description

Contains the set-up required if you are using the Ethernet interface of the unit.

MAC address

(Online configuration)

- **Expert → Communication → Ethernet → MAC address**

Description

Displays the MAC address

DHCP

- **Expert → Communication → Ethernet → DHCP**

Direct access code: 150000-000
Description
The device can get its Ethernet settings through DHCP.
Caution: The settings determined are not displayed until after setup acceptance!

Note: The unit always gets the same IP address if the leasing time is set long enough on the DHCP server. The PC software needs the IP address determined to establish a connection!

Selection
No, Yes

Factory setting
Yes

IP address

| Navigation | Expert → Communication → Ethernet → IP address
| Direct access code: 150003-000 |
Description	Please enter the IP address. (given from your network administrator). Can only be edited if DHCP = No
User entry	IP address
Factory setting	000.000.000.000

Subnetmask

| Navigation | Expert → Communication → Ethernet → Subnetmask
| Direct access code: 150004-000 |
Description	Please enter the subnetmask (given from your network administrator). Can only be edited if DHCP = No
User entry	IP address
Factory setting	255.255.255.000

Gateway

| Navigation | Expert → Communication → Ethernet → Gateway
| Direct access code: 150005-000 |
Description	Please enter the gateway (given from your network administrator). Can only be edited if DHCP = No
User entry	IP address
Factory setting	000.000.000.000
Domain Name System (DNS)

Navigation

Expert → Communication → Ethernet → Domain Name System (DNS)
Direct access code: 150009-000

Description
Please enter the IP-address of the DNS server (you can get this from your network administrator).
Is needed if you wish to send e-mails and want to use the e-mail server name instead of the IP address (e.g. smtp.example.org).
Can only be edited if DHCP = No

User entry
IP address

Factory setting
000.000.000.000

Disable port

Navigation

Expert → Communication → Ethernet → Disable port
Direct access code: 150020-000

Description
You can disable unused ports for security reasons.
CDI is the protocol that the configuration software or reporting software uses to communicate with the device.

All other ports (e.g. SNTP, SMTP, Web server) are automatically disabled if the function is switched off.

Selection
CDI, OPC, Modbus Slave, HART IP

Factory setting
---- (no port disabled)

Port

Navigation

Expert → Communication → Ethernet → Port
Direct access code: 150001-000

Description
The system communicates with the PC software through this communication port.

If your network is protected by a firewall, this port may have to be enabled. Please contact your network administrator if this is the case.

User entry
Number (max. 5 digits)

Factory setting
8000
OPC port

Navigation
- Expert → Communication → Ethernet → OPC port
- Direct access code: 150010-000

Description
Values can be read via OPC server using this communication port.

![Information icon] If your network is protected by a firewall, this port may have to be enabled. Please contact your network administrator if this is the case.

User entry
- Number (max. 5 digits)

Factory setting
- 8002

HART IP port

Navigation
- Expert → Communication → Ethernet → HART IP port
- Direct access code: 150030-000

Description
Connected HART devices can be accessed via this communication port using the communication device type manager (DTM).
Only visible if a HART card is present.

![Information icon] Note: If your network is protected by a firewall, this port will have to be enabled. Please contact your network administrator if this is the case.

- The "RSG45 HART CommDTM" is required in order to access connected HART devices via the RSG45. This establishes the connection between an FDT Frame application and a HART device. The DTM for the connected device must also be installed in the FDT Frame application. The "RSG45 HART CommDTM" is available via www.endress.com/rsg45.
- Additional information → ☞ 42

User entry
- Number (max. 5 digits)

Factory setting
- 5094

Web server

Navigation
- Expert → Communication → Ethernet → Web server
- Direct access code: 470000-000

Description
Switch the Web server function on or off. The instantaneous values can only be displayed using an Internet browser when the web browser is activated.

![Information icon] It is only possible to connect to the Web server via the Ethernet interface!

Selection
- No (Web server is off), Yes (Web server is active)

Factory setting
- Yes
"Configuration Web server" submenu

Navigation
Expert → Communication → Ethernet → Configuration Web server

Description
Configure the Web server or specify which functionality should be possible via Web server. Only visible if Web server = Yes.

> Instantaneous value display is always possible once the Web server is switched on.

Port

Navigation
Expert → Communication → Ethernet → Configuration Web server → Port
Direct access code: 470003-000

Description
The Web server communicates through this communication port.

> If your network is protected by a firewall, this port may have to be enabled.
Please contact your network administrator if this is the case.

User entry
Number (max. 5 digits)

Factory setting
80

Setup

Navigation
Expert → Communication → Ethernet → Configuration Web server → Setup
Direct access code: 470001-000

Description
The device can be configured via Web server.
For security reasons it is advisable to switch off configuration via the Web server after commissioning.
With regard to IT security please contact your network administrator if necessary.

Selection
No, Yes

Factory setting
Yes

Firmware update

Navigation
Expert → Communication → Ethernet → Configuration Web server → Firmware update
Direct access code: 470002-000

Description
Firmware can be updated via Web server.
Remote control

This function is not supported by the DIN rail version.

Navigation
 Expert → Communication → Ethernet → Configuration Web server → Remote control
 Direct access code: 470004-000

Description
 The device can be remote-controlled via the Web server.

Selection
 No, Yes

Factory setting
 No

WebDAV server

Navigation
 Expert → Communication → Ethernet → Configuration Web server → WebDAV server
 Direct access code: 470006-000

Description
 The SD card can be read out via the WebDAV client.

Selection
 No, Yes

Factory setting
 No

Batch (option)

Navigation
 Expert → Communication → Ethernet → Configuration Web server → Batch
 Direct access code: 470007-000

Description
 Batches can be controlled via the Web server.
 Detailed descriptions of this device option can be found in the associated documentation.

Selection
 No, Yes

Factory setting
 No
Control relays (option)

Navigation

- Expert → Communication → Ethernet → Configuration Web server → Control relays
- Direct access code: 470008-000

Description

Relays can be remote-controlled via the Web server.
- Detailed descriptions of this device option can be found in the associated documentation.

Selection

- No, Yes

Factory setting

- No

Meas. val. without login

Navigation

- Expert → Communication → Ethernet → Configuration Web server → Meas. val. without login
- Direct access code: 470009-000

Description

Allow access to current measured values without logging in.
- URL: http:\<ip>\iv

Selection

- Yes, No

Factory setting

- Yes

"Authentication" submenu

Navigation

- Expert → Communication → Ethernet → Configuration Web server → Authentication

Description

Set the passwords for the various users with which the device can be accessed via Web server.
- Only relevant if the device is not protected by user administration.

<table>
<thead>
<tr>
<th></th>
<th>Operator</th>
<th>Admin</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured value display</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Display instrument health status</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Configuration</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Configuration incl. service parameter</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Update firmware</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>WebDAV</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: The following passwords should be changed during commissioning.
Operator

ID

Navigation

- Expert → Communication → Ethernet → Configuration Web server → Authentication → ID
- Direct access code: 470104-000

Description

ID required in order to access the device. Pay attention to case-sensitivity.

Factory setting

operator

Password

Navigation

- Expert → Communication → Ethernet → Configuration Web server → Authentication → Password
- Direct access code: 470105-000

Description

Enter a password for this user account. Pay attention to case-sensitivity.

User entry

Text (max. 12 characters)

Factory setting

operator

Administrator

ID

Navigation

- Expert → Communication → Ethernet → Configuration Web server → Authentication → ID
- Direct access code: 470101-000

Description

ID required in order to access the device. Pay attention to case-sensitivity. Cannot be edited.

Factory setting

admin
Password

Navigation

Expert → Communication → Ethernet → Configuration Web server → Authentication → Password
Direct access code: 470102-000

Description
Enter a password for this user account.
Pay attention to case-sensitivity.

User entry

Text (max. 12 characters)

Factory setting

admin

Service

ID

Navigation

Expert → Communication → Ethernet → Configuration Web server → Authentication → ID
Direct access code: 470107-000

Description

ID required in order to access the device. Pay attention to case-sensitivity.
Cannot be edited.

Factory setting

service

Password

Navigation

Expert → Communication → Ethernet → Configuration Web server → Authentication → Password
Direct access code: 470108-000

Description

Enter a password for this user account.
Pay attention to case-sensitivity.

User entry

Text (max. 12 characters)

Factory setting

service

"Timeouts" submenu

Navigation

Expert → Communication → Ethernet → Configuration Web server → Timeouts
Timeouts for the Web server. Settings should only be modified if slow network connections are causing transmission problems.

Caution: Settings should only be changed by experts.

Connection quality

Navigation

- [Expert → Communication → Ethernet → Configuration Web server → Timeouts → Connection quality](#)
- Direct access code: 470200-000

Description

Configuration of typical timeout values for the Web server connection.

Selection

- Please select, Local network (LAN/WLAN), Wireless/mobile (fast connect.), Wireless/mobile (slow connect)

Factory setting

- Please select

Get timeout

Navigation

- [Expert → Communication → Ethernet → Configuration Web server → Timeouts → Get timeout](#)
- Direct access code: 470201-000

Description

Maximum time to load a new page before the browser ends the connection.

User entry

- 5 to 999 s

Factory setting

- 25

Set timeout

Navigation

- [Expert → Communication → Ethernet → Configuration Web server → Timeouts → Set timeout](#)
- Direct access code: 470202-000

Description

Maximum time to write a value or execute an action before the browser ends the connection.

User entry

- 5 to 999 s

Factory setting

- 5
Put timeout

Navigation

Expert → Communication → Ethernet → Configuration Web server → Timeouts → Put timeout
Direct access code: 470203-000

Description

Maximum time to transmit files to or from the device before the browser ends the connection.

User entry

5 to 9999 s

Factory setting

240

Ping interval

Navigation

Expert → Communication → Ethernet → Configuration Web server → Timeouts → Ping interval
Direct access code: 470204-000

Description

Interval in which the browser checks device reachability.

The check is switched off if 0s is set. This is for diagnostic purposes only and should not be set!

User entry

0 to 999 s

Factory setting

10

Ping timeout

Navigation

Expert → Communication → Ethernet → Configuration Web server → Timeouts → Ping timeout
Direct access code: 470205-000

Description

Time in which the device must respond before the browser ends the connection.

User entry

5 to 999 s

Factory setting

15

Ping retry
NAVIGATION

Description
Number of retries if the device does not respond.

User entry
0 to 5

Factory setting
0

Poll timeout

Navigation
Expert → Communication → Ethernet → Configuration Web server → Timeouts → Poll timeout
Direct access code: 470207-000

Description
Maximum permitted time to refresh the website.

User entry
5 to 999 s

Factory setting
5

HART” submenu

Navigation
Expert → Communication → HART

Description
Specify the values that should be read out via HART.

Master type

Navigation
Expert → Communication → HART → Master type
Direct access code: 550010-000

Description
Select the HART master type – usually ‘Primary’. Select ‘Secondary’ if another device (e.g. a PLC) is already operating as the primary master.

Selection
Primary, Secondary

Factory setting
Primary

Attempts on error

Navigation
Expert → Communication → HART → Attempts on error
Direct access code: 550011-000
<table>
<thead>
<tr>
<th>Description</th>
<th>Number of attempts to establish HART communication before a communication error is issued.</th>
</tr>
</thead>
<tbody>
<tr>
<td>User entry</td>
<td>0 to 99</td>
</tr>
<tr>
<td>Factory setting</td>
<td>3</td>
</tr>
</tbody>
</table>

Fault mode

| Navigation | Expert → Communication → HART → Fault mode
Direct access code: 550013-000 |
| Description | If HART communication is disrupted, the primary process variable (PV) can be calculated if a valid current is present.
This function is not possible in Multidrop mode.
Start/end of measuring range must be correctly configured. |
| Selection | PV rendered invalid, Calculate PV based on current |
| Factory setting | PV rendered invalid |

Add value

| Navigation | Expert → Communication → HART → Add value
Direct access code: 550300-000 |
Description	A value read from a connected HART device is added.
Selection	No, Yes
Factory setting	No

Delete value

| Navigation | Expert → Communication → HART → Delete value
Direct access code: 550301-000 |
Description	Deletes a process value from the list.
Selection	No, Value x
Factory setting	No
"Value x" submenu

Navigation
Expert → Communication → HART → Value x

Description
Specify the value that should be read out via HART.
Note: This value must then be assigned to a channel for universal inputs.

Connection

Navigation
Expert → Communication → HART → Value x → Connection
Direct access code: 550000-0xx

Description
Select the physical channel to which the HART device is connected and from which you wish to query the value.

Selection
Switched off, Channel x

Factory setting
Switched off

Device address

Navigation
Expert → Communication → HART → Value x → Device address
Direct access code: 550001-0xx

Description
Enter the device address of the HART device.
Note: The entered device address must match the address set in the HART device (polling address; HART address).

User entry
0 to 62

Factory setting
0

Process variable

Navigation
Expert → Communication → HART → Value x → Process variable
Direct access code: 550002-0xx

Description
Select the process variable that should be requested.

Selection
Primary process variable (PV), Secondary process variable (SV), Third process variable (TV), Fourth process variable (QV)

Factory setting
Primary process variable (PV)
Channel ident

Navigation
Expert → Communication → HART → Value x → Channel ident.
Direct access code: 550003-0xx

Description
Designation of the measuring point connected to this input.

User entry
Text (max. 16 characters)

Factory setting
Value x

"Serial interface" submenu

Navigation
Expert → Communication → Serial interface

Description
Contains the set-up required if you are using the RS232 or RS485 unit interface.

Type

Navigation
Expert → Communication → Serial interface → Type
Direct access code: 150100-000

Description
Configure how the serial interface is used. Pay attention to the connections.

Selection
RS232, RS485, Debug (only for service purposes)

Factory setting
RS232

Protocol

Navigation
Expert → Communication → Serial interface → Protocol
Direct access code: 150105-000

Description
Define the serial interface protocol.
Note: The device automatically disables incompatible settings.

Selection
PC software, Printer, Modbus Slave (only if type = RS485), Modbus Master (only if type = RS485)

Factory setting
PC software

Baud rate
Navigation

Expert → Communication → Serial interface → Baud rate
Direct access code: 150101-000

Description
Transmission speed ("Baud rate") - must be the same as the settings for the PC software.

Selection
9600, 19200, 38400, 57600, 115200

Factory setting
19200

Parity

Navigation
Expert → Communication → Serial interface → Parity
Direct access code: 150103-000

Description
Parity
Only visible if protocol ≠ PC software

Selection
None, Even, Odd

Factory setting
None

Stop bits

Navigation
Expert → Communication → Serial interface → Stop bits
Direct access code: 150104-000

Description
Stop bits
Only visible if protocol ≠ PC software

Selection
1, 2

Factory setting
1

Device address

Navigation
Expert → Communication → Serial interface → Device address
Direct access code: 150102-000

Description
Every device operating using RS232 / RS485 must have an individual address (00-30).
Only visible if type = RS485

User entry
0 to 30

Factory setting
0
"Modbus Slave“ submenu (option)

Navigation

Expert → Communication → Modbus Slave

Description

Configure the Modbus settings for the device.

Detailed descriptions of this device option can be found in the associated documentation.

Modbus

Navigation

Expert → Communication → Modbus Slave → Modbus

Direct access code: 480000-000

Description

Specify the physical interface you wish to use.

Selection

Not used, RS485, Ethernet

Factory setting

Not used

Device address

Navigation

Expert → Communication → Modbus Slave → Device address

Direct access code: 480001-000

Description

Enter the device address where it should be possible to reach this device in the bus.

Only visible if Modbus = RS485

User entry

1 to 247

Factory setting

1

Port

Navigation

Expert → Communication → Modbus Slave → Port

Direct access code: 480004-000

Description

Port via which the Modbus protocol can be activated.

Only visible if Modbus = Ethernet

User entry

Number (max. 5 digits)

Factory setting

502
"Serial interface" submenu

Navigation

Expert → Communication → Modbus Slave → Serial interface

Description
Contains settings for the serial interface.
Only visible if Modbus = RS485

Baud rate

Navigation

Expert → Communication → Modbus Slave → Serial interface → Baud rate
Direct access code: 150101-000

Description
Transmission speed ("Baud rate") - must be the same as the settings for the PC software.
Only visible if Modbus = RS485

Selection
9600, 19200, 38400, 57600, 115200

Factory setting
19200

Parity

Navigation

Expert → Communication → Modbus Slave → Serial interface → Parity
Direct access code: 150103-000

Description
Parity
Only visible if Modbus = RS485

Selection
None, Even, Odd

Factory setting
None

Stop bits

Navigation

Expert → Communication → Modbus Slave → Serial interface → Stop bits
Direct access code: 150104-000

Description
Parity
Only visible if Modbus = RS485 and parity = None

Selection
1, 2

Factory setting
1
"Modbus Master" submenu

Navigation
Expert → Communication → Modbus Master

Description
Configure the Modbus settings for the device.

- Detailed descriptions of this device option can be found in the associated documentation.

Modbus

Navigation
Expert → Communication → Modbus Master → Modbus
Direct access code: 480050-000

Description
Specify the physical interface you wish to use.

Selection
Not used, RS485, Ethernet

Factory setting
Not used

Scan cycle

Navigation
Expert → Communication → Modbus Master → Scan cycle
Direct access code: 480053-000

Description
Cycle time for scanning the end devices.
Only visible if Modbus = RS485

Selection
Off, 1 s, 2 s, 5 s, 10 s, 30 s, 1 min, 2 min, 5 min, 10 min

Factory setting
1 s

Response timeout

Navigation
Expert → Communication → Modbus Master → Response timeout
Direct access code: 480054-000

Description
Time within which the system must receive a response from the end device.
Only visible if Modbus = RS485

Selection
Off, 1 s, 2 s, 5 s, 10 s, 30 s, 1 min, 2 min, 5 min, 10 min

Factory setting
1 s
Register per command

Navigation
- Expert → Communication → Modbus Master → Register per command
 - Direct access code: 480055-000

Description
Maximum number of registers that can be read out per command.

User entry
3 to 125

Factory setting
20

Connection attempts

Navigation
- Expert → Communication → Modbus Master → Connection attempts
 - Direct access code: 480056-000

Description
Number of repeated connection attempts until a slave signals a timeout.
Only visible if Modbus = RS485

User entry
1 to 10

Factory setting
1

Command distribution

Navigation
- Expert → Communication → Modbus Master → Command distribution
 - Direct access code: 480057-000

Description
Distributed over the scan cycle: The commands are uniformly distributed over the scan cycle.
At the start of the scan cycle: The commands are sent at the start of the scan cycle with a pause between commands. A new scan commences when the scan cycle ends.
Continuously: The commands are sent continuously with only a pause between commands.
The scan cycle is not taken into account.
Only visible if Modbus = RS485

Selection
Distributed over the scan cycle, At the start of the scan cycle, Continuously

Factory setting
Distributed over the scan cycle

Pause between commands

Navigation
- Expert → Communication → Modbus Master → Pause between commands
 - Direct access code: 480058-000
Description

Time system waits between a response and a new command to be sent. Only visible if Modbus = RS485

User entry

5 to 600000 ms

Factory setting

10 ms

"Serial interface" submenu

Navigation

Expert → Communication → Modbus Master → Serial interface

Description

Contains the settings required if you are using the RS485 interface of the device.

Baud rate

Navigation

Expert → Communication → Modbus Master → Serial interface → Baud rate

Direct access code: 150101-000

Description

Transmission speed ("Baud rate") - must be the same as the settings for the PC software. Only visible if Modbus = RS485

Selection

9600, 19200, 38400, 57600, 115200

Factory setting

19200

Parity

Navigation

Expert → Communication → Modbus Master → Serial interface → Parity

Direct access code: 150103-000

Description

Parity

Only visible if Modbus = RS485

Selection

None, Even, Odd

Factory setting

None

Stop bits

Navigation

Expert → Communication → Modbus Master → Serial interface → Stop bits

Direct access code: 150104-000

Description

Parity

Only visible if Modbus = RS485 and parity = None
Selection 1, 2
Factory setting 1

"Profibus DP" submenu (option)

Navigation Expert → Communication → Profibus DP
Description Configure the Profibus DP settings for the device.
Detailed descriptions of this device option can be found in the associated documentation.

Slave address

Navigation Expert → Communication → Profibus DP → Slave address
Direct access code: 480100-000
Description Enter the device address where it should be possible to reach this device in the bus.
User entry 1 to 125
Factory setting 1

Show status

Navigation Expert → Communication → Profibus DP → Show status
Direct access code: 480101-000
Description The status is shown on the display in addition to the measured value. Status changes are saved in the event log.
Selection No, Yes
Factory setting No

"Slot x" submenu

Navigation Expert → Communication → Profibus DP → Slot x
Description Slot assignment of the channels.
Settings only required if you wish to connect the device to a PLC via Profibus DP.

Master In/Out

Endress+Hauser
Appendix

Navigation

Expert → Communication → Profibus DP → Slot x → Master In/Out

Direct access code: 480110-0xx

Examples: Slot 1: 480110-000; Slot 16: 480110-015

Description

Selection of the modules that can be selected in the PLC.
AI/AO: Transmission of a floating point number + status.
AI/DI: To the PLC.
AO/DO: From the PLC.

Selection

Not used, 1 AI-PA: 5 Byte, 2 AI-PA: 10 Byte, 3 AI-PA: 15 Byte, 4 AI-PA: 10 Word, 8 DI: 2 Byte, 1 AO-PA: 5 Byte, 2 AO-PA: 10 Byte, 3 AO-PA: 15 Byte, 4 AO-PA: 10 Word, 8 DO: 2 Byte

Factory setting

Not used

Byte x...y

Navigation

Expert → Communication → Profibus DP → Slot x → Byte x...y

Direct access code, byte 0..4: 480111-0xx

Direct access code, byte 5..9: 480113-0xx

Direct access code, byte 10..14: 480115-0xx

Direct access code, byte 15..19: 480117-0xx

Examples: Slot 1, byte 0..4: 480111-000; Slot 16: 480111-015

Description

Please select the value that should be used within the module from this address offset.

Selection

Switched off, Universal input x, Digital input x, Maths x, Limit x, Relay x

Note: All active inputs are available for selection.

Factory setting

Switched off

--->

Navigation

Expert → Communication → Profibus DP → Slot x → -->

Direct access code, byte 0..4 -->: 480112-0xx

Direct access code, byte 5..9 -->: 480114-0xx

Direct access code, byte 10..14 -->: 480116-0xx

Direct access code, byte 15..19 -->: 480118-0xx

Examples: Slot 1, byte 0..4 -->: 480112-000; Slot 16 -->: 480112-015

Description

Data type of the value to be transmitted.

Note: Item only visible if a digital input with the function Operational time, Event +operation time or Quantity from time has been selected under "Byte x..y".

Selection

Not used, Instantaneous value, State, Totalizer, Total operational time

Factory setting

Not used
Bit 0.0 to 0.7

Navigation

Expert → Communication → Profibus DP → Slot x → Bit 0.0 ... 0.7
Direct access code, bit 0.0: 480111-0xx
Direct access code, bit 0.1: 480113-0xx
Direct access code, bit 0.2: 480115-0xx
Direct access code, bit 0.3: 480117-0xx
Direct access code, bit 0.4: 480119-0xx
Direct access code, bit 0.5: 480120-0xx
Direct access code, bit 0.6: 480121-0xx
Direct access code, bit 0.7: 480122-0xx
Examples: Slot 1, bit 0.0: 480111-000; Slot 16: 480111-015

Description

Please select the value that should be used within the module from this address offset.

Selection

Switched off, Universal input x, Digital input x, Maths x, Limit x, Relay x
All active inputs are available for selection.

Factory setting

Switched off

17.1.5 "Application" submenu

Configure various application-specific settings (e.g. group settings, limit values, etc.).

"Maths - Maths x" submenu

(Online configuration)

Navigation

Expert → Application → Maths → Maths x

Description

Configuration of the mathematics channels.

\[x = \text{place holder for selected mathematics channel}\]

Function

Navigation

Expert → Application → Maths → Maths x → Function
Direct access code: 400000-000
Examples: Maths 1: 400000-000; Maths 4: 400000-003

Description

Switch the mathematics channel on or off.

Selection

Switched off, Formula editor
Included with energy package (option): Energy calculation, mass calculation, density calculation, calculation of enthalpy, mass calculation DP-Flow

Factory setting

Switched off
Channel ident.

Navigation
- Expert → Application → Maths → Maths x → Channel ident.
- Direct access code: 400001-000
- Examples: Maths 1: 400001-000; Maths 4: 400001-003

Description
Measurement point name (e.g. 'Pump') or description of the function of this input (e.g. 'Fault message').

User entry
Text (max. 16 characters)

Factory setting
Maths x

Formula

Navigation
- Expert → Application → Maths → Maths x → Formula
- Direct access code: 400002-000
- Examples: Maths 1: 400002-000; Maths 4: 400002-003

Description
Enter the desired calculation formula.
The formula can be any combination of arithmetic calculations and logical operations.
Analog, digital or already active mathematics channels can be used.
Description of formula editor → 224
Only visible if function = Formula editor

User entry
Formula

Application

Navigation
- Expert → Application → Maths → Maths x → Application
- Direct access code: 400100-0xx
- Examples: Maths 1: 400100-000; Maths 4: 400100-003

Description
Please select application.
Only visible with energy package (option) and selected energy function.

Selection
Water heat quantity, Water heat difference, Steam heat quantity, Steam heat difference, Water/glycol heat difference, Water DP flow, Steam DP flow, Liquids DP flow, Gas DP flow

Factory setting
Water heat quantity or Water DP flow (depends on selected function)

Device type
Navigation

- **Expert → Application → Maths → Maths x → Device type**
- Direct access code: 400122-0xx
- Examples: Maths 1: 400122-000; Maths 4: 400122-003

Description

Configure the transmitter type used.
Only visible with energy package (option) and function = Mass calculation DP-Flow.

Selection

- Orifice (corner), Orifice (D/D2), Orifice (flange), Nozzle (ISA1932), Nozzle (I.radius), Venturi nozzle, Venturiibe, cast, Venturiibe, bear., Venturiibe, steel, V-cone, Pitot tube, Gilflo

Factory setting

- Orifice (corner)

Flow

- **Expert → Application → Maths → Maths x → Flow**
- Direct access code: 400101-0xx
- Examples: Maths 1: 400101-000; Maths 4: 400101-003

Description

Please select a flow input.
Only visible with energy package (option) and function = Energy or Mass calculation.

Selection

- Switched off, Universal input x, Maths x
- All active inputs are available for selection.

Factory setting

- Switched off

Engineering unit

- **Expert → Application → Maths → Maths x → Engineering unit**
- Direct access code: 400102-0xx
- Examples: Maths 1: 400102-000; Maths 4: 400102-003

Description

Please select the unit you would like to use for scaling the selected flow input.
Only visible with energy package (option) and selected flow input.

Selection

- m³/h, l/h, ft³/m, ft³/h, gpm, gal/h, kg/h, t/h, ton/h, lb/h

Factory setting

- m³/h

Flow installation point

- **Expert → Application → Maths → Maths x → Flow installation point**
- Direct access code: 400103-0xx
- Examples: Maths 1: 400103-000; Maths 4: 400103-003
Appendix

Memograph M, RSG45

Description
Please specify where the flow sensor is installed. This is important so that the correct temperature is used for density calculation. Only visible with energy package (option) and active flow input.

Selection
Steam, Water, Warm, Cold (depending on the selected application)

Factory setting
Steam or warm (depending on the selected application)

Pressure

Navigation
Expert → Application → Maths → Maths x → Pressure
Direct access code: 400104-0xx
Examples: Maths 1: 400104-000; Maths 4: 400104-003

Description
Please select a pressure input. If you select "deactivated" the temperature input is used to calculate the saturated steam conditions. Only visible with energy package (option) and selected steam application.

Selection
Switched off, Universal input x, Maths x
All active inputs are available for selection.

Factory setting
Switched off

Engineering unit

Navigation
Expert → Application → Maths → Maths x → Engineering unit
Direct access code: 400105-0xx
Examples: Maths 1: 400105-000; Maths 4: 400105-003

Description
Please select the unit used for scaling the selected pressure input. Only visible with energy package (option) and selected steam application. Only visible with energy packet (option) and active pressure input.

Selection
bar (a), psi (a), MPa (a), inH20 (a), bar (g), psi (g), MPa (g), inH20 (g)

Factory setting
bar (a)

Temperature (water/steam/warm)

Navigation
Expert → Application → Maths → Maths x → Temperature (water/steam/warm)
Direct access code: 400106-0xx
Examples: Maths 1: 400106-000; Maths 4: 400106-003
Description

Please select the temperature input used to measure the warm side (or steam line). If 'Switched off' is selected the pressure input is used to calculate the saturated steam conditions (only for steam applications).

Only visible with energy package (option) and selected energy function.

Selection

Switched off, Universal input x, Maths x
All active inputs are available for selection.

Factory setting

Switched off

Temperature (steam/cold)

Navigation

Expert → Application → Maths → Maths x → Temperature (steam/cold)
Direct access code: 400107-0xx
Examples: Maths 1: 400107-000; Maths 4: 400107-003

Description

Please select the temperature input used to measure the cold side (or condensate line).

Only visible with energy package (option) and selected heat difference measurement.

Selection

Switched off, Universal input x, Maths x
All active inputs are available for selection.

Factory setting

Switched off

Engineering unit

Navigation

Expert → Application → Maths → Maths x → Engineering unit
Direct access code: 400108-0xx
Examples: Maths 1: 400108-000; Maths 4: 400108-003

Description

Please select the unit used for scaling the selected temperature sensors.

Only visible with energy package (option) and selected energy function.

Selection

°C, °F, K

Factory setting

°C

Medium

Navigation

Expert → Application → Maths → Maths x → Medium
Direct access code: 400110-0xx
Examples: Maths 1: 400110-000; Maths 4: 400110-003

Description

Select a cooling medium. If the medium used is not in list, select ethylene glycol or propylene glycol.

Only visible with energy package (option) and application = Water/glycol heat difference.
Appendix

Memograph M, RSG45

Selection
Ethylene-glycol, Antifrogen N, Glykosol N, Propylene-glycol

Factory setting
Ethylene-glycol

Water/glycol concentration

Navigation
Expert → Application → Maths → Maths x → Water/glycol concentration
Direct access code: 400109-0xx
Examples: Maths 1: 400109-000; Maths 4: 400109-003

Description
Concentration of the water/glycol mixture in vol % (0-60 %).
Only visible with energy package (option) and application = Water/glycol heat difference.

User entry
0 to 60 %

Factory setting
20 %

The result is

Navigation
Expert → Application → Maths → Maths x → The result is
Direct access code: 400003-000
Examples: Maths 1: 400003-000; Maths 4: 400003-003

Description
Configure which data type the calculation returns. This setting affects how the channel saves and is displayed.
If you add 2 analog channels, for example, the result is an "instantaneous value".
If you logically link 2 channels, for example, (digital 1 AND digital 2), the result is a "state" (on/off).
Instantaneous value: If, for example, 2 analog channels are added (AI(1;1)+AI(1;2)), the result is an instantaneous value.
State: The state/status of an individual analog input can be output as the result. A relay can also be actuated as a result.
Counter: If, for example, 2 counters from digital inputs are added (DI(3;1)+DI(3;5)), the result is a counter.
Operating time from status: The status (logical "1" or "0") of one or more digital inputs that are connected by addition can be analyzed. If the result of the calculation is not equal to 0, the counter for the operating time starts. The time is increased by 0.1 s every 100 ms.
Operating time from total: If several digital inputs that are configured as "operational time" are added together, the result is the total of all the individual operating times.
Control input: The function corresponds to a digital input that has been configured as a control input.

Selection
Instantaneous value, State, Counter, Operating time from status, Operating time from total, Control input, Efficiency

Factory setting
Instantaneous value
Plot type

Navigation

Expert → Application → Maths → Maths x → Plot type
Direct access code: 400015-000
Examples: Maths 1: 400015-000; Maths 4: 400015-003

Description

The mathematics channels are recalculated every 100 ms. Depending on the save cycle, the selected data are determined/saved from the calculated values.

Selection

Instantaneous value, Average, Minimum value, Maximum value, Minimum + Maximum, Counter, Current value + Counter

Factory setting

Average

Engineering unit

Navigation

Expert → Application → Maths → Maths x → Engineering unit
Direct access code: 400004-000
Examples: Maths 1: 400004-000; Maths 4: 400004-003

Description

Unit of the calculated value. Only visible if the result is = Instantaneous value, Counter or Efficiency

User entry

Text (max. 6 characters)

Engineering unit

Navigation

Expert → Application → Maths → Maths x → Engineering unit
Direct access code: 400111-000
Examples: Maths 1: 400111-000; Maths 4: 400111-003

Description

Unit of the calculated value. Only visible with energy package (option) and selected energy function.

Selection

kW, MW, GJ/h, kBtu/m, kBtu/h, MBtu/h, ther/m, ther/h, ton, RT, kg/h, t/h, lbs/h, ton/h, kg/m³, lb/ft³, kJ/kg, Btu/lb

Factory setting

(Depends on the selected function)

Decimal point
Appendix

Memograph M, RSG45

Navigation

Expert → Application → Maths → Maths x → Decimal point
Direct access code: 400005-000
Examples: Maths 1: 400005-000; Maths 4: 400005-003

Description
Number of places after decimal point for the display.
Only visible if function = Formula editor, Energy calculation, Mass calculation, Density calculation, Calculation of enthalpy and the result is = Instantaneous value, Counter or Efficiency.

Selection
None, One (X.Y), Two (X.YY), Three (X.YYY), Four (X.YYYY), Five (X.YYYYY)

Factory setting
One (X.Y)

Action

Expert → Application → Maths → Maths x → Action
Direct access code: 400006-000
Examples: Maths 1: 400006-000; Maths 4: 400006-003

Description
Set up the function of the control input.
Only visible if the result is = Control input

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start/stop recording</td>
<td>The device only saves data as long as a high signal is present</td>
</tr>
<tr>
<td>Screensaver on</td>
<td>Switches backlighting/display off, low = off, high = on</td>
</tr>
<tr>
<td>Lock setup</td>
<td>The user can only change the setup if a low signal is present</td>
</tr>
<tr>
<td>Time synchronization</td>
<td>If a high signal is applied, the device rounds the system time up or down (only for Low→High change): 0 to 29 → round down; 30 to 59 → round up</td>
</tr>
<tr>
<td>Change the group</td>
<td>The display switches to the next active group in the event of a Low→High change.</td>
</tr>
<tr>
<td>Set point monitoring on/off</td>
<td>The entire set point monitoring function of the device can be switched on (for "High") or switched off (for "Low").</td>
</tr>
<tr>
<td>Individual LV on/off</td>
<td>Monitoring for a selected limit value can be switched on (for "High") or switched off (for "Low").</td>
</tr>
<tr>
<td>Block keyboard/navigator</td>
<td>The device can only be operated if a low signal is present. Otherwise all key activation and navigator actions are discarded.</td>
</tr>
<tr>
<td>Start/stop analysis 1-4</td>
<td>Starts/ends one of the max. 4 external analyses (the analysis runs only as long as the signal is high). Measured value acquisition for the graphic display continues. Batches are also started/ended with this function. Note: This function is not available in the case of batch and control input via a maths channel.</td>
</tr>
<tr>
<td>Reset batch number x (option)</td>
<td>Resets the automatically generated batch number (1..x) to 0 (in the event of a LowHigh change).</td>
</tr>
<tr>
<td>Batch x limit values on/off (option)</td>
<td>Switches the limits of batch x on/off. The limits relating to the batch are determined based on the group settings (via the channels assigned to the batch). If a channel is assigned to several batches, the limits for this channel are not disabled.</td>
</tr>
</tbody>
</table>

Selection
Switched off, Start/stop recording, Screensaver on, Lock setup, Time synchronization, Change group, Set point monitoring on/off, Individual LV on/off, Block keyboard/navigator, Start/stop analysis x, Reset batch no. x, Batch x limits on/off
Factory setting
Switched off

Set point

Navigation

Expert → Application → Maths → Maths x → Set point
Direct access code: 400019-000
Examples: Maths 1: 400019-000; Maths 4: 400019-003

Description

Select the set point which should be switched on or off by means of this control input.
Only visible if action = Individual LV on/off

Selection

Switched off, Limit x

Factory setting

Switched off

Switches relay

Navigation

Expert → Application → Maths → Maths x → Switches relay
Direct access code: 400007-000
Examples: Maths 1: 400007-000; Maths 4: 400007-003

Description

Switches the respective relay when the digital input is low or high.
Only visible if the result is = Control input or State

Selection

Not used, Relay x
All the available relays are displayed.

Factory setting

Not used

Description 'H'

Navigation

Expert → Application → Maths → Maths x → Description 'H'
Direct access code: 400008-00x
Examples: Maths 1: 400008-000; Maths 4: 400008-003

Description

Condition description when the digital input is active. This text is both shown on the display and saved to memory.
Only visible if the result is = Control input or State

User entry

Text (max. 6 characters)

Factory setting

On
Description 'L'

Navigation
- Expert → Application → Maths → Maths x → Description 'L'
- Direct access code: 400009-00x
- Examples: Maths 1: 400009-000; Maths 4: 400009-003

Description
Condition description when the digital input is not active. This text is both shown on the display and saved to memory. Only visible if the result is = Control input or State

User entry
Text (max. 6 characters)

Factory setting
Off

Save event

Navigation
- Expert → Application → Maths → Maths x → Save event
- Direct access code: 400010-00x
- Examples: Maths 1: 400010-000; Maths 4: 400010-003

Description
Determines whether the condition change from low to high or high to low is stored in the event log.
- Requires higher memory capacity.
- Only visible if the result is = Control input or State

Selection
No, Yes, only "On" message

Factory setting
Yes

Event message

Navigation
- Expert → Application → Maths → Maths x → Event message
- Direct access code: 400018-00x
- Examples: Maths 1: 400018-000; Maths 4: 400018-003

Description
'Do not acknowledge': No message is shown if the state of the mathematics channel changes.
'Acknowledge': A message window is shown on the screen which has to be acknowledged by operating a push button.
- Only visible if the result is = Control input or State
- Note: In the case of the DIN rail version, the message can only be acknowledged via the Web server!

Selection
Do not acknowledge, Acknowledge
Factory setting

Do not acknowledge

Event text L->H

Navigation

- Expert → Application → Maths → Maths x → Event text L->H
- Direct access code: 400011-00x
- Examples: Maths 1: 400011-000; Maths 4: 400011-003

Description

Description of condition change from low to high. Event text is stored (e.g. Start filling). Only visible if the result is = Control input or State

User entry

Text (max. 22 characters)

Event text H->L

Navigation

- Expert → Application → Maths → Maths x → Event text H->L
- Direct access code: 400012-00x
- Examples: Maths 1: 400012-000; Maths 4: 400012-003

Description

Description of condition change from high to low. Event text is stored (e.g. Stop filling). Only visible if the result is = Control input or State

User entry

Text (max. 22 characters)

Record duration

Navigation

- Expert → Application → Maths → Maths x → Record duration
- Direct access code: 400013-00x
- Examples: Maths 1: 400013-000; Maths 4: 400013-003

Description

The duration between "On" and "Off" can be recorded. The duration is appended to the "Off" event text (<hhhh>h<mm>:<ss>). Power failure times do not affect the duration. If the digital channel was "on" before the power failure and is still "on" after the power failure, the duration continues. Only visible if the result is = Control input or State

Selection

No, Yes

Factory setting

No

Zoom start
Appendix

Zoom start

Navigation

Expert → Application → Maths → Maths x → Zoom start
Direct access code: 400016-00x
Examples: Maths 1: 400016-000; Maths 4: 400016-003

Description

If the whole value range is not used, you can configure the lower value of the required section here. The zoom has no influence on the storage.
Only visible if the result is = Instantaneous value

User entry

Number (max. 8 digits)

Factory setting

0

Zoom end

Navigation

Expert → Application → Maths → Maths x → Zoom end
Direct access code: 400017-00x
Examples: Maths 1: 400017-000; Maths 4: 400017-003

Description

Like 'Zoom start'. Enter the upper value of the required range here.
Only visible if the result is = Instantaneous value

User entry

Number (max. 8 digits)

Factory setting

100

Totalizer

(Online configuration)

Navigation

Expert → Application → Maths → Maths x → Totalizer
Direct access code: 400014-00x
Examples: Maths 1: 400014-000; Maths 4: 400014-003

Description

Initial setting for the totalizer. Useful when continuing measurements recorded to date with an (electro)-mechanical counter.
Only visible if the result is = Counter, Operating time from status or Operating time from total

User entry

Number (max. 15 digits)

Factory setting

0

Formula editor

Enter the desired calculation formula.
The formula can be any combination of arithmetic calculations and logical operations.
Analog, digital or already active mathematics channels can be used.

Formula editor

Navigation

Expert → Application → Maths → Maths x → Formula

Direct access code: 400002-000

x = place holder for selected mathematics channel

A text field with the formula currently used appears. If the field is empty a formula has not yet been defined for the mathematics channel.

Description

Individual channels can be mathematically linked and calculated with functions. The mathematics channels calculated in this way are treated as "real" channels, regardless of whether they are connected conventionally or via fieldbus. Enter the desired calculation formula.

The formula can be any combination of arithmetic calculations and logical operations. Analog and digital channels can be used, as can mathematics channels that are already active.

A formula with up to 200 characters can be created using this editor. If the formula is finished, click OK to close the editor and accept the formula entered. The common entry and arithmetic operators and inputs are described in detail in the following sections.

Inputs

Inputs are described in the formula using the following syntax:

Input type (signal type;channel number)

<table>
<thead>
<tr>
<th>Type of input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>Analog inputs</td>
</tr>
<tr>
<td>DI</td>
<td>Digital inputs</td>
</tr>
<tr>
<td>MI</td>
<td>Mathematics inputs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Instantaneous value (measured value)</td>
</tr>
<tr>
<td>2</td>
<td>State</td>
</tr>
<tr>
<td>3</td>
<td>Counter/operational time</td>
</tr>
<tr>
<td>5</td>
<td>Validity: The validity of an analog channel or a mathematics channel is relayed.</td>
</tr>
<tr>
<td></td>
<td>The relayed value of the function is 0 in the event of:</td>
</tr>
<tr>
<td></td>
<td>• Open circuit</td>
</tr>
<tr>
<td></td>
<td>• Invalid measured value</td>
</tr>
<tr>
<td></td>
<td>• Sensor error</td>
</tr>
<tr>
<td></td>
<td>• Input signal too high/low</td>
</tr>
<tr>
<td></td>
<td>• Error value</td>
</tr>
<tr>
<td></td>
<td>The relayed value of the function is 1 in the event of:</td>
</tr>
<tr>
<td></td>
<td>Measured value OK, even if the limit value is breached</td>
</tr>
<tr>
<td>6</td>
<td>Delta count</td>
</tr>
<tr>
<td>7 to 10</td>
<td>Analysis 1 to 4</td>
</tr>
</tbody>
</table>
Not all signal types are available for each input type. These depend on the respective device options.

Channel number:
Analog channel 1 = 1, analog channel 2 = 2, digital channel 1 = 1, ...

Examples:
- DI(2;4) State of digital channel 4
- AI(1;1) Instantaneous value of analog channel 1

Status of a limit value:
LMT (type, limit number)

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>‘Instantaneous value’: Currently set limit value</td>
</tr>
<tr>
<td>2</td>
<td>‘State’: The function returns the status of a limit value</td>
</tr>
<tr>
<td></td>
<td>The result is 1 if the limit value is violated.</td>
</tr>
<tr>
<td></td>
<td>The result is 0 if</td>
</tr>
<tr>
<td></td>
<td>• The limit value is not violated</td>
</tr>
<tr>
<td></td>
<td>• The limit value is not switched on</td>
</tr>
<tr>
<td></td>
<td>• Limits monitoring is switched off (e.g. per control input)</td>
</tr>
</tbody>
</table>

Examples:
- LMT (1;1) Instantaneous value of limit value 1
- LMT (2;3) State of limit value 3

Priority of operators / functions
The formula is processed based on universally applicable mathematics rules:
- Parentheses first
- Exponents before multiplication or division
- Multiplication or division before addition or subtraction
- Calculate from left to right

Operators

Arithmetic operators:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Addition</td>
</tr>
<tr>
<td>-</td>
<td>Subtraction / negative sign</td>
</tr>
<tr>
<td>*</td>
<td>Multiplication</td>
</tr>
<tr>
<td>/</td>
<td>Division</td>
</tr>
<tr>
<td>%</td>
<td>Modulo (remainder of division x/y), see function "mod"</td>
</tr>
<tr>
<td>^</td>
<td>x to the power of y</td>
</tr>
</tbody>
</table>
Relational operators:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>></td>
<td>Greater than</td>
</tr>
<tr>
<td>>=</td>
<td>Greater than or equal to</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td><=</td>
<td>Less than or equal to</td>
</tr>
<tr>
<td>=</td>
<td>Equals</td>
</tr>
<tr>
<td><></td>
<td>Not equal to</td>
</tr>
</tbody>
</table>

Logical operators:

<table>
<thead>
<tr>
<th>Function</th>
<th>Syntax</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Value1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&&</td>
<td>Value1</td>
<td>&& Value2</td>
<td>Logical 'and' (see also function 'and')</td>
</tr>
</tbody>
</table>

Functions

Standard functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Syntax</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln</td>
<td>ln(number)</td>
<td>Returns the natural logarithm of a number. Natural logarithms are based on a constant e (2.71828182845904). For values ≤ 0 the result is undefined. The device continues with 0</td>
<td>ln(86) = 4.454347</td>
</tr>
<tr>
<td>log</td>
<td>log(number)</td>
<td>Calculates the logarithm of the argument for base 10. For values ≤ 0 the result is undefined. The device continues with 0.</td>
<td>log(10) = 1</td>
</tr>
<tr>
<td>exp</td>
<td>exp(number)</td>
<td>Exponentiates the base e with the number defined as the argument. The constant e is the basis of the natural logarithm and has the value 2.71828182845904.</td>
<td>exp(2.00) = 7.389056</td>
</tr>
<tr>
<td>abs</td>
<td>abs(number)</td>
<td>Returns the absolute value of a number. The absolute value of a number is the number without its algebraic sign.</td>
<td>abs(-1.23) = 1.23</td>
</tr>
<tr>
<td>pi</td>
<td>pi()</td>
<td>Returns the value of the number PI (3.14159265358979323846264)</td>
<td></td>
</tr>
<tr>
<td>sqrt</td>
<td>sqrt(number)</td>
<td>sqrt calculates the positive square root of the argument 'Number'. The result is undefined for negative values. The device continues with 0.</td>
<td>sqrt(4) = 2</td>
</tr>
<tr>
<td>Function</td>
<td>Syntax</td>
<td>Description</td>
<td>Example</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>mod</td>
<td>mod(number; divisor)</td>
<td>Returns the remainder of a division. The result has the same algebraic sign as the divisor. If the divisor has the value 0, the result is undefined. The device continues with 0.</td>
<td>mod(5;2) = 1</td>
</tr>
<tr>
<td>rnd</td>
<td>rnd(number; number_digits)</td>
<td>Rounds a number to a certain number of decimal places. "Number" is the number to which you wish to round up/down. "Number_digits" indicates to how many decimal places you wish to round the number up/down.</td>
<td>rnd(2.15;1) = 2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Notes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If "Number_digits" is greater than 0 (zero), the number is rounded to the specified number of decimal places.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If "Number_digits" is equal to 0, the number is rounded to the next whole number.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If "Number_digits" is less than 0, the part of the number to the left of the decimal separator is rounded.</td>
<td></td>
</tr>
<tr>
<td>rad</td>
<td>rad(number)</td>
<td>Conversion from degrees to radian</td>
<td>rad(270) = 4.712389</td>
</tr>
<tr>
<td>degree</td>
<td>degrees(number)</td>
<td>Conversion from radian to degrees</td>
<td>grad(pi()) = 180</td>
</tr>
</tbody>
</table>

Trigonometric functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Syntax</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>sin</td>
<td>sin(number)</td>
<td>Returns the sine of a number</td>
<td>sin(pi()) -> sine of pi radian</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sin(30 * pi() / 180) -> sine of 30 degrees (0.5)</td>
</tr>
<tr>
<td>cos</td>
<td>cos(number)</td>
<td>Conversion from radian to degrees</td>
<td>grad(pi()) = 180</td>
</tr>
<tr>
<td>tan</td>
<td>tan(number)</td>
<td>Returns the tangent of the argument</td>
<td>tan(0.785) = 0.99920</td>
</tr>
</tbody>
</table>

The following functions expect an angle in the radian as the argument. If the angle lies in the degree, it must be converted to the radian by multiplying it with pi()/180. Alternatively the function "rad" can be used:
With the following functions the returned angle is specified in radian with a value between –\(\pi/2\) and +\(\pi/2\). If the result is to be expressed in degrees, the respective result must be multiplied by \(180/\pi()\) or the 'Degrees' function used:

<table>
<thead>
<tr>
<th>Function</th>
<th>Syntax</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>asin</td>
<td>asin(number)</td>
<td>Returns the arc sine or inverse sine of a number (inverse function). The arc sine expects a real argument in the range from -1 to +1. In the event of values outside this range, the device continues with 0.</td>
<td>(\text{arcsin}(-0.5) = -0.5236) (\text{arcsin}(-0.5)*180/\pi() = -30°)</td>
</tr>
<tr>
<td>acos</td>
<td>acos(number)</td>
<td>Returns the arc cosine or inverse cosine of a number (inverse function). The arc cosine expects a real argument in the range from -1 to +1. In the event of values outside this range, the device continues with 0.</td>
<td>(\text{arccos}(-0.5) = 2.094395)</td>
</tr>
<tr>
<td>atan</td>
<td>atan(number)</td>
<td>Returns the arc tangent or inverse tangent of a number (inverse function).</td>
<td>(\text{atan}(1) = 0.785398)</td>
</tr>
</tbody>
</table>

Logical functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Syntax</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>if</td>
<td>if(check; then_value; otherwise_value)</td>
<td>'Check' is any value or expression; the result can be TRUE or FALSE. This argument can adopt any comparison calculation operator. 'Then_value' is the value returned if 'Check' is TRUE. 'Otherwise_value' is the value returned if 'Check' is FALSE.</td>
<td>if(x>10;1;0) If value x is greater than 10 the function returns 1, otherwise 0</td>
</tr>
<tr>
<td>or</td>
<td>or(true1;true2)</td>
<td>Returns TRUE if an argument is TRUE. Returns FALSE if all arguments are FALSE. Note: See also operator '</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td>and(true1;true2)</td>
<td>Returns TRUE if both arguments are TRUE. If one of the arguments is FALSE, this function returns the value FALSE. Note: See also operator '&&'</td>
<td>and(2>1;3>2) = true and(2<1;3<2) = false</td>
</tr>
<tr>
<td>not</td>
<td>not(truth value)</td>
<td>Inverts the value of an argument. NOT can be used to specify that a value does not match a specific value.</td>
<td>not(false) = true</td>
</tr>
</tbody>
</table>

XX in the following functions stands for one of the inputs described under \(\rightarrow 225\). Range functions can only ever be executed via one input type.

Range functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Syntax</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>sumXX</td>
<td>sumXX(Type;From;To)</td>
<td>Totals the values for the specified range of input signals. "Type": Signal type (see (\rightarrow 225)) "From": Channel number from which the values should be totaled (1 = \text{channel 1}) "To": Channel number to which the values should be totaled (1 = \text{channel 1})</td>
<td>sumXX ((1;2;5) = \text{sum of all instantaneous values from channel 2 to 5})</td>
</tr>
<tr>
<td>avgXX</td>
<td>avgXX(Type;From;To)</td>
<td>Calculates the average for the specified range of input signals.</td>
<td>avgXX ((1;1;6))</td>
</tr>
<tr>
<td>minXX</td>
<td>minXX(Type;From;To)</td>
<td>Returns the minimum value for the specified range of input signals.</td>
<td>minXX ((1;1;6))</td>
</tr>
<tr>
<td>maxXX</td>
<td>maxXX(Type;From;To)</td>
<td>Returns the maximum value for the specified range of input signals.</td>
<td>maxXX ((1;1;6))</td>
</tr>
</tbody>
</table>
Date/time functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Syntax</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
</table>
| dow | dow() | Returns the current day of the week as a number between 1 and 7.| Sunday = 1
Monday = 2
Tuesday = 3
Wednesday = 4
Thursday = 5
Friday = 6
Saturday = 7 |
| time | time() | Returns the current time in seconds. | 00:00 = 0 s
12:00 = 43,200 s
23:59:59 = 86,399 s |

Decimal separator

Both the decimal point and the decimal comma can be used in the formula editor. Thousand separators are not supported.

Check whether formula is valid or malfunctions

A formula is invalid if:
- The channels used are not switched on or are in the wrong operating mode (is not verified during formula entry as the channel could be switched on subsequently)
- It contains invalid characters/formulas/functions/operators
- Syntax errors (e.g. wrong number of parameters) occur in the formulas
- There are incorrect parentheses in the formula (number of open parentheses unequal to number of closed parentheses)
- Division is by zero
- A channel refers to itself (infinite recursion)

Invalid formulas are deactivated when the setup is accepted or the device is started.

Undetectable errors: wherever possible, errors in the formula are reported immediately during input. However, given the possible complexity of the formula entered (e.g. nested formulas) it is not possible to detect every error.

"DP flow" submenu (option "Energy package")

Navigation

Expert → Application → Maths → Maths x → DP-Flow

Description

Configuration of a flow measurement following the differential pressure process. Only visible if function = Mass calculation DP-Flow

Differential pressure

Navigation

Expert → Application → Maths → Maths x → DP-Flow → Differential pressure
Direct access code: 400115-00x
Examples: Maths 1: 400115-000; Maths 4: 400115-003

Description

Please select differential pressure input.

Selection

Switched off, Universal input x, Digital input x, Maths x
All active inputs are available for selection.
Factory setting

Switched off

DP unit

Navigation

Expert → Application → Maths → Maths x → DP-Flow → DP unit
Direct access code: 400116-00x
Examples: Maths 1: 400116-000; Maths 4: 400116-003

Description

Unit of the differential pressure.

Selection

mbar, inH2O

Factory setting

mbar

Diameter unit

Navigation

Expert → Application → Maths → Maths x → DP-Flow → Diameter unit
Direct access code: 400118-00x
Examples: Maths 1: 400118-000; Maths 4: 400118-003

Description

Unit of the internal diameter of the pipe.

Selection

mm, Inch

Factory setting

mm

D at 20 °C

Navigation

Expert → Application → Maths → Maths x → DP-Flow → D at 20°C
Direct access code: 400119-00x
Examples: Maths 1: 400119-000; Maths 4: 400119-003

Description

Internal pipe diameter (D) under design conditions at 20 °C/68 °F.

User entry

Number (max. 8 characters)

Factory setting

100 (mm or inches)

d at 20 °C
Appendix

Memograph M, RSG45

Navigation

- Expert → Application → Maths → Maths x → DP-Flow → d at 20°C
- Direct access code: 400120-00x
- Examples: Maths 1: 400120-000; Maths 4: 400120-003

Description

Internal pipe diameter of the throttle (d) under design conditions at 20 °C/68 °F.

User entry

Number (max. 8 characters)

Factory setting

70 (mm or inches)

K-factor

Navigation

- Expert → Application → Maths → Maths x → DP-Flow → K-factor
- Direct access code: 400121-00x
- Examples: Maths 1: 400121-000; Maths 4: 400121-003

Description

Set the K-factor (blockage factor) for the pitot tube (see nameplate on the probe).

Only visible if type = Pitot tube

User entry

Number (max. 8 characters)

Factory setting

0.6

Pipe material

Navigation

- Expert → Application → Maths → Maths x → DP-Flow → Pipe material
- Direct access code: 400127-00x
- Examples: Maths 1: 400127-000; Maths 4: 400127-003

Description

Material of the pipe.

Selection

C-steel, stainless steel, 1.5415 / A182F1, 1.7335 / A182F12, 1.7380 / A182F22, 1.4922, 1.4401 / 316, 1.4404 / 316L, 1.4571 / 316Ti

Factory setting

C-steel

Density

Navigation

- Expert → Application → Maths → Maths x → DP-Flow → Density
- Direct access code: 400123-00x
- Examples: Maths 1: 400123-000; Maths 4: 400123-003

Description

Please select density input or mathematics channel, in which the density is calculated.

Only visible if application = DP-Flow liquids or DP-Flow gas
Selection
Switched off, Universal input x, Digital input x, Maths x
All active inputs are available for selection.

Factory setting
Switched off

Density unit

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Maths → Maths x → DP-Flow → Density unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct access code: 400124-00x</td>
</tr>
<tr>
<td></td>
<td>Examples: Maths 1: 400124-000; Maths 4: 400124-003</td>
</tr>
</tbody>
</table>

| Description | Please select the density unit. Only visible if application = DP-Flow liquids or DP-Flow gas |

<table>
<thead>
<tr>
<th>Selection</th>
<th>kg/m³, lb/ft³</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Factory setting</th>
<th>kg/m³</th>
</tr>
</thead>
</table>

Design density

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Maths → Maths x → DP-Flow → Design density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct access code: 400125-00x</td>
</tr>
<tr>
<td></td>
<td>Examples: Maths 1: 400125-000; Maths 4: 400125-003</td>
</tr>
</tbody>
</table>

| Description | Density under design conditions (at design pressure/temperature). Only visible if type = V-Cone or Gilflo |

<table>
<thead>
<tr>
<th>User entry</th>
<th>Number (max. 8 characters)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Factory setting</th>
<th>1000 (kg/m³ or lb/ft³)</th>
</tr>
</thead>
</table>

Isentropic exponent

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Maths → Maths x → DP-Flow → Isentropic exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct access code: 400128-00x</td>
</tr>
<tr>
<td></td>
<td>Examples: Maths 1: 400128-000; Maths 4: 400128-003</td>
</tr>
</tbody>
</table>

| Description | Input of the kappa isentropic exponent. (Required in order to calculate the expansion number). Only visible if application = DP-Flow gas |

<table>
<thead>
<tr>
<th>User entry</th>
<th>Number (max. 8 characters)</th>
</tr>
</thead>
</table>

| Factory setting | 1.2 |
"Viscosity" submenu

Navigation

Expert → Application → Maths → Maths x → DP-Flow → Viscosity

Description

Input of the viscosity at two support points. (Needed to calculate the Reynolds number and flow coefficient).

Only visible if application = DP-Flow liquids or DP-Flow gas

Point 1

Temperature

Navigation

Expert → Application → Maths → Maths x → DP-Flow → Viscosity → Temperature

Direct access code: 400130-00x

Examples: Maths 1: 400130-000; Maths 4: 400130-003

Description

Temperature

User entry

Number (max. 8 characters)

Factory setting

0

Viscosity

Navigation

Expert → Application → Maths → Maths x → DP-Flow → Viscosity → Viscosity

Direct access code: 400131-00x

Examples: Maths 1: 400131-000; Maths 4: 400131-003

Description

Viscosity at the specified temperature.

User entry

Number (max. 8 characters)

Factory setting

1 cp

Point 2

Temperature
Temperature

Navigation
- Expert → Application → Maths → Maths x → DP-Flow → Viscosity → Temperature
- Direct access code: 400135-00x
- Examples: Maths 1: 400135-000; Maths 4: 400135-003

Description
Temperature

User entry
Number (max. 8 characters)

Factory setting
100

Viscosity

Navigation
- Expert → Application → Maths → Maths x → DP-Flow → Viscosity → Viscosity
- Direct access code: 400136-00x
- Examples: Maths 1: 400136-000; Maths 4: 400136-003

Description
Viscosity at the specified temperature.

User entry
Number (max. 8 characters)

Factory setting
0.3 cp

"Totalization" submenu

Navigation
- Expert → Application → Maths → Maths x → Totalization

Description
Settings only needed if the calculated value - e.g. for quantity calculation - should be integrated. Analysis time frames, see "Signal analysis".

Totalization

Navigation
- Expert → Application → Maths → Maths x → Totalization → Totalization
- Direct access code: 400050-00x
- Examples: Maths 1: 400050-000; Maths 4: 400050-003

Description
By totalizing the analog signal (e.g. flow rate in m³/h) quantities (in m³) can be calculated.

Selection
No, Yes

Factory setting
No

Totalization base
Navigation

Expert → Application → Maths → Maths x → Totalization → Totalization base

Direct access code: 400051-00x
Examples: Maths 1: 400051-000; Maths 4: 400051-003

Description

Select the required time base. Example: ml/s → time base seconds (s); m³/h → time base hours (h).
Only visible if totalization = Yes

Selection

Second (s), Minute (min), Hour (h), Day (d)

Factory setting

Second (s)

Unit

Navigation

Expert → Application → Maths → Maths x → Totalization → Unit

Direct access code: 400052-00x
Examples: Maths 1: 400052-000; Maths 4: 400052-003

Description

Enter the unit for the calculated quantity (e.g. "m³").
Only visible if totalization = Yes

User entry

Text (max. 6 characters)

Total. eng. unit (option "Energy package")

Navigation

Expert → Application → Maths → Maths x → Totalization → Total. eng. unit

Direct access code: 400112-00x
Examples: Maths 1: 400112-000; Maths 4: 400112-003

Description

Select the unit of the quantity determined by means of totalization here.
Only visible if function = Energy or Mass calculation and totalization = Yes

Selection

kWh, MWh, MJ, GJ, kBtu, MBtu, tonh, therm, kg, t, lbs, ton

Low flow cut off

Navigation

Expert → Application → Maths → Maths x → Totalization → Low flow cut off

Direct access code: 400053-00x
Examples: Maths 1: 400053-000; Maths 4: 400053-003
Description
If the volume flow recorded is below the set value, these quantities are not added to the counter.
If the input is scaled from 0 to y, or if the pulse input is used, all values that are smaller than the set value are not recorded.
If the input is scaled from -x to +y, all values around the zero point (e.g. also negative values) are not recorded.
Only visible if totalization = Yes

User entry
Number (max. 8 digits)

Factory setting
0

Calc. factor

Navigation
Expert → Application → Maths → Maths x → Totalization → Calc. factor
Direct access code: 400054-00x
Examples: Maths 1: 400054-000; Maths 4: 400054-003

Description
Factor for calculating the integrated value (e.g. the transmitter delivers l/s -> totalization base = second -> engineering unit required is m³ --> enter factor 0.001)
Only visible if totalization = Yes

User entry
Number (max. 8 digits)

Factory setting
1.0

Totalizer
(Online configuration)

Navigation
Expert → Application → Maths → Maths x → Totalization → Totalizer
Direct access code: 400055-00x
Examples: Maths 1: 400055-000; Maths 4: 400055-003

Description
Initial setting for the totalizer. Useful when continuing measurements recorded to date with an (electro)-mechanical counter.
Only visible if totalization = Yes

User entry
Number (max. 15 digits)

Factory setting
0

"Linearization" submenu

Navigation
Expert → Application → Maths → Maths x → Linearization

Description
Linearization settings.
Only visible if function = Formula editor
Linearization

Navigation
- Expert → Application → Maths → Maths x → Linearization → Linearization
- Direct access code: 400301-00x
- Examples: Maths 1: 400301-000; Maths 4: 400301-003

Description
Specify whether this input should be linearized.

Selection
- No, Yes

Factory setting
- No

Number of points

Navigation
- Expert → Application → Maths → Maths x → Linearization → Number of points
- Direct access code: 400302-00x
- Examples: Maths 1: 400302-000; Maths 4: 400302-003

Description
Specify how many support points your linearization table has.

- Note: The first and last point must always correspond to the start and end of the measuring range respectively.

User entry
- 2 to 32

Factory setting
- 2

Dim. linearized value

Navigation
- Expert → Application → Maths → Maths x → Linearization → Dim. linearized value
- Direct access code: 400303-00x
- Examples: Maths 1: 400303-000; Maths 4: 400303-003

Description
Unit/dimension for the linearized value.

- Note: The first and last point must always correspond to the start and end of the measuring range respectively.

User entry
- Text (max. 6 characters)

Zoom start

Navigation
- Expert → Application → Maths → Maths x → Linearization → Zoom start
- Direct access code: 400304-00x
- Examples: Maths 1: 400304-000; Maths 4: 400304-003
Description
If the total transmitter range is not used, you can enter the lower value of the required section here (higher resolution).
Example: Transmitter 0-14 pH, required section: 5-9 pH. Set "5" here. The zoom has no influence on the storage.

User entry
Number (max. 8 characters)

Factory setting
0

Zoom end

Navigation
- Expert → Application → Maths → Maths x → Linearization → Zoom end
- Direct access code: 400305-00x
- Examples: Maths 1: 400305-000; Maths 4: 400305-003

Description
Like "Zoom start". Enter the upper value of the required range here.
Example: Transmitter 0-14 pH, required section: 5-9 pH. Here: "9".

User entry
Number (max. 8 characters)

Factory setting
100

"Points" submenu

Navigation
- Expert → Application → Maths → Maths x → Linearization → Points

Description
Enter the support points of the linearization table here.
Note: The first and last point must always correspond to the start and end of the measuring range respectively. The support points can only be viewed in the PC software here. To change the support points use the "Edit table" switch.

Check table

Navigation
- Expert → Application → Maths → Maths x → Linearization → Points → Check table
- Direct access code: 400306-00x
- Examples: Maths 1: 400306-000; Maths 4: 400306-003

Description
Here you can check whether the linearization table has been entered correctly.

Selection
No, Yes

Factory setting
No

Sort table
Appendix

Memograph M, RSG45

Navigation

Expert → Application → Maths → Maths → Linearization → Points → Sort table

Direct access code: 400307-00x

Examples: Maths 1: 400307-000; Maths 4: 400307-003

Description

You can sort the linearization table here.

Selection

No, Yes

Factory setting

No

x-value (1 to 32)

Navigation

Expert → Application → Maths → Maths → Linearization → Points → x-value (1 to 32)

Direct access code: 400310-00x

Examples: Maths 1, x-value 1: 400310-000; Maths 4: 400310-003

Description

x-value for the linearization (value from the device input). e.g. 10 cm corresponds to 20 liters --> enter 10.

User entry

Number (max. 8 characters)

Factory setting

0

y-value (1 to 32)

Navigation

Expert → Application → Maths → Maths → Linearization → Points → y-value (1 to 32)

Direct access code: 400311-00x

Examples: Maths 1, y-value 1: 400311-000; Maths 4: 400311-003

Description

Enter the y-value that the measured x-value corresponds to e.g. 10 cm corresponds to 20 liters --> enter 20.

User entry

Number (max. 8 characters)

Factory setting

0

"Fault mode" submenu

Navigation

Expert → Application → Maths → Maths → Fault mode

Description

Contains settings that define how this channel is to react under fault conditions (e.g. if an input channel has a cable open circuit or there is division by 0).
Wet steam alarm

Navigation

Expert → Application → Maths → Maths x → Fault mode → Wet steam alarm
Direct access code: 400113-00x
Examples: Maths 1: 400113-000; Maths 4: 400113-003

Description

Condensation of steam! Process temperature = saturated steam temperature = condensate temperature.
Only visible if application = Steam heat quantity or Steam heat difference

Selection

Counter stop, Saturated steam calculation

Factory setting

Counter stop

On error

Navigation

Expert → Application → Maths → Maths x → Fault mode → On error
Direct access code: 400060-00x
Examples: Maths 1: 400060-000; Maths 4: 400060-003

Description

Configure what value the device should continue working with (for calculations) if the measured value is not valid (e.g. cable open circuit).

Selection

Invalid calculation, Error value

Factory setting

Invalid calculation

Error value

Navigation

Expert → Application → Maths → Maths x → Fault mode → Error value
Direct access code: 400061-00x
Examples: Maths 1: 400061-000; Maths 4: 400061-003

Description

The device continues calculating with this value in the event of an error.
Only visible if on error = Error value

User entry

Number (max. 8 digits)

Factory setting

0

Copy settings
Navigation

Expert → Application → Maths → Maths x → Copy settings
Direct access code: 400200-00x
Examples: Maths 1: 400200-000; Maths 4: 400200-003

Description

Copies settings from actual channel to selected channel.

Selection

No, In maths. channel x
Users can choose from all the available maths channels.

Factory setting

No

"Signal analysis" submenu

Navigation

Expert → Application → Signal analysis

Description

Contains settings for signal analysis (saving).

Analysis x

Navigation

Expert → Application → Signal analysis → Analysis x
Direct access code: 44000x-000
Examples: Analysis 1: 440000-000; Analysis 4: 440003-000

Description

For the set time frame, determines the minimum, maximum and average value or quantities and operating times.

- If the "Controlled externally" option is to be used, a digital input or a maths channel must be set to "Function = Control input" and "Action = Start/stop analysis x".

Selection

Switched off, Controlled externally, 1min, 2min, 3min, 4min, 5min, 10min, 15min, 30min, 1h, 2h, 3h, 4h, 6h, 8h, 12h
Daily analysis, Weekly analysis, Monthly analysis, Annual analysis

Factory setting

Switched off

Synchron. time

Navigation

Expert → Application → Signal analysis → Synchron. time
Direct access code: 440004-000

Description

Time for completing the signal analysis.
If, for example, 07:00 is set up, then the daily analysis will run from 07:00 of the actual day until 07:00 of the following day.

User entry

Time

Factory setting

00:00
Week starting on

Navigation
Expert → Application → Signal analysis → Week starting on
Direct access code: 440005-000

Description
Configure what day the weekly analysis should start.
Only visible if at least one analysis = Weekly analysis

Selection
Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday

Factory setting
Monday

Alarm statistics ("Telealarm" option)

Navigation
Expert → Application → Signal analysis → Alarm statistics
Direct access code: 440006-000

Description
The following data can be determined via the signal analysis cycles (e.g. daily analysis):
- How often was the set point violated
- How long was the set point violated

Selection
No, Yes

Factory setting
No

Group days ("Telealarm" option)

Navigation
Expert → Application → Signal analysis → Group days
Direct access code: 440008-000

Description
Set up how often the weekly- monthly- or yearly analysis are to be calculated.
"No": Each individual alarm is counted.
"Yes": The number of days within the analysis cycle in which at least one alarm took place (e.g. required for the number of overflows in a storm overflow tank).

Selection
No, Yes

Factory setting
No

Reset to zero
(Online configuration)

Navigation
Expert → Application → Signal analysis → Reset to zero
Direct access code: 440007-000
Appendix

Description
Reset analysis.
Note: Should only be executed after the device has taken over the setup.

Selection
Please select, Analysis x, Totalizer, All

Factory setting
Please select

Reset channel
(Online configuration)

Navigation
- Expert → Application → Signal analysis → Reset channel
 - Direct access code: 440010-000

Description
Reset analysis of a single channel.
Note: Should only be executed after the device has taken over the setup.

Selection
Please select, Universal input x, Digital input x, Maths x, Limit x, Relay x
All active inputs are available for selection.

Factory setting
Please select

"Automatic printout" submenu

Navigation
- Expert → Application → Signal analysis → Automatic printout

Description
Specify whether an automatic print-out should follow at the end of an evaluation.

- The printout is only made if a USB printer is connected to the device or a network printer is available.
- For supported printers please refer to the Operating Instructions.
- If the Batch option is selected, the printout is configured in the Batch mode/Print menu.

Analysis x

Navigation
- Expert → Application → Signal analysis → Automatic printout → Analysis x
- Direct access code, analysis 1: 440020-000
- Direct access code, analysis 2: 440021-000
- Direct access code, analysis 3: 440022-000
- Direct access code, analysis 4: 440023-000

Description
Specify whether an automatic print-out should follow at the end of an evaluation.

- The print-out is only made if a USB printer is connected to the device!
- For supported printers please refer to the Operating Instructions.
- If the Batch option is selected, the printout is configured in the Batch mode/Print menu.

Selection
No, Yes
Factory setting

No

"Limits" submenu

Navigation
Expert → Application → Limits

Description
Limit values can monitor the measured values. A relay, for example, can be switched if a limit value is violated.

Add limit value

Navigation
Expert → Application → Limits → Add limit value
Direct access code: 450300-000

Description
Adding a new limit value.

Selection
No, Yes

Factory setting
No

Delete limit value

Navigation
Expert → Application → Limits → Delete limit value
Direct access code: 450301-000

Description
Deleting a limit value from the list.

Selection
No, Limit value x

Factory setting
No

Change limits

This function is not supported by the DIN rail version.

Navigation
Expert → Application → Limits → Change limits
Direct access code: 450100-000

Description
Specify where the limit values can be changed. If you select 'Outside of setup also', you can change limit values in the 'Operation' menu as well as in 'Setup'. This allows you to adjust your limit values to the process even if setup is locked.
Note: This function can/should be protected by the limit value code.

Selection
Only in setup, Outside of setup also
Factory setting

Only in setup

"Limit x" submenu

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Limits → Limit x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>View or change the setup for the selected alarm set point.</td>
</tr>
<tr>
<td></td>
<td>x = place holder for selected limit value</td>
</tr>
</tbody>
</table>

Channel/value

Navigation	Expert → Application → Limits → Limit x → Channel/value
	Direct access code: 450000-0xx
	Examples: Limit 1: 450000-000; Limit 30: 450000-029
Description	Select which input/calculated value the limit value refers to.
Selection	Switched off, Universal input x, Digital input x, Maths x, Limit x
Factory setting	Switched off

Type

Navigation	Expert → Application → Limits → Limit x → Type
	Direct access code: 450001-0xx
	Examples: Limit 1: 450001-000; Limit 30: 450001-029
Description	Type of limit value (depends on the input variable).
Selection	Switched off, Upper set point, Lower set point, Analysis x, Gradient dy/dt, Analysis x frequency, Analysis x duration, Inband, Outband
Description of the individual set point types

<table>
<thead>
<tr>
<th>Set point type/function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hysteresis</td>
<td>For every set point, the switch point can be controlled via a hysteresis. The hysteresis is set as an absolute value (only positive values) in the unit of the respective channel (e.g. upper set point = 100 m, hysteresis = 1 m: set point on = 100 m, set point off = 99 m)</td>
</tr>
<tr>
<td>Upper set point</td>
<td>The limit value is active if the value exceeds the configured value. The limit value is switched off if the limit value, including hysteresis, is undershot.</td>
</tr>
<tr>
<td>Lower set point</td>
<td>The limit is active if the value drops below the configured value. The limit value is switched off if the limit value, including hysteresis, is exceeded.</td>
</tr>
</tbody>
</table>

![Diagram of Hysteresis](image1)

![Diagram of Upper Set Point](image2)

![Diagram of Lower Set Point](image3)
<table>
<thead>
<tr>
<th>Set point type/function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient dy/dt</td>
<td>The "Gradient" operating mode is used to monitor the temporal change of the input signal. The alarm is triggered if the measured value reaches or exceeds the preset value. If a positive value is set, the limit value is monitored from increasing gradients. In the case of negative values the decreasing gradient is monitored. The alarm is canceled when the gradient drops below the preset value. A hysteresis is not possible in the Gradient operating mode. The alarm can be suppressed for the set time delay (unit: seconds s) in order to decrease the sensitivity.</td>
</tr>
</tbody>
</table>

![Gradient dy/dt Diagram](image)

<table>
<thead>
<tr>
<th>Inband</th>
<th>The limit value is violated as soon as the measured value to be checked exceeds or drops below a preset maximum or minimum respectively. The hysteresis must be monitored on the inside of the band. For the limit value to no longer be violated, the value must lie within the hysteresis range.</th>
</tr>
</thead>
</table>

![Inband Diagram](image)
Set point type/function

<table>
<thead>
<tr>
<th>Set point type/function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outband</td>
<td>The limit value is violated as soon as the measured value to be checked lies within a preset band between minimum and maximum. The hysteresis must be monitored on the outside of the band. For the limit value to no longer be violated, the value must lie outside of the hysteresis range.</td>
</tr>
</tbody>
</table>

![Diagram of Outband Setpoint Function](image)

Special case: Hysteresis and delay for one limit value

In the special case in which the hysteresis and limit value delay are activated, a limit value is switched according to the following principle. If the hysteresis and the limit value delay are activated, the delay becomes active when a limit value is exceeded and measures the time from which the value is exceeded. If the measured value falls below the limit value, the delay is reset. This also occurs if the measured value falls below the limit value, but continues to be higher than the set hysteresis value. When the limit value is exceeded again, the delay time becomes active again and starts measuring from 0.

![Diagram of Hysteresis and Delay](image)

Factory setting

Switched off

Identifier

Navigation

- Expert → Application → Limits → Limit x → Identifier
- Direct access code: 450015-0xx
- Examples: Limit 1: 450015-000; Limit 30: 450015-029

Description

Name of the limit for identification purposes.

User entry

Text (max. 16 characters)

Factory setting

Limit x
Set point

Navigation

- Expert → Application → Limits → Limit x → Set point
- Direct access code: 450003-0xx
- Examples: Limit 1: 450003-000; Limit 30: 450003-029

Description

Limit value in the set process unit, e.g. in °C, m³/h

User entry

Number (max. 10 digits)

Factory setting

0

Set point 2

Navigation

- Expert → Application → Limits → Limit x → Set point 2
- Direct access code: 450017-0xx
- Examples: Limit 1: 450017-000; Limit 30: 450017-029

Description

Enter the upper limit value for the band.

Only visible if type = Inband or Outband

User entry

Number (max. 8 digits)

Factory setting

0

Time span dt

Navigation

- Expert → Application → Limits → Limit x → Time span dt
- Direct access code: 450014-0xx
- Examples: Limit 1: 450014-000; Limit 30: 450014-029

Description

Time span within which the signal must change by the specified value before it is recognized as a set point.

Note: max. 60 seconds.

Only visible if type = Gradient dy/dt

User entry

0 to 60 s

Factory setting

60 s

Hysteresis (abs.)
Navigation

Expert → Application → Limits → Limit x → Hysteresis (abs.)

Direct access code: 450004-0xx

Examples: Limit 1: 450004-000; Limit 30: 450004-029

Description

The alarm condition is only canceled when the signal has changed into the normal operation range by the preset value.

User entry

Number (max. 8 digits)

Factory setting

0

Time delay

Expert → Application → Limits → Limit x → Time delay

Direct access code: 450005-0xx

Examples: Limit 1: 450005-000; Limit 30: 450005-029

Description

In order to be interpreted as an alarm the signal must exceed or undercut the preset value by at least the time set up.

User entry

0 to 99999 s

Factory setting

0 s

Switches

Expert → Application → Limits → Limit x → Switches

Direct access code: 450006-0xx

Examples: Limit 1: 450006-000; Limit 30: 450006-029

Description

Switches the appropriate output in the limit value state.

Selection

Not used, Relay x

Factory setting

Not used

LV messages

Expert → Application → Limits → Limit x → LV messages

Direct access code: 450007-0xx

Examples: Limit 1: 450007-000; Limit 30: 450007-029
Description

"Do not acknowledge": Alarm condition is signaled by highlighting the tag name in red (no message is output).

"Acknowledge": In the event of an alarm, a message is also displayed. This message then has to be acknowledged.

Note: In the case of the DIN rail version, the message can only be acknowledged via the Web server!

Selection

Do not acknowledge, Acknowledge

Factory setting

Do not acknowledge

Save event

Navigation

Expert → Application → Limits → Limit x → Save event

Direct access code: 450008-0xx

Examples: Limit 1: 450008-000; Limit 30: 450008-029

Description

Stores a message in the event log on limit value violation.

Selection

No, Yes, only 'On' message

Factory setting

Yes

Event text LV on

Navigation

Expert → Application → Limits → Limit x → Event text LV on

Direct access code: 450009-0xx

Examples: Limit 1: 450009-000; Limit 30: 450009-029

Description

This text (including date and time) is shown on the display and/or stored in the event log. Only available if "LV messages" is set to "Acknowledge" or "Save message" is set to "Yes". If no text is entered, the device generates its own text (e.g. Analog 1 > 100%).

User entry

Text (max. 22 characters)

Event text LV off

Navigation

Expert → Application → Limits → Limit x → Event text LV off

Direct access code: 450010-0xx

Examples: Limit 1: 450010-000; Limit 30: 450010-029

Description

The same as "Event text LV on", but on return from alarm to normal condition.

User entry

Text (max. 22 characters)
Record duration of LV on

Navigation
- Expert → Application → Limits → Limit x → Record duration of LV on
- Direct access code: 450011-0xx
- Examples: Limit 1: 450011-000; Limit 30: 450011-029

Description
The duration of a set point violation can be recorded. The duration is appended to the "Limit value off" event text (format: <hhhh>:<mm>:<ss>). Power failure times do not affect the duration. If the set point was violated before the power failure and is still violated after the power failure, the duration continues.

Selection
- No, Yes

Factory setting
- No

Reset relay

Navigation
- Expert → Application → Limits → Limit x → Reset relay
- Direct access code: 450016-0xx
- Examples: Limit 1: 450016-000; Limit 30: 450016-029

Description
If LV no longer violated: the relay is switched as long as the set point is violated. After acknowledging message: even if the set point is no longer violated, the relay remains switched until the message has been acknowledged. If the set point is still violated when the message is acknowledged, the relay stays switched until the set point is no longer violated. Up to message acknowledgment: the relay remains active until the message is acknowledged or the set point is no longer active.

Selection
- If LV no longer violated, After acknowledging message, Up to message acknowledgment

Factory setting
- If LV no longer violated

Save cycle

Navigation
- Expert → Application → Limits → Limit x → Save cycle
- Direct access code: 450012-0xx
- Examples: Limit 1: 450012-000; Limit 30: 450012-029

Description
Normal: Save in normal store cycle. Alarm cycle: Fast storage during an alarm violation, e.g. every second. Caution: Requires higher memory capacity!

- The save cycle is set under signal groups.
- In the event of an alarm violation, all the groups are saved in the alarm cycle.

Selection
- Normal, Alarm cycle
Factory setting
Normal

Draw help line

⚠ This function is not supported by the DIN rail version.

Navigation

- Expert → Application → Limits → Limit x → Draw help line
- Direct access code: 450013-0xx
- Examples: Limit 1: 450013-000; Limit 30: 450013-029

Description
The user can configure whether this set point should be displayed in the graphic as a help line (in the color of the channel).

Note: 4 lines can be shown per channel in a single group.

Selection
No, Yes

Factory setting
No

Copy settings

Navigation

- Expert → Application → Limits → Limit x → Copy settings
- Direct access code: 450200-0xx
- Examples: Limit 1: 450200-000; Limit 30: 450200-029

Description
Copies settings from actual channel to selected channel.

Selection
No, In limit x (all the limit values are displayed)

Factory setting
No

"Batch mode" submenu (option)

Navigation

- Expert → Application → Batch mode

Description
Contains settings for the batch mode.

⚠ Detailed descriptions of this device option can be found in the associated documentation.

"Signal groups" submenu

Navigation

- Expert → Application → Signal groups
Description

Group the analog, digital and/or mathematics channels such that you can call up important information during operation (e.g. temperatures, signals in plant unit 1).

- Maximum 8 channels per group!
- High speed storage (100ms) is only available in group 1.

"Group x" submenu

Navigation

Expert → Application → Signal groups → Group x

Description

x = place holder for selected group

General settings for displaying the measured value and saving data.

Identifier

Navigation

Expert → Application → Signal groups → Group x → Identifier

Direct access code: 460000-0xx
Examples: Group 1: 460000-000; Group 4: 460000-003

Description

Enter a name for these groups.

User entry

Text (max. 20 characters)

Factory setting

Group x

Save cycle

Navigation

Expert → Application → Signal groups → Group x → Save cycle

Direct access code: 460001-0xx
Examples: Group 1: 460001-000; Group 4: 460001-003

Description

Configure the save cycle with which this group should be saved in normal conditions (see also set point/save cycle).

The save cycle is independent of the measured value display (see Operating Instructions).

Selection

Off, 100ms (only for group 1), 1s, 2s, 3s, 4s, 5s, 10s, 15s, 20s, 30s, 1min, 2min, 3min, 4min, 5min, 10min, 15min, 30min, 1h

Factory setting

1min

Alarm cycle
Navigation

Expert → Application → Signal groups → Group x → Alarm cycle
Direct access code: 460002-0xx
Examples: Group 1: 460002-000; Group 4: 460002-003

Description

Configure the save cycle with which this group should be saved in an alarm condition (limit value violation).
Caution: Requires higher memory capacity.

Selection

Off, 100ms (only for group 1), 1s, 2s, 3s, 4s, 5s, 10s, 15s, 20s, 30s, 1min, 2min, 3min, 4min, 5min, 10min, 15min, 30min, 1h

Factory setting

1min

Display blue

Navigation

Expert → Application → Signal groups → Group x → Display blue
Direct access code: 460003-00x
Examples: Group 1: 460003-000; Group 4: 460003-003

Description

Choose which input/calculated variable should be displayed in this group.

Selection

Switched off, Universal input x, Digital input x, Maths x

Factory setting

Switched off

Display

Navigation

Expert → Application → Signal groups → Group x → Display
Direct access code: 460004-00x
Examples: Group 1: 460004-000; Group 4: 460004-003

Description

Please select which data from the selected channel should be displayed.

- Instantaneous value/state, Analysis x, Totalizer, Everything

Selection

Instantaneous value/state, Analysis x, Totalizer, Everything

Factory setting

Instantaneous value/state

Display black

Navigation

Expert → Application → Signal groups → Group x → Display black
Direct access code: 460005-00x
Examples: Group 1: 460005-000; Group 4: 460005-003

Description

Choose which input/calculated variable should be displayed in this group.
Selection

Switched off, Universal input x, Digital input x, Maths x

Factory setting

Switched off

Display

Navigation

Expert → Application → Signal groups → Group x → Display

Direct access code: 460006-0xx

Examples: Group 1: 460006-000; Group 4: 460006-003

Description

Please select which data from the selected channel should be displayed.

Selection

Instantaneous value/state, Analysis x, Totalizer, Everything

Factory setting

Instantaneous value/state

Display red

Navigation

Expert → Application → Signal groups → Group x → Display red

Direct access code: 460007-00x

Examples: Group 1: 460007-000; Group 4: 460007-003

Description

Choose which input/calculated variable should be displayed in this group.

Selection

Switched off, Universal input x, Digital input x, Maths x

Factory setting

Switched off

Display

Navigation

Expert → Application → Signal groups → Group x → Display

Direct access code: 460008-0xx

Examples: Group 1: 460008-000; Group 4: 460008-003

Description

Please select which data from the selected channel should be displayed.

Selection

Instantaneous value/state, Analysis x, Totalizer, Everything

Factory setting

Instantaneous value/state

Display green
Display

Navigation
Expert → Application → Signal groups → Group x → Display

Direct access code: 460010-0xx

Examples: Group 1: 460010-000; Group 4: 460010-003

Description
Please select which data from the selected channel should be displayed.

Selection
Instantaneous value/state, Analysis x, Totalizer, Everything

Factory setting
Instantaneous value/state

Display violet

Navigation
Expert → Application → Signal groups → Group x → Display violet

Direct access code: 460011-00x

Examples: Group 1: 460011-000; Group 4: 460011-003

Description
Choose which input/calculated variable should be displayed in this group.

Selection
Switched off, Universal input x, Digital input x, Maths x

Factory setting
Switched off

Display

Navigation
Expert → Application → Signal groups → Group x → Display

Direct access code: 460012-0xx

Examples: Group 1: 460012-000; Group 4: 460012-003

Description
Please select which data from the selected channel should be displayed.

Selection
Instantaneous value/state, Analysis x, Totalizer, Everything

Factory setting
Instantaneous value/state
Display orange

Navigation
Expert → Application → Signal groups → Group x → Display orange
Direct access code: 460013-00x
Examples: Group 1: 460013-000; Group 4: 460013-003

Description
Choose which input/calculated variable should be displayed in this group.

Selection
Switched off, Universal input x, Digital input x, Maths x

Factory setting
Switched off

Display

Navigation
Expert → Application → Signal groups → Group x → Display
Direct access code: 460014-0xx
Examples: Group 1: 460014-000; Group 4: 460014-003

Description
Please select which data from the selected channel should be displayed.

Selection
Instantaneous value/state, Analysis x, Totalizer, Everything

Factory setting
Instantaneous value/state

Display cyan

Navigation
Expert → Application → Signal groups → Group x → Display cyan
Direct access code: 460015-00x
Examples: Group 1: 460015-000; Group 4: 460015-003

Description
Choose which input/calculated variable should be displayed in this group.

Selection
Switched off, Universal input x, Digital input x, Maths x

Factory setting
Switched off

Display
Display brown

Navigation

Expert → Application → Signal groups → Group x → Display brown
Direct access code: 460017-00x
Examples: Group 1: 460017-000; Group 4: 460017-003

Description

Choose which input/calculated variable should be displayed in this group.

Selection

Switched off, Universal input x, Digital input x, Maths x

Factory setting

Switched off

Display

Navigation

Expert → Application → Signal groups → Group x → Display
Direct access code: 460018-0xx
Examples: Group 1: 460018-000; Group 4: 460018-003

Description

Please select which data from the selected channel should be displayed.

Selection

Instantaneous value/state, Analysis x, Totalizer, Everything

Factory setting

Instantaneous value/state

Grid divisions

Navigation

Expert → Application → Signal groups → Group x → Grid divisions
Direct access code: 460019-0xx
Examples: Group 1: 460019-000; Group 4: 460019-003

Description

Indicates the number of lines ("amplitude grid") that should be displayed. Example: display of 0 to 100\%: select 10 divisions, display 0 to 14pH: select 14 divisions.

Selection

Logarithmic, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Factory setting

10

Min. decade
Navigation

- Expert → Application → Signal groups → Group x → Min. decade
- Direct access code: 460020-0xx
- Examples: Group 1: 460020-000; Group 4: 460020-003

Description

Set the decade from which the display should be split.

Selection

1, 10, 100, 1000, 10000, 100000, 1000000, 10000000

Factory setting

1

Max. decade

- Expert → Application → Signal groups → Group x → Max. decade
- Direct access code: 460021-0xx
- Examples: Group 1: 460021-000; Group 4: 460021-003

Description

Set the decade up to which the display should be split.

Selection

1, 10, 100, 1000, 10000, 100000, 1000000, 10000000

Factory setting

10000

Curve display

- Expert → Application → Signal groups → Group x → Curve display
- Direct access code: 460022-0xx
- Examples: Group 1: 460022-000; Group 4: 460022-003

Description

The instantaneous values are displayed as standard for the measured value curves. Alternatively, this current value display can also be disabled which means that more data can be shown on the display as a result.

Selection

No instantaneous values, With instantaneous values

Factory setting

With instantaneous values

Curve display

- Expert → Application → Signal groups → Group x → Curve display
- Direct access code: 460023-0xx
- Examples: Group 1: 460023-000; Group 4: 460023-003

Endress+Hauser
Description Configure the background color for the curve display.

Selection White background, Black background

Factory setting White background

Zoom

- **This function is not supported by the DIN rail version.**

Navigation

Expert → Application → Signal groups → Group x → Zoom
Direct access code: 460028-0xx
Examples: Group 1: 460028-000; Group 4: 460028-003

Description Defines the zoom that is shown in "Curves" or "Waterfall" display mode. This setting does not affect other display modes (e.g. Curves in range, Bar graph etc.).

Selection Do not display, Scroll display, Display blue, Display black, Display red, Display green, Display violet, Display orange, Display cyan, Display brown

Factory setting Do not display

Bargraph

- **This function is not supported by the DIN rail version.**

Navigation

Expert → Application → Signal groups → Group x → Bargraph
Direct access code: 460024-0xx
Examples: Group 1: 460024-000; Group 4: 460024-003

Description Configure the direction in which the bar graphs should be drawn.

Selection Vertical (bottom->top), Vertical (top->bottom), Horizontal (left->right), Horizontal (right->left), Centered/vertical, Centered/horizontal

Factory setting Vertical (bottom->top)

Batch assignment (option)

Navigation

Expert → Application → Signal groups → Group x → Batch assignment
Direct access code: 460025-0xx
Examples: Group 1: 460025-000; Group 4: 460025-003
Description
Configure what batch this group belongs to.

- Channels can be assigned to multiple batches/groups.
- Only relevant for batch printout.

Selection
Do not assign any batch, Assign all batches, Batch x

Factory setting
Assign all batches

Save group (Batch option)

Navigation	Expert → Application → Signal groups → Group x → Save group
	Direct access code: 460026-0xx
	Examples: Group 1: 460026-000; Group 4: 460026-003

Description	The group will always be saved or only when the allocated batch is active.
Selection	Only when batch is active, Always
Factory setting	Always

"Circular chart" submenu

- This function is **not** supported by the DIN rail version.

| Navigation | Expert → Application → Signal groups → Group x → Circular chart |
| | Contains settings for the circular chart. |

| 1 revolution = |

Navigation	Expert → Application → Signal groups → Group x → Circular chart → 1 revolution =
	Direct access code: 460027-0xx
	Examples: Group 1: 460027-000; Group 4: 460027-003

| Description | Configure how long it takes for the circular chart to be written to once completely (one complete revolution).
	Note: The device only ever shows 1/4 of the circular chart.
Selection	1 hour, x hours, 1 day, x days
Factory setting	1 hour

"E-mail" submenu

Endress+Hauser
In the case of the "Telealarm" option under Expert → Application → Telealarm → General → Setup e-mail

Description
Contains settings required if alarms are to be transmitted by e-mail.

Test the e-mail settings under Diagnostics → Simulation → E-mail.

SMTP host

Description
Enter your SMTP host here. If necessary, contact your network administrator or e-mail provider.

User entry
Text (max. 40 characters)

Server requires SSL

Description
Specify whether the e-mail server requires a secure connection (SSL).
STARTTLS: Runs on the same TCP port as unencrypted SMTP (port 25 or 587).
SMTPS: Completely encrypted with own TCP port (465).
If necessary, contact your network administrator or e-mail provider.

Selection
No, Yes (SMTPS), Yes (STARTTLS)

Factory setting
No

Port

Description
Enter your SMTP port here. If necessary, contact your network administrator or e-mail provider.

User entry
Number (max. 4 digits)

Factory setting
25
Sender

Navigation
Expert → Application → E-mail → Sender
Direct access code: 510064-000

Description
Enter the e-mail address of the device here (this text appears as the sender of the e-mail). If necessary, contact your network administrator or e-mail provider.

If a valid e-mail address is not configured this might cause e-mail transmission problems, depending on the particular provider.

User entry
Text (max. 60 characters)

User name

Navigation
Expert → Application → E-mail → User name
Direct access code: 510066-000

Description
Configure the user name of the e-mail account here. If necessary, contact your network administrator or e-mail provider.

User entry
Text (max. 60 characters)

Password

Navigation
Expert → Application → E-mail → Password
Direct access code: 510067-000

Description
Enter the password for authentication here. If necessary, contact your network administrator or e-mail provider.

User entry
Text (max. 22 characters)

“E-mail addresses” submenu

Navigation
Expert → Application → E-mail → E-mail addresses

Description
Here, enter all the e-mail addresses messages should be sent to in the event of an alarm.
Assignment to the alarms is performed later on.

E-mail address x
Navigation

- Expert → Application → E-mail → E-mail addresses → E-mail address x
- Direct access code:
 - E-mail address 1: 510080-000
 - ...
 - E-mail address 5: 510084-000

Description

Here, enter an e-mail address a message should be sent to.

- Assignment to the alarms is performed later on.

User entry

- Text (max. 60 characters)

"Limit value violations" submenu

Navigation

- Expert → Application → E-mail → Limit value violations

Description

Specify who should receive e-mails when limit value violations occur (both on and off messages).

- Only for limit values where "Save message" is set to "Yes".

Recipient x

Navigation

- Expert → Application → E-mail → Limit value violations → Recipient x
- Direct access code:
 - Recipient 1: 510110-000; Recipient 2: 510111-000

Description

Select who should receive the e-mail.

Selection

Not used, E-mail address x

Factory setting

Not used

"On/off messages" submenu

Navigation

- Expert → Application → E-mail → On/off messages

Description

Specify who should receive e-mails when "on"/"off" messages occur (for digital inputs or maths channels).

- Only for inputs where "Save event" is set to "Yes".

Recipient x

Navigation

- Expert → Application → E-mail → On/off messages → Recipient x
- Direct access code:
 - Recipient 1: 510115-000; Recipient 2: 510116-000
Description
Select who should receive the e-mail.

Selection
Not used, E-mail address x

Factory setting
Not used

"Errors (Fxxx/Sxxx)" submenu

Navigation
Expert → Application → E-mail → Errors (Fxxx/Sxxx)

Description
Specify who should receive e-mails when errors occur (Fxxx and Sxxx messages).

Recipient x

Navigation
Expert → Application → E-mail → Errors → Recipient x
Direct access code:
Recipient 1: 510120-000; Recipient 2: 510121-000

Description
Select who should receive the e-mail.

Selection
Not used, E-mail address x

Factory setting
Not used

"Maintenance required" (submenu)

Navigation
Expert → Application → E-mail → Maintenance required

Description
Specify who should receive e-mails when maintenance is required (Mxxx messages).

Recipient x

Navigation
Expert → Application → E-mail → Maintenance required → Recipient x
Direct access code:
Recipient 1: 510130-000; Recipient 2: 510131-000

Description
Select who should receive the e-mail.

Selection
Not used, E-mail address x

Factory setting
Not used

"Printer" submenu
Navigation

Expert → Application → Printer

Description

Contains printer settings.

Only relevant if a printer is directly connected to the device.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Direct access code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printer</td>
<td>Please select the printer you wish to use. For supported printers please refer to the Operating Instructions.</td>
<td>540000-000</td>
</tr>
<tr>
<td>IP address</td>
<td>Enter the IP address of the network printer here. If you do not know the IP address, contact your network administrator. Note: A DNS name may also be used.</td>
<td>540001-000</td>
</tr>
<tr>
<td>Port</td>
<td>Please enter the port of your network printer (available from your network administrator). Note: Port 9100 is usually used.</td>
<td>540002-000</td>
</tr>
<tr>
<td>Color printer</td>
<td>Please specify whether you are using a black and white or color printer.</td>
<td>540003-000</td>
</tr>
<tr>
<td>Paper size</td>
<td>Please select the paper size of your printer.</td>
<td>540004-000</td>
</tr>
<tr>
<td>Print direction</td>
<td>Select the print direction as per the properties of the printer used.</td>
<td>540005-000</td>
</tr>
<tr>
<td>Characters/line</td>
<td>Enter the maximum number of characters per line here.</td>
<td>540006-000</td>
</tr>
<tr>
<td>Blank rows at the end</td>
<td>Enter the number of blank lines required at the end of the printout to make it easier to tear off.</td>
<td>540007-000</td>
</tr>
<tr>
<td>Fault switches</td>
<td>You can switch a relay if an error occurs during the printout. The relay remains switched until the printer is ready again or the device is restarted.</td>
<td>540008-000</td>
</tr>
<tr>
<td>"Serial interface" submenu</td>
<td>Settings required if you are using the RS232 or RS485 interface of the device.</td>
<td>150101-000, 150103-000</td>
</tr>
</tbody>
</table>

"Softkeys" submenu

This function is not supported by the DIN rail version.

Navigation

Expert → Application → Softkeys

Description

You can configure the functions that are assigned to the softkeys of the device.

Softkey 1-3

Navigation

Expert → Application → Softkeys → Softkey x

Direct access code, softkey 1: 520000-000
Direct access code, softkey 2: 520001-000
Direct access code, softkey 3: 520002-000

Description

Specify the function to be assigned to this softkey.

Selection

Not used, Safe SD card removal, Remove USB stick safely, Printout, Enter batch info, Event log / audit trail, Historic measured values, Log onto device, Log out from device, Screenshot, Search in trace, Show analyses, Change set point, Next group, Operation
Factory setting

Softkey 1: Event log/audit trail
Softkey 2: Historic measured values
Softkey 3: Search in trace

"Texts" submenu

Navigation

- Expert → Application → Texts

Description

Settings only needed if you want to save text for subsequent reporting. Here, configure the text that can be saved in the event log during operation.

Text 1-30

Navigation

- Expert → Application → Texts → Text x
 - Direct access code, text 1: 530000-000
 - ...
 - Direct access code, text 30: 530029-000

Description

Generate or change the text.

User entry

- Text (max. 22 characters)

"Wastewater" submenu (option)

Navigation

- Expert → Application → Wastewater

Description

Contains settings for using the device in the wastewater sector.
- Detailed descriptions of this device option can be found in the associated documentation.

"Telealarm" submenu (option)

Navigation

- Expert → Application → Telealarm

Description

Contains settings for alerts via a modem connected to the device or by e-mail.
- Detailed descriptions of this device option can be found in the associated documentation.

"WebDAV Client" submenu

Navigation

- Expert → Application → WebDAV Client
Description

All recorded data are transmitted to an external WebDAV server (e.g. NAS). The format can be specified or selected via "Setup → Advanced setup → System → External memory -> Save as".

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Direct access code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable</td>
<td>Switch the WebDAV client functionality on/off. When active, the device copies the saved measured values automatically to the configured server.</td>
<td>472000-000</td>
</tr>
<tr>
<td></td>
<td>Only possible using the Ethernet interface! Options: No, Yes, Yes (SSL) Factory setting: No</td>
<td></td>
</tr>
<tr>
<td>IP address</td>
<td>Enter the IP address of the WebDAV server here. A DNS name can also be used. User entry: IP address Factory setting: 0.0.0.0</td>
<td>472001-000</td>
</tr>
<tr>
<td>Port</td>
<td>This communication port is used to communicate with the WebDAV Server. If your network is protected by a firewall, this port may have to be enabled. Please contact your network administrator if this is the case. User entry: Numbers (max. 5 digits) Factory setting: 80</td>
<td>472002-000</td>
</tr>
<tr>
<td>User name</td>
<td>Input of the user name that can access the WebDAV server. User entry: Text (max. 20 characters)</td>
<td>472004-000</td>
</tr>
<tr>
<td>Password</td>
<td>Password for accessing the WebDAV server. User entry: Text (max. 20 characters)</td>
<td>472007-000</td>
</tr>
<tr>
<td>Directory</td>
<td>Enter the directory in which the data should be saved. User entry: Text (max. 120 characters)</td>
<td>472005-000</td>
</tr>
<tr>
<td>Save as</td>
<td>"Protected format": All data is stored in a manipulation protected encrypted format. This data can only be visualized by the PC analysis software supplied. "Open format": Data is stored in a CSV format, this can be opened by a number of different programs (for e.g. MS Excel) [Attention: no manipulation security]. Options: Protected format, Open format (*.csv) Factory setting: Protected format</td>
<td>472010-000</td>
</tr>
</tbody>
</table>

Test the WebDAV client settings under "Diagnostics → Simulation → WebDAV client".

17.1.6 "Diagnostics" submenu

Device information and service functions for a quick device check.

Only some of the diagnostic functions are available under Expert → Diagnostics! For other functions, see the Main menu → Diagnostics

Actual diagnostics (Online configuration)

Navigation

Expert → Diagnostics → Actual diagnostics Direct access code: 050000-000

Description

Displays the current diagnosis message.
Last diagnostics
(Online configuration)

Navigation
- Expert → Diagnostics → Last diagnostics
- Direct access code: 050005-000

Description
Displays the last diagnosis message.

Last restart
(Online configuration)

Navigation
- Expert → Diagnostics → Last restart
- Direct access code: 050010-000

Description
Information as to when the device was last restarted (e.g. due to a power failure).

"Event log" submenu

Navigation
- Expert → Diagnostics → Event log

Description
Events such as alarm set point infringement and power failure are listed in the correct time sequence.

"Device information" submenu
(Online configuration)

Navigation
- Expert → Diagnostics → Device information

Description
Displays important device information.

Device tag

Navigation
- Expert → Diagnostics → Device information → Device tag
- Direct access code: 000031-000

Description
Individual device tag name/unit identifier (max. 32 characters).

Serial number
(Online configuration)
Navigation

| **Expert → Diagnostics → Device information → Serial number** |
| Direct access code: 000027-000 |

Description
Individual serial number of the device. Please provide these details when ordering spare parts or asking any questions about the unit.

Order code

(Online configuration)

| **Expert → Diagnostics → Device information → Order code** |
| Direct access code: 000029-000 |

Description
Displays the order code.
The order code indicates the attribute of all the features of the product structure for the device and thus uniquely identifies the device. It can also be found on the nameplate.

Uses of the order code
- To order an identical replacement device.
- To check the ordered device features using the delivery note.

Firmware version

(Online configuration)

| **Expert → Diagnostics → Device information → Firmware version** |
| Direct access code: 000026-000 |

Description
Displays the installed firmware version of the device. Please send these details with any questions about the unit.

ENP version

(Online configuration)

| **Expert → Diagnostics → Device information → ENP version** |
| Direct access code: 000032-000 |

Description
Displays the version of the electronic nameplate. Please send these details with any questions about the unit.

ENP device name

(Online configuration)

<p>| Expert → Diagnostics → Device information → ENP device name |
| Direct access code: 000020-000 |</p>
<table>
<thead>
<tr>
<th>Description</th>
<th>Displays the ENP device name (electronic name plate). Please send these details with any questions about the unit.</th>
</tr>
</thead>
</table>

Device name
(Online configuration)

| **Navigation** | Expert → Diagnostics → Device information → Device name
Direct access code: 000021-000 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the device name. Please send these details with any questions about the unit.</td>
</tr>
</tbody>
</table>

Manufacturer ID
(Online configuration)

| **Navigation** | Expert → Diagnostics → Device information → Manufacturer ID
Direct access code: 000022-000 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the manufacturer ID. Please send these details with any questions about the unit.</td>
</tr>
</tbody>
</table>

Manufacturer name
(Online configuration)

| **Navigation** | Expert → Diagnostics → Device information → Manufacturer name
Direct access code: 000023-000 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the manufacturer name. Please send these details with any questions about the unit.</td>
</tr>
</tbody>
</table>

Firmware
(Online configuration)

| **Navigation** | Expert → Diagnostics → Device information → Firmware
Direct access code: 009998-000 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the installed firmware of the device. Please send these details with any questions about the unit.</td>
</tr>
</tbody>
</table>

“Simulation” submenu

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Simulation</th>
</tr>
</thead>
</table>

Endress+Hauser 273
<table>
<thead>
<tr>
<th>Description</th>
<th>Settings for simulation mode.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Operating mode</th>
</tr>
</thead>
</table>

| Navigation | Expert → Diagnostics → Simulation → Operating mode
Direct access code: 010010-000 |
| Description | Normal operation: Unit plots the signals from the connected measurement points.
Simulation: Instead of operating with the real measurement points the signals are simulated (using the actual settings). |
| Selection | Normal operation, Simulation |
| Factory setting | Normal operation |
Index

Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ... 9</td>
<td>1 hour= (parameter)</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>1 revolution = (parameter)</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>1 second= (parameter)</td>
<td>177</td>
</tr>
<tr>
<td>A</td>
<td>Access code (parameter)</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Acknowledging messages (parameter)</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>Action (parameter)</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>Activation code (parameter)</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Actual diagnostics (parameter)</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>Actual value (parameter)</td>
<td>168, 169, 186</td>
</tr>
<tr>
<td></td>
<td>Add input (parameter)</td>
<td>152, 174</td>
</tr>
<tr>
<td></td>
<td>Add input (parameter)</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>Add limit value (parameter)</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Admin ID (parameter)</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Admin password (parameter)</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>Administrator (parameter)</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Administrator, ID (parameter)</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Administrator, ID, password (parameter)</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>Alarm cycle (parameter)</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>Alarm response (parameter)</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>Alarm statistics (parameter)</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Analysis x (parameter)</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>Analysis x for automatic printout (parameter)</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>Application (parameter)</td>
<td>152, 214</td>
</tr>
<tr>
<td></td>
<td>Application (submenu)</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>Authentication (submenu)</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>Automatic printout (submenu)</td>
<td>244</td>
</tr>
<tr>
<td>B</td>
<td>Barcode reader (submenu)</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>Bargraph (parameter)</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>Batch (parameter)</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>Batch assignment (parameter)</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>Batch mode (parameter)</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>Baud rate (parameter)</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>Begin summer time (parameter)</td>
<td>136</td>
</tr>
<tr>
<td>C</td>
<td>Cable open circuit (parameter)</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>Calc. factor (parameter)</td>
<td>159, 171, 237</td>
</tr>
<tr>
<td></td>
<td>CE mark</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>CE mark (declaration of conformity)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Change date/time (submenu)</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Change limits (parameter)</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Channel ident. (parameter)</td>
<td>157, 176</td>
</tr>
<tr>
<td></td>
<td>Channel/value (parameter)</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>Character set (parameter)</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>Check table (parameter)</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Check table for linearization (parameter)</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>Circular chart (submenu)</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>Clear memory (parameter)</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethernet TCP/IP</td>
<td>27</td>
</tr>
</tbody>
</table>

Communication

Communication (parameter)	275
Communication (submenu)	212
Communication (parameter)	151
Communication (submenu)	189
Comparison point (parameter)	163
Comparison temp. (parameter)	163
Configuration software FieldCare	52
Configuration Web server (submenu)	194
Connection (parameter)	155
Connection quality (parameter)	199
Control relays (parameter)	196
Copy settings (parameter)	174, 182, 241, 254
Correction RPT (parameter)	167
CSV settings (parameter)	145
Current date/time (parameter)	135
Curve display (parameter)	261

D

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>d at 20 °C</td>
<td>231</td>
</tr>
<tr>
<td>D at 20 °C</td>
<td>231</td>
</tr>
<tr>
<td>Damping</td>
<td>163</td>
</tr>
<tr>
<td>Damping/filter</td>
<td>184</td>
</tr>
<tr>
<td>Data type</td>
<td>157</td>
</tr>
<tr>
<td>Date</td>
<td>137, 139</td>
</tr>
<tr>
<td>Date format</td>
<td>134</td>
</tr>
<tr>
<td>Date/time</td>
<td>135, 145</td>
</tr>
<tr>
<td>Date/time (submenu)</td>
<td>134</td>
</tr>
<tr>
<td>Date/time setup (submenu)</td>
<td>134</td>
</tr>
<tr>
<td>Day</td>
<td>137, 138</td>
</tr>
<tr>
<td>Decimal point</td>
<td>160, 176</td>
</tr>
<tr>
<td>Decimal separator</td>
<td>131</td>
</tr>
<tr>
<td>Declaration of Conformity</td>
<td>9</td>
</tr>
<tr>
<td>Delete HART value (parameter)</td>
<td>202</td>
</tr>
<tr>
<td>Delete input (parameter)</td>
<td>153, 175</td>
</tr>
<tr>
<td>Delete limit value (parameter)</td>
<td>245</td>
</tr>
<tr>
<td>Density</td>
<td>232</td>
</tr>
<tr>
<td>Density unit</td>
<td>233</td>
</tr>
<tr>
<td>Description 'H'</td>
<td>180, 221</td>
</tr>
<tr>
<td>Description 'L'</td>
<td>180, 222</td>
</tr>
<tr>
<td>Design density (parameter)</td>
<td>233</td>
</tr>
<tr>
<td>Device address (parameter)</td>
<td>205, 206</td>
</tr>
<tr>
<td>Device info (submenu)</td>
<td>271</td>
</tr>
<tr>
<td>Device name</td>
<td>273</td>
</tr>
<tr>
<td>Device options (submenu)</td>
<td>149</td>
</tr>
<tr>
<td>Device tag</td>
<td>271</td>
</tr>
<tr>
<td>Device tag (parameter)</td>
<td>130</td>
</tr>
<tr>
<td>Device type (parameter)</td>
<td>214</td>
</tr>
<tr>
<td>DHCP (parameter)</td>
<td>190</td>
</tr>
<tr>
<td>Diagnostic messages</td>
<td>83</td>
</tr>
<tr>
<td>Diagnostics (submenu)</td>
<td>270</td>
</tr>
<tr>
<td>Diameter unit (parameter)</td>
<td>231</td>
</tr>
<tr>
<td>Differential pressure (parameter)</td>
<td>230</td>
</tr>
<tr>
<td>Digital inputs (submenu)</td>
<td>174</td>
</tr>
<tr>
<td>Dim. linearized value (parameter)</td>
<td>165, 238</td>
</tr>
<tr>
<td>Direct access (parameter)</td>
<td>130</td>
</tr>
<tr>
<td>Disable port (parameter)</td>
<td>192</td>
</tr>
<tr>
<td>Display (parameter)</td>
<td>256, 257, 258, 259, 260</td>
</tr>
<tr>
<td>Display black (parameter)</td>
<td>256</td>
</tr>
</tbody>
</table>
G
Gateway (parameter) ... 191
Get timeout (parameter) 199
Grid divisions (parameter) 260
Group (parameter) ... 179
Group days (parameter) 243
Group x (submenu) ... 255

H
HART (submenu) .. 201
HART attempts on error (parameter) 201
HART channel ident. (parameter) 204
HART connection (parameter) 203
HART device address (parameter) 203
HART IP port (parameter) 193
HART master type (parameter) 201
HART process variable (parameter) 203
Hysteresis (abs.) (parameter) 250

I
Identifier (parameter) .. 188, 249, 255
Input factor in (parameter) 177
Inputs (submenu) .. 152
IP address (parameter) .. 155, 191
Isentropic exponent (parameter) 233

K
K-factor (parameter) ... 232
Keyboard layout (parameter) 131

L
Language (parameter) .. 130
Last diagnostics (parameter) 271
Last restart (parameter) .. 271
LED mode (parameter) .. 133
Limit value violations (submenu) 266
Limit x (submenu) .. 246
Limits (submenu) .. 245
Linearization (parameter) 164, 238
Linearization (submenu) 164, 237
Linearization points (submenu) 239
Lock hardware (parameter) 142
Lock operation (parameter) 132
Low flow cut off (parameter) 170, 236
Lower correction value (parameter) 185
Lower error value (parameter) 172
Lower frequency (parameter) 160
LV messages (parameter) 251

M
MAC address (parameter) 190
Maintenance required (submenu) 267
Manufacturer required (submenu) 273
Manufacturer name ... 273
Maths (submenu) .. 213
Maths x action (parameter) 220
Maths x channel ident. (parameter) 214
Maths x decimal point (parameter) 219
Maths x engineering unit (parameter) 219

E
Display blue (parameter) 256
Display brown (parameter) 260
Display cyan (parameter) 272
Display orange (parameter) 259
Display red (parameter) .. 257
Display violet (parameter) 258
Display green (parameter) 257
Display brown (parameter) 260
Display blue (parameter) 256
Display cyan (parameter) 259
Display orange (parameter) 257
Display red (parameter) .. 258
Display violet (parameter) 258
Domain Name System (DNS) (parameter) 192
External memory (submenu) 143
Firmware update (parameter) 194
Firmware (parameter) .. 273
Firmware version (parameter) 272
Flow (parameter) .. 151
Flow installation point (parameter) 215
Flow engineering unit (parameter) 215
Flow (parameter) .. 151
Flow installation point (parameter) 215
Flow engineering unit (parameter) 215
Flow (parameter) .. 151
Flow installation point (parameter) 215
Flow engineering unit (parameter) 215
<table>
<thead>
<tr>
<th>Parameter/Option</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modbus Slave parity (parameter)</td>
<td>207</td>
</tr>
<tr>
<td>Operational time (parameter)</td>
<td>145</td>
</tr>
<tr>
<td>Maths x set point (parameter)</td>
<td>221</td>
</tr>
<tr>
<td>Max. decade (parameter)</td>
<td>261</td>
</tr>
<tr>
<td>Meas. range end (parameter)</td>
<td>161, 169</td>
</tr>
<tr>
<td>Meas. val. without login (parameter)</td>
<td>196</td>
</tr>
<tr>
<td>Meas. val. corrct. (submenu)</td>
<td>167, 185</td>
</tr>
<tr>
<td>Measured value type (parameter)</td>
<td>154</td>
</tr>
<tr>
<td>Medium (parameter)</td>
<td>217</td>
</tr>
<tr>
<td>Memory build-up (parameter)</td>
<td>144</td>
</tr>
<tr>
<td>Messages (submenu)</td>
<td>145</td>
</tr>
<tr>
<td>Min. decade (parameter)</td>
<td>260</td>
</tr>
<tr>
<td>Modbus (parameter)</td>
<td>206</td>
</tr>
<tr>
<td>Modbus Master (parameter)</td>
<td>151, 208</td>
</tr>
<tr>
<td>Modbus Master (submenu)</td>
<td>208</td>
</tr>
<tr>
<td>Modbus Master baud rate (parameter)</td>
<td>210</td>
</tr>
<tr>
<td>Modbus Master command distribution (parameter)</td>
<td>209</td>
</tr>
<tr>
<td>Modbus Master connection attempts (parameter)</td>
<td>209</td>
</tr>
<tr>
<td>Modbus Master parity (parameter)</td>
<td>210</td>
</tr>
<tr>
<td>Modbus Master pause between commands (parameter)</td>
<td>209</td>
</tr>
<tr>
<td>Modbus Master Register per command (parameter)</td>
<td>209</td>
</tr>
<tr>
<td>Modbus Master response timeout (parameter)</td>
<td>208</td>
</tr>
<tr>
<td>Modbus Master scan cycle (parameter)</td>
<td>208</td>
</tr>
<tr>
<td>Modbus Master serial interface (submenu)</td>
<td>210</td>
</tr>
<tr>
<td>Modbus Master step bits (parameter)</td>
<td>210</td>
</tr>
<tr>
<td>Modbus RTU/(TCP/IP)</td>
<td>45</td>
</tr>
<tr>
<td>Modbus Slave (submenu)</td>
<td>206</td>
</tr>
<tr>
<td>Modbus Slave baud rate (parameter)</td>
<td>207</td>
</tr>
<tr>
<td>Modbus Slave parity (parameter)</td>
<td>207</td>
</tr>
<tr>
<td>Modbus Slave serial interface (submenu)</td>
<td>207</td>
</tr>
<tr>
<td>Modbus Slave step bits (parameter)</td>
<td>207</td>
</tr>
<tr>
<td>Month (parameter)</td>
<td>137, 139</td>
</tr>
<tr>
<td>NAMUR NE 43 (parameter)</td>
<td>171, 187</td>
</tr>
<tr>
<td>NT/ST changeover (parameter)</td>
<td>136</td>
</tr>
<tr>
<td>NT/ST changeover (submenu)</td>
<td>136</td>
</tr>
<tr>
<td>NT/ST region (parameter)</td>
<td>136</td>
</tr>
<tr>
<td>Number of linearization points (parameter)</td>
<td>238</td>
</tr>
<tr>
<td>Number of points (parameter)</td>
<td>164</td>
</tr>
<tr>
<td>Occurrence (parameter)</td>
<td>136, 138</td>
</tr>
<tr>
<td>OFF daily from (parameter)</td>
<td>147</td>
</tr>
<tr>
<td>Offset (parameter)</td>
<td>167</td>
</tr>
<tr>
<td>ON daily from (parameter)</td>
<td>147</td>
</tr>
<tr>
<td>On error (parameter)</td>
<td>173, 187, 241</td>
</tr>
<tr>
<td>On/off messages (submenu)</td>
<td>266</td>
</tr>
<tr>
<td>OPC port (parameter)</td>
<td>193</td>
</tr>
<tr>
<td>OPC server</td>
<td>193</td>
</tr>
<tr>
<td>Function scope</td>
<td>41</td>
</tr>
<tr>
<td>Operating mode (parameter)</td>
<td>188, 274</td>
</tr>
<tr>
<td>Operation options</td>
<td>32, 32, 32</td>
</tr>
<tr>
<td>Local operation</td>
<td>32</td>
</tr>
<tr>
<td>Operating tool</td>
<td>32</td>
</tr>
<tr>
<td>Overview</td>
<td>32</td>
</tr>
<tr>
<td>Operational safety</td>
<td>9</td>
</tr>
<tr>
<td>Operational time (parameter)</td>
<td>145</td>
</tr>
</tbody>
</table>

P

<table>
<thead>
<tr>
<th>Parameter/Option</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper size (parameter)</td>
<td>132</td>
</tr>
<tr>
<td>Parity (parameter)</td>
<td>205</td>
</tr>
<tr>
<td>Password (parameter)</td>
<td>265</td>
</tr>
<tr>
<td>Ping interval (parameter)</td>
<td>200</td>
</tr>
<tr>
<td>Ping retry (parameter)</td>
<td>200</td>
</tr>
<tr>
<td>Ping timeout (parameter)</td>
<td>200</td>
</tr>
<tr>
<td>Pipe material (parameter)</td>
<td>232</td>
</tr>
<tr>
<td>Plot type (parameter)</td>
<td>157</td>
</tr>
<tr>
<td>Point 1 viscosity (parameter)</td>
<td>234</td>
</tr>
<tr>
<td>Point 2 viscosity (parameter)</td>
<td>234</td>
</tr>
<tr>
<td>Points (submenu)</td>
<td>166</td>
</tr>
<tr>
<td>Poll timeout (parameter)</td>
<td>201</td>
</tr>
<tr>
<td>Port (parameter)</td>
<td>156, 192, 194, 206, 264</td>
</tr>
<tr>
<td>PRESET (parameter)</td>
<td>133</td>
</tr>
<tr>
<td>Pressure (parameter)</td>
<td>216</td>
</tr>
<tr>
<td>Pressure engineering unit (parameter)</td>
<td>216</td>
</tr>
<tr>
<td>Printer (submenu)</td>
<td>267</td>
</tr>
<tr>
<td>Product safety</td>
<td>9</td>
</tr>
<tr>
<td>Profibus DP (submenu)</td>
<td>211</td>
</tr>
<tr>
<td>Profibus DP bit 0.0 to 0.7 (parameter)</td>
<td>213</td>
</tr>
<tr>
<td>Profibus DP byte x...y (parameter)</td>
<td>212</td>
</tr>
<tr>
<td>Profibus DP Master in/out (parameter)</td>
<td>211</td>
</tr>
<tr>
<td>Profibus DP Slave address (parameter)</td>
<td>211</td>
</tr>
<tr>
<td>Profibus DP slot x (submenu)</td>
<td>211</td>
</tr>
<tr>
<td>Protected by (parameter)</td>
<td>141</td>
</tr>
<tr>
<td>Protocol (parameter)</td>
<td>204</td>
</tr>
<tr>
<td>Pulse counter (parameter)</td>
<td>159</td>
</tr>
<tr>
<td>Pulse value (parameter)</td>
<td>159, 177, 184</td>
</tr>
<tr>
<td>Pulse width (parameter)</td>
<td>185</td>
</tr>
<tr>
<td>Put timeout (parameter)</td>
<td>200</td>
</tr>
</tbody>
</table>

R

<table>
<thead>
<tr>
<th>Parameter/Option</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range (parameter)</td>
<td>153</td>
</tr>
<tr>
<td>Range start (parameter)</td>
<td>161, 168</td>
</tr>
<tr>
<td>Readout function (parameter)</td>
<td>156</td>
</tr>
<tr>
<td>Recipient x (parameter)</td>
<td>266, 267</td>
</tr>
<tr>
<td>Record duration (parameter)</td>
<td>182, 223</td>
</tr>
<tr>
<td>Record duration of LV on (parameter)</td>
<td>253</td>
</tr>
<tr>
<td>Reference channel (parameter)</td>
<td>183</td>
</tr>
<tr>
<td>Register address (parameter)</td>
<td>157</td>
</tr>
<tr>
<td>Registered trademarks</td>
<td>8</td>
</tr>
<tr>
<td>Relay (submenu)</td>
<td>188</td>
</tr>
<tr>
<td>Remote control (parameter)</td>
<td>195</td>
</tr>
<tr>
<td>Remote controlled (parameter)</td>
<td>188</td>
</tr>
<tr>
<td>Reset channel (parameter)</td>
<td>244</td>
</tr>
<tr>
<td>Reset relay (parameter)</td>
<td>253</td>
</tr>
<tr>
<td>Reset to zero (parameter)</td>
<td>243</td>
</tr>
<tr>
<td>Return</td>
<td>95</td>
</tr>
</tbody>
</table>

Endress+Hauser

277
System (submenu) 130

T

Target value (parameter) 168, 169, 185, 186
Telealarm (submenu) 269
Temp. unit (parameter) 131
Temperature (parameter) 234
Temperature (steam/cold) (heat difference) (parameter) 217
Temperature (water/steam/warm) (parameter) 216
Temperature engineering unit, water/steam (parameter) 217
Text 1-30 (parameter) 269
Text entry 40
Texts (submenu) 269
The result is (parameter) 218
Time (parameter) 138, 139
Time base (parameter) 158
Time delay (parameter) 173, 177, 251
Time format (parameter) 134
Time span dt (parameter) 250
Timeout (parameter) 189
Timeout fieldsbus (parameter) 189
Timeout sequences (parameter) 149
Timeouts (submenu) 198
Total. eng. unit (parameter) 236
Totalization (parameter) 169, 235
Totalization (submenu) 169, 235
Totalization base (parameter) 170, 235
Totalizer (parameter) 164, 171, 182, 224, 237
Transmission protocol (parameter) 155

Troubleshooting

Alarm relay 82
Type (parameter) 246
Type RS232/RS485 (parameter) 204

U

Unit (parameter) 170, 236
Unit/dimension counter (parameter) 158
Universal input x (submenu) 153
Universal inputs (submenu) 152
Universal output (submenu) 183
Upper correction value (parameter) 186
Upper error value (parameter) 172
Upper frequency (parameter) 161
User name (parameter) 265

UTC time zone (parameter) 135

V

Value (parameter) 154
Value x HART (submenu) 203
Viscosity (parameter) 234, 235
Viscosity (submenu) 234

W

Warning at (parameter) 144
Wastewater (submenu) 269
Water/glycol concentration (parameter) 218
Web server 64

Function scope 41
Web server (parameter) 193
Web server authentication (submenu) 196
WebDAV Client (submenu) 269
WebDAV server (parameter) 195
Week starting on (parameter) 243
Wet steam alarm (parameter) 241
Workplace safety 9

X
x-value (1 to 32) (parameter) 166
x-value (1 to 32) for linearization (parameter) 240

Y
y-value (1 to 32) (parameter) 167
y-value (1 to 32) for linearization (parameter) 240

Z
Zoom (parameter) 262
Zoom end (parameter) 162, 165, 224
Zoom end for linearization (parameter) 239
Zoom start (parameter) 162, 165, 223
Zoom start for linearization (parameter) 238