Petrochem: H₂S in UOP C₃ Oleflex process reactor effluent

Benefits at a glance

- Exceptionally fast response to H₂S concentration changes
- Laser-based measurement is highly selective and accurate for H₂S measurement in C₃ Oleflex process reactor effluent gas
- Low maintenance and OPEX costs – no proprietary, consumable lead acetate tape and acetic acid reagent
- Laser-based analyzer does not require mechanical components (tape drive system for paper reels / cartridges) for operation and measurements

The UOP C₃ leflex propane dehydrogenation (PDH) process

The UOP C₃ Oleflex propane dehydrogenation (PDH) process

produces polymer-grade propylene from propane feedstock. Propane flows through four reactors containing platinum-based catalyst which dehydrogenates propane into propylene. The catalyst is slowly circulated to a continuous catalyst regeneration (CCR) vessel where coke deposits on the catalyst are removed by high-temperature oxidation to restore catalyst activity. Reactor effluent is sent to a product separation section to fractionate and recover propylene and send recycle gas to the reactors.

On-line H₂S measurement

of the effluent gas from the C_3 Oleflex reactors helps prevent recycle gas with excessive levels of H_2S from entering the reactors and reducing catalyst activity and the yield of propylene.

Endress+Hauser's solution

Tunable diode laser absorption spectroscopy (TDLAS) is a SpectraSensors technology that has proven effective in this important measurement. TDLAS analyzers have an exceptionally fast response to changes in H_2S concentration enabling improved process control. Laser spectroscopy measurement of H_2S requires no proprietary, consumable items or reagents such as lead acetate paper tape, so TDLAS analyzers are more reliable and have higher analyzer availability than lead acetate tape analyzers.

People for Process Automation

Application data			
Target component (Analyte)	H ₂ S in UOP C ₃ Oleflex PDH process reactor effluent compressor discharge		
Typical measurement range	0-150 ppmv		
Typical repeatability	\pm 1 ppmv or 2% of reading (whichever is greater)		
Measurement response time	1 to ~60 seconds		
Principle of measurement	Tunable diode laser absorption spectroscopy (TDLAS)		
Validation	Certified blend of H ₂ S in nitrogen		

Typical background stream composition

Component	Minimum (Mol%)	Typical (Mol%)	Maximum (Mol%)
Hydrogen (H ₂)	32	42	46
Methane (CH4)	0.2	3	4
Ethane (C ₂ H ₆)	0.2	1.5	3
Ethylene (C ₂ H ₄)	0	0.1	0.2
Propane (C ₃ H ₈)	32	36	58
Propylene (C3H6)	0.9	15.5	18
Butanes and heavier (C ₄ +)	0	0.1	0.3

www.addresses.endress.com