Краткое руководство по эксплуатации EngyCal RH33

Универсальный тепловычислитель

EHC

Ниже приведено краткое руководство по эксплуатации; оно не заменяет руководство по эксплуатации, относящееся к прибору.

Для получения более подробной информации см. руководство по эксплуатации и остальную документацию.

Доступно для всех исполнений прибора через:

- Интернет: www.endress.com/deviceviewer
- Смартфон/планшет: Endress+Hauser Operations App

A0023555

Содержание

1 1.1	Информация о документе Условные обозначения в документе	3
2 2.1 2.2 2.3 2.4 2.5 2.6 2.7	Указания по технике безопасности . Требования к работе персонала Назначение . Техника безопасности на рабочем месте . Безопасность при эксплуатации . Переоборудование и последствия переоборудования . Безопасность изделия . IT-безопасность .	6 6 6 6 6 7 7 7 7
3 3.1 3.2 3.3	Идентификация Обозначение прибора Комплект поставки Сертификаты и свидетельства	. 8 . 8 . 9 . 10
4 4.1 4.2 4.3 4.4 4.5 4.6 4.7	Монтаж	10 11 14 14 18 19 20
5 5.1 5.2 5.3 5.4 5.5 5.6	Подключение проводов Инструкция по подключению Краткое руководство по подключению проводов Подключение датчиков Выходы Связь Проверка после подключения	21 21 24 30 30 32
6 6.1 6.2 6.3	Управление Общие сведения об управлении Дисплей и элементы управления Матрица управления	33 33 34 37
7 7.1	Ввод в эксплуатацию Ускоренный ввод в эксплуатацию	38 38

1 Информация о документе

1.1 Условные обозначения в документе

1.1.1 Символы техники безопасности

Α ΟΠΑСΗΟ

Этот символ предупреждает об опасной ситуации. Допущение такой ситуации приведет к тяжелой травме или смерти.

\Lambda ОСТОРОЖНО

Этот символ предупреждает об опасной ситуации. Допущение такой ситуации может привести к тяжелой травме или смерти.

ВНИМАНИЕ

Этот символ предупреждает об опасной ситуации. Допущение такой ситуации может привести к травме легкой или средней степени тяжести.

УВЕДОМЛЕНИЕ

Этот символ содержит информацию о процедурах и других данных, которые не приводят к травмам.

Символ	Значение
A0011197	Постоянный ток Клемма, на которую поступает напряжение постоянного тока или через которую протекает постоянный ток.
A0011198	Переменный ток Клемма, на которую поступает напряжение переменного тока или через которую протекает переменный ток.
A0017381	Постоянный и переменный ток • Клемма, на которую поступает напряжение переменного или постоянного тока. • Клемма, через которую протекает переменный или постоянный ток.
 	Заземление Клемма заземления, которая заземлена посредством системы заземления.
A0011199	Подключение защитного заземления Клемма, которая должна быть подсоединена к заземлению перед выполнением других соединений.
A0011201	Эквипотенциальное подключение Соединение, требующее подключения к системе заземления предприятия: в зависимости от национальных стандартов или общепринятой практики можно использовать провод выравнивания потенциалов или систему заземления по схеме «звезда».
A0012751	ESD – электростатический разряд Защитите клеммы от электростатического разряда. Несоблюдение этого правила может привести к выходу электроники из строя.

1.1.2 Электротехнические символы

1.1.3 Описание информационных символов

Символ	Значение	Символ	Значение
	Разрешено Означает разрешенные процедуры, процессы или действия.		Предпочтительно Означает предпочтительные процедуры, процессы или действия.
×	Запрещено Означает запрещенные процедуры, процессы или действия.	i	Подсказка Указывает на дополнительную информацию.

Символ	Значение	Символ	Значение
	Ссылка на документацию		Ссылка на страницу
	Ссылка на рисунок	1., 2., 3	Серия шагов
4	Результат действия		Внешний осмотр

1.1.4 Символы на рисунках

Символ	Значение	Символ	Значение
1, 2, 3,	Номера пунктов	1., 2., 3	Серия шагов
A, B, C,	Виды	А-А, В-В, С-С,	Разделы
EX	Взрывоопасная зона	X	Безопасная среда (невзрывоопасная зона)

1.1.5 Символы, обозначающие инструменты

Символ	Значение
	Отвертка с плоским наконечником
	Отвертка с крестообразным наконечником
A0011219	Шестигранный ключ
A0011222	Рожковый гаечный ключ
A0013442	Отвертка типа Torx

2 Указания по технике безопасности

Надежность и безопасность эксплуатации прибора гарантируется только в случае соблюдения требований руководства по эксплуатации и указаний по технике безопасности.

2.1 Требования к работе персонала

Персонал должен соответствовать следующим требованиям:

- Обученные квалифицированные специалисты должны иметь соответствующую квалификацию для выполнения конкретных функций и задач.
- Получить разрешение на выполнение данных работ от руководства предприятия.
- Ознакомиться с нормами федерального/национального законодательства.
- Перед началом работы внимательно ознакомиться с инструкциями, представленными в руководстве, с дополнительной документацией, а также с сертификатами (в зависимости от цели применения).
- Следовать инструкциям и соблюдать основные условия.

2.2 Назначение

Тепловычислитель – это прибор для измерения расхода энергии в системах отопления и охлаждения. Арифметический блок с питанием от сети может использоваться повсеместно в промышленности, в системах центрального отопления и в строительных системах.

- Изготовитель не несет никакой ответственности за ущерб, ставший следствием неправильного использования или использования не по назначению. Каким-либо образом переоборудовать или модифицировать прибор запрещается.
- Прибор можно эксплуатировать только после установки.

2.3 Техника безопасности на рабочем месте

При работе на приборе и с прибором необходимо соблюдать следующие правила.

 В соответствии с федеральным/национальным законодательством персонал должен использовать средства индивидуальной защиты.

При работе с прибором и на приборе с мокрыми руками необходимо принимать следующие меры предосторожности.

 Учитывая повышенный риск поражения электрическим током, необходимо надевать перчатки.

2.4 Безопасность при эксплуатации

Опасность травмирования.

- При эксплуатации прибор должен находиться в технически исправном и отказоустойчивом состоянии.
- Ответственность за отсутствие помех при эксплуатации прибора несет оператор.

2.5 Переоборудование и последствия переоборудования УВЕДОМЛЕНИЕ

Ремонт, переоборудование или модификация приводят к аннулированию сертификата на ведение коммерческого учета

Ремонт, переоборудование и модификация возможны, но приводят к аннулированию существующего сертификата на ведение коммерческого учета. Это означает, что после ремонта, переоборудования или модификации заказчик несет ответственность за проверку прибора на месте соответствующим уполномоченным органом (например, специалистом по калибровке) с целью повторной калибровки.

2.6 Безопасность изделия

Этот измерительный прибор разработан в соответствии с передовой инженерной практикой и отвечает современным требованиям безопасности, был испытан и отправлен с завода в безопасном для эксплуатации состоянии.

Прибор соответствует общим стандартам безопасности и требованиям законодательства. Кроме того, прибор соответствует директивам ЕС, перечисленным в декларации соответствия требованиям ЕС для конкретного прибора. Компания Endress+Hauser подтверждает это нанесением маркировки СЕ на прибор.

Кроме того, прибор соответствует юридическим требованиям применимых нормативных актов Великобритании (нормативных документов). Эти требования перечислены в декларации соответствия правилам UKCA вместе с действующими стандартами.

При выборе опции заказа с маркировкой UKCA: компания Endress+Hauser подтверждает успешную оценку и тестирование прибора, нанося на него маркировку UKCA.

Контактный адрес компании Endress+Hauser в Великобритании: Endress+Hauser Ltd. Floats Road Manchester M23 9NF Великобритания www.uk.endress.com

2.7 ІТ-безопасность

Гарантия изготовителя действует только при условии, что прибор смонтирован и эксплуатируется в соответствии с настоящим руководством по эксплуатации. Прибор имеет встроенные механизмы обеспечения защиты, предотвращающие внесение какихлибо непреднамеренных изменений в его настройки.

Оператор должен самостоятельно реализовать меры по IT-безопасности, дополнительно защищающие прибор и связанные с ним процессы обмена данными, в соответствии со стандартами безопасности, принятыми на конкретном предприятии.

3 Идентификация

3.1 Обозначение прибора

3.1.1 Заводская табличка

Сравните заводскую табличку прибора со следующим рисунком.

0013583

- 1 Заводская табличка прибора (пример)
- 1 Идентификатор прибора
- 2 Код заказа и серийный номер
- 3 Сетевое напряжение
- 4 Потребляемая мощность
- 5 Версия программного обеспечения
- 6 Сертификаты, при наличии
- 7 Диапазон температуры окружающей среды
- 8 Исполнение прибора
- 9 Прибор защищен двойным или усиленным уплотнением
- 10 Место и год изготовления

3.1.2 Серийный номер на передней части прибора

S/N: XXXXXXXXXXX	
	A0024097

🖻 2 Серийный номер на передней части прибора

3.1.3 Передняя наклейка для приборов с сертификатом на использование для коммерческого учета

Для приборов, оснащенных сертификатом на ведение коммерческого учета, на переднюю наклейку наносится следующая информация:

DE-21-MI0	DE-21-MI004-PTB015	
Class:	Class: IP65/66 M1/E2	
PT 100/500 Θ Heating: Θ Cooling: ΔΘ:	0/1000 0300°C 0300°C 3297K	
Flow: Installation Fluid:	Display : Display Display	

A0013584

Я Оформление передней наклейки для приборов с сертификатом на использование для коммерческого учета

3.2 Комплект поставки

Комплект поставки состоит из следующих компонентов.

- EngyCal (полевой корпус)
- Пластина для настенного монтажа
- Печатный экземпляр краткого руководства по эксплуатации
- Опционально: термометр сопротивления в сборе
- Опционально: 3 клеммных блока для подключения (каждый на 5 контактов)
- Опционально: интерфейсный кабель в комплекте с программным обеспечением для параметризации FieldCare Device Setup

- Опционально: программное обеспечение Field Data Manager MS20
- Опционально: крепеж для монтажа на DIN-рейку, монтажа на панели, монтажа на трубопроводе
- Опционально: защита от перенапряжения

С аксессуарами для прибора можно ознакомиться в разделе «Аксессуары» руководства по эксплуатации.

3.3 Сертификаты и свидетельства

Тепловычислитель и пара датчиков температуры (поставляемых по отдельному заказу) соответствуют требованиям директивы 2014/32/EU (L 96/149) (директивы об измерительных приборах, MID), правил OIML R75 и стандарта EN 1434.

Если арифметический блок с датчиками температуры используется в коммерческих целях, то, согласно директиве MID, на датчик расхода также должен быть получен типовой сертификат (включая оценку соответствия).

Измерительные приборы с сертификатом MID оснащаются маркировкой MID на передней наклейке. → 🖲 1, 🗎 8. Эта сертификация заменяет первоначальную калибровку на месте.

Откалиброванный арифметический блок можно настроить индивидуально на месте. Параметры, связанные с коммерческим учетом, такие как значение импульса для преобразователя расхода, можно изменить не более трех раз. Изменения параметров, связанных с коммерческим учетом, заносятся в журнал коммерческого учета. Это позволяет заменять отдельные неисправные датчики в полевых условиях без потери пригодности для ведения коммерческого учета.

Прибор также оснащен национальным сертификатом для использования в качестве тепловычислителя в системах охлаждения или в комбинированных отопительных/ охлаждающих системах. Исходная калибровка этих приборов в обязательном порядке выполняется на месте специалистом по калибровке.

3.3.1 Маркировка ЕС

Изделие удовлетворяет требованиям общеевропейских стандартов. Таким образом, он соответствует положениям директив ЕС. Маркировка ЕС подтверждает успешное испытание изделия изготовителем.

4 Монтаж

4.1 Приемка, транспортировка, хранение

Соблюдение допустимых экологических норм и условий хранения является обязательным требованием. Точные технические данные этой категории приведены в разделе «Техническое описание» руководства по эксплуатации.

4.1.1 Приемка

При получении товара проверьте следующие позиции.

- Имеются ли повреждения на упаковке или содержимом?
- Поставка осуществлена в полном объеме? Сравните комплект поставки с информацией, которая указана в бланке заказа.

4.1.2 Транспортировка и хранение

Учитывайте следующие условия.

- Упакуйте прибор таким образом, чтобы надежно защитить его от ударов во время хранения и транспортировки. Оптимальную защиту обеспечивает оригинальная упаковка.
- Допустимая температура хранения составляет –40 до +85 °С (–40 до +185 °F); возможно хранение прибора при температуре, близкой к предельной, в течение ограниченного времени (не более 48 часов).

4.2 Размеры

🖻 4 Размеры прибора в мм (дюймах)

🖻 5 Размеры пластины для монтажа на стену, трубопровод и панель в мм (дюймах)

🗟 6 Размеры выреза в панели в мм (дюймах)

Я Размеры переходника для монтажа на DIN-рейку в мм (дюймах)

🗉 8 Термометр сопротивления в сборе (дополнительный аксессуар), размеры в мм (дюймах)

- L Глубина погружения (уточняется при оформлении заказа)
- IL Глубина ввода = L + длина удлинительной шейки (80 мм (3,15 дюйма)) + 10 мм (0,4 дюйма)

4.3 Требования, предъявляемые к монтажу

При наличии соответствующих аксессуаров прибор в полевом корпусе пригоден для настенного монтажа, монтажа на трубопровод, монтажа на панель и установки на DINрейку.

Ориентация определяется разборчивостью информации, отображаемой на дисплее. Подключения и выходы находятся в нижней части прибора. Кабели подключаются через кодированные клеммы.

Диапазон рабочей температуры: -20 до 60 °С (-4 до 140 °F).

Дополнительные сведения см. в разделе «Технические характеристики».

УВЕДОМЛЕНИЕ

Перегрев прибора вследствие недостаточного охлаждения

 Во избежание аккумуляции тепла необходимо обеспечить достаточное охлаждение прибора. При работе прибора в верхней части допустимого температурного диапазона сокращается срок службы дисплея.

4.4 Монтаж

4.4.1 Настенный монтаж

- 1. Используйте монтажную пластину в качестве шаблона для сверления отверстий, размеры → 🕢 5, 🖺 12.
- **2.** Прикрепите прибор к монтажной пластине и зафиксируйте его сзади с помощью 4 винтов.
- 3. Закрепите монтажную пластину на стене с помощью 4 винтов.

A0014170

🖻 9 Настенный монтаж

4.4.2 Монтаж на панели

1. Сделайте вырез в панели требуемого размера, → 🗷 6, 🖺 12.

🖻 10 🛛 Монтаж на панели

Прикрепите уплотнение (поз. 1) к корпусу.

🖻 11 🛛 Подготовка монтажной пластины к монтажу на панели

Вверните резьбовые стержни (поз. 2) в отверстия монтажной пластины (размеры → 🕢 5, 🗎 12).

🖻 12 Монтаж на панели

Вставьте прибор в вырез панели спереди и прикрепите монтажную пластину к прибору сзади, используя 4 прилагаемых винта (поз. 3).

5. Закрепите прибор на месте, затянув резьбовые стержни.

4.4.3 Опорная рейка/DIN-рейка (согласно EN 50 022)

🖻 13 Подготовка к монтажу на DIN-рейке

Прикрепите к прибору переходник для монтажа на DIN-рейке (поз. 1): воспользуйтесь прилагаемыми винтами (поз. 2) и разомкните зажимы для DINрейки.

🖻 14 Монтаж на DIN-рейке

Прикрепите прибор к DIN-рейке спереди и сомкните зажимы для DIN-рейки.

4.4.4 Монтаж на трубопроводе

🖻 15 Подготовка к монтажу на трубопроводе

Пропустите стальные ленты сквозь отверстия монтажной пластины (размеры → 🕢 5, 🗎 12) и закрепите их на трубопроводе.

🖻 16 Монтаж на трубопроводе

Прикрепите прибор к монтажной пластине и зафиксируйте его на месте с помощью 4 прилагаемых винтов.

4.5 Руководство по монтажу датчика (датчиков) температуры

🖻 17 🛛 Виды монтажа датчиков температуры

- А Для кабелей с небольшим поперечным сечением проводников наконечник датчика должен
- *В* находиться на оси трубопровода или чуть дальше (*L*).
- С DНаклонная ориентация.

Глубина погружения термометра влияет на точность измерения. Если глубина погружения слишком мала, возможны ошибки в измерениях вследствие теплопередачи через присоединение к процессу и стенку резервуара. Поэтому для монтажа в трубопроводе рекомендуемая глубина погружения в идеальном случае соответствует половине диаметра трубы.

- Возможные варианты монтажа: трубы, резервуары и другие компоненты установки.
- Минимально допустимая глубина ввода = 80 до 100 мм (3,15 до 3,94 дюйм). Глубина ввода должна по меньшей мере в 8 раз превышать диаметр термогильзы. Пример: диаметр термогильзы 12 мм (0,47 дюйм) х 8 = 96 мм (3,8 дюйм). Рекомендуется использовать стандартную глубину ввода, 120 мм (4,72 дюйм).
- Для труб малого номинального диаметра убедитесь в том, что конец термогильзы введен в технологическую среду на достаточную глубину, глубже осевой линии трубопровода (→ 🖻 17, 🗎 18, поз. А и В). Возможно и другое решение: диагональный монтаж (→ 🖻 17, 🖺 18, поз. С и D). При определении глубины погружения или глубины ввода необходимо учитывать все параметры термометра и технологической среды, подлежащей измерению (скорость потока, рабочее давление и пр.).

Обращайтесь также к рекомендациям по монтажу EN1434-2 (D), рис. 8.

4.6 Требования к размерам

Чтобы избежать систематических ошибок, датчики температуры должны быть установлены как можно ближе к теплообменнику на входе и на выходе. Слишком большое дифференциальное давление между точками измерения температуры может привести к избыточной систематической ошибке (см. следующую таблицу).

			Пер	епад темі	тературы	(K)		
Перепад (бар)	3	5	10	20	30	40	50	60
0,5	0,2	0,2	0,1	0,1	0,1	0	0	0
1	0,5	0,4	0,3	0,2	0,1	0,1	0,1	0,1
2	0,9	0,7	0,5	0,3	0,2	0,2	0,1	0,1
3	1,4	1,1	0,8	0,5	0,3	0,2	0,2	0,2
4	1,8	1,5	1,0	0,6	0,4	0,3	0,3	0,2
5	2,3	1,9	1,3	0,8	0,5	0,4	0,3	0,3
6	2,7	2,2	1,5	0,9	0,6	0,5	0,4	0,3
7	3,2	2,6	1,9	1,1	0,7	0,6	0,5	0,4
8	3,6	3,0	2,0	1,2	0,9	0,7	0,5	0,4
9	4,1	3,3	2,3	1,4	1,0	0,7	0,6	0,5
10	4,5	4,0	2,5	1,5	1,1	0,8	0,7	0,5

Значения указаны в качестве коэффициентов максимально допустимой погрешности тепловычислителя (при $\Delta \Theta_{\text{мин.}}$ = 3 K (5,4 °F)). Значения, указанные ниже серой линии,

превышают 1/3 от максимально допустимой погрешности тепловычислителя (при $\Delta \Theta_{\text{мин.}}$ = 3 K (5,4 °F)).

Если два разных теплоносителя (например, вода для отопления и горячая санитарно-техническая вода) соединяются вскоре после датчика температуры, то оптимальное положение для этого датчика – непосредственно после точки измерения расхода.

4.7 Проверка после монтажа

Устанавливая тепловычислитель и соответствующие датчики температуры, соблюдайте общие инструкции по монтажу, приведенные в стандарте EN 1434 (часть 6), а также техническое руководство TR-K 9, разработанное национальным институтом метрологии Германии (РТВ). Руководство TR-K 9 можно скачать на веб-сайте института РТВ.

5 Подключение проводов

5.1 Инструкция по подключению

А ОСТОРОЖНО

Опасность! Электрическое напряжение!

• Все работы по подключению необходимо выполнять при обесточенном приборе.

А ВНИМАНИЕ

Обратите внимание на предоставленную дополнительную информацию

- Перед вводом в эксплуатацию убедитесь в том, что сетевое напряжение соответствует требованиям, указанным на заводской табличке.
- В электрической системе здания необходимо предусмотреть специальный выключатель или силовой автоматический размыкатель цепи. Этот выключатель должен находиться рядом с прибором (под рукой). Рядом с ним следует нанести его наименование.
- ▶ Для силового кабеля необходимо предусмотреть элемент защиты от перегрузки (номинальный ток ≤ 10 A).

Устанавливая тепловычислитель и связанные с ним компоненты, соблюдайте общие инструкции по монтажу, приведенные в стандарте EN 1434 (часть 6).

5.2 Краткое руководство по подключению проводов

Назначение клемм

•

- При измерении перепада температуры /Т датчик температуры конденсата должен быть подключен к клеммам Т тепл., а датчик температуры пара – к клеммам Т холодн.
 - При измерении перепада температуры /р датчик температуры конденсата должен быть подключен к клеммам Т тепл.

Клемма	Назначение клемм	Входы		
1	Питание термометра сопротивления (+)	Темп., нагрев		
2	Питание термометра сопротивления (-)	Опционально: термометр сопротивления или токовый		
5	Датчик термометра сопротивления (+)	вход)		
6	Датчик термометра сопротивления (-)			
52	Вход + 0/4 до 20 мА			
53	Заземление для входа 0/4 до 20 мА			
3	Питание термометра сопротивления (+)	Темп., охлажд.		
4	Питание термометра сопротивления (-)	Опционально: термометр сопротивления или токовый		
7	Датчик термометра сопротивления (+)	вход)		
8	Датчик термометра сопротивления (-)			
54	Вход + 0/4 до 20 мА	-		
55	Заземление для входа 0/4 до 20 мА			
10	«+» импульсного входа (напряжение)	Расход		
11	«-» импульсного входа (напряжение)	(Опционально: импульсный или токовый вход)		
50	+ 0/4 до 20 мА или токовый импульс (ЧИМ)	-		
51	Заземление для входного сигнала расхода 0/4 до 20 мА			
80	«+» цифрового входа 1 (вход переключателя)	• Нач. тариф 1		
81	«-» цифрового входа (клемма 1)	Синхронизация часовБлокировка прибора		
82	«+» цифрового входа 2 (вход переключателя)	• Нач. тариф 2		
81	«-» цифрового входа (клемма 2)	 Синхронизация часов Блокировка прибора Смена направления потока 		
		Выходы		
60	«+» импульсного выхода 1 (с открытым коллектором)	Счетчик энергии, объема или		
61	«-» импульсного выхода 1 (с открытым коллектором)	тарифа. Альтернативно: предельные значения/		
62	«+» импульсного выхода 2 (с открытым коллектором)	аварийные сигналы		
63	«-» импульсного выхода 2 (с открытым коллектором)			

70	+ 0/4 до 20 мА/импульсный выход	Текущие значения (например,
71	- 0/4 до 20 мА/импульсный выход	счетчика (например, энергии)
13	Замыкающее реле (NO)	Предельные значения,
14	Замыкающее реле (NO)	аварииные сигналы
23	Замыкающее реле (NO)	
24	Замыкающее реле (NO)	
90	Источник питания 24 В для датчика (LPS)	Источник питания 24 В
91	Заземление источника питания	(например, источник питания для датчика)
		Источник питания
L/+	L для перем. тока «+» для пост. тока	
N/-	N для перем. тока «-» для пост. тока	

5.2.1 Открывание корпуса

🖻 19 Открывание корпуса прибора

- 1 Указание назначения клемм
- 2 Клеммы

5.3 Подключение датчиков

5.3.1 Расход

Датчики расхода с внешним источником питания

🖻 20 Подключение датчика расхода

- А Датчики импульсов напряжения или контактные датчики, включая типы IB, IC, ID, IE согласно стандарту EN 1434
- В Токовые импульсы
- С Сигнал 0/4–20 мА (не в сочетании с опцией, сертифицированной по MID)

Датчики расхода с питанием от тепловычислителя

A0014180

- 🖻 21 Подключение активных датчиков расхода
- А 4-проводной датчик
- В 2-проводной датчик

Настройки для датчиков расхода с импульсным выходом

Вход для датчиков импульсов напряжения и контактных датчиков делится на различные типы в соответствии со стандартом EN 1434 и обеспечивает питание для коммутирующих контактов.

Импульсный выход датчика расхода	Настройка на Rx33	Электрическое подключение	Комментарии
Активное напряжение	«Импульсн. ІВ/ІС +U»	А +	Порог переключения находится между 1 В и 2 В
Активный ток	«Импульсн. ток»	А	Порог переключения находится между 8 мА и 13 мА
Датчик Namur (согласно стандарту EN 60947-5-6)	«Импульсн. ID/IE» до 25 Гц или до 12,5 кГц	А ++++++++++++++++++++++++++++++++++++	Контроль короткого замыкания или обрыва цепи не выполняется.

Датчики импульсов напряжения и	≤ 1 В соответствует нижнему уровню	Плавающие
преобразователи соответствуют классам IB и IC	≥ 2 В соответствует верхнему уровню	контакты, релейные
(низкий порог переключения, слабый ток)	U макс. 30 В, U без нагрузки: 3 до 6 В	преобразователи
Преобразователи классов ID и IE для более сильных токов и мощных источников питания	≤ 1,2 мА соответствует низкому уровню ≥ 2,1 мА соответствует высокому уровню U без нагрузки: 7 до 9 В	

Расходомеры Endress+Hauser

5.3.2 Температура

Подключение датчиков термометра сопротивления	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	А = 2-проводная схема В = 3-проводная схема	A0014185
	С = 4-проводная схема Клеммы 1, 2, 5, 6: Т тепл Клеммы 3, 4, 7, 8: Т холодн	

Чтобы обеспечить высокий уровень точности, рекомендуется использовать 4проводное подключение термометра сопротивления, поскольку это компенсирует погрешности измерения, обусловленные местом монтажа датчиков или длиной соединительных кабелей.

Датчики и преобразователи температуры Endress+Hauser

Подключение	1 / + 90 90
преобразователя	91 91
температуры ТМТ181,	2 / 52 54
ТМТ121	53 55
	40014188 Клеммы 90, 91: источник питания преобразователя Клеммы 52, 53: Т тепл Клеммы 54, 55: Т холодн

5.4 Выходы

5.4.1 Аналоговый выход (активный)

Этот выход можно использовать как токовый выход 0/4 до 20 мА или как импульсный выход напряжения. Выход гальванически развязан. Назначение клемм, → 🗎 21.

5.4.2 Реле

Возможно срабатывание двух реле в случае вывода сообщений о неисправностях или выхода за рамки предельных значений.

Реле 1 или 2 можно выбрать в меню **Настройки** → **Расшир. настройки** → **Система** → **Сбой переключения**.

Предельные значения устанавливаются в меню **Настройки** → **Расшир. настройки** → **Приложение** → **Предел. значения**. Возможные настройки для предельных значений описаны в разделе «Предельные значения» руководства по эксплуатации.

5.4.3 Импульсный выход (активный)

Уровень напряжения

- 0 до 2 В соответствует низкому уровню
- 15 до 20 В соответствует высокому уровню

Максимальный выходной ток: 22 мА

5.4.4 Выход открытого коллектора

Два цифровых выхода можно использовать как выходы состояния или импульсные выходы. Сделайте выбор в следующих меню: Настройки → Расшир. настройки или Эксперт → Выходы → Откр. коллектор

5.5 Связь

Интерфейс USB всегда активен и может использоваться независимо от других интерфейсов. Параллельная работа нескольких дополнительных интерфейсов, например цифровой шины и Ethernet, не предусмотрена.

5.5.1 Ethernet TCP/IP (опционально)

Интерфейс Ethernet оснащен гальванической развязкой (испытательное напряжение: 500 В). Для подключения интерфейса Ethernet можно использовать стандартный соединительный кабель (например, CAT5E). Для этой цели предусмотрено специальное кабельное уплотнение, которое позволяет пропустить заранее разделанный кабель внутрь корпуса. С помощью интерфейса Ethernet прибор может быть подключен к офисному оборудованию через концентратор, коммутатор или непосредственно.

- Стандартный вариант: 10/100 Base T/TX (IEEE 802.3)
- Гнездо: RJ-45
- Максимально допустимая длина кабеля: 100 м

🖻 22 Подключение Ethernet TCP/IP, Modbus TCP

- 1 Ethernet, RJ45
- 2 Кабельный ввод для кабеля Ethernet

5.5.2 Modbus TCP (опционально)

Интерфейс Modbus TCP применяется для подключения прибора к системам более высокого уровня с целью передачи всех значений измеряемой величины и параметров процесса. Интерфейс Modbus TCP физически идентичен интерфейсу Ethernet → 配 22, 🖺 31

5.5.3 Modbus RTU (опционально)

Интерфейс Modbus RTU (RS-485) оснащен гальванической развязкой (испытательное напряжение: 500 В) и используется при подключении прибора к системам более высокого уровня для передачи всех измеренных значений и технологических параметров. Подключение осуществляется через 3-контактный разъем в крышке корпуса.

🖻 23 Подключение интерфейса Modbus RTU

5.5.4 M-Bus (опционально)

Интерфейс M-Bus (Meter Bus) оснащен гальванической развязкой (испытательное напряжение: 500 В) и используется при подключении прибора к системам более высокого уровня для передачи всех измеренных значений и технологических параметров. Подключение осуществляется через 3-контактный разъем в крышке корпуса.

🖻 24 Подключение интерфейса M-Bus

5.6 Проверка после подключения

После выполнения электрических подключений для прибора необходимо выполнить перечисленные ниже проверки.

Состояние прибора и соответствие техническим требованиям	Примечания
Прибор и кабель не повреждены (внешний осмотр)?	-
Электрическое подключение	Примечания
Соответствует ли сетевое напряжение техническим требованиям, указанным на заводской табличке?	100 до 230 V AC/DC (±10 %) (50/60 Гц) 24 V DC (-50 % / +75 %) 24 V AC (±50 %) 50/60 Гц
Оснащены ли кабели средствами снятия натяжения в достаточной мере?	-
Кабели питания и сигнальные кабели подключены должным образом?	См. электрическую схему на корпусе

6 Управление

6.1 Общие сведения об управлении

Тепловычислитель может быть настроен с помощью кнопок управления или посредством ПО FieldCare.

Программное обеспечение, включая интерфейсный кабель, следует заказывать отдельно, поскольку оно не входит в базовый комплект поставки.

Настройка параметров блокируется, если прибор заблокирован переключателем защиты от записи → 🗎 35, переключателем коммерческого учета, пользовательским кодом или через цифровой вход. Для приборов, заблокированных переключателем коммерческого учета, параметры, относящиеся к коммерческому учету, могут быть изменены не более трех раз. Затем доступ к таким параметрам утрачивается.

Подробные сведения см. в разделе «Защита доступа» руководства по эксплуатации.

6.2 Дисплей и элементы управления

🖻 25 Дисплей и элементы управления прибора

- 1 Зеленый светодиод («Работа»)
- 2 Красный светодиод («Сообщение о неисправности»)
- 3 Подключение USB для настройки
- 4 Кнопки управления: «-», «+», «Е»
- 5 Матричный дисплей, 160 х 80 точек
- Зеленый светодиод загорается при наличии напряжения, красный светодиод при аварии/ошибке. Зеленый светодиод постоянно горит при наличии питания на приборе.

Красный светодиод мигает редко (примерно 0,5 Гц): прибор переведен в режим загрузки.

Красный светодиод мигает часто (примерно 2 Гц). При нормальной работе: требуется обслуживание. При обновлении программного обеспечения: выполняется передача данных.

Красный светодиод горит постоянно: в приборе обнаружена ошибка.

6.2.1 Элементы управления

3 кнопки управления: «-», «+», Е

Функция «выход/возврат»: нажмите кнопки «-» и «+» одновременно.

Функция «ввод/подтверждение»: нажмите кнопку «Е»

Переключатель защиты от записи

🖻 26 Переключатель защиты от записи

1 Переключатель защиты от записи на задней стороне крышки корпуса

6.2.2 Дисплей

🖻 27 Отображение данных тепловычислителя (пример)

- 1 Отображение группы 1
- 2 Отображение группы 2: необходимость технического обслуживания, блокирование настройки, нарушение верхнего предельного значения для расхода

6.2.3 ПО FieldCare Device Setup

Для настройки прибора с помощью программного обеспечения FieldCare Device Setup подключите прибор к ПК через интерфейс USB.

Установление соединения

- **1**. Запустите программу FieldCare.
- 2. Подключите прибор к ПК через USB.
- 3. Создайте проект в меню «Файл»/«Создать».
- 4. Выберите режим связи DTM (CDI Communication USB).
- 5. Добавьте прибор EngyCal RH33.
- 6. Нажмите кнопку Connect.
- 7. Начните настройку параметров.

Продолжайте настройку прибора в соответствии с настоящим руководством по эксплуатации. Все меню настройки (то есть все параметры, перечисленные в настоящем руководстве по эксплуатации) также можно найти в интерфейсе ПО FieldCare Device Setup.

УВЕДОМЛЕНИЕ

Произвольное переключение выходов и реле

При настройке с помощью ПО FieldCare прибор может перейти в неопределенное состояние! Это может стать причиной произвольного переключения выходов и реле.

6.3 Матрица управления

Полный обзор матрицы управления, включая все настраиваемые параметры, можно найти в приложении к руководству по эксплуатации.

Язык	Раскрывающийся список всех доступных языков управления.
	Выберите язык для прибора.

Меню «Отображ./управл.»	 Выбор группы для отображения (с автоматическим чередованием или фиксированную группу для отображения) Настройка яркости и контрастности отображения Отображение сохраненных анализов (дневного, месячного, годового, даты выставления счета, сумматора)
-------------------------	---

Меню «Настройки»	В этом разделе настройки можно настроить параметры для ускоренного ввода прибора в эксплуатацию. Меню расширенной настройки содержит все необходимые параметры для настройки работы прибора.	
	 Единицы измерения Знач. пульсации, Значение Место монтажа датчика расхода Дата и время 	Параметры для ускоренного ввода в эксплуатацию
	Расшир. настройки (параметры, н функций прибора) Особые параметры настройки мож	е обязательные для базовых жно конфигурировать также с
	помощью меню «Эксперт».	

Меню «Диагностика»	Информация о единице измерения и сервисные функции для быстрой проверки единицы измерения.
	 Диагностические сообщения и список событий Журнал событий и калибровок Сведения о приборе Моделирование Измеренные значения, выходы

Меню «Эксперт»	Меню «Эксперт» обеспечивает доступ ко всем рабочим позициям прибора, включая точную настройку и сервисные функции.
	 Переходите непосредственно к необходимому параметру с помощью функции «Прямой доступ» (только на приборе) Сервисный код для отображения сервисных параметров (только для компьютерного управляющего ПО) Система (настройки) Входы Выходы
	БилодияПриложениеДиагностика

7 Ввод в эксплуатацию

Перед вводом прибора в эксплуатацию убедитесь в том, что все проверки после подключения выполнены.

- Контрольный список «Проверка после подключения»: →
 ^В 32.

После подачи рабочего напряжения подсвечивается дисплей и загорается зеленый светодиод. После этого прибор готов к работе и может быть настроен с помощью кнопок или посредством конфигурационного ПО FieldCare → 🗎 35.

Удалите защитную пленку с дисплея, иначе читаемость отображаемой информации будет ухудшена.

7.1 Ускоренный ввод в эксплуатацию

Для ускоренного ввода в эксплуатацию «стандартного» тепловычислителя достаточно ввести пять рабочих параметров в меню **«Настройки»**.

Предварительные условия для ускоренного ввода в эксплуатацию

- Преобразователь расхода с импульсным выходом
- Термометр сопротивления с 4-проводной схемой непосредственного подключения

Меню/параметры настройки

- «Единицы измерения»: выберите тип единиц измерения (СИ/США).
- «Знач. пульсации»: выберите единицу значения импульса для преобразователя расхода.
- «Значение»: укажите значение импульса для датчика расхода.
- «Место монтажа»: определите место установки преобразователя расхода.
- «Дата/время»: установите дату и время.

После этого прибор готов к работе и измерению тепловой энергии (энергии охлаждения).

Можно настроить такие функции прибора, как регистрация данных, тарифная функция, подключение к шине и масштабирование токовых входов для расхода или температуры, с помощью меню **«Расшир. настройки»** или меню **«Эксперт»**. Описание этих меню можно найти в руководстве по эксплуатации.

Входы/V-расход Выберите тип сигнала и укажите начало и конец диапазона измерения (для токового

сигнала) или значение импульса для преобразователя расхода.

- Входы/Т тепл
- Входы/Т холодн

71548141

www.addresses.endress.com

