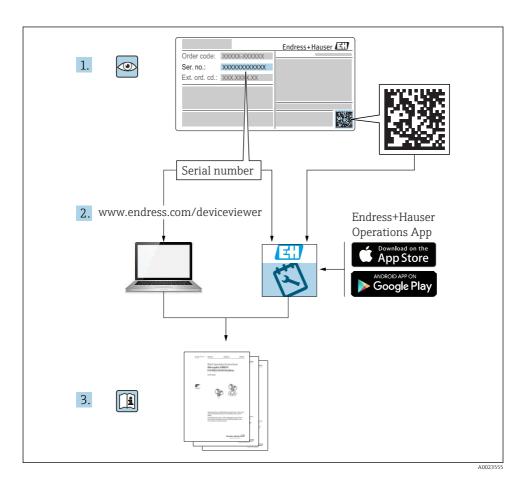

Краткое руководство по эксплуатации Расходомер Proline 400

Преобразователь HART расходомера электромагнитного



Настоящее краткое руководство по эксплуатации **не** заменяет собой руководство по эксплуатации, входящее в комплект поставки.

Краткое руководство по эксплуатации, часть 2 из 2: Преобразователь

Содержит информацию о преобразователе.

Краткое руководство по эксплуатации расходомера

Прибор состоит из преобразователя и датчика.

Процесс ввода в эксплуатацию этих двух компонентов рассматривается в двух отдельных руководствах, составляющих краткое руководство по эксплуатации расходомера:

- краткое руководство по эксплуатации, часть 1: датчик;
- краткое руководство по эксплуатации, часть 2: преобразователь.

При вводе прибора в эксплуатацию обращайтесь к обоим кратким руководствам по эксплуатации, поскольку они дополняют друг друга.

Краткое руководство по эксплуатации, часть 1: датчик

Краткое руководство по эксплуатации датчика предназначено для специалистов, ответственных за установку измерительного прибора.

- Приемка и идентификация изделия
- Хранение и транспортировка
- Монтаж

Краткое руководство по эксплуатации, часть 2: преобразователь

Краткое руководство по эксплуатации преобразователя предназначено для специалистов, ответственных за ввод в эксплуатацию, настройку и регулировку параметров измерительного прибора (до выполнения первого измерения).

- Описание изделия
- Монтаж
- Электрическое подключение
- Опции управления
- Системная интеграция
- Ввод в эксплуатацию
- Диагностическая информация

Дополнительная документация по прибору

Данное краткое руководство по эксплуатации представляет собой документ «Краткое руководство по эксплуатации, часть 2: преобразователь».

Документ «Краткое руководство по эксплуатации, часть 1: датчик» можно найти в следующих источниках:

- интернет: www.endress.com/deviceviewer;
- смартфон/планшет: приложение Endress+Hauser Operations.

Более подробная информация о приборе содержится в руководстве по эксплуатации и прочей документации:

- интернет: www.endress.com/deviceviewer;
- смартфон/планшет: приложение Endress+Hauser Operations.

Содержание

1 1.1	Информация о документе Используемые символы	
2.1 2.2 2.3 2.4 2.5 2.6 2.7	Указания по технике безопасности Требования к работе персонала Назначение Техника безопасности на рабочем месте Безопасность при эксплуатации Безопасность изделия IT-безопасность IT-безопасность прибора	. 7 7 9 . 9
3	Описание изделия	10
4.1 4.2 4.3 4.4	Монтаж Поворот дисплея Поворот корпуса преобразователя: Promag D Поворот корпуса преобразователя Promag L и W Проверка преобразователя после монтажа	. 11 12 16
5.1 5.2 5.3 5.4 5.5 5.6 5.7	Электрическое подключение Электробезопасность Условия подключения Подключение измерительного прибора Обеспечение выравнивания потенциалов Специальные инструкции по подключению Обеспечение необходимой степени защиты Проверка после подключения	. 20 . 20 25 31 37 39
6.1 6.2 6.3 6.4	Опции управления Обзор методов управления Структура и функции меню управления Доступ к меню управления посредством веб-браузера Доступ к меню управления посредством управляющей программы	42 43 44
7	Системная интеграция	50
8 8.1 8.2 8.3 8.4	Ввод в эксплуатацию Функциональная проверка Включение измерительного прибора Установка языка управления Настройка измерительного прибора	50 50 . 51
g.	Пиагностицеская информация	53

1 Информация о документе

1.1 Используемые символы

1.1.1 Символы техники безопасности

Λ ΟΠΑ<u></u>

Этот символ предупреждает об опасной ситуации. Если не предотвратить такую ситуацию, она приведет к серьезной или смертельной травме.

№ ОСТОРОЖНО

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к серьезной или смертельной травме.

№ ВНИМАНИЕ

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к травме легкой или средней степени тяжести.

УВЕДОМЛЕНИЕ

Этот символ указывает на информацию о процедуре и на другие действия, которые не приводят к травмам.

1.1.2 Описание информационных символов

Символ	Значение	Символ	Значение
✓	Разрешено Означает разрешенные процедуры, процессы или действия.		Предпочтительно Означает предпочтительные процедуры, процессы или действия.
X	Запрещено Означает запрещенные процедуры, процессы или действия.	i	Подсказка Указывает на дополнительную информацию.
Ţ <u>i</u>	Ссылка на документацию		Ссылка на страницу
	Ссылка на рисунок	1., 2., 3	Серия шагов
L	Результат действия		Внешний осмотр

1.1.3 Электротехнические символы

Символ	Значение	Символ	Значение
	Постоянный ток	~	Переменный ток
₹	Постоянный и переменный ток	- I-	Заземление Клемма заземления, которая еще до подключения уже заземлена посредством системы заземления

Символ	Значение	
	Защитное заземление (РЕ) Клемма, которая должна быть подсоединена к заземлению перед выполнением других соединений	
	Клеммы заземления расположены внутри и снаружи прибора Внутренняя клемма заземления служит для подключения защитного заземления к линии электропитания Наружная клемма заземления служит для подключения прибора к системе заземления установки	

1.1.4 Справочно-информационные символы

Символ	Значение	Символ	Значение
(i:-	Беспроводная локальная сеть (WLAN) Обмен данными через беспроводную локальную сеть.	*	Promag 10, 400, 800 Bluetooth Беспроводная передача данных между приборами на короткое расстояние.
((1))	Promag 800 Сотовая радиосвязь Двухсторонний обмен данными через сотовую сеть.	•	Светодиод Светодиод выключен.
\\\	Светодиод Светодиод включен.	X	Светодиод Светодиод мигает.

1.1.5 Символы для обозначения инструментов

Символ	Значение	Символ	Значение
0	Звездообразная отвертка (Тогх)	0	Плоская отвертка
06	Крестовая отвертка	06	Шестигранный ключ
Ø.	Рожковый гаечный ключ		

1.1.6 Символы на рисунках

Символ	Значение	Символ	Значение
1, 2, 3,	Номера пунктов	1., 2., 3	Серия шагов
A, B, C,	Виды	A-A, B-B, C-C,	Разделы
EX	Взрывоопасная зона	×	Безопасная среда (невзрывоопасная зона)
≋➡	Направление потока		

2 Указания по технике безопасности

2.1 Требования к работе персонала

Персонал должен соответствовать следующим требованиям:

- Обученные квалифицированные специалисты должны иметь соответствующую квалификацию для выполнения конкретных функций и задач.
- ▶ Получить разрешение на выполнение данных работ от руководства предприятия.
- ▶ Ознакомиться с нормами федерального/национального законодательства.
- ▶ Перед началом работы внимательно ознакомиться с инструкциями, представленными в руководстве, с дополнительной документацией, а также с сертификатами (в зависимости от цели применения).
- ▶ Следовать инструкциям и соблюдать основные условия.

2.2 Назначение

Применение и технологическая среда

Измерительный прибор, описанный в настоящем руководстве, предназначен только для измерения расхода жидкостей с проводимостью не менее 5 мкСм/см.

В зависимости от заказанного исполнения прибор также можно использовать для измерения в потенциально взрывоопасных, горючих, ядовитых и окисляющих средах.

Измерительные приборы, предназначенные для использования во взрывоопасных зонах, для гигиенического применения, а также для областей применения с повышенным риском, связанным с рабочим давлением, имеют соответствующую маркировку на заводской табличке.

Для поддержания надлежащего состояния измерительного прибора во время эксплуатации:

- ▶ Придерживайтесь указанного диапазона давления и температуры.
- Эксплуатируйте прибор в полном соответствии с данными, указанными на заводской табличке, и общими условиями эксплуатации, приведенными в настоящем руководстве и в дополнительных документах.
- ▶ Проверьте, основываясь на данных заводской таблички, разрешено ли использовать прибор во взрывоопасных зонах (например, взрывозащита, безопасность резервуара под давлением).
- Используйте измерительный прибор только с теми средами, в отношении которых смачиваемые части прибора обладают достаточной стойкостью.
- ► Если измерительный прибор эксплуатируется при температуре, отличной от температуры окружающей среды, то необходимо обеспечить строгое соблюдение базовых условий, приведенных в сопутствующей документации по прибору.

- Предусмотрите постоянную защиту прибора от коррозии, вызванной влиянием окружающей среды.
- Описываемый измерительный прибор прошел дополнительное испытание в соответствии с правилами OIML R49: 2006 и получил сертификат EC на соответствие требованиям Директивы по измерительным приборам 2004/22/EC (MID) для использования в области, подлежащей законодательно контролируемому метрологическому контролю («коммерческому учету») для холодной воды (Приложение MI-001).

Допустимая температура технологической среды для таких условий применения составляет 0 до +50 °C (+32 до +122 °F).

Использование не по назначению

Использование прибора не по назначению может привести к снижению уровня безопасности. Изготовитель не несет ответственности за повреждения, вызванные неправильным использованием прибора или использованием не по назначению.

▲ ОСТОРОЖНО

Опасность разрушения в результате воздействия агрессивных, абразивных жидкостей или условий окружающей среды.

- ▶ Проверьте совместимость жидкости процесса с материалом датчика.
- Убедитесь, что все контактирующие с жидкостью материалы устойчивы к ее воздействию.
- ▶ Придерживайтесь указанного диапазона давления и температуры.

УВЕДОМЛЕНИЕ

Проверка критичных случаев:

▶ В отношении специальных жидкостей и жидкостей для очистки Endress+Hauser обеспечивает содействие при проверке коррозионной стойкости смачиваемых материалов, однако гарантии при этом не предоставляются, поскольку даже незначительные изменения в температуре, концентрации или степени загрязнения в условиях технологического процесса могут привести к изменению коррозионной стойкости.

Остаточные риски

▲ ОСТОРОЖНО

Слишком высокая или слишком низкая температура технологической среды или модуля электроники может привести к тому, что поверхности прибора станут слишком горячими или холодными. Это может привести к ожогам или обморожениям!

 При эксплуатации прибора в условиях горячей или слишком холодной технологической среды необходимо установить соответствующую защиту от прикосновения.

2.3 Техника безопасности на рабочем месте

При работе на приборе и с прибором необходимо соблюдать следующие правила.

 В соответствии с федеральным/национальным законодательством персонал должен использовать средства индивидуальной защиты.

Во время проведения сварочных работ на трубопроводах необходимо соблюдать следующие правила.

▶ Не заземляйте сварочный аппарат через измерительный прибор.

При работе с прибором и на приборе с мокрыми руками необходимо принимать следующие меры предосторожности.

▶ Учитывая повышенный риск поражения электрическим током, необходимо надевать перчатки.

2.4 Безопасность при эксплуатации

Опасность травмирования.

- При эксплуатации прибор должен находиться в технически исправном и отказоустойчивом состоянии.
- ▶ Ответственность за отсутствие помех при эксплуатации прибора несет оператор.

2.5 Безопасность изделия

Этот измерительный прибор разработан в соответствии с передовой инженерной практикой и отвечает современным требованиям безопасности, был испытан и отправлен с завода в безопасном для эксплуатации состоянии.

Прибор соответствует общим стандартам безопасности и требованиям законодательства. Кроме того, прибор соответствует директивам ЕЭС, перечисленным в декларации соответствия требованиям ЕЭС для конкретного прибора. Компания Endress+Hauser подтверждает это нанесением маркировки СЕ на прибор.

Кроме того, прибор соответствует юридическим требованиям применимых нормативных актов Великобритании (нормативных документов). Эти требования перечислены в декларации соответствия правилам UKCA вместе с действующими стандартами.

При выборе опции заказа с маркировкой UKCA: компания Endress+Hauser подтверждает успешную оценку и тестирование прибора, нанося на него маркировку UKCA.

Контактный адрес компании Endress+Hauser в Великобритании:

Endress+Hauser Ltd.

Floats Road Manchester M23 9NF Великобритания www.uk.endress.com

2.6 ІТ-безопасность

Гарантия изготовителя действует только при условии, что прибор смонтирован и эксплуатируется в соответствии с настоящим руководством по эксплуатации. Прибор

Расходомер Proline 400

имеет встроенные механизмы обеспечения защиты, предотвращающие внесение какихлибо непреднамеренных изменений в его настройки.

Оператор должен самостоятельно реализовать меры по IT-безопасности, дополнительно защищающие прибор и связанные с ним процессы обмена данными, в соответствии со стандартами безопасности, принятыми на конкретном предприятии.

2.7 IT-безопасность прибора

Прибор снабжен набором специальных функций, реализующих защитные меры на стороне оператора. Эти функции доступны для настройки пользователем и при правильном применении обеспечивают повышенную эксплуатационную безопасность.

Для получения дополнительной информации об информационной безопасности прибора см. руководство по эксплуатации прибора.

3 Описание изделия

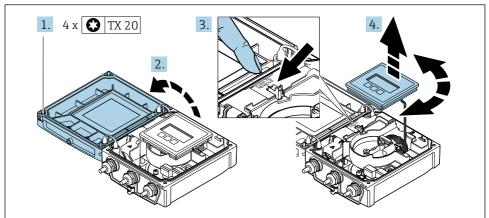
Прибор состоит из преобразователя и датчика.

Прибор выпускается в двух исполнениях, особенности которых указаны ниже.

- Компактное исполнение преобразователь и датчик образуют единый механический блок.
- Раздельное исполнение преобразователь и датчик устанавливаются в разных местах.

Подробное описание изделия см. в руководстве по эксплуатации прибора → 🗎 3.

Pacxoдомер Proline 400 Монтаж


4 Монтаж

Подробную информацию о монтаже датчика см. в кратком руководстве по эксплуатации датчика → 🖺 3.

4.1 Поворот дисплея

4.1.1 Открывание корпуса преобразователя и поворот дисплея

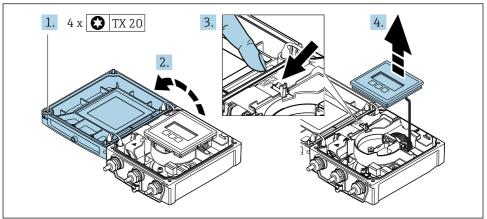
A0032091

- 1. Ослабьте фиксирующие винты на крышке корпуса.
- 2. Откройте крышку корпуса.
- 3. Разблокируйте дисплей.
- 4. Извлеките дисплей и поверните его в требуемое положение (с шагом 90°).

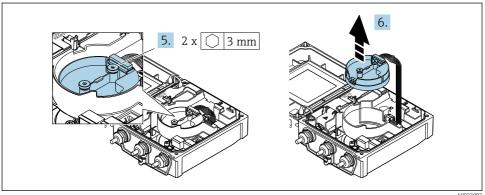
4.1.2 Монтаж корпуса преобразователя

▲ ОСТОРОЖНО

Чрезмерный момент затяжки фиксирующих винтов!

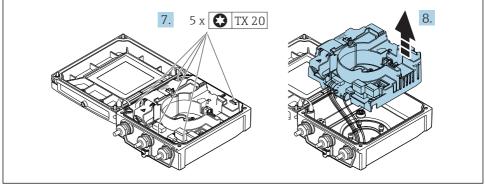

Повреждение преобразователя.

- Затяните фиксирующие винты предписанным моментом.
- 1. Вставьте дисплей. При этом дисплей будет заблокирован.
- 2. Закройте крышку корпуса.
- 3. Затяните фиксирующие винты крышки корпуса. Момент затяжки для алюминиевого корпуса 2,5 Нм (1,8 фунт сила фут), для пластмассового корпуса 1 Нм (0,7 фунт сила фут).

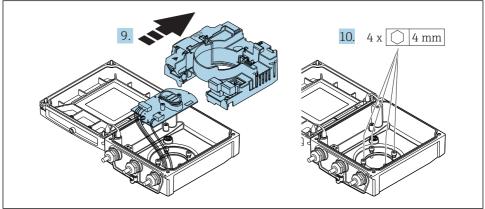

4.2 Поворот корпуса преобразователя: Promaq D

Для обеспечения доступа к клеммному отсеку или дисплею можно повернуть корпус преобразователя.

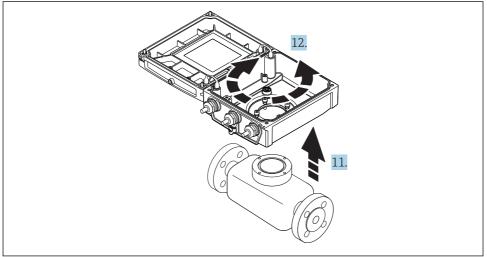
4.2.1 Разборка и поворот корпуса преобразователя


- 1. Ослабьте фиксирующие винты на крышке корпуса.
- Откройте крышку корпуса. 2.
- Разблокируйте дисплей.
- 4. Снимите дисплей.

A0032087


- Ослабьте фиксирующие винты модуля электроники интеллектуального датчика. 5.
- Снимите модуль электроники интеллектуального датчика.

Pacxодомер Proline 400 Монтаж


A0032130

- 7. Ослабьте фиксирующие винты главного модуля электроники.
- 8. Снимите главный модуль электроники.

A0032131

- 9. Извлеките модуль электроники из главного модуля электроники.
- 10. Ослабьте фиксирующие винты корпуса преобразователя (при повторной сборке соблюдайте предписанный момент затяжки).

A0032132

- 11. Приподнимите корпус преобразователя.
- 12. Поверните корпус в требуемое положение (с шагом в 90°).

4.2.2 Установка корпуса датчика

УВЕДОМЛЕНИЕ

Некорректная прокладка соединительных кабелей между сенсором и измерительным преобразователем в корпусе измерительного преобразователя! Это может влиять на сигнал измерения.

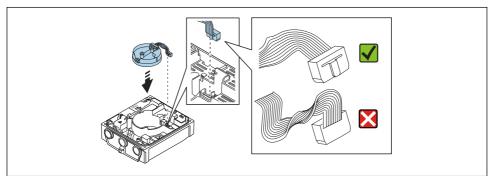
▶ Проложите соединительные кабели непосредственно на уровне разъемов.

▲ ОСТОРОЖНО

Чрезмерный момент затяжки фиксирующих винтов!

Повреждение преобразователя.

- Затяните фиксирующие винты предписанным моментом затяжки.
- 1. Верните на место корпус преобразователя.
- 2. Затяните фиксирующие винты корпуса преобразователя: момент затяжки 5,5 Нм (4,1 фунт сила фут).
- 3. Введите модуль электроники в главный модуль электроники.
- 4. Вставьте главный модуль электроники.
- 5. Затяните фиксирующие винты главного модуля электроники: момент затяжки 1,5 Нм (1,1 фунт сила фут).

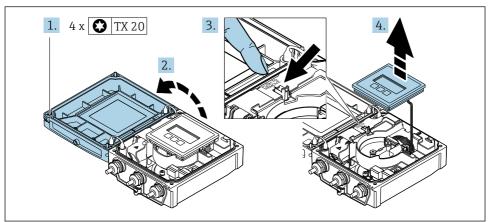

Расходомер Proline 400 Монтаж

УВЕДОМЛЕНИЕ

Ненадлежащее подключение разъема модуля электроники интеллектуального датчика!

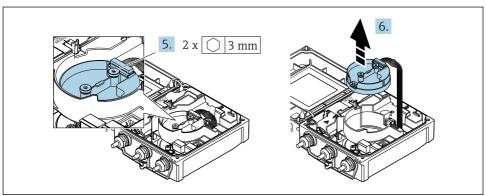
Отсутствие вывода измеряемого сигнала.

 Подключите разъем модуля электроники интеллектуального датчика согласно кодировке.


A0021585

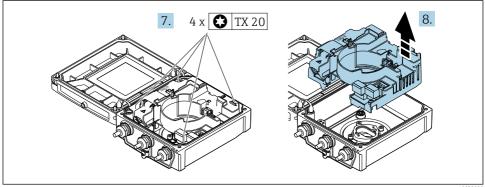
- 6. Подключите модуль электроники интеллектуального датчика: учитывайте кодировку!
- 7. Затяните фиксирующие винты модуля электроники интеллектуального датчика: момент затяжки 0,6 Нм (0,4 фунт сила фут).
- 8. Вставьте дисплей. При этом дисплей будет заблокирован.
- 9. Закройте крышку корпуса.
- 10. Затяните фиксирующие винты главного модуля электроники. Момент затяжки для алюминиевого корпуса 2,5 Нм (1,8 фунт сила фут), для пластмассового корпуса 1 Нм (0,7 фунт сила фут).

4.3 Поворот корпуса преобразователя Promaq L и W

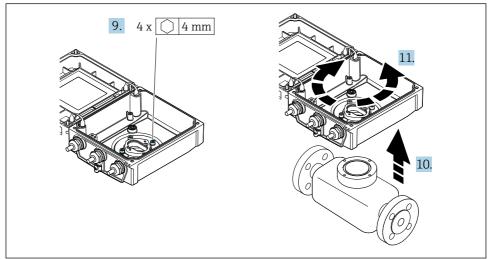

Для обеспечения доступа к клеммному отсеку или дисплею можно повернуть корпус преобразователя.

4.3.1 Разборка и поворот корпуса преобразователя

A0032086


- 1. Ослабьте фиксирующие винты на крышке корпуса.
- 2. Откройте крышку корпуса.
- 3. Разблокируйте дисплей.
- 4. Снимите дисплей.

A0032087


- 5. Ослабьте фиксирующие винты модуля электроники интеллектуального датчика.
- 6. Снимите модуль электроники интеллектуального датчика.

Pacxодомер Proline 400 Монтаж

A0032088

- 7. Ослабьте фиксирующие винты главного модуля электроники.
- 8. Снимите главный модуль электроники.

A0032089

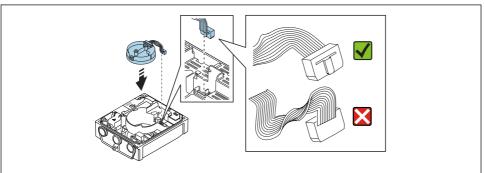
- 9. Ослабьте фиксирующие винты корпуса преобразователя (при повторной сборке соблюдайте предписанный момент затяжки).
- 10. Приподнимите корпус преобразователя.
- 11. Поверните корпус в требуемое положение (с шагом в 90°).

4.3.2 Установка корпуса датчика

▲ ОСТОРОЖНО

Чрезмерный момент затяжки фиксирующих винтов!

Повреждение преобразователя.


- ▶ Затяните фиксирующие винты предписанным моментом затяжки.
- 1. Верните на место корпус преобразователя.
- 2. Затяните фиксирующие винты корпуса преобразователя: момент затяжки 5,5 Нм (4,1 фунт сила фут).
- 3. Вставьте главный модуль электроники.
- 4. Затяните фиксирующие винты главного модуля электроники: момент затяжки 1,5 Нм (1,1 фунт сила фут).

УВЕДОМЛЕНИЕ

Ненадлежащее подключение разъема модуля электроники интеллектуального датчика!

Отсутствие вывода измеряемого сигнала.

 Подключите разъем модуля электроники интеллектуального датчика согласно кодировке.

A0021585

- 5. Подключите модуль электроники интеллектуального датчика: учитывайте кодировку!
- 6. Затяните фиксирующие винты модуля электроники интеллектуального датчика: момент затяжки 0,6 Нм (0,4 фунт сила фут).
- 7. Вставьте дисплей. При этом дисплей будет заблокирован.
- 8. Закройте крышку корпуса.
- 9. Затяните фиксирующие винты главного модуля электроники. Момент затяжки для алюминиевого корпуса 2,5 Нм (1,8 фунт сила фут), момент затяжки для пластмассового корпуса 1 Нм (0,7 фунт сила фут).

4.4 Проверка преобразователя после монтажа

Проверку после монтажа следует обязательно проводить после выполнения следующих задач.

- Поворот корпуса преобразователя
- Поворот дисплея

Не поврежден ли прибор (внешний осмотр)?	
Поворот корпуса преобразователя	
■ Плотно ли затянуты фиксирующие винты?	
■ Крышка клеммного отсека закручена плотно?	
■ Плотно ли затянут крепежный зажим?	
Поворот дисплея	
• Крышка клеммного отсека закручена плотно?	
■ Плотно ли затянут крепежный зажим?	

5 Электрическое подключение

УВЕДОМЛЕНИЕ

На данном измерительном приборе не предусмотрен встроенный автоматический выключатель.

- ▶ Поэтому необходимо обеспечить наличие подходящего реле или автоматического выключателя питания для быстрого отключения линии электроснабжения от сети.
- Измерительный прибор снабжен предохранителем; тем не менее, при монтаже системы необходимо предусмотреть дополнительную защиту от чрезмерного тока (макс. 16 A).

5.1 Электробезопасность

В соответствии с применимыми национальными правилами.

5.2 Условия подключения

5.2.1 Необходимые инструменты

- Динамометрический ключ
- Для кабельных вводов: используйте соответствующие инструменты
- Устройство для снятия изоляции с проводов
- При использовании многожильных кабелей: инструмент для обжима втулок на концах проводов

5.2.2 Требования к соединительному кабелю

Соединительные кабели, предоставляемые заказчиком, должны соответствовать следующим требованиям.

Разрешенный диапазон температуры

- Необходимо соблюдать инструкции по монтажу, которые применяются в стране установки.
- Кабели должны быть пригодны для работы при предполагаемой минимальной и максимальной температуре.

Кабель источника питания (с проводником для внутренней клеммы заземления)

Подходит стандартный кабель.

Сигнальный кабель

Токовый выход 0/4...20 мА

Подходит стандартный кабель.

Токовый выход 4...20 мА HART

Рекомендуется использовать экранированный кабель. Изучите схему заземления системы.

Импульсный/частотный /релейный выход

Подходит стандартный кабель.

Входной сигнал состояния

Подходит стандартный кабель.

Соединительный кабель для раздельного исполнения

В случае раздельного исполнения датчик подключается к преобразователю через сигнальный кабель и кабель питания катушки.

👔 Подробные сведения о спецификациях соединительных кабелей см. в руководстве по эксплуатации прибора $\rightarrow \stackrel{\triangle}{=} 3$.

Эксплуатация в среде с мощными электрическими помехами

Заземление выполняется с помощью клеммы заземления, предусмотренной для этой цели внутри корпуса клеммного отсека. Длина оголенных и скрученных отрезков экранированного кабеля, подведенного к клемме заземления, должна быть минимальной.

Диаметр кабеля

- Поставляемые кабельные уплотнения
 - Для стандартного кабеля: $M20 \times 1.5$ с кабелем ϕ 6 до 12 мм (0,24 до 0,47 дюйм).
 - Для усиленного кабеля: M20 × 1,5 с кабелем Ф 9,5 до 16 мм (0,37 до 0,63 дюйм).
- Вставные пружинные клеммы для проводников площадью поперечного сечения 0,5 до 2,5 мм² (20 до 14 AWG).

5.2.3 Назначение клемм

Кроме доступных входов и выходов, сведения о назначении клемм для электрического подключения прибора можно найти на заводской табличке подключений главного модуля электроники.

| Подробное описание назначения клемм см. в руководстве по эксплуатации прибора → 🖺 3

5.2.4 Подготовка измерительного прибора

Выполните следующие действия по порядку:

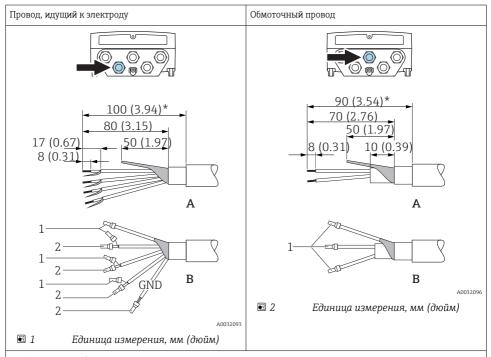
- 1. Установите преобразователь и датчик.
- 2. Клеммный отсек, датчик: подключите соединительный кабель.
- 3. Преобразователь: подключите соединительный кабель.
- 4. Преобразователь: подключите сигнальный кабель и кабель питания.

УВЕДОМЛЕНИЕ

Недостаточное уплотнение корпуса!

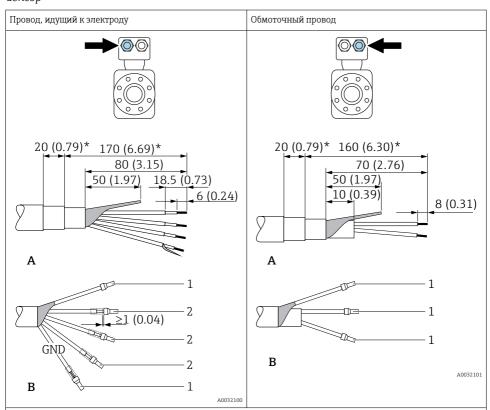
Возможно существенное снижение технической надежности измерительного прибора.

- Используйте подходящие кабельные уплотнители, соответствующие требуемой степени защиты.
- 1. Если установлена заглушка, удалите ее.
- 2. При поставке измерительного прибора без кабельных уплотнений: Подберите подходящее кабельное уплотнение для соответствующего соединительного кабеля.
- 3. При поставке измерительного прибора с кабельными уплотнениями: См. требования к соединительному кабелю →


 В 20.

5.2.5 Подготовка соединительного кабеля в раздельном исполнении

При оконцовке соединительного кабеля необходимо учитывать следующее:


- 1. Для кабеля электрода: убедитесь, что обжимные втулки не соприкасаются с экранами жил на стороне датчика. Минимальный зазор = 1 мм (кроме "GND" = зеленый кабель)
- 2. Для кабеля питания катушки: Изолируйте одну жилу трехжильного кабеля в области арматуры жилы. Для подключения требуются только две жилы.
- 3. Для кабелей с тонкопроволочными жилами (многожильных): Установите на жилах обжимные втулки.

Преобразователь

- А = Оконцовка кабелей
- В = Оконцовка тонкопроволочных жил с использованием обжимных втулок
- 1 = Красные наконечники, ϕ 1,0 мм (0,04 дюйм)
- 2 = Белые наконечники, Ф0,5 мм (0,02 дюйм)
- * = Зачистка только для усиленных кабелей

Сенсор

- А = Оконцовка кабелей
- В = Оконцовка тонкопроволочных жил с использованием обжимных втулок
- 1 = Красные наконечники, $\phi 1$,0 мм (0,04 дюйм)
- 2 = Белые наконечники, $\phi 0,5$ мм (0,02 дюйм)
- * = Зачистка только для усиленных кабелей

5.3 Подключение измерительного прибора

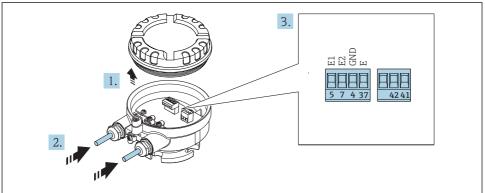
▲ ОСТОРОЖНО

Опасность поражения электрическим током! Компоненты находятся под высоким напряжением!

- Работа по электрическому подключению должна выполняться только квалифицированными специалистами.
- ▶ Обеспечьте соблюдение федеральных/национальных норм и правил.
- ▶ Обеспечьте соблюдение местных норм в отношении безопасности рабочих мест.
- ▶ Необходимо соблюдать концепцию заземления, принятую на предприятии.
- ▶ Монтаж или подключение прибора при подведенном питании запрещается.
- ▶ Перед подачей напряжения подключите заземление к измерительному прибору.

5.3.1 Подключение прибора в раздельном исполнении

▲ ОСТОРОЖНО


Опасность повреждения электронных компонентов!

- ▶ Подключите датчик и преобразователь к одному и тому же заземлению.
- При подключении датчика к преобразователю убедитесь в том, что их серийные номера совпадают.
- ▶ Заземлите корпус клеммного отсека датчика посредством внешней винтовой клеммы.

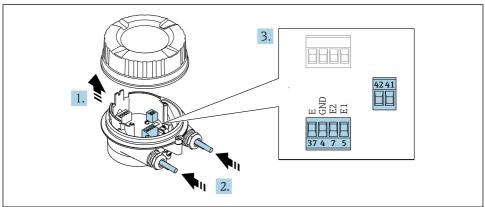
Для приборов в раздельном исполнении рекомендуется следующая процедура (приведенная последовательность действий).

- 1. Установите преобразователь и датчик.
- 2. Подключите соединительный кабель для раздельного исполнения.
- 3. Подключите электронный преобразователь.

Подключение соединительного кабеля к клеммному отсеку датчика Promaq D

A0022126

- 🛃 3 Датчик: клеммный блок
- 1. Освободите зажим крышки корпуса.
- 2. Открутите и снимите крышку корпуса.
- Пропустите кабель через кабельный ввод. Чтобы обеспечить непроницаемое уплотнение, не удаляйте уплотнительное кольцо из кабельного ввода.
- 4. Зачистите концы кабелей. При использовании многожильных кабелей закрепите на концах обжимные втулки →


 22.
- 5. Подключите кабель в соответствии с назначением клемм.
- 6. Плотно затяните кабельные уплотнения.
- 7. **▲ ОСТОРОЖНО**

При недостаточном уплотнении корпуса его степень защиты окажется ниже заявленной.

 Заверните винт, не нанося смазку на резьбу. Резьба в крышке уже покрыта сухой смазкой.

Соберите датчик, выполнив процедуру в обратном порядке.

Promag L и W

A0032103

- 🗗 4 Датчик: клеммный блок
- 1. Освободите зажим крышки корпуса.
- 2. Открутите и снимите крышку корпуса.
- 3. Пропустите кабель через кабельный ввод. Чтобы обеспечить непроницаемое уплотнение, не удаляйте уплотнительное кольцо из кабельного ввода.

4. УВЕДОМЛЕНИЕ

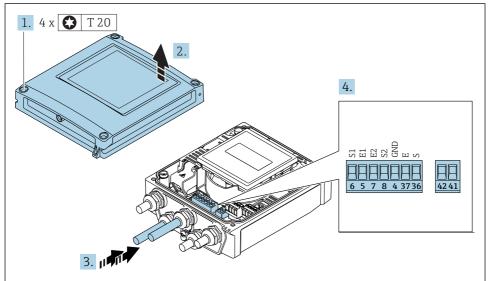
При использовании удлинителей для кабельных вводов:

▶ Установите уплотнительное кольцо на кабель и вставьте его обратно. При вставке кабеля уплотнительное кольцо должно находиться за пределами удлинителя.

Пропустите кабель через кабельный ввод. Чтобы обеспечить непроницаемое уплотнение, не удаляйте уплотнительное кольцо из кабельного ввода.

- Зачистите концы кабелей. При использовании многожильных кабелей закрепите на концах обжимные втулки →

 22.
- 6. Подключите кабель в соответствии с назначением клемм.
- 7. Плотно затяните кабельные уплотнения.



При недостаточном уплотнении корпуса его степень защиты окажется ниже заявленной.

 Заверните винт, не нанося смазку на резьбу. Резьба в крышке уже покрыта сухой смазкой.

Соберите датчик, выполнив процедуру в обратном порядке.

Подключение соединительного кабеля к преобразователю

A0032102

- 5 Преобразователь: главный электронный модуль с клеммами
- 1. Ослабьте 4 фиксирующих винта на крышке корпуса.
- 2. Откройте крышку корпуса.
- 3. Пропустите кабель через кабельный ввод. Чтобы обеспечить непроницаемое уплотнение, не удаляйте уплотнительное кольцо из кабельного ввода.
- Зачистите концы кабелей. При использовании многожильных кабелей закрепите на концах обжимные втулки →

 22.
- 5. Подключите кабель в соответствии с назначением клемм.
- 6. Плотно затяните кабельные уплотнения.

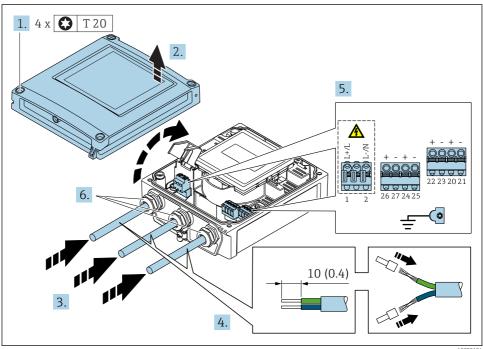
При недостаточном уплотнении корпуса его степень защиты окажется ниже заявленной.

▶ Заверните винт, не нанося смазку на резьбу.

Соберите электронный преобразователь в порядке, обратном разборке.

5.3.2 Подключение преобразователя

▲ ОСТОРОЖНО


При недостаточном уплотнении корпуса его степень защиты окажется ниже заявленной.

▶ Заверните винт, не нанося смазку на резьбу. Резьба в крышке уже покрыта сухой смазкой.

Момент затяжки для пластмассового корпуса

Фиксирующий винт крышки корпуса	1 Нм (0,7 фунт сила фут)
Кабельный ввод	5 Нм (3,7 фунт сила фут)
Клемма заземления	2,5 Нм (1,8 фунт сила фут)

Для связи HART: при подключении экрана кабеля к клемме заземления соблюдайте принцип заземления объекта.

- A0032104
- € 6 Подключение сетевого напряжения и 0-20 мA/4-20 мA HART с дополнительными выходами/входами
- Ослабьте 4 фиксирующих винта на крышке корпуса.
- Откройте крышку корпуса.

- 3. Пропустите кабель через кабельный ввод. Чтобы обеспечить непроницаемое уплотнение, не удаляйте уплотнительное кольцо из кабельного ввода.
- 4. Зачистите кабель и концы кабельных жил. На концы многопроволочных кабельных жил необходимо надеть наконечники.
- 5. Подключите кабели в соответствии с паспортной табличкой подключения, закрепленной на главном модуле электроники. Для кабеля электропитания: откройте крышку для защиты от ударов.
- 6. Плотно затяните кабельные уплотнения.

Повторная сборка преобразователя

- 1. Закройте крышку, обеспечивающую защиту от поражения электрическим током.
- 2. Закройте крышку корпуса.
- 3. **▲ ОСТОРОЖНО**

При недостаточном уплотнении корпуса его степень защиты окажется ниже заявленной.

▶ Заверните винт, не нанося смазку на резьбу.

Затяните 4 фиксирующих винта на крышке корпуса.

5.4 Обеспечение выравнивания потенциалов

5.4.1 Введение

Надлежащее выравнивание потенциалов (эквипотенциальное соединение) является необходимым предварительным условием для стабильного и надежного измерения расхода. Ненадлежащее или неправильное выравнивание потенциалов может привести к отказу прибора и поставить под угрозу безопасность.

Для обеспечения достоверного и бесперебойного измерения необходимо соблюдать следующие требования.

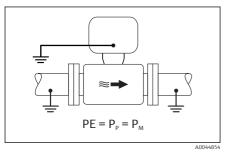
- Действует принцип, согласно которому у технологической среды, датчика и преобразователя должен быть одинаковый электрический потенциал.
- Необходимо учитывать корпоративные правила в отношении заземления, требования к материалам, а также условия заземления и возможные варианты состояния трубопровода.
- Все необходимые соединения для выравнивания потенциалов должны выполняться заземляющими кабелями с площадью поперечного сечения не менее $6 \text{ мм}^2 (0.0093 \text{ дюйм}^2).$
- При рассмотрении приборов в раздельном исполнении клемма заземления, приведенная в примере, всегда относится к датчику, а не к преобразователю.

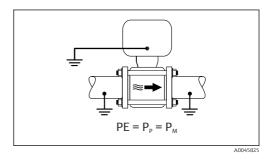
Такие аксессуары, как заземляющие кабели и заземляющие диски, можно заказать в компании Endress+Hauser. См. руководство по эксплуатации прибора $\rightarrow \blacksquare$ 3.

Для приборов, предназначенных для использования во взрывоопасных зонах, соблюдайте инструкции, которые приведены в документации по взрывозащите (ХА) → 🖺 3.

Используемые аббревиатуры

- PE (Protective Earth): потенциал на клеммах защитного заземления прибора
- P_P (Potential Pipe): потенциал трубопровода, измеренный на фланцах
- P_M (Potential Medium): потенциал технологической среды


5.4.2 Примеры подключения для стандартных ситуаций


Металлический трубопровод без футеровки и заземления

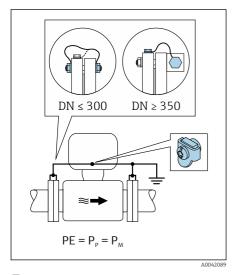
- Выравнивание потенциалов осуществляется через измерительную трубу.
- Потенциал технологической среды согласовывается с потенциалом заземления.

Исходные условия

- Трубы должным образом заземлены с обеих сторон.
- Трубы являются токопроводящими, и их электрический потенциал соответствует потенциалу технологической среды.

■ 7 Promag L, W

■ 8 Promag D


 Подключите клеммный отсек преобразователя или датчика к потенциалу заземления с помощью предусмотренной для этого клеммы заземления.

Promag L, W: металлический трубопровод без футеровки

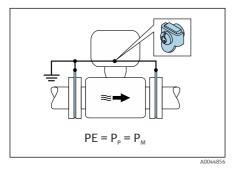
- Выравнивание потенциалов осуществляется через клемму заземления и фланцы трубопровода.
- Потенциал технологической среды согласовывается с потенциалом заземления.

Исходные условия

- Трубы заземлены в недостаточной мере.
- Трубы являются токопроводящими, и их электрический потенциал соответствует потенциалу технологической среды.

■ 9 Promag L, W

1. Подключите оба фланца датчика к фланцу трубопровода с помощью заземляющего кабеля, и заземлите их.


- 2. Подключите клеммный отсек преобразователя или датчика к потенциалу заземления с помощью предусмотренной для этого клеммы заземления.
- Для трубопроводов DN ≤ 300 (12 дюймов): закрепите заземляющий кабель непосредственно на токопроводящем покрытии фланца датчика с помощью фланцевых винтов.
- 4. Для трубопроводов DN ≥ 350 (14 дюймов): закрепите заземляющий кабель непосредственно на металлическом транспортном кронштейне. Соблюдайте предписанные моменты затяжки резьбовых соединений: см. краткое руководство по эксплуатации датчика.

Пластмассовый трубопровод или трубопровод с изолирующей футеровкой

- Выравнивание потенциалов осуществляется следующими средствами.
 - Promag D: клемма заземления и фланцы
 - Promag L, W: клемма заземления и заземляющие диски
- Потенциал технологической среды согласовывается с потенциалом заземления.

Исходные условия

- Трубопровод изолирован от технологической среды.
- Заземление технологической среды с низким сопротивлением вблизи датчика не гарантируется.
- Нельзя исключать прохождение уравнительного тока через технологическую среду.

 $PE = P_{P} = P_{M}$

A004582

■ 10 Promag L, W

■ 11 Promag D

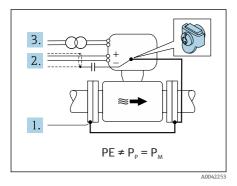
Promag D

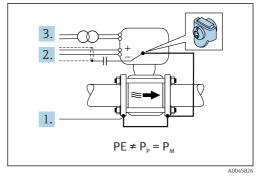
- 1. Подключите фланцы к клемме заземления клеммного отсека преобразователя или датчика через заземляющий кабель.
- 2. Выполните подключение к потенциалу заземления.

Promag LиW

- 1. Подключите заземляющие диски к клемме заземления в клеммном отсеке преобразователя или датчика через заземляющий кабель.
- 2. Выполните подключение к потенциалу заземления.

5.4.3 Пример подключения при разных потенциалах технологической среды и защитного заземления


В этих случаях потенциал технологической среды может отличаться от потенциала прибора.


Металлический не заземленный трубопровод

Датчик и преобразователь смонтированы с таким расчетом, чтобы обеспечить электрическую изоляцию от защитного заземления, например при использовании электролитических процессов или систем с катодной защитой.

Исходные условия

- Металлический трубопровод без футеровки
- Трубопроводы с электропроводной футеровкой

■ 12 Promag L, W

■ 13 Promag D

- 1. Соедините фланцы трубопровода и преобразователь заземляющим кабелем.
- 2. Подключите экраны сигнальных цепей через конденсатор (рекомендуемые параметры $1.5 \text{ мк}\Phi/50 \text{ B}$).
- 3. Прибор подключен к источнику питания таким образом, что он является плавающим по отношению к защитному заземлению (изолирующий трансформатор). Эта мера не требуется при использовании питания 24 В постоянного тока без защитного заземления (блок питания типа SELV).

5.4.4 Promag W: примеры подключения при разных потенциалах технологической среды и защитного заземления с использованием опции «Измерение в условиях изоляции от заземления»

В этих случаях потенциал технологической среды может отличаться от потенциала прибора.

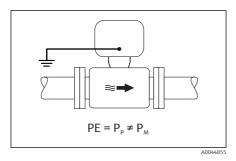
Введение

Опция «Измерение в условиях изоляции от заземления» обеспечивает гальваническую развязку измерительной системы от потенциала прибора. Это сводит к минимуму вредные уравнивающие токи, вызванные разницей потенциалов между технологической

средой и прибором. Опцию «Измерение в условиях изоляции от заземления» можно заказать: код заказа «Опции датчика», опция CV.

Условия эксплуатации для использования опции «Измерение в условиях изоляции от заземления»

Исполнение прибора	Компактное исполнение и раздельное исполнение (длина соединительного кабеля ≤ 10 м)
Разница в напряжении между потенциалом технологической среды и потенциалом прибора	По возможности минимальная, обычно в диапазоне мВ
Частота переменного напряжения в технологической среде или на потенциале заземления (PE)	Ниже типичной частоты сети питания в стране эксплуатации


- Для обеспечения заявленной точности измерения проводимости рекомендуется выполнить калибровку проводимости при установке прибора.
- При установке прибора рекомендуется выполнить регулировку для заполненного трубопровода.

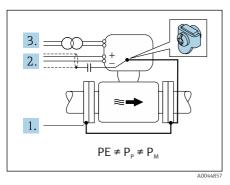
Пластмассовый трубопровод

Датчик и преобразователь должным образом заземлены. Между технологической средой и защитным заземлением может возникнуть разность потенциалов. Выравнивание потенциалов между потенциалом P_M и потенциалом защитного заземления (PE) через электрод сравнения сводится к минимуму за счет применения опции «Измерение в условиях изоляции от заземления».

Исходные условия

- Трубопровод изолирован от технологической среды.
- Нельзя исключать прохождение уравнительного тока через технологическую среду.

■ 14 Promag W

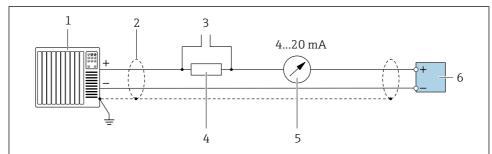

- 1. Используйте опцию «Измерение в условиях изоляции от заземления», соблюдая необходимые для этого условия эксплуатации.
- 2. Подключите клеммный отсек преобразователя или датчика к потенциалу заземления с помощью предусмотренной для этого клеммы заземления.

Металлический незаземленный трубопровод с изолирующей футеровкой

Датчик и преобразователь смонтированы с таким расчетом, чтобы обеспечить электрическую изоляцию от защитного заземления. Потенциал технологической среды отличается от потенциала трубопровода. Опция «Измерение в условиях изоляции от заземления» сводит к минимуму протекание вредных уравнительных токов между потенциалами P_M и P_P через электрод сравнения.

Исходные условия

- Металлический трубопровод с изолирующей футеровкой
- Нельзя исключать прохождение уравнительного тока через технологическую среду.

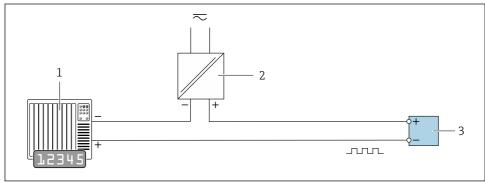

■ 15 Promag W

- 1. Соедините фланцы трубопровода и преобразователь заземляющим кабелем.
- 2. Подключите экраны сигнальных кабелей через конденсатор (рекомендуемые параметры -1,5 мк $\Phi/50$ B).
- 3. Прибор подключен к источнику питания таким образом, что он является плавающим по отношению к защитному заземлению (изолирующий трансформатор). Эта мера не требуется при использовании питания 24 В постоянного тока без защитного заземления (блок питания типа SELV).
- 4. Используйте опцию «Измерение в условиях изоляции от заземления», соблюдая необходимые для этого условия эксплуатации.

5.5 Специальные инструкции по подключению

5.5.1 Примеры подключения

Токовый выход 4-20 мА HART

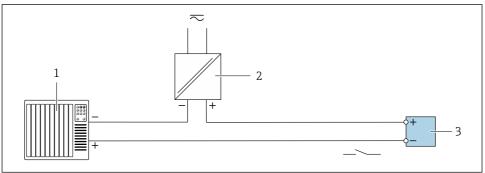


A0029055

■ 16 Пример подключения токового выхода 4-20 мА НАКТ (активного)

- 1 Система автоматизации с токовым входом (например, ПЛК)
- 2 Экран кабеля заземляется с одного конца. Для выполнения требований по ЭМС необходимо заземление экрана кабеля с обоих концов; соблюдайте спецификацию кабелей
- 3 Подключение приборов, работающих по протоколу HART
- 4 Резистор для подключения HART (≥ 250 Ом): не допускайте превышения максимальной нагрузки
- 5 Аналоговый блок индикации; не допускайте превышения максимальной нагрузки
- 6 Преобразователь

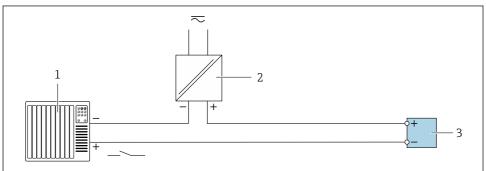
Импульсный/частотный выход



A002876

■ 17 Пример подключения для импульсного/частотного выхода (пассивного)

- 1 Система автоматизации с импульсным/частотным входом (например, ПЛК)
- 2 Источник питания
- 3 Преобразователь: соблюдайте требования к входным значениям


Релейный выход

A0029760

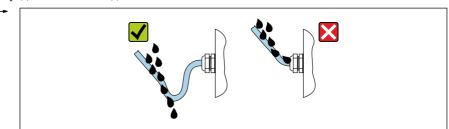
- 🗷 18 Пример подключения для релейного выхода (пассивного)
- 1 Система автоматизации с релейным входом (например, ПЛК)
- 2 Источник питания
- 3 Преобразователь: соблюдайте требования к входным значениям

Входной сигнал состояния

A0028764

🗷 19 Пример подключения для входного сигнала состояния

- 1 Система автоматизации с выходом для сигнала состояния (например, ПЛК)
- 2 Источник питания
- 3 Преобразователь


5.6 Обеспечение необходимой степени защиты

5.6.1 Степень защиты IP66/67, тип изоляции 4X

Измерительный прибор соответствует всем требованиям по степени защиты IP66/67, тип изоляции 4X.

Для гарантированного обеспечения степени защиты IP66/67 (тип изоляции 4X) после электрического подключения выполните следующие действия.

- 1. Убедитесь в том, что все уплотнения очищены и установлены должным образом. При необходимости просушите, очистите или замените уплотнения.
- 2. Затяните все винты на корпусе и прикрутите крышки.
- 3. Плотно затяните кабельные сальники.
- 4. Во избежание проникновения влаги через кабельный ввод следует проложить кабель так, чтобы он образовал обращенную вниз петлю («водяную ловушку») перед кабельным вводом.

A0029278

5. Вставьте заглушки (соответствующие необходимой степени защиты корпуса) в неиспользуемые кабельные вводы.

УВЕДОМЛЕНИЕ

Стандартные заглушки, используемые для транспортировки, не обеспечивают должной степени защиты и их использование может привести к повреждению прибора!

▶ Используйте заглушки, обеспечивающие требуемую степень защиты.

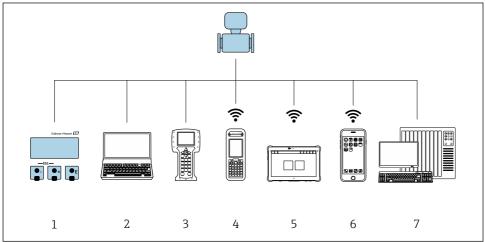
5.6.2 Степень защиты IP68, тип изоляции 6Р, с пользовательской герметизацией

В зависимости от исполнения датчик соответствует всем требованиям степени защиты IP68, корпус типа 6P и может использоваться в качестве прибора в раздельном исполнении .

В то же время преобразователь имеет степень защиты IP66/67, тип изоляции 4X. Это необходимо учитывать при его использовании $\rightarrow \blacksquare 39$.

Для гарантированного обеспечения степени защиты IP68 (тип оболочки 6Р) для опций позиции «Заполнение компаундом силами заказчика» после электрического подключения выполните следующие действия.

- 1. Тщательно затяните кабельные сальники (момент затяжки: от 2 до 3,5 Н·м) до исчезновения зазора между дном крышки и опорной поверхностью корпуса.
- 2. Плотно затяните соединительную гайку на кабельном сальнике.
- 3. Выполните герметизацию полевого корпуса с помощью заливки компаундом.
- 4. Убедитесь в том, что все уплотнения очищены и установлены должным образом. При необходимости просушите, очистите или замените уплотнения.
- 5. Затяните все винты на корпусе и прикрутите крышки (момент затяжки: от 20 до 30 H·м).


5.7 Проверка после подключения

Измерительный прибор или кабели не повреждены (внешний осмотр)?	
Используемые кабели соответствуют требованиям → 🖺 20?	
Кабели уложены надлежащим образом (без натяжения)?	
Все кабельные уплотнения установлены, плотно затянуты и герметичны? Кабель проложен с петлей для обеспечения водоотвода → 🖺 39?	
Только для раздельного исполнения: датчик подключен к правильному преобразователю? Проверьте серийный номер на заводской табличке датчика и преобразователя.	
Сетевое напряжение соответствует техническим требованиям, указанным на заводской табличке преобразователя ?	
Правильно ли выполнено подключение к клеммам → 🖺 21?	
При наличии питания: отображаются ли значения на дисплее?	
Правильно ли выполнен контур выравнивания потенциалов ?	
Все ли крышки корпуса установлены? Все ли винты затянуты с соответствующим моментом затяжки?	

Pacxодомер Proline 400

6 Опции управления

6.1 Обзор методов управления

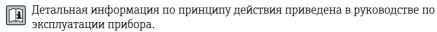

A0046477

- 1 Локальное управление посредством дисплея
- 2 Компьютер с веб-браузером (например, Internet Explorer) или с установленной управляющей программой (например, FieldCare, DeviceCare, AMS Device Manager, SIMATIC PDM)
- 3 Field Communicator 475
- 4 Field Xpert SFX350 или SFX370
- 5 Field Xpert SMT70
- 6 Мобильный портативный терминал
- 7 Система управления (например, ПЛК)

В сфере коммерческого учета управление прибором после его ввода в работу или опломбирования ограничивается.

6.2 Структура и функции меню управления

6.2.1 Структура меню управления



A0014058-RU

🗷 20 Схематичная структура меню управления

6.2.2 Принципы управления

Некоторые части меню присвоены определенным ролям пользователей (оператор, специалист по обслуживанию и т.д.). Каждая роль пользователя соответствует стандартным задачам в рамках жизненного цикла прибора.

Если прибор используется в коммерческом учете, то после того как он будет введен в процесс или опломбирован, управление им ограничивается.

6.3 Доступ к меню управления посредством веб-браузера

6.3.1 Совокупность функций

Благодаря встроенному веб-серверу прибор можно эксплуатировать и настраивать посредством веб-браузера и сервисного интерфейса (CDI-RJ45) или через интерфейс WLAN. Структура меню управления идентична структуре меню локального дисплея. Помимо значений измеряемой величины, отображается информация о состоянии прибора, что позволяет отслеживать его состояние. Кроме того, доступно управление данными прибора и настройка сетевых параметров.

Для подключения к сети WLAN необходим прибор с интерфейсом WLAN (можно заказать дополнительно): код заказа «Дисплей», опция BA «WLAN». Этот прибор работает в режиме точки доступа и поддерживает подключение с помощью компьютера или портативного терминала.

Дополнительные сведения о веб-сервере см. в сопроводительной документации к прибору.

6.3.2 Предварительные условия

Аппаратные средства ПК

Аппаратные средства	Интерфейс	
	CDI-RJ45	WLAN
Интерфейс	Компьютер должен иметь интерфейс RJ45.	Блок управления должен иметь интерфейс WLAN.
Подключение	Стандартный соединительный кабель Ethernet с разъемом RJ45.	Подключение по беспроводной локальной сети.
Экран	Рекомендуемый размер: ≥12" (в зависимости от разрешения дисплея)	

Программное обеспечение ПК

Программное обеспечение	Интерфейс	
	CDI-RJ45	WLAN
Рекомендуемые операционные системы	 Microsoft Windows 8 или новее. Мобильные операционные системы: iOS Android Поддерживается Microsoft Window Поддерживается Microsoft Window 	
Поддерживаемые веб-браузеры	Microsoft Internet Explorer 8 или новес Microsoft Edge Mozilla Firefox Google Chrome Safari	

Настройки ПК

Настройки	Интерфейс	
	CDI-RJ45	WLAN
Права пользователя	Необходимо наличие прав пользователя, позволяющих настраивать параметры TCP/IP и прокси-сервера (для установки IP-адреса, маски подсети и т.д.) – например, прав администратора.	
Настройка прокси-сервера в параметрах веб-браузера	Параметр веб-браузера Use a Proxy Server for Your LAN (Использовать прокси-сервер для локальных подключений) должен быть деактивирован .	
JavaScript	Поддержка JavaScript должна быть активирована. Если активировать JavaScript невозможно: в адресной строке веб-браузера введите http://192.168.1.212/ basic.html. В веб-браузере будет запущено полнофункциональное, но при этом упрощенное меню управления.	
Сетевые соединения	При подключении к измерительному прибору должны использоваться только активные сетевые соединения.	
	Все остальные сетевые соединения, такие как WLAN, необходимо деактивировать.	Все остальные сетевые соединения необходимо деактивировать.

В случае проблем с подключением:

Измерительный прибор: через сервисный интерфейс CDI-RJ45

Прибор	Сервисный интерфейс CDI-RJ45
Измерительный прибор	Измерительный прибор имеет интерфейс RJ45.
Веб-сервер	Веб-сервер должен быть активирован, заводская настройка: ВКЛ.

Измерительный прибор: через интерфейс WLAN

Прибор	Интерфейс WLAN
Измерительный прибор	Измерительный прибор имеет антенну WLAN: Преобразователь со встроенной антенной WLAN
Веб-сервер	Веб-сервер и сеть WLAN должны быть активированы, заводская настройка: ВКЛ.

6.3.3 Установление подключения

Через сервисный интерфейс (CDI-RJ45)

Подготовка измерительного прибора

Настройка интернет-протокола на компьютере

Ниже приведены настройки Ethernet, установленные на приборе по умолчанию.

ІР-адрес прибора: 192.168.1.212 (заводская установка)

- 1. Включите измерительный прибор.
- 2. Подключите его к ПК кабелем .
- 3. Если не используется второй сетевой адаптер, закройте все приложения на портативном компьютере.
 - □ Приложения, требующие наличия сетевого соединения или доступа в интернет, такие как электронная почта, приложения SAP, Internet Explorer или Проводник.
- 4. Закройте все запущенные интернет-браузеры.
- 5. Настройте параметры интернет-протокола (TCP/IP) согласно таблице:

ІР-адрес	192.168.1.XXX, где XXX – любое сочетание цифр кроме 0, 212, 255 и выше → например, 192.168.1.213
Маска подсети	255.255.255.0
Шлюз по умолчанию	192.168.1.212 или оставьте ячейки пустыми

Через интерфейс WLAN

Настройка интернет-протокола на мобильном терминале

УВЕДОМЛЕНИЕ

Если WLAN-соединение будет потеряно во время настройки прибора, параметры настройки могут быть потеряны.

▶ При настройке прибора обеспечивайте стабильность WLAN-соединения.

УВЕДОМЛЕНИЕ

В частности, не допускайте одновременного обращения к измерительному прибору через служебный интерфейс (CDI-RJ45) и интерфейс WLAN с одного и того же мобильного терминала. Это может привести к сетевому конфликту.

- ► Активируйте только один служебный интерфейс (служебный интерфейс CDI-RJ45 или интерфейс WLAN).
- ► Если необходимо одновременное подключение: настройте два разных диапазона IPадресов, например 192.168.0.1 (интерфейс WLAN) и 192.168.1.212 (служебный интерфейс CDI-RJ45).

Подготовка мобильного терминала

• Активируйте WLAN-соединение на мобильном терминале.

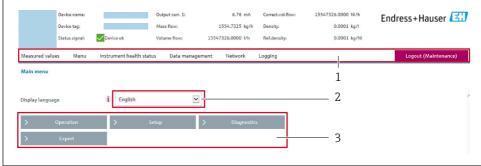
Установление соединения между мобильным терминалом и измерительным прибором

- 1. В настройках соединения WLAN на мобильном терминале:
 Выберите измерительный прибор с помощью идентификатора SSID (например, EH Promag A802000).
- 2. При необходимости выберите метод шифрования WPA2.

- 3. Введите пароль: серийный номер измерительного прибора (пример: L100A802000).
 - └─ Светодиод на модуле дисплея мигает: можно управлять измерительным прибором через веб-браузер, ПО FieldCare или DeviceCare.
- 🎦 Серийный номер указан на заводской шильде.
- Для безопасной и быстрой привязки сети WLAN к точке измерения рекомендуется изменить имя SSID. Существует возможность явно закрепить имя SSID за точкой измерения (например, ее обозначение) так, как оно отображается для сети WLAN.

Отключение

После конфигурирования прибора:
 Разъедините WLAN-соединение между устройством управления и измерительным прибором.


Запуск веб-браузера

- 1. Запустите веб-браузер на компьютере.
- Если страница входа в систему не появляется или появляется не полностью, обратитесь к специальной документации по веб-серверу

6.3.4 Вход в систему

Код доступа	0000 (заводская настройка); может быть изменена заказчиком
-------------	--

6.3.5 Пользовательский интерфейс

A0029418

- 1 Панель функций
- 2 Язык отображения для локального дисплея
- 3 Область навигации

Заголовок

В заголовке отображается следующая информация:

- Имя прибора;
- Отметка прибора ;
- Состояние прибора с сигналом состояния ;
- Текущие значения измеряемых величин.

Панель функций

Функции	Значение
Измеренные значения	Отображение значений, измеренных прибором
Меню	 Вход в меню управления с измерительного прибора Структура меню управления для локального дисплея Подробная информация о структуре меню управления приведена в руководстве по эксплуатации измерительного прибора
Состояние прибора	Отображение текущих диагностических сообщений в порядке приоритета
Управление данными	Обмен данными между ПК и измерительным прибором: Конфигурация прибора: загрузите настройки из системы прибора (формат ХМL, сохранение конфигурации); сохраните настройки в системе прибора (формат ХМL, восстановление конфигурации) Журнал событий – экспорт журнала событий (файл .csv) Документы – экспорт документов: экспорт записи резервных данных (файл .csv, создание документации по конфигурации точки измерения); отчет о проверке (файл PDF, доступно только при наличии пакета прикладных программ Heartbeat Verification)
Конфигурация сети	Настройка и проверка всех параметров, необходимых для установления соединения с измерительным прибором: сетевые параметры (такие как IP-адрес, MAC-адрес); информация о приборе (например, серийный номер, версия программного обеспечения)
Выход из системы	Завершение работы и возврат к странице входа в систему

Область навигации

Если выбрать функцию на панели функций, в области навигации появятся подменю этой функции. После этого можно выполнять навигацию по структуре меню.

Рабочая область

В зависимости от выбранной функции и соответствующих подменю в этой области можно выполнять различные действия, такие как:

- Настройка параметров
- Чтение измеренных значений
- Вызов справки
- Запуск выгрузки/загрузки

6.3.6 Деактивация веб-сервера

Веб-сервер измерительного прибора можно активировать и деактивировать по необходимости с помощью параметра параметр **Функциональность веб-сервера**.

Навигация

Меню "Эксперт" → Связь → Веб-сервер

Обзор и краткое описание параметров

Параметр	Описание	Выбор
Функциональность веб-сервера	Активация и деактивация веб- сервера.	ВыключеноВключено

Функции меню параметр "Функциональность веб-сервера"

Опция	Описание
Выключено	Веб-сервер полностью выключен.Порт 80 блокирован.
Включено	 Все функции веб-сервера полностью доступны. Используется JavaScript. Пароль передается в зашифрованном виде. Любое изменение пароля также передается в зашифрованном виде.

Активация веб-сервера

Если веб-сервер деактивирован, то его можно активировать только с помощью параметра параметр **Функциональность веб-сервера** и с использованием следующих способов управления:

- Посредством локального дисплея
- С помощью управляющей программы "FieldCare"
- С помощью управляющей программы "DeviceCare"

6.3.7 Выход из системы

- Перед выходом из системы при необходимости выполните резервное копирование данных с помощью функции **Управление данными** (выполнив выгрузку конфигурации из прибора).
- 1. На панели функций выберите пункт Выход из системы.
 - ▶ Появится начальная страница с полем входа в систему.

- 2. Закройте веб-браузер.
- 3. Если больше не требуется: Выполните сброс измененных параметров интернет-протокола (TCP/IP) → 🖺 45.

6.4 Доступ к меню управления посредством управляющей программы

Подробные сведения о доступе посредством ПО FieldCare и DeviceCare см. в руководстве по эксплуатации прибора $\Rightarrow riangleq 3$.

7 Системная интеграция

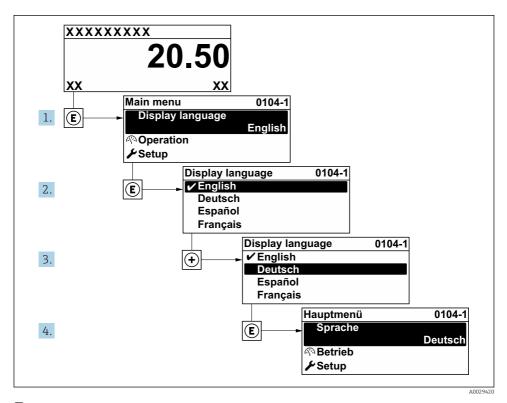
Подробные сведения о системной интеграции см. в руководстве по эксплуатации прибора → 🖺 3.

- Обзор файлов описания прибора:
 - данные текущей версии прибора;
 - управляющие программы.
- Измеряемые переменные, передача которых осуществляется по протоколу HART.
- Функциональность пакетного режима в соответствии со спецификацией НАRT 7.

8 Ввод в эксплуатацию

8.1 Функциональная проверка

Перед вводом измерительного прибора в эксплуатацию


- ▶ Убедитесь, что после монтажа и подключения были выполнены проверки.
- Контрольный список «Проверка после монтажа» → 19

8.2 Включение измерительного прибора

- ▶ После успешного завершения проверки функционирования включите измерительный прибор.
 - □ После успешного запуска местный дисплей автоматически переключается из режима запуска в рабочий режим.
- Если на локальном дисплее ничего не отображается или отображается диагностическое сообщение, обратитесь к руководству по эксплуатации прибора → В 3

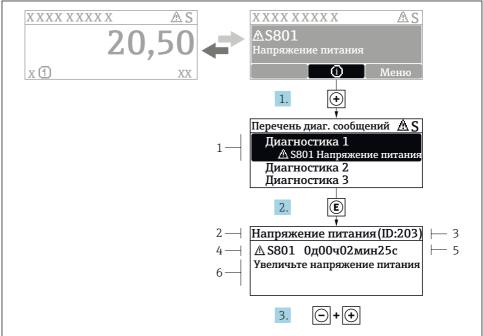
8.3 Установка языка управления

Заводская настройка: английский или региональный язык по заказу

🛮 21 Пример индикации на локальном дисплее

8.4 Настройка измерительного прибора

Меню меню **Настройка** с соответствующими подменю используется для быстрого ввода в эксплуатацию измерительного прибора. Подменю содержат все параметры, необходимые для настройки, например параметры измерения или связи.



Подменю	Настройка
System	Отображение данных, диагностические настройки, администрирование
Sensor	Измеренные значения, системные единицы измерения, параметры технологического процесса, внешняя компенсация, регулировка датчика, калибровка
Input	Вход сигнала состояния

Подменю	Настройка
Output	Токовый выход, импульсный/частотный/релейный выход
Communication	Вход HART, выход HART, веб-сервер, конфигурация диагностики, настройки WLAN
Application	Сумматор, режим коммерческого учета
Диагностика	Диагностический список, журнал событий, информация о приборе, моделирование

9 Диагностическая информация

Неисправности, обнаруженные автоматической системой мониторинга измерительного прибора, отображаются в виде диагностических сообщений, чередующихся с индикацией рабочих параметров. Сообщение о способах устранения неисправности можно вызвать из диагностических сообщений. Оно будет содержать важную информацию о неисправности.

A0029431-RI

🗷 22 Сообщение с описанием мер по устранению ошибок

- 1 Диагностическая информация
- 2 Краткое описание
- 3 Идентификатор обслуживания
- 4 Поведение диагностики с кодом неисправности
- 5 Время события
- 6 Меры по устранению ошибок
- 1. Пользователь просматривает диагностическое сообщение. Нажмите \pm (символ \oplus).
 - **→** Открывается подменю **Перечень сообщений диагностики**.
- **2.** Выберите требуемое диагностическое событие кнопками \pm или \Box и нажмите кнопку \blacksquare .
 - 🕒 Сообщение с описанием мер по устранению ошибок будет открыто.

- 3. Нажмите = + ± одновременно.
 - └ Сообщение с описанием мер по устранению ошибок будет закрыто.

www.addresses.endress.com