Brief Operating Instructions
Deltabar M PMD55

Differential pressure measurement
HART
Differential pressure transmitter with metallic measuring cell

These Brief Operating Instructions are not a substitute for the Operating Instructions pertaining to the device.
Detailed information about the device can be found in the Operating Instructions and the additional documentation.
Available for all device versions via
- Internet: www.endress.com/deviceviewer
- Smartphone/tablet: Endress+Hauser Operations app
1 Associated documentation

1. **Order code:** XXXXXXXX
2. **Ext. ord. cd.:** XXXXXXXX
3. **Ser. no.:** XXXXXXXX

![Diagram showing the associated documentation](image)

Serial number

2.1 Document function

The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning.
2.2 Symbols used

2.2.1 Safety symbols

[DANGER]
This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

[WARNING]
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

[CAUTION]
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

[NOTICE]
This symbol contains information on procedures and other facts which do not result in personal injury.

2.2.2 Electrical symbols

[Protective earth (PE)]
Ground terminals that must be connected to ground prior to establishing any other connections.

The ground terminals are located on the interior and exterior of the device:
- Interior ground terminal: protective earth is connected to the mains supply.
- Exterior ground terminal: device is connected to the plant grounding system.

2.2.3 Symbols for certain types of information and graphics

Symbols for certain types of information and graphics

[Permitted]
Procedures, processes or actions that are permitted

[Forbidden]
Procedures, processes or actions that are forbidden

[Tip]
Indicates additional information

[Reference to documentation]
Reference to page

[Visual inspection]
Notice or individual step to be observed
3.2 Intended use
The Deltabar M is a differential pressure transmitter for measuring differential pressure, flow and level.

3.2.1 Foreseeable incorrect use
The manufacturer is not liable for damage caused by improper or non-intended use.

Verification for borderline cases:
» For special fluids and fluids for cleaning, Endress+Hauser is glad to provide assistance in verifying the corrosion resistance of fluid-wetted materials, but does not accept any warranty or liability.

3.3 Workplace safety
For work on and with the device:
» Wear the required personal protective equipment according to federal/national regulations.
» Switch off the supply voltage before connecting the device.
3.4 Operational safety

Risk of injury!

- Operate the device in proper technical condition and fail-safe condition only.
- The operator is responsible for interference-free operation of the device.

Conversions to the device

Unauthorized modifications to the device are not permitted and can lead to unforeseeable dangers:

- If, despite this, modifications are required, consult with Endress+Hauser.

Repair

To ensure continued operational safety and reliability:

- Carry out repairs on the device only if they are expressly permitted.
- Observe federal/national regulations pertaining to repair of an electrical device.
- Use original spare parts and accessories from Endress+Hauser only.

Hazardous area

To eliminate a danger for persons or for the facility when the device is used in the hazardous area (e.g. explosion protection, pressure vessel safety):

- Based on the nameplate, check whether the ordered device is permitted for the intended use in the hazardous area.
- Observe the specifications in the separate supplementary documentation that is an integral part of these Instructions.

3.5 Product safety

This measuring device is designed in accordance with good engineering practice to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which they are safe to operate.

It fulfills general safety requirements and legal requirements. It also conforms to the EC directives listed in the device-specific EC declaration of conformity. Endress+Hauser confirms this fact by applying the CE mark.
4 Incoming acceptance and product identification

4.1 Incoming acceptance

- Is the order code on the delivery note (1) identical to the order code on the product sticker (2)?
- Are the goods undamaged?
- Do the data on the nameplate correspond to the order specifications and the delivery note?
- Is the documentation available?
- If required (see nameplate): Are the safety instructions (XA) present?

If one of these conditions is not fulfilled, please contact your Endress+Hauser sales office.

4.2 Storage and transport

4.2.1 Storage conditions

Use original packaging.

Store the measuring device in clean and dry conditions and protect from damage caused by shocks (EN 837-2).

4.2.2 Transporting the product to the measuring point

WARNING

Incorrect transport!

Housing and membrane may become damaged, and there is a risk of injury!

- Transport the measuring device to the measuring point in its original packaging or by the process connection.
- Follow the safety instructions and transport conditions for devices weighing more than 18 kg (39.6 lbs).
5 Mounting

5.1 Mounting requirements

5.2 Installing the

NOTICE
Incorrect handling!
Damage of the device!
- Disassembly of the screws with item number (1) is not permissible under any circumstances and will result in loss of warranty.

5.2.1 Orientation
- Due to the orientation of the Deltabar M, there may be a shift in the measured value, i.e. when the container is empty, the measured value does not display zero. You may correct this zero point shift by a position adjustment in one of the following ways:
 - Via the keys on the electronics module (→ 18, "Function of the operating elements")
 - Via the operating menu ("Position adjustment")
 - Refer to the relevant national or international standards for general recommendations on laying the piping.
- Using a three-valve or five-valve manifold allows for easy commissioning, installation and maintenance without interrupting the process.
- When routing the impulse piping outdoors, ensure that sufficient anti-freeze protection is used, e.g. by using pipe heat tracing.
- Lay the piping with a monotonic gradient of at least 10 %.
- Endress+Hauser offers a mounting bracket for mounting on pipes or walls ("Wall and pipe mounting (optional)").

Installation position for flow measurement

Flow measurement in gases
Mount the Deltabar M above the measuring point so that the condensate which may be present, can run off into the process piping.
Mounting

Flow measurement in vapors
- Mount the Deltabar M below the measuring point.
- Mount the condensate traps at the same level as the tapping points and at the same distance to the Deltabar M.
- Prior to commissioning, fill the impulse piping to the height of the condensate traps.

Flow measurement in liquids
- Mount the Deltabar M below the measuring point so that the impulse piping is always filled with liquid and gas bubbles can run back into the process piping.
- When measuring in media with solid parts, such as dirty liquids, installing separators and drain valves is useful for capturing and removing sediment.

Installation position for level measurement

Level measurement in an open container
- Mount the Deltabar M below the lower measuring connection so that the impulse piping is always filled with liquid.
- The low-pressure side is open to atmospheric pressure.
- When measuring in media with solid parts, such as dirty liquids, installing separators and drain valves is useful for capturing and removing sediment.

Level measurement in a closed container
- Mount the Deltabar M below the lower measuring connection so that the impulse piping is always filled with liquid.
- Always connect the low-pressure side above the maximum level.
- When measuring in media with solid parts, such as dirty liquids, installing separators and drain valves is useful for capturing and removing sediment.

Level measurement in a closed container with superimposed steam
- Mount the Deltabar M below the lower measuring connection so that the impulse piping is always filled with liquid.
- Always connect the low-pressure side above the maximum level.
- A condensate trap ensures constant pressure on the low-pressure side.
- When measuring in media with solid parts, such as dirty liquids, installing separators and drain valves is useful for capturing and removing sediment.

Installation position for differential pressure measurement

Differential pressure measurement in gases and vapors
- Mount the Deltabar M above the measuring point so that the condensate which may be present, can run off into the process piping.
- The low-pressure side is open to atmospheric pressure.
- When measuring in media with solid parts, such as dirty liquids, installing separators and drain valves is useful for capturing and removing sediment.
Differential pressure measurement in liquids

- Mount the Deltabar M below the measuring point so that the impulse piping is always filled with liquid and gas bubbles can run back into the process piping.
- When measuring in media with solid parts, such as dirty liquids, installing separators and drain valves is useful for capturing and removing sediment.

5.2.2 Wall and pipe-mounting

Endress+Hauser offers the following mounting brackets for installing the device on pipes or walls:

<table>
<thead>
<tr>
<th>Standard design</th>
<th>Heavy-duty version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The standard mounting bracket version is not suitable for use in an application subject to vibrations.

The vibration resistance of the heavy-duty version of the mounting bracket has been tested according to IEC 61298-3, see the "Vibration resistance" section in the Technical Information.

When using a valve block, the block's dimensions must be taken into account.

Bracket for wall and pipe mounting including retaining bracket for pipe mounting and two nuts.

Technical data (e.g. dimensions or order numbers for screws) see accessory document SD01553P/00/EN.
Please note the following when mounting:

- To prevent the mounting screws from scoring, lubricate them with a multi-purpose grease prior to mounting.
- In the case of pipe mounting, the nuts on the bracket must be tightened uniformly with a torque of at least 30 Nm (22.13 lbf ft).
- For installation purposes, only use the screws with item number (2) (see the following diagram).

NOTICE

Incorrect handling!
Damage of the device!
- Disassembly of the screws with item number (1) is not permissible under any circumstances and will result in loss of warranty.
Typical installation arrangements

A Impulse line vertical, version V1, alignment 90°
B Impulse line horizontal, version H1, alignment 180°
C Impulse line horizontal, version H2, alignment 90°
1 Deltabar M
2 Adapter plate
3 Mounting bracket
4 Pressure line
6 Electrical connection

6.1 Connecting requirements

6.1.1 Shielding/potential equalization

- A shielded cable is recommended if using the HART protocol. Observe grounding concept of the plant.
- When using in hazardous areas, you must observe the applicable regulations. Separate Ex documentation with additional technical data and instructions is included with all Ex systems as standard. Connect all devices to the local potential equalization.

6.2 Connecting the device

WARNING

Supply voltage might be connected!
Risk of electric shock and/or explosion!

- Ensure that no uncontrolled processes are activated at the facility.
- Switch off the supply voltage before connecting the device.
- When using the measuring device in hazardous areas, installation must also comply with the applicable national standards and regulations and the Safety Instructions or Installation or Control Drawings.
- In accordance with IEC/EN61010 a suitable circuit breaker must be provided for the device.
- Devices with integrated overvoltage protection must be grounded.
- Protective circuits against reverse polarity, HF influences and overvoltage peaks are integrated.

Connect the device in the following order:

1. Check whether the supply voltage matches the supply voltage indicated on the nameplate.
2. Switch off the supply voltage before connecting the device.
3. Remove the housing cover.
5. Connect the device as indicated in the following diagram.
6. Screw down the housing cover.
7. Switch on the supply voltage.
1 External ground terminal
2 Grounding terminal
3 Supply voltage: 11.5 ... 45 VDC (versions with plug connectors: 35 V DC)
4 4...20 mA
5 Terminals for supply voltage and signal
6 Test terminals
6.2.1 Connecting devices with Harting plug Han7D

A Electrical connection for devices with Harting plug Han7D
B View of the connection on the device
- Brown
\(\pm\) Green/yellow
+ Blue

6.2.2 Connection of devices with M12 plug

1 Signal +
2 Not assigned
3 Signal –
4 Ground
6.2.3 Connection of devices with 7/8" plug

1. Signal -
2. Signal +
3. Shielding
4. Not assigned

6.2.4 Devices with valve connector

1. BN = brown, BU = blue, GNYE = green

A. Electrical connection for devices with valve connector

B. View of the plug connector at the device

6.2.5 Supply voltage

4 to 20 mA HART

<table>
<thead>
<tr>
<th>Type of protection</th>
<th>Supply voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsically safe</td>
<td>11.5 to 30 V DC</td>
</tr>
<tr>
<td>Other types of protection</td>
<td>11.5 to 45 V DC</td>
</tr>
<tr>
<td>Devices without a certificate</td>
<td>(Versions with 35 V DC plug-in connector)</td>
</tr>
</tbody>
</table>
Measuring a 4 to 20 mA test signal
A 4 to 20 mA test signal may be measured via the test terminals without interrupting the measurement.

6.2.6 Terminals
- Supply voltage and internal ground terminal: 0.5 to 2.5 mm² (20 to 14 AWG)
- External ground terminal: 0.5 to 4 mm² (20 to 12 AWG)

6.2.7 Cable specification

HART
- Endress+Hauser recommends using twisted, shielded two-wire cables.
- Cable outer diameter: 5 to 9 mm (0.2 to 0.35 in) depending on the cable gland used

6.2.8 Load - 4 to 20 mA HART

\[
R_{L\text{max}} \leq \frac{U - 11.5\ V}{23\ mA}
\]

1. Power supply 11.5 to 30 V DC for intrinsically safe device versions
2. Supply voltage 11.5 to 45 V DC (versions with plug-in connector 35 V DC) for other types of protection and for uncertified device versions
3. \(R_{L\text{max}}\) maximum load resistance
4. \(U\) Supply voltage

When operating via a handheld terminal or via a PC with an operating program, a minimum communication resistance of 250 Ω must be taken into account.
7 Operation options

7.1 Operation without an operating menu

<table>
<thead>
<tr>
<th>Operation options</th>
<th>Explanation</th>
<th>Graphic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local operation without device display</td>
<td>The device is operated using the operating keys and the DIP switches on the electronic insert.</td>
<td></td>
<td>→ 17</td>
</tr>
</tbody>
</table>

7.1.1 Position of operating elements

The operating key and DIP switches are located on the electronic insert in the device.

HART

1 Operating keys for lower range value (zero) and upper range value (span)
2 Green LED to indicate successful operation
3 Slot for optional local display
4 "SW/P2-High"; used to determine the high-pressure side
5 "SW/Square root"; used to control the output characteristics
6 DIP switch for alarm current SW / Alarm Min (3.6 mA)
7 DIP switch for switching damping on/off
8 DIP switch for locking/unlocking parameters relevant to the measured value
Function of the DIP switches

<table>
<thead>
<tr>
<th>Symbol/labeling</th>
<th>Switch position</th>
<th>"off"</th>
<th>"on"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"off"</td>
<td>"on"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The device is unlocked. Parameters relevant to the measured value can be modified.</td>
<td>The device is locked. Parameters relevant to the measured value cannot be modified.</td>
<td></td>
</tr>
<tr>
<td>damping τ</td>
<td>Damping is switched off. The output signal follows measured value changes without any delay.</td>
<td>Damping is switched on. The output signal follows measured value changes with the delay time τ.</td>
<td></td>
</tr>
<tr>
<td>SW/Alarm min</td>
<td>The alarm current is defined via the setting in the operating menu. ("Setup" → "Extended setup" → "Curr. output" → "Output fail mode")</td>
<td>The alarm current is 3.6 mA (min), regardless of the setting in the operating menu.</td>
<td></td>
</tr>
<tr>
<td>SW/$\sqrt{}$</td>
<td>The measuring mode and output characteristics is defined by the setting in the operating menu. * "Setup" → "Measuring mode" * "Setup" → "Extended setup" → "Current output" → "Linear/Square root"</td>
<td>The measuring mode is "Flow" and the output characteristic is "Square root" regardless of the setting in the operating menu.</td>
<td></td>
</tr>
<tr>
<td>SW/P2= High</td>
<td>The high-pressure (+/HP) side is defined by the setting in the operating menu. ("Setup" → "High Press. Side")</td>
<td>The high-pressure side (+/HP) is allocated to the P2 pressure connection regardless of the setting in the operating menu.</td>
<td></td>
</tr>
</tbody>
</table>

1) The value for the delay time can be configured via the operating menu ("Setup" → "Damping"). Factory setting: $\tau = 2$ s or as per order specifications.

Function of the operating elements

<table>
<thead>
<tr>
<th>Operating key(s)</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| Zero pressed for at least 3 seconds | Get LRV
 * "Pressure" measuring mode
The pressure present is accepted as the lower range value (LRV).
 * "Level" measuring mode, "In pressure" level selection, "Wet" calibration mode
The pressure present is assigned to the lower level value ("Empty calibration").
 No function is assigned to the key if level selection = "In height" and/or calibration mode = "Dry".
* "Flow" measuring mode
 No function is assigned to the Zero key |
| Span pressed for at least 3 seconds | Get URV
 * "Pressure" measuring mode
The pressure present is accepted as the upper range value (URV).
 * "Level" measuring mode, "In pressure" level selection, "Wet" calibration mode
The pressure present is assigned to the upper level value ("Full calibration").
 No function is assigned to the key if level selection = "In height" and/or calibration mode = "Dry".
* "Flow" measuring mode
The pressure present is accepted as the maximum pressure ("Max. pressure flow") and allocated to the maximum flow ("max. flow"). |
Operation options

<table>
<thead>
<tr>
<th>Operating key(s)</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero and Span pressed simultaneously for at least 3 seconds</td>
<td>Position adjustment
The sensor characteristic is shifted in parallel so that the pressure present becomes the zero value.</td>
</tr>
<tr>
<td>Zero and Span pressed simultaneously for at least 12 seconds</td>
<td>Reset
All the parameters are reset to the order configuration.</td>
</tr>
</tbody>
</table>

7.2 Operation with device display (optional)

A 4-line liquid crystal display (LCD) is used for display and operation. The local display shows measured values, dialog texts, fault messages and notice messages. For easy operation the display can be taken out of the housing (see figure steps 1 to 3). It is connected to the device via a cable that is 90 mm (3.54 in) long. The display of the device can be turned in 90° stages (see figure steps 4 to 6). Depending on the installation position of the device, this makes it easy to operate the device and read the measured values.

![Images of device display steps](A0028500)

Functions:
- 8-digit measured value display incl. sign and decimal point, bargraph for 4 to 20 mA HART as current display.
- Three keys for operation
- Simple and complete menu guidance due to breakdown of parameters into several levels and groups
- Each parameter is given a 3-digit parameter code for easy navigation
- Possibility of configuring the display to suit individual requirements and preferences, e.g. language, alternating display, display of other measured values such as sensor temperature, contrast setting
- Comprehensive diagnostic functions (fault and warning message etc.)

The following table illustrates the symbols that can appear on the local display. Four symbols may appear at the same time.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lock symbol
The operation of the device is locked. Unlock the device.</td>
</tr>
<tr>
<td></td>
<td>Communication symbol
Data transfer via communication</td>
</tr>
<tr>
<td></td>
<td>Root symbol
Active measuring mode "Flow measurement"
The root flow signal is used for the current output.</td>
</tr>
<tr>
<td></td>
<td>Error message "Out of specification"
The device is being operated outside its technical specifications (e.g. during startup or cleaning).</td>
</tr>
<tr>
<td></td>
<td>Error message "Service mode"
The device is in the service mode (e.g. during a simulation).</td>
</tr>
</tbody>
</table>
7.2.1 Operating keys on the display and operating module

<table>
<thead>
<tr>
<th>Operating key(s)</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| + | - Navigate down in the picklist
| | - Edit the numerical values or characters within a function |
| - | - Navigate up in the picklist
| | - Edit the numerical values or characters within a function |
| E | - Confirm entry
| | - Jump to the next item
| | - Select a menu item and activate the edit mode |
| + and E | Contrast setting of local display: darker |
| - and E | Contrast setting of local display: brighter |

ESC functions:

- Exit edit mode for a parameter without saving the changed value
- You are in a menu at a selection level. Each time you press the keys simultaneously, you go up a level in the menu.

7.2.2 Operating example: Parameters with a picklist

Example: selecting "Deutsch" as the language of the menu.

<table>
<thead>
<tr>
<th>Language</th>
<th>000</th>
<th>Operation</th>
</tr>
</thead>
</table>
| 1 | ☑ | English
| | ☑ | Deutsch |
| | "English" is set as the menu language (default value).
| | A ☑ in front of the menu text indicates the option that is currently active. |
| 2 | Deutsch
| | ☑ | English |
| | Select 'Deutsch' with ☐ or ☐. |
| 3 | Deutsch
| | ☑ | English |
| | Select ☐ to confirm. A ☑ in front of the menu text indicates the active option ('Deutsch' is now selected as the menu language).
| | Use ☐ to exit the edit mode for the parameter. |
7.2.3 Operating example: User-definable parameters
Example: Setting the "Set URV (014)" parameter from 100 mbar (1.5 psi) to 50 mbar (0.75 psi).
Menu path: Setup → Extended setup → Current output → Set URV

<table>
<thead>
<tr>
<th>Set URV</th>
<th>014</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 0 0 . 0 0 0 mbar</td>
<td>The local display shows the parameter to be changed. The "mbar" unit is defined in another parameter and cannot be changed here.</td>
</tr>
<tr>
<td>2</td>
<td>1 0 0 . 0 0 0 mbar</td>
<td>Press left or right to enter the edit mode. The first digit is highlighted in black.</td>
</tr>
<tr>
<td>3</td>
<td>5 0 0 . 0 0 0 mbar</td>
<td>Use the left key to change "1" to "5". Press the right key to confirm "5". The cursor jumps to the next position (highlighted in black). Confirm "0" with enter (second position).</td>
</tr>
<tr>
<td>4</td>
<td>5 0 0 . 0 0 0 mbar</td>
<td>The third digit is highlighted in black and can now be edited.</td>
</tr>
<tr>
<td>5</td>
<td>5 0 . 0 0 0 mbar</td>
<td>Use the left key to change to the "" symbol. Use enter to save the new value and exit the edit mode. See next graphic.</td>
</tr>
<tr>
<td>6</td>
<td>5 0 . 0 0 0 mbar</td>
<td>The new value for the upper range value is 50 mbar (0.75 psi). Use enter to exit the edit mode for the parameter. Use left or right to return to the edit mode.</td>
</tr>
</tbody>
</table>

7.2.4 Operating example: Accepting the pressure present
Example: Setting position adjustment.
Menu path: Main menu → Setup → Position adjustment

<table>
<thead>
<tr>
<th>Position adjustment</th>
<th>007</th>
<th>Operation</th>
</tr>
</thead>
</table>
| 1 | ✔ Cancel
 ✔ Confirm | The pressure for position adjustment is present at the device. |
| 2 | Cancel
 ✔ Confirm | Use left or right to switch to the 'Confirm' option. The active option is highlighted in black. |
| 3 | Adjustment has been accepted! | Use the enter key to accept the applied pressure for position adjustment. The device confirms the adjustment and goes back to the 'Position adjustment' parameter. |
8 Commissioning

The device is configured for the "Pressure" measuring mode as standard.
The measuring range and the unit in which the measured value is transmitted correspond to the data on the nameplate.

⚠️ WARNING

The permitted process pressure is exceeded!
Risk of injury if parts burst! Warnings are displayed if the pressure is too high.
- If a pressure smaller than the minimum permitted pressure or greater than the maximum permitted pressure is present at the device, the following messages are output in succession (depending on the setting in the "Alarm behavior" (050) parameter): "S140 Working range P" or "F140 Working range P" "S841 Sensor range" or "F841 Sensor range" "S971 Adjustment"
- Only use the device within the sensor range limits!

⚠️ NOTICE

The permitted process pressure is undershot!
Messages are displayed if the pressure is too low.
- If a pressure smaller than the minimum permitted pressure or greater than the maximum permitted pressure is present at the device, the following messages are output in succession (depending on the setting in the "Alarm behavior" (050) parameter): "S140 Working range P" or "F140 Working range P" "S841 Sensor range" or "F841 Sensor range" "S971 Adjustment"
- Only use the device within the sensor range limits!

8.1 Commissioning with an operating menu

8.1.1 Selecting the language, measuring mode and pressure unit

<table>
<thead>
<tr>
<th>Language (000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Write permission</td>
</tr>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>
Selection

- English
- Another language (as selected when ordering the device)
- A third language where applicable (language of the place of manufacture)

Factory setting

English

Press. eng. unit (125)

Write permission

Operator/Maintenance/Expert

Description

Select the pressure unit. If a new pressure unit is selected, all pressure-specific parameters are converted and displayed with the new unit.

Selection

- mbar, bar
- mmH2O, mH2O
- inH2O, ftH2O
- Pa, kPa, MPa
- psi
- mmHg, inHg
- kgf/cm²

Factory setting

mbar or bar depending on the nominal measuring range of the sensor, or as per order specifications.

8.1.2 Position adjustment

Corrected press. (172)

Navigation

Setup → Corrected press.

Write permission

Operator/Maintenance/Expert

Description

Displays the measured pressure after sensor trim and position adjustment.

Note

If this value is not equal to "0", it can be corrected to "0" by the position adjustment.
Pos. zero adjust (007) (gauge pressure sensors)

Write permission
Operator/Maintenance/Expert

Description
Pos. zero adjustment – the pressure difference between zero (set point) and the measured pressure need not be known.

Example
- Measured value = 2.2 mbar (0.033 psi)
- You correct the measured value via the "Pos. zero adjust" parameter with the "Confirm" option. This means that you are assigning the value 0.0 to the pressure present.
- Measured value (after pos. zero adjustment) = 0.0 mbar
- The current value is also corrected.

Selection
- Confirm
- Cancel

Factory setting
Cancel

Calib. offset (192) / (008) (absolute pressure sensor)

Write permission
Maintenance/Expert

Description
Position adjustment – the pressure difference between the set point and the measured pressure must be known.

Example
- Measured value = 982.2 mbar (14.73 psi)
- You correct the measured value with the value entered, e.g. 2.2 mbar (0.033 psi) via the "Calib. offset" parameter. This means that you are assigning the value to the pressure present 980.0 mbar (14.7 psi).
- Measured value (after pos. zero adjustment) = 980.0 mbar (14.7 psi)
- The current value is also corrected.

Factory setting
0.0
8.2 Configuring pressure measurement

8.2.1 Calibration without reference pressure (dry calibration)

Example:
In this example, a device with a 400 mbar (6 psi) sensor is configured for the 0 to +300 mbar (0 to 4.5 psi) measuring range, i.e. the 4 mA value and 20 mA value are assigned 0 mbar and 300 mbar (4.5 psi) respectively.

Prerequisite:
This is a theoretical calibration, i.e. the pressure values for the lower and upper range are known.

Due to the orientation of the device, there may be pressure shifts in the measured value, i.e. the measured value is not zero in an unpressurized state. For information on how to perform position adjustment, see → 23.

\[
\begin{array}{c}
\text{mA} \\
4 \\
20 \\
\text{mbar} \\
0 \\
300 \\
\end{array}
\]

\[
\begin{array}{c}
\text{mA} \\
A \\
B \\
\text{mbar} \\
\end{array}
\]

A See table, step 3.
B See table, step 4.
Description

1. **Select the “Pressure” measuring mode via the “Measuring mode” parameter.**
 Menu path: Setup → Measuring mode

 WARNING
 Changing the measuring mode affects the span (URV)
 This situation can result in product overflow.
 - If the measuring mode is changed, the setting for the span (URV) must be checked in the "Setup" operating menu and readjusted if necessary.

2. **Select a pressure unit via the “Press. eng. unit” parameter, here "mbar" for example.**
 Menu path: Setup → Press. eng. unit

3. **Select the “Set LRV” parameter.**
 Menu path: Setup → Set LRV

 Enter the value for the "Set LRV" parameter (here 0 mbar) and confirm. This pressure value is assigned to the lower current value (4 mA).

4. **Select the “Set URV” parameter.**
 Menu path: Setup → Set URV

 Enter the value for the "Set URV" parameter (here 300 mbar (4.5 psi)) and confirm. This pressure value is assigned to the upper current value (20 mA).

5. **Result:**
 The measuring range is configured for 0 to +300 mbar (0 to 4.5 psi).

8.2.2 Calibration with reference pressure (wet calibration)

Example:

In this example, a device with a 400 mbar (6 psi) sensor module is configured for the 0 to +300 mbar (0 to 4.5 psi) measuring range, i.e. the 4 mA value and 20 mA value are assigned 0 mbar and 300 mbar (4.5 psi) respectively.

Prerequisite:

The pressure values 0 mbar and 300 mbar (4.5 psi) can be specified. For example, the device is already installed.
Description

1. Perform a position adjustment

2. Select the "Pressure" measuring mode via the "Measuring mode" parameter.
 Menu path: Setup → Measuring mode

 WARNING
 Changing the measuring mode affects the span (URV)
 This situation can result in product overflow.
 ▶ If the measuring mode is changed, the setting for the span (URV) must be checked in the "Setup" operating menu and readjusted if necessary.

3. Select a pressure unit via the "Press. eng. unit" parameter, here "mbar" for example.
 Menu path: Setup → Press. eng. unit

4. The pressure for the LRV (4 mA value) is present at the device, here 0 mbar for example
 Select the "Get LRV" parameter.
 Menu path: Setup → Extended setup → Current output → Get LRV
 Confirm the value present at the device by selecting "Apply". The pressure value present at the device is assigned to the lower current value (4 mA).

5. The pressure for the URV (20 mA value) is present at the device, here 300 mbar (4.5 psi) for example.
 Select the "Get URV" parameter.
 Menu path: Setup → Extended setup → Current output → Get URV
 Confirm the value present at the device by selecting "Apply". The pressure value present at the device is assigned to the upper current value (20 mA).

6. Result:
 The measuring range is configured for 0 to +300 mbar (0 to 4.5 psi).

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Perform a position adjustment</td>
</tr>
<tr>
<td>2. Select the "Pressure" measuring mode via the "Measuring mode" parameter. Menu path: Setup → Measuring mode</td>
</tr>
<tr>
<td>WARNING Changing the measuring mode affects the span (URV) This situation can result in product overflow. ▶ If the measuring mode is changed, the setting for the span (URV) must be checked in the "Setup" operating menu and readjusted if necessary.</td>
</tr>
<tr>
<td>3. Select a pressure unit via the "Press. eng. unit" parameter, here "mbar" for example. Menu path: Setup → Press. eng. unit</td>
</tr>
<tr>
<td>4. The pressure for the LRV (4 mA value) is present at the device, here 0 mbar for example Select the "Get LRV" parameter. Menu path: Setup → Extended setup → Current output → Get LRV Confirm the value present at the device by selecting "Apply". The pressure value present at the device is assigned to the lower current value (4 mA).</td>
</tr>
<tr>
<td>5. The pressure for the URV (20 mA value) is present at the device, here 300 mbar (4.5 psi) for example. Select the "Get URV" parameter. Menu path: Setup → Extended setup → Current output → Get URV Confirm the value present at the device by selecting "Apply". The pressure value present at the device is assigned to the upper current value (20 mA).</td>
</tr>
<tr>
<td>6. Result: The measuring range is configured for 0 to +300 mbar (0 to 4.5 psi).</td>
</tr>
</tbody>
</table>

Diagram:

- **A** See table, step 4.
- **B** See table, step 5.