Technical Information

Oil leak detector NAR300

Oil leak detector equipped with two types of immobile sensors: conductive and tuning fork

Application
This system is designed to be installed in an oil dike pit in a tank or a sump pit near a pump yard, where it can provide the ultimate in leak detection function for petrochemicals or vegetable oils. Sensors with two distinct detection functions, conductive and vibronic, are used to closely monitor conditions. Highly accurate alarm recognition is attained through a two-stage logic process that ensures safe tank yard operation with minimal equipment configuration.

Flame proof system
Using transmitter NRR261 for outdoor installation, it is possible to connect directly to switch input from an existing level transmitter, for example, and send alarm output to a host controller.

Intrinsically safe system
Combining transmitter NRR262 for indoor installation with the sensor I/F Ex box for outdoor installation enables the configuration of an alarm system independent from tank gauging.

Features
- SIL2 certified
- New, proprietary sensors with twin functions provide reliable detection:
 - Conductive sensor: Distinguishes between water and other substances (oil and air)
 - Tuning fork sensor: Distinguishes between air and liquid (oil and water)
- Does not require any special attachments, even for empty pits
- No moving parts, long service life and reduced maintenance costs
- Safe and reliable fail-safe function with alarm output in the event of power failure, frozen pit water, etc.
- Detection mechanism that is not affected by the dielectric constant of the object to be detected as long as the oil is water-insoluble
- Improved for less susceptibility to material deposits
- Ex [ia] structure
Table of contents

<table>
<thead>
<tr>
<th>Document information</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbols used</td>
<td>3</td>
</tr>
<tr>
<td>Documentation</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function and system design</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flame-proof system (integrated type) Ex d [ia] IIB T4</td>
<td>6</td>
</tr>
<tr>
<td>Intrinsically safe system (separate type) Ex ia IIB T4</td>
<td>6</td>
</tr>
<tr>
<td>Flame-proof system (separate type) Ex d [ia] IIB T4</td>
<td>7</td>
</tr>
<tr>
<td>Operating principles</td>
<td>8</td>
</tr>
<tr>
<td>Operating principles of alarm activation</td>
<td>10</td>
</tr>
<tr>
<td>Operating conditions</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input and output</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex d [ia] transmitter NRR261</td>
<td>12</td>
</tr>
<tr>
<td>Ex [ia] transmitter NRR262</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power supply</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float sensor NAR300</td>
<td>13</td>
</tr>
<tr>
<td>Sensor I/F Ex box</td>
<td>13</td>
</tr>
<tr>
<td>Transmitter NRR261</td>
<td>13</td>
</tr>
<tr>
<td>Transmitter NRR262</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical Connection</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure for wiring grounding cables</td>
<td>14</td>
</tr>
<tr>
<td>NRR261-2/4/A/B/C wiring</td>
<td>15</td>
</tr>
<tr>
<td>NRR262-2/4/A/B/C wiring</td>
<td>17</td>
</tr>
<tr>
<td>NRR261-3/5 wiring</td>
<td>19</td>
</tr>
<tr>
<td>Wiring diagram</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Installation</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation conditions</td>
<td>22</td>
</tr>
<tr>
<td>Mounting the NAR300 system</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environment</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection class</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float sensor NAR300</td>
<td>27</td>
</tr>
<tr>
<td>Sensor I/F Ex box / Transmitter NRR261/NRR262</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mechanical construction</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAR300 system dimensions</td>
<td>28</td>
</tr>
<tr>
<td>Weight of the NAR300 system</td>
<td>31</td>
</tr>
<tr>
<td>Detection sensitivity</td>
<td>31</td>
</tr>
<tr>
<td>Wetted material</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Certificates and approvals</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE mark</td>
<td>33</td>
</tr>
<tr>
<td>Ex-approval</td>
<td>33</td>
</tr>
<tr>
<td>Functional safety certification</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order information</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float guide</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accessories</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-bolt/cable gland (waterproof connection)</td>
<td>37</td>
</tr>
</tbody>
</table>
Document information

Symbols used

Safety symbols

⚠️ DANGER
This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

⚠️ WARNING
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

⚠️ CAUTION
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

NOTICE
This symbol contains information on procedures and other facts which do not result in personal injury.

Electrical symbols

∼
Alternating current

∼∼
Direct current and alternating current

∼∼∼
Direct current

=G
Ground connection
A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.

earth (PE)
Ground terminals that must be connected to ground prior to establishing any other connections.
The ground terminals are located on the interior and exterior of the device:
▪ Interior ground terminal: protective earth is connected to the mains supply.
▪ Exterior ground terminal: device is connected to the plant grounding system.

Tool symbols

Phillips head screwdriver

Flat blade screwdriver

Torx screwdriver

Allen key

Open-ended wrench

Symbols for certain types of information and graphics

✔️ Permitted
Procedures, processes or actions that are permitted

✔️ Preferred
Procedures, processes or actions that are preferred

✗ Forbidden
Procedures, processes or actions that are forbidden

Tip
Indicates additional information
Observe the safety instructions contained in the associated Operating Instructions.

Temperature resistance of the connection cables
Specifies the minimum value of the temperature resistance of the connection cables.
Documentation

For an overview of the scope of the associated Technical Documentation, refer to the following:

W@M Device Viewer (www.endress.com/deviceviewer): Enter the serial number from nameplate.

Technical Information (TI)

Planning aid
The document contains all the technical data on the device and provides an overview of the accessories and other products that can be ordered for the device.

Brief Operating Instructions (KA)

Guide that takes you quickly to the 1st measured value
The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning.

Operating Instructions (BA)

The Operating Instructions contain all the information that is required in various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.

Safety Instructions (XA)

Depending on the approval, the following Safety Instructions (XA) are supplied with the device. They are an integral part of the Operating Instructions.

The nameplate indicates the Safety Instructions (XA) that are relevant to the device.
Function and system design

The intrinsically safe Ex ia IIB T4 oil leak detector NAR300 system is available in three configurations for a variety of applications.

The TIIS specification certificate will differ depending on the NAR300 system combination. For more details, see “Certificates and approvals.”

Flame-proof system (integrated type) Ex d [ia] IIB T4

This system can handle the entire process, from oil leak detection to alarm output, in hazardous outdoor locations.

Ex [ia] specification is used in the circuitry from the NAR300 float sensor to the wiring terminal box of Ex d [ia] transmitter NRR261 (the dedicated cable and cable entry in between are supplied by Endress+Hauser). Ex d wiring is used from the main unit of Ex d [ia] transmitter NRR261, and it can be connected directly to the junction box that is installed in a yard or to the liquid level transmitter relay input. In this system, the maximum distance between the float sensor and the transmitter is 30 m (98.43 ft).

- TIIS: NAR300-11xxxx + NRR261-2xx
- JPN Ex: NAR300-21xxxx + NRR261-4xx
- ATEX: NAR300-1xxxx + NRR261-Axx
- IECEx: NAR300-B1xxxx + NRR261-Bxx
- FM: NAR300-C1xxxx + NRR261-Cxx

Intrinsically safe system (separate type) Ex ia IIB T4

In this system, Ex [ia] transmitter NRR262 is installed in a non-hazardous location, such as an instrument room, and alarm output is imported by the indoor alarm panel and the host instrumentation receiver.

The signal from the NAR300 float sensor is imported by the Ex [ia] wiring of transmitter NRR262 via sensor I/F Ex box. For the connection between the float sensor and the sensor I/F Ex box, a dedicated cable and cable entry are provided by Endress+Hauser.

- TIIS: NAR300-15xxxx + NRR262-2x
- JPN Ex: NAR300-25xxxx + NRR262-4x
- ATEX: NAR300-A5xxxx + NRR262-Ax
- IECEx: NAR300-B5xxxx + NRR262-Bx
- FM: NAR300-C5xxxx + NRR262-Cx
Oil leak detector NAR300

System configuration 2

A Float sensor NAR300-x5xxxx
B Sensor I/F Ex box
C Ex [ia] transmitter NRR262
1 Ex [ia] dedicated connection cable (6 to 30 m (19.69 to 98.43 ft))
2 Cable for sensor I/F Ex box and transmitter (see process conditions)
3 Alarm output: Alarm/PLC/DCS, etc.
4 Power supply (AC/DC)

Flame-proof system (separate type) Ex d [ia] IIB T4

This system can handle the entire process, from oil leak detection to alarm output, at hazardous outdoor locations.

Ex [ia] specification is used in the circuitry from the NAR300 float sensor to the wiring terminal box of Ex d [ia] transmitter NRR261. The signal from the NAR300 float sensor is imported by the Ex [ia] wiring of transmitter NRR261 via sensor I/F Ex box. Ex d wiring is used from the main unit of Ex d [ia] transmitter NRR261, and it can be connected directly to the junction box that is installed in a yard or to the liquid level transmitter relay input.

- TIIS: NAR300-15xxxx + NRR261-3xx
- JPN Ex: NAR300-25xxxx + NRR261-5xx
- For ATEX, IECEx and FM specifications, contact your Endress+Hauser Sales Center.

System configuration 3

A Float sensor NAR300-x5xxxx
B Sensor I/F Ex box
C Ex d [ia] transmitter NRR261 (separate type)
1 Ex [ia] dedicated connection cable (6 to 30 m (19.69 to 98.43 ft))
2 Cable for sensor I/F Ex box and transmitter (see process conditions)
3 Alarm output: Alarm/PLC/DCS, etc.
4 Power supply (AC/DC)
Operating principles

Tuning fork sensor

The tuning fork sensor determines if there is liquid (water or oil, ON) or no liquid (air, OFF). In addition, it vibrates when the liquid is below the operating point (no liquid), and stops vibrating when the liquid is above the operating point (liquid is present).

Conductive sensor

The conductive sensor detects and determines whether there is conductive substance (water, OFF) or non-conductive substance (air or oil, ON) between the electrode and the main unit of the float.

<table>
<thead>
<tr>
<th>Name</th>
<th>Water</th>
<th>Air</th>
<th>Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuning fork sensor</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>Conductive sensor</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

An alarm is activated when the tuning fork sensor and the conductive sensor are both ON.

Detection in water-filled pits

1. The conductive sensor continuously monitors conductivity between the probe and the main unit of the float before the tuning fork sensor does.

2. Since the conductive sensor is normally detecting water, which is a conductive substance, it stays OFF and an alarm status is not recognized regardless of the status of the tuning fork sensor.

3. If an accident causes oil flow and an oil layer begins to form on the water surface, the conductive sensor will detect the non-conductive oil and the alarm status switches to ON.

4. Since the tuning fork sensor has already detected liquid and its alarm status is ON, this establishes an ON/ON logic.

5. An alarm is activated.
Detection in an empty pit (installed on a ground surface)

1. In an empty pit with no water, the alarm status is ON because the conductive sensor is monitoring non-conductive air.

2. However, since it is an empty pit and there is no liquid, the tuning fork sensor remains OFF, and therefore an alarm status is not recognized.

3. If the main unit of the float sensor floats on water surface, such as when water has entered the pit due to rainfall, water is now present and it will switch to detection logic.

4. If an accident causes oil infiltration, the tuning fork sensor will detect liquid following the conductive sensor, which is already ON, establishing an ON/ON logic.

5. An alarm is activated.
Operating principles of alarm activation

The oil leak detection signal detected by the NAR300 float sensor is converted to a current signal in the transmitter or the sensor I/F Ex box. After this, it is connected to the current detection circuit via the Ex [ia] safety barrier in the transmitter. In the current detection circuit, the presence or absence of an oil leak alarm signal is determined by the magnitude of electrical current values, and the alarm output relay is turned on or off by the operation delay circuit. The delay time can be set, and there is a trimmer for setting the delay time in the alarm delay circuit. A fail-safe function is also available for the relay contact output (refer to the 'Alarm output operation table' on the next page).

Alarm output operation table

<table>
<thead>
<tr>
<th>Between terminals</th>
<th>NRR262 between NC and COM</th>
<th>NRR261 between NC and COM terminal No. 11, 13</th>
<th>NRR261 between NO and COM terminal No. 13, 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>NRR261 between NC and COM</td>
<td>NRR261 between NO and COM terminal No. 13, 15</td>
<td></td>
</tr>
<tr>
<td>Non-alarm</td>
<td>Contact point is open</td>
<td>Contact point is closed</td>
<td></td>
</tr>
<tr>
<td>Oil leak alarm</td>
<td>Contact point is closed</td>
<td>Contact point is open</td>
<td></td>
</tr>
<tr>
<td>Power OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frozen liquid</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NAR300 current value

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-alarm</td>
<td>12 mA</td>
</tr>
<tr>
<td>Oil leak alarm</td>
<td>16 mA</td>
</tr>
<tr>
<td>Other trouble</td>
<td>< 10 mA or 14 mA <</td>
</tr>
</tbody>
</table>

The only adjustment that can be made on the transmitter is the delayed activation time (ON delay) setting for the alarm output relay. Time is set on the delay trimmer. In NRR261, the delay trimmer can be found by turning off the power and opening the main unit's cover. In NRR262, the delay trimmer is found on the case surface. Match the setting to the necessary delay time in units of seconds. Delayed activation is used to prevent a false alarm by recognizing an alarm condition that continues over a certain period of time as an alarm while not outputting an alarm when the alarm condition stops within the delay time setting. This can be set to 30 seconds for TIIIS specification, and up to a maximum of 15 seconds for all other specifications.

A response delay time in the detection circuit of approximately 6 seconds is always added to the delay time of the delay trimmer.

Transmitter NRR261 (left) / Transmitter NRR262 (right)

1 Delay trimmer
2 Cover
3 LED power (green) / Alarm (red)
Operating conditions

Detection sensitivity

If the electrode tip is pulled out of the lower-layer water due to increased thickness of the oil layer, water may cling onto the electrode tip like an icicle even if the electrode tip is in oil. In this case, detection sensitivity may increase by 1 to 2 mm (0.04 to 0.08 in). When an accurate sensitivity check is required, apply a small amount of neutral detergent to the electrode tip to keep water from clinging to the electrode.

- Water-filled pit: Set to 10 (0.39) ± 1 mm (0.04 in) with kerosene at the time of shipment from the factory
- Empty pit: 50 (1.97) ± 5 mm (0.2 in) with kerosene

Set with oil (kerosene: specific gravity approx. 0.8), lower-layer water (water: specific gravity approx. 1.0), static level condition and/or without surface tension.

Pit water

Do not use in sea water

The oil leak detector is not designed for use in sea water. The following problems may occur if it is used in sea water:

- Failed or delayed alarm when overturned by waves
- Delayed alarm caused by generation of a bypass circuit between the conductive sensor and the float itself due to salt coating
- Corrosion of the float sensor caused by sea water

Other special pit water

If the float sensor is used in certain liquids such as a solvent blend, it may be corroded or damaged.

Pit water with high electrical resistance

Use in pit water with high electrical resistance, such as in a steam drain and pure water, may activate the alarm. Ensure that the pit water is at least 10 µS/cm (not more than 100 kΩ·cm).

Example: Pure water: 1 to 0.1 µS/cm (1 to 10 MΩ·cm)

Frozen pit water

If ice forms in the pit, the alarm may be triggered (fail-safe function). Implement anti-freeze measures to prevent freezing.

Gasoline application

If the object to be detected is gasoline, check with your Endress+Hauser Sales Center and order the gasoline application specifications under special specifications.
Input and output

<table>
<thead>
<tr>
<th></th>
<th>Contact output</th>
<th>Maximum contact rating</th>
<th>Fail-safe function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex d [ia] transmitter NRR261</td>
<td>1SPDT</td>
<td>250 V<sub>AC</sub>, 1 A, 100 VA</td>
<td>Fail safe function: When the power is off, when frozen (see 'Alarm output operation table')</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 V<sub>DC</sub>, 1 A, 25 W</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Contact output</th>
<th>Maximum contact rating</th>
<th>Fail-safe function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex [ia] transmitter NRR262</td>
<td>1SPDT</td>
<td>250 V<sub>AC</sub>, 1 A, 100 VA</td>
<td>Fail safe function: When the power is off, when frozen (see 'Alarm output operation table')</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 V<sub>DC</sub>, 1 A, 25 W</td>
<td></td>
</tr>
</tbody>
</table>
Power supply

Float sensor NAR300

<table>
<thead>
<tr>
<th>Power supply</th>
<th>Provided by a sensor I/F Ex box or NRR261 (NAR300 integrated type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O cable</td>
<td>Dedicated shielded cable (PVC) / with cable float (standard 6 m (19.69 ft))</td>
</tr>
</tbody>
</table>

Sensor I/F Ex box

<table>
<thead>
<tr>
<th>Power supply</th>
<th>Provided by NRR261 or NRR262</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable entry</td>
<td>• NAR300 (float sensor) side: G1/2, with cable gland</td>
</tr>
<tr>
<td></td>
<td>• NRR261 or NRR262 (transmitter) side: G1/2, NPT1/2, M20</td>
</tr>
</tbody>
</table>

Transmitter NRR261

Power supply	• AC power type: 90 to 250 V_AC, 50/60 Hz
	• DC power type: 22 to 26 V_DC (integrated power supply arrester)
Maximum power consumption	• AC power type: 20 VA
	• DC Power type: 2 W
Power supply port	• G3/4 x2 (Ex d), G1/2 x1 (Ex ia)
	• G1/2 x2 (Ex d), G1/2 x1 (Ex ia)
	• NPT3/4 x2 (Ex d), NPT1/2 x1 (Ex ia)
	• NPT1/2 x2 (Ex d), NPT1/2 x1 (Ex ia)
	• M25 x2 (Ex d), M20 x1 (Ex ia)
	• M20 (Ex d), M20 x1 (Ex ia)
	• With TIIS Ex specified cable gland model SXBM
Surge protection	Integrated (power supply arrester)

Transmitter NRR262

Power supply	• AC power type: 90 to 250 V_AC, 50/60 Hz
	• DC power type: 22 to 26 V_DC (integrated power supply arrester AV3P-2)
Maximum power consumption	• AC power type: 20 VA
	• DC Power type: 2 W
Surge protection	Integrated (power supply arrester)
Electrical Connection

Connect the external grounding terminal according to the 'Class A grounding' standards (≤ 10 Ω) in the shortest implementable distance.

When using Ex [ia] float sensor NAR300 and Ex d [ia] transmitter NRR261, it is necessary to ground the NRR261 to a built-in safety barrier by following the procedure below (TIIS specifications only).

- The grounding cable for the safety barrier should be connected independently from grounding cables that are used for other purposes (lightning arrester), and it must be connected to a grounding point in accordance with 'Class A grounding' standards in non-hazardous locations.
- Use a conductive grounding cable with a cross-sectional area of at least 2 mm2. The communication cable shield of field devices with Class A grounding in an instrument room may also be used.

Class A grounding overview

<table>
<thead>
<tr>
<th>Grounding resistance value</th>
<th>10 Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grounding cable type</td>
<td>Metal cable with a tensile strength of at least 1.04 kN or an annealed copper cable with a diameter of at least 2.6 mm (0.1 in)</td>
</tr>
</tbody>
</table>

Procedure for wiring grounding cables

If performing Class A grounding from an Ex [ia] terminal instead of performing Class A grounding from an Ex d terminal, refer to the figure below.

![Example of grounding transmitter NRR261](image)

6 Example of grounding transmitter NRR261

A Non-hazardous location Class A grounding work (TIIS specification only)
a Power supply
b Alarm output
c Ex d line
1 Tank
2 Underground
3 Grounding cable (TIIS specification only)
4 Ex d side terminal
5 Ex [ia] side terminal
6 From float sensor NAR300
7 Wiring of Ex d [ia] transmitter NRR261-2/A/B/C

A Float sensor NAR300-x1xxxx
B Ex d [ia] transmitter NRR261 (integrated type)
a Blue 1 (already wired at shipping)/Thread (M3)
b Blue 2 (already wired at shipping)/Thread (M3)
c Green/Thread (M3)
d Red/Thread (M3)
e Blue 3/Thread (M3)
f Yellow/Thread (M3)
g Black/Thread (M3)
h White/Thread (M3)
1 Ex d terminal
2 Ex [ia] terminal
3 Ex [ia]-dedicated connection cable used (6 to 30 m (19.69 to 98.43 ft): Attached to the product depending on the option code)
4 Power supply: AC/DC
5 Alarm output: Alarm/PLC/DCS, etc.
6 Power supply arrester (installed)
7 Green-yellow: FG safety barrier GND (for Class A grounding)/Thread (M4) (TIIS specification only), see 4 below
8 Terminal fixing screws (M3) (TIIS specification only)
9 FG safety barrier GND (for Class A grounding)/Thread (M4) (TIIS specification only), see 4 below
10 Blue 4: Internal wiring from Zener barrier/Thread (M4)

1 The GND between L and N of NRR261 is connected when an FG-equipped AC cable is used.
2 When using a 22 to 26 V\textsubscript{dc} power supply, terminal number L is + (positive) and N is - (negative).
3 In order to maintain the Ex [ia] performance, ensure that the power supply voltage does not exceed 250 V\textsubscript{ac} 50/60 Hz and 250 V\textsubscript{dc} during normal time and abnormal time, respectively.
4 Perform Class A grounding work at a non-hazardous location using one of the FG safety barrier GNDs on terminal number 7 or 9 (TIIS specification only).
5 The cable for connecting NAR300 and NRR261 (3) is included with NAR300. The alarm output cable (4) from NRR261 and the power cable (5) to NRR261 are not included and must be prepared by the customer. For detailed information on the connection cables, see the "Process conditions" section.
NRR262-2/4/A/B/C wiring

A

B

C

8 Wiring of Ex [ia] transmitter NRR262-2/A/B/C.

A Float sensor NAR300-xxx (sensor I/F Ex box is also included in the code)
B Sensor I/F Ex box
C Ex [ia] transmitter NRR262
a Green/Thread (M3) (see 1 below)
b Output to NRR262/Thread (M3)
c Red/Thread (M3)
d Blue/Thread (M3)
e Yellow/Thread (M3)
f Black/Thread (M3)
g White/Thread (M3)
h Input from sensor I/F Ex box/Thread (M3)
i 90 to 250 V_{AC}/50/60 Hz/Thread (M3)
j Alarm output/Thread (M3)
k Check monitor output/Thread (M3)
1. Ex [ia]-dedicated connection cable used (6 to 30 m (19.69 to 98.43 ft): Attached to the product depending on the option code)
2. Sensor I/F Ex box and NRR262 cable (must be prepared by the customer)
3. For Class A grounding for intrinsic safety/Thread (M4)

1. Normally, only the FG of a sensor I/F Ex box is shielded; however, depending on the installation environment, either the GND of NRR262 alone or both the FG of the sensor I/F Ex box and the GND of NRR262 are connected.

2. When using a 22 to 26 V_{DC} power supply, terminal number {L} is + (positive) and {N} is - (negative).

3. In order to maintain the Ex [ia] performance, ensure that the power supply voltage does not exceed 250 V_{AC} 50/60 Hz and 250 V_{DC} during normal time and abnormal time, respectively.

4. Although cable (1) that connects NAR300 and a sensor I/F Ex box is included with the device, a cable (2) that connects a sensor I/F Ex box and NRR262 is not included, and it must be prepared by the customer. For detailed information on the connection cables, see the "Process conditions" section.
Wiring of Ex d [ia] transmitter NRR261-3

A Float sensor NAR300-x5xxxx (sensor I/F Ex box is also included in the code)
B Sensor I/F Ex box
C Ex d [ia] transmitter NRR261 (separate type)
 a Green/Thread (M3) (see 1 below)
b Output to NRR261-3/5xx/Thread (M3)
c Red/Thread (M3)
d Blue 1/Thread (M3)
e Yellow/Thread (M3)
f Black/Thread (M3)
g White/Thread (M3)
h Blue 2/Thread (M4) (connected at the time of shipping)
i Blue 3/Thread (M4) (connected at the time of shipping)
j Blue 4/Thread (M4) (connected at the time of shipping) (TIIS specification only)
k Class A grounding connection terminal (TIIS specification only)/Thread (M4)
m Input from sensor I/F Ex box/Thread (M4)
1 Ex [ia]-dedicated connection cable used (6 to 30 m (19.69 to 98.43 ft): Attached to the product depending on the option code)
2 Sensor I/F Ex box and NRR261 cable (must be prepared by the customer)
3 Power supply: AC/DC
4 Alarm output: Alarm/PLC/DCS, etc.
5 Ex d terminal
Normally, only the FG of a sensor I/F Ex box is shielded; however, depending on the installation environment, either the GND of NRR262 alone or both the FG of the sensor I/F Ex box and the GND of NRR262 are connected.

2. The GND between L and N of NRR261 is connected when an FG-equipped AC cable is used.

3. When using a 22 to 26 V_{DC} power supply, terminal number L is + (positive) and N is - (negative).

4. In order to maintain the Ex [ia] performance, ensure that the power supply voltage does not exceed 250 V_{AC} 50/60 Hz and 250 V_{DC} during normal time and abnormal time, respectively.

5. Cable (1) for connecting NAR300 and the sensor I/F Ex box is included with NAR300. Cable (2) for connecting the sensor I/F Ex box to NRR261, the alarm output cable (3) from NRR261, as well as the power cable (4) to NRR261 are not included and must be prepared by the customer. For detailed information on the connection cables, see the "Process conditions" section.

6. Perform Class A grounding work at a non-hazardous location using one of the FG safety barrier GNDs on terminal number 8 or k (TIIS specification only).
Although a Class A grounding cable can be shared with grounding of other safety barriers, it cannot be shared with grounding of a lightning arrester.
Installation

Installation conditions

To ground the barrier, connect to the tank or use the remote cable's shield. For more on using the remote cable's shield, refer to "Electrical connection."
Installation/mounting-related precautions

1. Installation of debris protection, a roof or a cover is recommended to prevent debris or snow from entering the pit. If there is snow accumulation on the float sensor, each 50 g of snow accumulation will cause an increase in draft by 1 mm (0.04 in), resulting in reduced sensitivity. If there is a risk of ambient temperature exceeding 50 °C (122 °F), install a sun shade to protect the float sensor from direct sunlight. Mount a covering above the top of the pit inlet to avoid submerging the float sensor housing if the pit water overflows due to heavy rainfall, etc. If the float sensor becomes submerged, a malfunction or damage may result.

2. If the float sensor becomes off balance (tilted by approximately 3 ° or more), it may cause a malfunction or delayed alarm. To prevent this, use a float guide as much as possible and arrange the cables and chains strategically.

3. Install a screen at the pit inlet so that debris can be removed. Periodically inspect and clean the sensor and the pit as clogging caused by debris and foreign matter may result in a malfunction.

4. Attaching a chain to the side ring on the float sensor head ahead of time will improve convenience. However, each 50 g of increased load on the float will increase the draft by 1 mm (0.04 in), resulting in reduced sensitivity. Also, if a chain is used to prevent the float sensor from flowing out, do not yank on the chain during inspection, etc.

5. When the pit is completely filled with water, an oil layer will not form inside the pit even if oil spills out. Ensure that the water is drained as necessary so that an oil layer can form.

6. Do not yank on the cables or carry the device by holding on to the cables as this may cause a malfunction and/or poor waterproofing.

7. If the valve is constantly open, ensure that an oil layer can form such as by bending the tip of the discharge nozzle downwards by at least 100 mm (3.94 in). Failure to do so may cause oil to discharge from the pit before it can form a detectable layer on the water surface, resulting in a delayed alarm or detection failure. For pits without a discharge nozzle as shown above, install an oil-water divider so that an oil layer can form.

8. Install a divider to prevent large waves, cross-currents or water from splashing onto the float when liquid flows in.

9. If the pit is too large, divide the pit with an oil separator. Oil leakage cannot be detected unless there is significant outflow of oil in proportion to the surface area.

10. Install NAR300, NRR261 and a sensor I/F Ex box at least 50 cm (1.64 ft) apart from each other.
Handling precautions
Always use both hands to hold the float when carrying NAR300. Do not lift or hold by any of the components shown in the figure below, and do not lift by the upper portion of the float sensor. In addition, do not rotate the housing. Doing so may cause device failure.
Float guide mounting
NAR300 may be mounted on a float guide that has been installed for existing products (CFD10, CFD30, UFD10, NAR291, NAR292).

If the float guide is shorter than 2 000 mm (78.74 in), either cut and use it or follow the protocol for when it is 2 000 mm (78.74 in) or longer and contact your Endress+Hauser Sales Center.
Environment

<table>
<thead>
<tr>
<th>Protection class</th>
<th>Items</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Float sensor NAR300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensor I/F Ex box</td>
<td>IP67 (for outside installation)</td>
</tr>
<tr>
<td></td>
<td>Transmitter NRR261</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transmitter NRR262</td>
<td></td>
</tr>
</tbody>
</table>
Process

Float sensor NAR300

<table>
<thead>
<tr>
<th>Items</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions for detected substance</td>
<td>• Density 0.7 g/cm³ or higher and less than 1.0 g/cm³</td>
</tr>
<tr>
<td></td>
<td>• Floats in water (if the density is 0.9 g/cm³ or higher then the viscosity should be 1 mPa·s or higher; water 1 mPa·s)</td>
</tr>
<tr>
<td></td>
<td>• Water-insoluble</td>
</tr>
<tr>
<td></td>
<td>• Non-conductive</td>
</tr>
<tr>
<td></td>
<td>• Liquid</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>• Ambient temperature: −20 to 60 °C (−4 to 140 °F)</td>
</tr>
<tr>
<td></td>
<td>• Measured liquid temperature: −20 to 60 °C (−4 to 140 °F)</td>
</tr>
<tr>
<td>Conditions for water in pit</td>
<td>• Density 1.0 g/cm³ or higher and less than 1.13 g/cm³ (however, at a dynamic viscosity of 1 mm²/sec) ¹</td>
</tr>
<tr>
<td></td>
<td>• Non-freezing</td>
</tr>
<tr>
<td></td>
<td>• Electric conductivity 10 µS/cm or higher (100 kΩ · cm or lower); however, this should be 1 µS/cm or higher in cases where the float is always floating in the pit water.</td>
</tr>
<tr>
<td></td>
<td>• Cannot be used by the sea or in locations where seawater may possibly ingress</td>
</tr>
<tr>
<td>Other</td>
<td>• Promptly remove any debris that sticks to the sensor.</td>
</tr>
<tr>
<td></td>
<td>• Do not let mud or other dry substances harden on the float sensor.</td>
</tr>
<tr>
<td></td>
<td>• Avoid installation conditions that cause the float sensor to tilt off-balance or change the draft line.</td>
</tr>
<tr>
<td></td>
<td>• Install wave protection walls to avoid crosscurrents and standing waves.</td>
</tr>
</tbody>
</table>

¹ This will be accompanied by changes in sensitivity at a lower layer water specific gravity different from factory conditions during configuration, such as when using antifreeze, etc.

Sensor I/F Ex box / Transmitter NRR261/ NRR262

<table>
<thead>
<tr>
<th>Items</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector cable (connection to transmitter NRR261/NRR262 from sensor I/F Ex box)</td>
<td>Maximum inductance: 2.3 mH, Maximum capacitance: 83 nF Reference case: Use of KPEV-S (instrumentation cable)</td>
</tr>
<tr>
<td></td>
<td>• C = 65 nF/km, L = 0.65 mH/km</td>
</tr>
<tr>
<td></td>
<td>• CW/C = 0.083 μF / 65 nF = 1.276 km......1</td>
</tr>
<tr>
<td></td>
<td>• LW/L = 2.3 mH / 0.65 mH = 3.538 km......2</td>
</tr>
<tr>
<td></td>
<td>• Maximum cable extension: 1.27 km; the maximum cable length is 1 and/or 2, whichever is shorter (do not round up, truncate)</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>Ambient temperature: −20 to 60 °C (−4 to 140 °F)</td>
</tr>
</tbody>
</table>
Mechanical construction

NAR300 system dimensions | Dimensions of NAR300 float sensor

[Diagram showing dimensions]

14 Outline of float sensor NAR300. Unit of measurement mm (in)

1 Float sensor cover
Dimensions of Ex d [ia] transmitter NRR261

Only NRR261 with TIIS and JPN Ex explosion-proof specifications are delivered with a cable gland (external diameter of compatible cables: φ12 to 16 mm (0.47 to 1.02 in))

Use the order code of Ex d [ia] transmitter NRR261 to specify the electrical conduit connection port.

Normally, Ex d [ia] transmitter NRR261 is mounted on a tank yard’s pipe and secured in place with a U-bolt (JIS F 3022 B 50 type). It can also be mounted directly onto wall surfaces (requires 4-φ12 mm (0.47 in) holes and M10 securing nuts and bolts (not included in the delivery)).

![Diagram of NRR261](image)

15 Outline of NRR261. Unit of measurement mm (in)

1 Ex d side terminal
2 Ex [ia] side terminal
3 U-bolt (JIS F3022 B50 material: Iron (chromate), 2 nuts and 2 flat washers included)
4 4-φ12 holes
Dimensions of Ex [ia] transmitter NRR262

NRR262 is installed indoors, such as in instrument rooms, and it can be mounted easily with two M4 screws. In addition, "one-touch" snap-in mounting is possible using a DIN rail EN50022 (not included in the delivery). This rail-mounted method is beneficial in cases where multiple transmitters are mounted in series, and in cases where installation of additional transmitters is expected in the future.

Outline of NRR262. Unit of measurement mm (in)

1. Thread (M4) for intrinsic safety Class A grounding
2. Delay trimmer
3. Thread (M3)
4. Screw (M4)
5. DIN rail: EN50022-compliant
Dimensions of Ex [ia] sensor I/F Ex box

The Ex [ia] sensor I/F Ex box is used in combination with Ex d [ia] transmitter NRR261 or Ex [ia] transmitter NRR262 in order to convert signals from the float sensor into electric current signals. Normally, it is mounted on a tank yard’s pipe and secured in place with a U-bolt (JIS F 3022 B 50 type). It can also be mounted directly onto wall surfaces (requires 4-φ12 mm (0.47 in) holes and M10 securing nuts and bolts (not included in the delivery)).

![Diagram of Ex [ia] sensor I/F Ex box]

1. Outline of Ex [ia] sensor I/F Ex box. Unit of measurement mm (in)
 - L1: For G1/2, NPT1/2: 85 mm (3.35 in), for M25: 107 mm (4.21 in)
 - 1: U-bolt (JIS F3022 B50 material: Iron (chromate), 2 nuts and 2 flat washers included)
 - 2: 4-φ12 mm (0.47 in) holes

Use the order code of float sensor NAR300 to specify the conduit connection port. When installing NAR300-15Axxx, however, specify NAR300-15AxxB since the electrical conduit connection port will be G1/2.

<table>
<thead>
<tr>
<th>Weight of the NAR300 system</th>
<th>Float sensor NAR300</th>
<th>Approx. 2.5 kg (5.51 lb) (including the dedicated shielded cable (PVC) 6 m (19.69 ft))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex [ia] sensor I/F Ex box</td>
<td>Approx. 3.2 kg (7.05 lb)</td>
<td></td>
</tr>
<tr>
<td>Ex d [ia] transmitter NRR261</td>
<td>Approx. 10 kg (22.05 lb)</td>
<td></td>
</tr>
<tr>
<td>Ex [ia] transmitter NRR262</td>
<td>Approx. 0.6 kg (1.32 lb)</td>
<td></td>
</tr>
</tbody>
</table>

Detection sensitivity

- **Float sensor NAR300**
 - Water-filled pit: Set to 10 (0.39) ± 1 mm (0.04 in) with kerosene at the time of shipment from the factory
 - Empty pit: 50 (1.97) ± 5 mm (0.2 in) with kerosene
Wetted material

| Wetted material: NAR300 | Float: SUS316L
| | Conductive sensor: SUS316+PTFE
| | Tuning fork sensor: SUS316L-equivalent
| Non-wetted parts:
| Ex [ia] sensor I/F Ex box | Housing/cover: Aluminum casting
| Ex d [ia] transmitter NRR261 | Housing/cover: Aluminum casting
| Ex [ia] transmitter NRR262 | Housing: Plastic

Certificates and approvals

CE mark
The measuring system meets the legal requirements of the applicable EC guidelines. Although it is listed in the relevant "EC declaration of conformity," it also meets the standards. Endress+Hauser warrants that the product has passed the tests by attaching the CE mark to it.

Ex-approval
The NAR300 system has the following four certificates and qualifications:

- ATEX Certificate: FM.14ATEX0048X
- IECEx Certificate: IECEx FMG 14.0024X
- FM Certificate: 3049525
- JPN Ex Qualification: CML 18JPN8362X

- The TIIS specification certificate will differ depending on the NAR300 system combination.
- In TIIS specification, the FTL qualification is separate.
- TIIS and JPN Ex devices cannot be mixed.

18 **System configuration 1 (TIIS qualification: TC18322 (NAR300 + NRR261) / TC18327 (FTL)**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1. Float sensor NAR300-x1xxxx</td>
</tr>
<tr>
<td>B</td>
<td>2. Ex d [ia] transmitter NRR261 (integrated type)</td>
</tr>
<tr>
<td></td>
<td>3. Alarm output: Alarm/PLC/DCS, etc.</td>
</tr>
<tr>
<td></td>
<td>2. Power supply (AC/DC)</td>
</tr>
<tr>
<td></td>
<td>3. Ex [ia] dedicated connection cable (6 to 30 m (19.69 to 98.43 ft))</td>
</tr>
</tbody>
</table>
Oil leak detector NAR300

A0039918

System configuration 2 (TIIS qualification: TC18324 (NAR300) / TC18327 (FTL) / TC18326 (NRR262))

A Float sensor NAR300-x5xxxx
B Sensor I/F Ex box
C Ex [ia] transmitter NRR262
1 Ex [ia] dedicated connection cable (6 to 30 m (19.69 to 98.43 ft))
2 Cable for sensor I/F Ex box and transmitter (see process conditions)
3 Alarm output: Alarm/PLC/DCS, etc.
4 Power supply (AC/DC)

System configuration 3 (TIIS qualification: TC18324 (NAR300) / TC18327 (FTL) / TC18325 (NRR261))

A Float sensor NAR300-x5xxxx
B Sensor I/F Ex box
C Ex d [ia] transmitter NRR261 (separate type)
1 Ex [ia] dedicated connection cable (6 to 30 m (19.69 to 98.43 ft))
2 Cable for sensor I/F Ex box and transmitter (see process conditions)
3 Alarm output: Alarm/PLC/DCS, etc.
4 Power supply (AC/DC)

Functional safety certification

SIL2 IEC61508 (ATEX, IECEx, FM, JPN Ex)

For TIIS specifications, contact your Endress+Hauser Sales Center.
Order information

Detailed ordering information is available from the following sources:

- In the Product Configurator on the Endress+Hauser website: www.endress.com -> Click "Corporate" -> Select your country -> Click "Products" -> Select the product using the filters and search field -> Open product page -> The "Configure" button to the right of the product image opens the Product Configurator.

- From your nearest Endress+Hauser sales organization: www.addresses.endress.com

Product Configurator - the tool for individual product configuration

- Up-to-the-minute configuration data
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop
Accessories

Float guide
If you ordered a device that is equipped with a float guide, install the float horizontally. Remove any debris or stones so that the float sensor can land horizontally. The standard length of a float guide is 2 m (6.57 in); however, if you need a different length, contact your Endress+Hauser Sales Center.

![Diagram of a float guide](image.png)

2.1 **Float guide. Unit of measurement mm (in)**

1. Nut (M10)
2. Float guide
3. Weight

<table>
<thead>
<tr>
<th>Name</th>
<th>Delivered quantity</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float guide</td>
<td>2</td>
<td>SUS304</td>
</tr>
<tr>
<td>Weight</td>
<td>1</td>
<td>Selectable as options from SS400 or SUS304</td>
</tr>
<tr>
<td>Nut (M10)</td>
<td>6</td>
<td>SUS304</td>
</tr>
</tbody>
</table>
U-bolt/cable gland (waterproof connection)

The U-bolt (JIS F3022 B50) is used when mounting a transmitter. Have a spare 50A (2B φ60.5 mm (198.5 in)) pipe ready. Tighten and secure the cable gland after inserting the cable from NAR300.

The pressure-resistant packing cable gland is supplied for the TIIS/JPN Ex specification only. Always use this cable gland.

<table>
<thead>
<tr>
<th>Name</th>
<th>Delivered quantity</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-bolt</td>
<td>2</td>
<td>Iron (chromate)</td>
</tr>
<tr>
<td>U-bolt accessory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nut</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Flat washer</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cable gland (waterproof connection)</td>
<td>1</td>
<td>Nylon</td>
</tr>
</tbody>
</table>