KA00293K/53/RU/04.14-00

71561586 2014-12-15

Краткое руководство по эксплуатации EngyCal RS33

Калькулятор пара

Ниже приведено краткое руководство по эксплуатации; оно не заменяет руководство по эксплуатации, относящееся к прибору.

Для получения более подробной информации см. руководство по эксплуатации и остальную документацию.

Доступно для всех исполнений прибора через:

- Интернет: www.endress.com/deviceviewer
- Смартфон/планшет: Endress+Hauser Operations App

Содержание

1 1.1	Информация о документе Условные обозначения в документе	4 4
2 2.1 2.2 2.3 2.4 2.5 2.6	Указания по технике безопасности Требования к работе персонала Использование по назначению Безопасность рабочего места Безопасность при эксплуатации Безопасность изделия Безопасность информационных технологий	7 7 7 7 8
3 3.1 3.2 3.3	Идентификация Обозначение прибора Комплект поставки Сертификаты и свидетельства	8 10 10
4 4.1 4.2 4.3 4.4 4.5 4.6	Монтаж Приемка, транспортировка, хранение . Размеры . Условия монтажа . Монтаж . Руководство по монтажу датчика (датчиков) температуры . Руководство по монтажу датчика давления .	10 11 13 13 18 19
5 5.1 5.2 5.3 5.4 5.5 5.6 6	Подключение проводов	20 20 23 30 30 32 33
6.1 6.2 6.3	Общие указания в отношении управления . Дисплей и элементы управления . Структура управления .	33 34 37
7 7.1	Ввод в эксплуатацию Ускоренный ввод в эксплуатацию/запуск	38 38

1 Информация о документе

1.1 Условные обозначения в документе

1.1.1 Символы по технике безопасности

Символ	Значение	
🛕 ОПАСНО	ОПАСНО! Этот символ предупреждает об опасной ситуации. Допущение такой ситуации приведет к серьезным или смертельным травмам.	
А ОСТОРОЖНО	ОСТОРОЖНО! Этот символ предупреждает об опасной ситуации. Допущение такой ситуации может привести к серьезным или смертельным травмам.	
А ВНИМАНИЕ	ВНИМАНИЕ! Этот символ предупреждает об опасной ситуации. Допущение такой ситуации может привести к травмам небольшой и средней тяжести.	
уведомление	ВНИМАНИЕ! В этом символе содержится информация о процедуре и другие факты, которые не приводят к травмам.	

1.1.2 Электротехнические символы

Символ	Значение
A0011197	Постоянный ток Клемма, на которую подается постоянное напряжение или через которую протекает постоянный ток.
A0011198	Переменный ток Клемма, на которую подается переменное напряжение или через которую протекает переменный ток.
A0017381	 Постоянный и переменный ток Клемма, на которую подается переменное или постоянное напряжение. Клемма, через которую протекает переменный или постоянный ток.
 	Заземление Клемма заземления, которая заземлена посредством системы заземления.
A0011199	Подключение защитного заземления Клемма, которая должна быть подсоединена к заземлению перед выполнением других соединений.
A0011201	Эквипотенциальное подключение Соединение, требующее подключения к системе заземления предприятия: в зависимости от национальных стандартов или общепринятой практики можно использовать провод выравнивания потенциалов или систему заземления по схеме «звезда».
A0012751	ESD – электростатический разряд Защитите клеммы от электростатического разряда. Несоблюдение этого требования может привести к выходу из строя электронных компонентов.

1.1.3 Описание информационных символов

Символ	Значение	Символ	Значение
	Допустимо Означает допустимые процедуры, процессы или действия.		Предпочтительно Означает предпочтительные процедуры, процессы или действия.
X	Запрещено Означает запрещенные процедуры, процессы или действия.	i	Подсказка Указывает на дополнительную информацию
I	Ссылка на документ		Ссылка на страницу
	Ссылка на схему	1. , 2. , 3	Серия этапов
4	Результат последовательности действий		Просмотр

1.1.4 Символы на иллюстрациях

Символ	Значение
1, 2, 3,	Номера элементов
1. , 2. , 3	Серия этапов
A, B, C,	Виды
A-A, B-B, C-C,	Сечения
≈ →	Направление потока
A0013441	
EX A0011187	Взрывоопасные зоны Указывает зону с взрывоопасной средой.
A0011188	Безопасная среда (невзрывоопасная среда) Указывает невзрывоопасную среду

1.1.5 Символы, обозначающие инструменты

Символ	Значение
O A0011220	Отвертка с плоским наконечником
O	Отвертка с крестообразным наконечником
A0011221	Шестигранный ключ

Символ	Значение
Ŕ	Рожковый гаечный ключ
A0011222	
0	Отвертка со звездообразным наконечником (Torx)
A0013442	

2 Указания по технике безопасности

Надежность и безопасность эксплуатации прибора гарантируется только в случае соблюдения требований руководства по эксплуатации и указаний по технике безопасности.

2.1 Требования к работе персонала

Для выполнения задач персонал должен соответствовать следующим требованиям:

- Обученные квалифицированные специалисты: должны иметь соответствующую квалификацию для выполнения конкретных функций и задач
- Получить разрешение на выполнение данных работ от руководства предприятия
- Осведомлены о нормах федерального/национального законодательства
- Перед началом работы: специалист обязан прочесть и понять все инструкции, приведенные в руководстве по эксплуатации, дополнительной документации, а также изучить сертификаты (в зависимости от применения).
- Следование инструкциям и соблюдение основных условий

2.2 Использование по назначению

Калькулятор пара – это компьютер для расчета параметров массы и энергии в потоке пара. Прибор с питанием от сети предназначен для использования в промышленных условиях.

- Изготовитель не несет никакой ответственности за ущерб, ставший следствием неправильного использования или использования не по назначению. Запрещается каким-либо образом переоборудовать или модифицировать прибор.
- Прибор можно эксплуатировать только после монтажа.

2.3 Безопасность рабочего места

Во время работы с прибором:

 Используйте средства индивидуальной защиты в соответствии с федеральными/ государственными нормативными требованиями.

2.4 Безопасность при эксплуатации

Опасность травмирования.

- При эксплуатации прибор должен находиться в технически исправном и отказоустойчивом состоянии.
- Ответственность за отсутствие помех при эксплуатации прибора несет оператор.

Экологические требования

Постоянное воздействие паровоздушных смесей на пластмассовый корпус может стать причиной его повреждения.

- ▶ При возникновении каких-либо вопросов обратитесь в региональное торговое представительство Endress+Hauser за разъяснениями.
- При необходимости использовать прибор в области, требующей дополнительной сертификации, см. информацию, приведенную на паспортной табличке.

2.5 Безопасность изделия

Благодаря тому, что прибор разработан в соответствии с передовой инженернотехнической практикой, он удовлетворяет современным требованиям безопасности, прошел испытания и поставляется с завода в состоянии, безопасном для эксплуатации.

Прибор соответствует общим требованиям в отношении безопасности и законодательным требованиям. Также он соответствует директивам EC, указанным в декларации соответствия EC, применимой к данному прибору. Endress+Hauser подтверждает указанное соответствие нанесением маркировки CE на прибор.

2.6 Безопасность информационных технологий

Гарантия действует только в том случае, если установка и использование устройства производится согласно инструкциям, изложенным в Руководстве по эксплуатации. Устройство оснащено механизмом обеспечения защиты, позволяющим не допустить внесение каких-либо непреднамеренных изменений в установки устройства.

Безопасность информационных технологий соответствует общепринятым стандартам безопасности оператора и разработана с целью предоставления дополнительной защиты устройства, в то время как передача данных прибора должна осуществляться операторами самостоятельно.

3 Идентификация

3.1 Обозначение прибора

3.1.1 Заводская табличка

Сравните заводскую табличку прибора со следующим рисунком.

- 🖻 1 Заводская табличка прибора (пример)
- 1 Обозначение прибора
- 2 Код заказа и серийный номер
- 3 Сетевое напряжение
- 4 Потребляемая мощность
- 5 Версия программного обеспечения
- 6 Сертификаты, при наличии
- 7 Диапазон температуры окружающей среды
- 8 Версия прибора
- 9 Прибор защищен двойным или усиленным уплотнением
- 10 Место и год изготовления

3.1.2 Серийный номер на передней части прибора

🖻 2 Серийный номер на передней части прибора

3.2 Комплект поставки

В комплект поставки калькулятора пара входят следующие компоненты:

- калькулятор пара (полевой корпус);
- печатный экземпляр краткого руководства по эксплуатации;
- опционально: 3 соединительных зажима (5 позиций в каждом экземпляре);
- опциональный интерфейсный кабель и комплект дисков DVD с программным обеспечением FieldCare Device Setup для настройки параметров;
- опционально: программное обеспечение Field Data Manager MS20;
- опционально: крепеж для монтажа на DIN-рейку, монтажа на панели, монтажа на трубопроводе;
- опционально: защита от перенапряжения.

См. описание аксессуаров, специально предназначенных для прибора, в разделе «Аксессуары» руководства по эксплуатации.

3.3 Сертификаты и свидетельства

Калькулятор пара соответствует общим требованиям к калькуляторам пара в соответствии с правилами OIML R75 и стандартом EN-1434.

Согласно европейскому законодательству калькуляторы пара не подлежат обязательной проверке. Однако сертификация в рамках проверки индивидуальной точки измерения возможна. Кроме того, в настоящее время поданы заявки на получение национальных сертификатов соответствия для прибора.

Маркировка СЕ, декларация о соответствии

Прибор разработан в соответствии с современными требованиями по безопасности, прошел испытания и поставляется с завода в безопасном для эксплуатации состоянии. Прибор соответствует требованиям действующих стандартов и правил в соответствии со стандартом EN 61010-1 («Требования по безопасности электрического оборудования для измерения, контроля и лабораторного использования»).

Следовательно, прибор, описанный в настоящем руководстве по эксплуатации, соответствует законодательным требованиям директив ЕС. Изготовитель подтверждает успешные испытания прибора нанесением маркировки СЕ.

4 Монтаж

4.1 Приемка, транспортировка, хранение

Соблюдение допустимых экологических норм и условий хранения является обязательным требованием. Точные технические характеристики приведены в разделе «Техническое описание» руководства по эксплуатации.

4.1.1 Приемка

При получении товара проверьте следующие позиции.

- Имеются ли повреждения на упаковке или содержимом?
- Поставка осуществлена в полном объеме? Сравните комплект поставки со сведениями, которые указаны в бланке заказа.

4.1.2 Транспортировка и хранение

Соблюдайте следующие правила.

- Упакуйте прибор таким образом, чтобы надежно защитить его от ударов во время хранения и транспортировки. Оптимальную защиту обеспечивает оригинальная упаковка.
- Допустимая температура хранения составляет –40 до +85 °C (–40 до +185 °F). Хранить прибор при температуре, которая близка к предельно допустимой, можно в течение ограниченного времени (не более 48 часов).

4.2 Размеры

🖻 3 Размеры прибора в мм (дюймах)

🗉 4 Размеры пластины для монтажа на стену, трубопровод и панель в мм (дюймах)

💽 5 Размеры выреза в панели в мм (дюймах)

4.3 Условия монтажа

С использованием соответствующих аксессуаров прибор в полевом корпусе можно монтировать на стену, на трубу, на панель или на DIN-рейку. ¹⁾.

Ориентация прибора обусловливается только читаемостью значений, отображаемых на дисплее. Подключения и выходы находятся в нижней части прибора. Кабели подключаются через кодированные клеммы.

Диапазон рабочей температуры: -20 до 60 °С (-4 до 140 °F).

Дополнительные сведения см. в разделе «Технические характеристики».

УВЕДОМЛЕНИЕ

Перегрев прибора вследствие недостаточного охлаждения

 Во избежание аккумуляции тепла необходимо обеспечить достаточное охлаждение прибора. При работе прибора в верхней части допустимого температурного диапазона сокращается срок службы дисплея.

4.4 Монтаж

4.4.1 Настенный монтаж

- 2. Прикрепите прибор к монтажной пластине и зафиксируйте его сзади с помощью 4 винтов.
- 3. Закрепите монтажную пластину на стене с помощью 4 винтов.

¹⁾ Приборы с сертификатом UL можно монтировать только на панель или накладным способом. Endress+Hauser

4.4.2 Монтаж на панели

1. Сделайте в панели вырез необходимого размера. Размеры: → 🗟 5, 🖺 12.

🖻 8 Монтаж на панели

Прикрепите уплотнение (поз. 1) к корпусу.

🖻 9 Подготовка монтажной пластины к монтажу на панели

Вверните резьбовые стержни (поз. 2) в резьбовые отверстия монтажной пластины (размеры: → 🖻 4, 🗎 12).

🖻 10 🛛 Монтаж на панели

Вставьте прибор в вырез панели спереди и прикрепите монтажную пластину к прибору сзади, используя 4 прилагаемых винта (поз. 3).

5. Закрепите прибор на месте, затянув резьбовые стержни.

4.4.3 Опорная рейка/DIN-рейка (согласно EN 50 022)

A0014176

🖻 11 Подготовка к монтажу на DIN-рейку

Прикрепите к прибору переходник для монтажа на DIN-рейку (поз. 1): воспользуйтесь прилагаемыми винтами (поз. 2) и разомкните зажимы для DINрейки.

🖻 12 Монтаж на DIN-рейке

Прикрепите прибор к DIN-рейке спереди и сомкните зажимы для DIN-рейки.

4.4.4 Монтаж на трубопроводе

🖻 13 Подготовка к монтажу на трубопроводе

Пропустите стальные ленты сквозь отверстия монтажной пластины (размеры: → 🕢 4, 🗎 12) и закрепите их на трубе.

🖻 14 Монтаж на трубопроводе

Прикрепите прибор к монтажной пластине и зафиксируйте его с помощью 4 винтов из комплекта поставки.

4.5 Руководство по монтажу датчика (датчиков) температуры

🖻 15 🛛 Виды монтажа датчиков температуры

- А Для кабелей с небольшим поперечным сечением проводников наконечник датчика должен
- В находиться на оси трубопровода или чуть дальше (L)
- C DНаклонная ориентация

Глубина погружения термометра влияет на его точность. Недостаточная глубина погружения приводит к ошибкам измерения, обусловленным переносом тепла через присоединение к процессу и стенку резервуара. Поэтому для монтажа в трубопроводе рекомендуемая глубина погружения в идеальном случае соответствует половине диаметра трубы.

- Возможные варианты монтажа: трубопроводы, резервуары и другие компоненты технологической установки.
- Минимально допустимая глубина погружения = 80 до 100 мм (3,15 до 3,94 дюйм).
 Глубина погружения должна превышать диаметр термогильзы не менее чем в 8 раз.
 Пример: диаметр термогильзы 12 мм (0,47 дюйм) х 8 = 96 мм (3,8 дюйм).
 Рекомендуемая стандартная глубина погружения составляет 120 мм (4,72 дюйм).

Размещая прибор в трубопроводе малого номинального диаметра, следует убедиться в том, что конец термогильзы вводится в технологическую среду на достаточную глубину, выступая за ось трубы (→ 15, 15, 16, поз. А и В). Другой вариант – диагональный монтаж (→ 15, 16, 18, поз. С и D). При определении глубины погружения или глубины монтажа необходимо учитывать все параметры термометра и технологической среды, подлежащей измерению (например, скорость потока и рабочее давление).

Обращайтесь также к рекомендациям по монтажу EN1434-2 (D), рис. 8.

4.6 Руководство по монтажу датчика давления

🖻 16 Организация процесса измерения давления в паровой среде

- 1 Датчик давления
- 2 Отсечное устройство
- 3 U-образный водяной карман
- 4 О-образный водяной карман
- Смонтируйте датчик давления так, чтобы трубка водяного кармана находилась выше точки отбора.
 Водяной карман позволяет понизить температуру почти до температуры окружающей среды.
- Перед вводом в эксплуатацию заполните трубку водяного кармана жидкостью.

5 Подключение проводов

5.1 Инструкция по подключению

А ОСТОРОЖНО

Опасность! Электрическое напряжение!

• Все работы по подключению необходимо выполнять при обесточенном приборе.

ВНИМАНИЕ

Обратите внимание на предоставленную дополнительную информацию.

- Перед вводом в эксплуатацию убедитесь в том, что сетевое напряжение соответствует требованиям, указанным на заводской табличке.
- В здании следует предусмотреть соответствующий размыкатель цепи или автоматический выключатель. Этот выключатель должен находиться рядом с прибором (под рукой). Рядом с ним следует нанести его наименование.
- Силовой кабель необходимо оснастить элементом защиты от перегрузки (номинальный ток ≤ 10 А).

При монтаже калькулятора пара и связанных с ним компонентов соблюдайте общие указания, согласно стандарту EN 1434 (часть 6).

5.2 Краткое руководство по подключению проводов

Назначение клемм

- i
- При измерении перепада температуры /Т датчик температуры конденсата должен быть подключен к клеммам T Warm, а датчик температуры пара – к клеммам T Cold.
 - При измерении перепада температуры /р датчик температуры конденсата должен быть подключен к клеммам T Warm.

Клемма	Назначение клемм	Вход	
1	Питание термометра сопротивления (+)	Температура	
2	Питание термометра сопротивления (-)	 (Опционально: термометр сопротивления или токовый 	
5	Датчик термометра сопротивления (+)	вход)	
6	Датчик термометра сопротивления (-)		
52	Вход + 0/4 до 20 мА		
53	Заземление для входа 0/4 до 20 мА		
3	Питание термометра сопротивления (+)	Давление	
4	Питание термометра сопротивления (-)		
7	Датчик термометра сопротивления (+)		
8	Датчик термометра сопротивления (-)		
54	Вход + 0/4 до 20 мА		
55	Заземление для входа 0/4 до 20 мА		
10	«+» импульсного входа (напряжение)	Расход (Опционально: импульсный или токовый вход)	
11	«-» импульсного входа (напряжение)		
50	Токовых импульсов + 0/4 до 20 мА (ЧИМ)		
51	Заземление для входа 0/4 до 20 мА (сигнал расхода)		
80	«+» цифрового входа 1 (вход переключателя)	• Запуск тарифного счетчика 1	
81	«-» цифрового входа (клемма 1)	Синхронизация времениБлокировка прибора	
82	«+» цифрового входа 2 (вход переключателя)	 Запуск тарифного счетчика 2 Синхронизация времени Блокировка прибора 	
81	«-» цифрового входа (клемма 2)		
		Выходы	
60	«+» импульсного выхода 1 (с открытым коллектором)	Счетчик энергии, объема или	
61	«-» импульсного выхода 1 (с открытым коллектором)	тарифа. Альтернативно: предельные значения/	
62	«+» импульсного выхода 2 (с открытым коллектором)	аварийные сигналы	
63	«-» импульсного выхода 2 (с открытым коллектором)	1	
70	+ 0/4 до 20 мА/импульсный выход	Текущие значения (например,	
71	- 0/4 до 20 мА/импульсный выход	 мощности) или значения счетчика (например, энергии) 	

13	Замыкающее реле (NO) Предельные значения,	
14	Замыкающее реле (NO)	аварииные сигналы
23	Замыкающее реле (NO)	
24	Замыкающее реле (NO)	
90	Источник питания 24 В для датчика (LPS)	Источник питания 24 В
91	Заземление источника питания	(например, источник питания для датчика)
		Источник питания
L/+	L для перем. тока «+» для пост. тока	
N/-	N для перем. тока «-» для пост. тока	

5.2.1 Открывание корпуса

18 Открывание корпуса прибора

- 1 Указание назначения клемм
- 2 Клеммы

5.3 Подключение датчиков

5.3.1 Расход

Датчики расхода с внешним источником питания

🖻 19 Подключение датчика расхода

A0013521

- А Датчики импульсов напряжения или контактные датчики, включая типы IB, IC, ID, IE согласно стандарту EN 1434
- В Токовые импульсы
- С Сигнал 0/4–20 мА

Датчики расхода с питанием от калькулятора пара

🗟 20 Подключение активных датчиков расхода

- А 4-проводной датчик
- В 2-проводной датчик

Настройки для датчиков расхода с импульсным выходом

Вход для датчиков импульсов напряжения и контактных датчиков делится на различные типы в соответствии со стандартом EN 1434 и обеспечивает питание для коммутирующих контактов.

Импульсный выход датчика расхода	Настройка на Rx33	Электрическое подключение	Примечания
Механические контакты	Значение параметра Pulse ID/IE до 25 Гц	А Датчик В Rx33	В качестве альтернативы можно выбрать вариант Pulse IB/IC+U до 25 Гц. В этом случае сила тока на контактах будет меньше (примерно 0,05 мА вместо 9 мА). Преимущество: низкое энергопотреблен ие. Недостаток: повышенная восприимчивост ь к помехам.
Открытый коллектор (NPN)	Значение параметра Pulse ID/IE до 25 Гц или до 12,5 кГц	А Датчик В Rx33	В качестве альтернативы можно выбрать вариант Pulse IB/IC+U. В этом случае сила тока на транзисторе будет меньше (примерно 0,05 мА вместо 9 мА). Преимущество: низкое энергопотреблен ие. Недостаток: повышенная восприимчивост ь к помехам.

Импульсный выход датчика расхода	Настройка на Rx33	Электрическое подключение	Примечания
Активное напряжение	Pulse IB/IC+U	А	Порог переключения находится между 1 В и 2 В
Активный ток I0	Pulse I	А Датчик В Rx33	Порог переключения находится между 8 мА и 13 мА
Датчик Namur (согласно стандарту EN 60947-5-6)	Значение параметра Pulse ID/IE до 25 Гц или до 12,5 кГц	А + 10 В В В В В В В В В В В В В В В В В В В	Контроль короткого замыкания или обрыва цепи не выполняется.

Датчики импульсов напряжения и	≤ 1 В соответствует низкому уровню	Плавающие
преобразователи соответствуют классам IB и IC	≥ 2 В соответствует высокому уровню	контакты, релейные
(низкий порог переключения, слабый ток)	U макс. 30 В, U без нагрузки: 3 до 6 В	преобразователи
Преобразователи классов ID и IE для более сильных токов и мощных источников питания	≤ 1,2 мА соответствует низкому уровню ≥ 2,1 мА соответствует высокому уровню U без нагрузки: 7 до 9 В	

Расходомеры Endress+Hauser

Датчики расхода с выходом ЧИМ или	Prowirl 72 Prosonic Flow 92F	EngyCal
импульсным выходом Proline Prowirl 72 и Proline Prosonic Flow 92F	1+ A 2	90 91 50 51
	1 + 2 8 3+ 4	90 91 91 10 11
	А = ЧИМ В = импульсный выход: клеми Альтернативный способ – от е	долчня ы 90/91 используются для питания преобразователя. нешнего блока питания

Датчик расхода с сигналом	Prowirl 73	EngyCal
температуры и импульсным выхолом:	1+	90
Proline Prowirl 73	A a	J 91
	Τ΄ Δ	52
	B 3+	
	- 4	11
	А = питание преобразователя, В = импульсный выход (откры	сигнал температуры (0/4 до 20 мА) тый коллектор) для учета объемного расхода

Датчики	+ 90
дифференциального	
давления	
Deltabar M PMD55,	└── 51
Deltabar S PMD 70/75	A0014184

5.3.2 Температура

Чтобы обеспечить высокий уровень точности, рекомендуется использовать 4проводное подключение термометра сопротивления, поскольку это компенсирует погрешности измерения, обусловленные местом установки датчиков или длиной соединительных кабелей.

Датчики и преобразователи температуры Endress+Hauser

Подключение преобразователя температуры ТМТ181, ТМТ121	1 / + 90 2 / 52 53
11011121	۵0114531
	xx 00.01
	Клеммы 90, 91: источник питания преобразователя
	Клеммы 52, 53: температура

5.3.3 Давление

Преобразователь давления производства компании Endress+Hauser Cerabar M, Cerabar S

Cerabar M, Cerabar S	+ 90
	54
	A0014532
	Клеммы 90, 91: источник питания преобразователя Клеммы 54, 55: давление

5.4 Выходы

5.4.1 Аналоговый выход

Этот выход можно использовать как токовый выход 0/4 до 20 мА или как импульсный выход напряжения. Выход гальванически развязан. Назначение клемм, → 🗎 20.

5.4.2 Реле

Возможно срабатывание двух реле в случае вывода сообщений о неисправностях или выхода за рамки предельных значений.

Реле 1 или 2 можно выбрать в меню Setup \rightarrow Advanced setup \rightarrow System \rightarrow Fault switching.

Предельные значения устанавливаются в меню **Setup** → **Advanced setup** → **Application** → **Limits**. Возможные настройки для предельных значений описаны в разделе «Предельные значения» руководства по эксплуатации.

5.4.3 Импульсный выход

Уровень напряжения

- 0 до 2 В соответствует низкому уровню.
- 15 до 20 В соответствует высокому уровню.

Максимальный выходной ток: 22 мА.

5.4.4 Выход открытого коллектора

Два цифровых выхода можно использовать как выходы состояния или импульсные выходы. Выбор можно сделать в меню Setup → Advanced setup или Expert → Outputs → Open collector

5.5 Связь

Интерфейс USB всегда активен и может использоваться независимо от других интерфейсов. Параллельная работа нескольких дополнительных интерфейсов, например цифровой шины и Ethernet, не предусмотрена.

5.5.1 Ethernet TCP/IP (опционально)

Интерфейс Ethernet гальванически развязан (испытательное напряжение: 500 В). Для подключения интерфейса Ethernet можно использовать стандартный соединительный кабель (например, CAT5E). Для этой цели предусмотрено специальное кабельное уплотнение, с помощью которого можно вводить предварительно терминированные кабели внутрь корпуса. С помощью интерфейса Ethernet прибор может быть подключен к офисному оборудованию через концентратор, коммутатор или непосредственно.

- Стандартный вариант: 10/100 Base T/TX (IEEE 802.3)
- Гнездо: RJ-45
- Максимально допустимая длина кабеля: 100 м

🖻 21 Подключение Ethernet TCP/IP, Modbus TCP

- 1 Ethernet, RJ45
- 2 Кабельный ввод для кабеля Ethernet

5.5.2 Modbus TCP (опционально)

Интерфейс Modbus TCP применяется для подключения прибора к системам более высокого уровня с целью передачи всех значений измеряемой величины и параметров процесса. Интерфейс Modbus TCP физически идентичен интерфейсу Ethernet → 📧 21, 🖺 31.

5.5.3 Modbus RTU (опционально)

Интерфейс Modbus RTU (RS-485) гальванически развязан (испытательное напряжение: 500 В) и используется для подключения прибора к системам более высокого уровня с целью передачи всех измеренных значений и параметров процесса. Подключение осуществляется через 3-контактный разъем в крышке корпуса.

🖻 22 Подключение интерфейса Modbus RTU

5.5.4 M-Bus (опционально)

Интерфейс M-Bus (Meter Bus) гальванически развязан (испытательное напряжение: 500 В) и используется для подключения прибора к системам более высокого уровня с целью передачи всех измеренных значений и параметров процесса. Подключение осуществляется через 3-контактный разъем в крышке корпуса.

🖻 23 Подключение интерфейса M-Bus

5.6 Проверка после подключения

После выполнения электрических подключений для прибора необходимо выполнить перечисленные ниже проверки.

Состояние прибора и соответствие техническим требованиям	Примечания
Прибор и кабель не повреждены (внешний осмотр)?	-
Электрическое подключение	Примечания
Соответствует ли сетевое напряжение техническим данным, указанным на заводской табличке?	100 до 230 V AC/DC (±10 %) (50/60 Гц) 24 V DC (-50 % / +75 %) 24 V AC (±50 %) 50/60 Гц
Снятие натяжения при прокладывании кабелей обеспечено в достаточной мере?	-
Кабели электропитания и сигнальные кабели подключены должным образом?	См. электрическую схему, которая изображена на корпусе

6 Управление

6.1 Общие указания в отношении управления

Калькулятор пара можно настроить с помощью кнопок или ПО FieldCare.

Программное обеспечение для управления, а также интерфейсный кабель можно приобрести в качестве опции заказа, т. е. эти компоненты не входят в состав основного комплекта поставки.

Настройка прибора блокируется посредством аппаратной блокировки → 🗎 35, кода пользователя или цифрового входа.

Подробные сведения см. в разделе «Защита доступа» руководства по эксплуатации.

6.2 Дисплей и элементы управления

🖻 24 🛛 Дисплей и элементы управления прибора

- 1 Зеленый светодиод («управление»)
- 2 Красный светодиод («индикатор неисправности»)
- 3 Подключение USB для настройки
- 4 Кнопки управления: «-», «+», Е
- 5 Матричный дисплей, 160 х 80 точек
- Зеленый светодиод указывает наличие или отсутствие напряжения. Красный светодиод указывает наличие аварийного сигнала/ошибки. При наличии питания на приборе зеленый светодиод горит постоянно.

Редкое мигание красного светодиода (примерно 0,5 Гц): прибор переведен в режим загрузки.

Частое мигание красного светодиода (примерно 2 Гц): при нормальном рабочем режиме требуется техническое обслуживание. При обновлении ПО: активна передача данных.

Красный светодиод горит непрерывно: ошибка прибора.

6.2.1 Элементы управления

3 кнопки управления: «-», «+», Е

Функция «выход/возврат»: нажмите кнопки «-» и «+» одновременно.

Функция ввода/подтверждения: нажатие кнопки Е

Аппаратная блокировка

🖻 25 Аппаратная блокировка

1 Переключатель блокировки на тыльной стороне крышки корпуса

6.2.2 Отображение данных

🖻 26 Отображение данных калькулятора пара (пример)

- 1 Отображение группы 1
- 2 Отображение группы 2

6.2.3 **IIO FieldCare Device Setup**

Для настройки прибора с помощью программного обеспечения FieldCare Device Setup подключите прибор к ПК через интерфейс USB.

Установление соединения

1. Запустите ПО FieldCare.

- 2. Подключите прибор к компьютеру через USB.
- 3. Создайте проект с помощью меню File/New.
- 4. Выберите режим связи DTM (CDI Communication USB).
- 5. Добавьте прибор EngyCal[®] RS33.
- 6. Нажмите кнопку Establish connection.
- 7. Начните настройку.

Выполните остальные настройки в соответствии с настоящим руководством по эксплуатации прибора. Меню Setup в полном составе (то есть все параметры, перечисленные в настоящем руководстве по эксплуатации) имеется также в интерфейсе ПО FieldCare Device Setup.

УВЕДОМЛЕНИЕ

Произвольное переключение выходов и реле

 Во время настройки с помощью ПО FieldCare возможен переход прибора в неопределенное состояние! Это может стать причиной произвольного переключения выходов и реле.

6.3 Структура управления

Полный обзор структуры управления, включая все настраиваемые параметры, см. в приложении к руководству по эксплуатации.

Sprache/Language F	Раскрывающийся список всех доступных языков управления. Выберите язык для прибора.
--------------------	---

Меню Display/operation	 Выбор группы для отображения (с автоматическим чередованием или фиксированной группы для отображения) Настройка яркости и контрастности дисплея Отображение сохраненных анализов (дневного, месячного, годового, даты выставления счета, сумматора)
------------------------	---

Меню Setup	В меню Setup можно настроить параметры для ускоренного ввода прибора в эксплуатацию. Меню Advanced setup содержит все параметры, которые важны для настройки функций прибора.	
	 Единицы измерения Значимость импульса, значение Дата и время Давление Аdvanced setup (параметры, не об функций прибора) Особые параметры настройки моз помощью меню Expert. 	Параметры для ускоренного ввода в эксплуатацию язательные для базовых жно конфигурировать с

Меню Diagnostics	Сведения о приборе и сервисные функции для быстрой проверки прибора.
	 Диагностические сообщения и список событий Журнал событий Сведения о приборе Моделирование Измеренные значения, выходы

Меню Expert	Меню Expert позволяет получить доступ ко всем опциям управления прибора, включая тонкую настройку и сервисные функции.
	 Переход непосредственно к необходимому параметру с помощью функции Direct Access (только на приборе) Сервисный код для отображения сервисных параметров (только для компьютерного управляющего ПО) Система (настройки) Входы Выходы Применение Диагностика

7 Ввод в эксплуатацию

Перед вводом прибора в работу убедитесь в том, что выполнены все проверки после подключения.

Контрольный список, раздел «Проверка после подключения», → 🖺 32.

После подачи рабочего напряжения подсвечивается дисплей и загорается зеленый светодиод. Теперь прибор готов к работе и может быть настроен с помощью кнопок или конфигурационного ПО FieldCare → 🗎 35.

Снимите защитную пленку с дисплея, так как наличие этой пленки негативно повлияет на читаемость дисплея.

7.1 Ускоренный ввод в эксплуатацию/запуск

Стандартный счетчик массы/энергии пара вводится в эксплуатацию всего за несколько минут, после настройки пяти рабочих параметров в меню «Настройки».

Предварительные условия для ускоренного ввода в эксплуатацию

- Преобразователь расхода с импульсным выходом.
- Термометр сопротивления с 4-проводной схемой непосредственного подключения.
- Датчик абсолютного давления с токовым выходом 4 до 20 мА

Меню/параметры настройки

- Units: выберите тип единиц измерения (СИ/США).
- Pulse value: выберите единицу значения импульса для преобразователя расхода.
- Value: укажите значение импульса для датчика расхода.
- Date/time: установите дату и время.
- Pressure: установите диапазон измерения для датчика давления.

Теперь прибор работает и готов к учету массы пара и тепловой энергии.

Можно настроить такие функции прибора, как регистрация данных, тарифная функция, подключение к шине и масштабирование токовых входов для расхода или температуры, с помощью меню **Advanced setup** или меню **Expert**. Описание этих меню можно найти в руководстве по эксплуатации.

Здесь можно также найти настройки для входов (например, при подключении датчика относительного давления, преобразователя расхода с токовым выходом и т. п.).

Inputs/flow

Выбор типа сигнала и указание начала и конца диапазона измерения (для токового сигнала) или значение импульса для преобразователя расхода.

Inputs/temperature: Выберите тип сигнала и укажите тип подключения или начало и конец диапазона измерения (для токовых сигналов).

Inputs/Pressure

Выберите тип сигнала и единицу измерения давления (абсолютного или относительного), укажите начало и конец диапазона измерения.

71561586

www.addresses.endress.com

