Technical Information Levelflex FMP55

Guided wave radar

Interface measurement in liquids

Application

- Rod, rope or coax probe
- Process connection: Flange
- Process temperature: -50 to +200 °C (-58 to +392 °F)
- Process pressure: -1 to +40 bar (-14.5 to +580 psi)
- Maximum measuring range: Rod 4 m (13 ft); rope 10 m (33 ft); coax 6 m (20 ft)
- Accuracy: ±2 mm (±0.08 in)
- International explosion protection certificates; marine approval; EN10204-3.1
- Linearity protocol (3-point, 5-point)

Your benefits

- Reliable measurement even for changing product and process conditions
- HistoROM data management for easy commissioning, maintenance and diagnostics
- Highest reliability due to Multi-Echo Tracking
- Hardware and software developed according to IEC 61508 (up to SIL3)
- Seamless integration into control or asset management systems
- Intuitive user interface in national languages
- Bluetooth® wireless technology for commissioning, operation and maintenance via free iOS / Android app SmartBlue
- Easy proof test for SIL
- Heartbeat Technology™

Table of contents

Important document information		Process pressure range	
Symbols used	. 4	Dielectric constant (DC) and conductivity Extension of the rope probes due to temperature	
Function and system design	. 5		
Measuring principle	. 5	Mechanical construction	50
Measuring system	. 8	Dimensions	50
J		Probe length tolerances	53
Innut	11	Weight	54
Input		Materials: Housing GT18 (stainless steel, corrosion-	
Measured variable		resistant)	55
Measuring range		Materials: GT19 housing (plastic)	
Blocking distance	12	Materials: GT20 housing (die-cast aluminum, powder-	
Measuring frequency spectrum	12	3	57
		Materials: Process connection	59
Output	13	Materials: Probe	60
Output signal	I	Materials: Mounting bracket	
Signal on alarm		Materials: Adapter and cable for remote sensor	62
•	14		
Linearization		Materials: Weather protection cover	05
Galvanic isolation	14		
Protocol-specific data	15	Operability	64
		Operating concept	
Power supply	20	Local operation	
Terminal assignment	20	Operation with remote display and operating module	
Device plugs		FHX50	65
Power supply		Operation via Bluetooth® wireless technology	
Power consumption		Remote operation	
Current consumption	-	Integration in tank gauging system	
Power supply failure	33	SupplyCare inventory management software	
Potential equalization	33	Supply care inventory management software	/ 1
Terminals	33		
	33	Certificates and approvals	74
Cable entries		CE mark	74
Cable specification		RoHS	74
Overvoltage protection	34	RCM-Tick marking	74
		Ex approval	
Performance characteristics	35	Dual seal according to ANSI/ISA 12.27.01	
Reference operating conditions	35	Functional safety	
Reference accuracy	35	AD2000	
Resolution	36	NACE MR 0175 / ISO 15156	
Response time		NACE MR 0103	
Influence of ambient temperature	37	ASME B31.1 and B31.3	
inflactice of difform temperature	٥,	Pressure equipment with allowable pressure	, 1
		≤ 200 bar (2 900 psi)	75
Installation	38		75
Installation conditions	38		
		Radio approval	75 75
Operating conditions: Environment	46	CRN approval	
		Test, certificate	
Ambient temperature		Hard-copy product documentation	
Ambient temperature limits	46	Other standards and guidelines	77
Storage temperature	48		
Climate class	48	Ordering information	78
Altitude according to IEC61010-1 Ed.3	48	Ordering information	
Degree of protection	48	3-point linearity protocol	
Vibration resistance		5-point linearity protocol	
Cleaning the probe	48	Customer-specific configuration	
Electromagnetic compatibility (EMC)	48		
-		Tagging (TAG)	ΩŢ
Process	49		
Process temperature range		Application packages	81
I TOCCOS LETTIDETALATE TATIAE	- 7		0.4
g	17	Heartbeat Diagnostics	81

2

Levelflex FMP55

Heartbeat Verification	
Accessories Device-specific accessories Communication-specific accessories Service-specific accessories System components	84 91 92
Supplementary documentation Brief Operating Instructions (KA) Operating Instructions (BA) Safety Instructions (XA) Functional Safety Manual (FY/SD)	92

Important document information

Symbols used

Safety symbols

This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

WARNING

This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

This symbol contains information on procedures and other facts which do not result in personal injury.

Electrical symbols

Direct current

Alternating current

Direct current and alternating current

Ground connection

A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.

Protective earth (PE)

Ground terminals that must be connected to ground prior to establishing any other connections. The ground terminals are located on the inside and outside of the device.

- Interior ground terminal; protective earth is connected to the mains supply.
- Exterior ground terminal; device is connected to the plant grounding system.

Symbols for certain types of information and graphics

Permitted

Procedures, processes or actions that are permitted

X Forbidden

Procedures, processes or actions that are forbidden

Indicates additional information

Reference to documentation

Reference to graphic

Notice or individual step to be observed

1., 2., 3.

Series of steps

Result of a step

1, 2, 3, ...

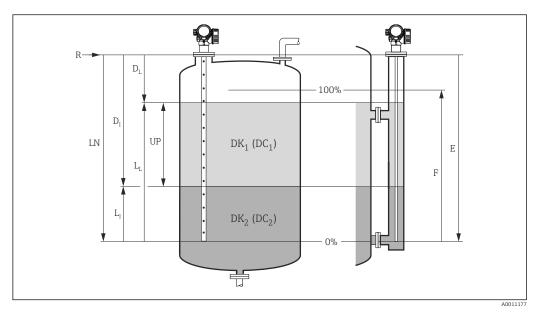
Item numbers

A. B. C. ...

Views

Temperature resistance of the connection cables

Specifies the minimum value of the temperature resistance of the connection cables


Function and system design

Measuring principle

General principles

The Levelflex is a "downward-looking" measuring system that functions according to the time-of-flight method (ToF). The distance from the reference point to the product surface is measured. High-frequency pulses are injected to a probe and led along the probe. The pulses are reflected by the product surface, received by the electronic evaluation unit and converted into level information. This method is also known as TDR (time domain reflectometry).

In interface measurement, this method is combined with capacitance measurement.

 \blacksquare 1 Parameters for level and interface measurement with the guided wave radar

- R Reference point of measurement
- E Empty calibration (= zero)
- F Full calibration (= span)
- LN Probe length
- UP Thickness of upper medium
- DL Total distance to level
- LL Total level
- DI Distance to interface (distance from flange to DC_2)
- LI Interface level (distance from probe end to DC_1)
- DC1 Dielectric constant of upper medium
- DC2 Dielectric constant of lower medium
 - The reference point \mathbf{R} of the measurement is located at the process connection.

Dielectric constant

The dielectric constant (DC) of the medium directly affects the degree of reflection of the high-frequency pulses. In the case of large DC values, such as with water or ammonia, there is strong pulse reflection while, in the case of low DC values, such as with hydrocarbons, pulse reflection is weak.

Input

The reflected pulses are transmitted from the probe to the electronics. Here, a microprocessor evaluates the signals and identifies the level echo which was caused by the reflection of the high-frequency pulses at the product surface. This clear signal detection system benefits from over 30 years of experience with pulse time-of-flight procedures that have gone into the development of the PulseMaster® software.

The distance D to the product surface is proportional to the time of flight t of the impulse:

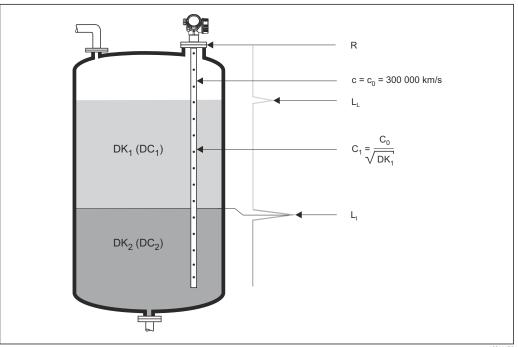
 $D = c \cdot t/2$.

with c being the speed of light.

Based on the known empty distance E, the level L is calculated:

L = E - D

The Levelflex has functions for interference echo suppression that can be activated by the user. They guarantee that interference echoes from internal fixtures and struts, for example, are not interpreted as level echoes.


Output

The Levelflex is preadjusted at the factory to the probe length ordered so that in most cases only the application parameters that automatically adapt the device to the measuring conditions need to be entered. For models with a current output, the factory adjustment for zero point E and span F is 4 mA and 20 mA, for digital outputs and the display module 0 % and 100 %. A linearization function with max. 32 points, based on a table entered either manually or semi-automatically, can be activated locally or remotely. This function allows the level to be converted into units of volume or mass, for example.

Interface measurement

When the high-frequency pulses hit the surface of the medium, only a percentage of the transmission pulse is reflected. In the case of media with a low DC_1 , in particular, the other part penetrates the medium. The pulse is reflected once more at the interface point to a second medium with a higher DC₂. The distance to the interface layer now can also be determined taking into account the delayed time-of-flight of the pulse through the upper medium.

In addition to this, FMP55 measures the capacitance of the probe. This enables interface measurements even if the second echo is missing due to an emulsion layer between the two phases.

- **₽** 2 Interface measurement with the guided radar
- ΙI Level complete
- Level interface
- Reference point of measurement

In addition, the following general conditions must be observed for interface measurement:

- The DC of the upper medium must be known and constant 1). The DC can be determined with the aid of the DC manual CP00019F or the "DC Values App". In addition, if the interface thickness is existing and known, the DC can be calculated automatically via FieldCare.
- The DC of the upper medium may not be greater than 10.
- The DC difference between the upper medium and lower medium must be >10.
- The upper medium must have a minimum thickness of 60 mm (2.4 in).
- For dielectric constants (DC values) of many media commonly used in various industries refer to:
 - the Endress+Hauser DC manual (CP01076F)
 - the Endress+Hauser "DC Values App" (available for Android and iOS)

When using the capacitive measurement of FMP55:

- Conductivity of the upper medium: $< 1 \mu S/cm$
- Conductivity of the lower medium: $> 100 \mu S/cm$

¹⁾ For FMP55: Under certain conditions measurement is possible even with a changing DC. For details please contact your Endress+Hauser representative.

Life cycle of the product

Design

- Universal measuring principle
- Measurement is unaffected by product properties
- Hardware and software developed according to SIL IEC 61508
- Genuine, direct interface measurement

Procurement

- As the global market leader in level measurement, Endress+Hauser guarantees the security of your investment
- Worldwide support and service

Installation

- No special tools are required
- Protection against reverse polarity
- Modern, detachable terminals
- Main electronics protected by a separate connection compartment

Commissioning

- Fast, menu-quided commissioning in just 6 steps
- Plain text display in local language reduces the risk of error or confusion
- Direct local access to all parameters
- Printed Brief Operating Instructions in the device onsite

Operation

- Redundant measurement for maximum measurement reliability, thanks to SensorFusion
- Multi-echo tracking: Reliable measurement thanks to self-learning echo search algorithms taking
 into account the short-term and long-term history and plausibility of the detected signals to
 suppress interference echoes.
- In accordance with NAMUR NE107

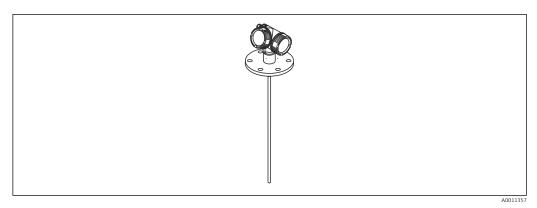
Maintenance

- HistoROM: Data backup for device settings and measured values
- Exact device and process diagnostics to assist fast decisions with clear information regarding remedial action
- Intuitive, menu-guided operating concept in local language saves costs for training, maintenance and operation
- $\, \blacksquare \,$ Cover of the electronics compartment can also be opened in the hazardous area

Retirement

- Order code translation for subsequent models
- RoHS-compliant (Restriction of certain Hazardous Substances), unleaded soldering of electronic components
- Environmentally friendly recycling approach

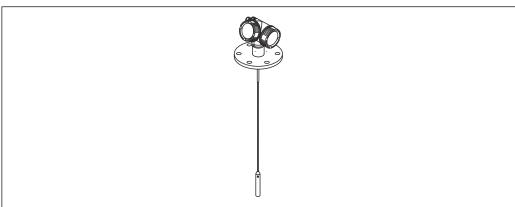
Measuring system


General notes on probe selection

- For interface measurement, ideally coax probes or rod probes are used in the bypass/stilling well.
- Coax probes are suitable for liquids with a viscosity of up to approx. 500 cst. The vast majority of liquefied gases can be measured with coax probes, from a dielectric constant of 1.4. Furthermore, installation conditions, such as nozzles, internal fixtures in the tank etc., have no effect on the measurement when a coax probe is used. A coax probe offers maximum EMC safety when used in plastic tanks.
- Rod or rope probes are not recommended for free-space installation in the tank.
 Rope probes may also be used in the bypass/stilling well if the distance to the ceiling (clearance) is not sufficient for the installation of a rod probe and if contact between the rope/end weight with the pipe wall can be ruled out (sufficient diameter, straight pipe).

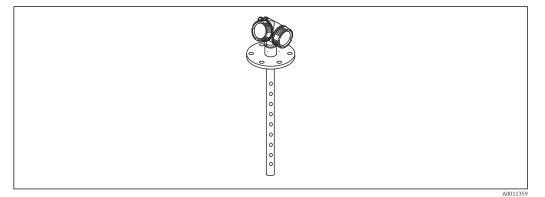
Probe selection

FMP55


For level measurement and interface measurement in liquids

₩ 3 Rod probe

Rod probe


- Maximum probe length 4 m (13 ft)
- Material: PFA>316L

€ 4 Rope probe with centering rod

Rope probe

- Maximum probe length 10 m (33 ft)
- Material: PFA>316L
- If the version with the remote probe is used, the maximum probe length that can be ordered is $7\,\mathrm{m}$ (23 ft).

₽ 5 Coax probe

- Coax probe

 Maximum probe length
 6 m (20 ft)

 Material:
 316L, multiple holes

Input

Measured variable

The measured variable is the distance between the reference point and the product surface.

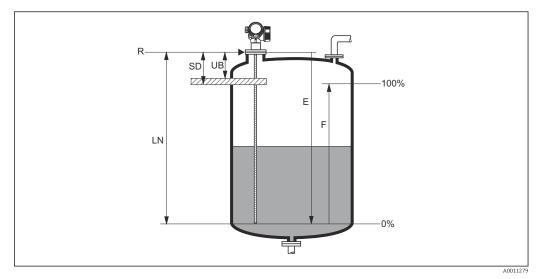
The level is calculated based on "E", the empty distance entered.

Optionally, the level can be converted to other variables (volume, mass) by linearization (32 points).

Measuring range

The maximum measuring range is:

- up to 10 m (33 ft) for rope probe in the bypass or stilling well
- up to 4 m (13 ft) for rod probe in the bypass or stilling well
- up to 6 m (20 ft) for coax probe



- The formation of buildup, particularly of moist products, can reduce the maximum possible measuring range.
- Due to the high rate of diffusion of ammonia, a gas-tight bushing ²⁾ is recommended for measurements in this medium.

²⁾ Optionally available for FMP55

Blocking distance

The upper blocking distance (= UB) is the minimum distance from the reference point of the measurement (mounting flange) to the maximum level.

- 6 Definition of blocking distance and safety distance
- R Reference point of measurement
- LN Probe length
- UB Upper blocking distance
- *E* Empty calibration (= zero)
- *F* Full calibration (= span)
- SD Safety distance

Blocking distance (factory setting):

- For coax probes: 0 mm (0 in)
- For rod and rope probes up to 8 m (26 ft): 200 mm (8 in)
- For rod and rope probes over 8 m (26 ft): 0.025 × probe length
- The specified blocking distances are factory-preset on delivery. These settings can be changed depending on the application.

A reliable measurement cannot be guaranteed within the blocking distance.

A safety distance SD can be defined in addition to the blocking distance. The device generates a warning if the level rises to enter this safety distance.

Measuring frequency spectrum

100 MHz to 1.5 GHz

Output

Output signal

HART

Signal coding:

FSK ±0.5 mA over current signal

■ Data transmission rate:

1200 Bit/s

• Galvanic isolation:

Yes

Bluetooth® wireless technology

• Device version:

Order code 610 "Accessory mounted", option NF "Bluetooth"

• Operation / configuration:

Via the *SmartBlue* app

• Range under reference conditions:

> 10 m (33 ft)

• Encryption:

Encrypted communication and password encryption prevent incorrect operation by unauthorized persons

PROFIBUS PA

Signal coding:

Manchester Bus Powered (MBP)

Data transmission rate:
 31.25 kBit/s, Voltage mode

Galvanic isolation:

Yes

FOUNDATION Fieldbus

Signal coding:

Manchester Bus Powered (MBP)

Data transmission rate:

31.25 kBit/s, Voltage mode

• Galvanic isolation:

Yes

Switch output

For HART devices, the switch output is available as an option.

Function

Open collector switch output

Switching behavior:

Binary (conductive or non-conductive), switches when the programmable switch-on point/switch-off point is reached

■ Failure mode:

Non-conductive

• Electrical connection data:

 $U = 16 \text{ to } 35 \ V_{DC}$, $I = 0 \text{ to } 40 \ mA$

■ Internal resistor:

 $R_{I} < 880 \Omega$

The voltage drop at this internal resistor must be taken into account when planning the configuration. For example, the resulting voltage at a connected relay must be sufficient to switch the relay.

■ Insulation voltages:

Floating, insulation voltage 1350 $\,V_{DC}$ in relation to power supply and 500 $\,V_{AC}$ ground

• Switch point:

User-programmable, separate for switch-on point and switch-off point

Switching delay:

User-programmable in the 0 to 100 s range, separate for switch-on point and switch-off point

Scan rate:

Corresponds to the measuring cycle

- Signal source / device variables:
 - Level linearized
 - Distance
 - Terminal voltage
 - Electronic temperature
 - Relative echo amplitude
 - Diagnostic values, advanced diagnostic blocks
 - Only for active interface measurement
- Signal source / device variables for active interface measurement:
 - Interface linearized
 - Interface distance
 - Upper interface distance
 - Relative interface amplitude
- Number of switch cycles:

Unlimited

Signal on alarm

Depending on the interface, failure information is displayed as follows:

- Current output
 - Choice of failure mode (in accordance with NAMUR Recommendation NE 43): Minimum alarm: 3.6 mA

Maximum alarm (= factory setting): 22 mA

- Failure mode with user-configurable value: 3.59 to 22.5 mA
- Local display
 - Status signal (as per NAMUR Recommendation NE 107)
 - Plain text display
- Operating tool via digital communication (HART, PROFIBUS PA, FOUNDATION Fieldbus) or service interface (CDI)
 - Status signal (as per NAMUR Recommendation NE 107)
 - Plain text display

Linearization

The device's linearization function allows the user to convert the measured value to any length or volume units. Linearization tables for calculating the volume in cylindrical vessels are preprogrammed into the device. Other tables of up to 32 value pairs can be entered manually or semi-automatically.

Galvanic isolation

All circuits for the outputs are galvanically isolated from each other.

Protocol-specific data

HART

Manufacturer ID	17 (0x11)
Device type ID	0x1122
HART specification	7.0
Device description files (DTM, DD)	Information and files under: www.endress.com www.fieldcommgroup.org
HART load	min. 250 Ω
HART device variables	The measured values can be freely assigned to the device variables.
	Measured values for PV (primary variable) Level linearized Distance Interface Interface Interface distance Upper interface thickness Electronic temperature Measured capacitance Relative echo amplitude Relative interface amplitude Measured values for SV, TV, QV (second, third and fourth variable) Level linearized Distance Interface linearized Interface distance Terminal voltage Electronic temperature Measured capacitance Absolute echo amplitude Relative echo amplitude Relative interface amplitude Relative interface amplitude Relative interface amplitude Calculated ε _r value
Supported functions	Burst modeAdditional transmitter status

Wireless HART data

Minimum starting voltage	17.5 V
Start-up current	4 mA
Starting time	80 s
Minimum operating voltage	17.5 V
Multidrop current	4.0 mA
Time for connection setup	30 s

PROFIBUS PA

Manufacturer ID	17 (0x11)
Ident number	0x1558
Profile version	3.02
GSD file	Information and files under:
GSD file version	www.endress.comwww.profibus.org
Output values	Analog Input: Level linearized Distance Interface Interface Interface distance Upper interface thickness Terminal voltage Electronic temperature Measured capacitance Absolute echo amplitude Relative echo amplitude Relative interface amplitude Relative interface amplitude Relative interface amplitude Exeluited Er value Digital Input: Extended diagnostic blocks Status output PFS Block
Input values	Analog Output: Analog value from PLC (for sensor block, external pressure and temperature) Analog value from PLC to be indicated on the display Digital Output:
	 Extended diagnostic block Level Limiter Sensor Block Measurement On Sensor Block Save History On Status output
Supported functions	 Identification & Maintenance Simple device identification via control system and nameplate Automatic Ident Number Adoption GSD compatibility mode with predecessor Levelflex M FMP4x Physical Layer Diagnostics Installation check of the PROFIBUS segment and the Levelflex M FMP4x using terminal voltage and message monitoring PROFIBUS upload/download Reading and writing parameters is up to ten times faster with PROFIBUS upload/download Condensed status Simplest and self-explanatory diagnostic information by categorizing diagnostic messages that occur

FOUNDATION Fieldbus

Manufacturer ID	0x452B48
Device type	0x1028
Device revision	0x01
DD revision	Information and files under:
CFF revision	www.endress.comwww.fieldcommgroup.org
Device Tester Version (ITK version)	6.0.1
ITK Test Campaign Number	IT085300
Link Master capability (LAS)	Yes

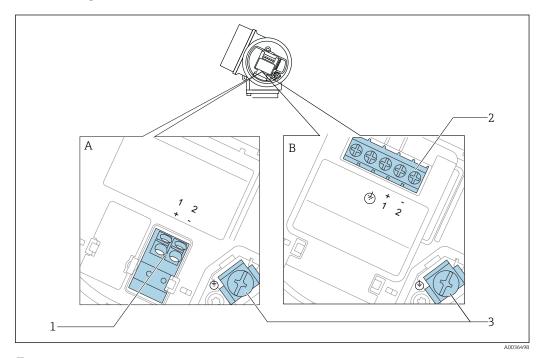
Choice of "Link Master" and "Basic Device"	Yes; Factory setting: Basic Device
Node address	Factory setting: 247 (0xF7)
Supported functions	The following methods are supported: Restart ENP Restart Setup Linearization Self Check
Virtual Communication Relationships (VCRs)	
Number of VCRs	44
Number of link objects in VFD	50
Permanent entries	1
Client VCRs	0
Server VCRs	10
Source VCRs	43
Sink VCRs	0
Subscriber VCRs	43
Publisher VCRs	43
Device Link Capabilities	
Slot time	4
Min. delay between PDU	8
Max. response delay	20

Transducer Blocks

Block	Contents	Output values
Setup Transducer Block	Contains all the parameters for standard commissioning	 Level or volume (channel (depending on the block configuration) Distance (channel 2)
Advanced Setup Transducer Block	Contains all the parameters for more accurate measurement configuration	No output values
Display Transducer Block	Contains parameters to configure the onsite display	No output values
Diagnostic Transducer Block	Contains diagnostic information	No output values
Advanced Diagnostic Transducer Block	Contains parameters for advanced diagnostics	No output values
Expert Configuration Transducer Block	Contains parameters that require the user to have in-depth knowledge of the operation of the device in order to configure the parameters appropriately	No output values
Expert Information Transducer Block	Contains parameters that provide information about the state of the device	No output values
Service Sensor Transducer Block	Contains parameters that can only be accessed by Endress+Hauser Service	No output values
Service Information Transducer Block	Contains parameters that provide Endress+Hauser Service with information about the state of the device	No output values
Data Transfer Transducer Block	Contains parameters for backing up the device configuration in the display module and for writing the saved configuration to the device. Access to these parameters is reserved for Endress+Hauser Service.	No output values

Function blocks

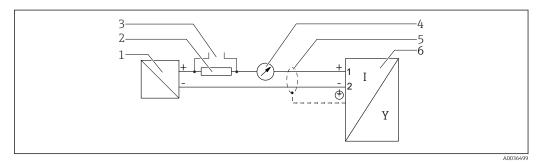
Block	Contents	Number of permanent blocks	Number of instantiatable blocks	Execution time	Functionality
Resource Block	The Resource Block contains all the data that uniquely identify the device. It is an electronic version of a nameplate of the device.	1	0	-	Enhanced
Analog Input Block	The AI Block receives the measuring data from the Sensor Block (selectable via a channel number), and makes the data available to other blocks at its output.	2	3	25 ms	Enhanced
Discrete Input Block	The Discrete Input Block receives a discrete value (e.g. indicator that measuring range has been exceeded) and makes the value available for other blocks at the output.	1	2	20 ms	Standard
Multiple Analog Output Block	The Multiple Analog Output Block is used to transmit analog values from the bus to the device.	1	0	20 ms	Standard
Multiple Discrete Output Block	The Multiple Discrete Output Block is used to transmit discrete values from the bus to the device.	1	0	20 ms	Standard
PID Block	The PID Block is used as a proportional-integral-derivative controller and can be used universally for closed-loop-control in the field. It enables cascade mode and feedforward control.	1	1	25 ms	Standard
Arithmetic Block	The Arithmetic Block is designed to permit simple use of popular measurement math functions. The user does not have to know how to write equations. The math algorithm is selected by name, chosen by the user for the function to be performed.	1	1	25 ms	Standard
Signal Characterizer Block	The Signal Characterizer Block has two sections, each with an output value that is a non-linear function of the input value. The non-linear function is generated by a single look-up table with 21 arbitrary x-y pairs.	1	1	25 ms	Standard
Input Selector Block	The Input Selector Block facilitates the selection of up to four inputs and generates an output value based on the configured action. This block normally receives its inputs from AI Blocks. The block enables the selection of maximum, minimum, average and 'first good' values.	1	1	25 ms	Standard


Block	Contents	Number of permanent blocks	Number of instantiatable blocks	Execution time	Functionality
Integrator Block	The Integrator Block integrates a variable as a function of the time or accumulates the counts from a Pulse Input Block. The Block can be used as a totalizer that totalizes until a reset, or as a batch totalizer whereby the integrated value is compared against a target value generated before or during the control routine and generates a binary signal when the target value is reached.	1	1	25 ms	Standard
Analog Alarm Block		1	1	25 ms	Standard

 $\begin{tabular}{ll} \textbf{Ip to 20 blocks can be instantiated in the device altogether, including the blocks already instantiated.} \end{tabular}$

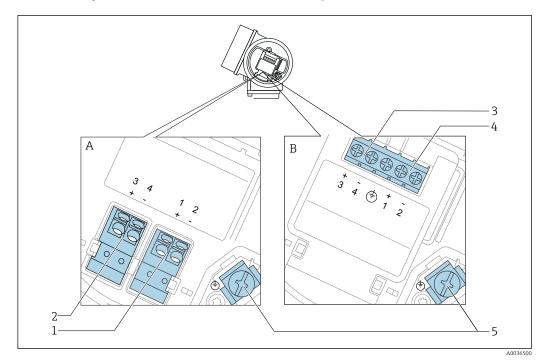
Power supply

Terminal assignment

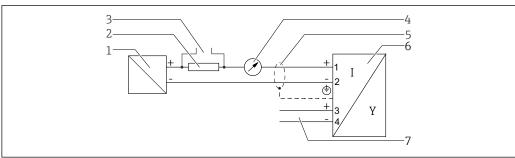

Terminal assignment 2-wire: 4-20 mA HART

■ 7 Terminal assignment 2-wire: 4-20 mA HART

- A Without integrated overvoltage protection
- B With integrated overvoltage protection
- $1 \quad \textit{Connection 4-20 mA HART passive: terminals 1 and 2, without integrated overvoltage protection} \\$
- $2\qquad \textit{Connection 4-20 mA HART passive: terminals 1 and 2, with integrated overvoltage protection}$
- 3 Terminal for cable screen

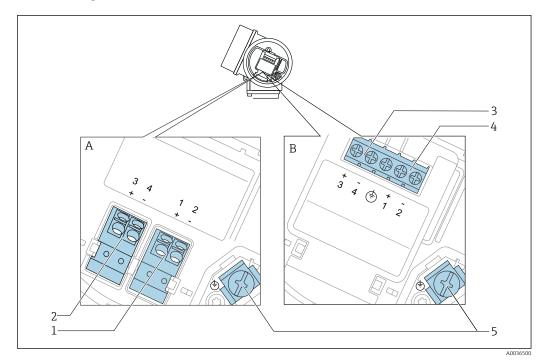

Block diagram 2-wire: 4-20 mA HART

■ 8 Block diagram 2-wire: 4-20 mA HART


- 1 Active barrier with power supply (e.g. RN221N); observe terminal voltage
- HART communication resistor ($\geq 250 \,\Omega$); observe maximum load
- 3 Connection for Commubox FXA195 or FieldXpert SFX350/SFX370 (via VIATOR Bluetooth modem)
- 4 Analog display device; observe maximum load
- 5 Cable screen; observe cable specification
- 6 Measuring device

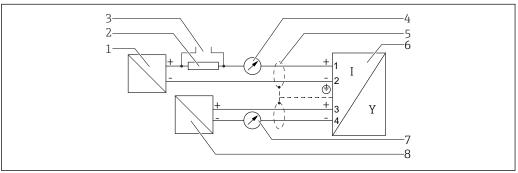
Terminal assignment 2-wire: 4-20 mA HART, switch output

- 9 Terminal assignment 2-wire: 4-20 mA HART, switch output
- A Without integrated overvoltage protection
- *B* With integrated overvoltage protection
- $1 \qquad \textit{Connection 4-20 mA HART passive: terminals 1 and 2, without integrated overvoltage protection} \\$
- 2 Connection switch output (Open Collector): terminals 3 and 4, without integrated overvoltage protection
- 3 Connection switch output (Open Collector): terminals 3 and 4, with integrated overvoltage protection
- 4 Connection 4-20 mA HART passive: terminals 1 and 2, with integrated overvoltage protection
- 5 Terminal for cable screen


Block diagram 2-wire: 4-20 mA HART, switch output

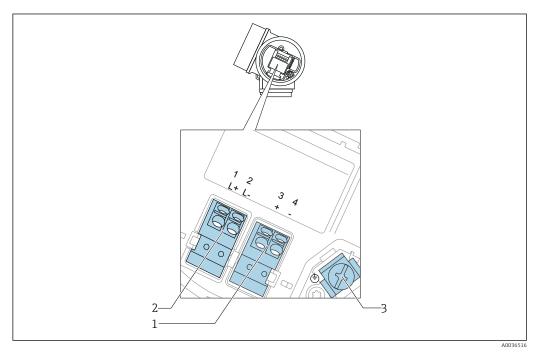
A003650

- 10 Block diagram 2-wire: 4-20 mA HART, switch output
- 1 Active barrier with power supply (e.g. RN221N); observe terminal voltage
- 2 HART communication resistor ($\geq 250 \Omega$); observe maximum load
- 3 Connection for Commubox FXA195 or FieldXpert SFX350/SFX370 (via VIATOR Bluetooth modem)
- 4 Analog display device; observe maximum load
- 5 Cable screen; observe cable specification
- 6 Measuring device
- 7 Switch output (Open Collector)


Terminal assignment 2-wire: 4-20 mA HART, 4-20 mA

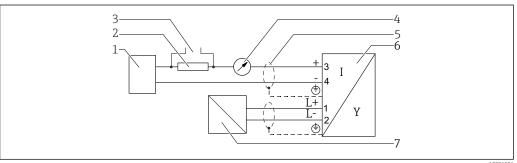
Terminal assignment 2-wire: 4-20 mA HART, 4-20 mA

- Α Without integrated overvoltage protection
- В With integrated overvoltage protection
- Connection current output 1, 4-20 mA HART passive: terminals 1 and 2, without integrated overvoltage 1 protection
- 2 Connection current output 2, 4-20 mA: terminals 3 and 4, without integrated overvoltage protection
- 3 Connection current output 2, 4-20 mA: terminals 3 and 4, with integrated overvoltage protection
- Connection current output 1, 4-20 mA HART passive: terminals 1 and 2, with integrated overvoltage protection
- Terminal for cable screen

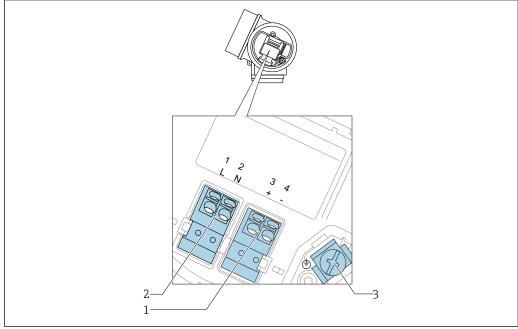

Block diagram 2-wire: 4-20 mA HART, 4-20 mA

■ 12 Block diagram 2-wire: 4-20 mA HART, 4-20 mA

- Active barrier with power supply (e.g. RN221N); observe terminal voltage 1
- HART communication resistor ($\geq 250 \Omega$); observe maximum load 2
- 3 Connection for Commubox FXA195 or FieldXpert SFX350/SFX370 (via VIATOR Bluetooth modem)
- 4 Analog display device; observe maximum load
- Cable screen; observe cable specification 5
- 6 Measuring device
- Analog display device; observe maximum load
- Active barrier with power supply (e.g. RN221N), current output 2; observe terminal voltage


Terminal assignment 4-wire: 4-20 mA HART (10.4 to 48 V_{DC})

 \blacksquare 13 Terminal assignment 4-wire: 4-20 mA HART (10.4 to 48 V_{DC})

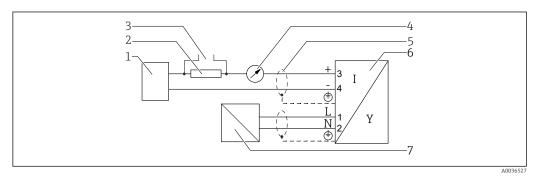

- Connection 4-20 mA HART (active): terminals 3 and 4
- 2 Connection supply voltage: terminals 1 and 2
- 3 Terminal for cable screen

Block diagram 4-wire: 4-20 mA HART (10.4 to 48 V_{DC})

- \blacksquare 14 Block diagram 4-wire: 4-20 mA HART (10.4 to 48 V_{DC})
- 1 Evaluation unit, e.g. PLC
- 2 HART communication resistor ($\geq 250 \Omega$); observe maximum load
- 3 Connection for Commubox FXA195 or FieldXpert SFX350/SFX370 (via VIATOR Bluetooth modem)
- 4 Analog display device; observe maximum load
- 5 Cable screen; observe cable specification
- 6 Measuring device
- 7 Supply voltage; observe terminal voltage, observe cable specification

Terminal assignment 4-wire: 4-20 mA HART (90 to 253 V_{AC})

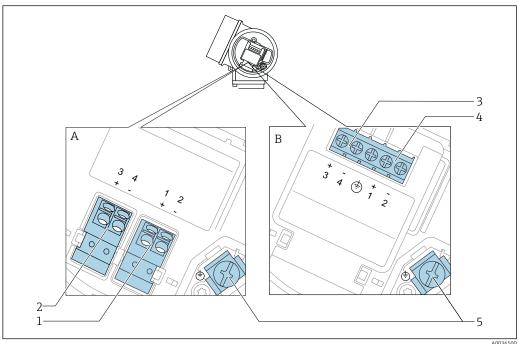
A003651


- \blacksquare 15 Terminal assignment 4-wire: 4-20 mA HART (90 to 253 V_{AC})
- 1 Connection 4-20 mA HART (active): terminals 3 and 4
- 2 Connection supply voltage: terminals 1 and 2
- 3 Terminal for cable screen

A CAUTION

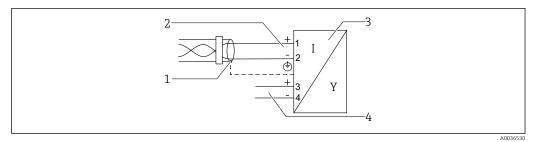
To ensure electrical safety:

- ► Do not disconnect the protective connection.
- ▶ Disconnect the supply voltage before disconnecting the protective earth.
- Connect protective earth to the internal ground terminal (3) before connecting the supply voltage. If necessary, connect the potential matching line to the external ground terminal.
- In order to ensure electromagnetic compatibility (EMC): Do **not** only ground the device via the protective earth conductor of the supply cable. Instead, the functional grounding must also be connected to the process connection (flange or threaded connection) or to the external ground terminal.
- An easily accessible power switch must be installed in the proximity of the device. The power switch must be marked as a disconnector for the device (IEC/EN61010).


Block diagram 4-wire: 4-20 mA HART (90 to 253 V_{AC})

■ 16 Block diagram 4-wire: 4-20 mA HART (90 to 253 V_{AC})

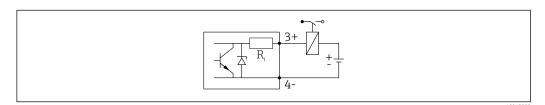
- Evaluation unit, e.g. PLC 1
- 2 HART communication resistor ($\geq 250 \Omega$); observe maximum load
- 3 Connection for Commubox FXA195 or FieldXpert SFX350/SFX370 (via VIATOR Bluetooth modem)
- Analog display device; observe maximum load
- Cable scree; observe cable specification
- Measuring device
- Supply voltage; observe terminal voltage, observe cable specification


Terminal assignment PROFIBUS PA / FOUNDATION Fieldbus

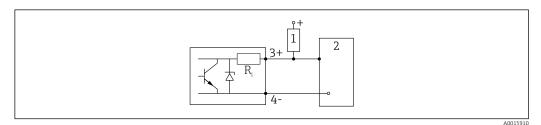
Terminal assignment PROFIBUS PA / FOUNDATION Fieldbus

- Without integrated overvoltage protection
- With integrated overvoltage protection В
- Connection PROFIBUS PA / FOUNDATION Fieldbus: terminals 1 and 2, without integrated overvoltage 1 protection
- Connection switch output (Open Collector): terminals 3 and 4, without integrated overvoltage protection
- Connection switch output (Open Collector): terminals 3 and 4, with integrated overvoltage protection
- Connection PROFIBUS PA / FOUNDATION Fieldbus: terminals 1 and 2, with integrated overvoltage protection
- Terminal for cable screen

Block diagram PROFIBUS PA / FOUNDATION Fieldbus


 \blacksquare 18 Block diagram PROFIBUS PA / FOUNDATION Fieldbus

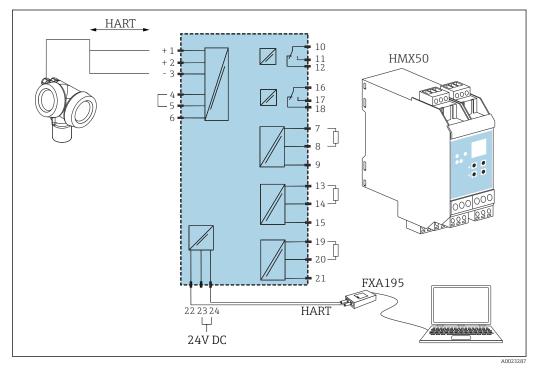
- Cable screen; observe cable specifications Connection PROFIBUS PA / FOUNDATION Fieldbus 2
- 3
- Measuring device Switch output (open collector)


26

Connection examples for the switch output

For HART devices, the switch output is available as an option.

₹ 19 Connection of a relay

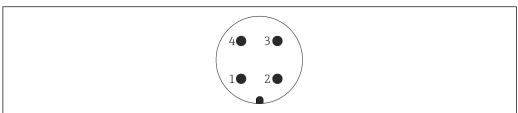

■ 20 Connection to a digital input

- 1 Pull-up resistor
- 2 Digital input

For optimum interference immunity we recommend to connect an external resistor (internal resistance of the relay or pull-up resistor) of $< 1000 \,\Omega$.

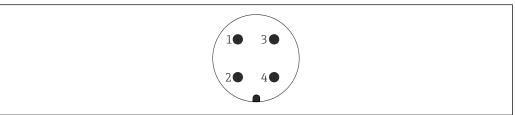
HART loop converter HMX50

The dynamic variables of the HART protocol can be converted into individual 4 to 20 mA sections using the HART loop converter HMX50. The variables are assigned to the current output and the measuring ranges of the individual parameters are defined in the HMX50.


21 Connection diagram for HART loop converter HMX50 (example: passive 2-wire device and current outputs connected as power source)

The HART loop converter HMX50 can be acquired using the order number 71063562.

Additional documentation: TI00429F and BA00371F.


Device plugs

In device versions with a device plug (M12 or 7/8"), it is not necessary to open the housing in order to connect the signal cable.

■ 22 Pin assignment of M12 plug

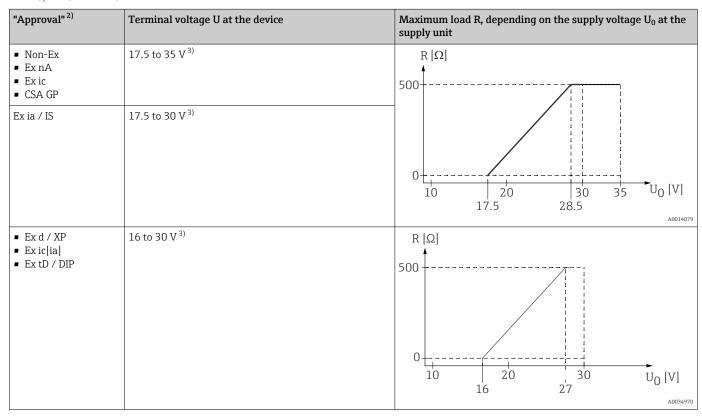
- Signal + Not assigned
- 3 Signal –
- Ground

A0011176

■ 23 Pin assignment of 7/8" plug

- Signal Signal +
- Not assigned
- Shielding

Power supply


An external power supply is required.

Various supply units can be ordered from Endress+Hauser.

2-wire, 4-20mA HART, passive

2-wire; 4-20mA HART 1)

- 1) Feature 020 of the product structure: option A
- 2) Feature 010 of the product structure
- 3) If the Bluetooth modem is used, the minimum supply voltage increases by 2 V.

2-wire; 4-20 mA HART, switch output 1)

"Approval" 2)	Terminal voltage U at the device	Maximum load R, depending on the supply voltage \mathbf{U}_0 at the supply unit
 Non-Ex Ex nA Ex nA[ia] Ex ic Ex ic[ia] Ex d[ia] / XP Ex ta / DIP CSA GP 	16 to 35 V ³⁾	R [Ω]
 Ex ia / IS Ex ia + Ex d[ia] / IS + XP 	16 to 30 V ³⁾	0 10 20 30 35 U ₀ [V] 16 27

- 1) Feature 020 of the product structure: option \boldsymbol{B}
- 2) Feature 010 of the product structure
- 3) If the Bluetooth modem is used, the minimum supply voltage increases by 2 V.

2-wire; 4-20mA HART, 4-20mA ¹⁾

"Approval" 2)	Terminal voltage U at the device	Maximum load R, depending on the supply voltage $\mbox{\bf U}_0$ at the supply unit
any	Channel 1:	
	17 to 30 V ³⁾	R [Ω]
		500 10 20 30 U ₀ [V] 17 28
	Channel 2:	
	12 to 30 V	$R[\Omega]$
		500 10 20 30 U ₀ [V] 12 23

- Feature 020 of the product structure: option C Feature 010 of the product structure $\,$ 1)
- 2)
- 3) If the Bluetooth modem is used, the minimum supply voltage increases by 2 V.

Polarity reversal protection	Yes
Admissible residual ripple at f = 0 to 100 Hz	$U_{SS} < 1 \text{ V}$
Admissible residual ripple at f = 100 to 10000 Hz	U _{SS} < 10 mV

4-wire, 4-20mA HART, active

"Power supply; Output" 1)	Terminal voltage	Maximum load R _{max}
K: 4-wire 90-253VAC; 4-20mA HART	90 to 253 V_{AC} (50 to 60 Hz), overvoltage category II	500 Ω
L: 4-wire 10,4-48VDC; 4-20mA HART	10.4 to 48 V _{DC}	

Feature 020 of the product structure

PROFIBUS PA, FOUNDATION Fieldbus

"Power supply; Output" 1)	"Approval" 2)	Terminal voltage
E: 2-wire; FOUNDATION Fieldbus, switch output G: 2-wire; PROFIBUS PA, switch output	 Non-Ex Ex nA Ex nA[ia] Ex ic Ex ic[ia] Ex d[ia] / XP Ex ta / DIP CSA GP 	9 to 32 V ³⁾
	Ex ia / ISEx ia + Ex d[ia] / IS + XP	9 to 30 V ³⁾

- Feature 020 of the product structure Feature 010 of the product structure 1)
- 2)
- Input voltages up to 35 V will not spoil the device.

Polarity sensitive	No
FISCO/FNICO compliant according to IEC 60079-27	Yes

Power consumption

"Power supply; Output" 1)	Power consumption
A: 2-wire; 4-20mA HART	< 0.9 W
B: 2-wire; 4-20mA HART, switch output	< 0.9 W
C: 2-wire; 4-20mA HART, 4-20mA	< 2 x 0.7 W
K: 4-wire 90-253VAC; 4-20mA HART	6 VA
L: 4-wire 10,4-48VDC; 4-20mA HART	1.3 W

1) Feature 020 of the product structure

Current consumption

HART

Nominal current	3.6 to 22 mA, the start-up current for multidrop mode can be parametrized (is set to 3.6 mA on delivery)
Breakdown signal (NAMUR NE43)	adjustable: 3.59 to 22.5 mA

PROFIBUS PA

Nominal current	18 mA
Failure current FDE (Fault Disconnection Electronic)	0 mA

32

FOUNDATION Fieldbus

Device basic current	15 mA
Failure current FDE (Fault Disconnection Electronic)	0 mA

FISCO

U _i	17.5 V
I _i	550 mA
P _i	5.5 W
C _i	5 nF
Li	10 μΗ

Power supply failure

- Configuration is retained in the HistoROM (EEPROM).
- Error messages (incl. value of operated hours counter) are stored.

Potential equalization

No special measures for potential equalization are required.

If the device is designed for hazardous areas, observe the information in the documentation "Safety Instructions" (XA).

Terminals

Without integrated overvoltage protection

Plug-in spring terminals for wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG)

With integrated overvoltage protection

Screw terminals for wire cross-sections 0.2 to 2.5 mm² (24 to 14 AWG)

Cable entries

Connection of the power supply and signal cables

To be selected in feature 050 "Electrical connection":

- Coupling M20, material depends on approval:
 - For non-Ex, ATEX, IECEx, NEPSI Ex ia/ic:

Plastic M20x1.5 for cable Ø5 to 10 mm (0.2 to 0.39 in)

- For Dust-Ex, FM IS, CSA IS, CSA GP, Ex ec:
- For Ex db:

No cable gland available

- Thread
 - ½" NPT
 - G ½"
 - M20 × 1.5
- M12 plug / 7/8" plug

Only available for non-Ex, Ex ic, Ex ia

Connection of remote display FHX50

Feature 030 "Display, operation"	Cable entry for connection of FHX50
L: "Prepared for display FHX50 + M12 connection"	M12 socket
M: "Prepared for display FHX50 + M16 cable gland, custom connection"	M12 cable gland
N: "Prepared for display FHX50 + NPT1/2 thread, custom connection"	Thread NPT1/2

Cable specification

Devices without integrated overvoltage protection

Pluggable spring-force terminals for wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG)

Devices with integrated overvoltage protection

Screw terminals for wire cross-sections 0.2 to 2.5 mm² (24 to 14 AWG)

■ For ambient temperature $T_U \ge 60$ °C (140 °F): use cable for temperature $T_U + 20$ K.

HART

- A normal device cable suffices if only the analog signal is used.
- A shielded cable is recommended if using the HART protocol. Observe grounding concept of the plant.
- For 4-wire devices: Standard device cable is sufficient for the power line.

PROFIBILS

Use a twisted, screened two-wire cable, preferably cable type A.

For further information on the cable specifications, see Operating Instructions BA00034S "PROFIBUS DP/PA: Guidelines for planning and commissioning", PNO Guideline 2.092 "PROFIBUS PA User and Installation Guideline" and IEC 61158-2 (MBP).

FOUNDATION Fieldbus

Endress+Hauser recommends using twisted, shielded two-wire cables.

For further information on the cable specifications, see Operating Instructions BA00013S "FOUNDATION Fieldbus Overview", FOUNDATION Fieldbus Guideline and IEC 61158-2 (MBP).

Overvoltage protection

If the measuring device is used for level measurement in flammable liquids which requires the use of overvoltage protection according to DIN EN 60079-14, standard for test procedures 60060-1 (10 kA, pulse 8/20 μ s), an overvoltage protection module has to be installed.

Integrated overvoltage protection module

An integrated overvoltage protection module is available for 2-wire HART as well as PROFIBUS PA and FOUNDATION Fieldbus devices.

Product structure: Feature 610 "Accessory mounted", option NA "Overvoltage protection".

Technical data		
Resistance per channel	$2 \times 0.5 \Omega$ max.	
Threshold DC voltage	400 to 700 V	
Threshold impulse voltage	< 800 V	
Capacitance at 1 MHz	< 1.5 pF	
Nominal arrest impulse voltage (8/20 μs)	10 kA	

External overvoltage protection module

HAW562 or HAW569 from Endress+Hauser are suited as external overvoltage protection.

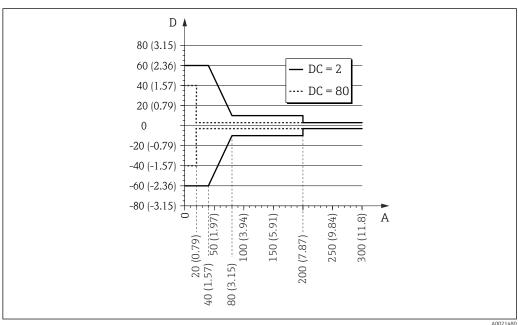
For detailed information please refer to the following documents:

- HAW562: TI01012K
- HAW569: TI01013K

Performance characteristics

Reference operating conditions

- Temperature = $+24 \,^{\circ}\text{C} \, (+75 \,^{\circ}\text{F}) \, \pm 5 \,^{\circ}\text{C} \, (\pm 9 \,^{\circ}\text{F})$
- Pressure = 960 mbar abs. (14 psia) ±100 mbar (±1.45 psi)
- Humidity = $60 \% \pm 15 \%$
- Reflection factor ≥ 0.8 (water surface for coax probe, metal plate for rod and rope probe with min.
 1 m (40 in) diameter)
- Flange for rod or rope probe ≥ 300 mm (12 in) diameter
- Distance to obstacles ≥ 1 m (40 in)
- For interface measurement:
 - Coax probe
 - DC of lower medium = 80 (water)
 - DC of upper medium = 2 (oil)

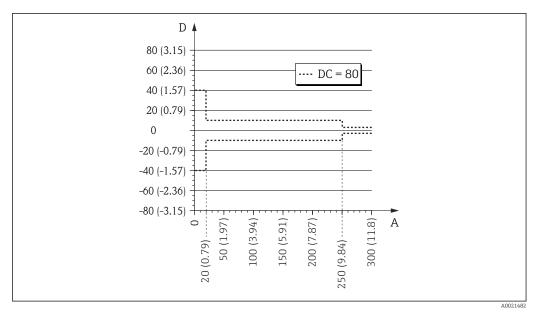

Reference accuracy

Typical data under reference operating conditions: DIN EN IEC 61298-2 / DIN EN IEC 60770-1; percentage values in relation to the span.

Output:	digital	analog 1)
Accuracy (sum of non- linearity, non-repeatability and hysteresis) ²⁾	Level measurement: Measuring distance up to 10 m (33 ft): ±2 mm (±0.08 in)	±0.02 %
	Interface measurement: ■ Measuring distance up to 500 mm (19.7 in): ±20 mm (±0.79 in) ■ Measuring distance > 500 mm (19.7 in): ±10 mm (±0.39 in) ■ If thickness of upper medium < 100 mm (3.94 in): ±40 mm (±1.57 in)	
Non-repeatability 3)	≤ 1 mm (0.04 in)	

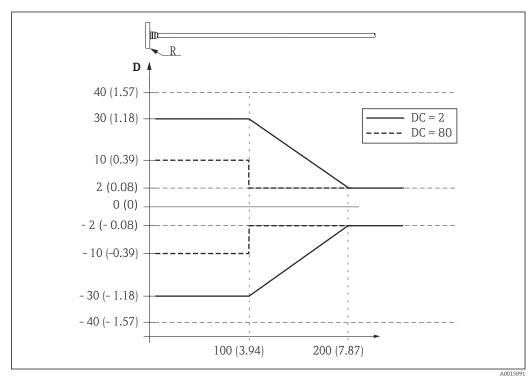
- 1) Add error of the analog value to the digital value.
- 2) If the reference conditions are not met, the offset/zero point resulting from the installation conditions can be up to ± 16 mm (± 0.63 in). This additional offset/zero point can be compensated for by entering a correction ("Level correction" parameter) during commissioning.
- 3) The non-repeatability is already considered in the accuracy.

Differing from this, the following measured error applies in the area of the lower probe end:



 \blacksquare 24 Measured error at the probe end for rod and coax probes

- A Distance from the probe end [mm(in)]
- D Measured error: Sum of non-linearity, non-repeatability and hysteresis


Endress+Hauser 35

A002148

- 25 Measured error at the probe end for rope probes
- A Distance from the probe end [mm(in)]
- D Measured error: Sum of non-linearity, non-repeatability and hysteresis
- If the DC value is less than 7 in the case of rope probes, measurement is not possible in the area of the tensioning weight (0 to 250 mm from the probe end), (lower blocking distance).

The following measured error applies in the area of the upper probe end:

 \blacksquare 26 Measured error at the upper probe end; engineering unit: mm (in)

- D Sum of non-linearity, non-repeatability and hysteresis
- R Reference point of measurement
- DC Dielectric constant

Resolution

■ Digital: 1 mm

Analog: 1 μA

Response time

The response time can be configured. The following step response times (in accordance with DIN EN IEC 61298-2 / DIN EN IEC 60770-1) $^{3)}$ are when damping is switched off:

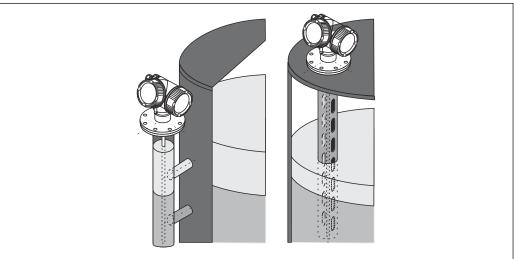
Level measurement		
Probe length Sampling rate Response ti		Response time
< 10 m (33 ft)	3.6 measurements per second	< 0.8 s

Interface measurement		
Probe length Sampling rate		Response time
< 10 m (33 ft)	≥ 1.1 measurements per second	< 2.2 s

Influence of ambient temperature

The measurements are performed according to DIN EN IEC 61298-3 / DIN EN IEC 60770-1

- Digital (HART, PROFIBUS PA, FOUNDATION Fieldbus): average $T_K = 0.6 \text{ mm}/10 \text{ K}$ For devices with a remote sensor, ⁴⁾ there is an additional offset error of $\pm 0.3 \text{ mm}/10 \text{ K}$ ($\pm 0.01 \text{ in}/10 \text{ K}$) per 1 m (3.3 ft) of the remote cable.
- Analog (current output):
 - Zero point (4 mA): average $T_K = 0.02 \%/10 K$
 - Span (20 mA): average $T_K = 0.05 \%/10 K$


³⁾ According to DIN EN IEC 61298-2 / DIN EN IEC 60770-1, the step response time is the time that elapses after an abrupt change in the input signal until the change in the output signal has adopted 90% of the steady-state value for the first time.

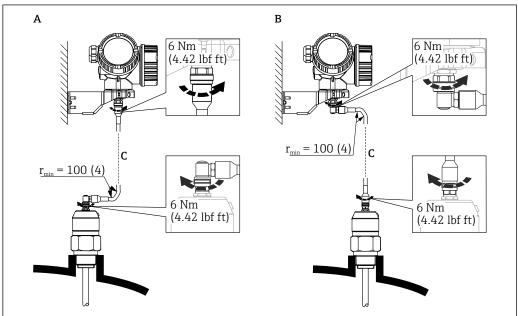
⁴⁾ Product structure: feature 600, version MB, MC or MD)

Installation

Installation conditions

Suitable mounting position

■ 27 Mounting position of Levelflex FMP55


4001120

- Rod probes/rope probes: mount in the bypass/stilling well.
- Coax probes can be mounted at any distance from the wall.
- When mounting outdoors, a weather protection cover can be used to protect the device against extreme weather conditions.
- Minimum distance from the end of the probe to the bottom of the vessel: 10 mm (0.4 in)

Mounting under confined conditions

Mounting with remote probe

The device version with a remote probe is suitable for applications with restricted mounting space. In this case, the electronics housing is mounted at a separate position from the probe.

Δ0014794

- A Angled plug at the probe
- B Angled plug at the electronics housing
- C Length of the remote cable as ordered
- Product structure, feature 600 "Probe design":
 Version MB "Sensor remote, 3m cable"
- The connecting cable is included in the delivery with these versions.
 Minimum bending radius: 100 mm (4 inch)
- The mounting bracket for the electronics housing is included in the delivery with these versions. Mounting options:
 - Wall mounting
 - Mounting on DN32 to DN50 (1-1/4 to 2 inch) post or pipe
- The connection cable has one straight plug and one plug angled at 90°. Depending on the local conditions the angled plug can be connected at the probe or at the electronics housing.
- The probe, electronics and connection cable are mutually compatible and bear a common serial number. Only components with the same serial number may be connected to one another.

Notes on the mechanical load of the probe

Tensile loading capacity of rope probes

FMP55

Rope 4mm (1/6") PFA>316

2 kN

Lateral loading capacity (flexural strength) of rod probes

FMP55

Rod 16mm (0.63") PFA>316L

30 Nm

Lateral loading capacity (flexural strength) of coax probes

FMP55

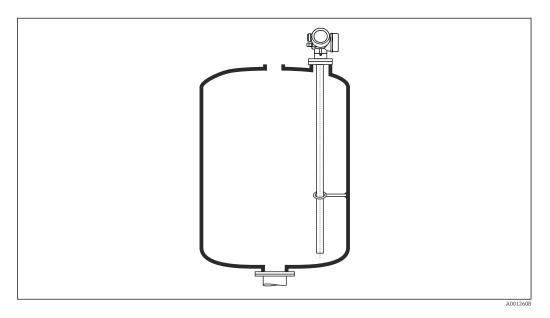
Probe Ø 42.4 mm316L

300 Nm

Mounting cladded flanges

Note the following for cladded flanges:

- Use the same number of flange screws as the number of flange bores provided.
- Tighten the screws with the necessary torque (see Table).
- Retighten after 24 hours or after the first temperature cycle.
- Depending on the process pressure and temperature, check and retighten the screws, where necessary, at regular intervals.


The PTFE flange cladding normally acts simultaneously as a seal between the nozzle and the $\,$ device flange.

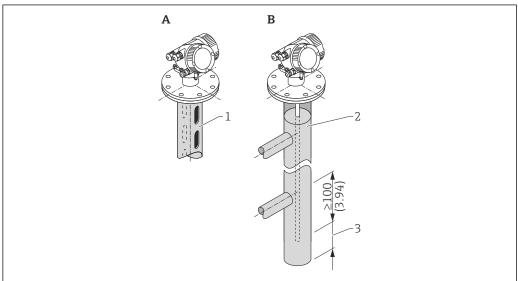
Flange size	Number of screws	Tightening torque		
EN				
DN40/PN40	4	35 to 55 Nm		
DN50/PN16	4	45 to 65 Nm		
DN50/PN40	4	45 to 65 Nm		
DN80/PN16	8	40 to 55 Nm		
DN80/PN40	8	40 to 55 Nm		
DN100/PN16	8	40 to 60 Nm		
DN100/PN40	8	55 to 80 Nm		
DN150/PN16	8	75 to 115 Nm		
DN150/PN40	8	95 to 145 Nm		
ASME				
1½"/150lbs	4	20 to 30 Nm		
1½"/300lbs	4	30 to 40 Nm		
2"/150lbs	4	40 to 55 Nm		
2"/300lbs	8	20 to 30 Nm		
3"/150lbs	4	65 to 95 Nm		
3"/300lbs	8	40 to 55 Nm		
4"/150lbs	8	45 to 70 Nm		
4"/300lbs	8	55 to 80 Nm		
6"/150lbs	8	85 to 125 Nm		
6"/300lbs	12	60 to 90 Nm		
JIS				
10K 40A	4	30 to 45 Nm		
10K 50A	4	40 to 60 Nm		
10K 80A	8	25 to 35 Nm		
10K 100A	8	35 to 55 Nm		
10K 100A	8	75 to 115 Nm		

Securing the probe

Securing coax probes

For WHG approval: A support is required for probe lengths \geq 3 m (10 ft).

Coax probes can be secured (fixed) at any point in the ground tube. $\,$

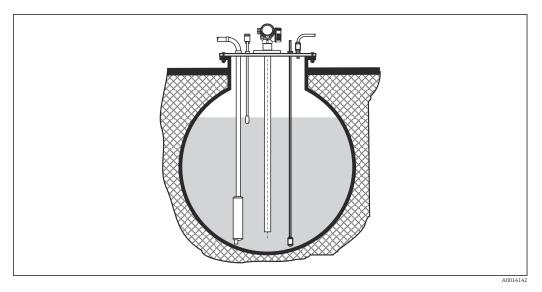

42

Special installation situations

Bypasses and stilling wells

The use of centering disks/stars/weights (available as accessories) is recommended in bypass and stilling well applications.

A001/i120

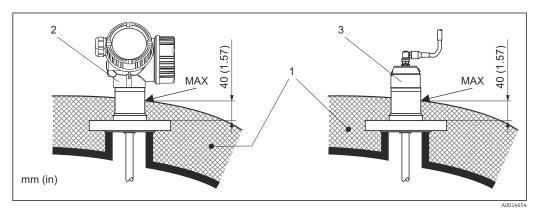

- 1 Mounting in stilling well
- 2 Mounting in bypass
- 3 Minimum distance between probe end and lower edge of bypass 10 mm (0.4 in)
- Pipe diameter: > 40 mm (1.6 in) (for rod probes).
- A rod probe can be installed in pipes with a diameter of up to 150 mm (6 in). The use of a coax probe is recommended for larger pipe diameters.
- Side outlets, holes, slots and welds with a maximum inward projection of 5 mm (0.2 in) do not affect the measurement.
- There should not be any changes in the diameter of the pipe.
- The probe must be 100 mm (4 in) longer than the lower outlet.
- The probes must not touch the pipe wall within the measuring range. Support or brace the probe if necessary. All rope probes are prepared for bracing in vessels (tensioning weight with anchor hole).
- The probes must not touch the pipe wall within the measuring range. If necessary, use a PFA centering star.
- Coax probes can be used within any restrictions provided that the pipe diameter permits their installation.
- For bypasses with condensate formation (water) and a medium with a low dielectric constant (e.g. hydrocarbons):

Over time, the bypass fills with condensate up to the lower outlet. When levels are low, the level echo is masked by the echo of the condensate as a result. In this range, the level of the condensate is output and the correct value is only output when levels are higher. For this reason, ensure that the lower outlet is 100 mm (4 in) below the lowest level to be measured and fit a metal centering disk at the level of the lower edge of the lower outlet.

In thermally insulated vessels, the bypass should also be insulated in order to prevent condensate formation.

Assignment of centering disk/centering star/centering weight to the pipe diameter

Underground tanks


In the case of nozzles with large diameters, use a coax probe to avoid reflections at the nozzle wall.

Non-metal vessels

Use a coax probe if mounting in non-metal vessels.

Vessel with thermal insulation

If process temperatures are high, the device must be included in normal vessel insulation (1) in order to prevent the electronics heating up as a result of thermal radiation or convection. The insulation may not go beyond the points labeled "MAX" in the drawings.

■ 28 Process connection with flange

- 1 Vessel insulation
- 2 Compact device
- 3 Sensor, remote

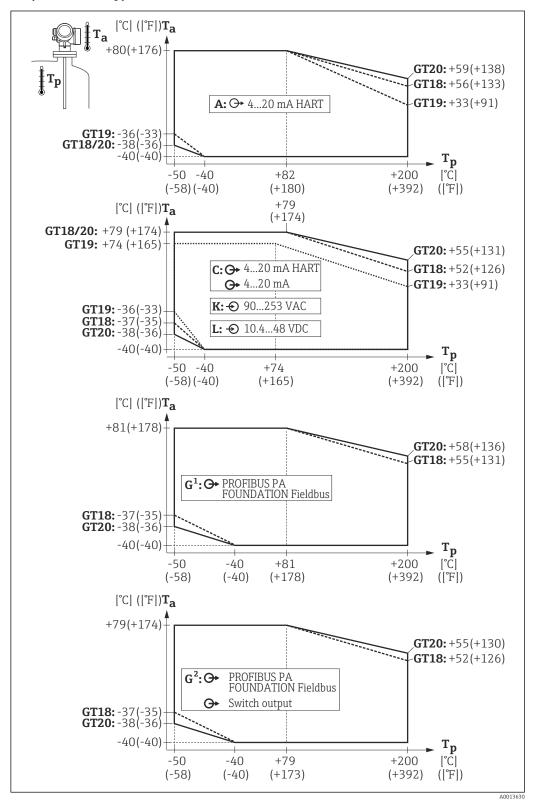
Operating conditions: Environment

Ambient temperature

Measuring device	-40 to +80 °C (-40 to +176 °F)
Local display	-20 to $+70$ °C (-4 to $+158$ °F), the readability of the display may be impaired at temperatures outside the temperature range.
Connecting cable (for "Sensor, remote" probe design)	Max. 100 °C (212 °F)
Remote display FHX50	−40 to 80 °C (−40 to 176 °F)
Remote display FHX50 (option)	−50 to 80 °C (−58 to 176 °F) ¹⁾

1) This range applies if the option JN "Transmitter ambient temperature -50 °C (-58 °F)" has been selected in order code 580 "Test, certificate". If the temperature is permanently below -40 °C (-40 °F), the chance of failure increases.

For outdoor operation in strong sunlight:


- Mount the device in the shade.
- Avoid direct sunlight, particularly in warm climatic regions.
- Use a weather protection cover (see accessories).

Ambient temperature limits

The following diagrams only consider functional aspects. Additional restrictions may apply for certified device versions. See the separate Safety Instructions for more information.

In the event of temperature (T_p) at the process connection, the permitted ambient temperature (T_a) is reduced as indicated in the following diagram (temperature derating):

Temperature derating for FMP55

GT18 = Stainless steel housing GT19 = Plastic housing GT20 = Aluminum housing A = 1 current output C = 2 current outputs G^1 , $G^2 = PROFIBUS PA^{1)}$ K, L = 4-wire T_a = Ambient temperature T_p = Temperature at the process connection

1) In the case of PROFIBUS PA and FOUNDATION Fieldbus, the temperature derating depends on whether the switch output (terminals 3 and 4) is used (G^2) or not (G^1) .

Storage temperature

- Permitted storage temperature: -40 to +80 °C (-40 to +176 °F)
- Use original packaging.

Climate class

DIN EN 60068-2-38 (test Z/AD)

Altitude according to IEC61010-1 Ed.3

- Generally up to 2000 m (6600 ft) above MSL.
- Above 2 000 m (6 600 ft) if the following conditions are met:
 - Ordering feature 020 "Power supply; Output" = A, B, C, E or G (2-wire versions)
- Supply voltage U < 35 V
- Supply voltage of overvoltage category 1

Degree of protection

- When housing is closed, tested according to:
 - IP68, NEMA6P (24 h at 1.83 m under water) (also applies for the "Remote sensor" version)
 - For plastic housing with see-through lid (display): IP68 (24 h at 1.00 m under water)
 This restriction applies if the following options have been selected simultaneously in the product structure: 030 ("Display/operation") = C ("SD02") or E ("SD03"); 040 ("Housing") = A ("GT19").
 - IP66, NEMA4X
- With housing open: IP20, NEMA1
- Display module: IP22, NEMA2
- i

Degree of protection IP68 NEMA6P only applies for M12 PROFIBUS PA plugs if the PROFIBUS cable is plugged in and is also rated IP68 NEMA6P.

Vibration resistance

DIN EN 60068-2-64 / IEC 60068-2-64: 20 to 2000 Hz, 1 (m/s²)²/Hz

Cleaning the probe

Dirt or buildup may form on the probe depending on the application. A thin, even layer has little impact on the measurement. Thick layers can dampen the signal and then reduce the measuring range. Very uneven deposit formation, e.g. caking due to crystallization, can result in incorrect measurements. In such cases, we recommend the use of a non-contact measuring principle, or a regular inspection of the probe for contamination.

Electromagnetic compatibility (EMC)

Electromagnetic compatibility in accordance with all of the relevant requirements outlined in the EN 61326 series and NAMUR Recommendation EMC (NE 21). For details, refer to the Declaration of Conformity.

Download at www.endress.com.

Use a shielded cable for signal transmission.

Maximum measured error during EMC testing: < 0.5 % of the span.

When the probes are installed in metal and concrete vessels and when a coax probe is used:

- Interference emission according to EN 61326 x series, Class B equipment.
- Interference immunity according to EN 61326 x series, requirements for industry and NAMUR Recommendation NE 21 (EMC)

When probes are installed without a shielding/metal wall, e.g. installation in plastic or wooden silos, the effect of strong electromagnetic fields can influence the measured value.

- Interference emission according to EN 61326 x series, Class A equipment.
- Interference immunity: the effect of strong electromagnetic fields can influence the measured value.

Process

Process temperature range

The maximum temperature permitted at the process connection is determined by the O-ring version

Device	O-ring material	Process temperature
FMP55	_	−50 to +200 °C (−58 to +392 °F); fully coated

High process temperatures (> 150 °C (302 °F)) may favor the diffusion of the medium through the probe coating, which may reduce the operating time.

Process pressure range

Device	Process pressure
FMP55 -1 to 40 bar (-14.5 to 580 psi)	

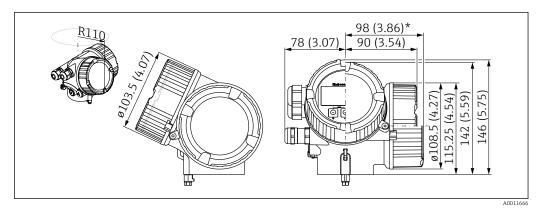
The range indicated can be reduced by the choice of process connection. The nominal pressure (PN) indicated on the nameplate refers to a reference temperature of 20 °C, and of 100 °F for ASME flanges. Observe pressure-temperature dependency.

Please refer to the following standards for the pressure values permitted at higher temperatures:

- EN 1092-1: 2007 Tab. G.4.1-x With regard to their stability-temperature property, the materials 1.4435 and 1.4404 are grouped together under 13E0 in EN 1092-1: 2007 Tab. G.3.1-1. The chemical composition of the two materials can be identical.
- ASME B 16.5a 2013 Tab. 2-2.2 F316
- ASME B 16.5a 2013 Tab. 2.3.8 N10276
- JIS B 2220

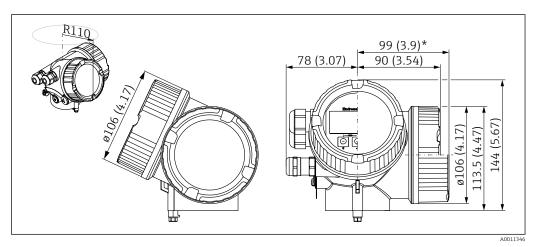
Dielectric constant (DC) and conductivity

- DC (upper medium) ≤ 10
- DC (lower medium) DC (upper medium) ≥ 10
- Interface thickness ≥ 60 mm (2.4 in)
- Conductivity (upper medium): $\leq 1 \mu S/cm$
- Conductivity (lower medium): ≥ 100 μS/cm

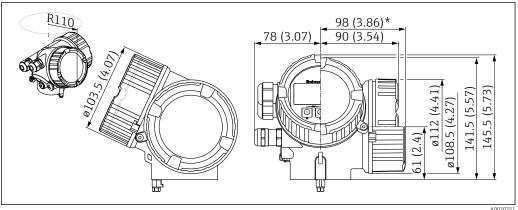

Extension of the rope probes due to temperature

Elongation from temperature increase from 30 °C (86 °F) to 150 °C (302 °F): 2 mm / m rope length

Mechanical construction

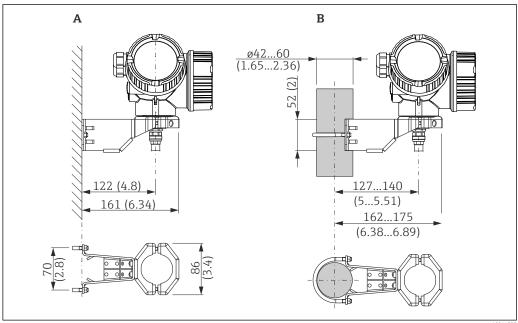

Dimensions

Dimensions of the electronics housing

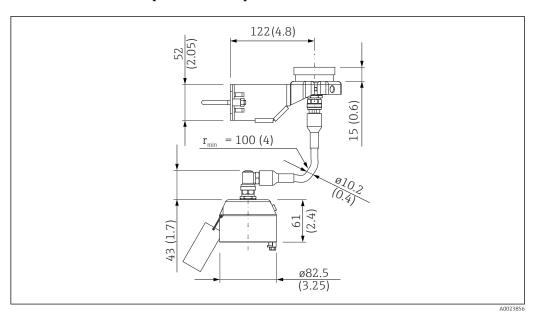

Housing GT18 (316L). Unit of measurement mm (in)

*For devices with integrated overvoltage protection.

GT19 housing (plastic PBT). Unit of measurement mm (in)

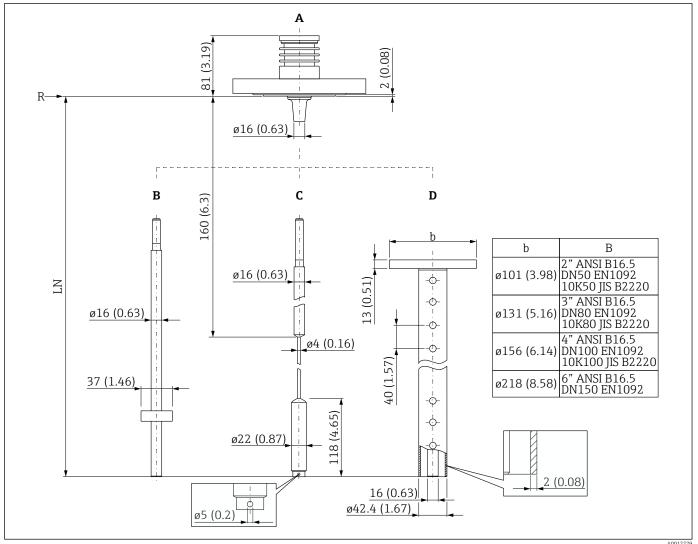

*For devices with integrated overvoltage protection.

Housing GT20 (aluminum coated). Unit of measurement mm (in)


*For devices with integrated overvoltage protection.

Mounting bracket dimensions

- 32 Mounting bracket for electronics housing. Unit of measurement mm (in)
- A Wall mounting
- B Post mounting
- With "remote sensor" device versions (see feature 060 in the product structure), the mounting bracket is included in the scope of delivery. However, it can also be ordered separately as an accessory (order number: 71102216).


Dimensions of connection piece for remote probe

🖪 33 Connection piece for remote probe; length of connecting cable: as per order. Unit of measurement mm (in)

Endress+Hauser 51

A001479

FMP55: Dimensions of process connection/probe

A00127

■ 34 FMP55: Process connection / probe. Unit of measurement mm (in)

- A Flange ANSI B16.5, EN1092-1, JIS B2220 (feature 100)
- *B* Rod probe 16mm or 0.63in, PFA>316L (feature 060)
- C Rope probe 4mm or 1/6", PFA>316 (feature 060)
- D Coax probe (feature 060); vent openings Ø approx. 10 mm (0.4 in)
- LN Probe length
- R Reference point of measurement

52

Probe length tolerances

Rod and coax probes

Permitted tolerance depending on the probe length:

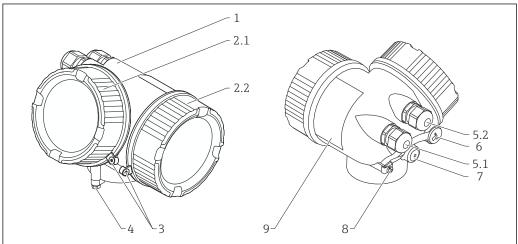
- < 1 m (3.3 ft) = -5 mm (-0.2 in)
 1 to 3 m (3.3 to 9.8 ft) = -10 mm (-0.39 in)
 3 to 6 m (9.8 to 20 ft) = -20 mm (-0.79 in)
- > 6 m (20 ft) = -30 mm (-1.18 in)

Rope probes

Permitted tolerance depending on the probe length:

- < 1 m (3.3 ft) = -10 mm (-0.39 in)
- 1 to 3 m (3.3 to 9.8 ft) = -20 mm (-0.79 in) 3 to 6 m (9.8 to 20 ft) = -30 mm (-1.18 in)
- > 6 m (20 ft) = -40 mm (-1.57 in)

Weight

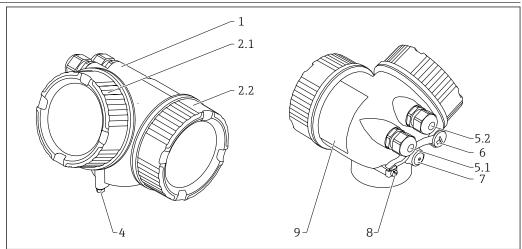

Housing

Part	Weight
GT18 housing - stainless steel	Approx. 4.5 kg
GT19 housing - plastic	Approx. 1.2 kg
GT20 housing - aluminum	Approx. 1.9 kg

FMP55

Part	Weight	Part	Weight
Sensor	Approx. 1.2 kg + weight of flange	Rod probe 16 mm	Approx. 1.1 kg/m probe length
Rope probe 4 mm	Approx. 0.5 kg/m probe length	Coax probe	Approx. 3.5 kg/m probe length

Materials: Housing GT18 (stainless steel, corrosion-resistant)

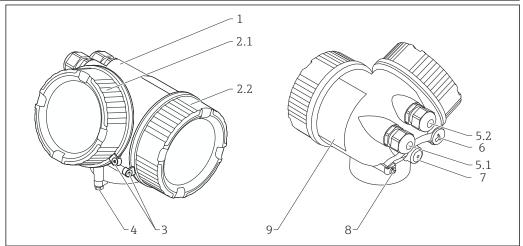


A0036037

No.	Component part	Material
1	Housing	CF3M similar to 316L/1.4404
2.1	Electronics compartment cover	 Cover: CF3M (similar to 316L/ 1.4404) Window: glass Cover seal: NBR Window seal: NBR Thread coating: graphite-based lubricant varnish
2.2	Connection compartment cover	 Cover: CF3M (similar to 316L/ 1.4404) Cover seal: NBR Thread coating: graphite-based lubricant varnish
3	Cover clamp	Screw: A4Clamp: 316L (1.4404)
4	Safety device on housing neck	Screw: A4-70Clamp: 316L (1.4404)
5.1	Dummy plug, coupling, adapter or connector (depending on device version)	 Dummy plug, depending on device version: PE PBT-GF Coupling: 316L (1.4404) or brass, nickel-plated Adapter: 316L (1.4404/1.4435) Seal: EPDM Connector M12: brass, nickel-plated ¹⁾ Connector 7/8": 316 (1.4401) ²⁾
5.2	Dummy plug, coupling or adapter (depending on device version)	 Dummy plug: 316L (1.4404) Coupling: 316L (1.4404) or brass, nickel-plated Adapter: 316L (1.4404/1.4435) Seal: EPDM
6	Dummy plug or M12 socket (depending on device version)	 Dummy plug: 316L (1.4404) M12 socket: 316L (1.4404)
7	Pressure compensation vent	316L (1.4404)
8	Ground terminal	 Screw: A4 Spring washer: A4 Clamp: 316L (1.4404) Bracket: 316L (1.4404)
9	Nameplate	 Plate: 316L (1.4404) Groove pin: A4 (1.4571)

- 1) In the version with M12 connector, the seal material is Viton.
- 2) In the version with 7/8" connector, the seal material is NBR.

Materials: GT19 housing (plastic)



A0013788

No.	Component part	Material
1	Housing	PBT
2.1	Electronics compartment cover	 Sight glass: PC Rim: PBT-PC Cover seal: EPDM Thread coating: graphite-based lubricant varnish
2.2	Connection compartment cover	 Cover: PBT Cover seal: EPDM Thread coating: graphite-based lubricant varnish
4	Safety device on housing neck	Screw: A4-70Clamp: 316L (1.4404)
5.1	Dummy plug, coupling, adapter or connector (depending on device version)	 Dummy plug, depending on device version: PE PBT-GF Coupling, depending on device version: Brass (CuZn), nickel-plated PA Adapter: 316L (1.4404/1.4435) Seal: EPDM Connector M12: brass, nickel-plated 1) Connector 7/8": 316 (1.4401) 2)
5.2	Dummy plug, coupling or adapter (depending on device version)	 Dummy plug, depending on device version: PE PBT-GF Steel, galvanized Coupling, depending on device version: Brass (CuZn), nickel-plated PA Adapter: 316L (1.4404/1.4435) Seal: EPDM
6	Dummy plug or M12 socket (depending on device version)	Dummy plug: brass (CuZn), nickel-platedM12 socket: GD-Zn, nickel-plated
7	Pressure compensation vent	Brass (CuZn), nickel-plated
8	Ground terminal	 Screw: A2 Spring washer: A4 Clamp: 304 (1.4301) Bracket: 304 (1.4301)
9	Adhesive nameplate	Plastic

- 1) In the version with M12 connector, the seal material is Viton.
- 2) In the version with 7/8" connector, the seal material is NBR.

Materials: GT20 housing (die-cast aluminum, powdercoated)

A0036037

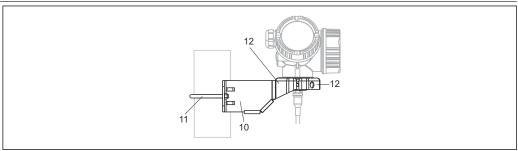
No.	Component part	Material
1	Housing, RAL 5012 (blue)	Housing: AlSi10Mg(<0.1% Cu)Coating: polyester
2.1	Electronics compartment cover, RAL 7035 (gray)	 Cover: AlSi10Mg(<0.1% Cu) Window: glass Cover seal: NBR Window seal: NBR Thread coating: graphite-based lubricant varnish
2.2	Connection compartment cover, RAL 7035 (gray)	 Cover: AlSi10Mg(<0.1% Cu) Cover seal: NBR Thread coating: graphite-based lubricant varnish
3	Cover clamp	Screw: A4Clamp: 316L (1.4404)
4	Safety device on housing neck	• Screw: A4-70 • Clamp: 316L (1.4404)
5.1	Dummy plug, coupling, adapter or connector (depending on device version)	 Dummy plug, depending on device version: PE PBT-GF Coupling, depending on device version: Brass (CuZn), nickel-plated PA Adapter: 316L (1.4404/1.4435) Seal: EPDM M12 plug: brass, nickel-plated ¹⁾ 7/8" plug: 316 (1.4401) ²⁾
5.2	Dummy plug, coupling or adapter (depending on device version)	 Dummy plug, depending on device version: PE PBT-GF Steel, galvanized Coupling, depending on device version: Brass (CuZn), nickel-plated PA Adapter: 316L (1.4404/1.4435) Seal: EPDM
6	Dummy plug or M12 socket (depending on device version)	 Dummy plug: brass (CuZn), nickel-plated M12 socket: GD-Zn, nickel-plated
7	Pressure compensation vent	Brass (CuZn), nickel-plated

No.	Component part	Material
8	Ground terminal	 Screw: A2 Spring washer: A2 Clamp: 304 (1.4301) Bracket: 304 (1.4301)
9	Adhesive nameplate	Plastic

- 1) 2) In the version with the M12 plug, the seal material is Viton (different from standard). In the version with the 7/8" plug, the seal material is NBR (different from standard).

Materials: Process connection

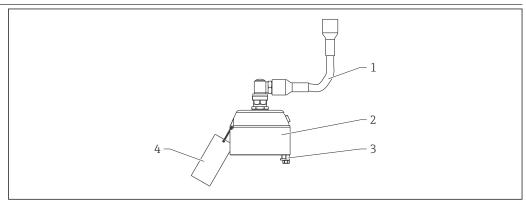
i


Endress+Hauser supplies DIN/EN flanges in stainless steel as per AISI 316L (DIN/EN material number 1.4404 or 14435). With regard to their stability-temperature property, the materials 1.4404 and 1.4435 are grouped together under 13E0 in EN 1092-1: 2007 Tab. G.3.1-1. The chemical composition of the two materials can be identical.

Levelflex FMP55		
Flange EN/ASME/JIS	No.	Material
1	1	316L (1.4404)
A0014650	2	ASME: 316/316L EN: 316L (1.4404) JIS: 316L (1.4435)
	4	Coating 2 mm (0.08 in): PTFE (Dyneon TFM1600)
4 A0014650	4	

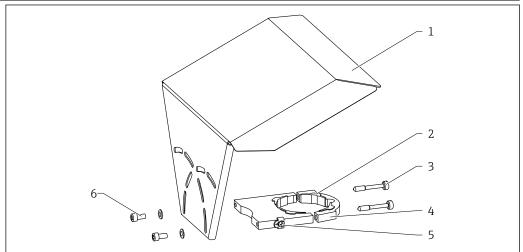
Levelflex FMP55				
Feature 060 "Probe"				
CA: rod 16mmCB: rod 0.63in	■ NA: rope 4mm ■ ND: rope 1/6"	UA:mm, coaxUB:inch, coax	No.	Material
	<u> </u>		1	316L (1.4404)
	1	0 1	2	Coating 2 mm (0.08 in): PFA (Daikin PFA AP230)
	2		3	Rope: 316 (1.4401)
		0 1		Coating 0.75 mm (0.03 in): PFA (Daikin PFA AP230)
	_3	φ	4	Core: 316L (1.4435)
		1	5	Centering star, PFA 1)
	2	6	6	Centering star, PFA
<u></u>	2	φ i		
1	4	Ф		
A0013870	2 A0036599	A0036703		

1) Feature 610 "Accessory mounted" = OE "Rod centering star d=37mm, PFA, interface measurement"


Materials: Mounting bracket

Δ0015143

Mounting bracket for "remote sensor" version			
No.	Component part Material		
10	Holder	316L (1.4404)	
11	Round bracket	316Ti (1.4571)	
	Screws/nuts	A4-70	
	Distance sleeves	316Ti (1.4571) or 316L (1.4404)	
12	Half-shells	316L (1.4404)	


Materials: Adapter and cable for remote sensor

A0021722

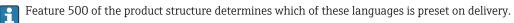
Adapter and cable for "remote sensor" version		
No.	Component part	Material
1	Cable	FRNC
2	Sensor adapter	304 (1.4301)
3	Terminal	316L (1.4404)
	Screw	A4-70
4	Band	316 (1.4401)
	Crimp sleeve	Aluminum
	Nameplate	304 (1.4301)

Materials: Weather protection cover

A001E472

No.	Component: Material
1	Protection cover: 316L (1.4404)
2	Rubber molded part (4x): EPDM
3	Tensioning screw: 316L (1.4404) + carbon thread
4	Holder: 316L (1.4404)
5	Ground terminal Screw: A4 Spring washer: A4 Clamp: 316L (1.4404) Bracket: 316L (1.4404)
6	Washer: A4Cylinder screw: A4-70

Operability


Operating concept

Operator-oriented menu structure for user-specific tasks

- Commissioning
- Operation
- Diagnostics
- Expert level

Operating languages

- English
- Deutsch
- Français
- Español
- Italiano
- Nederlands
- Portuguesa
- Polski
- русский язык (Russian)
- Svenska
- Türkçe
- 中文 (Chinese)
- 日本語 (Japanese)
- 한국어 (Korean)
- Bahasa Indonesia
- tiếng Việt (Vietnamese)
- čeština (Czech)

Quick and save commissioning

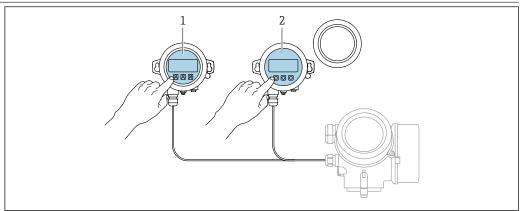
- Interactive wizard with graphical interface for easy commissioning via FieldCare/DeviceCare
- Menu guidance with brief explanations of the individual parameter functions
- Standardized operation at the device and in the operating tools

Integrated data storage device (HistoROM)

- Enables transfer of configuration when changing electronic modules
- Records up to 100 event messages in the device
- Records up to 1000 measured values in the device
- Saves the signal curve on commissioning which can later be used as a reference.

Efficient diagnostics increase measurement reliability

- Remedy information is integrated in plain text
- Diverse simulation options and line recorder functions

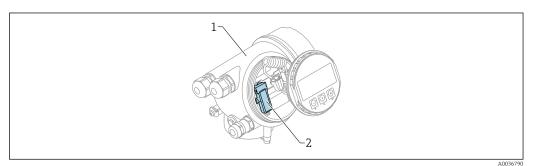

Integrated Bluetooth module (option for HART devices)

- Easy and fast setup via SmartBlue (app)
- No additional tools or adapters required
- Signal curve via SmartBlue (app)
- Encrypted single point-to-point data transmission (Fraunhofer-Institut, third party, tested) and password-protected communication via Bluetooth® wireless technology

Local operation

Operation with	Pushbuttons	Touch Control
Order code for "Display; Operation"	Option C "SD02"	Option E "SD03"
	A0036312	A0036313
Display elements	4-line display	4-line display white background lighting; switches to red in event of device error
	Format for displaying measured variables and st	catus variables can be individually configured
	Permitted ambient temperature for the display: The readability of the display may be impaired a range.	
Operating elements	local operation with 3 push buttons (₺, ⊡, ₺)	external operation via touch control; 3 optical keys: \boxdot , \boxdot , \sqsubseteq
	Operating elements also accessible in various ha	ızardous areas
Additional functionality	Data backup function The device configuration can be saved in the display module.	
	Data comparison function The device configuration saved in the display moconfiguration.	odule can be compared to the current device
	Data transfer function The transmitter configuration can be transmitte	d to another device using the display module.

Operation with remote display and operating module FHX50

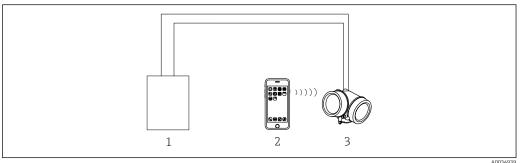

A0036314

■ 35 FHX50 operating options

- Display and operating module SD03, optical keys; can be operated through the glass of the cover Display and operating module SD02, push buttons; cover must be removed

Operation via Bluetooth® wireless technology

Requirements

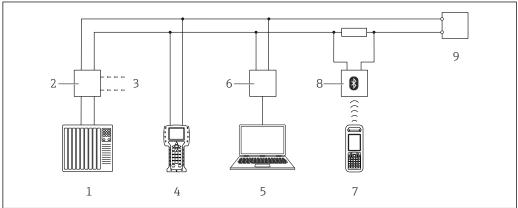

■ 36 Device with Bluetooth module

- 1 Electronics housing of the device
- 2 Bluetooth module

This operation option is only available for devices with Bluetooth module. There are the following options:

- The device has been ordered with a Bluetooth module: Feature 610 "Accessory Mounted", option NF "Bluetooth"
- The Bluetooth module has been ordered as an accessory (ordering number: 71377355) and has been mounted. See Special Documentation SD02252F.

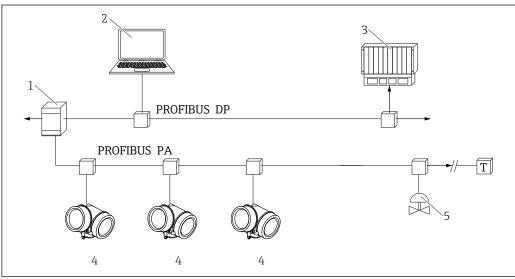
Operation via SmartBlue (app)


■ 37 Operation via SmartBlue (app)

- 1 Transmitter power supply unit
- 2 Smartphone / tablet with SmartBlue (app)
- 3 Transmitter with Bluetooth module

66

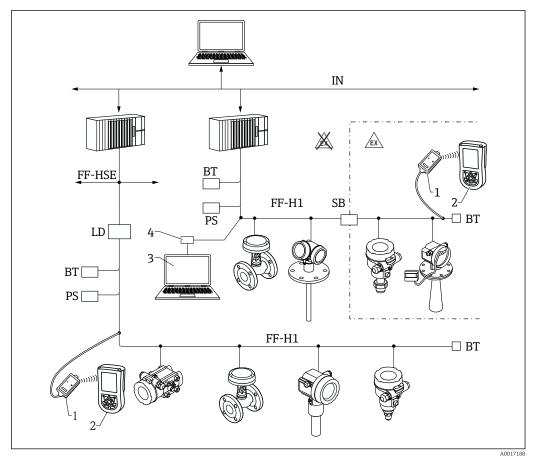
Remote operation


Via HART protocol

₹ 38 Options for remote operation via HART protocol

- PLC (Programmable Logic Controller)
- 2
- Transmitter power supply unit, e.g. RN221N (with communication resistor)
 Connection for Commubox FXA191, FXA195 and Field Communicator 375, 475 3
- 4 Field Communicator 475
- Computer with operating tool (e.g. DeviceCare/FieldCare, AMS Device Manager, SIMATIC PDM)
- 6 Commubox FXA191 (RS232) or FXA195 (USB)
- Field Xpert SFX350/SFX370
- 8 VIATOR Bluetooth modem with connecting cable
- Transmitter

Via PROFIBUS PA protocol

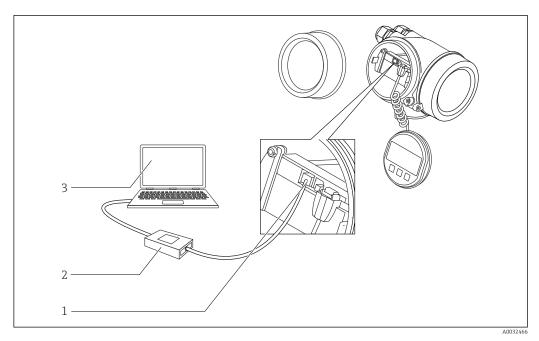


A0036301

₹ 39 Options for remote operation via PROFIBUS PA protocol

- Computer with Profiboard/Proficard and operating tool (e.g. DeviceCare/FieldCare
- 3 PLC (Progrommable Logic Controller)
- Transmitter
- Additional functions (valves etc.)

Via FOUNDATION Fieldbus

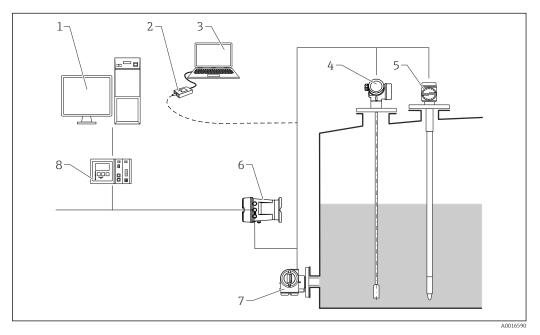


FOUNDATION Fieldbus system architecture with associated components

- 1 FFblue Bluetooth modem
- Field Xpert SFX350/SFX370 DeviceCare/FieldCare 2
- 3
- NI-FF interface card

IN	Industrial network
FF-HSE	High Speed Ethernet
FF-H1	FOUNDATION Fieldbus-H1
LD	Linking Device FF-HSE/FF-H1
PS	Bus Power Supply
SB	Safety Barrier
BT	Bus Terminator

DeviceCare/FieldCare via service interface (CDI)



■ 41 DeviceCare/FieldCare via service interface (CDI)

- Service interface (CDI) of the instrument (= Endress+Hauser Common Data Interface) Commubox FXA291
- 2 3
- Computer with DeviceCare/FieldCare operating tool

Integration in tank gauging system

The Endress+Hauser Tank Side Monitor NRF81 provides integrated communications for sites with multiple tanks, each with one or more sensors on the tank, such as radar, spot or average temperature, capacitive probe for water detection and/or pressure sensors. Multiple protocols out of the Tank Side Monitor guarantee connectivity to nearly any of the existing industry standard tank gauging protocols. Optional connectivity of analog 4...20 mA sensors, digital I/O and analog output simplify full tank sensor integration. Use of the proven concept of the intrinsically safe HART bus for all on-tank sensors yields extremely low wiring costs, while at the same time providing maximum safety, reliability and data availability.

■ 42 The complete measuring system consists of:

- 1 Tankvision workstation
- 2 Commubox FXA195 (USB) optional
- 3 Computer with operating tool (ControlCare) optional
- 4 Level measuring device
- 5 Temperature measuring device
- 6 Tank Side Monitor NRF81
- 7 Pressure measuring device
- 8 Tankvision Tank Scanner NXA820

SupplyCare inventory management software

SupplyCare is a web-based operating program for coordinating the flow of material and information along the supply chain. SupplyCare provides a comprehensive overview of the levels of geographically distributed tanks and silos, for instance, providing complete transparency over the current inventory situation, regardless of time and location.

Based on the measuring and transmission technology installed onsite, the current inventory data are collected and sent to SupplyCare. Critical levels are clearly indicated and calculated forecasts provide additional security for material requirements planning.

The main functions of SupplyCare:

Inventory visualization

SupplyCare determines the inventory levels in tanks and silos at regular intervals. It displays current and historical inventory data and calculated forecasts of future demand. The overview page can be configured to suit the user's preferences.

Master data management

With SupplyCare you can create and manage the master data for locations, companies, tanks, products and users, as well as user authorization.

Report Configurator

The Report Configurator can be used to create personalized reports quickly and easily. The reports can be saved in a variety of formats, such as Excel, PDF, CSV and XML. The reports can be transmitted in many ways, such as by http, ftp or e-mail.

Event management

Events, such as when levels drop below the safety stock level or plan points, are indicated by the software. In addition, SupplyCare can also notify pre-defined users by e-mail.

Alarms

If technical problems occur, e.g. connection issues, alarms are triggered and alarm e-mails are sent to the System Administrator and the Local System Administrator.

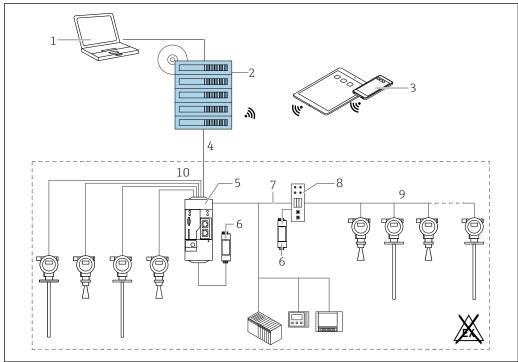
Delivery planning

The integrated delivery planning function automatically generates an order proposal if a pre-set minimum inventory level is undershot. Scheduled deliveries and disposals are monitored continuously by SupplyCare. SupplyCare notifies the user if scheduled deliveries and disposals are not going to be met as planned.

Analysis

In the Analysis module, the most important indicators for the inflow and outflow of the individual tanks are calculated and displayed as data and charts. Key indicators of material management are automatically calculated and form the basis for optimizing the delivery and storage process.

Geographical visualization

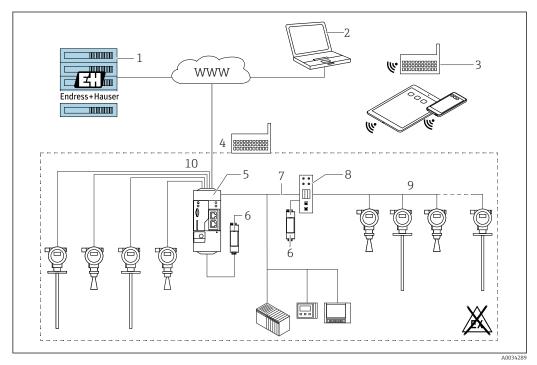

All the tanks and the tank inventories are represented graphically on a map (based on Google Maps). The tanks and inventory situations can be filtered by tank group, product, supplier or location.

Multi-language support

The multi-language user interface supports 9 languages, thereby enabling global collaboration on a single platform. The language and settings are recognized automatically using the browser settings.

SupplyCare Enterprise

SupplyCare Enterprise runs by default as a service under Microsoft Windows on an application server in an Apache Tomcat environment. The operators and administrators operate the application via a Web browser from their workstations.



€ 43 Example of inventory management platform with SupplyCare Enterprise SCE30B

- 1 SupplyCare Enterprise (via Web browser)
- 2
- SupplyCare Enterprise installation
 SupplyCare Enterprise on mobile devices (via Web browser)
 Ethernet/WLAN/UMTS
 Fieldgate FXA42 3
- 4
- 6
- Power supply 24 V DC
 Modbus TCP via Ethernet as server/client
 Converter from Modbus to HART Multidrop 8
- 9 HART Multidrop 10 4 x 4 to 20 mA analog input (2-wire/4-wire)

Cloud-based application: SupplyCare Hosting

SupplyCare Hosting is offered as a hosting service (software as a service). Here, the software is installed within the Endress+Hauser IT infrastructure and made available to the user in the Endress+Hauser portal.

■ 44 Example of inventory management platform with SupplyCare Hosting SCH30

- 1 SupplyCare Hosting installation in Endress+Hauser data center
- 2 *PC workstation with Internet connection*
- 3 Warehouse locations with Internet connection via 2G/3G with FXA42 or FXA30
- 4 Warehouse locations with Internet connection with FXA42
- 5 Fieldgate FXA42
- 6 Power supply 24 V DC
- 7 Modbus TCP via Ethernet as server/client
- 8 Converter from Modbus to HART Multidrop
- 9 HART Multidrop
- 10 4 x 4 to 20 mA analog input (2-wire/4-wire)

With SupplyCare Hosting, users do not need to make the initial software purchase or install and run the IT infrastructure needed. Endress+Hauser constantly update SupplyCare Hosting and enhance the capability of the software in conjunction with the customer. The hosted version of SupplyCare is thus always up-to-date and can be customized to meet different customer requirements. Other services are also offered in addition to the IT infrastructure and the software that is installed in a secure, redundant Endress+Hauser data center. These services include defined availability of the global Endress+Hauser Service and Support Organization and defined response times in a service event.

Certificates and approvals

i

Currently available certificates and approvals can be called up via the product configurator.

CE mark

The measuring system meets the legal requirements of the applicable EU Directives. These are listed in the corresponding EU Declaration of Conformity along with the standards applied.

Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.

RoHS

The measuring system complies with the substance restrictions of the Restriction on Hazardous Substances Directive 2011/65/EU (RoHS 2).

RCM-Tick marking

The supplied product or measuring system meets the ACMA (Australian Communications and Media Authority) requirements for network integrity, interoperability, performance characteristics as well as health and safety regulations. Here, especially the regulatory arrangements for electromagnetic compatibility are met. The products are labelled with the RCM- Tick marking on the name plate.

40020571

Ex approval

The devices are certified for use in hazardous areas and the relevant safety instructions are provided in the separate "Safety Instructions" (XA, ZD) document. Reference is made to this document on the nameplate.

The separate "Safety Instructions" documentation (XA) containing all the relevant explosion protection data is available from your Endress+Hauser sales organization.

Dual seal according to ANSI/ISA 12.27.01

The devices have been designed according to ANSI/ISA 12.27.01 as dual seal devices, allowing the user to waive the use and save the cost of installing external secondary process seals in the conduit as required by the process sealing sections of ANSI/NFPA 70 (NEC) and CSA 22.1 (CEC) These instruments comply with the North-American installation practice and provide a very safe and cost-saving installation for pressurized applications with hazardous fluids.

Further information can be found in the Safety Instructions (XA) of the relevant devices.

Functional safety

Use for level monitoring (MIN, MAX, range) up to SIL 3 (homogeneous redundancy), independently evaluated by TÜV Rheinland in accordance with IEC 61508, refer to the "Functional Safety Manual" SD00326F for more information.

AD2000

- For FMP52/FMP55:
- The pressure retaining material 316L (1.4435/1.4404) corresponds to AD2000 W2/W10.
- Declaration of Conformity: see the product structure, feature 580, version JF.

NACE MR 0175 / ISO 15156

- The wetted, metal materials (excluding ropes) meet the requirements of NACE MR 0175 / ISO 15156.
- Declaration of Conformity: see the product structure, feature 580, version JB

NACE MR 0103

- The wetted, metal materials (excluding ropes) meet the requirements of NACE MR 0103 / ISO 17495.
- The Declaration of Conformity is based on NACE MR 0175.
 The hardness and intergranular corrosion have been tested, and heat treatment (solution annealed) has been performed. The materials used therefore meet the requirements of NACE MR 0103 / ISO 17495.
- Declaration of Conformity: see the product structure, feature 580, version JE.

ASME B31.1 and B31.3

- The design, the material used, the pressure and temperature ranges and the labeling of the devices meet the requirements of ASME B31.1 and B31.3
- Declaration of Conformity: see the product structure, feature 580, version KV.

Pressure equipment with allowable pressure ≤ 200 bar (2 900 psi)

Pressure instruments with a flange and threaded boss that do not have a pressurized housing do not fall within the scope of the Pressure Equipment Directive, irrespective of the maximum allowable pressure.

Reasons:

According to Article 2, point 5 of EU Directive 2014/68/EU, pressure accessories are defined as "devices with an operational function and having pressure-bearing housings".

If a pressure instrument does not have a pressure-bearing housing (no identifiable pressure chamber of its own), there is no pressure accessory present within the meaning of the Directive.

Marine approval

De	evice	Marine approval ¹⁾				
		DNV GL	ABS	LR	BV	KR
FΛ	MP55	V	V	V	V	-

1) See order code for 590 "Additional approval"

Radio approval

Satisfies "Part 15" of the FCC rules for an unintentional radiator. All probes meet the requirements for a Class A digital device.

In addition, coax probes and all probes in metal vessels meet the requirements for a Class B digital device.

CRN approval

A CRN approval is available for some device versions. Devices are CRN approved if the following two conditions are met:

- The device has a CSA or FM approval (product structure: feature 010 "Approval")
- The device has a CRN-approved process connection as per the following table:

Feature 100 in the product structure	Approval		
AEK	NPS 1-1/2" Cl. 150, PTFE>316/316L flange ASME B16.5		
AFK	NPS 2" C. 150, PTFE>316/316L flange ASME B16.5		
AGK	NPS 3" Cl. 150, PTFE>316/316L flange ASME B16.5		
АНК	NPS 4" Cl. 150, PTFE>316/316L flange ASME B16.5		
AJK	NPS 6" Cl. 150, PTFE>316/316L flange ASME B16.5		
AQK	NPS 1-1/2" Cl. 300, PTFE>316/316L flange ASME B16.5		
ARK	NPS 2" Cl. 300, PTFE>316/316L flange ASME B16.5		
ASK	NPS 3" Cl. 300, PTFE>316/316L flange ASME B16.5		
ATK	NPS 4" Cl. 300, PTFE>316/316L flange ASME B16.5		

- Process connections that do not have CRN approval are not listed in this table.
- Please refer to the product structure to discover which process connections are available for a specific device type.
- CRN-approved devices are labeled with registration number 0F14480.5C on the nameplate.

Test, certificate

Feature 580 "Test, certificate"	Designation	Approval
JA	3.1 Material documentation, wetted metal parts, EN10204-3.1 inspection certificate	FMP55
ЈВ	Declaration of Conformity NACE MR0175, wetted metal parts	FMP55
JD	3.1 Material certificate, pressurized parts, EN10204-3.1 inspection certificate	FMP55
JE	Declaration of Conformity NACE MR0103, wetted metal parts	FMP55
JF	Declaration of Conformity AD2000, wetted metal parts: Material conformity for all metal wetted/pressurized parts according to AD2000 (data sheets W2, W9, W10)	FMP55
KE	Pressure test, internal procedure, inspection certificate	FMP55
KG	3.1 Material certificate+PMI test (XRF), internal procedure, wetted metal parts, EN10204-3.1 inspection certificate	FMP55
KV	Declaration of Conformity ASME B31.3: The design, the material used, the pressure and temperature ranges and the labeling of the devices meet the requirements of ASME B31.3	FMP55

i

Test reports, declarations and inspection certificates are available in electronic format in the $W@M\ Device\ Viewer$:

Enter the serial number that appears on the device (www.endress.com/deviceviewer)

This concerns the options for the following order codes:

- 550 "Calibration"
- 580 "Test, certificate"

Hard-copy product documentation

Hard-copy versions of the test reports, declarations and inspection certificates can also be order via order code 570 "Service", option I7 "Hard-copy product documentation". The documents are then supplied with the product.

Other standards and guidelines

■ EN 60529

Degrees of protection provided by enclosures (IP code)

■ EN 61010-1

Safety requirements for electrical equipment for measurement, control and laboratory use

■ IEC/EN 61326

"Emission in accordance with Class A requirements". Electromagnetic compatibility (EMC requirements).

■ NAMUR NE 21

Electromagnetic compatibility (EMC) of industrial process and laboratory control equipment

■ NAMUR NE 43

Standardization of the signal level for the breakdown information of digital transmitters with analog output signal.

■ NAMUR NE 53

Software of field devices and signal-processing devices with digital electronics

■ NAMUR NE 107

Status classification as per NE107

■ NAMUR NE 131

Requirements for field devices for standard applications

■ IEC61508

Functional safety of safety-related electric/electronic/programmable electronic systems

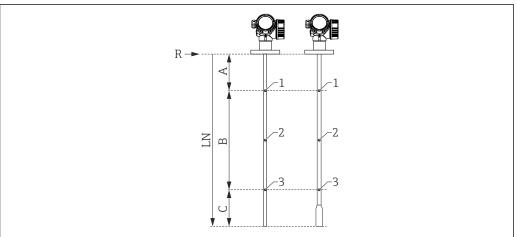
Ordering information

Ordering information

Detailed ordering information is available for your nearest sales organization www.addresses.endress.com or in the Product Configurator under www.endress.com :

- 1. Click Corporate
- 2. Select the country
- 3. Click Products
- 4. Select the product using the filters and search field
- 5. Open the product page

The Configuration button to the right of the product image opens the Product Configurator.


Product Configurator - the tool for individual product configuration

- Up-to-the-minute configuration data
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop

3-point linearity protocol

The following points must be considered if option F3 (3-point linearity protocol) was selected in feature 550 ("Calibration").

The 3 points of the linearity protocol are defined as follows, depending on the selected probe:

A0021843

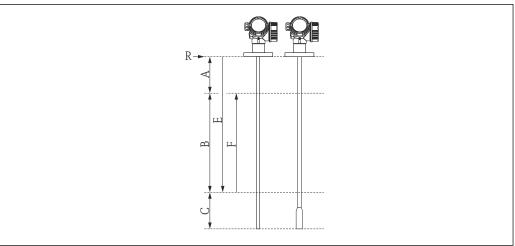
- Distance from the reference point R to the first measuring point Α
- В Measuring range
- С Distance from the probe end to the third measuring point
- LN Probe length
- R Reference point of measurement
- First measuring point
- Second measuring point (in the middle between the first and third measuring point) 2
- Third measuring point

	Rod or coax probe $^{1)}$ LN \leq 6 m (20 ft)	Separable rod probe LN > 6 m (20 ft)	Rope probe LN ≤ 6 m (20 ft)	Rope probe LN > 6 m (20 ft)
Position of 1st measuring point	■ FMP51/FMP52/FMP54 without gas phase compensation/ FMP55: A = 350 mm (13.8 in) ■ FMP54 with gas phase compensation, L _{ref} = 300 mm (11 in): A = 600 mm (23.6 in) ■ FMP54 with gas phase compensation, L _{ref} = 550 mm (21 in): A = 850 mm (33.5 in)		A =350 mm (13.8 in)	A =350 mm (13.8 in)
Position of 2nd measuring point	In the middle between the 1st and 3rd measuring point	In the middle between the 1st and 3rd measuring point	In the middle between the 1st and 3rd measuring point	In the middle between the 1st and 3rd measuring point
Position of 3rd measuring point	Measured from bottom: C = 250 mm (9.84 in)	Measured from top: A+B = 5 750 mm (226 in)	Measured from bottom: C = 500 mm (19.7 in)	Measured from top: A+B = 5 500 mm (217 in)
Minimum measuring range	B ≥ 400 mm (15.7 in)	B ≥ 400 mm (15.7 in)	B ≥ 400 mm (15.7 in)	B ≥ 400 mm (15.7 in)
Minimum probe length	LN ≥ 1000 mm (39.4 in)	LN ≥ 1000 mm (39.4 in)	LN ≥ 1250 mm (49.2 in)	LN ≥ 1250 mm (49.2 in)

1) Also applies for separable rods

The position of the measuring points can vary by ± 1 cm (± 0.04 in).

- In the case of rod and rope probes, the linearity check is performed with the entire device.
- In the case of coax probes, the device electronics unit is mounted on a reference rod probe during the test and the linearity check is performed.
- The linearity check is performed under reference operating conditions.


5-point linearity protocol

i

The following points must be considered if option F4 (5-point linearity protocol) was selected in feature 550 ("Calibration").

The 5 points of the linearity protocol are evenly distributed over the measuring range (0% - 100%). **Empty calibration** (E) and **Full calibration** (F) must be specified in order to define the measuring range $^{5)}$.

The following restrictions must be considered when selecting E and F:

A001467

- A Distance from the reference point R to the 100% mark
- *B* Measuring range
- C Distance from the probe end to the 0% mark
- E Empty calibration
- F Full calibration
- R Reference point of measurement

Sensor	Minimum distance between reference point R and 100% mark	Minimum measuring range	
FMP55	A ≥ 250 mm (10 in)	B ≥ 400 mm (16 in)	

Probe type	Minimum distance from the probe end to the 0% mark	Maximum value for "Empty calibration"	
Rod	C ≥ 100 mm (4 in)	E ≤ 3.9 m (12.8 ft)	
Coax	C ≥ 100 mm (4 in)	E ≤ 5.9 m (19.4 ft)	
Cable	C ≥ 1000 mm (40 in)	E ≤ 9 m (29 ft)	

- In the case of rod and rope probes, the linearity check is performed with the entire device.
- In the case of coax probes, the device electronics unit is mounted on a reference rod probe during the test and the linearity check is performed.
- The linearity check is performed under reference operating conditions.
- The selected values for **Empty calibration** and **Full calibration** are only used to create the linearity protocol. Afterwards, the values are reset to the default values specific for the probe. If values other than the default values are required, they must be ordered as a customized parameterization → 81.

5)

If (E) and (F) are not specified, probe-dependent default values will be used instead.

Customer-specific configuration

If the option IJ: "Customized parameterization HART", IK "Customized parameterization PA" or IL "Customized parameterization FF" has been selected in feature 570 "Service", presettings that differ from the default settings can be selected for the following parameters:

Parameter	Communication protocol	Picklist / range of values
Setup → Unit of length	• HART • PA • FF	• in • ft • mm • m
Setup → Empty calibration	HARTPAFF	0 to 10 m (0 to 30 ft)
Setup → Full calibration	HARTPAFF	0 to 10 m (0 to 30 ft)
Setup → Extended setup → Curr. output 1/2 → Damping	HART	0 to 999.9 s
Setup \rightarrow Extended setup \rightarrow Curr. output 1/2 \rightarrow Failure mode	HART	Min Max Last valid value
Expert → Comm. → HART config. → Burst mode	HART	Off On

Tagging (TAG)

Ordering feature	895: Marking		
Option	Z1: Tagging (TAG), see additional spec.		
Position of the measuring point marking	To be selected in the additional specifications: Tag plate Stainless Steel Self-adhesive paper label Supplied label/plate RFID TAG RFID TAG + Tag plate Stainless Steel RFID TAG + Self-adhesive paper label RFID TAG + Supplied label/plate		
Definition of the measuring point designation	To be defined in the additional specifications: 3 lines containing up to 18 characters each The measuring point designation appears on the selected label and/or the RFID TAG.		
Designation in the Electronic Name Plate (ENP)	The first 32 characters of the measuring point designation		
Designation on the display module	The first 12 characters of the measuring point designation		

Application packages

Heartbeat Diagnostics

Availability

Available in all device versions.

Function

- Continuous self-monitoring of the device.
- Diagnostic messages output to
 - the local display.
 - an asset management system (e.g. FieldCare/DeviceCare).
 - an automation system (e.g. PLC).

Advantages

- Device condition information is available immediately and processed in time.
- The status signals are classified in accordance with VDI/VDE 2650 and NAMUR recommendation NE 107 and contain information about the cause of the error and remedial action.

Detailed description

See the "Diagnostics and troubleshooting" section of the Operating Instructions for the device.

Heartbeat Verification

Availability

Available for the following versions of feature 540 "Application package":

• EF

Heartbeat Verification + Monitoring

• EJ

Heartbeat Verification

Device functionality checked on demand

- Verification of the correct functioning of the measuring device within specifications.
- The verification result provides information about the condition of the device: **Passed** or **Failed**.
- The results are documented in a verification report.
- The automatically generated report supports the obligation to demonstrate compliance with internal and external regulations, laws and standards.
- Verification is possible without interrupting the process.

Advantages

- No onsite presence is required to use the function.
- The DTM triggers verification in the device and interprets the results. No specific knowledge is required on the part of the user.
 - (DTM: Device Type Manager; controls device operation via DeviceCare, FieldCare or a DTM-based process control system.)
- The verification report can be used to prove quality measures to a third party.
- Heartbeat Verification can replace other maintenance tasks (e.g. periodic check) or extend the test intervals.

SIL/WHG-locked devices

Only relevant for devices with SIL or WHG approval: order code 590 ("Additional approval"), option LA ("SIL") or LC ("WHG").

- The **Heartbeat Verification** module contains a wizard for the proof test which must be performed at appropriate intervals for the following applications:
 - SIL (IEC61508/IEC61511)
 - WHG (German Water Resources Act)
- To perform a proof test, the device must be locked (SIL/WHG locking).
- The wizard can be used via FieldCare, DeviceCare or a DTM-based process control system.

In the case of SIL-locked and WHG-locked devices, it is **not** possible to perform verification without taking additional measures (e.g. bridging the output current) because the output current must be simulated (Increased safety mode) or the level must be approached manually (Expert mode) during subsequent re-locking (SIL/WHG locking).

Detailed description

SD01872F

Heartbeat Monitoring

Availability

Available for the following versions of feature 540 "Application package":

ΕH

Heartbeat Verification + Monitoring

Function

- In addition to the verification parameters, the corresponding parameter values are also logged.
- Existing measured variables, such as the echo amplitude, are used in the Foam detection and Build-up detection wizards.
- In the Levelflex FMP5x, the Foam detection and Build-up detection wizards cannot be used together.

"Foam detection" wizard

- The Heartbeat Monitoring module contains the **Foam detection** wizard.
- This wizard is used to configure automatic foam detection, which detects foam on the product surface on the basis of the reduced signal amplitude. Foam detection can be linked to a switch output in order to control a sprinkler system, for example, which dissolves the foam.
- This wizard can be used via FieldCare, DeviceCare or a DTM-based process control system.

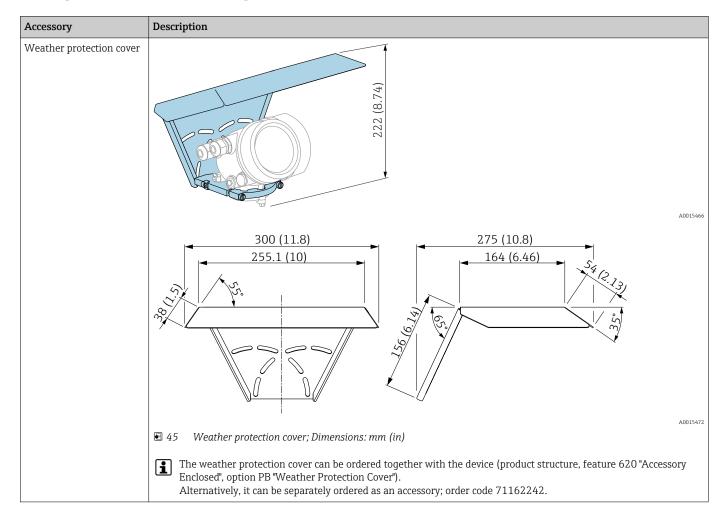
"Build-up detection" wizard

- The Heartbeat Monitoring module contains the **Build-up detection** wizard.
- The wizard is used to configure automatic buildup detection, which detects the buildup of deposits on the probe on the basis of the reduced signal amplitude.
- This wizard can be used via FieldCare, DeviceCare or a DTM-based process control system.

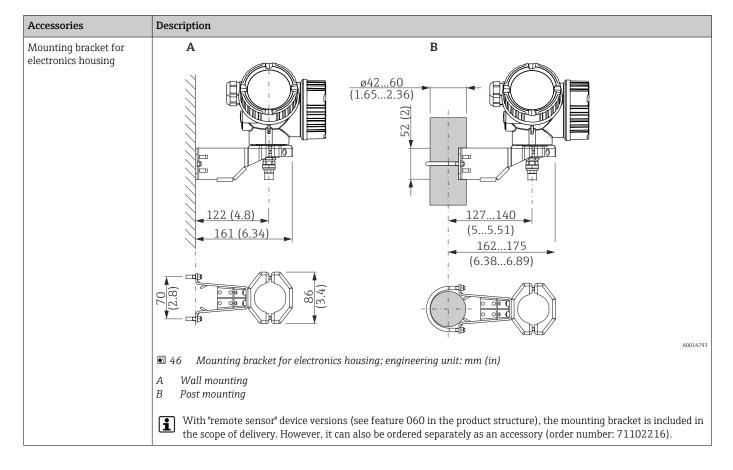
Advantages

- Early detection of changes (trends) to ensure plant availability and product quality.
- Use of information for the proactive planning of measures (e.g. cleaning/maintenance).
- Identification of undesirable process conditions as the basis to optimizing the facility and the processes.
- Automated control of measures to remove foam or buildup.

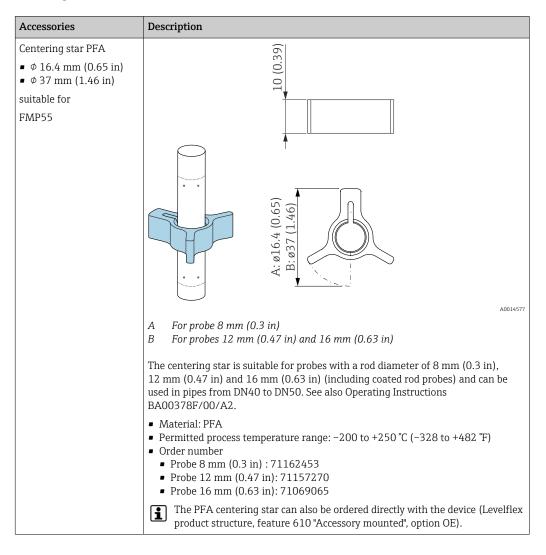
Detailed description

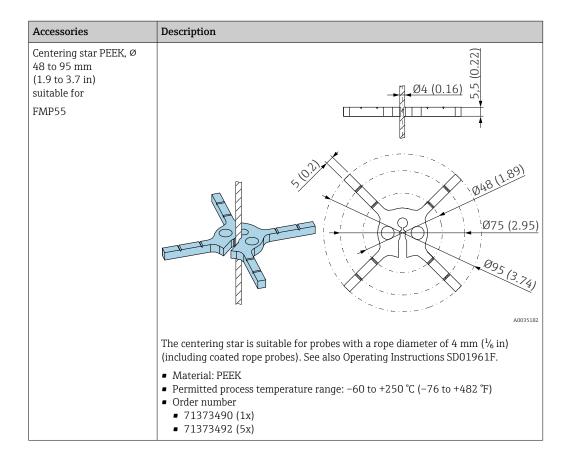


SD01872F

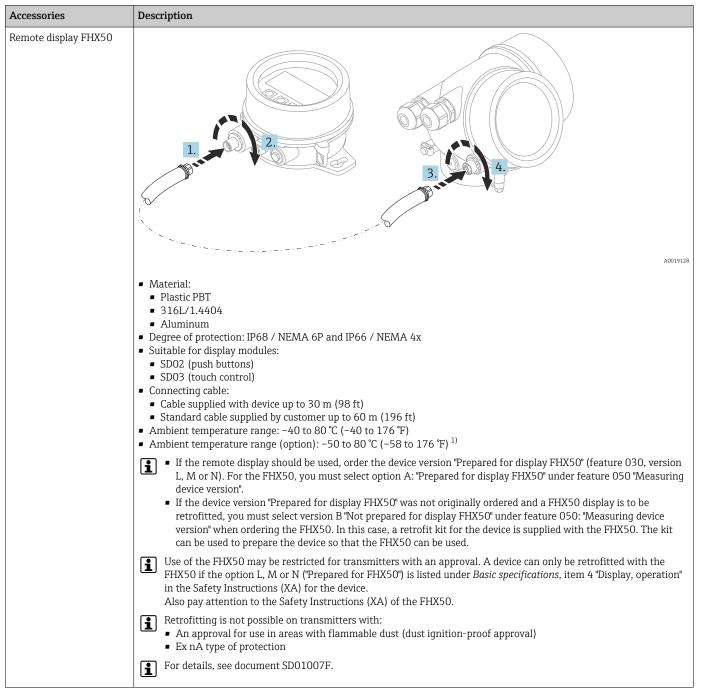

Accessories

Device-specific accessories Weat


Weather protection cover

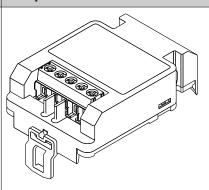


Mounting bracket for electronics housing



Centering star

Remote display FHX50


1) This range is valid if option JN "Ambient temperature transmitter -50 °C (-58 °F)" has been selected in ordering feature 580 "Test, Certificate". If the temperature is permanently below -40 °C (-40 °F), failure rates may be increased.

Accessories

Overvoltage protection

Overvoltage protection for 2-wire devices OVP10 (1-channel) OVP20 (2-channel)

Description

A0021734

Technical data

- Resistance per channel: 2 \times 0.5 Ω_{max}
- Threshold DC voltage: 400 to 700 V
- Threshold surge voltage: < 800 V
- Capacitance at 1 MHz: < 1.5 pF
- Nominal leakage current (8/20 μs): 10 kA
- Suitable for conductor cross-sections: 0.2 to 2.5 mm² (24 to 14 AWG)

Ordered with the device

Ideally, the overvoltage protection module should be ordered directly with the device. See product structure, feature 610 "Accessory mounted", option NA "Overvoltage protection". Separate order necessary only if retrofitting.

Order numbers for retrofitting

• For 1-channel devices (feature 020, option A): OVP10: 71128617

• For 2-channel devices (feature 020, options B, C, E or G) OVP20: 71128619

Housing cover for retrofitting

In order to keep the necessary safety distances when using the surge arrester module, the housing cover also needs to be replaced when the device is retrofitted. Depending on the housing type, the suitable cover can be ordered using the following material number:

- Housing GT18: cover 71185516
- Housing GT19: cover 71185518
- Housing GT20: cover 71185517

Restrictions in case of retrofitting

The use of the OVP module may be restricted depending on the transmitter approval. A device may only be retrofitted with the OVP module if the option NA (overvoltage protection) is listed under Optional specifications in the Safety Instructions (XA) associated with the device.

For details, see SD01090F.

Bluetooth module for HART devices

Description Accessory Bluetooth module Quick and easy commissioning via SmartBlue (app) • No additional tools or adapters required Signal curve via SmartBlue (app) • Encrypted single point-to-point data transmission (tested by Fraunhofer institue) and password protected communication via Bluetooth® wireless technology Range under reference conditions: > 10 m (33 ft) When using the Bluetooth module the minimum supply voltage increases by up to 3 $\ensuremath{\text{V}}.$ Ordering with device The Bluetooth module is preferably ordered with the device. See product structure, feature 610 "Accessory Mounted", option NF "Bluetooth". A separate order is only necessary in case of retrofitting. Order code for retrofitting Bluetooth module (BT10): 71377355 Restrictions in case of retrofitting Depending on the approval of the transmitter, application of the Bluetooth module may be restricted. A device may only be retrofitted with a Bluetooth module if the option NF (Bluetooth) is listed in the associated Safety Instructions (XA) under Optional specifications. For details refer to SD02252F.

Communication-specific accessories

Commubox FXA195 HART

For intrinsically safe HART communication with FieldCare via the USB interface

For details, see "Technical Information" TI00404F

Commubox FXA291

Connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) and the USB port of a computer or laptop

Order number: 51516983

For details, see "Technical Information" TI00405C

HART Loop Converter HMX50

Is used to evaluate and convert dynamic HART process variables to analog current signals or limit values

Order number: 71063562

For details, see "Technical Information" TI00429F and Operating Instructions BA00371F

WirelessHART adapter SWA70

- Is used for the wireless connection of field devices
- The WirelessHART adapter can be easily integrated into field devices and existing infrastructures, offers data protection and transmission safety and can be operated in parallel with other wireless networks

For details, see Operating Instructions BA00061S $\,$

Connect Sensor FXA30/FXA30B

Fully integrated, battery-powered gateway for simple applications with SupplyCare Hosting. Up to 4 field devices with 4 to 20 mA communication (FXA30/FXA30B), serial Modbus (FXA30B) or HART (FXA30B) can be connected. With its robust design and ability to run for years on the battery, it is ideal for remote monitoring in isolated locations. Version with LTE (USA, Canada and Mexico only) or 3G mobile transmission for worldwide communication.

For details, see "Technical Information" TI01356S and Operating Instructions BA01710S.

Fieldgate FXA42

Fieldgates enable communication between connected 4 to 20 mA, Modbus RS485 and Modbus TCP devices and SupplyCare Hosting or SupplyCare Enterprise. The signals are transmitted either via Ethernet TCP/IP, WLAN or mobile communications (UMTS). Advanced automation capabilities are available, such as an integrated Web-PLC, OpenVPN and other functions.

For details, see "Technical Information" TI01297S and Operating Instructions BA01778S.

SupplyCare Enterprise SCE30B

Inventory management software that displays the level, volume, mass, temperature, pressure, density or other parameters of tanks. The parameters are recorded and transmitted by means of gateways like Fieldgate FXA42, Connect Sensor FXA30B or other gateway types.

This Web-based software is installed on a local server and can also be visualized and operated with mobile terminals such as a smartphone or tablet.

For details, see Technical Information TI01228S and Operating Instructions BA00055S

SupplyCare Hosting SCH30

Inventory management software that displays the level, volume, mass, temperature, pressure, density or other parameters of tanks. The parameters are recorded and transmitted by means of gateways like Fieldgate FXA42, Connect Sensor FXA30B or other gateway types. SupplyCare Hosting is offered as a hosting service (Software as a Service, SaaS). In the Endress

+Hauser portal, the user is provided with the data over the Internet.

For details, see Technical Information TI01229S and Operating Instructions BA00050S

Field Xpert SFX350

Field Xpert SFX350 is a mobile computer for commissioning and maintenance. It enables efficient device configuration and diagnostics for HART and FOUNDATION Fieldbus devices in the **non-Ex area**.

For details, see Operating Instructions BA01202S

Field Xpert SFX370

Field Xpert SFX370 is a mobile computer for commissioning and maintenance. It enables efficient device configuration and diagnostics for HART and FOUNDATION Fieldbus devices in the **non-Ex area** and the **Ex area**.

For details, see Operating Instructions BA01202S

Service-specific accessories

DeviceCare SFE100

Configuration tool for HART, PROFIBUS and FOUNDATION Fieldbus field devices

Technical Information TI01134S

FieldCare SFE500

FDT-based plant asset management tool

It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.

Technical Information TI00028S

System components

Memograph M graphic data manager

The Memograph M graphic data manager provides information on all the relevant process variables. Measured values are recorded correctly, limit values are monitored and measuring points analyzed. The data are stored in the 256 MB internal memory and also on a SD card or USB stick.

Technical Information TI00133R and Operating Instructions BA00247R

RN221N

Active barrier with power supply for safe separation of 4 to 20 mA standard signal circuits. Offers bidirectional HART transmission.

Technical Information TI00073R and Operating Instructions BA00202R

RN221

Supply unit for powering two 2-wire measuring devices solely in the non-Ex area. Bidirectional communication is possible via the HART communication jacks.

 $Technical\ Information\ TIO0081R\ and\ Brief\ Operating\ Instructions\ KA00110R$

Supplementary documentation

The following document types are available in the Downloads section of the Endress+Hauser website (www.endress.com/downloads):

For an overview of the scope of the associated Technical Documentation, refer to the following:

- W@M Device Viewer (www.endress.com/deviceviewer): Enter the serial number from the nameplate
- Endress+Hauser Operations App: Enter the serial number from the nameplate or scan the matrix code on the nameplate

Brief Operating Instructions (KA)

Guide that takes you quickly to the 1st measured value

The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning.

Operating Instructions (BA)

Your reference guide

These Operating Instructions contain all the information that is required in various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.

Safety Instructions (XA)

Depending on the approval, the following Safety Instructions (XA) are supplied with the device. They are an integral part of the Operating Instructions.

The nameplate indicates the Safety Instructions (XA) that are relevant to the device.

Functional Safety Manual (FY/SD)

Depending on the SIL approval, the Functional Safety Manual (FY/SD) is an integral part of the Operating Instructions and applies in addition to the Operating Instructions, Technical Information and ATEX Safety Instructions.

The different requirements that apply for the protective function are described in the Functional Safety Manual (FY \prime SD).

www.addresses.endress.com