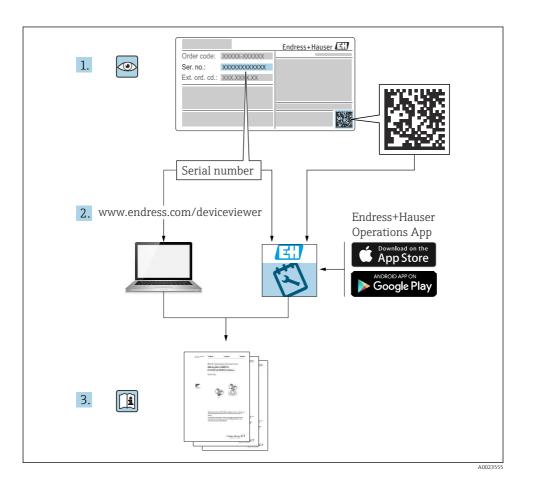

Brief Operating Instructions **Flowmeter Proline Promag P**

Electromagnetic sensor



These Brief Operating Instructions are **not** a substitute for the Operating Instructions pertaining to the device.

Brief Operating Instructions Part 1 of 2: Sensor Contain information about the sensor.

Brief Operating Instructions Part 2 of 2: Transmitter $\rightarrow \blacksquare 3$.

Brief Operating Instructions for flowmeter

The device consists of a transmitter and a sensor.

The process of commissioning these two components is described in two separate manuals that together form the Brief Operating Instructions for the flowmeter:

- Brief Operating Instructions Part 1: Sensor
- Brief Operating Instructions Part 2: Transmitter

Please refer to both parts of the Brief Operating Instructions when commissioning the device, as the contents of the manuals complement one another:

Brief Operating Instructions Part 1: Sensor

The Sensor Brief Operating Instructions are aimed at specialists with responsibility for installing the measuring device.

- Incoming acceptance and product identification
- Storage and transport
- Installation

Brief Operating Instructions Part 2: Transmitter

The Transmitter Brief Operating Instructions are aimed at specialists with responsibility for commissioning, configuring and parameterizing the measuring device (until the first measured value).

- Product description
- Installation
- Electrical connection
- Operation options
- System integration
- Commissioning
- Diagnostic information

Additional device documentation

These Brief Operating Instructions are the **Brief Operating Instructionspart 1: Sensor**.

The "Brief Operating Instructions part 2: Transmitter" are available via:

- Internet: www.endress.com/deviceviewer
- Smart phone/tablet: *Endress+Hauser Operations App*

Detailed information about the device can be found in the Operating Instructions and the other documentation:

- Internet: www.endress.com/deviceviewer
- Smart phone/tablet: *Endress+Hauser Operations App*

Endress+Hauser

Table of contents

1	About this document	5
1.1	Symbols	
2	Basic safety instructions	7
2 .1	Requirements for the personnel	
2.2	Intended use	
2.3	Workplace safety	
2.4	Operational safety	
2.5	Product safety	
2.6	IT security	
3	Incoming acceptance and product identification	10
ر 3.1	Incoming acceptance and product identification	
3.2	Product identification	
۷.۷	Froduct identification	11
4	Storage and transport	. 12
4.1	Storage conditions	
4.2	Transporting the product	12
5	Mounting	14
ر 5.1	Mounting requirements	
5.2	Mounting frequirements Mounting the measuring device	
5.3	Post-installation check	
6	Disposal	27
6.1 6.2	Removing the measuring device	
0.2	visposing of the measuring device	4/
7	Appendix	27
7 1	Server tightoning torques	27

1 About this document

1.1 Symbols

1.1.1 Safety symbols

⚠ DANGER

This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

WARNING

This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

A CAUTION

This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

NOTICE

This symbol contains information on procedures and other facts which do not result in personal injury.

1.1.2 Symbols for certain types of information

Symbol	Meaning	Symbol	Meaning
Permitted Procedures, processes or actions that are permitted.		✓ ✓	Preferred Procedures, processes or actions that are preferred.
X	Forbidden Procedures, processes or actions that are forbidden.	i	Tip Indicates additional information.
Î	Reference to documentation	A	Reference to page
	Reference to graphic		Series of steps
L.	Result of a step		Visual inspection

1.1.3 Electrical symbols

Symbol	Meaning	Symbol	Meaning
	Direct current	~	Alternating current
≂	Direct current and alternating current	÷	Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.

Symbol	Meaning
	Potential equalization connection (PE: protective earth) Ground terminals that must be connected to ground prior to establishing any other connections.
	The ground terminals are located on the interior and exterior of the device: Interior ground terminal: potential equalization is connected to the supply network. Exterior ground terminal: device is connected to the plant grounding system.

1.1.4 Tool symbols

Symbol	Meaning	Symbol	Meaning
0	Torx screwdriver	0	Flat-blade screwdriver
96	Phillips head screwdriver	06	Allen key
Ø.	Open-ended wrench		

1.1.5 Symbols in graphics

Symbol	Meaning	Symbol	Meaning
1, 2, 3,	Item numbers	1., 2., 3	Series of steps
A, B, C,	Views	A-A, B-B, C-C,	Sections
EX	Hazardous area	×	Safe area (non-hazardous area)
≋➡	Flow direction		

2 Basic safety instructions

2.1 Requirements for the personnel

The personnel must fulfill the following requirements for its tasks:

- Trained, qualified specialists must have a relevant qualification for this specific function and task.
- ► Are authorized by the plant owner/operator.
- ► Are familiar with federal/national regulations.
- ▶ Before starting work, read and understand the instructions in the manual and supplementary documentation as well as the certificates (depending on the application).
- ▶ Follow instructions and comply with basic conditions.

2.2 Intended use

Application and media

The measuring device is intended only for the flow measurement of liquids with a minimum conductivity of 5 μ S/cm (Promag 10, 100, 300, 500) or 20 μ S/cm (Promag 200).

Depending on the version ordered, the measuring device can also measure potentially explosive, flammable, poisonous and oxidizing media.

Measuring devices for use in hazardous areas, in hygienic applications or in applications where there is an increased risk due to process pressure, are marked accordingly on the nameplate.

To ensure that the measuring device remains in proper condition for the operation time:

- ► Keep within the specified pressure and temperature range.
- ▶ Only use the measuring device in full compliance with the data on the nameplate and the general conditions listed in the Operating Instructions and supplementary documentation.
- ▶ Based on the nameplate, check whether the ordered device is permitted for the intended use in the hazardous area (e.g. explosion protection, pressure vessel safety).
- ► Use the measuring device only for media to which the process-wetted materials are sufficiently resistant.
- ▶ If the ambient temperature of the measuring device is outside the atmospheric temperature, it is absolutely essential to comply with the relevant basic conditions as specified in the device documentation.
- Protect the measuring device permanently against corrosion from environmental influences.

Incorrect use

Non-designated use can compromise safety. The manufacturer is not liable for damage caused by improper or non-designated use.

WARNING

Danger of breakage due to corrosive or abrasive fluids and ambient conditions!

- ▶ Verify the compatibility of the process fluid with the sensor material.
- ► Ensure the resistance of all fluid-wetted materials in the process.
- ► Keep within the specified pressure and temperature range.

NOTICE

Verification for borderline cases:

► For special fluids and fluids for cleaning, Endress+Hauser is glad to provide assistance in verifying the corrosion resistance of fluid-wetted materials, but does not accept any warranty or liability as minute changes in the temperature, concentration or level of contamination in the process can alter the corrosion resistance properties.

Residual risks

A WARNING

If the temperature of the media or electronics unit is high or low, this may cause the surfaces of the device to become hot or cold. This poses a risk of burns or frostbite!

► In the case of hot or cold medium temperatures, install appropriate protection against contact.

2.3 Workplace safety

When working on and with the device:

▶ Wear the required personal protective equipment as per national regulations.

2.4 Operational safety

Risk of injury!

- ▶ Operate the device in proper technical condition and fail-safe condition only.
- ▶ The operator is responsible for interference-free operation of the device.

Ambient requirements for transmitter housing made of plastic

If a plastic transmitter housing is permanently exposed to certain steam and air mixtures, this can damage the housing.

- ► If you are unsure, please contact your Endress+Hauser Sales Center for clarification.
- $\,\blacktriangleright\,$ If used in an approval-related area, observe the information on the nameplate.

2.5 Product safety

This measuring device is designed in accordance with good engineering practice to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate.

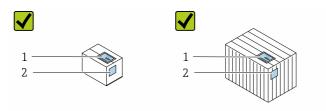
It meets general safety standards and legal requirements. It also complies with the EU directives listed in the device-specific EU Declaration of Conformity. Endress+Hauser confirms this by affixing the CE mark to the device.

Furthermore, the device meets the legal requirements of the applicable UK regulations (Statutory Instruments). These are listed in the UKCA Declaration of Conformity along with the designated standards.

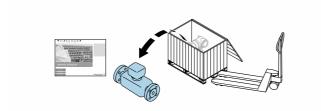
By selecting the order option for UKCA marking, Endress+Hauser confirms a successful evaluation and testing of the device by affixing the UKCA mark.

Contact address Endress+Hauser UK: Endress+Hauser Ltd. Floats Road Manchester M23 9NF United Kingdom

2.6 IT security


Our warranty is valid only if the product is installed and used as described in the Operating Instructions. The product is equipped with security mechanisms to protect it against any inadvertent changes to the settings.

IT security measures, which provide additional protection for the product and associated data transfer, must be implemented by the operators themselves in line with their security standards

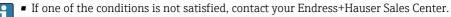

3 Incoming acceptance and product identification

3.1 Incoming acceptance

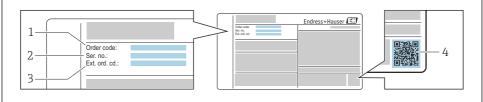
Are the order codes on the delivery note (1) and the product sticker (2) identical?



Are the goods undamaged?

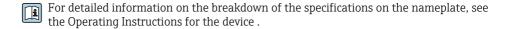

Do the data on the nameplate match the ordering information on the delivery note?

Is the envelope present with accompanying documents?



• The Technical Documentation is available via the Internet or via the *Endress+Hauser Operations App*.

3.2 Product identification

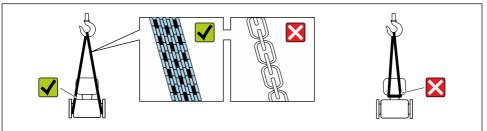

The following options are available for identification of the device:

- Nameplate specifications
- Order code with breakdown of the device features on the delivery note
- Enter the serial numbers from the nameplates in the *Device Viewer* (www.endress.com/deviceviewer): all the information about the device is displayed.
- Enter the serial numbers from the nameplates into the *Endress+Hauser Operations App* or scan the DataMatrix code on the nameplate with the *Endress+Hauser Operations App*: all the information about the device is displayed.

Δ0030196

- 1 Example of a nameplate
- 1 Order code
- 2 Serial number (Ser. no.)
- 3 Extended order code (Ext. ord. cd.)
- 4 2-D matrix code (QR code)

4 Storage and transport


4.1 Storage conditions

Observe the following notes for storage:

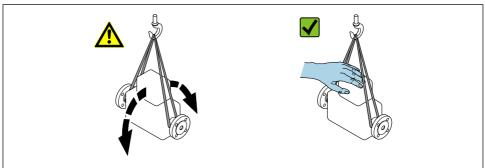
- ► Store in the original packaging to ensure protection from shock.
- ▶ Do not remove protective covers or protective caps installed on process connections. They prevent mechanical damage to the sealing surfaces and contamination in the measuring pipe.
- ▶ Protect from direct sunlight to avoid unacceptably high surface temperatures.
- ► Select a storage location where moisture cannot collect in the measuring device as fungus and bacteria infestation can damage the liner.
- ▶ Store in a dry and dust-free place.
- ▶ Do not store outdoors.

4.2 Transporting the product

Transport the measuring device to the measuring point in the original packaging.

A0029252

Do not remove protective covers or caps installed on process connections. They prevent mechanical damage to the sealing surfaces and contamination in the measuring tube.


4.2.1 Measuring devices without lifting lugs

A WARNING

Center of gravity of the measuring device is higher than the suspension points of the webbing slings.

Risk of injury if the measuring device slips.

- ► Secure the measuring device against slipping or turning.
- ▶ Observe the weight specified on the packaging (stick-on label).

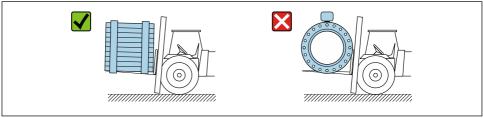
A0029214

4.2.2 Measuring devices with lifting lugs

A CAUTION

Special transportation instructions for devices with lifting lugs

- ▶ Only use the lifting lugs fitted on the device or flanges to transport the device.
- ► The device must always be secured at two lifting lugs at least.


4.2.3 Transporting with a fork lift

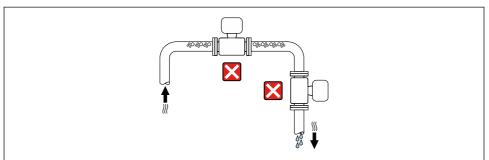
If transporting in wood crates, the floor structure enables the crates to be lifted lengthwise or at both sides using a forklift.

A CAUTION

Risk of damaging the magnetic coil

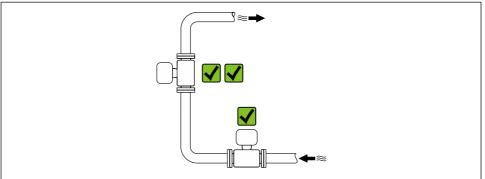
- ► If transporting by forklift, do not lift the sensor by the metal casing.
- $\,\blacktriangleright\,$ This would buckle the casing and damage the internal magnetic coils.

A0029319


5 Mounting

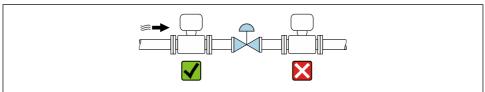
5.1 Mounting requirements

5.1.1 Mounting position


Mounting location

- Do not install the device at the highest point of the pipe.
- Do not install the device upstream from a free pipe outlet in a down pipe.

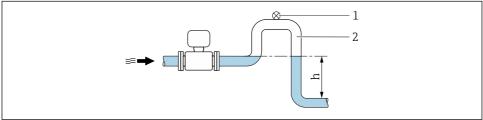
Δ004213


The device should ideally be installed in an ascending pipe.

A0042317

Installation near valves

Install the device in the direction of flow upstream from the valve.

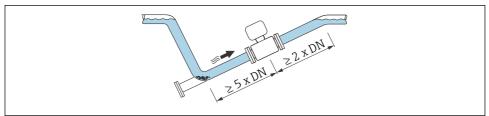

Δ0041091

Installation upstream from a down pipe

NOTICE

Negative pressure in the measuring pipe can damage the liner!

- ▶ If installing upstream of down pipes whose length $h \ge 5$ m (16.4 ft): install a siphon with a vent valve downstream of the device.
- This arrangement prevents the flow of liquid stopping in the pipe and air entrainment.

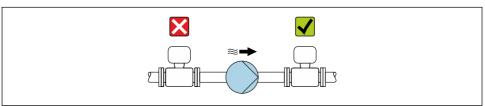


A0028981

- 1 Vent valve
- 2 Pipe siphon
- h Length of down pipe

Installation with partially filled pipes

- Partially filled pipes with a gradient require a drain-type configuration.
- The installation of a cleaning valve is recommended.


A0041088

Installation near pumps

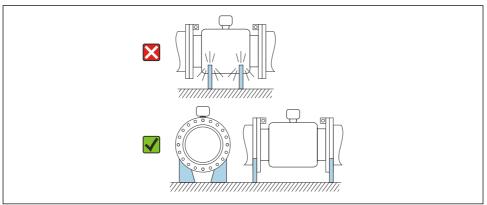
NOTICE

Negative pressure in the measuring pipe can damage the liner!

- ► In order to maintain the system pressure, install the device in the flow direction downstream from the pump.
- ► Install pulsation dampers if reciprocating, diaphragm or peristaltic pumps are used.

A0041083

Installation of very heavy devices


Support required for nominal diameters of DN \geq 350 mm (14 in).

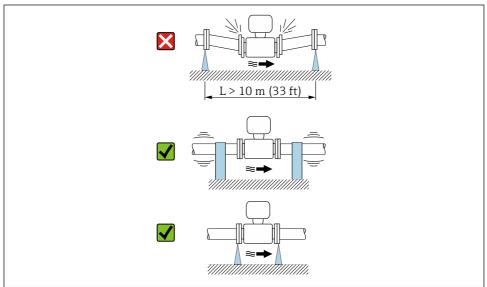
NOTICE

Damage to the device!

If incorrect support is provided, the sensor housing could buckle and the internal magnetic coils could be damaged.

▶ Only provide supports at the pipe flanges.

A0041087


Installation in event of pipe vibrations

A remote version is recommended in the event of strong pipe vibrations.

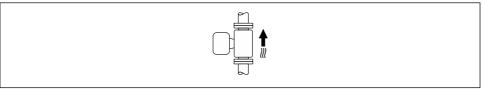
NOTICE

Pipe vibrations can damage the device!

- ▶ Do not expose the device to strong vibrations.
- ► Support the pipe and fix it in place.
- ► Support the device and fix it in place.
- ► Mount the sensor and transmitter separately.

A0041092

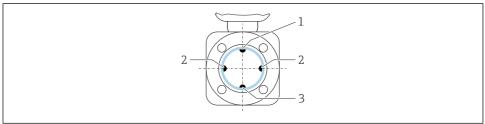
Orientation


The direction of the arrow on the sensor nameplate helps you to install the sensor according to the flow direction.

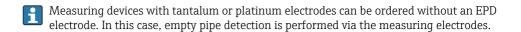
Orien	Recommendation	
Vertical orientation	1	₩ ₩
	A0015591	
Horizontal orientation, transmitter at top		1)
	A0015589	
Horizontal orientation, transmitter at bottom		2) 3) 34)
	A0015590	
Horizontal orientation, transmitter at side		×
	A0015592	

- Applications with low process temperatures may reduce the ambient temperature. To maintain the minimum ambient temperature for the transmitter, this orientation is recommended.
- Applications with high process temperatures may increase the ambient temperature. To maintain the maximum ambient temperature for the transmitter, this orientation is recommended.
- 3) To prevent the electronics from overheating in the event of strong heat formation (e.g. CIP or SIP cleaning process), install the device with the transmitter part pointing downwards.
- When the empty pipe detection function is switched on, empty pipe detection only works if the transmitter housing is pointing upwards.

Vertical


Optimum for self-emptying pipe systems and for use in conjunction with empty pipe detection.

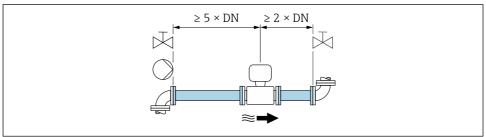
A0015591


Horizontal

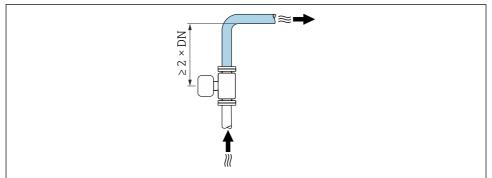
- Ideally, the measuring electrode plane should be horizontal. This prevents brief insulation
 of the measuring electrodes by entrained air bubbles.
- Empty pipe detection only works if the transmitter housing is pointing upwards as
 otherwise there is no guarantee that the empty pipe detection function will actually respond
 to a partially filled or empty measuring tube.

A0029344

- 1 EPD electrode for empty pipe detection
- 2 Measuring electrodes for signal detection
- 3 Reference electrode for potential equalization


Inlet and outlet runs

Installation with inlet and outlet runs


Installation with elbows, pumps or valves

To avoid a vacuum and to maintain the specified level of accuracy, if possible install the device upstream from assemblies that produce turbulence (e.g. valves, T-sections) and downstream from pumps.

Maintain straight, unimpeded inlet and outlet runs.

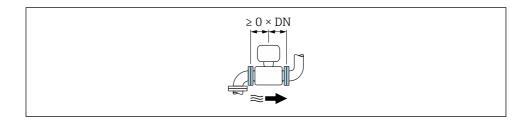
A0028997

A0042132

Installation without inlet and outlet runs

Depending on the device design and installation location, the inlet and outlet runs can be reduced or omitted entirely.

Devices and possible order options on request.



Maximum measured error

When the device is installed with the inlet and outlet runs described, a maximum measured error of ± 0.5 % of the reading ± 1 mm/s (0.04 in/s) can be guaranteed.

Installation before or after bends

Installation without inlet and outlet runs is possible.

Installation downstream of pumps

Installation without inlet and outlet runs is possible.

Installation upstream of valves

Installation without inlet and outlet runs is possible.

Installation downstream of valves

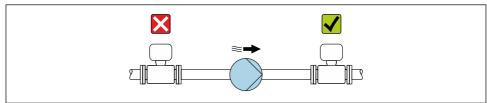
Installation without inlet and outlet runs is possible if the valve is 100% open during operation.

5.1.2 Environmental and process-specific requirements

Ambient temperature range

For detailed information on the ambient temperature range, see the Operating Instructions for the device.

If operating outdoors:


- Install the measuring device in a shady location.
- Avoid direct sunlight, particularly in warm climatic regions.
- Avoid direct exposure to weather conditions.

Temperature tables

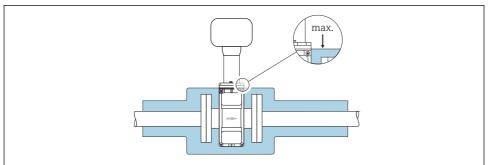
For detailed information on the temperature tables, see the separate document entitled "Safety Instructions" (XA) for the device.

System pressure

Furthermore, install pulse dampers if reciprocating, diaphragm or peristaltic pumps are used.

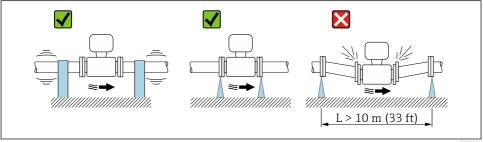
Thermal insulation Promag 10, 300, 500

If process fluids are very hot, it is necessary to insulate pipes in order to reduce energy loss and to prevent individuals from accidentally coming into contact with hot pipes. Please observe the applicable standards and quidelines for insulating pipes.



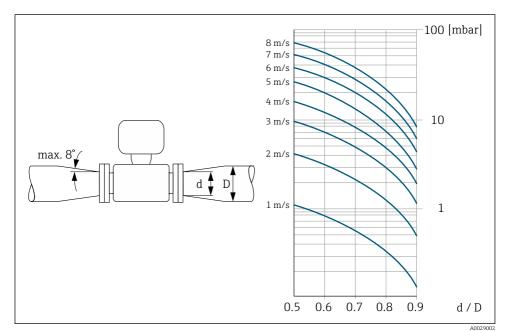
- A housing support/an extended neck is used for heat dissipation:
- Devices with the order code for "Lining", option B "PFA high-temperature" always come with a housing support.
- In the case of all other devices, a housing support can be ordered via the order code for "Sensor option", option CG "Sensor extended neck".

▲ WARNING


Electronics overheating on account of thermal insulation!

► The housing support is used for heat dissipation and must be completely free (i.e. uncovered). At the very maximum, the sensor insulation may extend as far as the upper edge of the two sensor half-shells.

A0031216


Vibrations

A0029004

■ 2 Measures to prevent vibration of the device

Adapters

5.2 Mounting the measuring device

5.2.1 Required tools

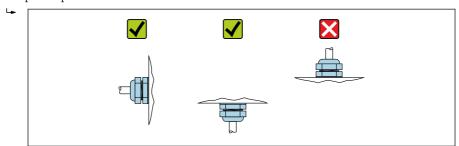
For flanges and other process connections, use an appropriate mounting tool

5.2.2 Preparing the measuring device

- 1. Remove all remaining transport packaging.
- 2. Remove any protective covers or protective caps present from the sensor.
- 3. Remove stick-on label on the electronics compartment cover.

5.2.3 Mounting the sensor

A WARNING


An electrically conductive layer could form on the inside of the measuring tube! Risk of measuring signal short circuit.

- Ensure that the inside diameters of the gaskets are greater than or equal to that of the process connections and piping.
- ► Ensure that the gaskets are clean and undamaged.
- ► Install the gaskets correctly.
- ▶ Do not use electrically conductive sealing compounds such as graphite.

WARNING

Danger due to improper process sealing!

- ► Ensure that the inside diameters of the gaskets are greater than or equal to that of the process connections and piping.
- ► Ensure that the seals are clean and undamaged.
- ▶ Secure the seals correctly.
- 1. Ensure that the direction of the arrow on the sensor matches the flow direction of the medium.
- 2. To ensure compliance with device specifications, install the measuring device between the pipe flanges in a way that it is centered in the measurement section.
- 3. If using ground disks, comply with the Installation Instructions provided.
- 4. Observe required screw tightening torques .
- 5. Install the measuring device or turn the transmitter housing so that the cable entries do not point upwards.

A0029263

Mounting the seals

A CAUTION

An electrically conductive layer could form on the inside of the measuring tube! Risk of measuring signal short circuit.

▶ Do not use electrically conductive sealing compounds such as graphite.

Comply with the following instructions when installing seals:

- Make sure that the seals do not protrude into the piping cross-section.
- When mounting the process connections, make sure that the seals concerned are clean and centered correctly.
- For DIN flanges: only use seals according to DIN EN 1514-1.
- $\,\blacksquare\,$ For "PFA" lining: generally additional seals are not required.
- For "PTFE" lining: generally additional seals are **not** required.

Mounting the ground cable/ground disks

For information on potential equalization and detailed mounting instructions for the use of ground cables/ground disks, see the Transmitter Brief Operating Instructions.

Screw tightening torques

→ 🖺 27

5.3 Post-installation check

Is the device undamaged (visual inspection)?	
Does the measuring device conform to the measuring point specifications? For example: Process temperature Process pressure (refer to the "Pressure-temperature ratings" section of the "Technical Information" document) Ambient temperature	
Measuring range	
Has the correct orientation been selected for the sensor → 🗎 18 ? • According to sensor type • According to medium temperature • According to medium properties (outgassing, with entrained solids)	
Does the arrow on the sensor nameplate match the actual direction of flow of the fluid through the piping \rightarrow \cong 18?	
Are the measuring point identification and labeling correct (visual inspection)?	
Is the device adequately protected from precipitation and direct sunlight?	
Have the fixing screws been tightened with the correct tightening torque?	

6 Disposal

If required by the Directive 2012/19/EU on waste electrical and electronic equipment (WEEE), the product is marked with the depicted symbol in order to minimize the disposal of WEEE as unsorted municipal waste. Do not dispose of products bearing this marking as unsorted municipal waste. Instead, return them to the manufacturer for disposal under the applicable conditions.

6.1 Removing the measuring device

1. Switch off the device.

WARNING

Danger to persons from process conditions!

- Beware of hazardous process conditions such as pressure in the measuring device, high temperatures or aggressive fluids.
- Carry out the mounting and connection steps from the "Mounting the measuring device" and "Connecting the measuring device" sections in reverse order. Observe the safety instructions.

6.2 Disposing of the measuring device

A WARNING

Danger to personnel and environment from fluids that are hazardous to health.

► Ensure that the measuring device and all cavities are free of fluid residues that are hazardous to health or the environment, e.g. substances that have permeated into crevices or diffused through plastic.

Observe the following notes during disposal:

- ► Observe valid federal/national regulations.
- ► Ensure proper separation and reuse of the device components.

7 Appendix

7.1 Screw tightening torques

For detailed information on the screw tightening torques, see the "Mounting the sensor" section of the Operating Instructions for the device

Please note the following:

- The torques listed only apply:
 - For lubricated threads.
 - For pipes that are free from tensile stress.
- Tighten the screws uniformly and in diagonally opposite sequence.
- Overtightening the screws will deform the sealing surface or damage the seals.

Maximum screw tightening torques for EN 1092-1 (DIN 2501)

Nominal diameter					ghtening torque Nm]	
[mm]	[bar]	[mm]	[mm]	PTFE	PFA	
15	PN 40	4 × M12	16	11	-	
25	PN 40	4 × M12	18	26	20	
32	PN 40	4 × M16	18	41	35	
40	PN 40	4 × M16	18	52	47	
50	PN 40	4 × M16	20	65	59	
65 ¹⁾	PN 16	8 × M16	18	43	40	
65	PN 40	8 × M16	22	43	40	
80	PN 16	8 × M16	20	53	48	
80	PN 40	8 × M16	24	53	48	
100	PN 16	8 × M16	20	57	51	
100	PN 40	8 × M20	24	78	70	
125	PN 16	8 × M16	22	75	67	
125	PN 40	8 × M24	26	111	99	
150	PN 16	8 × M20	22	99	85	
150	PN 40	8 × M24	28	136	120	
200	PN 10	8 × M20	24	141	101	
200	PN 16	12 × M20	24	94	67	
200	PN 25	12 × M24	30	138	105	
250	PN 10	12 × M20	26	110	-	
250	PN 16	12 × M24	26	131	-	
250	PN 25	12 × M27	32	200	-	
300	PN 10	12 × M20	26	125	-	
300	PN 16	12 × M24	28	179	-	
300	PN 25	16 × M27	34	204	-	
350	PN 10	16 × M20	26	188	-	

Nominal diameter	Pressure rating	Screws	Flange thickness		htening torque m]
[mm]	[bar]	[mm]	[mm]	PTFE	PFA
350	PN 16	16 × M24	30	254	-
350	PN 25	16 × M30	38	380	-
400	PN 10	16 × M24	26	260	-
400	PN 16	16 × M27	32	330	-
400	PN 25	16 × M33	40	488	-
450	PN 10	20 × M24	28	235	-
450	PN 16	20 × M27	40	300	-
450	PN 25	20 × M33	46	385	-
500	PN 10	20 × M24	28	265	-
500	PN 16	20 × M30	34	448	-
500	PN 25	20 × M33	48	533	-
600	PN 10	20 × M27	28	345	-
600	PN 16	20 × M33	36	658	-
600	PN 25	20 × M36	58	731	-

¹⁾ Sizing as per EN 1092-1 (not DIN 2501)

Nominal screw tightening torques for EN 1092-1 (DIN 2501); calculated according to EN 1591-1:2014 for flanges according to EN 1092-1:2013

Nominal diameter	Pressure rating	Screws	Flange thickness	Nom. screw tightening torque [Nm]
[mm]	[bar]	[mm]	[mm]	PTFE
350	PN 10	16 × M20	26	60
	PN 16	16 × M24	30	115
	PN 25	16 × M30	38	220
400	PN 10	16 × M24	26	90
	PN 16	16 × M27	32	155
	PN 25	16 × M33	40	290
450	PN 10	20 × M24	28	90
	PN 16	20 × M27	34	155
	PN 25	20 × M33	46	290
500	PN 10	20 × M24	28	100

Nominal diameter	Pressure rating	Screws	Flange thickness	Nom. screw tightening torque [Nm]
[mm]	[bar]	[mm]	[mm]	PTFE
	PN 16	20 × M30	36	205
	PN 25	20 × M33	48	345
600	PN 10	20 × M27	30	150
600 ¹⁾	PN 16	20 × M33	40	310
600	PN 25	20 × M36	48	500

1) Sizing as per EN 1092-1 (not DIN 2501)

ASME B16.5, Class 150/300

Nominal diameter		Pressure rating	Screws	Max. screw tightening torque [Nm ([lbf · ft])	
[mm]	[in]	[psi]	[in]	PTFE	PFA
15	1/2	Class 150	4 × ½	6 (4)	- (-)
15	1/2	Class 300	4 × ½	6 (4)	- (-)
25	1	Class 150	4 × ½	11 (8)	10 (7)
25	1	Class 300	4 × 5/8	14 (10)	12 (9)
40	1 ½	Class 150	4 × ½	24 (18)	21 (15)
40	1 ½	Class 300	4 × 3/4	34 (25)	31 (23)
50	2	Class 150	4 × 5/8	47 (35)	44 (32)
50	2	Class 300	8 × 5/8	23 (17)	22 (16)
80	3	Class 150	4 × 5/8	79 (58)	67 (49)
80	3	Class 300	8 × ¾	47 (35)	42 (31)
100	4	Class 150	8 × 5/8	56 (41)	50 (37)
100	4	Class 300	8 × 3/4	67 (49) 59 (44)	
150	6	Class 150	8 × 3/4	106 (78)	86 (63)
150	6	Class 300	12 × ¾	73 (54)	67 (49)
200	8	Class 150	8 × 3/4	143 (105) 109 (80)	
250	10	Class 150	12 × 7/8	135 (100) - (-)	
300	12	Class 150	12 × 7/8	178 (131) - (-)	
350	14	Class 150	12 × 1	260 (192) - (-)	
400	16	Class 150	16 × 1	246 (181)	- (-)
450	18	Class 150	16 × 1 1/8	371 (274)	- (-)

Nominal diameter		Pressure rating	Screws	Max. screw tighte ([lbf	ning torque [Nm] ·ft])
[mm]	[in]	[psi]	[in]	PTFE	PFA
500	20	Class 150	20 × 1 1/8	341 (252)	- (-)
600	24	Class 150	20 × 1 1/4	477 (352)	- (-)

Maximum screw tightening torques for JIS B2220

Nominal diameter	Pressure rating	Screws	Max. screw tightening torque [Nm]	
[mm]	[bar]	[mm]	PTFE	PFA
25	10K	4 × M16	32	27
	20K	4 × M16	32	27
32	10K	4 × M16	38	-
	20K	4 × M16	38	-
40	10K	4 × M16	41	37
	20K	4 × M16	41	37
50	10K	4 × M16	54	46
	20K	8 × M16	27	23
65	10K	4 × M16	74	63
	20K	8 × M16	37	31
80	10K	8 × M16	38	32
	20K	8 × M20	57	46
100	10K	8 × M16	47	38
	20K	8 × M20	75	58
125	10K	8 × M20	80	66
	20K	8 × M22	121	103
150	10K	8 × M20	99	81
	20K	12 × M22	108	72
200	10K	12 × M20	82	54
	20K	12 × M22	121	88
250	10K	12 × M22	133	-
	20K	12 × M24	212	-
300	10K	16 × M22	99	-
	20K	16 × M24	183	-

Nominal screw tightening torques for JIS B2220

Nominal diameter	Pressure rating	Screws	Nom. screw tightening torque [Nm]	
[mm]	[bar]	[mm]	HG	PUR
350	10K	16 × M22	109	109
	20K	16 × M30×3	217	217
400	10K	16 × M24	163	163
	20K	16 × M30×3	258	258
450	10K	16 × M24	155	155
	20K	16 × M30×3	272	272
500	10K	16 × M24	183	183
	20K	16 × M30×3	315	315
600	10K	16 × M30	235	235
	20K	16 × M36×3	381	381
700	10K	16 × M30	300	300
750	10K	16 × M30	339	339

AS 2129, Table E

Nominal diameter	Screws	Max. screw tightening torque [Nm]	
[mm]	[mm]	PTFE	
25	4 × M12	21	
50	4 × M16	42	

AS 4087, PN 16

Nominal diameter	Screws	Max. screw tightening torque [Nm]	
[mm]	[mm]	PTFE	
50	4 × M16	42	

www.addresses.endress.com