Краткое руководство по эксплуатации Levelflex FMP51 Modbus

Микроимпульсный уровнемер

Ниже приведено краткое руководство по эксплуатации; оно не заменяет руководство по эксплуатации, относящееся к прибору.

Детальная информация по прибору содержится в руководстве по эксплуатации и прочих документах: Версии, доступные для всех приборов:

- Интернет: www.endress.com/deviceviewer
- Смартфон/планшет: Endress+Hauser Operations App

1 Сопутствующая документация

2 Информация о документе

2.1 Символы

2.1.1 Символы техники безопасности

\Lambda ОПАСНО

Этот символ предупреждает об опасной ситуации. Если не предотвратить такую ситуацию, она приведет к серьезной или смертельной травме.

\Lambda ОСТОРОЖНО

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к серьезной или смертельной травме.

ВНИМАНИЕ

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к травме легкой или средней степени тяжести.

УВЕДОМЛЕНИЕ

Этот символ указывает на информацию о процедуре и на другие действия, которые не приводят к травмам.

2.1.2 Электротехнические символы

٢

Защитное заземление (РЕ)

Клемма заземления должна быть подсоединена к заземлению перед выполнением других соединений.

Клеммы заземления расположены на внутренней и наружной поверхностях прибора.

- Внутренняя клемма заземления; защитное заземление подключено к цепи сетевого электропитания.
- Наружная клемма заземления; прибор подключается к системе заземления предприятия.

2.1.3 Символы, обозначающие инструменты

00

Отвертка с плоским наконечником

○ € Шестигранный ключ

06

Отвертка со звездообразным наконечником (Torx)

Ŕ

Рожковый гаечный ключ

2.1.4 Описание информационных символов и рисунков

Разрешено

Обозначает разрешенные процедуры, процессы или действия.

🔀 Запрещено

Обозначает запрещенные процедуры, процессы или действия.

🚹 Рекомендация

Указывает на дополнительную информацию.

Ссылка на документацию

Ссылка на рисунок.

. Указание, обязательное для соблюдения

1., 2., 3. Серия шагов

∟ Результат шага

۲

Внешний осмотр

1, 2, 3, ... Номера пунктов

А, В, С, ... Виды

2.1.5 Символы, которые имеются на приборе

▲ → 🖪 Указания по технике безопасности

Соблюдайте указания по технике безопасности, содержащиеся в соответствующем руководстве по эксплуатации.

📼 Термостойкость соединительных кабелей

Определяет минимальную термостойкость соединительных кабелей.

3 Основные указания по технике безопасности

3.1 Требования к работе персонала

Персонал должен соответствовать следующим требованиям:

- Прошедшие обучение квалифицированные специалисты должны иметь соответствующую квалификацию для выполнения конкретных функций и задач.
- Получить разрешение на выполнение данных работ от руководства предприятия.
- Ознакомиться с нормами федерального/национального законодательства.
- Изучить инструкции данного руководства и сопроводительной документации.
- Следовать инструкциям и соблюдать условия.

3.2 Использование по назначению

Условия применения и технологическая среда

Измерительный прибор, описанный в настоящем руководстве, предназначен только для измерения уровня и границы раздела фаз жидкостей. В зависимости от заказанного варианта исполнения измерительный прибор можно также использовать для измерения параметров потенциально взрывоопасной, огнеопасной, ядовитой или окисляющей технологической среды.

Принимая во внимание предельные значения, указанные в технических характеристиках, и условия, перечисленные в руководствах и сопроводительной документации, измерительный прибор может использоваться только для следующих измерений:

- измеряемые переменные процесса: уровень в резервуаре и/или граница раздела фаз;
- расчетные переменные процесса: объем или масса в резервуарах любой формы (рассчитывается на основе уровня с помощью функции линеаризации)

Чтобы обеспечить нахождение измерительного прибора в исправном состоянии во время эксплуатации, необходимо соблюдать следующие условия:

- используйте измерительный прибор только в такой технологической среде, к воздействию которой смачиваемые части прибора в достаточной мере устойчивы;.
- соблюдайте предельные значения, указанные в разделе «Технические характеристики».

Использование не по назначению

Изготовитель не несет ответственности за повреждения, вызванные неправильным использованием или использованием прибора не по назначению.

Устойчивость материалов к вредному воздействию:

Сведения о специальных жидкостях, в том числе жидкостях для очистки: специалисты Endress+Hauser готовы предоставить всю необходимую информацию, касающуюся устойчивости к коррозии материалов, находящихся в контакте с жидкостями, но не несут какой-либо ответственности и не предоставляют каких бы то ни было гарантий.

Остаточный риск

Вследствие теплопередачи от технологического оборудования и потерь мощности в электронике температура корпуса электроники и узлов, содержащихся в нем (например, дисплея, главного модуля электроники и электронного модуля ввода/вывода), может подниматься до 80 °C (176 °F). Во время работы датчик может нагреваться до температуры, близкой к температуре среды.

Опасность ожогов при соприкосновении с поверхностями!

 При высокой температуре технологической среды следует обеспечить защиту от прикосновения для предотвращения ожогов.

3.3 Техника безопасности на рабочем месте

При работе на приборе и с прибором необходимо соблюдать следующие правила:

 В соответствии с федеральным/национальным законодательством персонал должен использовать средства индивидуальной защиты.

При использовании зондов с разборными стержнями возможно проникновение среды в соединения между отдельными деталями стержня. Эта среда может выходить наружу при ослаблении соединений. При работе с опасными (например, агрессивными или токсичными) средами это может привести к травмам.

 При разборке соединений между отдельными деталями стержня зонда используйте средства защиты, предназначенные для работы с данной средой.

3.4 Эксплуатационная безопасность

Опасность несчастного случая!

- Эксплуатируйте прибор только в том случае, если он находится в надлежащем техническом состоянии, без ошибок и неисправностей.
- Оператор несет ответственность за бесперебойную работу прибора.

Модификация прибора

Несанкционированное изменение конструкции прибора запрещено и может представлять непредвиденную опасность:

• Если модификация все же необходима, обратитесь за консультацией к изготовителю.

Ремонт

Чтобы постоянно поддерживать эксплуатационную безопасность и надежную работу прибора, необходимо соблюдать следующие правила:

- Ремонт прибора возможен только при наличии специального разрешения.
- Соблюдайте федеральные/национальные нормы, относящиеся к ремонту электрооборудования.
- Используйте только оригинальные запасные части и аксессуары, поставляемые изготовителем прибора.

Взрывоопасная зона

Чтобы устранить опасность для людей или установки при использовании прибора во взрывоопасной зоне (например, при обеспечении взрывозащиты или безопасности эксплуатации резервуара, работающего под давлением), необходимо соблюдать следующие правила:

- Проверьте заводскую табличку и убедитесь в том, что заказанный прибор можно использовать по назначению во взрывоопасной зоне.
- Ознакомьтесь с характеристиками, приведенными в отдельной сопроводительной документации, которая является неотъемлемой частью настоящего руководства.

3.5 Безопасность изделия

Описываемый прибор разработан в соответствии со сложившейся инженерной практикой, отвечает современным требованиям безопасности, прошел испытания и поставляется с завода в безопасном для эксплуатации состоянии. Изделие соответствует общим стандартам безопасности и законодательным требованиям.

УВЕДОМЛЕНИЕ

Потеря степени защиты из-за открывания прибора во влажной среде

 Если открыть прибор во влажной среде, степень защиты, указанная на заводской табличке, становится недействительной. Это также может отрицательно сказаться на эксплуатационной безопасности прибора.

3.5.1 Маркировка СЕ

Измерительная система соответствует юридическим требованиям применимых директив EC. Эти требования, а также действующие стандарты перечислены в соответствующей декларации соответствия требованиям EC.

Нанесением маркировки СЕ изготовитель подтверждает успешное прохождение прибором всех испытаний.

3.5.2 Соответствие требованиям ЕАС

Измерительная система соответствует юридическим требованиям применимых нормативных документов ЕАС. Эти требования, а также действующие стандарты перечислены в соответствующей декларации соответствия требованиям ЕАС.

Нанесением маркировки ЕАС изготовитель подтверждает успешное прохождение прибором всех испытаний.

Приемка и идентификация изделия 4

4.1 Приемка

Во время приемки необходимо проверить соблюдение следующих условий.

- Совпадает ли код заказа, указанный в накладной, с кодом заказа, который имеется на наклейке изделия?
- Не поврежден ли товар?
- Совпадают ли данные, указанные на заводской табличке, с информацией о заказе, которая приведена в накладной?
- Если применимо (см. заводскую табличку): имеются ли указания по технике безопасности (ХА)?

Если одно из этих условий не выполнено, обратитесь в торговую организацию компании Endress+Hauser.

4.2 Идентификация изделия

Прибор можно идентифицировать перечисленными ниже способами:

- Технические данные, указанные на заводской табличке
- Расширенный код заказа с классификацией характеристик прибора, указанный в накладной
- ▶ ввод серийного номера с заводской таблички на веб-сайтеW@M Device Viewer (www.endress.com/deviceviewer)
 - └ Отображаются вся сведения об измерительном приборе и о составе технической документации, относящейся к нему.
- Ввод серийного номера с заводской таблички в приложение Endress+Hauser Operations или сканирование двухмерного штрих-кода, указанного на заводской табличке, с помощью камеры смартфона
 - └ Отображаются вся сведения об измерительном приборе и о составе технической документации, относящейся к нему.

4.3 Хранение и транспортировка

4.3.1 Температура хранения

- Допустимая температура хранения: -40 до +80 °C (-40 до +176 °F)
- Используйте оригинальную упаковку.
- Опция для приборов FMP51 и FMP54: -50 до +80 °C (-58 до +176 °F)
 Этот диапазон действует, если опция JN «Температура окружающей среды для преобразователя» -50 °C (-58 °F) была выбрана в коде заказа 580 «Дополнительные тесты, сертификаты». Если температура постоянно составляет меньше -40 °C (-40 °F), то можно предположить повышение вероятности отказов.

4.3.2 Транспортировка изделия до точки измерения

🛦 осторожно

Корпус или стержень может быть поврежден или оторван.

Опасность несчастного случая!

- Транспортируйте измерительный прибор к месту измерения в оригинальной упаковке или взявшись за присоединение к процессу.
- Всегда закрепляйте подъемное оборудование (стропы, проушины и т. п.) за присоединение к процессу и ни в коем случае не поднимайте прибор за корпус или зонд. Обращайте внимание на расположение центра тяжести прибора, чтобы прибор не наклонялся и не мог неожиданно соскользнуть.
- Соблюдайте указания по технике безопасности и условия транспортировки, действующие для приборов массой более 18 кг (39,6 фунта) (МЭК 61010).

5 Монтаж

5.1 Требования, предъявляемые к монтажу

5.1.1 Приемлемое место монтажа

🖻 1 Условия монтажа Levelflex

Требования в отношении зазоров

- Расстояние (А) между стенкой резервуара и стержневым или тросовым зондом:
 - С гладкими металлическими стенками: > 50 мм (2 дюйм)
 - С пластмассовыми стенками: > 300 мм (12 дюйм) до металлических деталей вне резервуара
 - С бетонными стенками: > 500 мм (20 дюйм), в противном случае доступный диапазон измерения может быть сокращен.
- Расстояние (В) между стержневым зондом и внутренними элементами (3): > 300 мм (12 дюйм)
- Если используется несколько приборов: Levelflex Минимально допустимое расстояние между осями датчиков: 100 мм (3,94 дюйм):
- Расстояние (С) от конца зонда до дна резервуара:
 - Тросовый зонд: > 150 мм (6 дюйм)
 - Стержневой зонд: > 10 мм (0,4 дюйм)
 - Коаксиальный зонд: > 10 мм (0,4 дюйм)

Коаксиальные зонды можно монтировать на любом расстоянии от стенок и внутренних элементов.

5.1.2 Закрепление зонда

Закрепление тросовых зондов

- А Провисание троса: ≥ 10 мм/(1 м длины зонда) (0,12 дюйма/(1 фут длины зонда))
- В Надежно заземленный конец зонда
- С Надежно изолированный конец зонда
- 1 Крепежный элемент во внутренней резьбе концевого груза зонда
- 2 Изолированный крепежный комплект

- Конец тросового зонда необходимо закреплять в перечисленных ниже случаях: Если в противном случае зонд временно соприкасается со стенками резервуара, выпускным отверстием, внутренними элементами/балками и другими деталями установки
- Для фиксации конца зонда в грузе зонда предусмотрена внутренняя резьба: Трос 4 мм (1/6 дюйма), 316: М14
- При закреплении внизу конец зонда должен быть надежно заземлен или надежно изолирован. Используйте изолированный комплект для крепления, если иначе невозможно закрепить зонд с помощью надежно изолированного соединения.
- Для предотвращения чрезмерного растягивающего усилия (например, вследствие теплового расширения) и риска разрыва троса трос должен провисать. Требуемое провисание: ≥ 10 мм/(1 м длины зонда) (0,12 дюйма/(1 фут длины зонда)). Учитывайте максимально допустимое растягивающее усилие для тросовых зондов.

Закрепление стержневых зондов

- Для приборов с сертификатом WHG: при длине зонда ≥ 3 м (10 фут)необходима опора.
- В общем случае при горизонтальном потоке (например, от мешалки) или сильных вибрациях стержневые зонды необходимо закреплять.
- Закрепляйте стержневые зонды только за конец зонда.

Единица измерения мм (дюйм)

- 1 Стержень зонда, без покрытия
- 2 Муфта с малым зазором для обеспечения электрического контакта между стержнем и муфтой.
- 3 Короткая металлическая трубка, например приваренная
- 4 Стержень зонда, с покрытием
- 5 Пластмассовая муфта, например PTFE, PEEK или PPS
- 6 Короткая металлическая трубка, например приваренная

Зонд Ø8 мм (0,31 дюйм)

- а < Ø14 мм (0,55 дюйм)
- b = Ø8,5 мм (0,34 дюйм)

Зонд Ø12 мм (0,47 дюйм)

- а < Ø20 мм (0,78 дюйм)
- b = Ø12,5 мм (0,52 дюйм)

Зонд Ø16 мм (0,63 дюйм)

- а < Ø26 мм (1,02 дюйм)
- b = Ø16,5 мм (0,65 дюйм)

УВЕДОМЛЕНИЕ

Ненадежное заземление конца зонда может привести к неправильным измерениям.

 Используйте муфту с малым зазором для обеспечения электрического контакта между стержнем зонда и муфтой.

УВЕДОМЛЕНИЕ

Сварка может повредить главный модуль электроники.

• Перед сваркой заземлите зонд и снимите модуль электроники.

Закрепление коаксиальных зондов

Для приборов с сертификатом WHG при длине зонда ≥ 3 м (10 фут)необходима опора.

Коаксиальные зонды можно закрепить (зафиксировать) в любой точке заземляющей трубки.

5.1.3 Укорачивание зонда

См. руководство по эксплуатации.

5.2 Монтаж прибора

5.2.1 Монтаж приборов с резьбовым соединением

Вверните прибор с резьбовым соединением во втулку или фланец, а затем закрепите его на технологическом резервуаре с помощью втулки/фланца.

- При заворачивании поворачивайте прибор только за участок шестигранной формы:
 - Резьба 3/4 дюйма: 🔊 36 мм
 - Резъба 1-1/2 дюйма: 🔊 55 мм
 - Максимально допустимый момент затяжки:
 - Резьба 3/4 дюйма: 45 Нм
 - Резъба 1-1/2 дюйма: 450 Нм
 - Рекомендуемый момент затяжки при использовании прилагаемого уплотнения из арамидного волокна и рабочем давлении 40 бар (только прибор FMP51, в комплект поставки прибора FMP54 уплотнение не входит):
 - Резьба 3/4 дюйма: 25 Нм
 - Резьба 1-1/2 дюйма: 140 Нм
 - При монтаже в металлическом резервуаре проследите за тем, чтобы между присоединением к процессу и резервуаром был надежный электрический контакт.

5.2.2 Монтаж приборов с фланцем

Если используется уплотнение, то для обеспечения надежного электрического контакта между фланцем зонда и фланцевым присоединением к процессу необходимо использовать неокрашенные металлические болты.

5.2.3 Монтаж тросовых зондов

УВЕДОМЛЕНИЕ

Электростатический разряд может повредить электронику.

• Заземлите корпус перед опусканием тросового зонда в резервуар.

Опуская тросовый зонд в резервуар, обратите внимание на следующее:

- Плавно размотайте трос и осторожно опустите его в резервуар.
- Следите за тем, чтобы трос не перегибался и не перекручивался.
- Избегайте неконтролируемого раскачивания груза, так как это может привести к повреждению внутренних элементов резервуара.

5.2.4 Поворот корпуса преобразователя

Для упрощения доступа к клеммному отсеку или дисплею корпус преобразователя можно повернуть следующим образом:

- 1. С помощью рожкового ключа отверните зажимной винт.
- 2. Поверните корпус в нужном направлении.
- 3. Затяните фиксирующий винт (1,5 Н⋅м для пластмассового корпуса; 2,5 Н⋅м для корпуса из алюминия или нержавеющей стали).

5.2.5 Поворот дисплея

Открывание крышки

- 1. Шестигранным ключом (3 мм) ослабьте винт крепежного зажима крышки отсека электроники и поверните зажим 90 град против часовой стрелки.
- 2. Отверните крышку отсека электроники и проверьте состояние уплотнения под крышкой; при необходимости замените уплотнение.

Поворот дисплея

- 1. Плавным вращательным движением извлеките дисплей.
- 2. Поверните дисплей в необходимое положение (не более 8 × 45 град в каждом направлении).
- 3. Поместите смотанный кабель в зазор между корпусом и главным модулем электроники и установите дисплей в отсек электроники до его фиксации.

Закрывание крышки отсека электроники

- 1. Заверните крышку отсека электроники.
- 2. Поверните крепежный зажим 90 град по часовой стрелке и с помощью шестигранного ключа (3 мм), затяните винт крепежного зажима на крышке отсека электроники моментом 2,5 Нм.

6 Электрическое подключение

6.1 Требования, предъявляемые к подключению

6.1.1 Назначение клемм

Modbus

Подключение к ведущему устройству Modbus

- 1 Ведущее устройство Modbus
- 2 Сетевое напряжение
- 3 Кабельный ввод для подключения Modbus
- 4 Кабельный ввод для электропитания
- 5 Подключение защитного заземления

Подключение к FieldCare/DeviceCare посредством RS485

Для настройки с помощью FieldCare или DeviceCare рекомендуется отсоединить прибор от шины и подсоединить к компьютеру через интерфейс USB-RS485.

1 Компьютер с FieldCare/DeviceCare

- 2 Интерфейс USB-RS485
- 3 Сетевое напряжение
- 4 Кабельный ввод для интерфейса RS485
- 5 Кабельный ввод для электропитания
- 6 Подключение защитного заземления

Подключение к DeviceCare/FieldCare через сервисный интерфейс

A0032466

- 1 Сервисный интерфейс (CDI) измерительного прибора (единый интерфейс работы с данными Endress+Hauser)
- 2 Commubox FXA291
- 3 Компьютер с управляющей программой DeviceCare/FieldCare

6.1.2 Источник питания

Сетевое напряжение	10,5 до 29 В пост. тока
Пульсация	1 B _{SS} (< 100 Гц); 10 мB _{SS} (> 100 Гц)

6.1.3 Защита от перенапряжения

См. руководство по эксплуатации.

6.2 Подключение прибора

А ОСТОРОЖНО

Опасность взрыва!

- Соблюдайте применимые национальные нормы.
- Соблюдайте спецификации, приведенные в указаниях по технике безопасности (ХА).
- Используйте только рекомендованные кабельные уплотнения.
- Удостоверьтесь в том, что сетевое напряжение соответствует напряжению, указанному на заводской табличке.
- Подключение прибора выполняется при отключенном источнике питания.
- Перед подключением источника питания подсоедините провод выравнивания потенциалов к наружной клемме заземления.

Требуемые инструменты/аксессуары

- Для приборов с блокировкой крышки: шестигранный ключ AF3.
- Инструмент для снятия изоляции
- При использовании многожильных кабелей: к каждому проводу необходимо подсоединить по одному наконечнику.

🖻 2 Единица измерения: мм (дюйм)

- 1. Ослабьте винт крепежного зажима на крышке клеммного отсека и поверните крепежный зажим на 90° против часовой стрелки.
- 2. Отверните крышку клеммного отсека.

- 3. Пропустите кабель через кабельный ввод. Чтобы обеспечить непроницаемое уплотнение, не удаляйте уплотнительное кольцо из кабельного ввода.
- 4. Удалите оболочку кабеля.
- 5. Зачистите концы проводов кабеля 10 мм (0,4 дюйм). Для кабелей с многопроволочными проводами используйте наконечники.
- 6. Плотно затяните кабельные уплотнения.
- 7.

Подключите кабель согласно назначению клемм \rightarrow 🖺 19.

- 8. При использовании экранированных кабелей: подсоедините экран кабеля к клемме заземления.
- 9. Верните на место крышку клеммного отсека.
- **10.** При наличии фиксатора крышки поверните его так, чтобы он находился над краем крышки, а затем затяните.

6.2.1 Штепсельные пружинные клеммы

Электрическое подключение прибора в исполнении без встроенной защиты от перенапряжения осуществляется посредством вставных подпружиненных клемм. Жесткие или гибкие проводники с наконечниками можно вставлять напрямую в клемму без помощи рычажка, контакт обеспечивается автоматически.

🗟 3 Единица измерения: мм (дюйм)

Для отсоединения кабелей от клемм выполните следующие действия.

- 1. Установите шлицевую отвертку ≤ 3 мм в углубление между двумя отверстиями для клемм и надавите.
- 2. Нажимая на отвертку, вытяните конец провода из клеммы.

7 Опции управления

Ниже перечислены возможные методы управления прибором.

- Управление посредством меню управления (с помощью дисплея)
- ПО DeviceCare и Fieldcare, см. руководство по эксплуатации
- SmartBlue (приложение), Bluetooth (опционально), см. руководство по эксплуатации

7.1 Структура и функции меню управления

7.1.1 Дисплей

Формат индикации на блоке управления и дисплея

- 1 Индикация измеренного значения (1 значение макс. размера)
- 1.1 Заголовок, содержащий название и символ ошибки (если активна ошибка)
- 1.2 Символы измеряемых значений
- 1.3 Измеренное значение
- 1.4 Единица измерения
- 2 Индикация измеренного значения (гистограмма + одно значение)
- 2.1 Гистограмма для измеренного значения 1
- 2.2 Измеренное значение 1 (включая единицу измерения)
- 2.3 Символы измеренного значения для значения 1
- 2.4 Измеренное значение 2
- 2.5 Единица измерения для измеренного значения 2
- 2.6 Символы измеренного значения для значения 2
- 3 Визуализация параметра (здесь: параметр со списком выбора)
- 3.1 Заголовок, содержащий название параметра и символ ошибки (если активна ошибка)
- 3.2 Список выбора; символ 🗹 обозначает текущее значение параметра.
- 4 Матрица для ввода цифр
- 5 Матрица для ввода алфавитно-цифровых и специальных символов

7.1.2 Элементы управления

Функции

- Индикация измеренных значений, сообщений о неисправностях и уведомлений
- При обнаружении ошибки цвет подсветки дисплея меняется с зеленого на красный
- Чтобы упростить управление, дисплей можно снять с прибора

Дисплей прибора можно заказать с дополнительным модулем для связи по беспроводной технологии Bluetooth®.

Подсветка включается или выключается в зависимости от сетевого напряжения и потребляемого тока.

- 🖻 5 🛛 Дисплей
- 1 Кнопки управления

Назначение кнопок

- Кнопка ±
 - Переход вниз по списку выбора
 - Редактирование числовых значений или символов в пределах функции
- Кнопка 🗆
 - Переход вверх по списку выбора
 - Редактирование числовых значений или символов в пределах функции
- Кнопка Е
 - При индикации измеренного значения: при кратковременном нажатии кнопки открывается меню управления.
 - При удержании кнопки нажатой в течение 2 с открывается контекстное меню.
 - *В меню, подменю:* кратковременное нажатие кнопки приводит к следующему результату:
 - Открывание выбранного меню, подменю или параметра.
 - Нажатие кнопки с удержанием в течение 2 с при настройке параметра приводит к следующему результату:
 - Открывание справочного текста для соответствующей функции или соответствующего параметра.
 - В текстовом редакторе и редакторе чисел: кратковременное нажатие кнопки приводит к следующему результату:
 - Открывание выбранной группы.
 - Выполнение выбранного действия.
 - Выполнение выбранного действия.
- Кнопки 🕀 и 🖃 (функция ESC одновременное нажатие кнопок)
 - В меню, подменю: кратковременное нажатие кнопки приводит к следующему результату:
 - Выход из текущего уровня меню и переход на следующий, более высокий уровень.
 - Если справочный текст параметра открыт, то происходит его закрывание.
 - Удержание кнопки нажатой в течение 2 с приводит к возврату в режим индикации измеренного значения (в «исходное положение»).
 - *В редакторе текста и редакторе чисел:* текстовый редактор или редактор чисел закрывается без принятия изменений.
- Кнопки

 и

 (одновременное нажатие)

 Уменьшение контрастности (более светлое изображение).

7.2 Доступ к меню управления посредством локального дисплея

Параметр/подменю	Значение	Описание
Language ¹⁾	Настройка языка управления для локального дисплея	
Настройка	После установки значений для параметров процесс настройки измерения можно считать в целом завершенным.	

Параметр/подменю	Значение	Описание
Настройка→Карта маски	Составление карты эхо-помех	
Настройка→Расширенная настройка	Содержит дополнительные подменю и параметры	
	 Для более углубленной настройки процесса измерения (с целью адаптации к особым условиям измерения). Для преобразования измеренного значения (масштабирования, линеаризации). Для масштабирования выходного сигнала. 	
Диагностика	Содержит наиболее важные параметры для диагностики состояния прибора.	
Эксперт ²⁾	Содержит все параметры прибора (включая все те параметры, которые содержатся во всех остальных меню). Структура этого меню соответствует структуре функциональных блоков прибора.	

- При управлении с помощью управляющей программы (например. FieldCare) параметр Language находится в меню «Настройка → Расширенная настройка → Дисплей».
- При открывании меню «Эксперт» прибор обязательно запрашивает код доступа. Если пользовательский код доступа не настроен, то следует указать код «0000».

7.2.1 Открывание контекстного меню

Используя контекстное меню, пользователь может быстро открыть следующие меню непосредственно с дисплея управления:

- Setup
- Conf. backup disp.
- Envelope curve
- Keylock on

Открывание и закрывание контекстного меню

Открыт дисплей управления.

- 1. Нажмите кнопку 🗉 и удерживайте ее нажатой в течение 2 с.
 - └ Открывается контекстное меню.

2. Нажмите кнопки 🗆 и 🛨 одновременно.

└ Контекстное меню закрывается и отображается дисплей управления.

Открывание меню из контекстного меню

- 1. Откройте контекстное меню.
- 2. Нажмите кнопку 🛨 для перехода к требуемому меню.
- 3. Нажмите кнопку 🗉 для подтверждения выбора.
 - └ Открывается выбранное меню.

8 Ввод в эксплуатацию

8.1 Включение прибора

• Включите электропитание (в коробке предохранителей).

Прибор включается.

8.1.1 Деактивация защиты от записи

Если прибор защищен от записи, то сначала следует снять защиту от записи.

Сведения об этом приведены в руководстве по эксплуатации соответствующего прибора:

8.2 Настройка языка управления

Заводская настройка: английский язык или локальный язык, который был указан в заказе

🖻 6 Пример конфигурации локального дисплея

8.3 Настройка прибора

8.3.1 Настройка измерения уровня

₽ 7 Параметры конфигурации для измерения уровня жидкости

- LN = длина зонда
- D = Расстояние
- L = Уровень

R = точка отсчета для измерения

Е = Калибровка пустой емкости (нулевая точка)

F = Калибровка полной емкости (диапазон)

- Настройка → Обозначение прибора 1.
 - ↳ Ввод обозначения прибора.

2. Настройка → Единицы измерения расстояния

- ↳ Выбор единицы измерения длины.
- 3. Настройка→Режим работы¹⁾
 - ↳ Выбор опция Уровень.
- 4. Настройка → Тип резервуара
 - 🛏 Выбор типа резервуара.
- Настройка → Диаметр трубы (только если для параметра «Тип резервуара» 5. выбрана опция «Байпас / выносная колонка»)
 - └ Указание диаметра байпаса или успокоительной трубы.

¹⁾ Доступно только для приборов с пакетом прикладных программ «Измерение уровня границы раздела фаз» Endress+Hauser

6. Настройка → Группа продукта

└ Указание группы технологической среды («Продукт» или «Водный раствор (DC >= 4)»)

7. Настройка → Калибровка пустой емкости

└- Указание расстояния Е для пустого резервуара (расстояния от точки отсчета R до отметки 0 %).

8. Настройка → Калибровка полной емкости

- └- Указание расстояния F для полного резервуара (расстояние от отметки 0 % до отметки 100 %).
- 9. Настройка → Уровень
 - └ Отображение измеренного уровня L (с целью подтверждения).

10. Настройка → Расстояние

└ Отображение расстояния D между точкой отсчета R и уровнем L (с целью подтверждения).

11. Настройка → Качество сигнала

└ Отображение качества проанализированного эхо-сигнала определенного уровня (с целью подтверждения).

12. Настройка → Карта маски → Подтвердить расстояние

└ Сравнение отображаемого расстояния с фактическим значением для начала записи карты эхо-помех²)

Для прибора FMP54 с функцией компенсации газовой фазы (спецификация изделия: позиция 540 «Пакеты прикладных программ», опция EF или EG) карту эхо-помех составить невозможно.

8.3.2 Настройка измерения уровня границы раздела фаз

Измерение границы раздела фаз возможно только в том случае, если прибор оснащен соответствующей программной опцией. Спецификация изделия: позиция 540 «Пакет прикладных программ», опция ЕВ «Измерение границы раздела фаз».

N 8 Параметры конфигурации измерения границы раздела фаз

R = точка отсчета для измерения *D*_I = Расстояние до раздела фаз (расстояние от фланца до зоны *DK*₂) Е = Калибровка пустой емкости (нулевая L_I = Раздел фаз точка) F = Калибровка полной емкости (диапазон) D₁ = Расстояние LN = длина зонда L_{I.} = Уровень

UP = Измеренная толщина верхнего слоя

Настройка → Обозначение прибора 1

Ввод обозначения прибора. ┕►

2 Настройка → Единицы измерения расстояния

- Выбор единицы измерения длины.
- Настройка→ Режим работы³⁾ 3.
 - ┕► Выбор опция Раздел фаз.

³⁾ Доступно только для приборов с пакетом прикладных программ «Измерение уровня границы раздела фаз» Endress+Hauser

4. Настройка → Тип резервуара

- 🛏 Выбор типа резервуара.
- 5. Настройка → Диаметр трубы (только если для параметра «Тип резервуара» выбрана опция «Байпас / выносная колонка»)
 - 🕒 Указание диаметра байпаса или успокоительной трубы.

6. Настройка → Уровень в емкости

└ Указание уровня заполнения («Частично заполнена» или «Полностью заполнена»)

7. Настройка → Расстояние до верхнего соединения

В байпасах: указание расстояния от точки отсчета R до нижнего края верхнего отводного штуцера; во всех остальных случаях следует сохранить заводские настройки

8. Настройка → Значение диэлектрической постоянной DC

▶ Указание диэлектрической постоянной верхней технологической среды

9. Настройка → Калибровка пустой емкости

└→ Указание расстояния Е для пустого резервуара (расстояния от точки отсчета R до отметки 0 %).

10. Настройка → Калибровка полной емкости

└→ Указание расстояния F для полного резервуара (расстояние от отметки 0 % до отметки 100 %).

11. Настройка → Уровень

- └ Отображается измеренный уровень L_L.
- 12. Настройка → Раздел фаз
 - 🛏 Отображается высота границы раздела фаз L_I.

13. Настройка → Расстояние

└ Отображается расстояние D_L между точкой отсчета R и уровнем L_L.

14. Настройка → Расстояние до раздела фаз

└ Отображается расстояние D₁ между контрольной точкой R и границей раздела фаз L₁.

15. Настройка → Качество сигнала

 Отображается качество проанализированного эхо-сигнала определенного уровня.

16. Настройка → Карта маски → Подтвердить расстояние

└→ Сравнение отображаемого расстояния с фактическим расстоянием для начала записи карты эхо-помех.

71571795

www.addresses.endress.com

