Operating Instructions
TOC Analyzer CA79

Determination of total organic carbon (TOC) in the trace range
Powerful compact device
Table of contents

1 About this document 4
 1.1 Warnings 4
 1.2 Symbols 4
 1.3 Symbols on the device 4
 1.4 Documentation 4

2 Basic safety instructions 5
 2.1 Requirements for the personnel 5
 2.2 Intended use 5
 2.3 Workplace safety 5
 2.4 Operational safety 5
 2.5 Product safety 6

3 Incoming acceptance and product identification 7
 3.1 Incoming acceptance 7
 3.2 Product identification 7
 3.3 Scope of delivery 8

4 Product description 9
 4.1 Product design 9
 4.2 Process diagram 10
 4.3 Socket assignment 10

5 Mounting 12
 5.1 Mounting requirements 12
 5.2 Mounting the analyzer 13
 5.3 Post-mounting check 14

6 Electrical connection 16
 6.1 Connecting instructions 16
 6.2 Connecting the analyzer 16
 6.3 Ensuring the degree of protection 16
 6.4 Post-connection check 16

7 Operation options 17
 7.1 Overview of operation options 17
 7.2 Structure and function of the operating menu 17
 7.3 Access to the operating menu via the local display 18

8 Commissioning 19
 8.1 Function check 19
 8.2 Login procedure 19
 8.3 Configuring the measuring device 19

9 Operation 42

10 Diagnostics and troubleshooting 43
 10.1 Replacing the hose system 43
 10.2 Firmware history 44

11 Maintenance 45
 11.1 Maintenance schedule 45
 11.2 Maintenance tasks 45
 11.3 Taking out of service 48

12 Repair 49
 12.1 Spare parts 49
 12.2 Return 49
 12.3 Disposal 49

13 Accessories 50

14 Technical data 51
 14.1 Input 51
 14.2 Output 51
 14.3 Current outputs, active 51
 14.4 Power supply 52
 14.5 Performance characteristics 52
 14.6 Environment 52
 14.7 Process 53
 14.8 Mechanical construction 53

Index .. 54
1 About this document

1.1 Warnings

<table>
<thead>
<tr>
<th>Structure of information</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
<td>This symbol alerts you to a dangerous situation. Failure to avoid the dangerous situation will result in a fatal or serious injury.</td>
</tr>
<tr>
<td>WARNING</td>
<td>This symbol alerts you to a dangerous situation. Failure to avoid the dangerous situation can result in a fatal or serious injury.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or more serious injuries.</td>
</tr>
<tr>
<td>NOTICE</td>
<td>This symbol alerts you to situations which may result in damage to property.</td>
</tr>
</tbody>
</table>

1.2 Symbols

- Additional information, tips
- Permitted or recommended
- Not permitted or not recommended
- Reference to device documentation
- Reference to page
- Reference to graphic
- Result of a step

1.3 Symbols on the device

- Reference to device documentation

1.4 Documentation

The following manuals, which complement these Operating Instructions, can be found on the product pages on the Internet:

- Technical Information TOC Analyzer CA79, TI01623C
2 Basic safety instructions

2.1 Requirements for the personnel

- Installation, commissioning, operation and maintenance of the measuring system may be carried out only by specially trained technical personnel.
- The technical personnel must be authorized by the plant operator to carry out the specified activities.
- The electrical connection may be performed only by an electrical technician.
- The technical personnel must have read and understood these Operating Instructions and must follow the instructions contained therein.
- Faults at the measuring point may only be rectified by authorized and specially trained personnel.

Repairs not described in the Operating Instructions provided must be carried out only directly at the manufacturer's site or by the service organization.

2.2 Intended use

The analyzer is designed to determine the total organic carbon in ultrapure water applications that meet the following conditions:

- Conductivity < 2 µS/cm
- pH range: neutral

Use of the device for any purpose other than that described, poses a threat to the safety of people and of the entire measuring system and is therefore not permitted.

The manufacturer is not liable for damage caused by improper or non-designated use.

2.3 Workplace safety

As the user, you are responsible for complying with the following safety conditions:

- Installation guidelines
- Local standards and regulations

Electromagnetic compatibility

- The product has been tested for electromagnetic compatibility in accordance with the applicable international standards for industrial applications.
- The electromagnetic compatibility indicated applies only to a product that has been connected in accordance with these Operating Instructions.

2.4 Operational safety

Before commissioning the entire measuring point:

1. Verify that all connections are correct.
2. Ensure that electrical cables and hose connections are undamaged.
3. Do not operate damaged products, and protect them against unintentional operation.
4. Label damaged products as defective.

During operation:

- If faults cannot be rectified:
 products must be taken out of service and protected against unintentional operation.
2.5 Product safety

2.5.1 State-of-the-art technology
The product is designed to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate. The relevant regulations and international standards have been observed.

2.5.2 IT security
We only provide a warranty if the device is installed and used as described in the Operating Instructions. The device is equipped with security mechanisms to protect it against any inadvertent changes to the device settings.

IT security measures in line with operators' security standards and designed to provide additional protection for the device and device data transfer must be implemented by the operators themselves.
3 Incoming acceptance and product identification

3.1 Incoming acceptance

1. Verify that the packaging is undamaged.
 - Notify the supplier of any damage to the packaging.
 - Keep the damaged packaging until the issue has been resolved.

2. Verify that the contents are undamaged.
 - Notify the supplier of any damage to the delivery contents.
 - Keep the damaged goods until the issue has been resolved.

3. Check that the delivery is complete and nothing is missing.
 - Compare the shipping documents with your order.

4. Pack the product for storage and transportation in such a way that it is protected against impact and moisture.
 - The original packaging offers the best protection.
 - Make sure to comply with the permitted ambient conditions.

If you have any questions, please contact your supplier or your local Sales Center.

3.2 Product identification

3.2.1 Nameplate

The nameplate provides you with the following information on your device:
- Manufacturer identification
- Order code (device version)
- Serial number
- Extended order code
- Power supply
- Degree of protection
- (Permitted) ambient conditions

> Compare the information on the nameplate with the order.

3.2.2 Product identification

Product page
www.endress.com/ca79

Interpreting the order code

The order code and serial number of your product can be found in the following locations:
- On the nameplate
- In the delivery papers

Obtaining information on the product

2. Page search (magnifying glass symbol): Enter valid serial number.
3. Search (magnifying glass).
 - The product structure is displayed in a popup window.
4. Click the product overview.
 ➔ A new window opens. Here you fill information pertaining to your device, including the product documentation.

3.2.3 Manufacturer address
Endress+Hauser Conducta GmbH+Co. KG
Dieselstraße 24
D-70839 Gerlingen

3.3 Scope of delivery
The scope of delivery comprises:
- 1 analyzer with the configuration ordered
- 1 installation kit
- 1 certificate of calibration
- 1 certificate of the system suitability test (SST)
- 1 x Operating Instructions

If you have any queries:
Please contact your supplier or local sales center.
4 Product description

4.1 Product design

1 Main switch
2 USB port
3 Display
4 Analog output 1
5 Analog output 2
6 Housing lock
7 Fluid inlet, sample, UNF ¼ - 28 (order option)
8 Fluid inlet 1, UNF ¼ - 28
9 Fluid inlet 2, UNF ¼ - 28 (order option)
10 Fluid inlet 3, UNF ¼ - 28 (order option)
11 Fluid outlet, waste, UNF ¼ - 28
12 Fan housing with filter mat
13 Cable gland for power supply
4.2 Process diagram

![Process diagram]

1 Waste
2 Sample
3 Input 1
4 Input 2
5 Input 3
6 Pump
V1 - Valve 1, valve 2 (order option) and valve 3 (order option)
V2
V3
LF1 - Conductivity and temperature sensors
LF2
UV UV lamp (12 VDC)

4.3 Socket assignment

4.3.1 Socket assignment (system with a connection socket)

<table>
<thead>
<tr>
<th>Socket</th>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>4 (0) - 20 mA (GND)</td>
<td>TOC (0 to set limit)</td>
</tr>
<tr>
<td>2:</td>
<td>4 (0) - 20 mA (+)</td>
<td>Δ conductivity (0 to set limit)</td>
</tr>
<tr>
<td>3:</td>
<td>4 (0) - 20 mA (GND)</td>
<td>Δ conductivity (0 to set limit)</td>
</tr>
<tr>
<td>4:</td>
<td>4 (0) - 20 mA (+)</td>
<td>Δ conductivity (0 to set limit)</td>
</tr>
<tr>
<td>5:</td>
<td>Relay</td>
<td>Group error message or limit value overshoot depending on the selected option</td>
</tr>
<tr>
<td>6:</td>
<td>Relay</td>
<td>Group error message or limit value overshoot depending on the selected option</td>
</tr>
</tbody>
</table>

Pin 1/2: Provides an analog signal between 4 and 20 mA for the TOC measured value between 0 and the limit (to be configured in the Settings menu, Options 1 tab).

Pin 3/4: Provides an analog signal between 4 and 20 mA for the Δ conductivity value between 0 and the limit in μS/cm (to be configured in the Settings menu, Service 1 tab 1).

Pin 5/6: Acts as an NO contact if the configured TOC or conductivity limit value is exceeded in the "analog output" option, or as an NC contact in the option with a group error message in the event of a power failure, a reaction of the leak, lamp or pressure sensor and if one of the two conductivity sensors is over range.

1) service password required
The measured value is updated every minute. During a calibration or the SST, the last value is displayed until a new measurement is started.

4.3.2 **Socket assignment (system with two connection sockets)**

Output 1

<table>
<thead>
<tr>
<th>Socket</th>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1: 4 (0) - 20 mA (GND) 2: 4 (0) - 20 mA (+)</td>
<td>TOC 1 (0 to set limit)</td>
</tr>
<tr>
<td></td>
<td>3: 4 (0) - 20 mA (GND) 4: 4 (0) - 20 mA (+)</td>
<td>Δ conductivity (0 to set limit)</td>
</tr>
<tr>
<td></td>
<td>5: Relay 6: Relay</td>
<td>Group error message or limit value overshoot depending on the selected option</td>
</tr>
</tbody>
</table>

Pin 1/2: Provides an analog signal between 4 and 20 mA for the TOC measured value at the SAMPLE input between 0 and the limit (to be configured in the **Settings** menu, **Options 1** tab).

Pin 3/4: Provides an analog signal between 4 and 20 mA for the Δ conductivity value between 0 and the limit in μS/cm (to be configured in the **Settings** menu, **Service 1** tab).

Pin 5/6: Acts as an NO contact if the configured TOC or conductivity limit value is exceeded in the 'analog output' option, or as an NC contact in the option with a group error message in the event of a power failure, a reaction of the leak, lamp or pressure sensor and if one of the two conductivity sensors is over range.

Output 2

<table>
<thead>
<tr>
<th>Socket</th>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1: 4 (0) - 20 mA (GND) 2: 4 (0) - 20 mA (+)</td>
<td>TOC 2 (0 to set limit)</td>
</tr>
<tr>
<td></td>
<td>3: 4 (0) - 20 mA (GND) 4: 4 (0) - 20 mA (+)</td>
<td>TOC 3 (0 to set limit)</td>
</tr>
<tr>
<td></td>
<td>5: Controller (GND) 6: Controller (+)</td>
<td>Controller input / trigger for 24 V DC</td>
</tr>
</tbody>
</table>

Pin 1/2: Provides an analog signal between 4 and 20 mA for the TOC measured value at INPUT 2 between 0 and the limit (to be configured in the **Settings** menu, **Options 1** tab).

Pin 3/4: Provides an analog signal between 4 and 20 mA for the TOC measured value at INPUT 3 between 0 and the limit (to be configured in the **Settings** menu, **Options 1** tab).

Pin 5/6: External controller input / trigger, measurement is active when the voltage is applied and stops if the voltage is 0 V.

The measured value is updated every minute. During a calibration or the SST, the last value is displayed until a new measurement is started.
5 Mounting

5.1 Mounting requirements

5.1.1 Dimensions

![Dimensions in mm (in)](image)

5.1.2 Mounting options

The analyzer is designed for bench-top mounting and wall mounting.

The following graphic shows the location of the blind rivet nuts on the back of the housing. They can be used to secure a mounting frame. The mounting frame for wall mounting is not included in the delivery.
5.2 Mounting the analyzer

WARNING
The device is live!
Risk of electric shock!
- Do not connect the analyzer to the electricity supply before the installation work is completed and the media are connected.
- Follow the instructions in the "Electrical connection" section.

5.2.1 Mounting sequence

Bench-top mounting

1. Place the analyzer on an even, vibration-free surface.
2. Open the front door of the housing and check the interior structure for visible signs of damage.
3. Check all the built-in fluid connections. The hoses must not be bent or damaged.
4. Check all the fluid couplings to ensure they are fitted securely (tighten by hand).
5. After the visual inspections, it is time to mount the sample feed lines and the waste line of the TOC system. It is important to keep the lines as short as possible and, when shortening, to cut them straight at a right angle with a hose cutter.

Mounting on a wall

1. Open the front door of the housing and check the interior structure for visible signs of damage.
2. Check all the built-in fluid connections. The hoses must not be bent or damaged.
3. Check all the fluid couplings to ensure they are fitted securely (tighten by hand).
4. After the visual inspections, it is time to mount the sample feed lines and the waste line of the TOC system. It is important to keep the lines as short as possible and, when shortening, to cut them straight at a right angle with a hose cutter.
5. Mount the housing on the mounting frame.
6. Mount the customer-specific mounting frame on the wall.

Electrical connection

1. Connect the signal outputs → 10.
2. Plug the mains plug into the socket (240 V, 50/60 Hz or optionally 100 V, 50/60 Hz).

5.2.2 Connecting the media

![Diagram of the TOC Analyzer, right side panel](image)

- **Analyzer sample outlet**

 The sample is drained (waste sample) via a hose.
 - Route the hose in such a way that backpressure cannot form.

5.3 Post-mounting check

1. Check whether all the connections are secure and do not have any leaks.
2. Inspect all the hoses for any damage.
 ➡ Replace damaged hoses.
6 Electrical connection

6.1 Connecting instructions

⚠️ WARNING

The device is live!
Risk of electric shock! The line filter, the overvoltage module and the main switch are still connected to the power supply even when the main switch is switched off!

‣ Disconnect the device from the power supply (unplug the mains plug).
‣ Before connecting, ensure that the mains voltage matches the voltage indicated on the nameplate.
‣ Ensure that the analyzer is sufficiently grounded via the mains connection.
‣ Before establishing the electrical connection, verify that the pre-installed power cable meets the local national electrical safety specifications.

6.2 Connecting the analyzer

‣ Plug the mains plug into the socket (240 V, 50/60 Hz or optionally 100 V, 50/60 Hz).

6.3 Ensuring the degree of protection

Only the mechanical and electrical connections which are described in these instructions and which are necessary for the required, designated use, may be carried out on the device delivered.

‣ Exercise care when carrying out the work.

Otherwise, the individual types of protection (Ingress Protection (IP), electrical safety, EMC interference immunity) agreed for this product can no longer be guaranteed due, for example to covers being left off or cable (ends) that are loose or insufficiently secured.

6.4 Post-connection check

Carry out the following checks once you have made the electrical connection:

<table>
<thead>
<tr>
<th>Device condition and specifications</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are the cables free from damage on the outside?</td>
<td>Visual inspection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical connection</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the supply voltage of the connected transmitter match the data on the nameplate?</td>
<td>240 V AC 50/60 Hz. 100 V AC 50/60 Hz</td>
</tr>
<tr>
<td>Are the current outputs shielded and connected?</td>
<td></td>
</tr>
<tr>
<td>Are the connected cables provided with strain relief?</td>
<td></td>
</tr>
<tr>
<td>Are the cable types properly isolated from one another?</td>
<td>Route the power cable and signal cables separately from one another over the entire route. Separate cable ducts are ideal.</td>
</tr>
<tr>
<td>Is the cable run correct, without loops and cross-overs?</td>
<td></td>
</tr>
<tr>
<td>Are the power cable and signal cables connected correctly and in accordance with the wiring diagram?</td>
<td></td>
</tr>
</tbody>
</table>
7 Operation options

7.1 Overview of operation options

6 Operating elements
1 Main switch
2 USB port
3 Touch screen monitor

7.2 Structure and function of the operating menu

The analyzer has the following menus:
- Measure online
- Viewer (History)
- Qualification (Calibration, system suitability test [SST])
- System (Service)
- Settings (Advanced setting and service)
- User management
7.3 Access to the operating menu via the local display

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
</table>
| Measure | ➤ Press the key.
 ➤ TOC measurement is started. |
| Viewer | ➤ Press the key.
 ➤ The **Viewer** menu is opened. All TOC measured values can be viewed via this menu. |
| Qualification | ➤ Press the key.
 ➤ The **Qualification** menu is opened. Functions can be selected via this menu. |
| System | ➤ Press the key.
 ➤ The **System** menu is opened. Function checks on the most important components can be performed in this menu. |
| Settings | ➤ Press the key.
 ➤ The **Settings** menu is opened. Device parameters can be configured in this menu. |
| User management | ➤ Press the key.
 ➤ The **User management** menu is opened. User settings can be made in this menu. |
8 Commissioning

8.1 Function check
Incorrect or improperly connected hose connections cause liquid to leak and can cause damage!
- Check all connections and ensure they have been established correctly.
- In particular, check all hose connections to ensure they are secure and liquid cannot escape.

Incorrect power supply will damage the device!
- Ensure that the supply voltage matches the voltage indicated on the nameplate.

8.2 Login procedure
An account and password are required to log in.
1. Enter the user ID install.
2. Press the Login key.
3. Enter the password default.
4. Press the Login key.
 ➡ You are asked to enter a new password.
5. Enter a new password and confirm.
For additional information on user administration: → ▶ 36

8.3 Configuring the measuring device

8.3.1 Performing the measurement
Before initial commissioning, a rinsing process (a measurement) must be performed for at least 30 minutes. In the event of larger impurities and contamination, rinsing (measurement) must continue until the same values are consistently displayed.

1. Press the Measure key in the main menu.
 ➡ A pop-up window opens.
2. Press the Yes key.
 ➡ The program starts by rinsing the system in order to prepare for the TOC measurement.
3. Change the time intervals:
 Select the time intervals by pressing the appropriate key below the chart.
4. Display the history:
 Press the Viewer key in the main menu.
 ➡ The Viewer menu is opened and the history is displayed → ▶ 22. This does not interrupt the measurement.
5. Interrupt the measurement:
 Exit the Measure menu.

Once the rinsing process is finished, the measurement is started automatically. The TOC, conductivity and temperature values are shown on the display. The measured values are shown in the chart on the right-hand side. If the TOC or conductivity value exceeds the configured limit value, the value is displayed in red. In addition, a warning is output via an analog output (optional). The limit can be shown as a red line in the chart.
Warnings

If the TOC and/or conductivity is above the configured limit, the value is displayed in red digits. In addition, a warning is output via a digital output (optional). The limit can be shown as a red line in the chart.

Leak in the system
If there is a leak in the system, the analyzer stops the measurement automatically and closes valve 1. Once the leak has been found and eliminated, the analyzer starts measuring again (only if the **Continue after error** option is enabled in the **Settings** menu, **Options 2** tab → 29). The leak sensor in the system must be dried thoroughly beforehand. The leak sensor is located on the base of the device on the right-hand side.

If the intensity of the UV lamp is too low or if the UV lamp is defective, the analyzer stops the measurement automatically and the **UV lamp broken** message is displayed. In this case, a new UV reactor is needed.

WARNING

Radiation source with short-wave UV radiation! Improper handling can cause damage to eyes and skin!

- Before working on the reactor, always take the device out of service and disconnect it from the power supply!
- Always replace the reactor as a complete assembly!
- Take damaged reactors out of service!
- Never open the reactor to replace individual components!
- Ensure the insulation at the reactor ends is intact (undamaged heat shrink tubes)!
Error during sampling

This warning message can only appear with the order option Detection inlet pressure sample. If this message is displayed, the sensor has detected a closed input.

- Check that medium is correctly supplied to the device.

8.3.2 Viewer

This menu allows you to view all the TOC measured values. The data are selected and displayed by selecting the date.
You can select the data as follows:

1. Make the desired preselection (e.g.: **Online**).
2. Select the date of interest under **Selected date**.
3. Select the file under **Selected data file**.
 - The selected information is shown in the chart on the right-hand side.
 - The user can use the **Chart** or **Table** tabs to switch between displaying the information in a chart or table.

The history file is an ongoing list that acts as logbook and contains all the information about logins, errors and calibration results/system suitability test results (successful/not successful).

In addition, you can export and print out data via this menu (if a printer is installed under **WINDOWS®**).

8.3.3 Qualification

You can select the following two functions via this menu:

- Calibration
- SST (system suitability test)

The selection is made via the drop-down menu.

Various notifications and prompts guide you through the individual functions.

Calibration and adjustment

The measurement must be stopped to perform the calibration. The system asks the user to provide the solutions. The solution concentration is specified in the **Settings** menu.
The system must be switched on one hour before calibration starts so that a suitable operating temperature is reached. The calibration solutions must be warmed to at least room temperature beforehand. If temperatures below 18 °C are displayed at the start of the measurement, the measurement must be stopped until the solutions have at least reached room temperature. The optimum temperature range is between 20 and 25 °C as the starting temperature for calibration.

Performing the calibration on a device with the "System suitability test, manual" order option

1. Connect a calibration solution with the required concentration of sucrose to INPUT 1.
 - The calibration is performed semi-automatically with all the configured parameters from the Settings menu. After the repeat measurements of the sucrose solution, the system stops and a pop-up window appears asking the operator to connect the water solution to INPUT 1.
2. Connect the water solution to INPUT 1.
3. Close the pop-up window by pressing the OK key.
 - A pop-up window is displayed with the calibration results.
4. Press the Yes key to confirm the result.
 - If the user chooses not to use the new calibration factor, the old calibration factor continues to be used.
 - The calibration factor should be in the 0.11 - 0.21 ppb/nS range. Any deviations should be below 2%.

Performing the calibration on a device with the "System suitability test, automated" order option

1. Connect a calibration solution with the required concentration of sucrose to INPUT 2 (black connection).
2. Connect the water solution to INPUT 3 (blue connection).
 - The calibration is performed automatically with all the configured parameters from the Setting → 29 menu.
 - The system stops once all the measurements have been repeated.
 - A pop-up window is displayed with the calibration results.

3. Press the Yes key to confirm the result.
 - If the user chooses not to use the new calibration factor, the old calibration factor continues to be used.

It is recommended to repeat the measurement series three times. The standard volumes used are 500 ml and suffice for several measurements. The measurement results should be constant within this measurement series and be close to one another.

System suitability test (SST)

The measurement must be stopped for the system suitability test (SST).
The system must be switched on one hour before the SST starts so that a suitable operating temperature is reached. The SST solutions must be warmed to at least room temperature beforehand. If temperatures below 18 °C are displayed at the start of the measurement, the measurement must be stopped until the SST solutions have at least reached room temperature. The optimum temperature range is between 20 °C and 25 °C as the starting temperature for the SST measurement.

Performing the system suitability test on a device with the "System suitability test, manual" order option

1. Connect the SST solution with the required concentration of sucrose to INPUT 1.
 - The SST is performed semi-automatically with all the configured parameters from the Settings menu.
 - After the repeat measurements, the system stops and a pop-up window appears asking the operator to connect the benzoquinone solution to INPUT 1.

2. Connect the benzoquinone solution to INPUT 1.
3. Close the pop-up window by pressing the OK key.
 - The process must be repeated for the water solution.

Performing the system suitability test on a device with the "System suitability test, automatic" order option

1. Connect the SST solution with the required concentration of benzoquinone solution to INPUT 1 (red connection).
2. Connect the sucrose solution to INPUT 2 (black connection).
3. Connect water to INPUT 3 (blue connection).
 - SST is performed automatically.
 - The system stops once all the measurements have been repeated.
 - The result of the SST is displayed and must be confirmed by the user.
4. Press the **Yes** key to confirm the result.

 The pop-up window shows the result of the system suitability test (passed/failed).

 ! [Displaying result of test](image)

 If the SST was not successful (failed), the calibration or SST solutions must be checked and the SST must be repeated.

 It is recommended to repeat the measurement series three times. The standard volumes used are 500 ml and suffice for several measurements. The measurement results should be constant within this measurement series and be close to one another.

8.3.4 **System**

A function check on the following components can be performed in this menu:

- Starting of the pump (normal << or fast <<<)
- Switching of the valves
- Switching on of the UV reactor
- UV sensor (detection of the intensity of the UV lamp)
- Check of the sensor signals (C1/C2)
- Check of the static pressure (option) 2)
- Leak sensor
- Resetting of the operating hours (pump)
- Resetting of the operating hours (UV lamp)
- Check of the analog outputs
- Check of the digital outputs

2) If installed and enabled in the Settings menu, an empty field is displayed otherwise.
To change the status of the pump, the valves (V1, V2, V3) and the UV lamp, the user must press the corresponding symbol.

A chart with the following values is displayed when you press the **Graph** key → 27:

- Measured values C1 and C2
- Difference between C1 and C2
- Temperatures T1 and T2

Access to the service area is via the **Service** key. This area is password-protected (service password only for service technicians).

Change to the main menu

1. Press the **Save & Exit** key.
 - A pop-up window appears.
2. Press the corresponding key in the pop-up window.
3. If the pump hose or the UV reactor has been changed:
 - Press the **Yes** key.
 - The operating hours are now reset.

A pop-up window appears once a menu is closed. It takes a few seconds until the analyzer has saved all the settings.
The diagram curve of each value can be switched on or off with the individual color keys.

Pressing the **Reset** key resets all the diagram curves.

8.3.5 Settings

You can configure device parameters in this menu.

License: Enable licensing options. Only for dealers/sales partners.

Service: Enables additional options for authorized staff (Service 1-3).
The following settings can be changed via the **Options 1** tab:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppb limit (ppb)</td>
<td>This limit indicates the maximum value at which the output signal for the detection limit value is switched. The maximum value for scaling the 4-20 mA outputs is also indicated here. The displayed value therefore corresponds to 20 mA.</td>
</tr>
<tr>
<td>Rinse qualification (sec)</td>
<td>This value indicates the rinse time (in seconds) during which a sample is introduced during an SST or calibration (recommended value: 300 seconds).</td>
</tr>
<tr>
<td>Rinse measurement (sec)</td>
<td>This value indicates the rinse time (in seconds) during which a sample is introduced at the start of a measurement (recommended value: 300 seconds).</td>
</tr>
<tr>
<td>Standard (ppb)</td>
<td>This value can be used to define the TOC value to be used as the default value for a calibration (recommended value: 1000 ppb).</td>
</tr>
<tr>
<td>Repetition</td>
<td>This value indicates the number of repetitions to be performed during an SST or a calibration (recommended value: 5 repetitions).</td>
</tr>
<tr>
<td>Interval List</td>
<td>The interval mode editor can be opened via this key (option) → 33</td>
</tr>
</tbody>
</table>

It is possible to enable or disable the following hardware parts via the **Options 2** tab:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger input [ON/OFF]</td>
<td>The trigger input is enabled with this option. The trigger input ensures that the system can be started and stopped by an external contact. The analyzer remains active as long as the contact is closed (order option).</td>
</tr>
<tr>
<td>Pressure sensor</td>
<td>The analyzer can monitor the pressure of the selected input with the pressure sensor. If a vacuum is detected, the measurement is stopped. If a sufficient sample pressure is detected afterwards, the measurement can be resumed (with the Continue after error function switched on). The limit values used can be configured in the Service 1 tab (available for order option "Detection inlet pressure sample").</td>
</tr>
<tr>
<td>Leakage sensor</td>
<td>The leak sensor is switched on and off with this option.</td>
</tr>
<tr>
<td>UV sensor</td>
<td>The sensor installed in the UV reactor is switched on and off with this option.</td>
</tr>
<tr>
<td>Calibr. single port</td>
<td>If a standard analyzer is used or if the corresponding ports for SST and calibration are not available due to the set interval mode, this option can be used to force qualification at one port only (input 1). Processing of the qualification is then sequential and at the operator's request.</td>
</tr>
<tr>
<td>Continue after error</td>
<td>If an error occurs during the measurement, the active measurement is interrupted. Once the error has been rectified (e.g. vacuum in the measuring line), the measurement can resume automatically with this option. The device is rinsed again beforehand.</td>
</tr>
<tr>
<td>Show compensated cond.</td>
<td>The conductivity value in the measurement view can be changed from temperature-compensated values to uncompensated values.</td>
</tr>
</tbody>
</table>

The following parameters can be set in the **Service 1** tab:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature-Offset C1 [°C]</td>
<td>This value indicates the offset for temperature sensor C1.</td>
</tr>
<tr>
<td>Temperature-Offset C2 [°C]</td>
<td>This value indicates the offset for temperature sensor C2.</td>
</tr>
<tr>
<td>Temperature limit [°C]</td>
<td>This value indicates the temperature limit; if this limit is exceeded a warning is generated.</td>
</tr>
<tr>
<td>Fast pump speed</td>
<td>This value indicates the speed at which the rinsing is performed.</td>
</tr>
</tbody>
</table>
Service 2 Tab

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record pause (puse x2 = delaytime)</td>
<td>This value indicates the intervals for recording the measured values in the log file. 1 value corresponds to 2 seconds.</td>
</tr>
<tr>
<td>Max. limit conductivity</td>
<td>μS</td>
</tr>
<tr>
<td>Accuracy TOC value</td>
<td>This value indicates the number of decimal places used to display the TOC value.</td>
</tr>
<tr>
<td>Underpressure limit [bar]</td>
<td>This value is required for the pressure sensor option. It indicates the input pressure at which an error should be displayed.</td>
</tr>
<tr>
<td>Underpressure restart [bar]</td>
<td>This value is required for the pressure sensor option. It indicates the pressure at which the measurement should be restarted after the vacuum is switched off.</td>
</tr>
</tbody>
</table>

The following parameters can be set in the **Service 3** tab:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV-Limit</td>
<td>This value indicates the maximum period of time before a warning is generated if the operating time of the UV lamp exceeds this limit.</td>
</tr>
<tr>
<td>Pump limit</td>
<td>This value indicates the maximum period of time before a warning is generated if the operating time of the pump hose exceeds this limit.</td>
</tr>
<tr>
<td>Valves</td>
<td>This value indicates the number of valves the analyzer is fitted with. This value must be set correctly here. Otherwise, malfunctions may occur when selecting the inputs in the calibration and interval mode.</td>
</tr>
<tr>
<td>Universal digital output</td>
<td>If the analyzer is fitted with a universal digital output, this option can be used to configure the system events that can cause the output to switch. Fault - The output closes during measurement and opens during standby or in the event of an error Limit - The output changes if the limit value for TOC or conductivity is exceeded Fault+limit - The output closes during measurement and opens during standby, in the event of an error or if the TOC or conductivity limit value is exceeded.</td>
</tr>
<tr>
<td>Automatic report</td>
<td>At the end of the day (midnight), generates an automatic printout on the printer that is installed in the system as a standard printer.</td>
</tr>
</tbody>
</table>
8.3.6 Autostart

If the system is interrupted during a measurement (due to a power outage, for example), the *Autostart* window appears when the system is restarted. If the user does not stop autostart by pressing the *Deactivate autostart* key, the interrupted measurement is restarted.

![Autostart window](image)

Deactivating/activating autostart

1. Open the *Settings* menu.
2. Select the *Options 2* tab.
3. Activate/deactivate autostart via the *Continue after error* setting → 29.

In conjunction with the trigger, the system only starts the measurement if the corresponding input signal is also present.

8.3.7 Shutdown procedure

1. Open the main menu.

 ![Main menu](image)

2. Press the *Quit* key.

 A window for authorization is displayed. The following steps must be performed for the switch-off procedure (only possible with the service ID).

3. Enter the user-defined password.
4. Press OK in the Login window.

- Pressing the Enter character on a connected keyboard or moving the mouse to the next line will produce a login error.

A pop-up window appears once the various pages are closed. Wait for approx. 30 seconds to ensure that all the data are saved.

Once you close the software program and shut down Windows, you can switch off the device with the mains switch.

8.3.8 Saving measured data

The measured data should be backed up at regular intervals. A USB hub with at least 4 ports, a mouse, a keyboard and a USB stick with at least 8 GB of space are needed for the backup.

1. Shut down the system entirely.

- The main menu is displayed.

2. Open the Viewer menu.

3. Press the Online key to select the online data.

4. Select the Table tab.

5. Press the Export csv key.

- The file manager opens.

6. Copy the folder to be saved and save it to the connected USB stick.

8.3.9 Available options

Interval mode editor (order option)

A sequence of up to 8 combinations of port inputs between the sample, input 2 and input 3 can be created in this editor.

The interval editor can be opened via the Interval list key (Settings menu -> Options 1 tab).

If the Calibr. single port option is selected, input 1 can be used for the calibration or SST without having to disconnect the cables.
1. Press the **Interval list** key to open the interval editor.

 The interval sequence can be edited in the editor once you press the **Interval list** key.

 ![Interval list](image)

 24 Editor

 The time is the measuring time with the rinse duration in minutes.

 If **NA** is selected for a port in a step or if the list is completely full, the sequence starts again with step 1 in the measuring mode so that the samples are monitored continuously.

 The system creates a new data file after every step. This differs from the continuous mode without an interval where a new file is created after 24 hours at the very latest if the measurement process has not been interrupted.

 The first row must contain a sample and a time.

Software adapted to CFR 21 Part 11

CFR 21 Part 11 is part of Title 21 of the Code of Federal Regulations, which sets down the rules of the United States Food and Drug Administration (FDA) regarding electronic records and electronic signatures (ERES). Part 11, as it is commonly known, defines the criteria under which electronic records and electronic signatures are considered to be trustworthy, reliable and equivalent to paper records (Title 21 CFR Part 11 Section 11.1 (a)).

A new user management function was introduced to customize the analyzer software for Part 11. In the software program that is based on CRF 21 Part 11, the **User management** menu is displayed in the main menu.
An administrator account and a password are needed to log in. During initial commissioning, the menu with the Install account opens. Once the menu has opened, the user is asked to replace the default password with a new password.

1. Enter the user ID install.
2. Press the Login key.
3. Enter the password default.
4. Press the Login key.
 - The user is asked to enter a new password.
5. Enter a new password and confirm.
6. From the drop-down menu, select whether a new user should be added (Add user) or whether user properties should be changed (User properties).
Adding a new user

1. In the pull-down menu, select the Add user entry.
 - A user can only create new users at the same authorization level (i.e. an assistant can only create an assistant).

2. Enter the user ID in the User ID field.

3. Select the corresponding rights from the Rights drop-down list.

4. Specify whether the user should be deactivated, how long the password is valid and whether a new password should be defined.
 - The default password is always set by default.

5. Press the Continue key.
 - The next screen opens with a prompt. Here, the user confirms whether the user data should be updated.
6. Press the **Yes** key.

Changing user properties

1. Press the **User management** key in the main menu.
2. From the drop-down list, select the user whose user properties should be changed.

3. Change the user properties as required (rights (1), deactivation (2), password validity (3) or reset password (4)).

4. Press the **Yes** key to confirm the changes.
Defining a new password

The user logs in for the first time with default access rights. After logging in, the user is asked to set a new password. In the Rights menu, the administrator can define the minimum number of characters for the ID and password as one of the basic settings → 39.

1. Enter the user ID install.
2. Press the Login key.
3. Enter the password default.
4. Press the Login key.
 • The user is asked to enter a new password.
5. Enter the new password in the Password field.
6. Enter the password again in the Password field.
7. Press the OK key to confirm the password.
Administration of rights

The following steps must be taken to define the various rights of the user groups and to make additional basic settings under rights management.

1. Open the Settings menu.
2. Press the Rights management key.

 To be able to change all the rights in the rights management function, the user must log on as an administrator (operators can only change the rights for assistants).

In addition to assigning various rights, the administrator can also make a number of basic settings:

- Minimum number of characters for the ID (min. characters ID)
- Minimum number of characters for the password (min. characters passw.)
- Validity of the password
- Maximum number of password attempts (max. password tries)
- Logout time in seconds
The user and the rights assigned to the user ensures that every action on the analyzer can be recorded and tracked. This data can be viewed in the audit trail and cannot be modified or tampered with. The user must enter a comment in the dialog box for every measurement or change of parameter.

Incorrect password or unauthorized user
The following window appears if an incorrect password is entered during login:
The number of remaining attempts to log in is displayed in this window. The user is blocked after three failed attempts to enter the password. The administrator can reset the password → 37.

Access by an unauthorized user is indicated as follows:

If a user attempts to log in without the sufficient access rights, the following message is displayed.
9 Operation

Reading off measured values
The following measured values are displayed in the measuring screen of the analyzer:
- TOC in ppb
- Conductivity (display can be hidden as an option)
- Temperature
- Load curve: TOC, conductivity
10 Diagnostics and troubleshooting

10.1 Replacing the hose system

To ensure the hose fittings are seated correctly, it is advisable to cut the hoses to length with a special hose cutter to ensure a straight cut surface and to avoid the deformation of the hose ends.

The procedure for replacing a hose system is described below. The hoses used are made from FEP and are therefore unaffected by aqueous media in the pure and ultrapure water range and do not appreciably contribute to the TOC in the system.

These hose systems may need to be replaced if a large amount of contamination has entered the system or the system has been used with unsuitable media. In addition, parts of the hose system (hosing subsections) must be replaced if leaks have occurred in the system. Such leaks can be caused if an unsuitable process pressure is applied, for example. UNF fittings, which are also used in chromatography, are used as the fittings here. These fittings consist of a suitable ferrule and a suitable screw connector (referred to as a socket below) made of PEEK.

Ferrules undergo permanent mechanical deformation during installation and must be replaced with each new hosing. The socket can be reused if it is not damaged.

The following materials are needed to replace a hosing subsection:

- 2 x ferrules (suitable for 1/8" hose, yellow color code)
- 2 x ¼-28 UNF fittings
- 1 x 1/8" FEP hose of adequate length
- Hose cutter for capillaries

1. Turn the fittings on the hosing subsection counterclockwise to loosen them.
2. Remove the section of hose from the housing and determine the total length of the hose.
 - The length is measured from ferrule to ferrule.
3. After determining the correct length, cut the new hose to length and cut both ends straight at right angles using the hose cutter.
4. Fit the first ferrule on one end of the hose and slide the socket over the hose.
5. Then place the fitting (which has been prepared as explained above) into a coupling (1).

6. Screw the socket into the coupling and tighten it by hand.

10.2 Firmware history

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
<th>Compatibility with earlier version</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.05.2022</td>
<td>1.217b</td>
<td>Endress+Hauser figurative mark updated</td>
<td>Yes</td>
</tr>
<tr>
<td>22.11.2021</td>
<td>1.209</td>
<td>Firmware with the launch of the device</td>
<td>Yes</td>
</tr>
</tbody>
</table>
11 Maintenance

Incorrect maintenance can result in inaccurate operation and pose a safety hazard!

- All the maintenance processes described in this section must only be performed by a properly qualified technician.
- Before every maintenance activity: The specialist staff must be completely familiar with the entire process and have perfectly understood all the steps involved.

11.1 Maintenance schedule

Regular maintenance guarantees the efficient operation of the analyzer.

<table>
<thead>
<tr>
<th>Interval</th>
<th>Maintenance work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before every calibration</td>
<td>▶ Replace calibration solution</td>
</tr>
<tr>
<td>Every 6 months</td>
<td>▶ Replace pump hose</td>
</tr>
<tr>
<td>Every 6 months</td>
<td>▶ Replace UV reactor</td>
</tr>
<tr>
<td>Every 24 - 36 months</td>
<td>▶ Replace ballast for UV reactor</td>
</tr>
<tr>
<td></td>
<td>Must only be performed by a service organization</td>
</tr>
<tr>
<td></td>
<td>appointed by Endress+Hauser!</td>
</tr>
<tr>
<td>Every 36 - 48 months</td>
<td>▶ Replace pump head</td>
</tr>
<tr>
<td></td>
<td>Must only be performed by a service organization</td>
</tr>
<tr>
<td></td>
<td>appointed by Endress+Hauser!</td>
</tr>
</tbody>
</table>

The maintenance intervals depend greatly on the given application. Maintenance intervals must therefore be adapted to specific needs. However, it is important to ensure that these maintenance tasks are always performed regularly!

11.2 Maintenance tasks

WARNING

Device is live!

Incorrect connection may result in injury or death!

- BEFORE starting maintenance tasks make sure that no voltage is present on any cable.
- Disconnect the device from the power supply, unplug the mains plug.

11.2.1 Peristaltic pump

Change the hose of the peristaltic pump every 6 months. The device software will display a reminder.
Perform the following steps to replace the pump hose:

1. Stop the flow of sample entirely.
2. Shut down the system \(\rightarrow \) 32.
3. Switch off the device with the mains switch.
4. Disconnect the mains plug of the device.
5. Open the device.
6. Open the hose fasteners (5) inside the pump housing (7) and remove the pump hose (8) from the hose fasteners.
7. Open the hose clips (4) on the hose ends and remove the hosing (1).
8. Turn the pump head (6) while at the same time pulling the old pump hose out of the pump housing (7) at one end.
9. Insert the new pump hose by turning the pump head (6) and secure it on the housing.
10. Position the pump hose (8) in the center of the pump housing (7) and close the hose fasteners (5).
11. Fit the hosing (1) and luer adapter (3) on the new pump hose and secure in place with the hose clips (4).
12. Set the operating hours of the pump to zero in the **System** menu.
11.2.2 Reactor with UV lamp

⚠️ WARNING

Radiation source with short-wave UV radiation!
Improper handling can cause damage to eyes and skin!
- Before working on the reactor, always take the device out of service and disconnect it from the power supply!
- Always replace the reactor as a complete assembly!
- Take damaged reactors out of service!
- Never open the reactor to replace individual components!
- Never operate the reactor when it is disassembled or in an unshielded state!
- Ensure the insulation at the reactor ends is intact (undamaged heat shrink tubes)!
- Dispose of broken or defective UV lamps as hazardous waste as they contain mercury.

The UV lamp in the reactor is used exclusively as a source of energy for oxidation. The radiation intensity of the lamp decreases after many operating hours until the sensor is triggered and information to this effect is shown on the display. Once the sensor switches off, the measuring point can still continue to be operated for a short time. As the intensity is significantly lower, the system should be recalibrated, however. Replace the reactor after 12 months at the very latest.

The following steps are necessary to replace the reactor:

1. Stop the flow of sample entirely.
2. Shut down the system → 32.
3. Disconnect fluid connections (2) to and from the reactor (4).
 ➤ A small amount of water can escape here (residual liquid in the reactor).

4. Release the connecting plug (1) to the electronic ballast.

5. Remove the reactor from the holders of the metal housing. For this purpose, the reactor must first be removed from the top holder (3) and then from the bottom holder (5).
 ➤ Please ensure that the glass ends of both the old and new reactor are not touched.

6. Insert the new reactor into the system. Here, the reactor must first be inserted into the bottom holder and then into the top holder.
 ➤ When inserting the reactor, care must be taken to ensure the electronic cables to the plug are not damaged and that they are inserted behind the reactor in the groove provided for this purpose.

7. Reestablish the electronic connection to the electronic ballast and the fluid connections.

8. Restart the system.
 ➤ The system mode checks the reactor to ensure it is functioning correctly without any errors.

9. On completion of the check, reset the operating time counter of the reactor.
 ➤ This completes the installation of the new reactor.

Following a reactor replacement, the new reactor must run in system mode for at least 20 minutes at normal pump speed and with the lamp switched on. This removes any impurities and contamination. In addition, it is also essential to calibrate the new UV reactor.

11.3 Taking out of service

CAUTION
Activities while the analyzer is in operation
Risk of injury and infection from medium!

► Before you release any hoses, make sure that no actions, such as the pumping of sample, are currently running or are due to start shortly.
► Wear protective clothing, goggles and gloves or take other suitable measures to protect yourself.
► Wipe up any spills reagent with a disposable tissue and rinse with clear water. Then dry the cleaned areas with a cloth.

NOTICE
Operation for more than 3 days interrupted without performing the "take-out-of-service procedure" beforehand
Can damage the device!

► Take the analyzer out of service as described.

To take out of service, proceed as follows:

1. Stop the flow of sample entirely.
2. Rinse the analyzer with ultrapure water.
3. Empty the hoses entirely.
4. Seal the connection caps with dummy plugs.
5. Fit blind plugs on all the inputs and outputs.
12 Repair

12.1 Spare parts
Device spare parts that are currently available for delivery can be found on the website: www.endress.com/device-viewer

- Quote the serial number of the device when ordering spare parts.

12.2 Return
The product must be returned if repairs or a factory calibration are required, or if the wrong product was ordered or delivered. As an ISO-certified company and also due to legal regulations, Endress+Hauser is obliged to follow certain procedures when handling any returned products that have been in contact with medium.

To ensure the swift, safe and professional return of the device:

- Refer to the website www.endress.com/support/return-material for information on the procedure and conditions for returning devices.

12.3 Disposal

12.3.1 Disposing of the analyzer

⚠️ CAUTION
Risk of injury if the standard solution used is disposed of incorrectly!

- When disposing, follow the instructions of the safety data sheets for the chemicals used.
- Observe the local regulations regarding waste disposal.

If required by the Directive 2012/19/EU on waste electrical and electronic equipment (WEEE), the product is marked with the depicted symbol in order to minimize the disposal of WEEE as unsorted municipal waste. Do not dispose of products bearing this marking as unsorted municipal waste. Instead, return them to the manufacturer for disposal under the applicable conditions.
13 Accessories

The following are the most important accessories available at the time this documentation was issued.

- For accessories not listed here, please contact your Service or Sales Center.

CA78/79 pressure reducer kit
Supply pressure: max. 10 bar (145 psi), adjustable output pressure
Order No. 71543593

CA78/79 heat exchanger kit
Temperature: can be used up to a maximum temperature of 90 °C (194 °F)
Order No. 71543592
14 Technical data

14.1 Input

<table>
<thead>
<tr>
<th>Measured variable</th>
<th>TOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range</td>
<td>0.5 to 1,000 µg/l (ppb)</td>
</tr>
</tbody>
</table>
| Input signal | Controller input 24 V (order option)
The controller input starts a measurement. The function is only available for 1-channel devices. |

14.2 Output

| Output signal | Measuring channel 1
0/4 to 20 mA, galvanically isolated |
|--------------------|---------------------|
| | Measuring channel 2 (optional)
0/4 to 20 mA, galvanically isolated |
| Signal on alarm | 1 port for waste UNF ¼ - 28 |
| Load | Max. 500 Ω |
| Transmission behavior | Adjustable, in the measuring range 4 to 20 mA
Standby: 3.8 mA |

14.3 Current outputs, active

| Span | 0 to 20 mA; according to Namur NE43 |
14.4 Power supply

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>100/240 V AC, 47 - 63 Hz</td>
</tr>
<tr>
<td>Power consumption</td>
<td>Max. 60 W</td>
</tr>
<tr>
<td>Power supply cable</td>
<td>2 m, Type E+F mains plug pre-installed</td>
</tr>
</tbody>
</table>

14.5 Performance characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range</td>
<td>TOC (total organic carbon)</td>
</tr>
<tr>
<td>Maximum measured error</td>
<td>+/- 0.5 µg/l (ppb) or 1 %, the larger value applies in each case</td>
</tr>
<tr>
<td>Limit of detection (LOD)</td>
<td>0.1 µg/l (ppb)</td>
</tr>
<tr>
<td>Response time t90</td>
<td>50 s</td>
</tr>
<tr>
<td>Number of measuring channels</td>
<td>1 to 3, depending on the order version</td>
</tr>
<tr>
<td>Sample requirement</td>
<td>~ 14 ml/min.</td>
</tr>
<tr>
<td>UV reactor</td>
<td>UV reactor with continuous function monitoring</td>
</tr>
<tr>
<td>Calibration interval</td>
<td>The device is calibrated on delivery. It is recommended to perform a new calibration after replacing components in contact with the process, such as the pump hose or UV reactor.</td>
</tr>
</tbody>
</table>
| Maintenance interval | - Replacement of calibration solution - before every calibration
- Replacement of pump hose - every 6 months
- Replacement of UV reactor - every 6 months
- Replacement of UV reactor ballast - every 24 - 36 months
- Replacement of pump head - every 36 - 48 months |
| Maintenance effort | 1 hour per month |

14.6 Environment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>10 to 45 °C (50 to 113 °F)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>2 to 55 °C (35 to 131 °F)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>10 to 90 %, non-condensating</td>
</tr>
</tbody>
</table>
Degree of protection
IP 42 (standard device), IP54 (order option)

Electromagnetic compatibility
Interference emission and interference immunity as per EN 61326-1:2013, Class A for Industry

Electrical safety
According to EN/IEC 61010-1:2010, Class 1 equipment
Low voltage: overvoltage category II
For installations up to 3 000 m (9 800 ft) above MSL

Pollution degree
2

14.7 Process

Sample temperature
< 50 °C (122 °F)

Process pressure
Max. 0.5 bar (7.25 psi); recommended 0.25 bar (3.62 psi)

Sample outlet
Depressurized

Sample quality
Particle-free

Maximum conductivity of sample
2 µS/cm

Sample supply
- 1 port for sample: 1 port for system suitability test, manual
- Order option 1: 1 port for sample, 3 ports for system suitability test, automated
- Order option 2: 3 ports for sample, 1 port for system suitability test, manual

14.8 Mechanical construction

Design, dimensions
→ 12

Weight
Approx. 14 kg (30.86 lb)

Materials
Stainless steel housing

Hose specification
Sample hose 1/8 inch, 3.2 mm OD included in connection kit.
Distance to other devices 50 cm.
Do not exceed sample feed line of 2 meters and height difference of 1 meter.

3) Sufficient mains quality is required to operate the product as intended.
Index

A
- Access via local display .. 18
- Accessories .. 50
- Ambient temperature .. 52
- Analyzer
 - Mounting .. 13
- Autostart ... 32

C
- Calibration and adjustment ... 23
- Calibration interval ... 52
- Commissioning .. 19
- Configuration .. 19
- Connecting .. 16
- Connecting instructions .. 16
- Connecting the media ... 14
- Current outputs
 - Active .. 51

D
- Degree of protection ... 16, 53
- Diagnostics ... 43
- Dimensions .. 12, 53
- Disposal .. 49
- Disposing of the analyzer .. 49
- Documentation .. 4

E
- Electrical connection ... 16
- Electrical safety ... 53
- Electromagnetic compatibility ... 53
- Environment .. 52

F
- Firmware history .. 44
- Function check .. 19

H
- Hose specification .. 53
- Hose system ..
- Replacement .. 43
- Humidity ... 52

I
- Incoming acceptance .. 7
- Input .. 51
- Input signal ... 51
- Installation check ... 19
- Intended use .. 5
- Interval mode editor ... 33

L
- Load .. 51
- Login procedure ... 19

M
- Maintenance .. 45
- Maintenance effort .. 52
- Maintenance interval ... 52
- Maintenance schedule .. 45
- Maintenance tasks .. 45
- Manufacturer address .. 8
- Materials ... 53
- Maximum conductivity of sample 53
- Measured error .. 52
- Measured variable .. 51
- Measurement ... 19
- Measuring range .. 51, 52
- Mounting options .. 12
- Mounting requirements .. 12
- Mounting sequence ... 13
- Mounting the analyzer .. 13

N
- Nameplate .. 7
- Number of measuring channels 52

O
- Operation ... 42
- Operation options .. 17
- Operational safety ... 5
- Options .. 33
- Order code ... 7
- Output .. 51
- Output signal ... 51
- Overview of operation options ... 17

P
- Performance characteristics .. 52
- Pollution degree .. 53
- Post-connection check .. 16
- Post-mounting check ... 14
- Power consumption ... 52
- Power supply ... 52
- Power supply cable ... 52
- Process ... 53
- Process diagram .. 10
- Process pressure .. 53
- Product description .. 9
- Product design ... 9
- Product identification ... 7
- Product page .. 7
- Product safety ... 6

Q
- Qualification .. 23

R
- Repair .. 49
- Replacing the hose (peristaltic pump) 45
- Replacing the reactor ... 47
- Requirements for the personnel 5
- Response time ... 52
- Return .. 49
Index

S
- Safety instructions .. 5
- Sample outlet .. 53
- Sample quality .. 53
- Sample requirement .. 52
- Sample supply ... 53
- Sample temperature ... 53
- Saving measured data ... 33
- Scope of delivery ... 8

Security
- IT .. 6
- Settings .. 29
- Shutting down ... 32
- Signal inputs ... 51
- Signal on alarm .. 51
- Software adaptation ... 34
- Span .. 51
- Spare parts .. 49
- State-of-the-art technology 6
- Storage temperature ... 52
- Structure and function of the operating menu 17
- Supply voltage ... 52
- Symbols .. 4
- System .. 27
- System suitability test .. 25

T
- Technical data .. 51
- Transmission behavior .. 51
- Troubleshooting .. 43

V
- Viewer .. 22

W
- Warnings .. 4, 20
- Weight ... 53
- Workplace safety .. 5