71580514 2022-04-13 Products

사용 설명서 요약 **Prosonic S FMU90** HART

초음파 측정 기술 유량 측정 센서 1 또는 2개

이 설명서는 사용 설명서(요약본)이며, 기기별 사용 설명서를 대체하지 않습니다.

기기에 대한 자세한 정보는 사용 설명서와 기타 문서를 참조 하십시오.

모든 기기 버전에 대해 제공:

- 인터넷: www.endress.com/deviceviewer
- 스마트폰/태블릿: Endress+Hauser Operations App

AUU2355

2 문서 정보

2.1 기호

2.1.1 안전 기호

🛕 위험

위험 상황을 알리는 기호입니다. 이 상황을 방지하지 못하면 심각한 인명 피해가 발생할 수 있습니다.

🛕 경고

위험 상황을 알리는 기호입니다. 이 상황을 방지하지 못하면 심각한 인명 피해가 발생할 수 있습니다.

🛕 주의

위험 상황을 알리는 기호입니다. 이 상황을 방지하지 못하면 경미한 부상이나 중상을 당할 수 있습니다.

주의

신체적 상해가 발생하지 않는 과정 및 기타 요인에 대해 알려주는 기호입니다.

2.1.2 특정 정보 및 그래픽 관련 기호

🚹 팁

추가 정보를 알려줍니다.

설명서 참조

그래픽 참조

►

따라야 할 주의 사항 또는 개별 단계

1., 2., 3. 일련의 단계

1, 2, 3, ... 항목 번호

A, B, C, ...

것, b, c, 보기

3 기본 안전 지침

3.1 용도

Prosonic S FMU90은 FDU90, FDU91, FDU91F, FDU92, FDU93 및 FDU95 초음파 센서용 트랜 스미터입니다. 기존 설비를 지원하기 위해 FDU80, FDU80F, FDU81, FDU81F, FDU82, FDU83, FDU84, FDU85, FDU86, FDU96 센서도 연결할 수 있습니다.

3.2 설치, 시운전 및 작동

이 계기는 최신 안전 요건을 충족하고 관련 표준 및 EC 규정을 준수하도록 설계되었습니다. 그러나 잘못 사용하거나 지정되지 않은 용도로 사용할 경우 잘못된 설치 또는 구성으로 인한 생산물 오버플로우 같은 애플리케이션 관련 위험이 발생할 수 있습니다. 따라서 측정 시스템 의 설치, 전기 연결, 시운전, 작동 및 유지보수는 시스템 오퍼레이터로부터 해당 작업을 수행 하도록 승인받은 숙련된 전문가만 수행해야 합니다. 기술 담당자는 이 사용 설명서를 읽고 이해한 후 준수해야 합니다. 계기의 개조 및 수리는 사용 설명서에서 명시적으로 허용된 경 우에만 수행할 수 있습니다.

3.3 작동 안전 및 프로세스 안전

계기에서 구성, 테스트 및 유지보수 작업을 수행하는 동안 작동 안전 및 프로세스 안전을 보 장하기 위한 대체 모니터링 조치를 취해야 합니다.

3.3.1 방폭 지역

방폭 지역에서 측정 시스템을 사용할 경우 관련 국가 표준을 준수해야 합니다. 이 계기는 본 사용 설명서의 필수 요소인 별도의 "방폭 문서"가 함께 제공됩니다. 이 보조 문서에 명시된 설 치 사양, 연결 데이터 및 안전 지침을 준수해야 합니다.

- 기술 인력을 충분히 교육하십시오.
- 측정 포인트의 계량 및 안전 관련 요건을 준수하십시오.

트랜스미터는 적합한 장소에만 설치할 수 있습니다. 방폭 지역 승인을 받은 센서를 Ex 승인 을 받지 않은 트랜스미터에 연결할 수 있습니다.

▲경고

폭발 위험

▶ ATEX, FM 또는 CSA 인증을 받은 FDU83, FDU84, FDU85 및 FDU86 센서를 Prosonic S 트랜 스미터에 연결하지 마십시오.

4 입고 승인 및 제품 식별

4.1 입고 승인

입고 승인 중 다음 사항을 확인하십시오.

- 납품서와 제품 라벨의 주문 코드가 동일합니까?
- 제품이 손상되지 않았습니까?
- 명판 데이터가 납품서의 주문 정보와 일치합니까?
- 필요한 경우(명판 참조) 안전 지침(XA)이 제공됩니까?

📭 이 조건 중 하나라도 충족되지 않으면 Endress + Hauser 세일즈 센터에 연락하십시오.

4.2 제품 식별

계기는 다음과 같은 방법으로 식별할 수 있습니다.

- 명판 사양
- 납품서의 주문 코드와 계기 기능 내역
- W@M Device Viewer (www.endress.com/deviceviewer)에 명판의 일련 번호 입력: 계기에 관한 모든 정보가 표시됩니다.
- 명판의 일련 번호를 Endress+Hauser Operations App에 입력하거나 Endress+Hauser Operations App으로 명판의 2D 매트릭스 코드(QR 코드)를 스캔하십시오. 계기와 관련된 모든 정보가 표시됩니다.

4.3 보관 및 운송

- 보관 및 운송 중에 충격으로부터 보호할 수 있도록 계기를 포장하십시오. 최적의 보호 효 과를 위해 원래 포장재를 사용하십시오.
- 허용 보관 온도: -40~+60 °C (-40~140 °F)

5 설치

5.1 폴리카보네이트 필드 하우징 설치

5.1.1 설치장소

- 직사광선으로부터 보호되는 그늘진 장소. 필요한 경우 내후성 커버를 사용하십시오.
- 실외에 설치할 경우: 서지 피뢰기를 사용하십시오.
- 고도: 평균 해수면에서 최대 2000 m (6560 ft)의 고도에 설치하십시오.
- 왼쪽 최소 간격: 55 mm (2.17 in); 그렇지 않으면 하우징 커버를 열 수 없습니다.

5.1.2 벽설치

- 구성품에 포함된 하우징 브래킷도 드릴링 템플릿으로 사용할 수 있습니다.
- 하우징 브래킷이 뒤틀리거나 구부러지지 않도록 평평한 표면에 설치하십시오.

- ☑ 1 벽에 설치된 폴리카보네이트 필드 하우징
- 1 하우징 브래킷(구성품에 포함)

5.1.3 기둥 설치

🗷 2 기둥에 폴리카보네이트 필드 하우징을 설치하기 위한 설치 플레이트

1 하우징 브래킷(구성품에 포함)

5.2 알루미늄 필드 하우징 설치

5.2.1 설치 장소

- 직사광선으로부터 보호되는 그늘진 장소
- 실외에 설치할 경우: 서지 피뢰기를 사용하십시오.
- 고도: 평균 해수면에서 최대 2000 m (6560 ft)의 고도에 설치하십시오.
- 왼쪽 최소 간격: 55 mm (2.17 in); 그렇지 않으면 하우징 커버를 열 수 없습니다.

5.2.2 계기 설치

☑ 3 벽에 설치된 알루미늄 필드 하우징

5.3 DIN 레일 하우징 설치

5.3.1 설치장소

- 방폭 지역 밖에 있는 캐비닛
- 고압 전기 케이블, 모터 케이블, 컨택터 또는 주파수 컨버터로부터 충분히 떨어진 장소
- 고도: 평균 해수면에서 최대 2000 m (6560 ft)의 고도에 설치하십시오.
- 왼쪽 최소 간격: 10 mm (0.4 in); 그렇지 않으면 하우징 커버를 열 수 없습니다.

5.3.2 계기 설치

▲경고

DIN 레일 하우징은 IP06 방진방수 등급을 충족합니다.

하우징이 손상되면 통전 부품에 의해 감전될 위험이 있습니다.

▶ 안정적인 캐비닛에 계기를 설치하십시오.

- ☑ 4 DIN 레일 하우징 설치/분해. 측정 단위 mm (in)
- A 설치
- B 분해

5.4 원격 디스플레이 및 작동 모듈 설치

A0032561

6 전기 연결

6.1 연결 요구사항

6.1.1 케이블 사양

- 전도체 단면적: 0.2~2.5 mm² (26~14 AWG)
- 전선 슬리브 단면적: 0.25~2.5 mm² (24~14 AWG)
- 최소 벗김 길이: 10 mm (0.39 in)

6.1.2 폴리카보네이트 필드 하우징의 단자부

☑ 5 폴리카보네이트 필드 하우징의 단자부 액세스

케이블 인입구

다음과 같은 케이블 인입구를 위해 하우징 바닥에 구멍이 미리 뚫려 있습니다.

- M20x1.5 (구멍 10개)
- M16x1.5 (구멍 5개)
- M25x1.5 (구멍 1개)

6.1.3 알루미늄 필드 하우징의 단자부

▲경고

방폭 성능을 보장하려면

- ▶ 모든 단자가 필드 하우징 안에 있는지 확인하십시오(예외: 보호 접지 단자는 필드 하우징 외부에 있음).
- ▶ 하우징을 로컬 접지 전위(PML)에 연결하십시오.
- ▶ 케이블을 배선할 때 작동 장소의 방폭 요건을 충족하는 케이블 글랜드만 사용하십시오.

- 🖻 6 알루미늄 필드 하우징의 단자부 액세스
- 1 알루미늄 필드 하우징, 열린 상태
- 2 명판
- 3 보호 접지 단자
- 4 디스플레이 및 작동 모듈
- 5 알루미늄 필드 하우징, 닫힌 상태

케이블 인입구

- 케이블 인입구용 12 M20x1.5 구멍은 필드 하우징 바닥에 있습니다.
- 전기적 연결을 설정하려면 케이블 인입구를 통해 하우징으로 케이블을 끼우십시오. 그러 면 DIN 레일 하우징과 같은 방식으로 전기적 연결이 설정됩니다.

6.1.4 DIN 레일 하우징의 단자부

A0034898

6.2 계기 연결

6.2.1 단자 유형

Prosonic S에는 플러그인 스프링 단자가 있습니다. 레버를 사용하지 않고 경질 도체나 가요 성 도체를 페룰과 함께 단자에 직접 끼울 수 있고, 그러면 접점이 자동으로 생성됩니다.

6.2.2 단자부

🖻 7 단자부; 회색으로 표시된 단자는 일부 계기 버전에서 사용할 수 없음

- A 기본 단자부; 모든 계기 버전에 있음
- B 2개의 센서를 위한 옵션 단자부
- C 최대 5개의 릴레이를 위한 옵션 단자부
- D 최대 4개의 외부 스위치와 1개의 외부 온도 센서를 위한 옵션 단자부

6.2.3 전원 공급 단자(AC 단자)

단자부 A

- 단자 1: L (90~253 V_{AC})
- 단자 2: N
- 단자 3: 등전위화
- 퓨즈: 400 mA T

6.2.4 전원 공급 단자(DC 단자)

단자부 A

- 단자 1: L+ (10.5~32 V_{DC})
- 단자 2: L-
- 단자 3: 등전위화
- 퓨즈: 2AT

6.2.5 아날로그 출력 단자

단자부 A

단자 4, 5: 아날로그 출력 1 (0/4 ~ 20mA, HART)

단자부 B

단자 41, 42: 아날로그 출력 2 (0/4 ~ 20mA)

6.2.6 릴레이 단자

단자부 A

단자 6, 7, 8: 릴레이 1

단자부 C

- 단자 50, 51, 52: 릴레이 2
- 단자 53, 54, 55: 릴레이 3
- 단자 56, 57, 58: 릴레이 4
- 단자 59, 60, 61: 릴레이 5
- 단자 62, 63, 64: 릴레이 6

6.2.7 레벨 입력 단자

단자부 A

센서 1(1개의 센서 입력이 있는 계기 버전용)

- 단자 9: 노란색 센서 전선
- 단자 10: 검은색 센서 전선(케이블 차펴)
- 단자 11: 빨간색 센서 전선

단자부 B

- 센서 1(2개의 센서 입력이 있는 계기 버전용)
 단자 9: 노란색 센서 전선
 - 단자 10: 검은색 센서 전선(케이블 차펴)
 - 단자 10: 由는 특 신지 신신()
 단자 11: 빨간색 센서 전선
- 센서 2(2개의 센서 입력이 있는 계기 버전용)
 - 단자 12: 노란색 센서 전선
 - 단자 13: 검은색 센서 전선(케이블 차펴)
 - 단자 14: 빨간색 센서 전선

6.2.8 동기화 단자

단자부 A 단자 39, 40: 여러 Prosonic S 트랜스미터의 동기화

6.2.9 스위치 입력 단자

단자부 D

- 단자 71, 72, 73: 외부 스위치 1
- 단자 74, 75, 76: 외부 스위치 2
- 단자 77, 78, 79: 외부 스위치 3
- 단자 80, 81, 82: 외부 스위치 4

6.2.10 온도 입력 단자

단자부 D

단자 83, 84, 85:

- Pt100
- Omnigrad S TR61 (Endress+ Hauser)

6.2.11 단자부의 기타 요소

단자부 A

■ 디스플레이

디스플레이 또는 원격 디스플레이 및 작동 모듈 연결

- 서비스
- 서비스 인터페이스; Commubox FXA291을 통한 PC/노트북 연결용 ■ Î͡͡͡

쓰기 금지 스위치: 계기를 잠가 설정 변경을 방지합니다.

6.3 특별 연결 지침

각 단자의 특별 연결 지침은 계기 사용 설명서를 참조하십시오.

7 작동 옵션

7.1 작동 메뉴의 구조 및 기능

7.1.1 하위 메뉴 및 파라미터 세트

함께 속하는 파라미터는 작업 메뉴에서 하나의 파라미터 세트로 그룹화됩니다. 각 파라미터 세트는 5자리 코드로 식별합니다.

🖻 8 파라미터 세트 식별:

- 1 하위 메뉴
- 2 관련 입력 또는 출력 번호(다중 채널 계기)
- 3 하위 메뉴 내 파라미터 세트 번호

7.1.2 파라미터 유형

읽기 전용 파라미터

- 기호: 💷
- 편집할 수 없습니다.

편집 가능 파라미터

- 기호: 💶
- ■ 기를 눌러 편집할 수 있습니다.

7.2 로컬 디스플레이를 이용한 작업 메뉴 액세스

7.2.1 디스플레이 및 작동 요소

디스플레이 및 작동 모듈의 요소

- 1 소프트 키 기호
- 2 키
- 3 릴레이 스위칭 상태를 표시하는 LED
- 4 작동 상태를 표시하는 LED
- 5 디스플레이 기호
- 6 파라미터 값 및 단위(그림: 1차 값)
- 7 표시된 파라미터의 번호

키(소프트 키 작동)

현재 키 기능은 키 위의 소프트 키 기호로 표시됩니다.

- 선택 목록에서 선택 막대를 아래로 이동합니다.
- 선택 목록에서 선택 막대를 위로 이동합니다.
- - 선택한 하위 메뉴, 파라미터 세트 또는 파라미터를 엽니다.
 - 편집한 파라미터 값을 확인합니다.
- • •

하위 메뉴 내에서 이전 파라미터 세트로 이동합니다.

- 하위 메뉴 내에서 다음 파라미터 세트로 이동합니다.
- 선택 목록에서 현재 선택 막대로 표시된 옵션을 선택합니다.

영숫자 파라미터에서 선택한 자리를 증가시킵니다.

- -----

영숫자 파라미터에서 선택한 자리를 감소시킵니다.

- • •
 - 현재 발견된 오류 목록을 엽니다.
 - 경고가 있으면 기호가 깜박입니다.
 - 알람이 있으면 기호가 영구적으로 표시됩니다.
- 📟 •

측정값의 다음 페이지를 표시합니다(여러 페이지의 측정값이 정의된 경우만 해당. "디스 플레이" 메뉴 참조).

• (Info)

가장 중요한 읽기 전용 파라미터가 포함되어 있는 "바로가기" 메뉴를 엽니다.

Menu)

모든 계기 파라미터에 액세스할 수 있는 메인 메뉴를 엽니다.

7.3 HART를 통한 작업 메뉴 액세스

☑ 9 HART 시스템 통합

- 1 PLC, API
- 2 Commubox FXA195 (USB), HART 프로토콜
- 3 DeviceCare/FieldCare
- 4 Commubox FXA291 (서비스 인터페이스)
- 5 Prosonic S의 디스플레이 및 작동 모듈(해당 시)
- 6 Field Xpert SMT70/SMT77
- 7 연결 케이블이 있는 VIATOR Bluetooth 모뎀

기본 설정 → 선형화

시운전

8 시운전

Prosonic S FMU90 HART

8.1 계기켜기

계기를 처음 켰을 때 설정해야 하는 파라미터

- Language 디스플레이 언어를 선택합니다.
- Distance unit 거리 측정의 길이 단위를 선택합니다.
- Temperature unit 센서 온도 단위를 선택합니다.
- Operating mode 옵션은 계기 버전과 설치 환경에 따라 다릅니다.
 Controls
 - 펌프 제어 또는 레이크 제어를 설정할지 선택합니다.

8.2 계기 구성

8.2.1 "기본 설정" 메뉴로 이동

운전 모드: "레벨+유량" 또는 "유량" 유량 → 유량 → 유량 N → 기본 설정

운전 모드: "유량+백워터 검출" 유량 → 유량 1 +백워터 → 유량 → 기본 설정

8.2.2 파라미터 세트 "센서 선택"

경로

기본 설정 → 센서 선택

파라미터

■ 입력

채널에 센서를 지정합니다. • 센서 선택 센서 유형을 지정합니다. FDU9x 센서의 자동 옵션을 선택합니다. FDU8x 센서의 수동 옵션을 선택합니다.

 검출 센서 선택 = 자동인 경우에만 표시됩니다.
 자동으로 검출된 센서 유형을 표시합니다.

8.2.3 파라미터 세트 "선형화"

선형화의 목적 측정한 업스트림 레벨 h로부터 유량 Q를 계산합니다. **경로**

Endress+Hauser

시운전

파라미터

- 타입
 - "Flume/weir" 옵션
 - 사전 프로그램된 선형화 커브를 사용하려면 이 옵션을 선택합니다.
 - "테이블" 옵션 선택한 선형화 테이블을 입력하려면 이 옵션을 선택합니다.
 - "공식" 옵션 유량 공식: Q = C (h^a + yh^β)를 사용하려면 이 옵션을 선택합니다.
- 플로우 단위 선형화된 값의 단위를 지정합니다.
- 커브

타입 = Flume/weir인 경우에만 표시됩니다. 첫 번째 단계에서 flume 또는 weir의 모양을 지정합니다. 그런 다음 다음 단계에서 flume 또는 weir의 크기를 지정합니다.

• 너비

타입 = 사각형 weir, NFX 또는 Trapezoidal weir인 경우에만 표시됩니다. Weir의 너비를 선택합니다.

▪ 편집

타입 = 테이블인 경우에만 표시됩니다.

선형화 테이블에 입력하려면 편집 파라미터 세트를 엽니다.

상태 테이블 선형화 테이블을 활성화 또는 비활성화합니다.

- 알파, 베타, 감마, C **타입 = 공식**인 경우에만 표시됩니다. 유량 공식 파라미터에 적합한 값을 지정합니다.
- 최대 유량

Flume 또는 weir의 최대 유량에 표시된 값을 확인하거나 적합한 값을 입력합니다.

8.2.4 파라미터 세트 "Empty 캘리브레이션"

☑ 10 Flume의 empty 캘리브레이션

- 초음파 센서 1
- 측정 거리 D
- h 상부 수위
- Empty 캘리브레이션: "E 비어 있음" Е

☑ 11 Weir의 empty 캘리브레이션

- 1 초음파 센서
- D 측정거리
- h 상부 수위
- E Empty 캘리브레이션: "E 비어 있음"

경로

기본 설정 → Empty 캘리브레이션

파라미터

- E 비어 있음
 - Flume: 센서 멤브레인과 flume 플로어의 가장 좁은 포인트 사이의 거리를 지정합니다.
 - Weir: 센서 멤브레인과 weir 크레스트의 가장 낮은 포인트 사이의 거리를 지정합니다.
- 불감대

센서의 불감대 BD를 나타냅니다.

8.2.5 파라미터 세트 "유량 N"

경로

기본 설정 → 유량 N

- 파라미터
- 유량 N

검증을 위해 현재 측정된 유량 Q를 표시합니다.

▪ 레벨

검증을 위해 현재 측정된 레벨 h를 표시합니다.

거리
 검증을 위해 현재 측정된 거리 D를 표시합니다.

8.2.6 파라미터 세트 "체크 값"

- 이 파라미터 세트는 간섭 에코 억제(매핑)를 시작합니다.
 - 모든 간섭 에코를 기록하려면 가능한 한 최소 레벨에서 매핑을 수행하십시오(빈 채널 이 이상적).
 - 시운전 중에 채널을 비울 수 없는 경우 채널이 부분적으로 채워졌을 때 예비 매핑을 기록하십시오. 레벨이 처음으로 약 0%에 도달하면 매핑을 반복하십시오.

🖻 12 간섭 에코 억제(매핑) 기능의 작동 원리

- A 에코 커브(a)에는 간섭 에코와 레벨 에코가 포함됩니다. 매핑을 하지 않으면 간섭 에코도 평가됩니다.
- B 매핑은 매핑 커브(b)를 생성합니다. 이는 매핑 범위(c) 안에 있는 모든 에코를 억제합니다.
- C 나중에 매핑 커브보다 높은 에코만 평가됩니다. 간섭 에코는 매핑 커브 아래에 있기 때문에 무시됩 니다(평가되지 않음).

경로

기본 설정 → 체크 값

파라미터

▪ 거리

센서 멤브레인과 액체 표면 사이에서 현재 측정된 거리 D를 표시합니다.

▪ 체크 거리

표시된 거리를 실제값과 비교하고 비교 결과를 입력합니다. 입력값을 기준으로 계기가 자 동으로 매핑 범위를 결정합니다.

▪ 거리 OK

표시된 거리와 실제 거리가 일치합니다.

→ 파라미터 세트 LVL N 거리 맵으로 계속합니다.

- 거리가 너무 작음 표시된 거리가 실제 거리보다 작습니다.
 → 파라미터 세트 LVL N 거리 맵으로 계속합니다.
- 거리가 너무 큼 표시된 거리가 실제 거리보다 큽니다.
 → 매핑이 가능하지 않습니다.
 → 센서 N의 설정이 종료됩니다.

• 거리 모름

실제 거리를 알 수 없습니다. → 매핑이 가능하지 않습니다. → 센서 N의 설정이 종료됩니다.

 수동 매핑 범위를 수동으로 지정합니다.
 → 파라미터 세트 LVL N 거리 맵으로 계속합니다.

8.2.7 파라미터 세트 "거리 매핑"

경로

기본 설정 → 체크 값 → 거리 매핑

파라미터

■ 실제 거리

센서 멤브레인과 액체 표면 사이에서 현재 측정된 거리 D를 표시합니다.

- 매핑 범위
 - 센서 멤브레인부터 시작해 매핑이 수행되는 범위를 지정합니다. **체크 거리 = 거리 OK** 또는 **거리가 너무 작음**인 경우:
 - 사전 설정 값을 확인합니다.
 - 체크 거리 = 수동인 경우:
 원하는 매핑 범위를 입력합니다.
- 매핑 구동

예를 선택해 매핑 커브 기록을 시작합니다.

→ 유량 N 상태 파라미터 세트가 나타납니다.

→ 표시된 거리가 여전히 너무 작으면 표시된 거리와 실제 거리가 일치할 때까지 매핑 커브 기록을 계속하십시오.

▪ 상태

매핑 상태를 지정합니다.

▪ 맵 인에이블

신호 평가 중에 매핑 커브를 고려합니다.

▪ 맵 디세이블

신호 평가 중에 매핑 커브를 고려하지 않지만 계기에 저장된 상태로 남아 있습니다.

■ **맵삭제** 매핑 커브를 삭제합니다.

71580514

www.addresses.endress.com

