Technical Information **Proline Promass K 10**

Coriolis flowmeter

Flowmeter with minimized total cost of ownership with easy-to-use operation concept

Application

- Measuring principle operates independently of physical fluid properties such as viscosity or density
- Measurement of liquids and gases in utilities and basic applications

Device properties

- Compact dual-tube sensor
- Medium temperature up to +150 °C (+302 °F)
- Process pressure up to 100 bar (1450 psi)
- System integration with HART, Modbus RS485
- Flexible operation with app and optional display

Your benefits

- Cost-effective device for generic use alternative to mechanical flowmeters
- Fewer process measuring points multivariable measurement (flow, density, temperature)
- Space-saving installation no inlet/outlet run needs
- Optimum usability operation with mobile devices and SmartBlue App or touch screen display
- Easy, time-saving commissioning guided parameter configuration in advance and in the field
- Integrated verification Heartbeat Technology

Table of contents

About this document	6	Climate class	46
Symbols	6	Degree of protection	46
Associated documentation	6	Vibration-resistance and shock-resistance	46
Ordering information	6	Electromagnetic compatibility (EMC)	46
Registered trademarks	8	Interior cleaning	46
Function and system design	10	Process	48
Measuring principle	10	Medium temperature range	48
Product design	11	Density	48
IT security	11	Flow limit	48
Device-specific IT security	12	Pressure-temperature ratings	48
		Sensor housing	51
Input	14	Rupture disk	51
Measured variable	14	Pressure loss	52
Operable flow range	14		
Measuring range	14	Mechanical construction	54
Wicasumig range	11	Weight	54
_		Materials	55
Output	18	Process connections	55
Output versions	18	Surface roughness	55 55
Output signal	18	Surface roughness	22
Signal on alarm	21		
Low flow cut off	21	Dimensions in SI units	58
Ex connection data	21	Compact version	58
Galvanic isolation	21	Fixed flange	61
Protocol-specific data	22	Clamp connections	65
		Couplings	66
Power supply	24	Accessories	68
Terminal assignment	24		
Supply voltage	24	Dimensions in US units	70
Power consumption	24	Compact version	70
Current consumption	24	Fixed flange	73
Power supply failure	25	Clamp connections	74
Electrical connection	25	Couplings	74
Potential equalization	29	Accessories	75
Terminals	29		
Cable entries	29	T 11' 1	70
Overvoltage protection	29	Local display	78
		Operating concept	78
C-11ifi	22	Operating options	78
Cable specification	32	Operating tools	79
Requirements for connecting cable	32		0.0
Df	2.6	Certificates and approvals	82
Performance characteristics	34	Ex approval	82
Reference operating conditions	34	Non-Ex approval	82
Maximum measured error	34	Pressure Equipment Directive	82
Repeatability	35	Sanitary compatibility	82
Response time	35	Pharmaceutical compatibility	82
Influence of ambient temperature	35	HART certification	83
Influence of medium temperature	35	Radio approval	83
Influence of medium pressure	36	Other standards and guidelines	83
Design fundamentals	36	Augliostico de des	06
Installation	40	Application packages	86
Installation	40	Use Heartheat Varification Manitoring	86
Installation conditions	40	Heartbeat Verification + Monitoring Density output	86 86
Environment	46		
Ambient temperature range	46	Accessories	88
Storage temperature	46	Device-specific accessories	88
Atmosphere	46	Communication-specific accessories	89
		. –	

Service-specific accessory	89
System components	90

About this document

Symbols	6
Associated documentation	6
Ordering information	6
Registered trademarks	8

Symbols

Electronics

- == Direct current
- \sim Alternating current
- ☐ Direct current and alternating current
- ⊕ Terminal connection for potential equalization

Types of information

- ✓ ✓ Preferred procedures, processes or actions
- Permitted procedures, processes or actions
- Forbidden procedures, processes or actions
- Additional information
- Reference to documentation
- Reference to page
- Reference to graphic

Explosion protection

- Hazardous area
- 🔉 Non-hazardous area

Associated documentation

Technical Information	Overview of the device with the most important technical data.
Operating Instructions	All the information that is required in the various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal as well as the technical data and dimensions.
Sensor Brief Operating Instructions	Incoming acceptance, transport, storage and mounting of the device.
Transmitter Brief Operating Instructions	Electrical connection and commissioning of the device.
Description of Parameters	Detailed explanation of the menus and parameters.
Safety Instructions	Documents for the use of the device in hazardous areas.
Special Documentation	Documents with more detailed information on specific topics.
Installation Instructions	Installation of spare parts and accessories.

The device documentation is available online on the device product page and in the Downloads area: www.endress.com

Ordering information

Detailed ordering information is available from your nearest sales organization www.addresses.endress.com or in the Product Configurator at www.endress.com:

- 1. Select the product using the filters and search field.
- 2. Open the product page.

- 3. Select **Configuration**.
- Product Configurator the tool for individual product configuration
 Up-to-the-minute configuration data
 Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
 - Automatic verification of exclusion criteria
 - $\ \ \, \blacksquare$ Automatic creation of the order code and its breakdown in PDF or Excel output format
 - Ability to order directly in the Endress+Hauser Online Shop

Registered trademarks

HART®

Registered trademark of the FieldComm Group, Austin, USA

Modbus[®]

Registered trademark of SCHNEIDER AUTOMATION, INC.

Bluetooth®

The Bluetooth word mark and Bluetooth logos are registered trademarks of Bluetooth SIG. Inc. and any use of such marks by Endress+Hauser is under license. Other trademarks and trade names are those of their respective owners.

Apple[®]

Apple, the Apple logo, iPhone, and iPod touch are trademarks of Apple Inc., registered in the U.S. and other countries. App Store is a service mark of Apple Inc.

Android®

Android, Google Play and the Google Play logo are trademarks of Google Inc.

Function and system design

Measuring principle	10
Product design	11
T security	11
Device-specific IT security	12

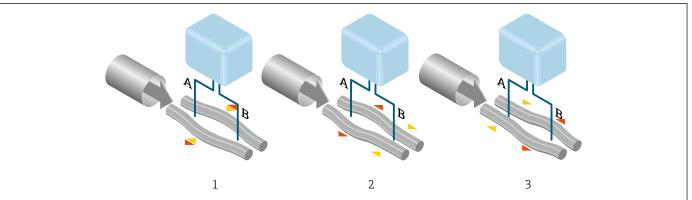
Measuring principle

The measuring principle is based on the controlled generation of Coriolis forces. These forces are always present in a system when both translational and rotational movements are superimposed.

 $F_c = 2 \cdot \Delta m (v \cdot \omega)$

 F_c = Coriolis force

 $\Delta m = moving mass$


 ω = rotational velocity

v = radial velocity in rotating or oscillating system

The amplitude of the Coriolis force depends on the moving mass Δm , its velocity v in the system and thus on the mass flow. Instead of a constant rotational velocity ω , the sensor uses oscillation.

In the sensor, two parallel measuring tubes containing flowing fluid oscillate in antiphase, acting like a tuning fork. The Coriolis forces produced at the measuring tubes cause a phase shift in the tube oscillations (see illustration):

- At zero flow (when the fluid is at a standstill) the two tubes oscillate in phase (1).
- Mass flow causes deceleration of the oscillation at the inlet of the tubes (2) and acceleration at the outlet (3).

A002885

The phase difference (A-B) increases with increasing mass flow. Electrodynamic sensors register the tube oscillations at the inlet and outlet. System balance is ensured by the antiphase oscillation of the two measuring tubes. The measuring principle operates independently of temperature, pressure, viscosity, conductivity and flow profile.

Density measurement

The measuring tube is continuously excited at its resonance frequency. A change in the mass and thus the density of the oscillating system (comprising measuring tube and fluid) results in a corresponding, automatic adjustment in the oscillation frequency. The resonance frequency is thus a function of the medium density. The microprocessor utilizes this relationship to obtain a density signal.

Volume measurement

Together with the measured mass flow, this is used to calculate the volume flow.

Temperature measurement

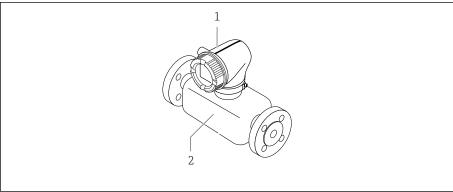
The temperature of the measuring tube is determined in order to calculate the compensation factor due to temperature effects. This signal corresponds to the process temperature and is also available as an output signal.

10

Gas Fraction Handler (GFH)

The Gas Fraction Handler is a software function that improves measurement stability and repeatability.

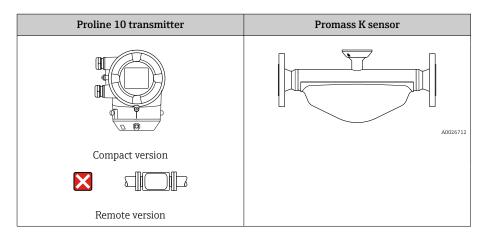
The function continuously checks for the presence of disturbances in single-phase flow, i.e. gas bubbles in liquids.


In the presence of the second phase, flow and density become increasingly unstable. The Gas Fraction Handler function improves measurement stability thanks to patented multifrequency technology.

Product design

The device consists of a transmitter and a sensor. A compact version of the device is available.

Compact version


The transmitter and sensor form a mechanical unit.

A000826

- 1 Transmitter
- 2 Sensor

Measuring system

IT security

We only provide a warranty if the device is installed and used as described in the Operating Instructions. The device is equipped with security mechanisms to protect it against any inadvertent changes to the device settings.

IT security measures in line with operators' security standards and designed to provide additional protection for the device and device data transfer must be implemented by the operators themselves.

Device-specific IT security

Access via Bluetooth

Secure signal transmission via Bluetooth uses an encryption method tested by the Fraunhofer Institute.

- Without the SmartBlue App, the device is not visible via Bluetooth.
- Only one point-to-point connection is established between the device and a smartphone or tablet.

Access via the SmartBlue app

Two access levels (user roles) are defined for the device: the **Operator** user role and the **Maintenance** user role. The **Maintenance** user role is configured when the device leaves the factory.

If a user-specific access code is not defined (in the Enter access code parameter), the default setting **0000** continues to apply and the **Maintenance** user role is automatically enabled. The device's configuration data are not write-protected and can be edited at all times

If a user-specific access code has been defined (in the Enter access code parameter), all the parameters are write-protected. The device is accessed with the **Operator** user role. When the user-specific access code is entered a second time, the **Maintenance** user role is enabled. All parameters can be written to.

For detailed information, see the "Description of Device Parameters" document pertaining to the device.

Protecting access via a password

There are a variety of ways to protect against write access to the device parameters:

- User-specific access code:
- Protect write access to the device parameters via all the interfaces.
- Bluetooth key:

The password protects access and the connection between an operating unit, e.g. a smartphone or tablet, and the device via the Bluetooth interface.

General notes on the use of passwords

- The access code and Bluetooth key that are valid when the device is delivered must be redefined during commissioning.
- Follow the general rules for generating a secure password when defining and managing the access code and Bluetooth key.
- The user is responsible for the management and careful handling of the access code and Bluetooth key.

Write protection switch

The entire operating menu can be locked via the write protection switch. The values of the parameters cannot be changed. Write protection is disabled when the device leaves the factory.

Write protection is enabled with the write protection switch on the back of the display module.

Input

Measured variable	14
Operable flow range	14
Measuring range	14

Measured variable

Direct measured variables	 Mass flow Temperature Density* * Visibility depends on order options or device settings
Coloulated management variables	- Volume flow

Calculated measured variables

- Volume flow
- Corrected volume flow

Operable flow range

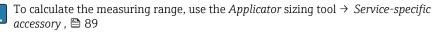
Over 1000:1

Flow rates above the set end value do not overload the electronics. The totalized flow volume is measured correctly.

Measuring range

Measuring range for liquids

DN		Measuring range full scale values $\dot{m}_{min(F)}$ to $\dot{m}_{max(F)}$		
[mm]	[in]	[kg/h]	[lb/min]	
8	3/8	0 to 2 000	0 to 73.50	
15	1/2	0 to 6500	0 to 238.9	
25	1	0 to 18 000	0 to 661.5	
40	1½	0 to 45 000	0 to 1654	
50	2	0 to 70 000	0 to 2 573	
80	3	0 to 180 000	0 to 6615	


Measuring range for gases

The full scale value depends on the density and the sound velocity of the gas used and can be calculated with the formula below:

 $\dot{m}_{max(G)} = minimum \; (\dot{m}_{max(F)} \cdot \rho_G : x \; ; \; m = rho_G \cdot (c_G/2) \cdot d_i^2 \cdot (\pi/4) \cdot n \cdot 3600)$

ṁ _{max(G)}	Maximum full scale value for gas [kg/h]
m _{max(F)}	Maximum full scale value for liquid [kg/h]
$\dot{m}_{\max(G)} < \dot{m}_{\max(F)}$	$\dot{m}_{max(G)}$ can never be greater than $\dot{m}_{max(F)}$
ρ_{G}	Gas density in [kg/m³] at operating conditions
х	Limitation constant for max. gas flow [kg/m³]
m	Mass [kg/s]
rho_G	Density during operation [kg/m³]
c_G	Sound velocity (gas) [m/s]
d_i	Measuring tube internal diameter [m]
π	Pi
n	Number of pipes

DN		x	
[mm]	[in]	[kg/m³]	
8	3/8	85	
15	1/2	110	
25	1	125	
40	1½	125	
50	2	125	
80	3	155	

Calculation example for gas

- Sensor: Promass K, DN 50
- Gas: Air with a density of 60.3 kg/m³ (at 20 °C and 50 bar)
 Measuring range (liquid): 70 000 kg/h
 x = 125 kg/m³ (for Promass K, DN 50)

Maximum possible full scale value:

 $\dot{m}_{\;max(G)} = \dot{\bar{m}}_{\;max(F)} \cdot \rho_G : x = 70\,000 \; kg/h \cdot 60.3 \; kg/m^3 : 125 \; kg/m^3 = 33\,800 \; kg/h$

Output

Output versions	18
Output signal	18
Signal on alarm	21
Low flow cut off	21
Ex connection data	21
Galvanic isolation	21
Protocol-specific data	22

Endress+Hauser

Output versions

Order code for 020: output; input	Output version
Option B	Current output 4 to 20 mA HARTPulse/frequency/switch output
Option C	 Current output 4 to 20 mA HART Ex i Pulse/frequency/switch output Ex i
Option M	■ Modbus RS485 ■ Current output 4 to 20 mA
Option U	■ Modbus RS485 Ex i ■ Current output 4 to 20 mA Ex i

Output signal

Current output 4 to 20 mA HART

Signal mode	Choose via terminal assignment: • Active • Passive
Current range	Can be set to: 4 to 20 mA NAMUR 4 to 20 mA US 4 to 20 mA Fixed current
Max. output current	21.5 mA
Open-circuit voltage	DC < 28.8 V (active)
Max. input voltage	DC 30 V (passive)
Max. load	400 Ω
Resolution	1 μΑ
Damping	Configurable: 0 to 999.9 s
Assignable measured variables	 Mass flow Volume flow Corrected volume flow Temperature Density* Index inhomogeneous medium Exciter current Oscillation frequency Oscillation amplitude* Frequency fluctuation* Oscillation damping Oscillation damping fluctuation* Signal asymmetry HBSI* Electronic temperature * Visibility depends on order options or device settings

Modbus RS485

Physical interface RS485 in accordance with EIA/TIA-485 standard	
--	--

18

Current output 4 to 20 mA

Signal mode	Choose via terminal assignment: • Active • Passive
Current range	Can be set to: 4 to 20 mA NAMUR 4 to 20 mA US 4 to 20 mA Fixed current
Max. output current	21.5 mA
Open-circuit voltage	DC < 28.8 V (active)
Max. input voltage	DC 30 V (passive)
Max. load	400 Ω
Resolution	1 μΑ
Damping	Configurable: 0 to 999.9 s
Assignable measured variables	 Mass flow Volume flow Corrected volume flow Temperature Density* Index inhomogeneous medium Exciter current Oscillation frequency Oscillation amplitude* Frequency fluctuation* Oscillation damping Oscillation damping fluctuation* Signal asymmetry HBSI* Electronic temperature * Visibility depends on order options or device settings

Pulse/frequency/switch output

Function	Can be set to: Pulse output Frequency output Switch output
Version	Open collector: Passive
Input values	■ DC 10.4 to 30 V ■ Max. 140 mA
Voltage drop	■ ≤ DC 2 V @ 100 mA ■ ≤ DC 2.5 V @ max. input current

Pulse output	
Pulse width	Configurable: 0.05 to 2 000 ms
Max. pulse rate	10 000 Impulse/s
Pulse value	Configurable
Assignable measured variables	Mass flowVolume flowCorrected volume flow

Frequency output	
Output frequency	Configurable: end value frequency 2 to 10000 Hz (f $_{ m max}$ = 12500 Hz)
Damping	Configurable: 0 to 999.9 s
Pulse/pause ratio	1:1
Assignable measured variables	 Mass flow Volume flow Corrected volume flow Temperature Density* Index inhomogeneous medium Exciter current Oscillation frequency Oscillation amplitude* Frequency fluctuation* Oscillation damping Oscillation damping fluctuation* Signal asymmetry HBSI* Electronic temperature * Visibility depends on order options or device settings

Switch output	
-	
Switching behavior	Binary, conductive or non-conductive
Switching delay	Configurable: 0 to 100 s
Number of switching cycles	Unlimited
Assignable functions	 Off On Diagnostic behavior: Alarm Warning Warning and alarm Limit value: Mass flow Volume flow Corrected volume flow Temperature Density* Totalizer 13 Oscillation damping Flow direction monitoring Status Partially filled pipe detection Low flow cut off * Visibility depends on order options or device settings

Signal on alarm

Output behavior in the event of a device alarm (failure mode)

HART

Device diagnostics	Device condition can be read out via HART Command 48
--------------------	--

Modbus RS485

Failure	mode	Selectable:
		■ NaN value instead of current value
		■ Last valid value

Current output 4 to 20 mA

4 to 20 mA	Selectable:
	■ Min. value: 3.59 mA
	■ Max. value: 21.5 mA
	■ Freely definable value between: 3.59 to 21.5 mA
	 Actual value
	Last valid value

Pulse/frequency/switch output

Pulse output	Selectable: Actual value No pulses
Frequency output	Selectable: Actual value O Hz Defined value: 0 to 12 500 Hz
Switch output	Selectable: Current status Open Closed

Low flow cut off

The switch points for low flow cut off are user-selectable.

Ex connection data

Pay attention to the documentation on Ex connection values .

Safety-related values and intrinsically safe values: Safety Instructions (XA)

Galvanic isolation

The outputs are galvanically isolated from one another and from earth.

Protocol-specific data

HART

Bus structure	The HART signal overlays the 4 to 20 mA current output.
Manufacturer ID	0x11
Device type ID	0x72
HART protocol revision	7
Device description files (DTM, DD)	Information and files under: www.endress.com
HART load	At least 250 Ω
System integration	Measured variables via HART protocol

Modbus RS485

Physical interface	RS485 in accordance with EIA/TIA-485 standard
Terminating resistor	Not integrated
Protocol	Modbus Applications Protocol Specification V1.1
Response times	 Direct data access: typically 25 to 50 ms Auto-scan buffer (data range): typically 3 to 5 ms
Device type	Slave
Slave address range	1 to 247
Broadcast address range	0
Function codes	 03: Read holding register 04: Read input register 06: Write single registers 08: Diagnostics 16: Write multiple registers 23: Read/write multiple registers
Broadcast messages	Supported by the following function codes: O6: Write single registers 16: Write multiple registers 23: Read/write multiple registers
Supported baud rate	■ 1 200 BAUD ■ 2 400 BAUD ■ 4 800 BAUD ■ 9 600 BAUD ■ 19 200 BAUD ■ 38 400 BAUD ■ 57 600 BAUD ■ 115 200 BAUD
Data transfer mode	RTU
Data access	Each parameter can be accessed via Modbus RS485. For Modbus register information
System integration	Information on system integration . Modbus RS485 information Function codes Register information Response time Modbus data map

Power supply

Terminal assignment	24
Supply voltage	24
Power consumption	24
Current consumption	24
Power supply failure	25
Electrical connection	25
Potential equalization	29
Terminals	29
Cable entries	29
Overvoltage protection	29

Terminal assignment

The terminal assignment is documented on an adhesive label.

The following terminal assignment is available:

Current output 4 to 20 mA HART (active) and pulse/frequency/switch output

Supply	Supply voltage		Output 1			Outp	out 2
1 (+)	2 (-)	26 (+)	27 (-)	24 (+)	25 (-)	22 (+)	23 (-)
L/+	N/-	Current output 4 to 20 mA HART (active)		-	_		ency/switch passive)

Current output 4 to 20 mA HART (passive) and pulse/frequency/switch output

Supply	voltage	Output 1			Output 1 Output 2		out 2
1 (+)	2 (-)	26 (+)	27 (-)	24 (+)	25 (-)	22 (+)	23 (-)
L/+	N/-	-		Current output 4 to 20 mA HART (passive)		Pulse/frequo output (,

Modbus RS485 and current output 4 to 20 mA (active)

Supply voltage		Output 1			Outp	out 2	
1 (+)	2 (-)	26 (+)	27 (-)	24 (+)	25 (-)	22 (B)	23 (A)
L/+	N/-	_	ut 4 to 20 mA tive)	-	_	Modbus	s RS485

Modbus RS485 and current output 4 to 20 mA (passive)

Supply	Supply voltage Output 1		Output 1			Outp	out 2
1 (+)	2 (-)	26 (+)	27 (-)	24 (+)	25 (-)	22 (B)	23 (A)
L/+	N/-	_	-	Current outpu (pass	it 4 to 20 mA sive)	Modbus	s RS485

Supply voltage

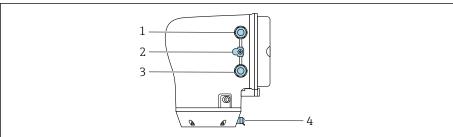
Order code for "Power supply"	Terminal voltage		Frequency range
Option D	DC 24 V	-20 to +30 %	-
Option E	AC 100 to 240 V	-15 to +10 %	50/60 Hz,±5 Hz
Option I	DC 24 V	-20 to +30 %	_
	AC 100 to 240 V	-15 to +10 %	50/60 Hz, ±5 Hz
Option ${\bf M}$ non-hazardous area	DC 24 V	-20 to +30 %	-
	AC 100 to 240 V	-15 to +10 %	50/60 Hz, ±5 Hz

Power consumption

- Transmitter: max. 10 W (active power)
- Switch-on current: max. 36 A (< 5 ms) as per NAMUR Recommendation NE 21

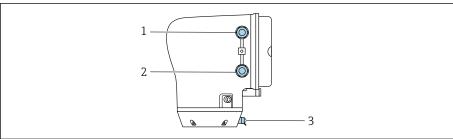
Current consumption

- Max. 400 mA (24 V)
- Max. 200 mA (110 V, 50/60 Hz; 230 V, 50/60 Hz)


Power supply failure

- $\, \blacksquare \,$ Totalizers stop at the last value measured.
- Device configuration remains unchanged.
- Error messages (incl. total operated hours) are stored.

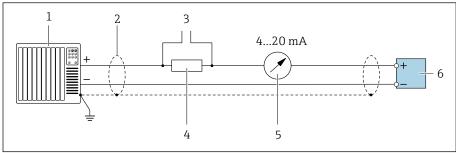
Electrical connection


Transmitter terminal connections

Terminal assignment \rightarrow Terminal assignment, $\stackrel{\triangle}{=}$ 24

A0043283

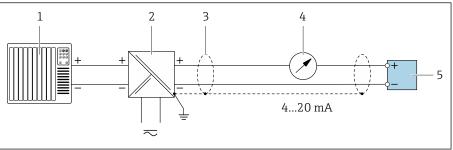
- Cable entry for power supply cable: supply voltage
- 2 Outer ground terminal: on transmitters made of polycarbonate with a metal pipe adapter
- 3 Cable entry for signal cable
- Outer ground terminal



A0045438

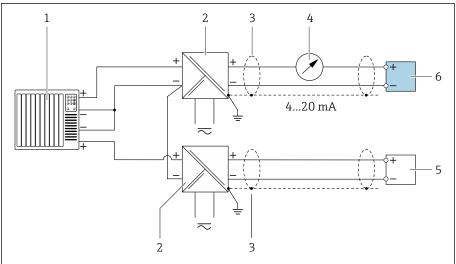
- Cable entry for power supply cable: supply voltage Cable entry for signal cable
- 2
- 3 Outer ground terminal

Examples for electric terminals


Current output 4 to 20 mA HART (active)

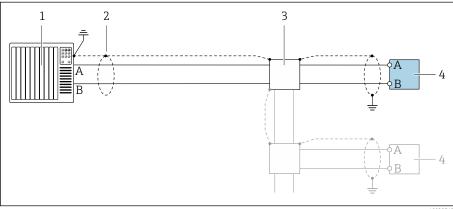
A002905

- 1 Automation system with current input (e.g. PLC)
- 2 Cable shield
- 3 Connection for HART operating devices
- 4 Resistor for HART communication ($\geq 250 \Omega$): observe max. load
- 5 Analog display unit: observe max. load.
- 6 Transmitter


Current output 4 to 20 mA HART (passive)

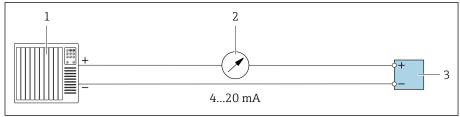
A00287

- 1 Automation system with current input (e.g. PLC)
- 2 Active barrier for supply voltage (e.g. RN221N)
- 3 Cable shield
- 4 Analog display unit: observe max. load
- 5 Transmitter

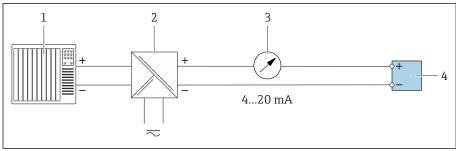

HART input (passive)

4002076

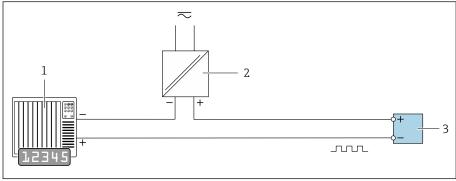
- $\blacksquare 1$ Connection example for HART input with a common negative (passive)
- 1 Automation system with current input (e.g. PLC)
- 2 Active barrier for supply voltage (e.g. RN221N)
- 3 Cable shield
- 4 Analog display unit: observe max. load
- 5 Pressure transmitter (e.g. Cerabar M, Cerabar S: see requirements)
- 6 Transmitter


Modbus RS485

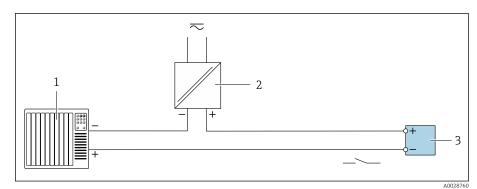
A0028765


- \blacksquare 2 Connection example for Modbus RS485, non-hazardous area and Zone 2; Class I, Division 2
- 1 Control system (e.g. PLC)
- 2 Cable shield
- 3 Distribution box
- 4 Transmitter

Current output 4 to 20 mA (active)


- Automation system with current input (e.g. PLC)
- 2 3 Analog display unit: observe max. load
- Transmitter

Current output 4 to 20 mA (passive)


- Automation system with current input (e.g. PLC)
- 2 3 Active barrier for supply voltage (e.g. RN221N)
- Analog display unit: observe max. load
- Transmitter

Pulse/frequency output (passive)

- Automation system with pulse output and frequency input (e.g. PLC with a 10 k $\!\Omega$ pull-up or pull-down resistor)
- Supply voltage
- 3 *Transmitter: observe input values*

Switch output (passive)

- Automation system with switch input (e.g. PLC with a 10 k Ω pull-up or pull-down resistor)
- 2 Supply voltage
- 3 Transmitter: observe input values

Potential equalization

No special measures for potential equalization are required.

For devices intended for use in hazardous areas, observe the instructions in the Ex documentation (XA).

Terminals

Spring terminals

- Suitable for strands and strands with ferrules.
- Conductor cross-section 0.2 to 2.5 mm² (24 to 12 AWG).

Cable entries

- Cable gland: M20 × 1.5 for cable Ø6 to 12 mm (0.24 to 0.47 in)
- Thread for cable entry:
 - NPT ½"
 - G 1/2", G 1/2" Ex d
 - M20

Overvoltage protection

Mains voltage fluctuations	→ Supply voltage, 🗎 24
Overvoltage category	Overvoltage category II
Short-term, temporary overvoltage	Between cable and neutral conductor up to 1200 V for max. 5s
Long-term, temporary overvoltage	Up to 500 V between cable and ground

Cable specification

Requirements for connecting cable

32

Requirements for connecting cable

Electrical safety

As per applicable national regulations.

Permitted temperature range

- Observe the installation guidelines that apply in the country of installation.
- The cables must be suitable for the minimum temperatures and maximum temperatures to be expected.

Power supply cable (incl. conductor for the inner ground terminal)

- A standard installation cable is sufficient.
- Provide grounding according to applicable national codes and regulations.

Signal cable

- Current output 4 to 20 mA HART:
 A shielded cable is recommended, observe the grounding concept of the facility.
- Pulse/frequency/switch output: Standard installation cable
- Modbus RS485:
 - Cable type A according to EIA/TIA-485 standard is recommended
- Current output 4 to 20 mA: Standard installation cable

Performance characteristics

Reference operating conditions	34
Maximum measured error	34
Repeatability	35
Response time	35
Influence of ambient temperature	35
Influence of medium temperature	35
Influence of medium pressure	36
Design fundamentals	36

Reference operating conditions

- Error limits based on ISO 11631
- Water with +15 to +45 $^{\circ}$ C (+59 to +113 $^{\circ}$ F) at 2 to 6 bar (29 to 87 psi)
- Data as indicated in the calibration protocol
- Accuracy based on accredited calibration rigs according to ISO 17025
- To obtain measured errors, use the *Applicator* sizing tool \rightarrow *Service-specific accessory*, \cong 89

Maximum measured error

o.r. = of reading; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = medium temperature

Base accuracy

 \rightarrow Design fundamentals, $\stackrel{ all}{ riangle}$ 36

Mass flow and volume flow (liquids)	±0.5 % o.r.
	 Order code for "Calibration flow" option G: ±0.2 % Order code for "Calibration flow" option O: ±0.15 %
Mass flow (gases)	±0.75 % o.r.
Density (liquids)	Only devices with the order code for "Application package", option EF • Under reference operating conditions: ±0.0005 g/cm³ • Standard density calibration: ±0.003 g/cm³ Valid over the entire temperature and density range
Temperature	±0.5 °C ± 0.005 · T °C (±0.9 °F ± 0.003 · (T – 32) °F)

Zero point stability

DN		Zero point stability		
[mm]	[in]	[kg/h]	[lb/min]	
8	3/8	0.20	0.007	
15	1/2	0.65	0.024	
25	1	1.80	0.066	
40	11/2	4.50	0.165	
50	2	7.0	0.257	
80	3	18.0	0.6615	

Flow values

Flow values as turndown parameters depending on nominal diameter.

SI units	DN	1:1	1:10	1:20	1:50	1:100	1:500
	[mm]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]
	8	2 000	200	100	40	20	4
	15	6500	650	325	130	65	13
	25	18000	1800	900	360	180	36
	40	45 000	4500	2 2 5 0	900	450	90
	50	70000	7000	3 500	1400	700	140
	80	180 000	18 000	9000	3 600	1800	360

US units	DN	1:1	1:10	1:20	1:50	1:100	1:500
	[inch]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]
	3/8	73.50	7.350	3.675	1.470	0.735	0.147
	1/2	238.9	23.89	11.95	4.778	2.389	0.478
	1	661.5	66.15	33.08	13.23	6.615	1.323
	1½	1654	165.4	82.70	33.08	16.54	3.308
	2	2573	257.3	128.7	51.46	25.73	5.146
	3	6615	661.5	330.8	132.3	66.15	13.23

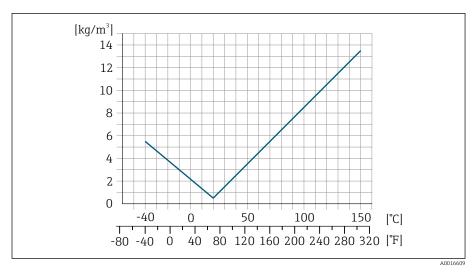
Accuracy of outputs

Current output	±5 μA
Pulse/frequency output	Max. ±100 ppm o. r. (across the entire ambient temperature range)
	Repeatability
	o.r. = of reading; T = medium temperature
	→ Design fundamentals, 🗎 36
Mass flow (liquids)	±0.1 % o.r.
· -	
Mass flow (gases)	±0.5 % o.r.
Density (liquids)	Only devices with the order code for "Application package", option EF $\pm 0.00025~g/cm^3~(1~kg/l)$
Temperature	±0.25 °C ± 0.0025 · T °C (±0.45 °F ± 0.0015 · (T-32) °F)
	Response time
	The response time depends on the configuration (damping).
	Influence of ambient temperature

influence of ambient temperature

Current output	Temperature coefficient max. 1 μΑ/°C
Pulse/frequency output	No additional effect. Is included in the accuracy.

Influence of medium temperature


o.f.s. = of full scale value

Mass flow and volume flow

- When there is a difference between the temperature for zero point adjustment and the process temperature, the additional measured error of the sensor is typically $\pm 0.0002 \%$ o.f.s./°C ($\pm 0.0001 \%$ o.f.s./°F).
- The effect is reduced if zero point adjustment is performed at process temperature.

Density

When there is a difference between the density calibration temperature and the process temperature, the typical measured error of the sensor is $\pm 0.0001 \text{ g/cm}^3$ /°C ($\pm 0.00005 \text{ g/cm}^3$ /°F). Field density calibration is possible.

 \blacksquare 3 Field density calibration, for example at +20 °C (+68 °F)

Temperature

 $\pm 0.005 \cdot \text{T} \, ^{\circ}\text{C} \, (\pm 0.005 \cdot (\text{T} - 32) \, ^{\circ}\text{F})$

Influence of medium pressure

o.r. = of reading

The table below shows the effect of a difference in pressure between the calibration pressure and process pressure on the accuracy with mass flow.

It

It is possible to compensate for the effect by:

- Reading in the current pressure measured value via the current input.
- Specifying a fixed value for the pressure in the device parameters.

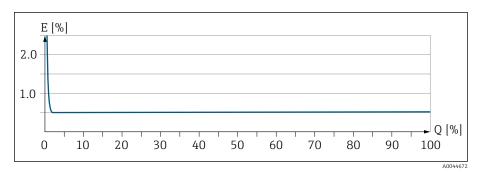
D	N	[% o.r./bar]	[% o.r./psi]		
[mm]	[in]				
8	3/8	no influence			
15	1/2	no influence			
25	1	no influence			
40	1½	no influence			
50	2	-0.009	-0.0006		
80	3	-0.020	-0.0014		

Design fundamentals

o.r. = of reading

BaseAccu = base accuracy as % o.r

BaseRepeat = base repeatability as % o.r.


MeasValue = measured value

ZeroPoint = zero point stability

Calculation of the maximum measured error as a function of the flow rate

Flow rate	≥ ZeroPoint · 100	$< \frac{\text{ZeroPoint}}{\text{BaseAccu}} \cdot 100$
Maximum measured error in % o.r.	± BaseAccu	± ZeroPoint · 100

Example for maximum measured error

- E Maximum measured error in % o.r. (example)
- Q Flow rate in % of maximum full scale value

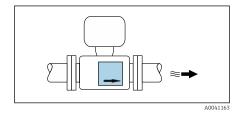
Calculation of the maximum repeatability as a function of the flow rate

Flow rate	$\geq \frac{\frac{1}{2} \cdot ZeroPoint}{BaseRepeat} \cdot 100$	< ½· ZeroPoint BaseRepeat · 100
Maximum measured error in % o.r.	± BaseRepeat	± ½ · ZeroPoint MeasValue · 100

Installation

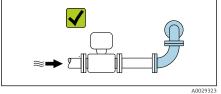
Installation conditions

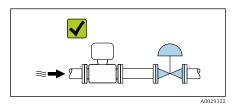
40


Installation conditions

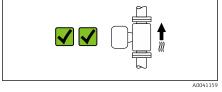
Flow direction

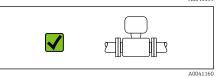
Install the device in the direction of flow.

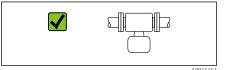



Note the direction of arrow on the nameplate.

Inlet runs and outlet runs

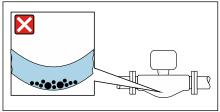





Orientations

Vertical orientation, upward direction of flow

For all applications e.g. self-draining applications



$\label{prop:control} \mbox{Horizontal orientation, transmitter at top}$

- For applications with low process temperatures in order to maintain the minimum ambient temperature for the transmitter.
- For outgassing media in order to avoid the accumulation of gas.

Horizontal orientation, transmitter at bottom

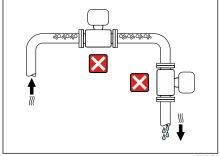
- For applications with high process temperatures in order to maintain the maximum ambient temperature for the transmitter.
- For media with entrained solids in order to avoid the accumulation of solids.

A0043063

Horizontal orientation, transmitter with measuring pipe curved downwards

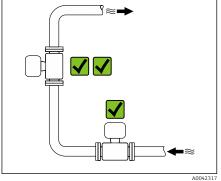
Match the sensor position to the medium properties.

Not suitable for media with entrained solids: solids may accumulate.


Horizontal orientation, transmitter with measuring pipe curved upwards

Match the sensor position to the medium properties.

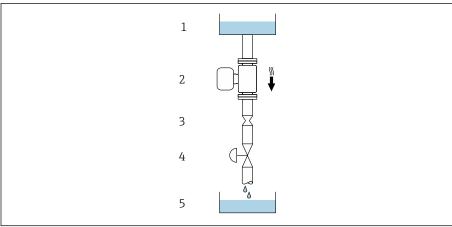
Not suitable for outgassing media: gas may accumulate.


Mounting locations

- Do not install the device at the highest point of the pipe.
- Do not install the device upstream from a free pipe outlet in a down pipe.

A00421

The device should ideally be installed in an ascending pipe.


Installation near control valves

A0041091

Install the device in the direction of flow upstream from the control valve.

Installation in a down pipe

Installation suggestion for installation in an open down pipe, e.g. for bottling applications. A pipe restriction or the use of an orifice plate with a smaller cross-section than the nominal diameter prevent the sensor running empty while measurement is in progress.

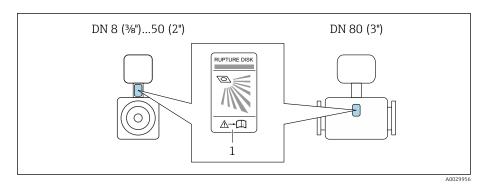
A0028773

- 1 Supply tank
- 2 Sensor
- 3 Orifice plate or pipe restriction
- 4 Valve
- 5 Batching tank

D	N	Ø orifice plate,	pipe restriction
[mm]	[in]	[mm]	[in]
8	3/8	6	0.24
15	1/2	10	0.40
25	1	14	0.55
40	1½	22	0.87
50	2	28	1.10
80	3	50	1.97

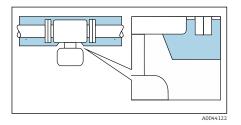
Rupture disk

Information that is relevant to the process \rightarrow *Rupture disk*, $\stackrel{\triangle}{=}$ 51.


A WARNING

A missing or damaged rupture disk can put staff at risk!

Medium escaping under pressure can cause serious injury or material damage.


- ► Ensure that any danger to persons or material damage is ruled out if the rupture disk is actuated.
- ▶ Observe information on the rupture disk sticker.
- Make sure that the function and operation of the rupture disk is not impeded during the installation of the device.
- ▶ Do not use a heating jacket.
- ▶ Do not remove or damage the rupture disk.
- ► After the rupture disk is actuated, do not operate the device any longer.

The position of the rupture disk is indicated by a sticker affixed to the device. If the rupture disk is triggered, the sticker is destroyed. The disk can therefore be visually monitored.

1 Rupture disk sticker

Sensor thermal insulation

ensor merma msulatio

If the meter electronics overheat this can damage the device!

► Keep the housing support completely free (heat dissipation).

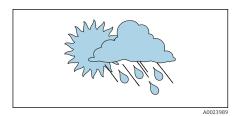
Provide insulation but make sure it does not go beyond the upper edge of the two sensor half-shells.

Heating

NOTICE

NOTICE

Ambient temperature too high!


If the electronics overheat this can damage the transmitter housing.

- Do not exceed the permissible temperature range for the ambient temperature.
- Use a weather protection cover.
- Mount the device correctly.

Heating options

- Electrical heating, e.g. with electric band heaters ¹⁾
- Via pipes carrying hot water or steam
- Via heating jackets
- Heating jackets for the sensors can be ordered as accessories from Endress +Hauser: .

Outdoor use

- $\, \blacksquare \,$ Avoid exposure to direct sunlight.
- Install in a location protected from sunlight.
- Avoid direct exposure to weather conditions.
- Use a weather protection cover \rightarrow *Transmitter*, $\stackrel{\triangle}{=}$ 88.

¹⁾ The use of parallel electric band heaters is generally recommended (bidirectional electricity flow). Particular considerations must be made if a single-wire heating cable is to be used. Additional information is provided in the document EA01339D "Installation instructions for electrical trace heating systems" \rightarrow Associated documentation, \cong 6

Environment

Ambient temperature range	46
Storage temperature	46
Atmosphere	46
Climate class	46
Degree of protection	46
Vibration-resistance and shock-resistance	46
Electromagnetic compatibility (EMC)	46
Interior cleaning	46

Ambient temperature range

Transmitter and sensor	-40 to +60 °C (-40 to +140 °F)
Local display	-20 to $+60$ °C (-4 to $+140$ °F) The readability of the display may be impaired at temperatures outside the temperature range.
	Dependency of ambient temperature on medium temperature \rightarrow <i>Medium temperature range</i> , $\stackrel{\triangle}{=}$ 48
	If using the device in hazardous areas, observe the "Safety Instructions" documentation.
	Storage temperature
	The storage temperature corresponds to the ambient temperature range of the transmitter and sensor.
	Atmosphere

According to IEC 60529: If a plastic housing is permanently exposed to certain steam and air mixtures, this can damage the housing.

More Informationen: Endress+Hauser sales organizations.

Climate class

DIN EN 60068-2-38 (test Z/AD)

Degree of protection

Transmitter	■ IP66/67, Type 4X enclosure, suitable for pollution degree 4 ■ Open housing: IP20, Type 1 enclosure, suitable for pollution degree 2
Sensor	IP66/67, Type 4X enclosure, suitable for pollution degree 4

Vibration-resistance and shock-resistance

Vibration, sinusoidal ■ Following IEC 60068-2-6 ■ 20 cycles per axis	2 to 8.4 Hz 8.4 to 2000 Hz	3.5 mm peak 1 g peak
Vibration, broad-band random ■ Following IEC 60068-2-64 ■ 120 min per axis	10 to 200 Hz 200 to 2000 Hz	0.003 g ² /Hz 0.001 g ² /Hz (1.54 g rms)
Shocks, half-sine ■ Following IEC 60068-2-27 ■ 3 positive and 3 negative shocks	6 ms 30 g	

Shock

Due to rough handling according to IEC 60068-2-31.

Electromagnetic compatibility (EMC)

As per IEC/EN 61326 and NAMUR Recommendation NE 21.

For more information: Declaration of Conformity

Interior cleaning

Available methods of internal cleaning:

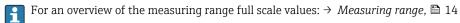
- Cleaning in place (CIP)
- Sterilization in place (SIP)

46

Process

Medium temperature range	48
Density	48
Flow limit	48
Pressure-temperature ratings	48
Sensor housing	51
Rupture disk	51
Pressure loss	52

Medium temperature range


-40 to +150 °C (-40 to +302 °F)

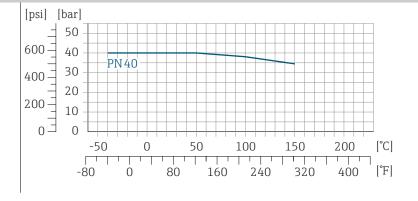
Density

0 to 5000 kg/m^3 (0 to 312 lb/cf)

Flow limit

Select the nominal diameter by optimizing between the required flow range and permissible pressure loss.

- \blacksquare The minimum recommended full scale value is approx. 1/20 of the maximum full scale value
- For the most common applications, 20 to 50 % of the maximum full scale value can be considered ideal
- A low full scale value must be selected for abrasive media (such as liquids with entrained solids): flow velocity < 1 m/s (< 3 ft/s).
- For gas measurement the following rules apply:
 - The flow velocity in the measuring pipes should not exceed half the sound velocity (0.5 Mach).
 - The maximum mass flow depends on the density of the gas: formula \rightarrow *Measuring range for gases*, $\stackrel{\triangle}{=}$ 14
- To calculate the flow limit, use the *Applicator* sizing tool \rightarrow *Service-specific accessory*, \cong 89

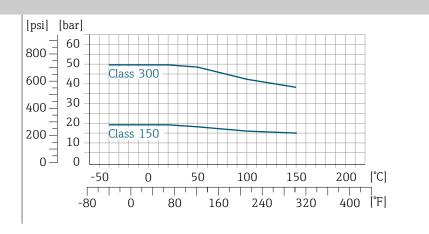

Pressure-temperature ratings

Maximum permitted medium pressure as a function of the medium temperature.

The data relate to all pressure bearing parts of the device.

Flange according to EN 1092-1

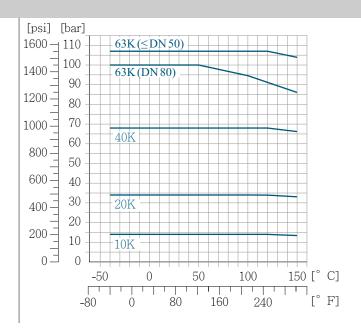
Flange material 1.4404 (F316/F316L)



A0047032-EN

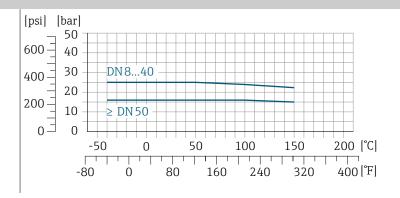
48

Flange according to ASME B16.5


Flange material 1.4404 (F316/F316L)

A0047033-EN

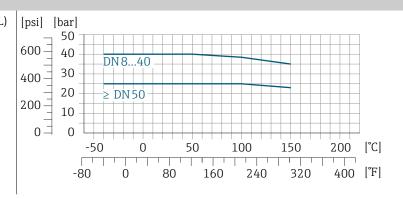
Fixed flange JIS B2220


Flange material 1.4404 (F316/F316L)

A0047034-EN

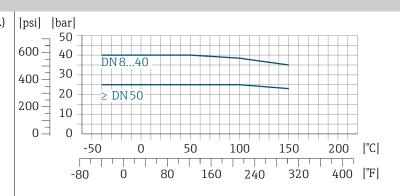
Flange DIN 11864-2 Form A

Flange material 1.4404 (F316/F316L)


A0029839-EN

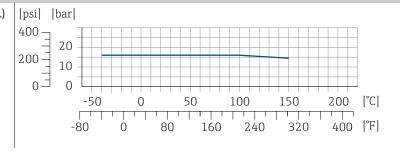
A0029848-EN

A0029848-EN

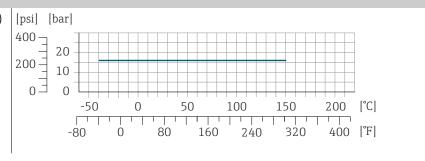

Thread DIN 11864-1 Form A

Connection material 1.4404 (F316/F316L)

Thread DIN 11851

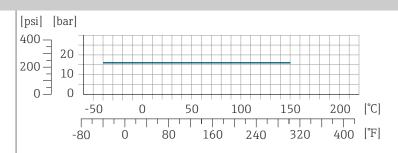

Connection material 1.4404 (F316/F316L)

DIN 11851 allows for applications up to +140 $^{\circ}$ C (+284 $^{\circ}$ F) if suitable sealing materials are used. Please take this into account when selecting seals and counterparts, as these components can limit the pressure and temperature range.


Thread ISO 2853

Connection material 1.4404 (F316/F316L)

Thread SMS 1145


Connection material 1.4404 (F316/F316L)

A0032218-EN

A0029853-EN

Tri-Clamp

A0032218-EN

The clamp connections are suitable up to a maximum pressure of 16 bar (232 psi). Please observe the operating limits of the clamp and seal used, as they can be over 16 bar (232 psi). The clamp and seal are not included in the scope of supply.

Sensor housing

The sensor housing is filled with dry nitrogen gas and protects the electronics and mechanics inside.

If a measuring pipe fails, e.g. due to process characteristics like corrosive or abrasive media, the medium will be contained by the sensor housing.

If a measuring pipe fails, the pressure level inside the sensor housing will rise according to the operating pressure. If the user judges that the sensor housing burst pressure does not provide an adequate safety margin, the device can be fitted with a rupture disk. The rupture disk prevents excessively high pressure from forming inside the sensor housing. The rupture disk is urgently recommended in the following applications:

- For high gas pressures
- Process pressure is higher than 2/3 of the burst pressure of the sensor housing.

Sensor housing burst pressure

If the device is fitted with a rupture disk (order code for "Sensor option", option CA "Rupture disk"), the rupture disk trigger pressure is decisive .

The sensor housing burst pressure refers to a typical internal pressure which is reached prior to mechanical failure of the sensor housing and which was determined during type testing. The corresponding type test declaration can be ordered with the device (order code for "Additional approval", option LN "Sensor housing burst pressure, type test").

E	N	Sensor housing	burst pressure
[mm]	[in]	[bar]	[psi]
8	3/8	250	3 620
15	1/2	250	3 620
25	1	250	3 620
40	1½	200	2 900
50	2	180	2 610
80	3	120	1740

For information on the dimensions: see the "Mechanical construction" section \rightarrow *Mechanical construction*, $\stackrel{\triangle}{=}$ 54.

Rupture disk

- Order code for "Sensor option", option CA
- Trigger pressure: 10 to 15 bar (145 to 217.5 psi)

The use of a rupture disk cannot be combined with a heating jacket.

Pressure loss

To calculate the pressure loss, use the *Applicator* sizing tool \rightarrow *Service-specific accessory* , $\stackrel{\triangle}{=}$ 89

Mechanical construction

Weight	54
Materials	55
Process connections	55
Surface roughness	55

Weight

All values refer to devices with EN/DIN PN 40 flanges

Weight information including transmitter as per order code for "Housing", option A "Aluminum, coated".

Different values due to different transmitter versions:

Transmitter version for the hazardous area:+1 kg (+2.2 lbs) Transmitter version, order code for "Housing", option M "Polycarbonate": -1 kg (-2.2 lbs)

Weight in SI units

DN [mm]	Weight [kg]
8	6
15	6.5
25	8
40	12
50	17
80	33

Weight in US units

DN [in]	Weight [lbs]
3/8	13
1/2	14
1	18
1 ½	26
2	37
3	73

Materials

	Materials	
Transmitter housing		
Order code for "Housing"	Option A: aluminum, AlSi10Mg, coatedOption M: polycarbonate	
Window material	 Order code for "Housing" option A: glass Order code for "Housing" option M: polycarbonate 	
Cable glands and entries		
Cable gland M20×1.5	Non-hazardous area: plasticHazardous area: brass	
Adapter for cable entry with female thread G $\frac{1}{2}$ or NPT $\frac{1}{2}$ "	Nickel-plated brass	
Sensor housing		
	 Acid and alkali-resistant outer surface Stainless steel 1.4301 (304) 	
Measuring tubes		
	Stainless steel: 1.4539 (904L) Manifold: stainless steel, 1.4404 (316L)	
Seals		
	Welded process connections without internal seals	
Process connections		
EN 1092-1 (DIN 2501)ASME B16.5JIS B2220	Stainless steel, 1.4404 (F316/F316L)	
Other process connections	Stainless steel, 1.4404 (316/316L)	
Accessories		
Protective cover	Stainless steel, 1.4404 (316L)	
	Process connections	
	 Fixed flange connections: EN 1092-1 (DIN 2501) flange ASME B16.5 flange 	

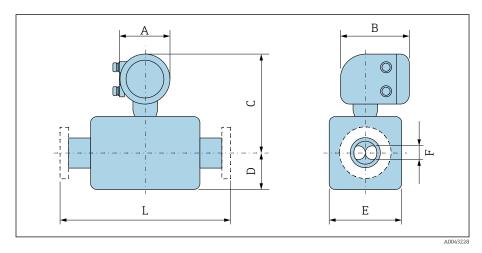
- ASME B16.5 flange
- JIS B2220 flange
- DIN 11864-2 Form A flange, DIN 11866 series A, flange with notch
- Clamp connections:

Tri-Clamp (OD tubes), DIN 11866 series C

- Thread:
 - DIN 11851 thread, DIN 11866 series A
 - SMS 1145 thread
 - ISO 2853 thread, ISO 2037
 - \bullet DIN 11864-1 Form A thread, DIN 11866 series A

Surface roughness

All data relate to parts in contact with medium. The following surface roughnesses can be ordered:

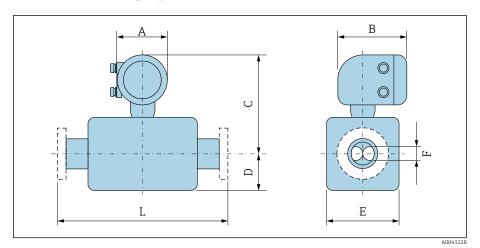

- Not polished
- $Ra_{max} = 0.76 \mu m (30 \mu in)$

Dimensions in SI units

	F0
Compact version	58
Order code for "Housing", option A "Aluminum, coated"	58
Order code for "Housing", option A "Aluminum, coated"; Zone 1	59
Order code for "Housing", option M "Polycarbonate"	60
Fixed flange	61
Flange according to EN 1092-1 (DIN 2501): PN 40	61
Flange according to ASME B16.5: Class 150	62
Flange according to ASME B16.5: Class 300	62
Flange JIS B2220: 20K	63
Flange JIS B2220: 40K	63
Flange DIN 11864-2 Form A, flange with notch	64
Clamp connections	65
Tri-Clamp	65
Couplings	66
Thread according to DIN 11851	66
Thread according to DIN 11864-1 Form A	66
Thread according to SMS 1145	67
Thread according to ISO 2853	67
Accessories	68
Protective cover	68

Compact version

Order code for "Housing", option A "Aluminum, coated"

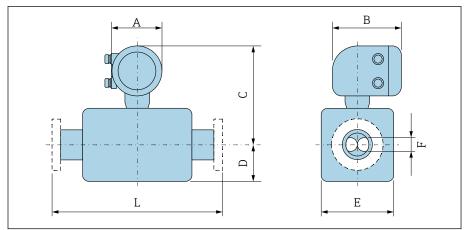


The dimension L depends on the specific process connection:

DN	A 1)	В	С	D	E	F
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
8	139	178	254	89	45	5.35
15	139	178	254	100	45	8.30
25	139	178	251	102	51	12.0
40	139	178	257	121	65	17.6
50	139	178	271	175.5	95	26.0
80	139	178	291	205	127	40.5

1) Depending on the cable gland used: values up to +30 mm

Order code for "Housing", option A "Aluminum, coated"; Zone 1



The dimension L depends on the specific process connection:

DN	A 1)	B 2)	С	D	E	F
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
8	139	206	246	89	45	5.35
15	139	206	246	100	45	8.30
25	139	206	243	102	51	12.0
40	139	206	249	121	65	17.6
50	139	206	263	175.5	95	26.0
80	139	206	282	205	127	40.5

- Depending on the cable gland used: values up to +30 mm For Ex de: values +10 mm $\,$ 1) 2)

Order code for "Housing", option M "Polycarbonate"

A0043228

The dimension \boldsymbol{L} depends on the specific process connection:

DN	A 1)	В	С	D	E	F
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
8	132	172	251	89	45	5.35
15	132	172	251	100	45	8.30
25	132	172	248	102	51	12.0
40	132	172	254	121	65	17.6
50	132	172	268	175.5	95	26.0
80	132	172	287	205	127	40.5

1) Depending on the cable gland used: values up to +30 mm

60

Fixed flange

Flange according to EN 1092-1 (DIN 2501): PN 40

Order code for "Process connection", option D2S $\,$

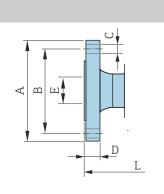
1.4404 (F316/F316L)

DN 8 with DN 15 flanges as standard

Surface roughness (flange): EN 1092-1 Form B1 (DIN 2526 Form C), Ra 3.2 to 12.5 μm

	DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]
	8	95	65	4 × Ø14	16	17.3	232
1	15	95	65	4 × Ø14	16	17.3	279
A B B	25	115	85	4 × Ø14	18	28.5	329
	40	150	110	4 × Ø18	18	43.1	445
	50	165	125	4 × Ø18	20	54.5	556
<u> </u>	80	200	160	8 × Ø18	24	82.5	611
→ ↓ L							

Endress+Hauser


Flange according to ASME B16.5: Class 150

Order code for "Process connection", option AAS

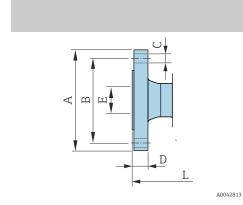
1.4404 (F316/F316L)

DN 8 with DN 15 flanges as standard

Surface roughness (flange): Ra 3.2 to 12.5 μm

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]
8	90	60.3	4 × Ø15.7	11.2	15.7	232
15	90	60.3	4 × Ø15.7	11.2	15.7	279
25	110	79.4	4 × Ø15.7	14.2	26.7	329
40	125	98.4	4 × Ø15.7	17.5	40.9	445
50	150	120.7	4 × Ø19.1	19.1	52.6	556
80	190	152.4	4 × Ø19.1	23.9	78.0	611

Flange according to ASME B16.5: Class 300


Order code for "Process connection", option ABS

1.4404 (F316/F316L)

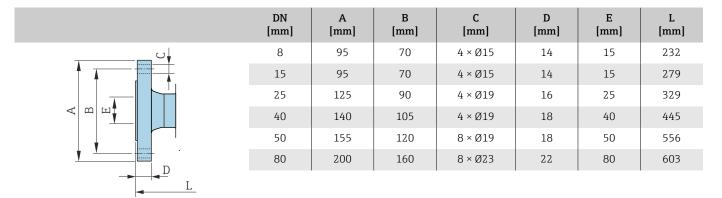
A0042813

DN 8 with DN 15 flanges as standard

Surface roughness (flange): Ra 3.2 to 12.5 μm

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]
8	95	66.7	4 × Ø15.7	14.2	15.7	232
15	95	66.7	4 × Ø15.7	14.2	15.7	279
25	125	88.9	4 × Ø19.0	17.5	26.7	329
40	155	114.3	4 × Ø22.3	20.6	40.9	445
50	165	127	8 × Ø19.0	22.3	52.6	556
80	210	168.3	8 × Ø22.3	28.4	78.0	611

62


Flange JIS B2220: 20K

Order code for "Process connection", option NES

1.4404 (F316/F316L)

DN 8 with DN 15 flanges as standard

Surface roughness (flange): Ra 3.2 to 12.5 μm

Flange JIS B2220: 40K

A0042813

A0042813

Order code for "Process connection", option NGS

1.4404 (F316/F316L)

DN 8 with DN 15 flanges as standard

Surface roughness (flange): Ra 3.2 to 12.5 μm

	DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]
	8	115	80	4 × Ø19	20	15	261
A A A	15	115	80	4 × Ø19	20	15	300
	25	130	95	4 × Ø19	22	25	375
A B </th <td>40</td> <td>160</td> <td>120</td> <td>4 × Ø23</td> <td>24</td> <td>38</td> <td>496</td>	40	160	120	4 × Ø23	24	38	496
	50	165	130	8 × Ø19	26	50	601
<u> </u>	80	210	170	8 × Ø23	32	75	661
L_							

Flange DIN 11864-2 Form A, flange with notch

Order code for "Process connection", option KCS

1.4404 (316/316L)

Suitable for pipe as per DIN11866 series A, flange with notch

3-A version available: order code for "Additional approval", option LP in combination with order code for "Measuring tube mat., wetted surface", option BB (Ra_{max} = 0.76 μm)

Length tolerance for dimension L in mm: +1.5 / -2.0

X M M	X D
	A0042819

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]
8	54	37	4 × Ø9	10	10	249
15	59	42	4 × Ø9	10	16	293
25	70	53	4 × Ø9	10	26	344
40	82	65	4 × Ø9	10	38	456
50	94	77	4 × Ø9	10	50	562
80	133	112	8 × Ø11	12	81	671

Clamp connections

Tri-Clamp

Order code for "Process connection", option FTS

1.4404 (316/316L)

Suitable for pipe according to DIN 11866 series C

3-A version available: order code for "Additional approval", option LP in combination with order code for "Measuring tube mat., wetted surface", option BB (Ra_{max} = 0.76 $\mu m)$

	DN [mm]	Clamp [mm]	A [mm]	B [mm]	L [mm]
T	8	1	50.4	22.1	229
√ mi	15	1	50.4	22.1	273
* * * * * * * * * * * * * * * * * * *	25	1	50.4	22.1	324
L	40	11/2	50.4	34.8	456
	50	2	63.9	47.5	562
AU043173	80	3	90.9	72.9	671

Couplings

Thread according to DIN 11851

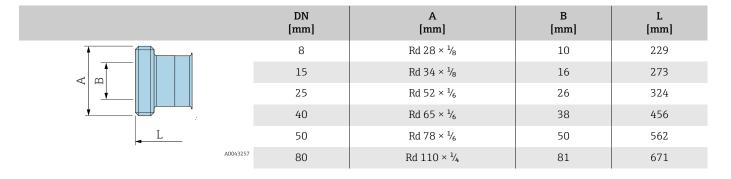
Order code for "Process connection", option FMW

1.4404/316L

Suitable for pipe as per DIN11866 series A

3-A version available: order code for "Additional approval", option LP in combination with order code for "Measuring tube mat., wetted surface", option BB (Ra_{max} = 0.76 μm)

	DN [mm]	A [mm]	B [mm]	L [mm]
1	8	Rd 34 × ¹ / ₈	16	229
\triangleleft	15	Rd 34 × ½	16	273
1 	25	Rd 52 × ¹ ⁄ ₆	26	324
	40	Rd 65 × ½	38	456
	50	Rd 78 × ½	50	562
A0045	80	Rd 110 × 1/4	81	671


Thread according to DIN 11864-1 Form A

Order code for "Process connection", option FLW

1.4404/316L

Suitable for pipe as per DIN11866 series A

3-A version available: order code for "Additional approval", option LP in combination with order code for "Measuring tube mat., wetted surface", option BB (Ra_{max} = 0.76 μm)

Thread according to SMS 1145

Order code for "Process connection", option SCS

1.4404 (316/316L)

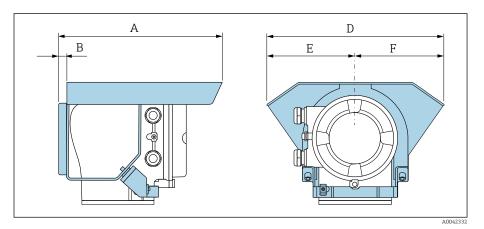
3-A version available: order code for "Additional approval", option LP in combination with order code for "Measuring tube mat., wetted surface", option BB (Ra_{max} = 0.76 μm)

	DN [mm]	A [mm]	B [mm]	L [mm]
	8	Rd 40 × 1/ ₆	22.5	229
A D	15	Rd 40 × 1/ ₆	22.5	273
	25	Rd 40 × 1/ ₆	22.5	324
<u> </u>	40	Rd 60 × ½	35.5	456
L	50	Rd 70 × ½	48.5	562
A00432	80	Rd 98 × 1/ ₆	72.9	671

Thread according to ISO 2853

Order code for "Process connection", option JSF

1.4404 (316/316L)

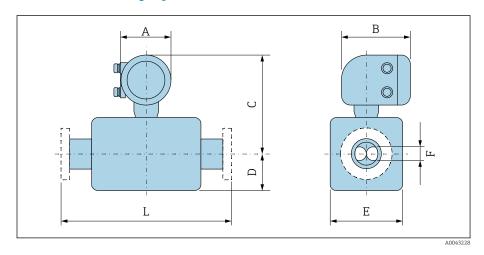

Max. thread diameter A as per ISO 2853 Annex A

3-A version available: order code for "Additional approval", option LP in combination with order code for "Measuring tube mat., wetted surface", option BB (Ra_{max} = 0.76 μm)

	DN [mm]	A [mm]	B [mm]	L [mm]
	8	37.13	22.6	229
B B	15	37.13	22.6	273
~ ~	25	37.13	22.6	324
<u> </u>	40	50.68	35.6	456
<u> L</u>	50	64.16	48.6	562
A0043253	80	91.19	72.9	671

Accessories

Protective cover

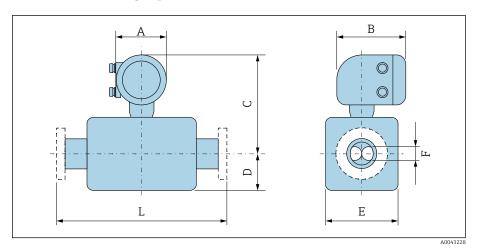

A	B	D	E	F
[mm]	[mm]	[mm]	[mm]	[mm]
257	12	280	140	140

Dimensions in US units

Compact version	70
Order code for "Housing", option A "Aluminum, coated"	70
Order code for "Housing", option A "Aluminum, coated"; Zone 1	71
Order code for "Housing", option M "Polycarbonate"	72
Fixed flange	73
Flange according to ASME B16.5: Class 150	73
Flange according to ASME B16.5: Class 300	73
Clamp connections	74
Tri-Clamp	74
Couplings	74
Thread according to SMS 1145	74
Accessories	75
Protective cover	75

Compact version

Order code for "Housing", option A "Aluminum, coated"

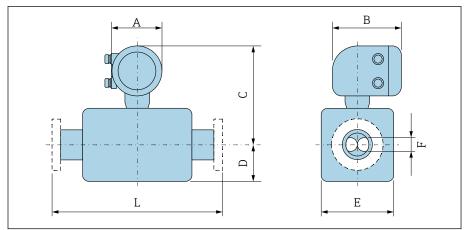

The dimension L depends on the specific process connection:

DN	A 1)	В	С	D	E	F
[in]	[in]	[in]	[in]	[in]	[in]	[in]
3/8	5.47	7.01	10	3.5	1.77	0.21
1/2	5.47	7.01	10	3.94	1.77	0.33
1	5.47	7.01	9.88	4.02	2.01	0.47
1½	5.47	7.01	10.12	4.76	2.56	0.69
2	5.47	7.01	10.67	6.91	3.74	1.02
3	5.47	7.01	11.46	8.07	5	1.59

1) Depending on the cable gland used: values up to 1.18 in

70

Order code for "Housing", option A "Aluminum, coated"; Zone 1



The dimension L depends on the specific process connection:

DN	A 1)	B 2)	С	D	E	F
[in]	[in]	[in]	[in]	[in]	[in]	[in]
3/8	5.47	8.11	9.69	3.5	1.77	0.21
1/2	5.47	8.11	9.69	3.94	1.77	0.33
1	5.47	8.11	9.57	4.02	2.01	0.47
11/2	5.47	8.11	9.8	4.76	2.56	0.69
2	5.47	8.11	10.35	6.91	3.74	1.02
3	5.47	8.11	11.1	8.07	5	1.59

- Depending on the cable gland used: values up to 1.18 in For Ex de: values 0.39 in $\,$ 1) 2)

Order code for "Housing", option M "Polycarbonate"

A0043228

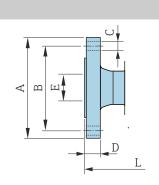
The dimension \boldsymbol{L} depends on the specific process connection:

DN	A 1)	В	С	D	E	F
[in]	[in]	[in]	[in]	[in]	[in]	[in]
3/8	5.2	6.77	9.88	3.5	1.77	0.21
1/2	5.2	6.77	9.88	3.94	1.77	0.33
1	5.2	6.77	9.76	4.02	2.01	0.47
1½	5.2	6.77	10	4.76	2.56	0.69
2	5.2	6.77	10.55	6.91	3.74	1.02
3	5.2	6.77	11.3	8.07	5	1.59

1) Depending on the cable gland used: values up to 1.18 in

72

Fixed flange


Flange according to ASME B16.5: Class 150

Order code for "Process connection", option AAS

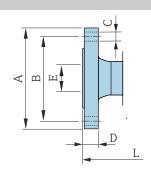
1.4404 (F316/F316L)

DN $\frac{3}{8}$ " with DN $\frac{1}{2}$ " flanges as standard

Surface roughness (flange): Ra 12.5 to 492 μin

DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]	L [in]
3/8	3.54	2.37	4 × Ø0.62	0.44	0.62	9.13
1/2	3.54	2.37	4 × Ø0.62	0.44	0.62	10.98
1	4.33	3.13	4 × Ø0.62	0.56	1.05	12.95
11/2	4.92	3.87	4 × Ø0.62	0.69	1.61	17.52
2	5.91	4.75	4 × Ø0.75	0.75	2.07	21.89
3	7.48	6	4 × Ø0.75	0.94	3.07	24.06

A0062813


Flange according to ASME B16.5: Class 300

Order code for "Process connection", option ABS

1.4404 (F316/F316L)

DN $\frac{3}{8}$ " with DN $\frac{1}{2}$ " flanges as standard

Surface roughness (flange): Ra 12.5 to 492 μin

DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]	L [in]
3/8	3.74	2.63	4 × Ø0.62	0.56	0.62	9.13
1/2	3.74	2.63	4 × Ø0.62	0.56	0.62	10.98
1	4.92	3.5	4 × Ø0.75	0.69	1.05	12.95
11/2	6.1	4.5	4 × Ø0.88	0.81	1.61	17.52
2	6.5	5	8 × Ø0.75	0.88	2.07	21.89
3	8.27	6.63	8 × Ø0.88	1.12	3.07	24.06

A0042813

Clamp connections

Tri-Clamp

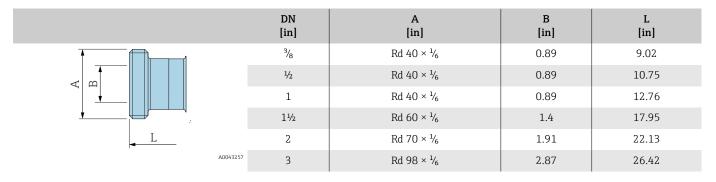
Order code for "Process connection", option FTS

1.4404 (316/316L)

Suitable for pipe according to DIN 11866 series C

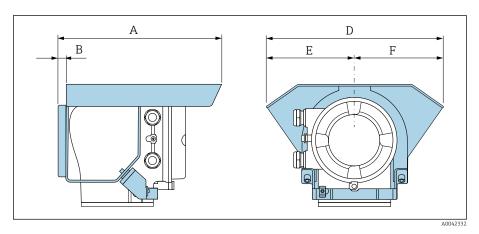
3-A version available: order code for "Additional approval", option LP in combination with order code for "Measuring tube mat., wetted surface", option BB ($Ra_{max} = 30 \mu in$)

	DN [in]	Clamp [in]	A [in]	B [in]	L [in]
	3/8	1	1.98	0.87	9.02
⊲ mt	1/2	1	1.98	0.87	10.75
<u> </u>	1	1	1.98	0.87	12.76
	1½	1½	1.98	1.37	17.95
A004317	2	2	2.52	1.87	22.13
AUCH21/	3	3	3.58	2.87	26.42


Couplings

Thread according to SMS 1145

Order code for "Process connection", option SCS

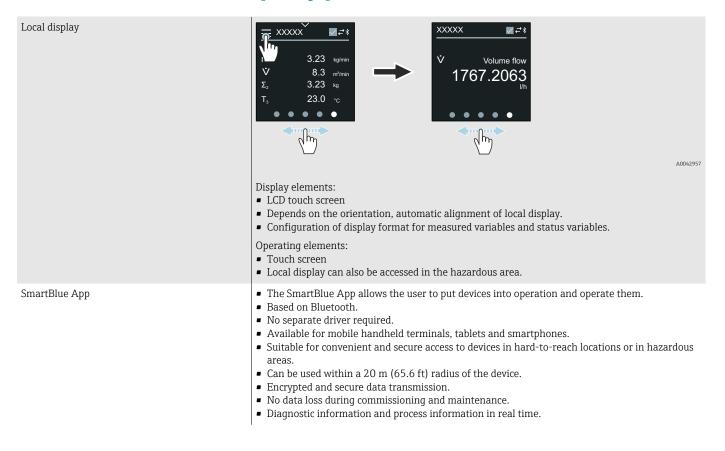

1.4404 (316/316L)

3-A version available: order code for "Additional approval", option LP in combination with order code for "Measuring tube mat., wetted surface", option BB ($Ra_{max} = 30 \mu in$)

Accessories

Protective cover

A B D E F [in] 10.12 0.47 11.02 5.51 5.51


Local display

Operating concept	78
Operating options	78
Operating tools	79

Operating concept

Operation method	Operation via local display with touch screen.Operation via SmartBlue App.
Menu structure	Operator-oriented menu structure for user-specific tasks: Diagnostics Application System Guidance Language
Commissioning	 Commissioning via a guided menu (Commissioning wizard). Menu guidance with interactive help function for individual parameters.
Reliable operation	 Operation in local language. Uniform operating philosophy in device and in the SmartBlue App. Write protection When electronics modules are replaced: configurations are transferred using the T-DAT Backup device memory. The device memory contains process data, device data and the event logbook. No reconfiguration is necessary.
Diagnostic behavior	 Efficient diagnostic behavior increases measurement availability: Open troubleshooting measures via local display and SmartBlue App. Diverse simulation options. Logbook of events that have occurred.

Operating options

Operating tools

Operating tools	Operating unit	Interface	Additional information
DeviceCare SFE100	NotebookPCTablet with Microsoft Windows system	CDI service interfaceFieldbus protocol	Innovation brochure IN01047S
FieldCare SFE500	NotebookPCTablet with Microsoft Windows system	CDI service interfaceFieldbus protocol	Operating Instructions BA00027S and BA00059S
SmartBlue App	 Devices with iOS: iOS9.0 or higher Devices with Android: Android 4.4 KitKat or higher 	Bluetooth	■ Google Playstore (Android) ■ iTunes Apple Shop (iOS devices)
Device Xpert	Field Xpert SFX 100/350/370	HART fieldbus protocol	Operating Instructions BA01202S

Certificates and approvals

Ex approval	82
Non-Ex approval	82
Pressure Equipment Directive	82
Sanitary compatibility	82
Pharmaceutical compatibility	82
HART certification	83
Radio approval	83
Other standards and guidelines	83

Ex approval

- ATEX
- IECEx
- cCSAus
- EAC
- NEPSI
- INMETRO
- IPN

Non-Ex approval

- cCSAus
- EAC
- UK
- KC

Pressure Equipment Directive

- CRN
- PED Cat. II/III

Sanitary compatibility

- 3-A approval
 - Only measuring devices with the order code for "Additional approval", option LP "3A" have 3-A approval.
 - The 3-A approval refers to the measuring device.
 - When installing the measuring device, ensure that no liquid can accumulate on the outside of the measuring device. Remote transmitters must be installed in accordance with the 3-A Standard.
 - Accessories (e.g. heating jacket, weather protection cover) must be installed in accordance with the 3-A Standard. Each accessory can be cleaned. Disassembly may be necessary under certain circumstances.
- Food Contact Materials Regulation (EC) 1935/2004

 A declaration for a specific serial number that confirms compliance with the requirements of (EC) 1935/2004 is only generated for measuring devices with the order code for "Test, Certificate", option J1 "EU Food Contact Materials (EC) 1935/2004.
- FDA

A declaration for a specific serial number that confirms compliance with FDA requirements is only generated for measuring devices with the order code for "Test, Certificate", option J2 "US Food Contact Materials FDA CFR 21".

■ Food Contact Materials Regulation GB 4806 A declaration for a specific serial number that confirms compliance with the requirements of GB 4806 is only generated for measuring devices with the order code for "Test, Certificate", option J3 "CN Food Contact Materials GB 4806.

Pharmaceutical compatibility

- FDA
- USP Class VI
- TSE/BSE Certificate of Suitability
- cGMF

Devices with the order code for "Test, Certificate", option JG "Conformity with cGMP-derived requirements, declaration" comply with the requirements of cGMP with regard to the surfaces of parts in contact with the medium, design, FDA 21 CFR material conformity, USP Class VI tests and TSE/BSE conformity.

 $\label{lem:continuous} A \ serial \ number-specific \ declaration \ is \ generated.$

HART certification

The device is certified and registered by the FieldComm Group. The measuring system meets all the requirements of the following specifications:

- Certified according to HART 7
- The device can also be operated with certified devices of other manufacturers (interoperability).

Radio approval

The device has radio approvals.

Other standards and quidelines

■ IEC/EN 60529

Degrees of protection provided by enclosures (IP code)

IEC/EN 60068-2-6

Environmental influences: Test procedure - Test Fc: vibrate (sinusoidal)

■ IEC/EN 60068-2-31

Environmental influences: Test procedure - Test Ec: shocks due to rough handling, primarily for devices.

■ IEC/EN 61010-1

Safety requirements for electrical equipment for measurement, control and laboratory use - general requirements.

■ IEC/EN 61326

Emission in accordance with Class A requirements. Electromagnetic compatibility (EMC requirements)

■ NAMUR NE 21

Electromagnetic compatibility (EMC) of industrial process and laboratory control equipment.

■ NAMUR NE 32

Data retention in the event of a power failure in field and control instruments with microprocessors.

■ NAMUR NE 43

Standardization of the signal level for the breakdown information of digital transmitters with analog output signal.

NAMUR NE 53

Software of field devices and signal-processing devices with digital electronics.

NAMUR NE 80

The application of the pressure equipment directive to process control devices.

■ NAMUR NE 105

Specifications for integrating fieldbus devices in engineering tools for field devices.

■ NAMUR NE 107

Self-monitoring and diagnosis of field devices.

NAMUR NE 131

Requirements for field devices for standard applications.

■ NAMUR NE 132

Coriolis mass meter

ETSI EN 300 328

Guidelines for 2.4 GHz radio components

■ EN 301489

Electromagnetic compatibility and radio spectrum matters (ERM).

Application packages

Use	86
Heartbeat Verification + Monitoring	86
Density output	86

Use

Many different application packages are available to enhance the functionality of the device. Such packages might be needed to address safety aspects or specific application requirements.

The application packages can be ordered with the device or subsequently from Endress+Hauser. Detailed information on the relevant order code is available from your local Endress+Hauser sales organization or on the product page of the Endress+Hauser website: www.endress.com.

Heartbeat Verification + Monitoring

Heartbeat Verification

Availability depends on the product structure.

Meets the requirement for traceable verification to DIN ISO 9001:2008 Chapter 7.6 a) "Control of monitoring and measuring equipment":

- Functional testing in the installed state without interrupting the process.
- Traceable verification results on request, including a report.
- Simple testing process with local operation or other operating interfaces.
- Clear measuring point assessment (pass/fail) with high test coverage within the framework of manufacturer specifications.
- Extension of calibration intervals according to operator's risk assessment.

Heartbeat Monitoring

Availability depends on the product structure.

Heartbeat Monitoring continuously supplies data, which are characteristic of the measuring principle, to an external condition monitoring system for the purpose of preventive maintenance or process analysis. These data enable the operator to:

- Draw conclusions using these data and other information about the impact the process influences, e.g. corrosion, abrasion, formation of buildup, have on the measuring performance over time.
- Schedule servicing in time.
- Monitor the process quality or product quality, e.g. gas pockets.

Density output

Many applications use density as a key measured value for monitoring quality or controlling processes. The device measures the density of the medium and makes this value available to the control system.

With this application package, the density can be assigned as a process variable and displayed.

Accessories

Device-specific accessories	88
Communication-specific accessories	89
Service-specific accessory	89
System components	90

Device-specific accessories

Transmitter

Accessories	Description	Order number
Proline 10 transmitter	Installation Instructions EA01350D	8XBBXX-**
Weather protection cover	Protects the device from weather exposure: Installation Instructions EA01351D	71502730

Sensor

Accessories	Description
Heating jacket	The heating jacket is used to stabilize the temperature of the media in the sensor. Water, water vapor and other non-corrosive liquids are permitted for use as the medium.
	If using oil as a heating medium, please consult with an Endress+Hauser service organization.
	Heating jackets cannot be used with sensors fitted with a rupture disk.
	 If ordering with the device: order code for "Accessory enclosed" Option RB "Heating jacket, G 1/2" female thread" Option RC "Heating jacket, G 3/4" female thread" Option RD "Heating jacket, NPT 1/2" female thread" Option RE "Heating jacket, NPT 3/4" female thread" If ordering subsequently: use the order code with the product root DK8003.
	Special Documentation SD02695D

Communication-specific accessories

Accessories	Description
Commubox FXA195 USB/HART modem	Intrinsically safe HART communication with FieldCare and FieldXpert Technical Information TI00404F
Commubox FXA291	Connects the Endress+Hauser devices with the CDI interface (= Endress+Hauser Common Data Interface) to the USB interface of a personal computer or laptop. Technical Information TI405C/07
HART Loop Converter HMX50	Is used to evaluate and convert dynamic HART process variables to analog current signals or limit values. • Technical Information TI00429F • Operating Instructions BA00371F
Fieldgate FXA42	Transmission of measured values from connected 4 to 20 mA analog and digital devices. Technical Information TI01297S Operating Instructions BA01778S Product page: www.endress.com/fxa42
Field Xpert SMT70	Tablet PC for the configuration of the device. Enables mobile Plant Asset Management to manage the devices with a digital communication interface. Suitable for Zone 2. Technical Information TI01342S Operating Instructions BA01709S Product page: www.endress.com/smt70
Field Xpert SMT77	Tablet PC for the configuration of the device. Enables mobile Plant Asset Management to manage the devices with a digital communication interface. Suitable for Zone 1. Technical Information TI01418S Operating Instructions BA01923S Product page: www.endress.com/smt77

Service-specific accessory

Accessories	Description	Order number
Applicator	Software for selecting and sizing Endress+Hauser devices.	https:// portal.endress.com/ webapp/applicator
W@M Life Cycle Management	 Information platform with software applications and services Supports the entire life cycle of the facility. 	www.endress.com/ lifecyclemanagement
FieldCare	FDT-based plant asset management software from Endress+Hauser. Management and configuration of Endress+Hauser devices. Operating Instructions BA00027S and BA00059S	 Device driver: www.endress.com → Download Area CD-ROM (contact Endress+Hauser) DVD (contact Endress+Hauser)
DeviceCare	Software for connecting and configuring Endress+Hauser devices. Innovation brochure IN01047S	 Device driver: www.endress.com → Download Area CD-ROM (contact Endress+Hauser) DVD (contact Endress+Hauser)

System components

Accessories	Description
Memograph M	Graphic data manager: Record measured values Monitor limit values Analyze measuring points Technical Information TI00133R
	Technical Information Tl00133ROperating Instructions BA00247R
iTEMP	Temperature transmitter: • Measure the absolute pressure and gauge pressure of gases, vapors and liquids • Read the medium temperature
	"Fields of Activity" document FA00006T
Cerabar M	Pressure device: • Measure the absolute pressure and gauge pressure of gases, vapors and liquids • Read the operating pressure value
	 Technical Information TI00426P and TI00436P Operating Instructions BA00200P and BA00382P
Cerabar S	Pressure device: • Measure the absolute pressure and gauge pressure of gases, vapors and liquids • Read the operating pressure value
	Technical Information TI00383POperating Instructions BA00271P

www.addresses.endress.com