Electromagnetic flowmeter

Highly cost-effective wafer flowmeter with easy-to-use operation concept

Application

- The bidirectional measuring principle is virtually independent of pressure, density, temperature and viscosity
- For basic water applications; optimized for limited space and plastic pipe installations

Device properties

- Short installation length and low weight
- Integrated ground disks made of stainless steel
- International drinking water approvals
- System integration with HART, Modbus RS485
- Flexible operation with app and optional display

Your benefits

- Easy, fast centering of the sensor innovative housing construction
- Energy-saving flow measurement no pressure loss due to cross section constriction
- Maintenance-free no moving parts
- Optimum usability operation with mobile devices and SmartBlue app or display with touch screen
- Simple, time-saving commissioning guided parameterization in advance and in the field
- Integrated verification Heartbeat Technology

Table of contents

About this document Symbols Associated documentation Ordering information Registered trademarks	4 4 4 6
Function and system design Measuring principle Product design IT security Device-specific IT security	8 8 9 9
Input	12
Measured variable	12
Operable flow range	12
Measuring range	12
Output Output versions Output signal Signal on alarm Low flow cut off Galvanic isolation Protocol-specific data	14 14 17 17 17 17
Power supply Terminal assignment Supply voltage Power consumption Current consumption Power supply failure Electrical connection Potential equalization Terminals Cable entries Overvoltage protection	20 20 20 20 20 21 21 25 26 26 26 26
Cable specification	28
Requirements for connecting cable	28
Ground cable requirements	28
Connecting cable requirements	28
Performance characteristics	32
Reference operating conditions	32
Maximum measured error	32
Repeatability	32
Influence of ambient temperature	32
Installation	34
Installation conditions	34
Environment	40
Ambient temperature range	40
Storage temperature	40
Relative humidity	40
Operating height	40
Degree of protection	40
Vibration-resistance and shock-resistance	40

	Electromagnetic compatibility (EMC)	41
	Process	44
	Medium temperature range	44
	Conductivity	44
	Flow limit	44
	Pressure-temperature ratings	45
	Pressure tightness	45
	Pressure loss	45
	Mechanical construction	48
	Weight	48
	Measuring tube specification	49
	Materials	50
	Mounting bolts	51
	Fitted electrodes	51
	Process connections	52
	Dimensions in SI units	54
	Compact version	54
	Remote version	56
	Flange connections	59
	Couplings	62
	Accessories	63
	Dimensions in US units	66
	Compact version	66
	Remote version	68
	Flange connections	71
	Couplings	72
	Accessories	73
	Local display	76
	Operating concept	76
	Operating options	76
	Operating tools	77
	Certificates and approvals	80
	Non-Ex approval	80
	Pressure Equipment Directive	80
	Drinking water approval	80
	HART certification	80
	Radio approval	80 80
	Other standards and guidelines	00
	Application packages	84
	Use	84
	Heartbeat Verification + Monitoring	84
	Accessories	86
	Device-specific accessories	86
	Communication-specific accessories	87
	Service-specific accessory	87
	System components	88
1		

About this document

Symbols	4
Associated documentation	4
Ordering information	4
Registered trademarks	6

Symbols

Electronics

- --- Direct current
- \sim Alternating current
- $igsiremut{\sim}$ Direct current and alternating current
- Terminal connection for potential equalization

Types of information

- ✓ ✓ Preferred procedures, processes or actions
- Permitted procedures, processes or actions
- Forbidden procedures, processes or actions
- **1** Additional information
- Reference to documentation
- Reference to page
- Reference to graphic

Explosion protection

- 🔬 Hazardous area
- 🔉 Non-hazardous area

Associated documentation

Technical Information	Overview of the device with the most important technical data.
Operating Instructions	All the information that is required in the various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal as well as the technical data and dimensions.
Sensor Brief Operating Instructions	Incoming acceptance, transport, storage and mounting of the device.
Transmitter Brief Operating Instructions	Electrical connection and commissioning of the device.
Description of Parameters	Detailed explanation of the menus and parameters.
Safety Instructions	Documents for the use of the device in hazardous areas.
Special Documentation	Documents with more detailed information on specific topics.
Installation Instructions	Installation of spare parts and accessories.

The device documentation is available online on the device product page and in the Downloads area: www.endress.com

Ordering information

Detailed ordering information is available from your nearest sales organization www.addresses.endress.com or in the Product Configurator at www.endress.com:

1. Select the product using the filters and search field.

2. Open the product page.

3. Select Configuration.

- Product Configurator the tool for individual product configuration
 Up-to-the-minute configuration data
 Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop

Registered trademarks

HART®

Registered trademark of the FieldComm Group, Austin, USA

Modbus®

Registered trademark of SCHNEIDER AUTOMATION, INC.

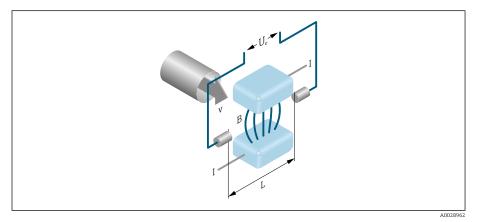
Bluetooth®

The Bluetooth word mark and Bluetooth logos are registered trademarks of Bluetooth SIG. Inc. and any use of such marks by Endress+Hauser is under license. Other trademarks and trade names are those of their respective owners.

Apple®

Apple, the Apple logo, iPhone, and iPod touch are trademarks of Apple Inc., registered in the U.S. and other countries. App Store is a service mark of Apple Inc.

Android®


Android, Google Play and the Google Play logo are trademarks of Google Inc.

Function and system design

Measuring principle	8
Product design	8
IT security	9
Device-specific IT security	9

Measuring principle

Following *Faraday's law of magnetic induction*, a voltage is induced in a conductor moving through a magnetic field.

Ue Induced voltage

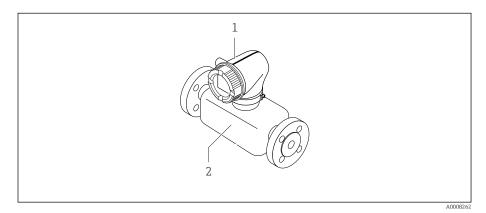
- *B Magnetic induction (magnetic field)*
- L Electrode spacing
- I Current
- v Flow velocity

In the electromagnetic measuring principle, the flowing medium is the moving conductor. The voltage induced (U_e) is proportional to the flow velocity (v) and is supplied to the amplifier by means of two measuring electrodes. The flow volume (Q) is calculated via the pipe cross-section (A). The DC magnetic field is generated by a switched direct current of alternating polarity.

Formulae for calculation

- Induced voltage $U_e = B \cdot L \cdot v$
- Volume flow $Q = A \cdot v$

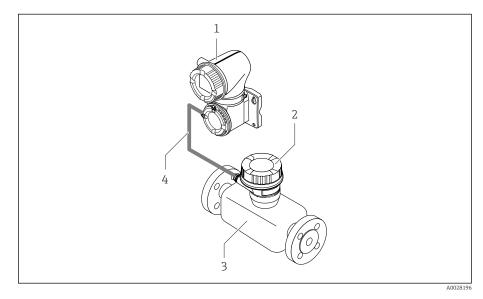
Product design


The device consists of a transmitter and a sensor.

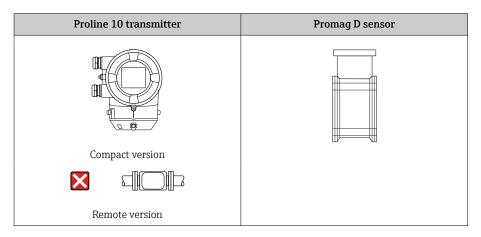
Two device versions are available:

- Compact version transmitter and sensor form a mechanical unit.
- Remote version transmitter and sensor are mounted in separate locations.

Compact version


The transmitter and sensor form a mechanical unit.

- 1 Transmitter
- 2 Sensor


Remote version

The transmitter and sensor are mounted in physically separate locations.

- 1 Transmitter
- 2 Sensor connection housing
- 3 Sensor
- 4 Connecting cable

Measuring system

IT security

We only provide a warranty if the device is installed and used as described in the Operating Instructions. The device is equipped with security mechanisms to protect it against any inadvertent changes to the device settings.

IT security measures in line with operators' security standards and designed to provide additional protection for the device and device data transfer must be implemented by the operators themselves.

Device-specific IT security

Access via Bluetooth

Secure signal transmission via Bluetooth uses an encryption method tested by the Fraunhofer Institute.

- Without the SmartBlue App, the device is not visible via Bluetooth.
- Only one point-to-point connection is established between the device and a smartphone or tablet.

Access via the SmartBlue app

Two access levels (user roles) are defined for the device: the **Operator** user role and the **Maintenance** user role. The **Maintenance** user role is configured when the device leaves the factory.

If a user-specific access code is not defined (in the Enter access code parameter), the default setting **0000** continues to apply and the **Maintenance** user role is automatically enabled. The device's configuration data are not write-protected and can be edited at all times.

If a user-specific access code has been defined (in the Enter access code parameter), all the parameters are write-protected. The device is accessed with the **Operator** user role. When the user-specific access code is entered a second time, the **Maintenance** user role is enabled. All parameters can be written to.

For detailed information, see the "Description of Device Parameters" document pertaining to the device.

Protecting access via a password

There are a variety of ways to protect against write access to the device parameters:

- User-specific access code:
- Protect write access to the device parameters via all the interfaces.
- Bluetooth key: The password protects access and the connection between an operating unit, e.g. a smartphone or tablet, and the device via the Bluetooth interface.

General notes on the use of passwords

- The access code and Bluetooth key that are valid when the device is delivered must be redefined during commissioning.
- Follow the general rules for generating a secure password when defining and managing the access code and Bluetooth key.
- The user is responsible for the management and careful handling of the access code and Bluetooth key.

Write protection switch

The entire operating menu can be locked via the write protection switch. The values of the parameters cannot be changed. Write protection is disabled when the device leaves the factory.

Write protection is enabled with the write protection switch on the back of the display module.

Input

Measured variable	12
Operable flow range	12
Measuring range	12

Measured variable

Direct measured variables	Volume flow (proportional to induced voltage)
Calculated measured variables	Mass flow

Operable flow range

Over 1000 : 1

Measuring range

Typically v = 0.01 to 10 m/s (0.03 to 33 ft/s) with specified measuring accuracy

- Electrical conductivity: $\geq 5 \ \mu$ S/cm for liquids in general $\geq 20 \ \mu$ S/cm for demineralized water

Flow characteristic values in SI units

Nominal	diameter	Recommended flow	Factory settings		
		min./max. full scale value (v ~ 0.3/10 m/s)	Full scale value current output (v ~ 2.5 m/s)	Pulse value (~ 2 pulse/s)	Low flow cut off (v ~ 0.04 m/s)
[mm]	[in]	[dm³/min]	[dm³/min]	[dm ³]	[dm ³ /min]
25	1	9 to 300	75	0.5	1
40	1 1⁄2	25 to 700	200	1.5	3
50	2	35 to 1100	300	2.5	5
65	-	60 to 2 000	500	5	8
80	3	90 to 3 000	750	5	12
100	4	145 to 4 700	1200	10	20

Flow characteristic values in US units

Nominal	diameter	Recommended flow	Factory settings		
		min./max. full scale value (v ~ 0.3/10 m/s)	Full scale value current output (v ~ 2.5 m/s)	Pulse value (~ 2 pulse/s)	Low flow cut off (v ~ 0.04 m/s)
[in]	[m1m]	[gal/min]	[gal/min]	[gal]	[gal/min]
1	25	2.5 to 80	18	0.2	0.25
1 1/2	40	7 to 190	50	0.5	0.75
2	50	10 to 300	75	0.5	1.25
-	65	16 to 500	130	1	2
3	80	24 to 800	200	2	2.5
4	100	40 to 1250	300	2	4

Output

Output versions	14
Output signal	14
Signal on alarm	17
Low flow cut off	17
Galvanic isolation	17
Protocol-specific data	17

Output versions

Order code for 020: output; input	Output version
Option B	Current output 4 to 20 mA HARTPulse/frequency/switch output
Option M	Modbus RS485Current output 4 to 20 mA

Output signal

Current output 4 to 20 mA HART / 4 to 20 mA HART Ex-i

Signal mode	Choose via terminal assignment: • Active • Passive
Current range	Can be set to: • 4 to 20 mA NAMUR • 4 to 20 mA US • 4 to 20 mA • Fixed current
Max. output current	21.5 mA
Open-circuit voltage	DC < 28.8 V (active)
Max. input voltage	DC 30 V (passive)
Max. load	400 Ω
Resolution	1 µA
Damping	Configurable: 0 to 999.9 s
Assignable measured variables	 Off Volume flow Mass flow Conductivity* Noise* Coil current shot time* * Visibility depends on order options or device settings

Modbus RS485

Physical interface	RS485 in accordance with EIA/TIA-485 standard
--------------------	---

Current output 4 to 20 mA

Signal mode	Choose via terminal assignment: • Active • Passive
Current range	Can be set to: • 4 to 20 mA NAMUR • 4 to 20 mA US • 4 to 20 mA • Fixed current
Max. output current	21.5 mA
Open-circuit voltage	DC < 28.8 V (active)
Max. input voltage	DC 30 V (passive)

Max. load	400 Ω
Resolution	1 μA
Damping	Configurable: 0 to 999.9 s
Assignable measured variables	 Off Volume flow Mass flow Conductivity* Noise* Coil current shot time* * Visibility depends on order options or device settings

Pulse/frequency/switch output

Function	Can be set to: • Pulse output • Frequency output • Switch output
Version	Open collector: Passive
Input values	 DC 10.4 to 30 V Max. 140 mA
Voltage drop	 ≤ DC 2 V @ 100 mA ≤ DC 2.5 V @ max. input current

Pulse output	
Pulse width	Configurable: 0.05 to 2 000 ms
Max. pulse rate	10000 Impulse/s
Pulse value	Configurable
Assignable measured variables	Volume flowMass flow

Frequency output	
Output frequency	Configurable: end value frequency 2 to 10000 Hz (f $_{max}$ = 12500 Hz)
Damping	Configurable: 0 to 999.9 s
Pulse/pause ratio	1:1
Assignable measured variables	 Off Volume flow Mass flow Conductivity* Noise* Coil current shot time* Reference electrode potential against PE* * Visibility depends on order options or device settings

Switch output	
Switching behavior	Binary, conductive or non-conductive
Switching delay	Configurable: 0 to 100 s

Number of switching cycles	Unlimited
Assignable functions	 Off On Diagnostic behavior: Alarm Warning Warning and alarm Limit value: Off Volume flow Mass flow Flow velocity Conductivity* Corrected conductivity* Totalizer 13 Flow direction monitoring Status Empty pipe detection option (only possible with extended transmitter) Low flow cut off
	* Visibility depends on order options or device settings

Signal on alarm

Output behavior in the event of a device alarm (failure mode)

	HART
Device diagnostics	Device condition can be read out via HART Command 48
	Modbus RS485
Failure mode	Selectable: • NaN value instead of current value • Last valid value
	Current output 4 to 20 mA
4 to 20 mA	Selectable: Min. value: 3.59 mA Max. value: 21.5 mA Freely definable value between: 3.59 to 21.5 mA Actual value Last valid value

Pulse/frequency/switch output

Pulse output	Selectable: • Actual value • No pulses
Frequency output	Selectable: • Actual value • 0 Hz • Defined value: 0 to 12 500 Hz
Switch output	Selectable: • Current status • Open • Closed

Low flow cut off

The switch points for low flow cut off are user-selectable.

Galvanic isolation

The outputs are galvanically isolated from one another and from earth.

Protocol-specific data

HART

Bus structure	The HART signal overlays the 4 to 20 mA current output.
Manufacturer ID	0x11
Device type ID	0x71
HART protocol revision	7
Device description files (DTM, DD)	Information and files under: www.endress.com

HART load	At least 250 Ω
System integration	Measured variables via HART protocol

Modbus RS485

Physical interface	RS485 in accordance with EIA/TIA-485 standard
Terminating resistor	Not integrated
Protocol	Modbus Applications Protocol Specification V1.1
Response times	 Direct data access: typically 25 to 50 ms Auto-scan buffer (data range): typically 3 to 5 ms
Device type	Slave
Slave address range	1 to 247
Broadcast address range	0
Function codes	 03: Read holding register 04: Read input register 06: Write single registers 08: Diagnostics 16: Write multiple registers 23: Read/write multiple registers
Broadcast messages	Supported by the following function codes: 06: Write single registers 16: Write multiple registers 23: Read/write multiple registers
Supported baud rate	 1 200 BAUD 2 400 BAUD 4 800 BAUD 9 600 BAUD 19 200 BAUD 38 400 BAUD 57 600 BAUD 115 200 BAUD
Data transfer mode	RTU
Data access	Each parameter can be accessed via Modbus RS485. For Modbus register information
System integration	Information on system integration . Modbus RS485 information Function codes Register information Response time Modbus data map

Power supply

Terminal assignment	20
Supply voltage	20
Power consumption	20
Current consumption	20
Power supply failure	21
Electrical connection	21
Potential equalization	25
Terminals	26
Cable entries	26
Overvoltage protection	26

Terminal assignment

The terminal assignment is documented on an adhesive label.

The following terminal assignment is available:

Current output 4 to 20 mA HART (active) and pulse/frequency/switch output

Supply	Output 1				Output 2		
1 (+)	2 (-)	26 (+) 27 (-)		24 (+)	25 (-)	22 (+)	23 (-)
L/+	N/-	Current output 4 to 20 mA HART (active)		_	_	Pulse/frequ output (ency/switch passive)

Current output 4 to 20 mA HART (passive) and pulse/frequency/switch output

Supply	Output 1				Output 2		
1 (+)	2 (-)	26 (+)	27 (-)	24 (+)	25 (-)	22 (+)	23 (-)
L/+	N/-	-		Current outpı HART (j		Pulse/frequ output (ency/switch passive)

Modbus RS485 and current output 4 to 20 mA (active)

Supply	Output 1				Output 2		
1 (+)	2 (-)	26 (+) 27 (-)		24 (+)	25 (-)	22 (B)	23 (A)
L/+	N/-	Current output 4 to 20 mA (active)		-	_	Modbus	s RS485

Modbus RS485 and current output 4 to 20 mA (passive)

Supply voltage		Output 1				Output 2	
1 (+)	2 (-)	26 (+)	27 (-)	24 (+)	25 (-)	22 (B)	23 (A)
L/+	N/-	-		Current outpu (pass	it 4 to 20 mA sive)	Modbus	s RS485

Supply voltage

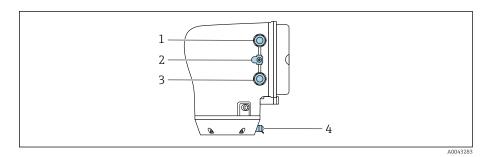
Order code for "Power supply"	Terminal voltage		Frequency range
Option D	DC 24 V	-20 to +30 %	-
Option E	AC 100 to 240 V	-15 to +10 %	50/60 Hz,±5 Hz
Option I	DC 24 V	-20 to +30 %	-
	AC 100 to 240 V	-15 to +10 %	50/60 Hz, ±5 Hz
Option ${f M}$ non-hazardous area	DC 24 V	-20 to +30 %	-
	AC 100 to 240 V	-15 to +10 %	50/60 Hz, ±5 Hz

Power consumption

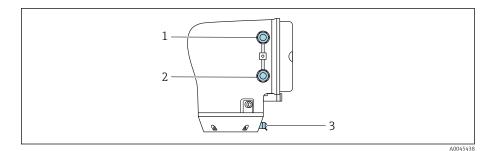
- Transmitter: max. 10 W (active power)
- Switch-on current: max. 36 A (< 5 ms) as per NAMUR Recommendation NE 21

Current consumption

- Max. 400 mA (24 V)
- Max. 200 mA (110 V, 50/60 Hz; 230 V, 50/60 Hz)

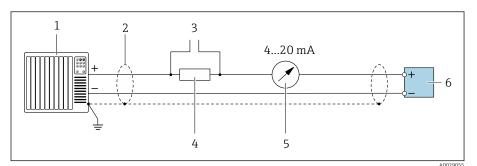

Power supply failure

- Totalizers stop at the last value measured.
- Device configuration remains unchanged.
- Error messages (incl. total operated hours) are stored.

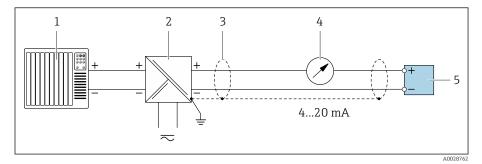

Electrical connection

Transmitter terminal connections

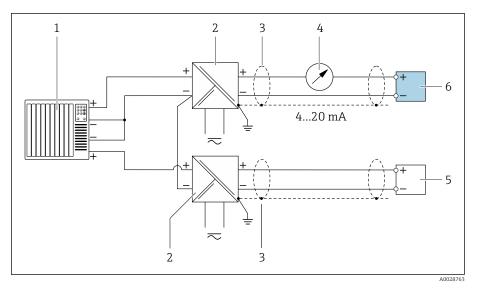
Terminal assignment \rightarrow *Terminal assignment*, 🗎 20 F


- 1 Cable entry for power supply cable: supply voltage
- 2 Outer ground terminal: on transmitters made of polycarbonate with a metal pipe adapter
- 3 Cable entry for signal cable
- 4 Outer ground terminal

- Cable entry for power supply cable: supply voltage Cable entry for signal cable 1
- 2
- 3 Outer ground terminal

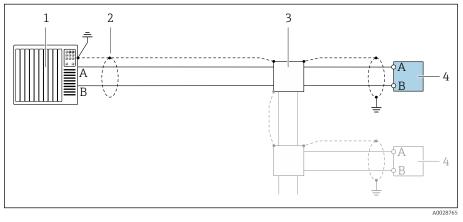

Examples for electric terminals

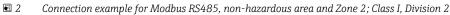
Current output 4 to 20 mA HART (active)


- 1 Automation system with current input (e.g. PLC)
- 2 Cable shield
- 3 Connection for HART operating devices
- 4 Resistor for HART communication ($\geq 250 \Omega$): observe max. load
- 5 Analog display unit: observe max. load.
- 6 Transmitter

Current output 4 to 20 mA HART (passive)

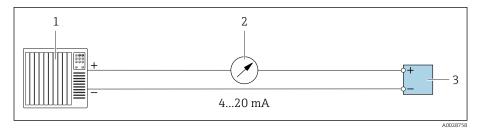
- 1 Automation system with current input (e.g. PLC)
- 2 Active barrier for supply voltage (e.g. RN221N)
- 3 Cable shield
- 4 Analog display unit: observe max. load
- 5 Transmitter

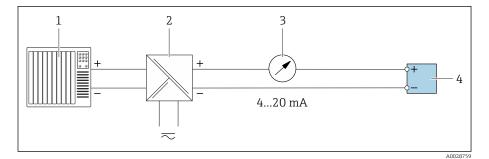

HART input (passive)



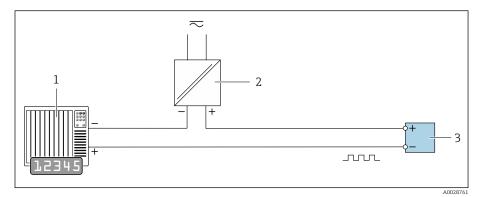
E 1 Connection example for HART input with a common negative (passive)

- 1 Automation system with current input (e.g. PLC)
- Active barrier for supply voltage (e.g. RN221N) 2
- 3 Cable shield
- 4 Analog display unit: observe max. load
- 5 Pressure transmitter (e.g. Cerabar M, Cerabar S: see requirements)
- 6 Transmitter

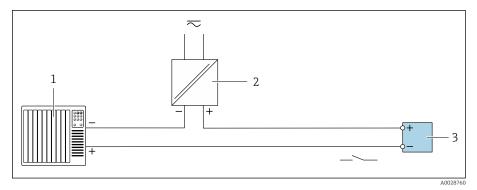

Modbus RS485


- 1 Control system (e.g. PLC)
- Cable shield Distribution box 2
- 3
- 4 Transmitter

Current output 4 to 20 mA (active)


- 1 Automation system with current input (e.g. PLC)
- 2 3 Analog display unit: observe max. load
- Transmitter

Current output 4 to 20 mA (passive)


- Automation system with current input (e.g. PLC) 1
- 2 3 Active barrier for supply voltage (e.g. RN221N)
- Analog display unit: observe max. load
- 4 Transmitter

Pulse/frequency output (passive)

- 1 Automation system with pulse output and frequency input (e.g. PLC with a 10 $\mathrm{k}\Omega$ pull-up or pull-down resistor)
- 2 Supply voltage
- 3 Transmitter: observe input values

Switch output (passive)

- 1 Automation system with switch input (e.g. PLC with a 10 k Ω pull-up or pull-down resistor)
- 2 Supply voltage
- 3 Transmitter: observe input values

Potential equalization

Introduction

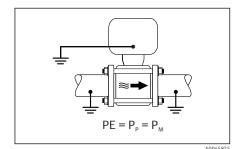
Correct potential equalization (equipotential bonding) is a prerequisite for stable and reliable flow measurement. Inadequate or incorrect potential equalization can result in device failure and present a safety hazard.

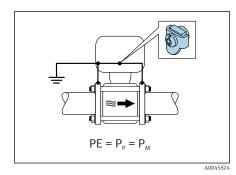
The following requirements must be observed to ensure correct, trouble-free measurement:

- The principle that the medium, the sensor and the transmitter must be at the same electrical potential applies.
- Take in-company grounding guidelines, materials and the grounding conditions and potential conditions of the pipe into consideration.
- The necessary potential equalization connections must be established using a ground cable with a minimum cross-section of 6 mm² (0.0093 in²). Also use a cable lug.
- In the case of remote device versions, the ground terminal in the example always refers to the sensor and not to the transmitter.

Abbreviations used

- PE (Protective Earth): potential at the potential equalization terminals of the device
- P_P (Potential Pipe): potential of the pipe, measured at the flanges
- P_M (Potential Medium): potential of the medium


Connection examples for standard situations


Unlined and grounded metal pipe

- Potential equalization is via the measuring pipe.
- The medium is set to ground potential.

Starting conditions:

- Pipes are correctly grounded on both sides.
- Pipes are conductive and at the same electrical potential as the medium
- Connect the connection housing of the transmitter or sensor to ground potential via the ground terminal provided for this purpose.

Plastic pipe or pipe with insulating liner

- Potential equalization is via the ground terminal and flanges
- The medium is set to ground potential.
- Starting conditions:
- The pipe has an insulating effect.
- Low-impedance medium grounding close to the sensor is not guaranteed.
- Equalizing currents through the medium cannot be ruled out.
- **1.** Connect flanges to the ground terminal of the transmitter or sensor connection housing via the ground cable.
- 2. Connect the connection to ground potential.

Connection example with the potential of medium not equal to potential equalization connection

In these cases, the medium potential can differ from the potential of the device.

Metal, ungrounded pipe

The sensor and transmitter are installed in a way that provides electrical insulation from PE, e.g. applications for electrolytic processes or systems with cathodic protection.

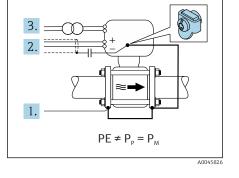
Starting conditions:

Unlined metal pipe

- Pipes with an electrically conductive liner
- 1. Connect the pipe flanges and transmitter via the ground cable.
- 2. Route the shielding of the signal lines via a capacitor (recommended value $1.5\mu F/50V$).
- **3.** Device connected to power supply such that it is floating in relation to the potential equalization connection (isolation transformer). This measure is not required in the case of 24V DC supply voltage without PE (= SELV power unit).

Terminals

Spring terminals


- Suitable for strands and strands with ferrules.
- Conductor cross-section 0.2 to 2.5 mm² (24 to 12 AWG).

Cable entries

- Cable gland: M20 × 1.5 for cable Ø6 to 12 mm (0.24 to 0.47 in)
- Thread for cable entry:
- NPT ¹/₂"
- G ½", G ½" Ex d
- M20

Overvoltage protection

Mains voltage fluctuations	\rightarrow Supply voltage, 🗎 20
Overvoltage category	Overvoltage category II
Short-term, temporary overvoltage	Between cable and neutral conductor up to 1200 V for max. 5s
Long-term, temporary overvoltage	Up to 500 V between cable and ground

Cable specification

Requirements for connecting cable	28
Ground cable requirements	28
Connecting cable requirements	28

Requirements for connecting cable

Electrical safety

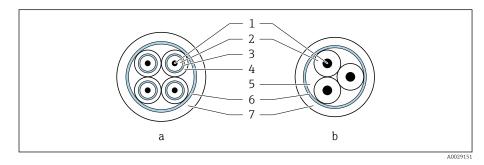
As per applicable national regulations.

Permitted temperature range

- Observe the installation guidelines that apply in the country of installation.
- The cables must be suitable for the minimum temperatures and maximum temperatures to be expected.

Power supply cable (incl. conductor for the inner ground terminal)

- A standard installation cable is sufficient.
- Provide grounding according to applicable national codes and regulations.


Signal cable

- Current output 4 to 20 mA HART: A shielded cable is recommended, observe the grounding concept of the facility.
- Pulse/frequency/switch output: Standard installation cable
- Modbus RS485: Cable type A according to EIA/TIA-485 standard is recommended
- Current output 4 to 20 mA: Standard installation cable

Ground cable requirements

Copper wire: at least 6 mm² (0.0093 in²)

Connecting cable requirements

- 🛃 3 Cable cross-section
- Electrode cable а
- Coil current cable b
- 1 Core
- 2 Core insulation
- 3 Core shield
- 4 Core jacket
- 5 Core reinforcement
- 6 Cable shield 7
- Outer jacket

Armored connecting cable

Armored connecting cables with additional, metal reinforcing braid can be ordered from Endress+Hauser. Armored connecting cables are used:

- When laying the cable directly in the ground
- Where there is a risk of damage from rodents
- If using the device below IP68 degree of protection

Electrode cable

Design	$3\times0.38~mm^2$ (20 AWG) with common, braided copper shield (Ø $\sim9.5~mm$ (0.37 in)) and individual shielded cores
Conductor resistance	\leq 50 Ω/km (0.015 Ω/ft)
Capacitance: core/shield	≤ 420 pF/m (128 pF/ft)
Cable length	Depends on the medium conductivity: maximum 200 m (656 ft)
Cable lengths (available for order)	5 m (15 ft), 10 m (30 ft), 20 m (60 ft) or variable length: maximum 200 m (656 ft) Armored cables: variable length up to maximum 200 m (656 ft)
Operating temperature	-20 to +80 °C (-4 to +176 °F)

Coil current cable

Design	$3\times0.38~mm^2$ (20 AWG) with common, braided copper shield (Ø $\sim9.5~mm$ (0.37 in)) and individual shielded cores
Conductor resistance	\leq 37 Ω /km (0.011 Ω /ft)
Capacitance: core/shield	≤ 120 pF/m (37 pF/ft)
Cable length	Depends on the medium conductivity, max. 200 m (656 ft)
Cable lengths (available for order)	5 m (15 ft), 10 m (30 ft), 20 m (60 ft) or variable length up to max. 200 m (656 ft) Armored cables: variable length up to max. 200 m (656 ft)
Operating temperature	-20 to +80 °C (-4 to +176 °F)
Test voltage for cable insulation	\leq AC 1433 V rms 50/60 Hz or \geq DC 2026 V

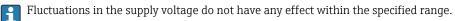
Performance characteristics

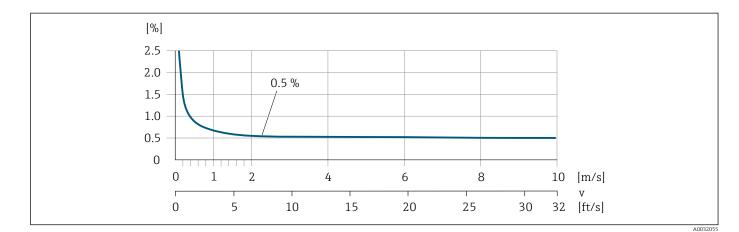
Reference operating conditions	32
Maximum measured error	32
Repeatability	32
Influence of ambient temperature	32

Reference operating conditions

- Error limits based on ISO 20456:2017
- Water, typically: +15 to +45 °C (+59 to +113 °F); 0.5 to 7 bar (73 to 101 psi)
- Data as indicated in the calibration protocol
- Accuracy based on accredited calibration rigs according to ISO 17025

To obtain measured errors, use the Applicator sizing tool \rightarrow Service-specific accessory , \cong 87


Maximum measured error


o. r. = of reading

Error limits under reference operating conditions

Volume flow

±0.5 % o. r.±1 mm/s (±0.04 in/s)

Accuracy of outputs

Current output	±5 μA
Pulse/frequency output	Max. ± 100 ppm o. r. (across the entire ambient temperature range)
	Repeatability
Volume flow	Max. ±0.1 % o. r. ± 0.5 mm/s (0.02 in/s)
	Influence of ambient temperature
Current output	Temperature coefficient max. 1 µA/°C
Pulse/frequency output	No additional effect. Is included in the accuracy.

Installation

Installation conditions

34

Installation conditions

Flow direction

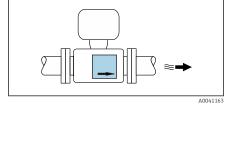
Install the device in the direction of flow.

Note the direction of arrow on the nameplate.

Installation with inlet runs and outlet runs

Ensure straight, undisturbed inlet and outlet runs.

To avoid negative pressure and to comply with accuracy specifications, install the sensor upstream from assemblies that produce turbulence (e.g. valves, T-sections) and downstream from pumps \rightarrow *Installation near pumps*, \cong 37.


Keep a sufficient distance to the next pipe elbow.

Orientations

Vertical orientation, upward direction of flow For all applications.

Horizontal orientation, transmitter at top

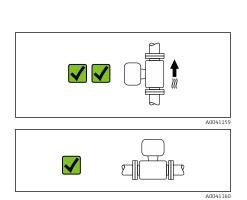
This orientation is suitable for the following applications: For low process temperatures in order to maintain the minimum ambient temperature for the transmitter.

 \approx

 $\ge 2 \times DN$

१≈.

X


A0028993

A0042132

 $\geq 5 \times DN$

 \square

 $2 \times DN$

m

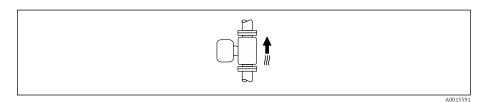
X

	400411

A0048872

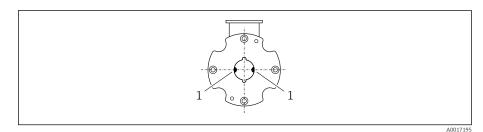
Horizontal orientation, transmitter at bottom

This orientation is suitable for the following applications:


- For high process temperatures in order to maintain the maximum ambient temperature for the transmitter.
- To prevent the electronics from overheating in the event of strong heat formation (e.g. CIP or SIP cleaning process), install the measuring device with the transmitter part pointing downwards.

This orientation is not suitable for the following applications:If empty pipe detection is to be used.Horizontal orientation, transmitter at side

This orientation is not suitable


Vertical

Optimum for self-emptying pipe systems.

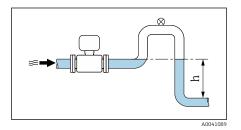
Horizontal

Ideally, the measuring electrode plane should be horizontal. This prevents brief insulation of the measuring electrodes by entrained air bubbles.

1 Measuring electrodes for signal detection

Mounting locations

- Do not install the device at the highest point of the pipe.
- Do not install the device upstream from a free pipe outlet in a down pipe.


A0042131

0%0%0

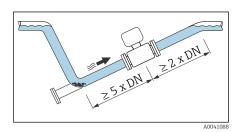
The device should ideally be installed in an ascending pipe.

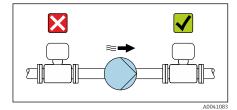
Installation near control valves

Install the device in the direction of flow upstream from the control valve.

X

A0041091


Installation upstream from a down pipe

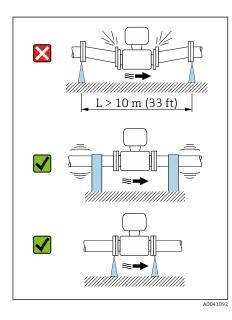

NOTICE

- Negative pressure in the measuring pipe can damage the liner!
- If installing upstream from down pipes with a length h ≥ 5 m (16.4 ft): install a siphon with a vent valve downstream from the device.
- This arrangement prevents the flow of liquid stopping in the pipe and air entrainment.

Installation with partially filled pipes

- Partially filled pipes with a gradient require a drain-type configuration.
- The installation of a cleaning valve is recommended.

Installation near pumps

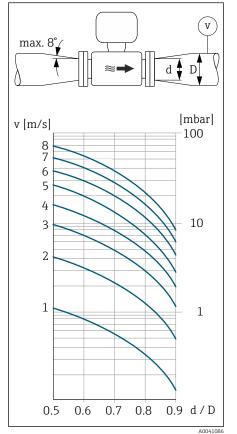

NOTICE

Negative pressure in the measuring pipe can damage the liner!

- ▶ Install the device in the direction of flow downstream from the pump.
- ► Install pulsation dampers if reciprocating, diaphragm or peristaltic pumps are used.
- Information on the liner's resistance to partial vacuum (Verweisziel existiert nicht, aber @y.link.required='true')
 - Information on the measuring system's resistance to vibration and shock
 → Vibration-resistance and shock-resistance,
 ⁽¹⁾/₄ 40

Pipe vibrations

A remote version is recommended in the event of strong pipe vibrations.



NOTICE

Pipe vibrations can damage the device!

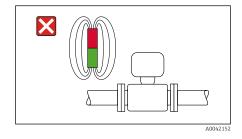
- Do not expose the device to strong vibrations.
- Support the pipe and fix it in place.
- Support the device and fix it in place.
- ► Mount the sensor and transmitter separately.

Adapters

Suitable adapters (double-flange reducers) can be used to install the sensor in largerdiameter pipes. The resulting higher rate of flow improves measuring accuracy with very slow-moving media.

The nomogram shown here can be used to calculate the pressure loss caused by reducers and expanders. It only applies to liquids with a viscosity similar to that of water.

- 1. Calculate the ratio of the diameters d/D.
- 2. Determine the flow velocity after the reduction.
- **3.** From the chart, determine the pressure loss as a function of the flow velocity v and the d/D ratio.


Seals

Note the following when installing seals:

- Use seals with a hardness rating of 70° Shore.
- For DIN flanges: only install seals according to DIN EN 1514-1.

Magnetism and static electricity

Do not install the device near magnetic fields, e.g. motors, pumps, transformers.

A0023989

Outdoor use

- Avoid exposure to direct sunlight.
- Install in a location protected from sunlight.
- Avoid direct exposure to weather conditions.
- Use a weather protection cover \rightarrow *Transmitter*, 🖺 86.

Environment

Ambient temperature range	40
Storage temperature	40
Relative humidity	40
Operating height	40
Degree of protection	40
Vibration-resistance and shock-resistance	40
Electromagnetic compatibility (EMC)	41

Ambient temperature range

Transmitter	-40 to +60 °C (-40 to +140 °F)
Local display	-20 to $+60$ °C (-4 to $+140$ °F) The readability of the display may be impaired at temperatures outside the temperature range.
Sensor	-20 to +60 °C (-4 to +140 °F)
Liner	Do not exceed or fall below the permitted temperature range of the liner .
	\square Dependency of ambient temperature on medium temperature \rightarrow Medium

Dependency of ambient temperature on medium temperature \rightarrow Medium temperature range, \cong 44

Storage temperature

The storage temperature corresponds to the ambient temperature range of the transmitter and sensor.

Relative humidity

The device is suitable for use in outdoor and indoor areas with a relative humidity of 5 to 95%.

Operating height

According to EN 61010-1

- Without overvoltage protection: $\leq 2\,000$ m
- With overvoltage protection: > 2 000 m

Degree of protection

Transmitter	 IP66/67, Type 4X enclosure, suitable for pollution degree 4 Open housing: IP20, Type 1 enclosure, suitable for pollution degree 2
Sensor	IP66/67, Type 4X enclosure, suitable for pollution degree 4

Vibration-resistance and shock-resistance

Compact version

Vibration, sinusoidal Following IEC 60068-2-6 20 cycles per axis	2 to 8.4 Hz 8.4 to 2 000 Hz	3.5 mm peak 1 g peak
Vibration, broad-band randomFollowing IEC 60068-2-64120 min per axis	10 to 200 Hz 200 to 2 000 Hz	0.003 g²/Hz 0.001 g²/Hz (1.54 g rms)
 Shocks, half-sine Following IEC 60068-2-27 3 positive and 3 negative shocks 	6 ms 30 g	

Shock

Due to rough handling according to IEC 60068-2-31.

Remote version (sensor)

Vibration, sinusoidal	2 to 8.4 Hz	7.5 mm peak
 Following IEC 60068-2-6 20 cycles per axis 	8.4 to 2 000 Hz	1 g peak

Vibration, broad-band randomFollowing IEC 60068-2-6120 min per axis	10 to 200 Hz 200 to 2 000 Hz	0.01 g²/Hz 0.003 g²/Hz (2.7 g rms)
Shocks, half-sineFollowing IEC 60068-2-63 positive and 3 negative shocks	6 ms 50 g	

Shock

Due to rough handling according to IEC 60068-2-31.

Electromagnetic compatibility (EMC)

As per IEC/EN 61326 and NAMUR Recommendation NE 21.

For more information: Declaration of Conformity

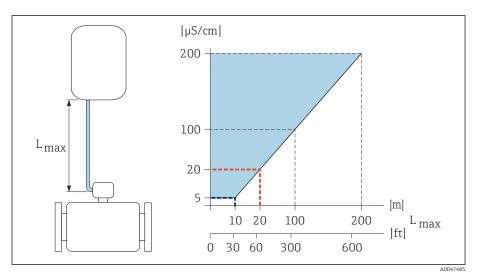
Process

Medium temperature range	44
Conductivity	44
Flow limit	44
Pressure-temperature ratings	45
Pressure tightness	45
Pressure loss	45

Medium temperature range

0 to +60 °C (+32 to +140 °F)

Conductivity


The minimum conductivity is:

- 5 µS/cm for liquids in general
- 20 µS/cm for demineralized water

The following basic conditions must be observed for < 20 μ S/cm:

- Order code 013 for "Functionality", option D "Extended transmitter" and higher output signal damping is recommended for values under 20 µS/cm.
- Observe the maximum permitted cable length L_{max}. This length is determined by the conductivity of the medium.
- With order code 013 "Functionality", option A "Standard transmitter" and empty pipe detection (EPD) switched on, the minimum conductivity is 20 μS/cm.
- With order code 013 "Functionality", option A "Standard transmitter" remote version, empty pipe detection may not be activated if $L_{max} > 20$ m.

Note that in the case of the remote version, the minimum conductivity depends on the cable length.

E 4 Permitted length of connecting cable

Colored area = permitted range

 L_{max} = length of connecting cable in [m] ([ft])

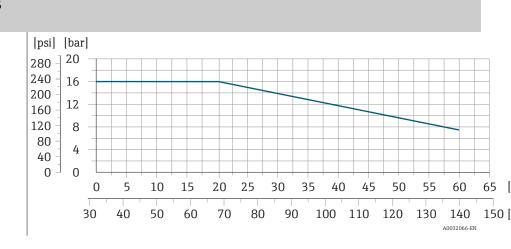
 $[\mu S/cm] = medium \ conductivity$

Red line = order code 013 "Functionality", option A "Standard transmitter"

Blue line = order code 013 "Functionality", option D "Extended transmitter"

Flow limit

Pipe diameter and flow rate determine the nominal diameter of the sensor.


The flow velocity is increased by reducing the sensor nominal diameter.

2 to 3 m/s (6.56 to 9.84 ft/s)	Optimum flow velocity
v < 2 m/s (6.56 ft/s)	For abrasive media, e.g. potter's clay, lime milk, ore slurry
v > 2 m/s (6.56 ft/s)	For media producing buildup, e.g. wastewater sludge

Pressure-temperature ratings

Permitted process pressure

Fixed flange according to EN 1092-1 Fixed flange according to ASME B16.5 Fixed flange according to JIS B2220

Stainless steel

Pressure tightness

Measuring tube: 0 mbar abs. (0 psi abs.) at a medium temperature of \leq +60 °C (+140 °F)

Pressure loss

- No pressure loss: transmitter installed in a pipe with the same nominal diameter.
- Pressure loss information when adapters are used \rightarrow *Adapters*, \cong 38

Mechanical construction

Weight	48
Measuring tube specification	49
Materials	50
Mounting bolts	51
Fitted electrodes	51
Process connections	52

Weight

All values refer to devices with flanges with a standard pressure rating. Weight data are guideline values. The weight may be lower than indicated depending on the pressure rating and design.

- Transmitter remote versionPolycarbonate: 1.4 kg (3.1 lbs)
- Aluminum: 2.4 kg (5.3 lbs)

Sensor remote version

Aluminum sensor connection housing: see the information in the following table.

Compact version

Weight in SI units

D	N	Weight
[mm]	[in]	[kg]
25	1	3.20
40	1½	3.80
50	2	4.60
65	-	5.40
80	3	6.40
100	4	9.10

Weight in US units

D	N	Weight
[mm]	[in]	[lbs]
25	1	7
40	1½	8
50	2	10
65	-	12
80	3	14
100	4	20

Remote version

Weight in SI units

D	N	Weight
[mm]	[in]	[kg]
25	1	2.5
40	11/2	3.1
50	2	3.9
65	-	4.7
80	3	5.7
100	4	8.4

Weight in US units

DN		Weight
[mm]	[in]	[kg]
25	1	6
40	11/2	7
50	2	9
65	-	10
80	3	13
100	4	19

Measuring tube specification

Wafer version

Pressure rating EN (DIN), PN16

DN		Mounting bolts			Centering sleeves		Measuring tube		
					Leng	Length		Internal diameter	
[mm]	[in]		[mm]	[in]	[mm]	[in]	[mm]	[in]	
25	1	4 × M12 ×	145	5.71	54	2.13	24	0.94	
40	1 ½	4 × M16 ×	170	6.69	68	2.68	38	1.50	
50	2	4 × M16 ×	185	7.28	82	3.23	50	1.97	
65 ¹⁾	-	4 × M16 ×	200	7.87	92	3.62	60	2.36	
65 ²⁾	-	8 × M16 ×	200	7.87	_ 3)	-	60	2.36	
80	3	8 × M16 ×	225	8.86	116	4.57	76	2.99	
100	4	8 × M16 ×	260	10.24	147	5.79	97	3.82	

EN (DIN) flange: 4-hole \rightarrow with centering sleeves 1)

EN (DIN) flange: 8-hole \rightarrow without centering sleeves

2) 3) A centering sleeve is not required. The device is centered directly via the sensor housing.

Pressure rating ASME, Class 150

DN		Mounting		Centering sleeves		Measuring tube		
					Length		Internal diameter	
[mm]	[in]		[mm]	[in]	[mm]	[in]	[mm]	[in]
25	1	$4 \times \text{UNC} \frac{1}{2} \times$	145	5.70	_ 1)	-	24	0.94
40	1 1⁄2	$4 \times \text{UNC} \frac{1}{2} \times$	165	6.50	-	-	38	1.50
50	2	4 × UNC 5/8" ×	190.5	7.50	-	-	50	1.97
80	3	8 × UNC 5/8" ×	235	9.25	-	-	76	2.99
100	4	8 × UNC 5/8" ×	264	10.4	147	5.79	97	3.82

1) A centering sleeve is not required. The device is centered directly via the sensor housing.

Pressure rating JIS, 10K

DN		Mounting bolts			Centering	Centering sleeves		Measuring tube	
					Leng	Length		liameter	
[mm]	[in]		[mm]	[in]	[mm]	[in]	[mm]	[in]	
25	1	$4 \times M16 \times$	170	6.69	54	2.13	24	0.94	
40	1 1⁄2	$4 \times M16 \times$	170	6.69	68	2.68	38	1.50	
50	2	$4 \times M16 \times$	185	7.28	_ 1)	-	50	1.97	
65	-	$4 \times M16 \times$	200	7.87	-	-	60	2.36	
80	3	8 × M16 ×	225	8.86	-	-	76	2.99	
100	4	$8 \times M16 \times$	260	10.24	-	-	97	3.82	

1) A centering sleeve is not required. The device is centered directly via the sensor housing.

Threaded connection

Pressure rating EN (DIN), PN16

DN		Threaded connection	Wrench size		Measuring tube	
			Length		Length Internal diamet	
[mm]	[in]		[mm]	[in]	[mm]	[in]
25	1	G 1"	28	1.1	24	0.94
40	1 ½	G 1 ½"	50	1.97	38	1.50
50	2	G 2"	60	2.36	50	1.97

Pressure rating ASME, Class 150

DN		Threaded connection	Wrencl	h size	Measuring tube		
			Length		Length Internal diame		iameter
[mm]	[in]		[mm]	[in]	[mm]	[in]	
25	1	NPT 1"	28	1.1	24	0.94	
40	1 ½	NPT 1 ½"	50	1.97	38	1.50	
50	2	NPT 2"	60	2.36	50	1.97	

Materials

Transmitter housing	
Order code for "Housing"	Option A: aluminum, AlSi10Mg, coatedOption M: polycarbonate
Window material	 Order code for "Housing" option A: glass Order code for "Housing" option M: polycarbonate
Sensor connection housing	

Order code for "Sensor connection housing" Option A: aluminum, AlSi10Mg, coated

Cable glands and entries	
Cable gland M20×1.5	Plastic
Adapter for cable entry with female thread G $\frac{1}{2}$ or NPT $\frac{1}{2}$	Nickel-plated brass
Connecting cable for remote version	
	Electrode and coil current cable: PVC cable with copper shield
Sensor housing	
	Aluminum, AlSi10Mg, coated
Measuring tube	
	Polyamide
Liner	
	Polyamide
Electrodes	
	Stainless steel: 1.4435 (316L)
Seals	
	As per DIN EN 1514-1, form IBC
Process connections	
EN 1092-1 (DIN 2501)	1.4301/304
ASME B16.5	1.4301/304
JIS B2220	1.4301/304
DIN ISO 228, G" male thread	1.4301/304
ASME B1.20, NPT" male thread	1.4301/304
Accessories	
Protective cover	Stainless steel, 1.4404 (316L)
Pipe mounting set	Stainless steel 1.4301 (304)
Wall mounting kit	Stainless steel 1.4301 (304)

Mounting bolts

Tensile strength

- Galvanized steel mounting bolts: strength category 5.6 or 5.8
 Stainless steel mounting bolts: strength category A2–70

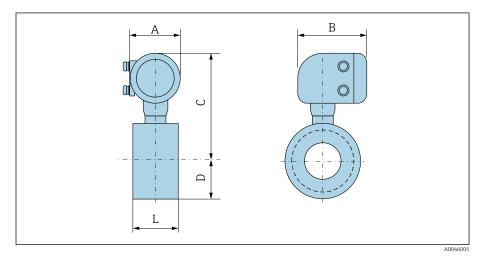
Fitted electrodes

Standard electrodes: Measuring electrodes

Process connections

- EN 1092-1 (DIN 2501)

- ASME B16.5
 JIS B2220
 DIN ISO 228, G external thread
 ASME B1.20, NPT external thread

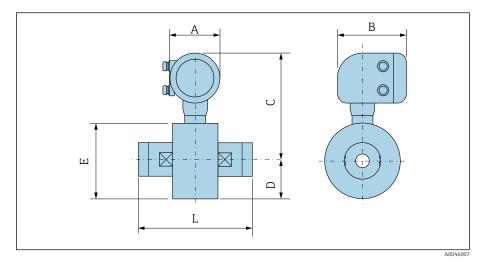

Dimensions in SI units

Compact version	54
Wafer version	54
Threaded version	55
Remote version Transmitter remote version Sensor remote version	56 57
Flange connections	59
Flange as per EN 1092-1: PN 16	59
Flange according to ASME B16.5: Class 150	60
Flange JIS B2220: 10K	61
Couplings	62
External thread: ISO 228	62
External thread: ASME B1.20.1	62
Accessories Protective cover	63

Compact version

Wafer version

Order code for "Housing", option A "Compact, aluminum, coated"

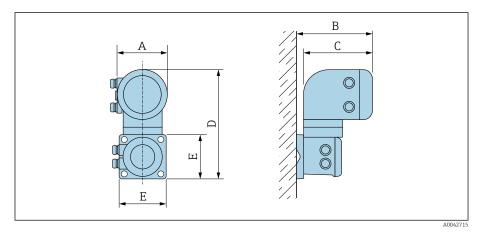


DN		A 1)	В	С	D	L
[mm]	[in]	[mm]	[mm]	[mm]	[mm]	[mm]
25	1	139	178	259	43	55
40	1 1/2	139	178	270	52	69
50	2	139	178	281	62	83
65	-	139	178	291	70	93
80	-	139	178	295	76	117
-	3	139	178	295	76	117
100	4	139	178	309	89	148

1) Depending on the cable entry used: values up to +30 mm

Threaded version

Order code for "Housing", option A "Compact, aluminum, coated"

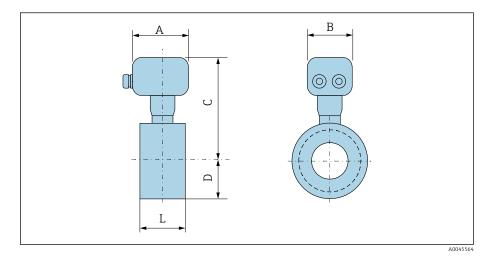


D	DN		В	С	D	Е	L
[mm]	[in]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
25	1	139	178	259	43	86	110
40	1 1/2	139	178	270	52	104	140
50	2	139	178	281	62	124	200

1) Depending on the cable entry used: values up to +30 mm

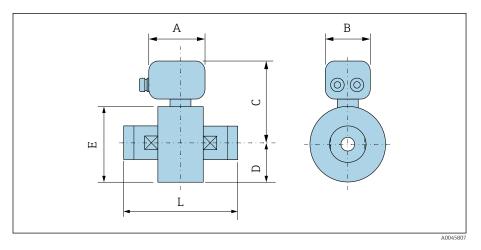
Remote version

Transmitter remote version



Order code for "Housing"	A ¹⁾	В	С	D	Е
	[mm]	[mm]	[mm]	[mm]	[mm]
Option N "Remote, polycarbonate"	132	187	172	307	130
Option P "Remote, aluminum, coated"	139	185	178	309	130

1) Depending on the cable entry used: values up to + 30 mm

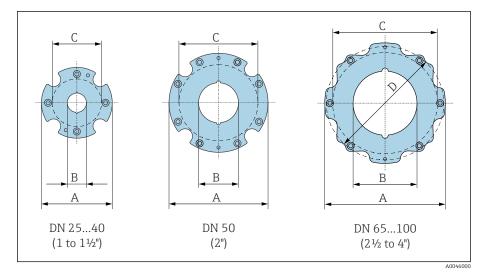

Sensor remote version

Wafer version

D	N	A ¹⁾	A ¹⁾ B C		D	L
[mm]	[in]	[mm]	[mm]	[mm]	[mm]	[mm]
25	1	113	112	199	43	55
40	1 1/2	113	112	210	52	69
50	2	113	112	221	62	83
65	-	113	112	231	70	93
80	-	113	112	235	76	117
-	3	113	112	235	76	117
100	4	113	112	249	89	148

Threaded connection

D	N	A ¹⁾	В	С	D	Е	L
[mm]	[in]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
25	1	113	112	199	43	86	110
40	1 1⁄2	113	112	210	52	104	140
50	2	113	112	221	62	124	200

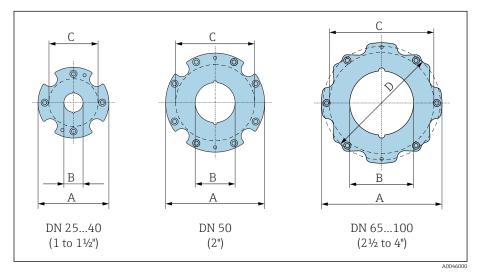

1) Depending on the cable entry used: values up to +30 mm

Flange connections

Flange as per EN 1092-1: PN 16

Order code for "Process connection", option D3Z

Mass B: internal diameter depends on the liner \rightarrow *Measuring tube specification*, \square 49

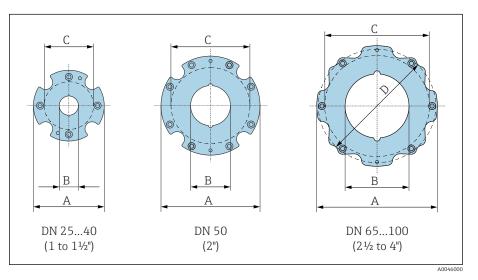

DN [mm]	A [mm]	B [mm]	C ¹⁾ [mm]
25	86	24	68
40	105	38	87
50	124	50	106
65	139	60	125
80	151	76	135
100	179	97	160

¹⁾ Max. Ø seals

Flange according to ASME B16.5: Class 150

Order code for "Process connection", option A1Z

Mass B: internal diameter depends on the liner \rightarrow *Measuring tube specification*, 🗎 49


DN [in]	A [mm]	B [mm]	C ¹⁾ [mm]	D [mm]
1	86	24	68	-
1 1/2	105	38	87	-
2	124	50	106	-
3	151	76	135	138
4	179	97	160	_

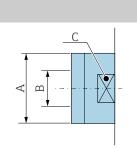
1) Max. Ø seals

Flange JIS B2220: 10K

Order code for "Process connection", option N3Z

Mass B: internal diameter depends on the liner \rightarrow *Measuring tube specification*, 🖺 49

DN [mm]	A [mm]	B [mm]	C ¹⁾ [mm]
25	86	24	68
40	105	38	87
50	124	50	106
65	139	60	125
80	151	76	135
100	179	97	160

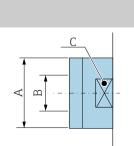

1) Max. Ø seals

Couplings

External thread: ISO 228

Order code for "Process connection", option I4S

Mass B: internal diameter depends on the liner \rightarrow *Measuring tube specification*, \cong 49

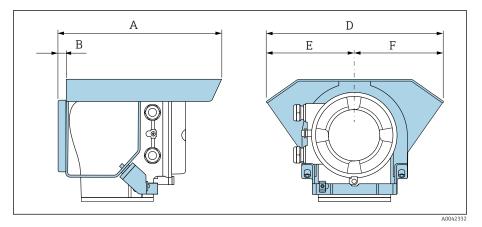

DN [mm]	A [in]	B [mm]	C [mm]
25	G 1"	22	28
40	G 1 ½"	34.4	50
50	G 2"	43	60

A0046008

External thread: ASME B1.20.1

Order code for "Process connection", option I5S

Mass B: internal diameter depends on the liner \rightarrow *Measuring tube specification*, 🖺 49



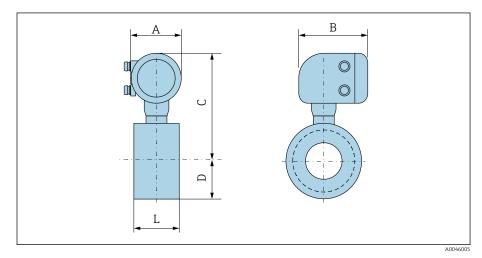
DN [in]	A [in]	B [mm]	C [mm]
1	NPT 1"	22	28
1 1/2	NPT 1 ½"	34.4	50
2	NPT 2"	43	60

A0046008

Accessories

Protective cover

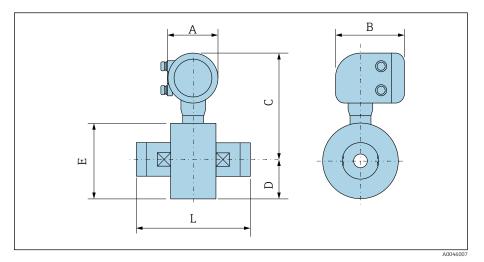
A	B	D	E	F
[mm]	[mm]	[mm]	[mm]	[mm]
257	12	280	140	140


Dimensions in US units

Compact version	66
Wafer version	66
Threaded version	67
Remote version	68
Transmitter remote version	68
Sensor remote version	69
Flange connections	71
Flange according to ASME B16.5: Class 150	71
Couplings	72
External thread: ASME B1.20.1	72
Accessories	73
Protective cover	73

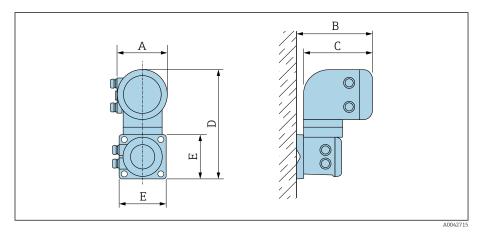
Compact version

Wafer version


Order code for "Housing", option A "Compact, aluminum, coated"

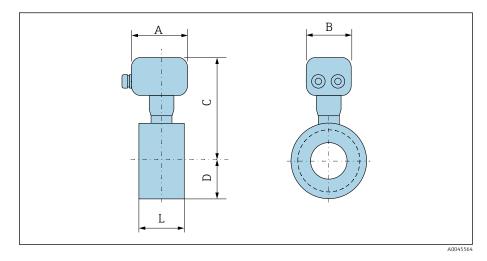
DN	A ¹⁾	В	С	D	L
[in]	[in]	[in]	[in]	[in]	[in]
1	5.47	7.01	10.2	1.69	2.17
1 1/2	5.47	7.01	10.63	2.05	2.72
2	5.47	7.01	11.06	2.44	3.27
3	5.47	7.01	11.61	2.99	4.61
4	5.47	7.01	12.17	3.5	5.83

Threaded version

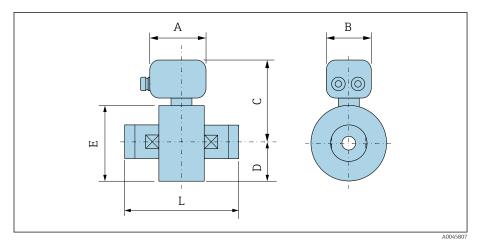

Order code for "Housing", option A "Compact, aluminum, coated"

DN	A ¹⁾	В	С	D	E	L
[in]	[in]	[in]	[in]	[in]	[in]	[in]
1	5.47	7.01	10.2	1.69	3.39	4.33
1 1⁄2	5.47	7.01	10.63	2.05	4.09	5.51
2	5.47	7.01	11.06	2.44	4.88	7.87

Remote version


Transmitter remote version

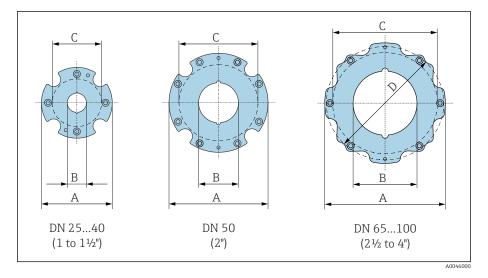
Order code for "Housing"	A 1)	В	С	D	Е
	[in]	[in]	[in]	[in]	[in]
Option N "Remote, polycarbonate"	5.2	7.36	6.77	12.09	5.12
Option P "Remote, aluminum, coated"	5.47	7.28	7.01	12.17	5.12


Sensor remote version

Wafer version

DN	A 1)	В	С	D	L
[in]	[in]	[in]	[in]	[in]	[in]
1	4.45	4.41	7.83	1.69	2.17
1 1/2	4.45	4.41	8.27	2.05	2.72
2	4.45	4.41	8.7	2.44	3.27
3	4.45	4.41	9.25	2.99	4.61
4	4.45	4.41	9.8	3.5	5.83

Threaded connection


DN	A 1)	В	С	D	E	L
[in]	[in]	[in]	[in]	[in]	[in]	[in]
1	4.45	4.41	7.83	1.69	3.39	4.33
1 1/2	4.45	4.41	8.27	2.05	4.09	5.51
2	4.45	4.41	8.7	2.44	4.88	7.87

Flange connections

Flange according to ASME B16.5: Class 150

Order code for "Process connection", option A1Z

Mass B: internal diameter depends on the liner \rightarrow *Measuring tube specification*, \square 49

DN [in]	A [in]	B [in]	C ¹⁾ [in]	D [in]
1	3.39	0.94	2.68	-
1 1/2	4.13	1.5	3.43	_
2	4.88	1.97	4.17	-
3	5.94	2.99	5.31	5.43
4	7.05	3.82	6.3	_

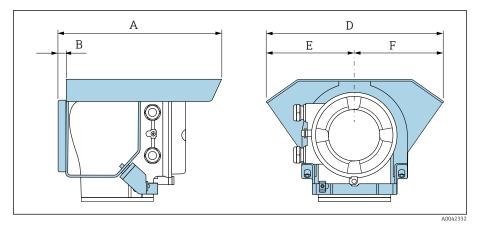
¹⁾ Max. Ø seals

Couplings

External thread: ASME B1.20.1

Order code for "Process connection", option I5S

Mass B: internal diameter depends on the liner \rightarrow *Measuring tube specification*, 🗎 49


	C C
A B A	

DN [in]	A [in]	B [mm]	C [mm]
1	NPT 1"	22	28
1 1⁄2	NPT 1 ¹ /2"	34.4	50
2	NPT 2"	43	60

A0046008

Accessories

Protective cover

A	B	D	E	F
[in]	[in]	[in]	[in]	[in]
10.12	0.47	11.02	5.51	5.51

Local display

Operating concept	76
Operating options	76
Operating tools	77

Operation method	 Operation via local display with touch screen. Operation via SmartBlue App.
Menu structure	Operator-oriented menu structure for user-specific tasks: Diagnostics Application System Guidance Language
Commissioning	 Commissioning via a guided menu (Commissioning wizard). Menu guidance with interactive help function for individual parameters.
Reliable operation	 Operation in local language. Uniform operating philosophy in device and in the SmartBlue App. Write protection When electronics modules are replaced: configurations are transferred using the T-DAT Backup device memory. The device memory contains process data, device data and the event logbook. No reconfiguration is necessary.
Diagnostic behavior	Efficient diagnostic behavior increases measurement availability:Open troubleshooting measures via local display and SmartBlue App.Diverse simulation options.Logbook of events that have occurred.

Operating concept

Operating options

Local display	AUD42957 Image: Subset of the streen Image: Subset o
SmartBlue App	 The SmartBlue App allows the user to put devices into operation and operate them. Based on Bluetooth. No separate driver required. Available for mobile handheld terminals, tablets and smartphones. Suitable for convenient and secure access to devices in hard-to-reach locations or in hazardous areas. Can be used within a 20 m (65.6 ft) radius of the device. Encrypted and secure data transmission. No data loss during commissioning and maintenance. Diagnostic information and process information in real time.

Operating tools	Operating unit	Interface	Additional information
DeviceCare SFE100	 Notebook PC Tablet with Microsoft Windows system 	CDI service interfaceFieldbus protocol	Innovation brochure IN01047S
FieldCare SFE500	 Notebook PC Tablet with Microsoft Windows system 	CDI service interfaceFieldbus protocol	Operating Instructions BA00027S and BA00059S
SmartBlue App	 Devices with iOS: iOS9.0 or higher Devices with Android: Android 4.4 KitKat or higher 	Bluetooth	Endress+HauserSmartBlue App: • Google Playstore (Android) • iTunes Apple Shop (iOS devices)
Device Xpert	Field Xpert SFX 100/350/370	HART fieldbus protocol	Operating Instructions BA01202S

Operating tools

Certificates and approvals

Non-Ex approval	80
Pressure Equipment Directive	80
Drinking water approval	80
HART certification	80
Radio approval	80
Other standards and guidelines	80

Non-Ex approval

- cCSAus
- EAC
- UK
- KC

Pressure Equipment Directive

- CRN
- PED Cat. II/III

Drinking water approval

- ACS
- KTW/W270
- NSF 61
- WRAS BS 6920

HART certification

The device is certified and registered by the FieldComm Group. The measuring system meets all the requirements of the following specifications:

- Certified according to HART 7
- The device can also be operated with certified devices of other manufacturers (interoperability).

Radio approval

The device has radio approvals.

Other standards and guidelines

- IEC/EN 60529
- Degrees of protection provided by enclosures (IP code)
- IEC/EN 60068-2-6
 Environmental influence
- Environmental influences: Test procedure Test Fc: vibrate (sinusoidal) • IEC/EN 60068-2-31
- Environmental influences: Test procedure Test Ec: shocks due to rough handling, primarily for devices.
- IEC/EN 61010-1 Safety requirements for electrical equipment for measurement, control and laboratory use - general requirements.
- CAN/CSA-C22.2 No. 61010-1-12
 Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use - Part 1 General Requirements.
- IEC/EN 61326 Emission in accordance with Class A requirements. Electromagnetic compatibility (EMC requirements)
- ANSI/ISA-61010-1 (82.02.01)
- Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use Part 1 General Requirements.
- NAMUR NE 21 Electromagnetic compatibility (EMC) of industrial process and laboratory control equipment.
- NAMUR NE 32
 Data retention in the event of a power failure in field and control instruments with microprocessors.
- NAMUR NE 43 Standardization of the signal level for the breakdown information of digital transmitters with analog output signal.
- NAMUR NE 53
- Software of field devices and signal-processing devices with digital electronics.
- NAMUR NE 105
 Specifications for integrating fieldbus devices in engineering tools for field devices.

- NAMUR NE 107
- Self-monitoring and diagnosis of field devices.
- NAMUR NE 131 Requirements for field devices for standard applications.
 ETSI EN 300 328
- Guidelines for 2.4 GHz radio components
- EN 301489
- Electromagnetic compatibility and radio spectrum matters (ERM).

Application packages

Use Heartbeat Verification + Monitoring

84

84

Use

Many different application packages are available to enhance the functionality of the device. Such packages might be needed to address safety aspects or specific application requirements.

The application packages can be ordered with the device or subsequently from Endress+Hauser. Detailed information on the relevant order code is available from your local Endress+Hauser sales organization or on the product page of the Endress+Hauser website: www.endress.com.

Heartbeat Verification + Monitoring

Heartbeat Verification

Availability depends on the product structure.

Meets the requirement for traceable verification to DIN ISO 9001:2008 Chapter 7.6 a) "Control of monitoring and measuring equipment":

- Functional testing in the installed state without interrupting the process.
- Traceable verification results on request, including a report.
- Simple testing process with local operation or other operating interfaces.
- Clear measuring point assessment (pass/fail) with high test coverage within the framework of manufacturer specifications.
- Extension of calibration intervals according to operator's risk assessment.

Heartbeat Monitoring

Availability depends on the product structure.

Heartbeat Monitoring continuously supplies data, which are characteristic of the measuring principle, to an external condition monitoring system for the purpose of preventive maintenance or process analysis. These data enable the operator to:

- Draw conclusions using these data and other information about the impact the process influences, e.g. corrosion, abrasion, formation of buildup, have on the measuring performance over time.
- Schedule servicing in time.
- Monitor the process quality or product quality, e.g. gas pockets.

Accessories

Device-specific accessories	86
Communication-specific accessories	87
Service-specific accessory	87
System components	88

Device-specific accessories

Transmitter

Accessories	Description	Order number
Proline 10 transmitter	Installation Instructions EA01350D	5XBBXX-**
Weather protection cover	Protects the device from weather exposure:	71502730
Connecting cable	 Can be ordered with the device. The following cable lengths are available: order code for "Cable, sensor connection" 5 m (16 ft) 10 m (32 ft) 20 m (65 ft) User-configurable cable length (m or ft) Max. cable length: 200 m (660 ft) 	DK5013-**

Sensor

Accessories	Description
Mounting kit for wafer version	Consists of: • Mounting bolts • Nuts with washers • Flange seals • Centering sleeves (if required for the flange)
Seal set	Consists of: 2 flange seals

Communication-specific accessories

Accessories	Description
Commubox FXA195 USB/HART modem	Intrinsically safe HART communication with FieldCare and FieldXpert
Commubox FXA291	Connects the Endress+Hauser devices with the CDI interface (= Endress+Hauser Common Data Interface) to the USB interface of a personal computer or laptop. Technical Information TI405C/07
HART Loop Converter HMX50	Is used to evaluate and convert dynamic HART process variables to analog current signals or limit values.
Fieldgate FXA42	 Transmission of measured values from connected 4 to 20 mA analog and digital devices. Technical Information TI01297S Operating Instructions BA01778S Product page: www.endress.com/fxa42
Field Xpert SMT70	 Tablet PC for the configuration of the device. Enables mobile Plant Asset Management to manage the devices with a digital communication interface. Suitable for Zone 2. Technical Information TI01342S Operating Instructions BA01709S Product page: www.endress.com/smt70
Field Xpert SMT77	 Tablet PC for the configuration of the device. Enables mobile Plant Asset Management to manage the devices with a digital communication interface. Suitable for Zone 1. Technical Information TI01418S Operating Instructions BA01923S Product page: www.endress.com/smt77

Service-specific accessory

Accessories	Description	Order number
Applicator	Software for selecting and sizing Endress+Hauser devices.	https:// portal.endress.com/ webapp/applicator
W@M Life Cycle Management	Information platform with software applications and servicesSupports the entire life cycle of the facility.	www.endress.com/ lifecyclemanagement
FieldCare	FDT-based plant asset management software from Endress+Hauser. Management and configuration of Endress+Hauser devices. () Operating Instructions BA00027S and BA00059S	 Device driver: www.endress.com → Download Area CD-ROM (contact Endress+Hauser) DVD (contact Endress+Hauser)
DeviceCare	Software for connecting and configuring Endress+Hauser devices.	 Device driver: www.endress.com → Download Area CD-ROM (contact Endress+Hauser) DVD (contact Endress+Hauser)

System components

Accessories	Description
Memograph M	Graphic data manager: • Record measured values • Monitor limit values • Analyze measuring points
	 Technical Information TI00133R Operating Instructions BA00247R
iTEMP	Temperature transmitter:Measure the absolute pressure and gauge pressure of gases, vapors and liquidsRead the medium temperature
	Fields of Activity" document FA00006T

www.addresses.endress.com

