Betriebsanleitung iTEMP TMT182B

Temperaturtransmitter

1 Hinweise zum Dokument

1.1 Dokumentfunktion

Diese Anleitung liefert alle Informationen, die in den verschiedenen Phasen des Lebenszyklus des Geräts benötigt werden: Von der Produktidentifizierung, Warenannahme und Lagerung über Montage, Anschluss, Bedienungsgrundlagen und Inbetriebnahme bis hin zur Störungsbeseitigung, Wartung und Entsorgung.

1.2 Sicherheitshinweise (XA)

Bei Einsatz in explosionsgefährdeten Bereichen sind die entsprechenden nationalen Normen einzuhalten. Messsystemen, die im explosionsgefährdetem Bereich eingesetzt werden, liegt eine separate Ex-Dokumentation bei, die ein fester Bestandteil dieser Betriebsanleitung ist. Die darin aufgeführten Installationsvorschriften, Anschlusswerte und Sicherheitshinweise müssen konsequent beachtet werden! Stellen Sie sicher, dass Sie die richtige Ex-Dokumentation zum passenden Ex-zugelassenen Gerät verwenden! Die Nummer der zugehörigen Ex-Dokumentation (XA...) finden Sie auf dem Typenschild. Wenn beide Nummern (auf der Ex-Dokumentation und auf dem Typenschild) exakt übereinstimmen, dürfen Sie diese Ex-Dokumentation benutzen.

1.3 Verwendete Symbole

1.3.1 Warnhinweissymbole

GEFAHR

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu Tod oder schwerer Körperverletzung führen wird.

WARNUNG

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu Tod oder schwerer Körperverletzung führen kann.

VORSICHT

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu leichter oder mittelschwerer Körperverletzung führen kann.

HINWEIS

Dieser Hinweis enthält Informationen zu Vorgehensweisen und weiterführenden Sachverhalten, die keine Körperverletzung nach sich ziehen.

1.3.2 Elektrische Symbole

Symbol	Bedeutung
	Gleichstrom
\sim	Wechselstrom
\sim	Gleich- und Wechselstrom

Symbol	Bedeutung
<u>+</u>	Erdanschluss Eine geerdete Klemme, die vom Gesichtspunkt des Benutzers über ein Erdungssystem geerdet ist.
	Anschluss Potenzialausgleich (PE: Protective earth) Erdungsklemmen, die geerdet werden müssen, bevor andere Anschlüsse hergestellt werden dürfen.
	 Die Erdungsklemmen befinden sich innen und außen am Gerät: Innere Erdungsklemme: Anschluss Potenzialausgleich wird mit dem Versorgungsnetz verbunden. Äußere Erdungsklemme: Gerät wird mit dem Erdungssystem der Anlage verbunden.

1.3.3 Symbole für Informationstypen

Symbol	Bedeutung
	Erlaubt Abläufe, Prozesse oder Handlungen, die erlaubt sind.
	Zu bevorzugen Abläufe, Prozesse oder Handlungen, die zu bevorzugen sind.
×	Verboten Abläufe, Prozesse oder Handlungen, die verboten sind.
i	Tipp Kennzeichnet zusätzliche Informationen.
	Verweis auf Dokumentation
	Verweis auf Seite
	Verweis auf Abbildung
►	Zu beachtender Hinweis oder einzelner Handlungsschritt
1., 2., 3	Handlungsschritte
L >	Ergebnis eines Handlungsschritts
?	Hilfe im Problemfall
	Sichtkontrolle

1.3.4 Symbole in Grafiken

Symbol	Bedeutung	Symbol	Bedeutung
1, 2, 3,	Positionsnummern	1., 2., 3	Handlungsschritte
A, B, C,	Ansichten	A-A, B-B, C-C,	Schnitte
EX	Explosionsgefährdeter Bereich	×	Sicherer Bereich (Nicht explosionsgefährdeter Bereich)

1.4 Werkzeugsymbole

Symbol	Bedeutung
•	Kreuz-Schlitzschraubendreher
A0011219	

Dokumentation 1.5

Dokument	Zweck und Inhalt des Dokuments
Technische Information TI01692T	Planungshilfe für Ihr Gerät Das Dokument liefert alle technischen Daten zum Gerät und gibt einen Überblick, was rund um das Gerät bestellt werden kann.
Kurzanleitung KA01605T	Schnell zum 1. Messwert Die Anleitung liefert alle wesentlichen Informationen von der Warenan- nahme bis zur Erstinbetriebnahme.
Beschreibung Geräteparameter GP01197T	Das Dokument dient als Nachschlagewerk für Parameter: Es liefert detail- lierte Erläuterungen zu jedem einzelnen Parameter der Bedienmenüs.

Die aufgelisteten Dokumenttypen sind verfügbar: Im Download-Bereich der Endress+Hauser Internetseite: www.endress.com → Download

Eingetragene Marken 1.6

HART®

Eingetragene Marke der FieldComm Group, Austin, Texas, USA

2 Grundlegende Sicherheitshinweise

2.1 Anforderungen an das Personal

Das Personal für Installation, Inbetriebnahme, Diagnose und Wartung muss folgende Bedingungen erfüllen:

- Ausgebildetes Fachpersonal: Verfügt über Qualifikation, die dieser Funktion und Tätigkeit entspricht.
- ► Vom Anlagenbetreiber autorisiert.
- Mit den nationalen Vorschriften vertraut.
- Vor Arbeitsbeginn: Anweisungen in Anleitung und Zusatzdokumentation sowie Zertifikate (je nach Anwendung) lesen und verstehen.
- Anweisungen und Rahmenbedingungen befolgen.

Das Bedienpersonal muss folgende Bedingungen erfüllen:

- Entsprechend den Aufgabenanforderungen vom Anlagenbetreiber eingewiesen und autorisiert.
- Anweisungen in dieser Anleitung befolgen.

2.2 Bestimmungsgemäße Verwendung

Das Gerät ist ein universeller und konfigurierbarer Temperaturtransmitter mit einem Sensoreingang für Widerstandsthermometer (RTD), Thermoelemente (TC), Widerstands- und Spannungsgeber. Das Gerät in der Bauform Kopftransmitter ist zur Montage in einen Anschlusskopf Form B nach DIN EN 50446 konzipiert. Die Montage mit dem optional erhältlichen DIN rail Clip auf einer Hutschiene ist ebenfalls möglich.

Falls das Gerät in einer vom Hersteller nicht spezifizierten Weise verwendet wird, kann der durch das Gerät gebotene Schutz beeinträchtigt werden.

Der Hersteller haftet nicht für Schäden, die aus unsachgemäßer oder nicht bestimmungsgemäßer Verwendung entstehen.

2.3 Betriebssicherheit

- ▶ Das Gerät nur in technisch einwandfreiem und betriebssicherem Zustand betreiben.
- Der Betreiber ist für den störungsfreien Betrieb des Geräts verantwortlich.

Zulassungsrelevanter Bereich

Um eine Gefährdung für Personen oder für die Anlage beim Geräteeinsatz im zulassungsrelevanten Bereich auszuschließen (z.B. Explosionsschutz oder Sicherheitseinrichtungen):

- Anhand der technischen Daten auf dem Typenschild überprüfen, ob das bestellte Gerät für den vorgesehenen Gebrauch im zulassungsrelevanten Bereich eingesetzt werden kann. Das Typenschild befindet sich seitlich am Transmittergehäuse.
- Die Vorgaben in der separaten Zusatzdokumentation beachten, die ein fester Bestandteil dieser Anleitung ist.

Geräte- und Störsicherheit

Die Messeinrichtung erfüllt die allgemeinen Sicherheitsanforderungen gemäß EN 61010-1 und die EMV-Anforderungen gemäß IEC/EN 61326-Serie sowie die NAMUR-Empfehlung NE 21.

HINWEIS

 Das Gerät darf nur von einem Netzteil mit energiebegrenztem Stromkreis nach UL/EN/IEC 61010-1, Kapitel 9.4 und Anforderungen in Tabelle 18, gespeist werden.

2.4 Produktsicherheit

Dieses Produkt ist nach dem Stand der Technik und guter Ingenieurspraxis betriebssicher gebaut und geprüft und hat das Werk in sicherheitstechnisch einwandfreiem Zustand verlassen.

2.5 IT-Sicherheit

Eine Gewährleistung unsererseits ist nur gegeben, wenn das Produkt gemäß der Betriebsanleitung installiert und eingesetzt wird. Das Produkt verfügt über Sicherheitsmechanismen, um es gegen versehentliche Veränderung der Einstellungen zu schützen.

IT-Sicherheitsmaßnahmen gemäß dem Sicherheitsstandard des Betreibers, die das Produkt und dessen Datentransfer zusätzlich schützen, sind vom Betreiber selbst zu implementieren.

2.6 Gerätespezifische IT-Sicherheit

Um die betreiberseitigen Schutzmaßnahmen zu unterstützen, bietet das Gerät spezifische Funktionen. Diese Funktionen sind durch den Anwender konfigurierbar und gewährleisten bei korrekter Nutzung eine erhöhte Sicherheit im Betrieb. Das Gerät bietet ein Passwort zur Änderung der Benutzerrolle (gilt für die Bedienung über FieldCare, DeviceCare, PDM).

Funktion/Schnittstelle	Werkseinstellung	Empfehlung
Passwort	Nicht aktiviert (0000)	Bei der Inbetriebnahme einen individuellen Freigabecode vergeben.
Serviceschnittstelle (CDI)	Aktiviert	Individuell nach Risikoabschätzung.

2.6.1 Anwenderspezifisches Passwort

Der Schreibzugriff auf die Parameter des Geräts via Bedientool (z. B. FieldCare, DeviceCare) kann durch ein veränderbares, anwenderspezifisches Passwort geschützt werden.

2.6.2 Allgemeine Hinweise

- Passwörter die bei Auslieferung verwendet wurden, bei der Inbetriebnahme anpassen
- Bei der Definition und Verwaltung des Passwortes, die allgemein üblichen Regeln für die Generierung eines sicheren Passworts berücksichtigen
- Die Verwaltung und der sorgfältige Umgang mit Passwörtern obliegt dem Benutzer

Warenannahme und Produktidentifizierung

- 1. Temperaturtransmitter vorsichtig auspacken. Sind Inhalt oder Verpackung unbeschädigt?
 - Beschädigte Komponenten dürfen nicht installiert werden, da der Hersteller andernfalls die Einhaltung der ursprünglichen Sicherheitsanforderungen oder die Materialbeständigkeit nicht gewährleisten und daher auch nicht für daraus entstehende Schäden verantwortlich gemacht werden kann.
- 2. Ist die gelieferte Ware vollständig oder fehlt etwas? Lieferumfang anhand der Bestellung überprüfen.
- 3. Entspricht das Typenschild den Bestellinformationen auf dem Lieferschein?
- **4.** Sind die technische Dokumentation und alle weiteren erforderlichen Dokumente vorhanden? Falls erforderlich: Sind die Sicherheitshinweise (z. B. XA) für explosionsgefährdete Bereiche vorhanden?

Wenn eine dieser Bedingungen nicht zutrifft: Wenden Sie sich an Ihre Endress+Hauser Vertriebsstelle.

3.1 Produktidentifizierung

Folgende Möglichkeiten stehen zur Identifizierung des Gerätes zur Verfügung:

Typenschildangaben

3

- Erweiterter Bestellcode (Extended order code) mit Aufschlüsselung der Gerätemerkmale auf dem Lieferschein
- Seriennummer vom Typenschild in W@M Device Viewer (www.endress.com/deviceviewer) eingeben: Alle Angaben zum Gerät und eine Übersicht zum Umfang der mitgelieferten Technischen Dokumentation werden angezeigt.
- Seriennummer vom Typenschild in die *Endress+Hauser Operations App* eingeben oder mit der *Endress+Hauser Operations App* den 2-D-Matrixcode (QR-Code) auf dem Typenschild scannen: Alle Angaben zum Gerät und zum Umfang der zugehörigen Technischen Dokumentation werden angezeigt.

3.1.1 Typenschild

Das richtige Gerät?

Vergleichen und prüfen Sie die Angaben auf dem Typenschild des Gerätes mit den Anforderungen der Messstelle.

Angaben auf dem Typenschild:

- Seriennummer, Geräterevision, Firmware- und Hardware-Version
- DataMatrix 2D Code
- 2 Zeilen Messstellenbezeichnung TAG und erweiterter Bestellcode
- Zulassung im explosionsgefährdeten Bereich mit Nummer der zugehörigen Ex-Dokumentation (XA...)
- Zulassungen mit Symbolen

3.1.2 Name und Adresse des Herstellers

Name des Herstellers:	Endress+Hauser Wetzer GmbH + Co. KG
Adresse des Herstellers:	Obere Wank 1, D-87484 Nesselwang oder www.endress.com

3.2 Lieferumfang

Der Lieferumfang des Gerätes besteht aus:

- Temperaturtransmitter
- Befestigungsmaterial (Kopftransmitter), optional
- Gedruckte, englischsprachige Kurzanleitung
- Zusätzliche Dokumentation für Geräte, die für den Einsatz im explosionsgefährdeten Bereich, geeignet sind, wie z. B. Sicherheitshinweise (XA)

3.3 Lagerung und Transport

Abmessungen: $\rightarrow \square 46$

Lagerungstemperatur

- -50 ... +100 °C (-58 ... +212 °F)
- Feuchtigkeit: Max. rel. Feuchte: 95 % nach IEC 60068-2-30

Bei Lagerung und Transport das Gerät so verpacken, dass es zuverlässig vor Stößen und äußeren Einflüssen geschützt wird. Die Originalverpackung bietet optimalen Schutz.

Bei Lagerung folgende Umgebungseinflüsse unbedingt vermeiden:

- Direkte Sonneneinstrahlung
- Vibration
- Aggressive Medien

4 Montage

4.1 Montagebedingungen

4.1.1 Abmessungen

Die Abmessungen des Gerätes siehe Technische Daten' $\rightarrow \square$ 46.

4.1.2 Montageort

Im Anschlusskopf Form B nach DIN EN 50446, direkte Montage auf Messeinsatz mit Kabeldurchführung (Mittelloch 7 mm).

Auf ausreichend Platz im Anschlusskopf achten!

Mit dem Zubehörteil DIN rail Clip $\rightarrow \bigoplus$ 33 ist auch eine Montage des Kopftransmitters auf Hutschiene nach IEC 60715 möglich.

Informationen über die Bedingungen, die am Montageort vorliegen müssen, um das Gerät bestimmungsgemäß zu montieren, wie Umgebungstemperatur, Schutzart, Klimaklasse, etc., siehe 'Technische Daten' $\rightarrow \square$ 46.

Für den Einsatz im explosionsgefährdeten Bereich sind die Grenzwerte der Zertifikate und Zulassungen (siehe Ex-Sicherheitshinweise) einzuhalten.

4.2 Gerät montieren

Zur Montage des Kopftransmitters ist ein Kreuz-Schlitzschraubendreher erforderlich:

- Maximales Drehmoment f
 ür Befestigungsschrauben = 1 Nm (¾ pound-feet), Schraubendreher: Pozidriv Z2
- Maximales Drehmoment f
 ür Schraubklemmen = 0,35 Nm (¼ pound-feet), Schraubendreher: Pozidriv Z1

I Kopftransmittermontage

A	Montage in einen Anschlusskopf (Anschlusskopf Form B nach DIN 43729)	
1	Anschlusskopf	
2	Sicherungsringe	

А	Montage in einen Anschlusskopf (Anschlusskopf Form B nach DIN 43729)	
3	Messeinsatz	
4	Anschlussdrähte	
5	Kopftransmitter	
6	Montagefedern	
7	Montageschrauben	
8	Anschlusskopfdeckel	
9	Kabeldurchführung	

Vorgehensweise Montage in einen Anschlusskopf, Pos. A:

- 1. Anschlusskopfdeckel (8) am Anschlusskopf öffnen.
- 2. Die Anschlussdrähte (4) des Messeinsatzes (3) durch das Mittelloch im Kopftransmitter (5) führen.
- 3. Montagefedern (6) auf die Montageschrauben (7) stecken.
- 4. Montageschrauben (7) durch die seitlichen Bohrungen des Kopftransmitters und des Messeinsatzes (3) führen. Beide Montageschrauben mit den Sicherungsringen (2) fixieren.
- 5. Kopftransmitter (5) mit dem Messeinsatz (3) im Anschlusskopf festschrauben.
- 6. Nach erfolgter Verdrahtung den Anschlusskopfdeckel (8) wieder fest verschließen.

В	Montage auf Hutschiene (Hutschiene nach IEC 60715)
1	Montageschrauben
2	Kopftransmitter
3	Sicherungsringe
4	DIN rail clip
5	Hutschiene

Vorgehensweise Montage auf Hutschiene, Pos. B:

- 1. DIN rail clip (4) auf die Hutschiene (5) drücken, bis er einrastet
- Montageschrauben (1) durch die seitlichen Bohrungen des Kopftransmitters führen (2). Danach beide Montageschrauben mit den Sicherungsringen (3) fixieren.
- **3**. Kopftransmitter (2) am DIN rail clip (4) festschrauben.

- 2 Kopftransmittermontage
- 1 Schutzrohr
- 2 Messeinsatz
- 3 Adapter, Verschraubung
- 4 Anschlusskopf
- 5 Kopftransmitter
- 6 Montageschrauben

Thermometeraufbau mit RTD Sensoren und Kopftransmitter:

- 1. Schutzrohr (1) am Prozessrohr oder der -behälterwand anbringen. Schutzrohr vorschriftsmäßig befestigen, bevor der Prozessdruck angelegt wird.
- 2. Benötigte Halsrohrnippel und Adapter (3) am Schutzrohr anbringen.
- **3.** Für den Einbau von Dichtungsringen sorgen, wenn diese für raue Umgebungsbedingungen oder spezielle Vorschriften benötigt werden.
- 4. Montageschrauben (6) durch die seitlichen Bohrungen des Kopftransmitters (5) führen.
- 5. Kopftransmitter (5) im Anschlusskopf (4) so positionieren, dass die Versorgungsleitungen (Klemmen 1 und 2) zur Kabeldurchführung weisen.
- 6. Mit einem Schraubendreher den Kopftransmitter (5) im Anschlusskopf (4) festschrauben.
- 7. Anschlussdrähte des Messeinsatzes (3) durch die untere Kabeldurchführung des Anschlusskopfes (4) und durch das Mittelloch im Kopftransmitter (5) führen. Anschlussdrähte und Transmitter miteinander verdrahten.
- 8. Anschlusskopf (4) mit dem eingebauten und verdrahteten Kopftransmitter auf die bereits installierten Nippel und Adapter (3) schrauben.

HINWEIS

Um den Anforderungen des Explosionsschutzes zu genügen, muss der Anschlusskopfdeckel ordnungsgemäß befestigt werden.

► Nach erfolgter Verdrahtung den Anschlusskopfdeckel wieder fest anschrauben.

4.3 Montagekontrolle

Nach der Montage des Gerätes folgende Kontrollen durchführen:

(Gerätezustand und -spezifikationen	Hinweise
]	Ist das Gerät, die Anschlüsse und Anschlussleitungen unbeschädigt (Sichtkontrolle)?	-
	Entsprechen die Umgebungsbedingungen der Gerätespezifikation (z.B. Umgebungstem- peratur, Messbereich, usw.)?	siehe Kapitel 'Tech- nische Daten'
	Sind Anschlüsse ordnungsgemäß und mit dem spezifizierten Drehmoment ausgeführt?	-

5 Elektrischer Anschluss

AVORSICHT

- Gerät nicht unter Betriebsspannung installieren bzw. verdrahten. Ein Nichtbeachten kann zur Zerstörung von Teilen der Elektronik führen.
- ► CDI-Schnittstelle nicht belegen. Fremdanschluss kann zur Zerstörung der Elektronik führen.

HINWEIS

Die Schraubklemmen nicht zu fest anziehen, um eine Beschädigung des Transmitters zu vermeiden.

Maximales Anzugsmoment = 1 Nm (³/₄ lbf ft).

5.1 Anschlussbedingungen

Zur Verdrahtung des Kopftransmitters mit Schraubklemmen ist ein Kreuzschlitzschraubendreher erforderlich.

Bei der Verdrahtung eines eingebauten Kopftransmitters grundsätzlich wie folgt vorgehen:

- 1. Kabelverschraubung und den Gehäusedeckel am Anschlusskopf oder am Feldgehäuse öffnen.
- 2. Die Leitungen durch die Öffnung der Kabelverschraubung führen.
- **3.** Die Leitungen gemäß → \blacksquare 12 anschließen.
- 4. Kabelverschraubung wieder anziehen und den Gehäusedeckel schließen.

Um Anschlussfehler zu vermeiden, in jedem Fall vor der Inbetriebnahme die Hinweise im Abschnitt "Anschlusskontrolle" beachten!

5.2 Sensorleitungen anschließen

Image: Second State S

- 1 Sensoreingang, RTD und Ω , 4-, 3- und 2-Leiter
- 2 Sensoreingang, TC und mV
- 3 CDI-Schnittstelle
- 4 Busanschluss und Spannungsversorgung

Für die Bedienung des HART[®]-Transmitters über das HART[®]-Protokoll (Klemmen 1 und 2) ist eine minimale Bürde von 250 Ω im Signalstromkreis erforderlich.

HINWEIS

ESD – Electrostatic Discharge, elektrostatische Entladung. Die Klemmen vor elektrostatischer Entladung schützen. Ein Nichtbeachten kann zur Zerstörung oder Fehlfunktion von Teilen der Elektronik führen.

5.3 Transmitter anschließen

Rabelspezifikation

- Wenn nur das Analogsignal verwendet wird, ist ein normales Installationskabel ausreichend.
- Bei HART[®]-Kommunikation wird ein abgeschirmtes Kabel empfohlen. Erdungskonzept der Anlage beachten.

Dazu auch die generelle Vorgehensweise auf \rightarrow 🗎 12 beachten.

Anschluss Signalkabel und Spannungsversorgung

- 1 Kopftransmitter eingebaut im Anschlusskopf oder Feldgehäuse
- 2 Anschlussklemmen für HART[®]-Protokoll und Spannungsversorgung
- 3 Erdungsanschluss innen
- 4 Erdungsanschluss außen
- 5 Geschirmtes Signalkabel (für HART[®]-Protokoll empfohlen)

Die Klemmen für den Signalkabelanschluss (1+ und 2-) sind verpolungssicher.
 Leitungsquerschnitt max. 1,5 mm²

5.4 Spezielle Anschlusshinweise

Schirmung und Erdung

Bei der Installation des HART®-Transmitters sind die Vorgaben der FieldComm Group™ zu beachten.

- ☑ 5 Schirmung und einseitige Erdung des Signalkabels bei HART[®]-Kommunikation
- 1 Optionale Erdung des Feldgerätes, isoliert vom Kabelschirm
- 2 Einseitige Erdung des Kabelschirms
- 3 Speisegerät
- 4 Erdungspunkt für HART[®]-Kommunikation-Kabelschirm

5.5 Schutzart sicherstellen

Um nach erfolgter Montage im Feld oder nach einem Servicefall die Schutzart IP67 zu gewährleisten, müssen folgende Punkte zwingend beachtet werden:

- Der Transmitter muss in einem Anschlusskopf mit entsprechender Schutzart montiert sein.
- Die Gehäusedichtungen müssen sauber und unverletzt in die Dichtungsnut eingelegt werden. Gegebenenfalls sind die Dichtungen zu trocknen, zu reinigen oder zu ersetzen.
- Die für den Anschluss verwendeten Kabel müssen den spezifizierten Außendurchmesser aufweisen (z.B. M20x1.5, Kabeldurchmesser 8 ... 12 mm).
- Kabelverschraubung fest anziehen. $\rightarrow \mathbb{E}$ 6, 🖺 14
- Kabel vor der Kabelverschraubung in einer Schlaufe verlegen ("Wassersack"). Auftretende Feuchtigkeit kann so nicht zur Verschraubung gelangen. Das Gerät möglichst in der Weise montieren, dass die Kabelverschraubungen nicht nach oben gerichtet sind.
 →
 ✓ 6,
- Nicht benutzte Kabelverschraubungen sind durch einen Blindstopfen zu ersetzen.
- Die verwendete Schutztülle darf nicht aus der Kabelverschraubung entfernt werden.

Image: Anschlusshinweise zur Einhaltung der Schutzart IP67

5.6 Anschlusskontrolle

Gerätezustand und -spezifikationen	Hinweise
Sind Gerät oder Kabel unbeschädigt (Sichtkontrolle)?	
Elektrischer Anschluss	Hinweise
Stimmt die Versorgungsspannung mit den Angaben auf dem Typenschild überein?	 Kopftransmitter: U = 10 36 V_{DC} Im Ex-Bereich gelten andere Werte, siehe entsprechende Ex-Sicherheitshinweise (XA).
Sind die montierten Kabel von Zug entlastet?	
Sind Hilfsenergie- und Signalkabel korrekt angeschlos- sen?	→ 🗎 12
Sind alle Schraubklemmen gut angezogen	
Sind alle Kabeleinführungen montiert, fest angezogen und dicht?	
Sind alle Gehäusedeckel montiert und fest angezogen?	

6 Bedienungsmöglichkeiten

6.1 Übersicht zu Bedienungsmöglichkeiten

Image: Bedienungsmöglichkeiten des Transmitters über HART[®]-Kommunikation

1 Temperaturtransmitter

2 Transmitter-Speisetrenner mit bidirektionaler HART®-Signalübertragung

3 HART® Modem

4 PC, Laptop oder Tablet mit Bedientools FieldCare/DeviceCare

5 SPS

6.2 Aufbau und Funktionsweise des Bedienmenüs

6.2.1 Aufbau des Bedienmenüs

Benutzerrollen

Das rollenbasierte Zugriffskonzept von Endress+Hauser besteht aus zwei Hierarchieebenen für den Anwender und bildet dabei die verschiedenen Benutzerrollen mit definierten Lese-/Schreibrechten, abgeleitet aus dem NAMUR Schalenmodell, ab.

Bediener

Der Anlagenbediener kann grundsätzlich nur Einstellungen verändern, welche keinen Einfluss auf die Applikation, insbesondere Messpfad, haben und einfache, applikationsspezifische Funktionen, die im Betrieb verwendet werden. Er ist jedoch in der Lage, alle Parameter abzulesen.

Instandhalter

Die Benutzerrolle **Instandhalter** ist grundsätzlich der Nutzungssituation 'Konfiguration: Inbetriebnahme und Prozessanpassungen' sowie der Störungsbeseitigung zugeordnet. Sie gestattet das Konfigurieren und Ändern aller verfügbaren Parameter. Anders als die Benutzerrolle **Bediener** sind alle Parameter mit Lese- und Schreibrechten zugänglich.

Wechsel der Benutzerrolle

Ein Rollenwechsel und somit eine Veränderung der bestehenden Lese- und Schreibrechte erfolgt grundsätzlich durch die Anwahl der gewünschten Benutzerrolle (je nach Bedientool bereits vorausgewählt) mit nachfolgender Abfrage des entsprechenden korrekten Passwortes. Eine Abmeldung bewirkt immer den Rücksprung in die unterste Hierarchiestufe. Eine Abmeldung kann aktiv über eine entsprechende Eingabe in der Gerätebedienung erfolgen oder über eine inaktive Bedienung, die eine Zeitspanne von 600 Sekunden überschreitet. Laufende Aktionen (wie z. B. aktiver Up-/Download, Aufzeichnungen, etc.) werden davon unabhängig im Hintergrund weiter ausgeführt.

Auslieferzustand

Die Werksauslieferung erfolgt ohne aktivierte Benutzerrolle **Bediener**, d.h. die Benutzerrolle **Instandhalter** ist die unterste Hierarchiestufe ab Werk. Dieser Auslieferzustand ermöglicht es, ohne Passwort-Eingabe die Inbetriebnahme und weitere Prozessanpassungen durchzuführen. Danach kann ein Passwort für die Benutzerrolle **Instandhalter** vergeben werden, um diese Konfiguration zu schützen. Die Benutzerrolle **Bediener** ist ab Werk nicht sichtbar.

Passwort

Um den Zugriff auf Funktionen des Gerätes einzuschränken, kann die Benutzerrolle **Instandhalter** ein Passwort vergeben. Dadurch wird die Benutzerrolle **Bediener** aktiviert - als unterste Hierarchiestufe ohne Passwort-Abfrage. Das Passwort kann nur in der Benutzerrolle **Instandhalter** verändert oder deaktiviert werden. Ein Passwort kann an verschiedenen Stellen in der Gerätebedienung definiert werden:

Im Menü Benutzerführung \rightarrow Inbetriebnahme-Assistent: als Bestandteil in der geführten Gerätebedienung

Im Menü: System → Benutzerverwaltung

Untermenüs

Menü	Typische Aufgaben	Inhalt/Bedeutung
"Diagnose"	 Fehlerbehebung: Diagnose und Behebung von Prozessfehlern. Fehlerdiagnose in schwierigen Fällen. Interpretation von Fehlermeldungen des Geräts und Behebung der zugehörigen Fehler. 	 Enthält alle Parameter zur Detektion und Analyse von Betriebsfehlern: Diagnoseliste Enthält bis zu 3 aktuell anstehende Fehlermeldungen Ereignis-Logbuch Enthält die 10 letzten Fehlermeldungen Untermenü "Simulation" Dient zur Simulation von Messwerten, Ausgangswerten oder Diagnosemeldungen Untermenü "Diagnoseeinstellungen" Enthält alle Parameter zur Konfiguration von Fehlerereignissen Untermenü "Min/Max-Werte" Enthält die Schleppzeiger und die Zurücksetzungsmöglichkeit
"Applikation"	 Inbetriebnahme: Konfiguration der Messung. Konfiguration der Messwertverarbeitung (Skalierung, Linearisierung, etc.). Konfiguration der analogen Messwertausgabe. Aufgaben im laufenden Messbetrieb: Ablesen von Messwerten. 	 Enthält alle Parameter zur Inbetriebnahme: Untermenü "Messwerte" Enthält alle aktuellen Messwerte Untermenü "Sensorik" Enthält alle Parameter zur Konfiguration der Messung Untermenü "Ausgang" Enthält alle Parameter zur Konfiguration des analogen Stromausgangs Untermenü "HART Konfiguration" Enthält die Einstellungen und wichtigsten Parameter für die HART Kommunikation
"System"	 Aufgaben, die detaillierte Kenntnisse über die System- verwaltung des Geräts erfordern: Optimale Anpassung der Messung zur Anlagenin- tegration. Detaillierte Konfiguration der Kommunikations- schnittstelle. Benutzer- und Zugriffsverwaltung, Passwortrege- lung Informationen zur Geräteidentifikation und HART- Infos 	Enthält alle übergeordneten Geräteparameter, die zur System-, Geräte- und Benutzerverwaltung zugeordnet sind, u. a. auch Bluethooth-Konfi- guration. • Untermenü "Geräteverwaltung" Enthält Parameter zur allgemeinen Geräteverwaltung • Untermenüs "Geräte- und Benutzerverwaltung" Parameter zu Zugriffsrechten, Passwortvergabe, etc. • Untermenüs "Information" Enthält alle Parameter zur eindeutigen Identifizierung des Gerätes • Untermenü "Anzeige" Konfiguration der Anzeige

6.3 Zugriff auf Bedienmenü via Bedientool

Die Endress+Hauser Bedientools FieldCare und DeviceCare stehen zum Download (https://www.software-products.endress.com) oder auf dem Datenspeichermedium zur Verfügung, das Sie bei Ihrer Endress+Hauser Vertriebszentrale vor Ort erhalten.

6.3.1 DeviceCare

Funktionsumfang

DeviceCare ist ein kostenloses Konfigurationstool für Endress+Hauser Geräte. Unterstützt werden Geräte mit den Protokollen HART, PROFIBUS, FOUNDATION Fieldbus, Ethernet/IP, Modbus, CDI, ISS, IPC und PCP, sofern ein geeigneter Treiber (Geräte-DTM) existiert. Zielgruppe sind Kunden ohne digitales Netzwerk in Anlagen und Werkstätten sowie Endress+Hauser Servicetechniker. Die Geräte können direkt über ein Modem (Punkt-zu-Punkt) oder ein Bussystem verbunden werden. Es zeichnet sich durch eine einfache, schnelle und intuitive Bedienung aus. Wahlweise kann es auf einem PC, Laptop oder Tablet mit dem Betriebssystem Windows verwendet werden.

Bezugsquelle für Gerätebeschreibungsdateien

Siehe Angaben im Kapitel Systemintegration \rightarrow 🗎 22

Verbindungsaufbau

am Beispiel: CDI Kommunikationskit FXA291 (USB)

1. Sicherstellen, dass die DTM-Bibliothek für alle angeschlossenen Geräte aktualisiert wird.

DeviceCare starten und via Schaltfläche Automatisch das Gerät verbinden.
 Das Gerät wird automatisch erkannt.

Bei der Übertragung der Geräteparameter nach einer Offline-Parametrierung muss zuerst das Passwort für den **Instandhalter**, falls vorgegeben, im Menü **System -> Benutzerverwaltung** eingegeben werden.

Benutzeroberfläche

🗷 8 DeviceCare Benutzeroberfläche mit Geräteinformationen

- 1 Navigationsbereich
- 2 Anzeige der Gerätebezeichnung, aktueller Status, aktuelle Messwerte
- 3 Bereich zur Geräteparametrierung

6.3.2 FieldCare

Funktionsumfang

FDT/DTM-basiertes Anlagen-Asset-Management-Tool von Endress+Hauser. Es kann alle intelligenten Feldeinrichtungen in einer Anlage konfigurieren und unterstützt bei deren Verwaltung. Durch Verwendung von Statusinformationen stellt es darüber hinaus ein einfaches, aber wirkungsvolles Mittel dar, deren Zustand zu kontrollieren. Der Zugriff erfolgt via HART[®]-Protokoll, CDI (= Endress+Hauser Common Data Interface) -Schnittstelle. Unterstützt werden Geräte mit den Protokollen HART, PROFIBUS, FOUNDATION Fieldbus, Ethernet/IP, Modbus, CDI, ISS, IPC und PCP, sofern ein geeigneter Treiber (Geräte-DTM) existiert.

Typische Funktionen:

- Parametrierung von Messumformern
- Laden und Speichern von Gerätedaten (Upload/Download)
- Dokumentation der Messstelle
- Visualisierung des Messwertspeichers (Linienschreiber) und Ereignis-Logbuchs
- Zu Einzelheiten: Betriebsanleitung BA027S/04/xx und BA059AS/04/xx

Bezugsquelle für Gerätebeschreibungsdateien

Siehe Angaben $\rightarrow \square 22$

Verbindungsaufbau

am Beispiel: CDI Kommunikationskit FXA291 (USB)

- 1. Sicherstellen, dass die DTM-Bibliothek für alle angeschlossenen Geräte aktualisiert wird.
- 2. FieldCare starten und ein Projekt erzeugen.
- Rechtsklicken auf Host PC Gerät hinzufügen...
 Das Fenster Neues Gerät hinzufügen öffnet sich.
- 4. Option CDI Communication FXA291 aus Liste wählen und mit OK bestätigen.
- 5. Auf **CDI Communication FXA291** DTM doppelklicken.
 - Überprüfen, ob das richtige Modem an den seriellen Schnittstellenanschluss angeschlossen ist.
- 6. Mit rechter Maustaste auf **CDI Communication FXA291** klicken und im Kontextmenü die Option **Netzwerk erzeugen** wählen.
 - └ ► Verbindung zum Gerät wird aufgebaut.
- Bei der Übertragung der Geräteparameter nach einer Offline-Parametrierung muss zuerst das Passwort für den **Instandhalter**, falls vorgegeben, im Menü **System -> Benutzerverwaltung** eingegeben werden.

Benutzeroberfläche

🖻 9 FieldCare Benutzeroberfläche mit Geräteinformationen

- 1 Netzwerkansicht
- 2 Anzeige der Gerätebezeichnung, aktueller Status, aktuelle Messwerte
- 3 Menü-Navigation, Geräteparametrierung, Hilfebereich

6.3.3 AMS Device Manager

Funktionsumfang

Programm von Emerson Process Management für das Bedienen und Konfigurieren von Messgeräten via HART[®]-Protokoll.

Bezugsquelle für Gerätebeschreibungsdateien

Siehe Angaben $\rightarrow \square$ 22.

6.3.4 SIMATIC PDM

Funktionsumfang

Einheitliches herstellerunabhängiges Programm von Siemens zur Bedienung, Einstellung, Wartung und Diagnose von intelligenten Feldgeräten via HART[®]-Protokoll.

Bezugsquelle für Gerätebeschreibungsdateien

Siehe Angaben \rightarrow 🗎 22.

7 Systemintegration

7.1 Übersicht zu Gerätebeschreibungsdateien

Versionsdaten zum Gerät

Firmware-Version	01.01.zz	 Auf Titelseite der Anleitung Auf Typenschild Parameter Firmwareversion System → Information → Gerätebezeichnung →Firmwareversion
Hersteller-ID	0x11	Parameter Hersteller-ID System \rightarrow Information \rightarrow HART-Info \rightarrow Hersteller-ID
Gerätetypkennung	0x11D2	Parameter Gerätetyp System → Information → HART-Info → Gerätetyp
HART-Protokoll Revision	7	
Geräterevision (Device revision)	1	 Auf Transmitter-Typenschild Parameter Geräterevision System → Information → HART-Info → Geräterevision

Die geeignete Gerätetreibersoftware (DD/DTM) für die einzelnen Bedientools kann bei verschiedenen Quellen bezogen werden:

- www.endress.com --> Downloads --> Suchbereich: Software --> Softwaretyp: Geräte Treiber
- www.endress.com --> Produkte: individuelle Produktseite, z. B. TMTxy --> Dokumente / Handbücher / Software: Electronic Data Description (EDD) oder Device Type Manager (DTM).

Endress+Hauser unterstützt alle herkömmlichen Bedientools verschiedener Hersteller (z. B. Emerson Process Management, ABB, Siemens, Yokogawa, Honeywell und viele andere). Die Endress+Hauser Bedientools FieldCare und DeviceCare stehen auch zum Download (www. endress.com --> Downloads --> Suchbereich: Software --> Applikationssoftware) oder auf dem Datenspeichermedium zur Verfügung, das Sie bei Ihrer Endress+Hauser Vertriebszentrale vor Ort erhalten.

7.2 Messgrößen via HART-Protokoll

Den Gerätevariablen sind werkseitig folgende Messwerte zugeordnet:

Gerätevariable	Messwert
Erste Gerätevariable (PV)	Sensor 1
Zweite Gerätevariable (SV)	Gerätetemperatur
Dritte Gerätevariable (TV)	Sensor 1
Vierte Gerätevariable (QV)	Sensor 1

7.3 Unterstützte HART[®] Kommandos

Das HART[®] -Protokoll ermöglicht für Konfigurations- und Diagnosezwecke die Übermittlung von Mess- und Gerätedaten zwischen dem HART[®] -Master und dem betreffenden Feldgerät. HART[®] -Master wie z.B. das Handbediengerät oder PC-basierte Bedienprogramme (z.B. FieldCare) benötigen Gerätebeschreibungsdateien (DD = Device Descriptions, DTM), mit deren Hilfe ein Zugriff auf alle Informationen in einem HART[®] -Gerät möglich ist. Die Übertragung solcher Informationen erfolgt ausschließlich über sogenannte "Kommandos".

Drei Kommandoklassen werden unterschieden

- Universelle Kommandos (Universal Commands): Universelle Kommandos werden von allen HART[®] -Geräten unterstützt und verwendet. Damit verbunden sind z.B. folgende Funktionalitäten:
 - Erkennen von HART[®] -Geräten
 - Ablesen digitaler Messwerte
- Allgemeine Kommandos (Common Practice Commands):
 Die allgemeinen Kommandos bieten Funktionen an, die von vielen, aber nicht von allen Feldgeräten unterstützt bzw. ausgeführt werden können.
- Gerätespezifische Kommandos (Device-specific Commands):
- Diese Kommandos erlauben den Zugriff auf gerätespezifische Funktionen, die nicht HART[®] -standardisiert sind. Solche Kommandos greifen u.a. auf individuelle Feldgeräteinformationen zu.

Kommando-Nr.	Bezeichnung			
Universal commands				
0, Cmd0	Read unique identifier			
1, Cmd001	Read primary variable			
2, Cmd002	Read loop current and percent of range			
3, Cmd003	Read dynamic variables and loop current			
6, Cmd006	Write polling address			
7, Cmd007	Read loop configuration			
8, Cmd008	Read dynamic variable classifications			
9, Cmd009	Read device variables with status			
11, Cmd011	Read unique identifier associated with TAG			
12, Cmd012	Read message			
13, Cmd013	Read TAG, descriptor, date			
14, Cmd014	Read primary variable transducer information			
15, Cmd015	Read device information			
16, Cmd016	Read final assembly number			
17, Cmd017	Write message			
18, Cmd018	Write TAG, descriptor, date			
19, Cmd019	Write final assembly number			
20, Cmd020	Read long TAG (32-byte TAG)			
21, Cmd021	Read unique identifier associated with long TAG			
22, Cmd022	Write long TAG (32-byte TAG)			
38, Cmd038	Reset configuration changed flag			
48, Cmd048	Read additional device status			
Common practice con	mmands			
33, Cmd033	Read device variables			

Kommando-Nr.	Bezeichnung
34, Cmd034	Write primary variable damping value
35, Cmd035	Write primary variable range values
40, Cmd040	Enter/Exit fixed current mode
42, Cmd042	Perform device reset
44, Cmd044	Write primary variable units
45, Cmd045	Trim loop current zero
46, Cmd046	Trim loop current gain
50, Cmd050	Read dynamic variable assignments
54, Cmd054	Read device variable information
59, Cmd059	Write number of response preambles
72, Cmd072	Squawk
95, Cmd095	Read Device Communication Statistics
100, Cmd100	Write Primary Variable Alarm Code
516, Cmd516	Read Device Location
517, Cmd517	Write Device Location
518, Cmd518	Read Location Description
519, Cmd519	Write Location Description
520, Cmd520	Read Process Unit Tag
521, Cmd521	Write Process Unit Tag
523, Cmd523	Read Condensed Status Mapping Array
524, Cmd524	Write Condensed Status Mapping Array
525, Cmd525	Reset Condensed Status Mapping Array
526, Cmd526	Write Simulation Mode
527, Cmd527	Simulate Status Bit

8 Inbetriebnahme

8.1 Installationskontrolle

Vergewissern Sie sich, dass alle Abschlusskontrollen durchgeführt wurden, bevor Sie Ihre Messstelle in Betrieb nehmen:

- Checkliste "Montagekontrolle" \rightarrow 🖺 11
- Checkliste "Anschlusskontrolle" $\rightarrow \square 14$

8.2 Einschalten des Transmitters

Wenn die Abschlusskontrollen durchgeführt wurden, Versorgungsspannung einschalten. Nach dem Einschalten durchläuft der Transmitter interne Testfunktionen.

Das Gerät arbeitet nach ca. 7 Sekunden. Nach erfolgreichem Einschaltvorgang wird der normale Messbetrieb aufgenommen.

8.3 Messgerät konfigurieren

Assistenten

Der Einstiegspunkt für Geräte-Assistenten ist im Menü **Benutzerführung** angeordnet. Assistenten zeichnen sich dadurch aus, dass nicht nur einzelne Parameter abgefragt werden, sondern auch ganze Parameterzusammenstellungen mit einem für den Bediener verständlichen Ablaufaufbau inkl. Abfragen, geführt eingestellt bzw. überprüft werden. Bei Assistenten, welche ein definiertes Zugriffsrecht erfordern, kann die Schaltfläche "Starten" deaktiviert sein (Schlosssymbol).

Für die Navigation in den Assistenten werden folgende fünf Bedienelemente unterstützt:

- Starten
- Nur auf der Einstiegseite: Start des Assistenten und Sprung in das erste Kapitel
- Weiter

Sprung auf die nächste Seite des Assistenten. Solange inaktiv gesetzt, bis Parameter eingegeben bzw. bestätigt werden.

Zurück

Rücksprung auf die vorherige Seite

Abbrechen

Bei Abbruch wird der Zustand vor dem Start des Assistenten wiederhergestellt

Abschliessen

Beenden des Assistenten und Möglichkeit weitere Einstellungen am Gerät vorzunehmen. Nur auf der Abschlussseite aktiv.

8.3.1 Inbetriebnahme-Assistent

Der erste Schritt, um ein Gerät für die eingesetzte Applikation zu nutzen, ist die Inbetriebnahme. Der Inbetriebnahme-Assistent beinhaltet eine Einstiegsseite (mit Bedienelement "Start") und der Inhaltsangabe als Kurzbeschreibung. Der Assistent besteht aus mehreren Kapiteln, in denen der Benutzer Schritt für Schritt durch die Geräteinbetriebnahme geführt wird.

Das erste Kapitel "Geräteverwaltung" bei Ausführung des Assistenten enthält folgende Parameter und dient hauptsächlich als Information zum Gerät:

Navigation \square Benutzerführung \rightarrow Inbetriebnahme \rightarrow Start

	Geräteverwaltung	Sensor	Stromausgang	\rangle	Benutzerverwaltung	
						A0037378-DE
Mess	stellenbezeichnung/TAG					
Gerät	tename					
Serie	nnummer					
Erwe	iterter Bestellcode (n) ¹⁾					
1)	n = Platzhalter für 1, 2,	3				

Im zweiten Kapitel "Sensor" werden alle relevanten Einstellungen, den Sensor betreffend, durchgeführt. Die Anzahl der angezeigten Parameter ist von den entsprechenden Einstellungen abhängig. Folgende Parameter können eingestellt werden:

Navigation \square Benutzerführung \rightarrow Inbetriebnahme \rightarrow Sensor

Geräteverwaltung	Sensor	Stromausgang	Benutzerverwaltung	
				A0037389-DE
Einheit				
Sensortyp				
Anschlussart				
2-Leiter Kompensation				
Vergleichsstelle				
Vergleichsstelle Vorgabewert				

Im dritten Kapitel werden die Einstellungen für den Analogausgang und dessen Alarmverhalten vorgenommen. Folgende Parameter können eingestellt werden:

Navigation	Benutzerführung \rightarrow Inbetriebnahme \rightarrow Stromausgang
------------	---

Geräteverwaltung	Sensor	Stromausgang	Benutzerverwaltung	
4 mA-Wert			A0037	390-DE
20 mA-Wert Fehlerverhalten				

Im abschließenden Kapitel kann ein Passwort für den "Instandhalter" festgelegt werden. Dies wird dringend empfohlen um das Gerät vor unbefugtem Zugriff zu schützen. In den folgenden Handlungsschritten wird beschrieben, wie erstmalig ein Passwort für den "Instandhalter" konfiguriert wird.

Navigation \square Benutzerführung \rightarrow Inbetriebnahme \rightarrow Benutzerverwaltung

Geräteverwaltung	Sensor	Stromausgang	Benutzerverwaltung
Zugriffsrecht			A0037391-D
Neues Passwort			

Neues Passwort bestätigen

- 1. In der Auswahlliste "Zugriffsrecht" erscheint die Rolle Instandhalter.
 - └→ Im Anschluss erscheinen die beiden Eingabefelder Neues Passwort und Neues Passwort bestätigen.
- 2. Ein frei definiertes Passwort eingeben, das den in der Online-Hilfe angezeigten Vorgaben entspricht.
- 3. Passwort im Eingabefeld Neues Passwort bestätigen wiederholt eingeben.

Mit erfolgreicher Eingabe des Passworts können zukünftig Parameteränderung, insbesondere welche für die Inbetriebnahme, Prozessanpassung/Optimierung und Störungsbeseitigung nötig sind, nur noch in der Rolle **Instandhalter** und erfolgreicher Passworteingabe durchgeführt werden.

8.4 Einstellungen schützen vor unerlaubtem Zugriff

Durch die Vergabe eines Passworts für die Benutzerrolle **Instandhalter** ist es softwareseitig möglich, die Zugriffsrechte einzuschränken und das Gerät vor unerlaubtem Zugriff zu schützen.

Durch das Abmelden aus der Benutzerrolle **Instandhalter** und den Wechsel in **Bediener** sind die Parameter auch vor Veränderung geschützt.

Zum Aufheben des Schreibschutzes bedarf es einer Anmeldung mit der Benutzerrolle **Instandhalter** über das jeweilige Bedientool.

Nutzerrollenkonzept $\rightarrow \square 16$

Endress+Hauser

9 Diagnose und Störungsbehebung

9.1 Allgemeine Störungsbehebungen

Fehlersuche in jedem Fall mit den nachfolgenden Checklisten beginnen, falls nach der Inbetriebnahme oder während des Messbetriebs Störungen auftreten. Die verschiedenen Abfragen führen gezielt zur Fehlerursache und den entsprechenden Behebungsmaßnahmen.

Das Gerät kann auf Grund seiner Bauform nicht repariert werden. Es ist jedoch möglich, das Gerät für eine Überprüfung einzusenden. Kapitel "Rücksendung" beachten.
→
 32

Allgemeine Fehler

Fehler	Mögliche Ursache	Behebung
Gerät reagiert nicht.	Versorgungsspannung stimmt nicht mit der Angabe auf dem Typenschild überein.	Spannung am Transmitter mittels eines Voltmeters direkt überprüfen und korri- gieren.
	Anschlusskabel haben keinen Kon- takt zu den Klemmen.	Kontaktierung der Kabel prüfen und gegebenenfalls korrigieren.
	Elektronik ist defekt.	Gerät tauschen.
Ausgangsstrom < 3,6 mA	Signalleitung ist inkorrekt verkabelt.	Verkabelung prüfen.
	Elektronik ist defekt.	Gerät tauschen.
HART [®] -Kommunikation funktioniert nicht.	Fehlender oder falsch eingebauter Kommunikationswiderstand.	Kommunikationswiderstand (250 Ω) korrekt einbauen.
	Commubox ist falsch angeschlossen.	Commubox korrekt anschließen.
	Commubox ist nicht auf "HART®" ein- gestellt.	Wahlschalter der Commubox auf "HART®" stellen.

ł

ehlermeldungen in der Konfigurationssoftware	
>	

ł

Applikationsfehler ohne Statusmeldungen für RTD-Sensoranschluss

Fehler	Mögliche Ursache	Behebung	
	Einbaulage des Sensors ist fehler- haft.	Sensor richtig einbauen.	
	Ableitwärme über den Sensor.	Einbaulänge des Sensors beachten.	
Messwert ist falsch/ungenau	Geräteprogrammierung ist fehlerhaft (Leiter- Anzahl).	Gerätefunktion Anschlussart ändern.	
	Geräteprogrammierung ist fehlerhaft (Skalierung).	Skalierung ändern.	
	Falscher RTD eingestellt.	Gerätefunktion Sensortyp ändern.	
	Anschluss des Sensors.	Anschluss des Sensors überprüfen.	
	Leitungswiderstand des Sensors (2- Leiter) wurde nicht kompensiert.	Leitungswiderstand kompensieren.	
	Offset falsch eingestellt.	Offset überprüfen.	

Fehler	Mögliche Ursache	Behebung
Fehlerstrom (≤ 3,6 mA oder ≥ 21 mA)	Sensor defekt.	Sensor überprüfen.
	Anschluss des RTD's falsch.	Anschlussleitungen richtig anschließen (Klemmenplan).
	Geräteprogrammierung ist fehlerhaft (z. B. Leiter- Anzahl).	Gerätefunktion Anschlussart ändern.
	Falsche Programmierung.	Falscher Sensortyp in der Gerätefunk- tion Sensortyp eingestellt; auf richtigen Sensortyp ändern.

¥

Applikationsfehler ohne Statusmeldungen für TC-Sensoranschluss

Fehler Mögliche Ursache		Behebung
	Einbaulage des Sensors ist fehler- haft.	Sensor richtig einbauen.
	Ableitwärme über den Sensor.	Einbaulänge des Sensors beachten.
	Geräteprogrammierung ist fehlerhaft (Skalierung).	Skalierung ändern.
Messwert ist falsch/ungenau	Falscher Thermoelementtyp TC ein- gestellt.	Gerätefunktion Sensortyp ändern.
	Falsche Vergleichsmessstelle einge- stellt.	Vergleichsmessstelle richtig einstellen.
	Störungen über den im Schutzrohr angeschweißten Thermodraht (Ein- kopplung von Störspannungen).	Sensor verwenden, bei dem der Thermo- draht nicht angeschweißt ist.
	Offset falsch eingestellt.	Offset überprüfen.
	Sensor defekt.	Sensor überprüfen.
Fehlerstrom (≤ 3,6 mA oder	Sensor ist falsch angeschlossen.	Anschlussleitungen richtig anschließen (Klemmenplan).
≥ 21 mA)	Falsche Programmierung.	Falscher Sensortyp in der Gerätefunk- tion Sensortyp eingestellt; auf richtigen Sensortyp ändern.

9.2 Diagnoseinformation via Kommunikationsschnittstelle

Statussignale

Buch- stabe/ Symbol ¹⁾	Ereigniskate- gorie	Bedeutung
F 🚫	Betriebsfehler	Es liegt ein Betriebsfehler vor.
С 🖤	Service-Modus	Das Gerät befindet sich im Service-Modus (zum Beispiel während einer Simula- tion).
S	Außerhalb der Spezifikation	Das Gerät wird außerhalb seiner technischen Spezifikationen betrieben (z. B. wäh- rend des Anlaufens oder einer Reinigung).
M�	Wartung erforderlich	Es ist eine Wartung erforderlich.
N -	Nicht katego- risiert	

1) Gemäß NAMUR NE107

Diagnoseverhalten

Alarm	Die Messung wird unterbrochen. Die Signalausgänge nehmen den definierten Alarmzustand an. Es wird eine Diagnosemeldung generiert.
Warnung	Das Gerät misst weiter. Es wird eine Diagnosemeldung generiert.
Deaktiviert	Das Diagnoseverhalten wird komplett deaktiviert, selbst wenn das Gerät keinen Messwert erfasst.

9.3 Anstehende Diagnosemeldungen

Wenn mehrere Diagnoseereignisse gleichzeitig anstehen, wird nur die Diagnosemeldung mit der höchsten Priorität angezeigt. Weitere anstehende Diagnosemeldungen werden im Untermenü **Diagnoseliste** angezeigt . Hauptmerkmal der Anzeigepriorität ist das Statussignal in folgender Reihenfolge: F, C, S, M. Stehen mehrere Diagnosereignisse mit demselben Statussignal an, wird die Priorität in numerischer Reihenfolge der Ereignisnummer festgelegt, z. B.: F042 erscheint vor F044 und vor S044.

9.4 Diagnoseliste

Im Untermenü **Diagnoseliste** können alle aktuell anstehenden Diagnosemeldungen angezeigt werden.

Navigationspfad

Diagnose → Diagnoseliste

Diagnose- nummer	Kurztext	Behebungsmaßnahmen	Statussignal [ab Werk]	Diagnosever- halten [ab Werk]
Diagnose zun	n Sensor			
041	Sensorbruch erkannt	 Elektr. Verdrahtung prüfen Sensor 1 ersetzen Konfiguration der Anschlussart prüfen 	F	Alarm
043	Kurzschluss	 Elektrische Verdrahtung prüfen Sensor prüfen Sensor oder Kabel ersetzen 	F	Alarm
047	Sensorlimit erreicht	 Sensor prüfen Prozessbedingungen prüfen 	S	Warning
Diagnose zur	Elektronik			
145	Kompensation Referenz- messstelle	 Klemmentemperatur prüfen. Externe Referenzmessstelle überprüfen. 	F	Alarm
201	Elektronik fehlerhaft	 Gerät neu starten Elektronik ersetzen 	F	Alarm
221	Referenzsensor defekt	Gerät ersetzen	М	Alarm
Diagnose zur	Konfiguration		·	
401	Werksreset aktiv	Werksreset aktiv, bitte warten	С	Warning
402	Initialisierung aktiv	Initialisierung aktiv, bitte warten	С	Warning
402	Initialisierung aktiv		С	Warning
410	Datenübertragung fehl- geschlagen	 Verbindung prüfen Datenübertragung wiederholen 	F	Alarm
411	Up-/Download aktiv	Up-/Download aktiv, bitte warten	С	Warning
435	Linearisierung fehlerhaft	Linearisierung prüfen	F	Alarm

Diagnose- nummer	Kurztext	Behebungsmaßnahmen	Statussignal [ab Werk]	Diagnosever- halten [ab Werk]
485	Simulation Prozessgröße aktiv	Simulation ausschalten	С	Warning
491	Simulation Ausgang	Simulation ausschalten	С	Warning
495	Simulation Diagnoseer- eignis aktiv	Simulation ausschalten	С	Warning
531	Werksabgleich fehlt	 Service kontaktieren Gerät ersetzen 	F	Alarm
537	Konfiguration	 Geräteparametrierung prüfen Up- und Download der neuen Konf. 	F	Alarm
537	Konfiguration	Parametrierung des Analogaus- gangs prüfen	F	Alarm
582	Sensordiagnose TC deak- tiviert	Diagnosen für Thermoelementmes- sung einschalten	С	Warning
Diagnose zum Prozess				
801	Versorgungsspannung zu niedrig	Versorgungsspannung erhöhen	S	Alarm
825	Betriebstemperatur	 1. Umgebungstemperatur prüfen 2. Prozesstemperatur prüfen 	S	Warning
844	Prozesswert außerhalb Spezifikation	 Prozesswert prüfen Applikation prüfen Sensor prüfen 	S	Warning

9.5 Ereignislogbuch

Yergangene Diagnosemeldungen werden im Untermenü **Ereignislogbuch** angezeigt.

9.6 Firmware-Historie

Änderungsstand

Die Firmware-Version (FW) auf dem Typenschild und in der Betriebsanleitung gibt den Änderungsstand des Geräts an: XX.YY.ZZ (Beispiel 01.02.01).

XX	Änderung der Hauptversion. Kompatibilität ist nicht mehr gegeben. Gerät und Betriebsanleitung ändern sich.
YY	Änderung bei Funktionalität und Bedienung. Kompatibilität ist gegeben. Betriebsanleitung ändert sich.
ZZ	Fehlerbeseitigung und interne Änderungen. Betriebsanleitung ändert sich nicht.

Datum	Firmware Version	Änderungen	Dokumentation
12/2022	01.01.zz	Original Firmware	BA02260T, Version 01.22

10 Wartung

Für das Gerät sind grundsätzlich keine speziellen Wartungsarbeiten erforderlich.

Reinigung

Das Gerät kann mit einem sauberen, trockenen Tuch gereinigt werden.

11 Reparatur

11.1 Allgemeine Hinweise

Aufgrund seiner Ausführung kann das Gerät nicht repariert werden.

11.2 Ersatzteile

Aktuell lieferbare Ersatzteile zum Gerät sind Online unter:

http://www.products.endress.com/spareparts_consumables. Seriennummer des Gerätes angeben!

Тур	Bestellnummer
Standard - DIN Befestigungsset (2 Schrauben und Federn, 4 Wellensicherungsringe, 1 Stop- fen für die CDI-Schnittstelle)	71044061
US - M4 Befestigungsset (2 Schrauben und 1 Stopfen für die CDI-Schnittstelle)	71044062

11.3 Rücksendung

Die Anforderungen für eine sichere Rücksendung können je nach Gerätetyp und landesspezifischer Gesetzgebung unterschiedlich sein.

- 1. Informationen auf der Internetseite einholen: http://www.endress.com/support/return-material
- 2. Das Gerät bei einer Reparatur, Werkskalibrierung, falschen Lieferung oder Bestellung zurücksenden.

11.4 Entsorgung

X

Gemäß der Richtlinie 2012/19/EG über Elektro- und Elektronik-Altgeräte (WEEE) sind unsere Produkte mit dem abgebildeten Symbol gekennzeichnet, um die Entsorgung von WEEE als unsortierten Hausmüll zu minimieren. Diese Produkte dürfen nicht als unsortierter Hausmüll entsorgt werden und können an Endress+Hauser zur Entsorgung zurückgegeben werden zu den in unseren Allgemeinen Geschäftsbedingungen festgelegten oder individuell vereinbarten Bedingungen.

12 Zubehör

Für das Gerät sind verschiedene Zubehörteile lieferbar, die bei Endress+Hauser mit dem Gerät bestellt oder nachbestellt werden können. Ausführliche Angaben zum betreffenden Bestellcode sind bei Ihrer Endress+Hauser Vertriebszentrale erhältlich oder auf der Produktseite der Endress+Hauser Webseite: www.endress.com.

Im Lieferumfang enthaltenes Zubehör:

- Gedruckte Kurzanleitung in englischer Sprache
- Zusatzdokumentation ATEX: ATEX Sicherheitshinweise (XA), Control Drawings (CD)
- Befestigungsmaterial f
 ür Kopftransmitter

12.1 Gerätespezifisches Zubehör

Zubehör für den Kopftransmitter

Feldgehäuse TA30x für Endress+Hauser Kopftransmitter

Adapter für Hutschienenmontage, DIN Rail Clip nach IEC 60715 (TH35) ohne Befestigungsschrauben

Standard - DIN-Befestigungsset (2 Schrauben + Federn, 4 Sicherungsscheiben und 1 Abdeckkappe Displaystecker)

US - M4 Befestigungsschrauben (2 Schrauben M4 und 1 Abdeckkappe Displaystecker)

12.2 Kommunikationsspezifisches Zubehör

Zubehör	Beschreibung
Commubox FXA195 HART	Für die eigensichere HART [®] -Kommunikation mit FieldCare über die USB-Schnitt- stelle. Für Einzelheiten: Technische Information TI404F/00
Commubox FXA291	Verbindet Endress+Hauser Feldgeräte mit der CDI-Schnittstelle (= Endress+Hauser Common Data Interface) und der USB-Schnittstelle eines Computers oder Laptops. Für Einzelheiten: Technische Information TI405C/07
WirelessHART-Adapter	Dient zur drahtlosen Anbindung von Feldgeräten. Der WirelessHART [®] -Adapter ist leicht in Feldgeräte und bestehende Infrastruktu- ren integrierbar, bietet Daten- und Übertragungssicherheit und ist zu anderen Wireless-Netzwerken parallel betreibbar. Für Einzelheiten: Betriebsanleitung BA061S/04
Field Xpert SMT70, SMT77	Universeller, leistungsstarker Tablet PC zur Gerätekonfiguration Der Tablet PC ermöglicht ein mobiles Plant Asset Management in explosions- (Ex- Zone-1) und nicht explosionsgefährdeten Bereichen. Er eignet sich für das Inbe- triebnahme- und Wartungspersonal, um Feldinstrumente mit digitaler Kommunikationsschnittstelle zu verwalten und den Arbeitsfortschritt zu dokumen- tieren. Dieser Tablet PC ist als Komplettlösung konzipiert. Mit einer vorinstallierten Treiberbibliothek stellt er ein einfaches und touchfähiges "Werkzeug" dar, über das sich die Feldinstrumente während ihres gesamten Lebenszyklus verwalten lassen. Für Einzelheiten: • SMT70 - Technische Information TI01342S • SMT77 - Technische Information TI01418S

12.3 Servicespezifisches Zubehör

Zubehör	Beschreibung
Applicator	 Software für die Auswahl und Auslegung von Endress+Hauser Messgeräten: Berechnung aller notwendigen Daten zur Bestimmung des optimalen Messgeräts: z.B. Druckabfall, Messgenauigkeiten oder Prozessanschlüsse. Grafische Darstellung von Berechnungsergebnissen
	Verwaltung, Dokumentation und Abrufbarkeit aller projektrelevanten Daten und Parameter über die gesamte Lebensdauer eines Projekts.
	Applicator ist verfügbar: Über das Internet: https://portal.endress.com/webapp/applicator

Zubehör	Beschreibung
Konfigurator	 Produktkonfigurator - das Tool für eine individuelle Produktkonfiguration Tagesaktuelle Konfigurationsdaten Je nach Gerät: Direkte Eingabe von messstellenspezifischen Angaben wie Messbereich oder Bediensprache Automatische Überprüfung von Ausschlusskriterien Automatische Erzeugung des Bestellcodes mit seiner Aufschlüsselung im PDF-oder Excel-Ausgabeformat Direkte Bestellmöglichkeit im Endress+Hauser Onlineshop
	Der Konfigurator steht auf der Endress+Hauser Website zur Verfügung unter: www.endress.com -> "Corporate" klicken -> Land wählen -> "Products" klicken -> Produkt mit Hilfe der Filter und Suchmaske auswählen -> Produktseite öffnen -> Die Schaltfläche "Konfiguration" rechts vom Produktbild öffnet den Produktkonfigu- rator.
DeviceCare SFE100	Konfigurations-Tool für Geräte über Feldbusprotokolle und Endress+Hauser Serviceprotokolle. DeviceCare ist das von Endress+Hauser entwickelte Tool zur Konfiguration von Endress+Hauser Geräten. Alle intelligenten Geräte in einer Anlage können über eine Punkt-zu-Punkt- oder eine Punkt-zu-Bus-Verbindung konfiguriert werden. Die benutzerfreundlichen Menüs ermöglichen einen transparenten und intuitiven Zugriff auf die Feldgeräte. Im Zu Einzelheiten: Betriebsanleitung BA00027S
FieldCare SFE500	 FDT-basiertes Anlagen-Asset-Management-Tool von Endress+Hauser. Es kann alle intelligenten Feldeinrichtungen in Ihrer Anlage konfigurieren und unterstützt Sie bei deren Verwaltung. Durch Verwendung von Statusinformationen stellt es darüber hinaus ein einfaches, aber wirkungsvolles Mittel dar, deren Zustand zu kontrollieren. Zu Einzelheiten: Betriebsanleitung BA00027S und BA00059S

12.3.1 Servicespezifisches Zubehör

Device viewer

Der Device viewer ist ein Online-Tool zur gerätespezifischen Auswahl von Geräteinformationen, techn. Dokumentation inkl. gerätespezifischer Dokumente. Anhand der Seriennummer eines Gerätes werden Informationen zum Produkt Life-cycle, Dokumente, Ersatzteile, etc. angezeigt.

Der Device Viewer ist verfügbar: https://portal.endress.com/webapp/DeviceViewer/

12.4 Systemkomponenten

Zubehör	Beschreibung
RN22	Ein- oder zweikanaliger Speisetrenner zur sicheren Trennung von 0/4 20 mA Normsignalstromkreisen mit bidirektionaler HART [®] -Übertragung. In der Option Signaldoppler wird das Eingangssignal an zwei galvanisch getrennte Ausgänge übertragen. Das Gerät verfügt über einen aktiven und einen passiven Stromein- gang, die Ausgänge können aktiv oder passiv betrieben werden. Der RN22 benötigt eine Versorgungsspannung von 24 V _{DC} . Für Einzelheiten: Technische Information TI01515K
RN42	Einkanaliger Speisetrenner zur sicheren Trennung von 0/4 20 mA Normsig- nalstromkreisen mit bidirektionaler HART [®] -Übertragung. Das Gerät verfügt über einen aktiven und einen passiven Stromeingang, die Ausgänge können aktiv oder passiv betrieben werden. Der RN42 kann mit einer Weitbereichsspannung von 24 230 V _{AC/DC} versorgt werden. Für Einzelheiten: Technische Information TI01584K

Zubehör	Beschreibung	
RIA15	Prozessanzeige, digitales, schleifenstromgespeistes Anzeigegerät für 4 20 m. Stromkreise, Schalttafeleinbau, mit optionaler HART [®] -Kommunikation. Anzeig von 4 20 mA oder bis zu 4 HART [®] Prozessvariablen	
	Für Einzelheiten: Technische Information TI01043K	
RNB22	Systemstromversorgung mit Weitbereichseingang 100 240 V _{AC} / 110 250 V _{DC} Primär getaktete Stromversorgung, 1-phasig, Ausgang 24 V _{DC} / 2,5 A	
	Für Einzelheiten: Technische Information TI01585K	

13 Technische Daten

13.1 Eingang

Messgröße Temperatur (temperaturlin

Temperatur (temperaturlineares Übertragungsverhalten), Widerstand und Spannung.

Widerstandsthermometer (RTD) nach Standard	Bezeichnung	α	Messbereichsgrenzen	Min. Mess- spanne
IEC 60751:2022	Pt100 (1) Pt200 (2) Pt500 (3) Pt1000 (4)	0,003851	-200 +850 °C (-328 +1562 °F) -200 +850 °C (-328 +1562 °F) -200 +500 °C (-328 +932 °F) -200 +250 °C (-328 +482 °F)	10 K (18 °F)
JIS C1604:1984	Pt100 (5)	0,003916	−200 +510 °C (−328 +950 °F)	10 K (18 °F)
DIN 43760 IPTS-68	Ni100 (6) Ni120 (7)	0,006180	-60 +250 °C (-76 +482 °F) -60 +250 °C (-76 +482 °F)	10 K (18 °F)
GOST 6651-94	Pt50 (8) Pt100 (9)	0,003910	-185 +1100 °C (-301 +2012 °F) -200 +850 °C (-328 +1562 °F)	10 K (18 °F)
OIML R84: 2003,	Cu50 (10) Cu100 (11)	0,004280	-180 +200 °C (-292 +392 °F) -180 +200 °C (-292 +392 °F)	10 K (18 °F)
GOST 6651-2009	Ni100 (12) Ni120 (13)	0,006170	-60 +180 ℃ (-76 +356 ℉) -60 +180 ℃ (-76 +356 ℉)	10 K (18 °F)
OIML R84: 2003, GOST 6651-94	Cu50 (14)	0,004260	−50 +200 °C (−58 +392 °F)	10 K (18 °F)
-	Pt100 (Callendar van Dusen) Polynom Nickel Polynom Kupfer	-	Die Messbereichsgrenzen werden durch die Eingabe der Grenzwerte, die abhängig von den Koeffizienten A bis C und RO sind, bestimmt.	10 K (18 °F)
	 Anschlussart: 2-Leiter-, 3-Leiter oder 4-Leiteranschluss, Sensorstrom: ≤ 0,3 mA bei 2-Leiterschaltung Kompensation des Leitungswiderstandes möglich (0 30 Ω) bei 3-Leiter- und 4-Leiteranschluss Sensorleitungswiderstand bis max. 50 Ω je Leitung 			
Widerstandsgeber	Widerstand Ω		10 400 Ω 10 2 000 Ω	10 Ω 10 Ω

Thermoelemente nach Standard	Bezeichnung	Messbereichsgrenzen		Min. Mess- spanne
IEC 60584, Teil 1 ASTM E230-3	Typ A (W5Re-W20Re) (30) Typ B (PtRh30-PtRh6) (31) Typ E (NiCr-CuNi) (34) Typ J (Fe-CuNi) (35) Typ K (NiCr-Ni) (36) Typ N (NiCrSi-NiSi) (37) Typ R (PtRh13-Pt) (38) Typ S (PtRh10-Pt) (39) Typ T (Cu-CuNi) (40)	0 +2 500 °C (+32 +4 532 °F) +40 +1 820 °C (+104 +3 308 °F) -250 +1 000 °C (-482 +1 832 °F) -210 +1 200 °C (-346 +2 192 °F) -270 +1 372 °C (-454 +2 501 °F) -270 +1 300 °C (-454 +2 372 °F) -50 +1 768 °C (-58 +3 214 °F) -50 +1 768 °C (-58 +3 214 °F) -200 +400 °C (-328 +752 °F)	Empfohlener Temperaturbereich: 0 +2 500 °C (+32 +4 532 °F) +500 +1 820 °C (+932 +3 308 °F) -150 +1 000 °C (-238 +1 832 °F) -150 +1 200 °C (-238 +2 192 °F) -150 +1 200 °C (-238 +2 192 °F) -150 +1 300 °C (-238 +2 372 °F) +200 +1 768 °C (+392 +3 214 °F) +200 +1 768 °C (+392 +3 214 °F) -150 +400 °C (-238 +752 °F)	50 K (90 °F) 50 K (90 °F)
IEC 60584, Teil 1 ASTM E230-3 ASTM E988-96	Typ C (W5Re-W26Re) (32)	0 +2 315 ℃ (+32 +4 199 ℉)	0 +2 000 °C (+32 +3 632 °F)	50 K (90 °F)
ASTM E988-96	Typ D (W3Re-W25Re) (33)	0 +2 315 °C (+32 +4 199 °F)	0 +2 000 °C (+32 +3 632 °F)	50 K (90 °F)
DIN 43710	Typ L (Fe-CuNi) (41) Typ U (Cu-CuNi) (42)	-200 +900 °C (-328 +1652 °F) -200 +600 °C (-328 +1112 °F)	-150 +900 °C (-238 +1652 °F) -150 +600 °C (-238 +1112 °F)	50 K (90 °F)
GOST R8.585-2001	Typ L (NiCr-CuNi) (43)	−200 +800 °C (−328 +1472 °F)	−200 +800 °C (+328 +1472 °F)	50 K (90 °F)

Thermoelemente nach Standard	Bezeichnung	Messbereichsgrenzen	Min. Mess- spanne	
	 Vergleichsstelle intern (Pt100) Vorgabewert extern: Wert einstellbar -40 +85 °C (-40 +185 °F) Maximaler Sensorleitungswiderstand 10 kΩ 			
Spannungsgeber (mV)	Millivoltgeber (mV)	-20 100 mV	5 mV	

13.2 Ausgang

Ausgangssignal	Analogausgang	4 20 mA, 20 4 mA (invertierbar)	
	Signalkodierung	FSK ±0,5 mA über Stromsignal	
	Datenübertragungsgeschwindigkeit	1200 Baud	
	Galvanische Trennung	U = 2 kV AC für 1 Minute (Eingang/Ausgang)	

Ausfallinformation

Ausfallinformation nach NAMUR NE43:

Sie wird erstellt, wenn die Messinformation ungültig ist oder fehlt. Es wird eine vollständige Liste aller in der Messeinrichtung auftretenden Fehler ausgegeben.

Messbereichsunterschreitung	linearer Abfall von 4,0 3,8 mA
Messbereichsüberschreitung	linearer Anstieg von 20,0 20,5 mA
Ausfall, z. B. Sensorbruch; Sensorkurzschluss	\leq 3,6 mA ("low") oder \geq 21 mA ("high"), kann ausgewählt werden

Linearisierungs-/Übertra- temperaturlinear, widerstandslinear, spannungslinear gungsverhalten

Filter

Digitaler Filter 1. Ordnung: 0 ... 120 s

Protokollspezifische Daten	Hersteller-ID	17 (0x11)
	Gerätetypkennung	0x11D2
	HART [®] -Spezifikation	7
	Geräteadresse im Multi-drop Modus	Softwareeinstellung Adressen 0 63
	Gerätebeschreibungsdateien (DTM, DD)	Informationen und Dateien unter:
		www.fieldcommgroup.org

Bürde HART	min. 250 Ω
HART Gerätevariablen	Messwert für Hauptprozesswert (PV) Sensor (Messwert)
	Messwerte für SV, TV, QV (sekundäre, tertiäre und quartäre Größe) • SV: Gerätetemperatur • TV: Sensor (Messwert) • QV: Sensor (Messwert)
Unterstützte Funktionen	Condensed Status

Wireless-HART-Daten

Minimale Anlaufspannung	10 V _{DC}
Anlaufstrom	3,58 mA
Anlaufzeit	7 s
Minimale Betriebsspannung	10 V _{DC}
Multidrop-Strom	4,0 mA
Zeit für Verbindungsaufbau	9 s

Schreibschutz für Gerätepa- rameter	Software: Nutzerrollenkonzept (Passwortvergabe)
Einschaltverzögerung	≤ 7 s, bis das erste gültige Messwert-Signal am Stromausgang anliegt und bis Beginn der

HART[®]-Kommunikation. Während Einschaltverzögerung = $I_a \le 3,8$ mA

13.3 Energieversorgung

Versorgungsspannung	Werte für Non-Ex Bereich, verpolungssicher: U = 10 36 V_{DC}
	Werte für den Ex-Bereich siehe Ex-Dokumentation.
Stromaufnahme	 3,6 23 mA Mindeststromaufnahme 3,5 mA Stromgrenze ≤ 23 mA

Klemmen	Klemmenausführung	Leitungsausführung	Leitungsquerschnitt
	Schraubklemmen	Starr oder flexibel	\leq 1,5 mm ² (16 AWG)

13.4 Leistungsmerkmale

Antwortzeit	Widerstandsthermometer (RTD) und Widerstandsgeber (Ω -Messung)	≤ 1 s
	Thermoelemente (TC) und Spannungsgeber (mV)	≤ 1 s
	Referenztemperatur	≤ 1 s

Bei der Erfassung von Sprungantworten muss berücksichtigt werden, dass sich gegebenenfalls die Zeiten der internen Referenzmessstelle zu den angegebenen Zeiten addieren.

Aktualisierungszeit	ca. 100 ms
Referenzbedingungen	 Kalibrationstemperatur: +25 °C ±3 K (77 °F ±5,4 °F) Versorgungsspannung: 24 V DC 4-Leiter-Schaltung für Widerstandsabgleich
Maximale Messabweichung	Nach DIN EN 60770 und oben angegebenen Referenzbedingungen. Die Angaben zur Messabweichung entsprechen $\pm 2~\sigma$ (Gauß'sche Normalverteilung). Die Angaben beinhalten Nichtlinearitäten und Wiederholbarkeit.
	MW = Messwert MBA = Messbereichsanfang des jeweiligen Sensors

Typisch

Standard Bezeichnung Messbereich		Typische Messabweichung	r (±)	
Widerstandsthermometer (R	TD) nach Standard	Digitaler Wert ¹⁾	Wert am Stromaus- gang	
IEC 60751:2008	Pt100 (1)		0,12 °C (0,22 °F)	0,14 °C (0,25 °F)
IEC 60751:2008	Pt1000 (4)	0 +200 °C (32 +392 °F)	0,09 °C (0,16 °F)	0,11 °C (0,20 °F)
GOST 6651-94	Pt100 (9)		0,10 °C (0,18 °F)	0,12 °C (0,22 °F)
			-	
Thermoelemente (TC) nach S	tandard		Digitaler Wert ¹⁾	Wert am Stromaus- gang
IEC 60584, Teil 1	Typ K (NiCr-Ni) (36)		0,65 °C (1,17 °F)	0,69 °C (1,24 °F)
IEC 60584, Teil 1	Typ S (PtRh10-Pt) (39)	0 +800 ℃ (32 +1472 ℉)	1,50 °C (2,70 °F)	1,52 °C (2,74 °F)
GOST R8.585-2001	Typ L (NiCr-CuNi) (43)		2,60 °C (4,68 °F)	2,61 °C (4,70 °F)

1) Mittels HART[®] übertragener Messwert.

Messabweichung für Widerstandsthermometer (RTD) und Widerstandsgeber

Standard	Bezeichnung	Messbereich	Messabweichung (±)	
			Digital ¹⁾	D/A ²⁾
			Messwertbezogen ³⁾	
IEC 60751:2008	Pt100 (1)	−200 +850 °C (−328 +1562 °F) -	MA = ± (0,1 °C (0,18 °F) + 0,006% * (MW - MBA))	
	Pt200 (2)		MA = ± (0,2 °C (0,36 °F) + 0,011% * (MW - MBA))	0,03 % (≙
	Pt500 (3)	−200 +510 °C (−328 +950 °F)	MA = ± (0,1 °C (0,18 °F) + 0,008% * (MW - MBA))	4,8 µA)
	Pt1000 (4)	−200 +250 °C (−328 +482 °F)	MA = ± (0,06 °C (0,11 °F) + 0,007% * (MW - MBA))]

Standard	Bezeichnung	Messbereich Messabweichung (±)		
			Digital ¹⁾	D/A ²⁾
JIS C1604:1984	Pt100 (5)	–200 +510 °C (–328 +950 °F)	MA = ± (0,08 °C (0,14 °F) + 0,006% * (MW - MBA))	
GOST 6651-94 Pt50 (8)		-185 +1 100 ℃ (-301 +2 012 ℉)	MA = ± (0,13 °C (0,23 °F) + 0,008% * (MW - MBA))	
	Pt100 (9)	–200 +850 °C (–328 +1562 °F)	MA = ± (0,08 °C (0,14 °F) + 0,0055% * (MW - MBA))	
DIN 42760 IDTS 69	Ni100 (6)	60 J260°C (76 J402°E)	$MA = (0.02 ^{\circ}C / 0.14 ^{\circ}C) = 0.006 ^{\circ}(* (MWM MPA))$	
DIN 45760 IP15-68	Ni120 (7)	-00 +250 C (-76 +482 F)	$MA = \pm (0.08 \text{ C} (0.14 \text{ F}) - 0.004\% \text{ (MW - MBA)})$	
	Cu50 (10)	–180 +200 °C (–292 +392 °F)	MA = ± (0,12 °C (0,22 °F) + 0,006% * (MW - MBA))	
OIML R84: 2003 /	Cu100 (11)	–180 +200 °C (–292 +392 °F)	MA = ± (0,08 °C (0,14 °F) + 0,003% * (MW - MBA))	4,8 μA)
GOST 6651-2009	Ni100 (12)		$MA = \frac{1}{2} (0.00 ^{\circ}C (0.14 ^{\circ}C) - 0.004 ^{\circ}C (0.14 ^{\circ}C) + 0.004 ^{\circ}C (0.014 ^{\circ}C) + 0.004 ^{\circ}C) + 0.004 ^{\circ}C (0.014 ^{\circ}C) + 0.004 ^{\circ}C (0.014 ^{\circ}C) + 0.004 ^{\circ}C) + 0.004 ^{\circ}C) + 0.004 ^{\circ}C) +$	
Ni120 (13)		00 +180 C (-70 +300 F)	$MA = \pm (0.08 \ C \ (0.14 \ F) - 0.004\% \ (MWV - MBA))$	
OIML R84: 2003, GOST Cu50 (14) -50 +200 °C (-58 +392 °F) Mu		MA = ± (0,12 °C (0,22 °F) + 0,004% * (MW - MBA))		
Widerstandsgeber Widerstand Ω 10 400 Ω		10 400 Ω	MA = ± 25 mΩ + 0,0032 % * MW	0.03 % (≘
10 2850 Ω		10 2 850 Ω	$MA = \pm 120 \text{ m}\Omega + 0,006 \% * MW$	4,8 µA)

1) Mittels HART[®] übertragener Messwert.

2) Prozentangaben bezogen auf die konfigurierte Messspanne des analogen Ausgangssignals.

3) Abweichungen von maximaler Messabweichung durch Rundung möglich.

Messabweichung für Thermoelemente (TC) und Spannungsgeber

Standard	Standard Bezeichnung Messbereich		Messabweichung (±)	
			Digital ¹⁾	D/A ²⁾
			Messwertbezogen ³⁾	
IEC 60594-1	Тур А (30)	0 +2 500 ℃ (+32 +4 532 ℉)	MA = ± (1,25 °C (2,25 °F) + 0,026% * (MW - MBA))	
ASTM E230-3	Тур В (31)	+500 +1 820 ℃ (+932 +3 308 ℉)	MA = ± (2,25 °C (4,05 °F) - 0,09% * (MW - MBA))	
IEC 60584-1 ASTM E230-3 ASTM E988-96	Тур С (32)	0 +2 000 °C (+32 +3 632 °F)	MA = ± (1,15 °C (2,07 °F) + 0,0055% * (MW - MBA))	0,03 % (≘
ASTM E988-96	Typ D (33)		MA = ± (1,25 °C (2,25 °F) - 0,016% * (MW - MBA))	4,8 μA)
	Тур Е (34)	−150 +1000 °C (−238 +1832 °F)	MA = ± (0,4 °C (0,72 °F) - 0,008% * (MW - MBA))	
	Тур Ј (35)	−150 +1200 °C	MA = ± (0,45 °C (0,81 °F) - 0,007% * (MW - MBA))	
	Тур К (36)	(−238 +2 192 °F)	MA = ± (0,6 °C (1,08 °F) - 0,01% * (MW - MBA))	-
IEC 60584-1 ASTM E230-3	Тур N (37)	−150 +1 300 °C (−238 +2 372 °F)	MA = ± (0,8 °C (1,44 °F) - 0,025% * (MW - MBA))	
Typ R (38)		+200 +1768 °C	MA = ± (1,6 °C (2,88 °F) - 0,025% * (MW - MBA))	
	Typ S (39)	(+392 +3214 °F)	MA = ± (1,6 °C (2,88 °F) - 0,025% * (MW - MBA))	003%(≙
Тур Т (40)		–150 +400 °C (–238 +752 °F)	MA = ± (0,5 °C (0,9 °F) - 0,05% * (MW - MBA))	4,8 μA)
	Typ L (41)	–150 +900 °C (–238 +1652 °F)	MA = ± (0,5 °C (0,9 °F) - 0,016% * (MW - MBA))	
01142710	Typ U (42)	-150 +600 °C (-238 +1 112 °F)	MA = ± (0,55 °C (0,99 °F) - 0,04% * (MW - MBA))	
GOST R8.585-2001	Typ L (43)	-200 +800 °C (-328 +1472 °F)	MA = ± (2,45 °C (4,41 °F) - 0,015% * (MW - MBA))	

Standard	Bezeichnung	Messbereich	Messabweichung (±)	
			Digital ¹⁾	D/A ²⁾
Spannungsgeber (mV)		-20 +100 mV	MA = ± 10,0 μV	4,8 µA

1) Mittels HART[®] übertragener Messwert.

2) Prozentangaben bezogen auf die konfigurierte Messspanne des analogen Ausgangssignals.

3) Abweichungen von maximaler Messabweichung durch Rundung möglich.

Gesamtmessabweichung des Transmitters am Stromausgang = $\sqrt{(Messabweichung digital^2 + Messabweichung D/A^2)}$

Beispielrechnung mit Pt100, Messbereich 0 ... +200 °C (+32 ... +392 °F), Umgebungstemperatur +25 °C (+77 °F), Versorgungsspannung 24 V:

Messabweichung digital = 0,1 °C + 0,006% x (200 °C - (-200 °C)):	0,12 °C (0,22 °F)
Messabweichung D/A = 0,003 % x 200 °C (360 °F)	0,06 °C (0,11 °F)
Messabweichung digitaler Wert (HART):	0,12 °C (0,22 °F)
Messabweichung analoger Wert (Stromausgang): $\sqrt{(Messabweichung digital^2 + Messabweichung D/A^2)}$	0,14 ℃ (0,25 ℉)

Beispielrechnung mit Pt100, Messbereich 0 ... +200 °C (+32 ... +392 °F), Umgebungstemperatur +35 °C (+95 °F), Versorgungsspannung 30 V:

Messabweichung digital = 0,1 °C + 0,006% x (200 °C - (-200 °C)):	0,12 °C (0,22 °F)
Messabweichung D/A = 0,03 % x 200 °C (360 °F)	0,06 °C (0,108 °F)
Einfluss der Umgebungstemperatur (digital) = (35 - 25) x (0,0017 % x 200 °C - (-200 °C)), mind. 0,003 °C	0,07 °C (0,13 °F)
Einfluss der Umgebungstemperatur (D/A) = (35 - 25) x (0,003% x 200 °C)	0,06 °C (0,108 °F)
Einfluss der Versorgungsspannung (digital) = (30 - 24) x (0,01% x 200 °C - (-200 °C)), mind. 0,005 °C	0,02 °C (0,036 °F)
Einfluss der Versorgungsspannung (D/A) = (30 - 24) x (0,003% x 200 °C)	0,04 °C (0,72 °F)
Messabweichung digitaler Wert (HART): √(Messabweichung digital ² + Einfluss Umgebungstemperatur (digital) ² + Einfluss Versorgungsspannung (digital) ²	0,14 °C (0,25 °F)
Messabweichung analoger Wert (Stromausgang): $(Messabweichung digital^2 + Messabweichung D/A^2 + Einfluss Umgebungstemperatur (digital)^2 + Einfluss Umgebungstemperatur (D/A)^2 + Einfluss Versorgungsspannung (D/A)^2$	0,17 °C (0,31 °F)

Sensorabgleich

Sensor-Transmitter-Matching

RTD-Sensoren gehören zu den linearsten Temperaturmesselementen. Dennoch muss der Ausgang linearisiert werden. Zur signifikanten Verbesserung der Temperaturmessgenauigkeit ermöglicht das Gerät die Verwendung zweier Methoden: • Callendar-Van-Dusen-Koeffizienten (Pt100 Widerstandsthermometer) Die Callendar-Van-Dusen-Gleichung wird beschrieben als: $R_T = R_0[1+AT+BT^2+C(T-100)T^3]$

Die Koeffizienten A, B und C dienen zur Anpassung von Sensor (Platin) und Messumformer, um die Genauigkeit des Messsystems zu verbessern. Die Koeffizienten sind für einen Standardsensor in der IEC 751 angegeben. Wenn kein Standardsensor zur Verfügung steht oder eine höhere Genauigkeit gefordert ist, können die Koeffizienten für jeden Sensor mit Hilfe der Sensorkalibrierung spezifisch ermittelt werden.

• Linearisierung für Kupfer/Nickel Widerstandsthermometer (RTD) Die Gleichung des Polynoms für Kupfer/Nickel wird beschrieben als: $R_T = R_0(1+AT+BT^2)$

Die Koeffizienten A und B dienen zur Linearisierung von Nickel oder Kupfer Widerstandsthermometern (RTD). Die genauen Werte der Koeffizienten stammen aus den Kalibrationsdaten und sind für jeden Sensor spezifisch. Die sensorspezifischen Koeffizienten werden anschließend an den Transmitter übertragen.

Das Sensor-Transmitter-Matching mit einer der oben genannten Methoden verbessert die Genauigkeit der Temperaturmessung des gesamten Systems erheblich. Dies ergibt sich daraus, dass der Messumformer, anstelle der standardisierten Sensorkurvendaten, die spezifischen Daten des angeschlossenen Sensors zur Berechnung der gemessenen Temperatur verwendet.

1-Punkt Abgleich (Offset)

Verschiebung des Sensorwertes

Abgleich Stromausgang Korrektur des 4 oder 20 mA Stromausgangswertes.

Betriebseinflüsse Die Angaben zur Messabweichung entsprechen 2 σ (Gauß'sche-Normalverteilung).

Betriebseinflüsse Umgebungstemperatur und Versorgungsspannung für Widerstandsthermometer (RTD) und Widerstandsgeber

Bezeichnung	Standard	Umgebungstemperatur: Effekt (±) pro 1 °C (1,8 °F) Änderung		Versorgungsspannung: Effekt (±) pro V Änderung	
		Digital ¹⁾	D/A ²⁾	Digital ¹⁾	D/A ²⁾
		Messwertbezogen		Messwertbezogen	
Pt100 (1)		0,0015% * (MW - MBA), mind. 0,003 °C (0,005 °F)		0,001% * (MW - MBA), mind. 0,002 °C (0,004 °F)	
Pt200 (2)	IEC	mind. 0,014 °C (0,025 °F)		mind. 0,008 °C (0,014 °F)	
Pt500 (3)	60751:2008	0,0015% * (MW - MBA), mind. 0,006 °C (0,011 °F)		0,0009% * (MW - MBA), mind. 0,003 °C (0,005 °F)	
Pt1000 (4)		mind. 0,003 °C (0,005 °F)	0,003 %	mind. 0,002 °C (0,004 °F)	0,003 %
Pt100 (5)	JIS C1604:1984	0,0017% * (MW - MBA), mind. 0,003 °C (0,005 °F)		0,0009% * (MW - MBA), mind. 0,002 °C (0,004 °F)	
Pt50 (8)	COST 6651-94	0,0017% * (MW - MBA), mind. 0,006 °C (0,011 °F)		0,0011% * (MW - MBA), mind. 0,003 °C (0,005 °F)	
Pt100 (9)	0031005174	0,0015% * (MW - MBA), mind. 0,003 °C (0,005 °F)		0,0009% * (MW - MBA), mind. 0,002 °C (0,004 °F)	
Ni100 (6)	DIN 43760	mind 0.002 °C (0.004 °E)	0.002.0/	mind $0.001 ^{\circ}{\rm C} (0.002 ^{\circ}{\rm E})$	0.002.0
Ni120 (7)	IPTS-68	mina. 0,002 C (0,004 F) 0,003 %			0,003 %

Bezeichnung	Standard	Umgebungstemperatur: Effekt (±) pro 1 °C (1,8 °F) Änderung		Versorgungsspannung: Effekt (±) pro V Änderung	
		Digital ¹⁾	D/A ²⁾	Digital ¹⁾	D/A ²⁾
Cu50 (10)		mind. 0,005 °C (0,009 °F)		mind. 0,003 °C (0,005 °F)	
Cu100 (11)	2003 /	mind 0.002 °C (0.005 °E)		mind 0.003 °C (0.004 °E)	
Ni100 (12)	GOST			mina. 0,002 °C (0,004 F)	
Ni120 (13)	0001 2000	mind. 0,002 °C (0,004 °F)		mind. 0,001 °C (0,002 °F)	
Cu50 (14)	OIML R84: 2003 / GOST 6651-94	mind. 0,006 °C (0,011 °F)		mind. 0,003 °C (0,005 °F)	
XAZ: downstrow down b					
widerstandsget	$\operatorname{per}(\Omega)$				-
10 400 Ω		0,0012% * MW, mind. 1 mΩ	0,0007% * MW, mind. 1 mΩ	0,0007% * MW, mind. 1 mΩ	- 0,003 %
10 2 000 Ω		0,0013% * MW, mind. 12 mΩ	0,000 %	0,0008% * MW, mind. 7 mΩ	

1) Mittels HART[®] übertragener Messwert.

2) Prozentangaben bezogen auf die konfigurierte Messspanne des analogen Ausgangssignals

Betriebseinflüsse Umgebungstemperatur und Versorgungsspannung für Thermoelemente (TC) und Spannungsgeber

Bezeichnung	Standard	Umgebungstemperatur: Effekt (±) pro 1 °C (1,8 °F) Änderung		Versorgungsspannung: Effekt (±) pro V Änderung	
		Digital ¹⁾	D/A ²⁾	Digital	D/A ²⁾
		Messwertbezogen		Messwertbezogen	
Тур А (30)	IEC 60584-1	0,0032% * (MW - MBA), mind. 0,010 °C (0,018 °F)		0,0017% * (MW - MBA), mind. 0,010 °C (0,018 °F)	
Тур В (31)	ASIMEZJU J	mind. 0,020 °C (0,036 °F)		mind. 0,010 °C (0,018 °F)	
Тур С (32)	IEC 60584-1 ASTM E230-3 ASTM E988-96	0,0025% * (MW - MBA), mind. 0,010 °C (0,018 °F)	0.003 %	0,0015% * (MW - MBA), mind. 0,010 °C (0,018 °F)	0.003.%
Typ D (33)	ASTM E988-96	0,0023% * (MW - MBA), mind. 0,010 °C (0,018 °F)		0,0013% * (MW - MBA)	-,
Typ E (34)		0,0016% * (MW - MBA)	16% * (MW - MBA) 18% * (MW - MBA) 18% * (MW - MBA), 1.0,010 °C (0,018 °F)	0,001% * (MW - MBA)	
Тур Ј (35)		0,0018% * (MW - MBA)			
Тур К (36)		0,0018% * (MW - MBA),			
Typ N (37)	IEC 60584-1 ASTM E230-3	mind. 0,010 °C (0,018 °F)			
Typ R (38)		mind 0.020 °C (0.036 °E)		mind 0.010 °C (0.018 °E)	
Typ S (39)					
Тур Т (40)			0,003 %		0,003 %
Typ L (41)	DIN 42710				
Typ U (42)	1 111 457 10	≤ 0,01 °C (0,018 °F)		≤ 0,01 °C (0,018 °F)	
Typ L (43)	GOST R8.585-2001				
Spannungsgebe	r (mV)				
-20 100 mV	-	0,002% * MW	0,003 %	0,0008% * MW	0,003 %

1) Mittels HART[®] übertragener Messwert.

2) Prozentangaben bezogen auf die konfigurierte Messspanne des analogen Ausgangssignals

MBA = Messbereichsanfang des jeweiligen Sensors

Gesamtmessabweichung des Transmitters am Stromausgang = $\sqrt{(Messabweichung digital^2 + Messabweichung D/A^2)}$

Lanazeitdrift	Widerstandsthermor	neter (RTD) เ	und Widersta	indsaeber
200.09~0000.90		10000 (100) 0		

Bezeichnung	Standard	Langzeitdrift (±) ¹⁾			
		nach 1 Jahr	nach 3 Jahren	nach 5 Jahren	
		Messwertbezogen			
Pt100 (1)		≤ 0,009% * (MW - MBA) oder 0,03 °C (0,05 °F)	≤ 0,0103% * (MW - MBA) oder 0,03 °C (0,05 °F)	≤ 0,0122% * (MW - MBA) oder 0,04 °C (0,06 °F)	
Pt200 (2)		0,10 °C (0,19 °F)	0,13 °C (0,24 °F)	0,15 °C (0,26 °F)	
Pt500 (3)	60751:2008	≤ 0,0095% * (MW - MBA) oder 0,04 °C (0,06 °F)	≤ 0,0121% * (MW - MBA) oder 0,04 °C (0,06 °F)	≤ 0,0136% * (MW - MBA) oder 0,04 °C (0,06 °F)	
Pt1000 (4)		≤ 0,0096% * (MW - MBA) oder 0,02 °C (0,04 °F)	≤ 0,0125% * (MW - MBA) oder 0,03 °C (0,05 °F)	≤ 0,0143% * (MW - MBA) oder 0,03 °C (0,05 °F)	
Pt100 (5)	JIS C1604:1984	≤ 0,0077% * (MW - MBA) oder 0,02 °C (0,04 °F)	≤ 0,0102% * (MW - MBA) oder 0,03 °C (0,05 °F)	≤ 0,0112% * (MW - MBA) oder 0,03 °C (0,05 °F)	
Pt50 (8)	COST 6651.04	≤ 0,0076% * (MW - MBA) oder 0,05 °C (0,09 °F)	≤ 0,01% * (MW - MBA) oder 0,06 °C (0,11 °F)	≤ 0,011% * (MW - MBA) oder 0,07 °C (0,12 °F)	
Pt100 (9)	- GUSI 6651-94	≤ 0,008% * (MW - MBA) oder 0,02 °C (0,04 °F)	≤ 0,0105% * (MW - MBA) oder 0,03 °C (0,05 °F)	≤ 0,0114% * (MW - MBA) oder 0,03 °C (0,05 °F)	
Ni100 (6)	DIN 43760	0.02 °C (0.04 °E)	0.02 °C (0.04 °E)	0 02 °C (0 05 °E)	
Ni120 (7)	IPTS-68	0,02 C (0,04 F)	0,02 C (0,04 F)	0,05 C (0,05 F)	
Cu50 (10)		0,04 °C (0,06 °F)	0,05 °C (0,09 °F)	0,06 °C (0,11 °F)	
Cu100 (11)	2003 /	0,03 °C (0,05 °F)	0,04 °C (0,06 °F)	0,04 °C (0,06 °F)	
Ni100 (12)	GOST 6651-2009	0 02 °C (0 04 °F)	0 02 °C (0 04 °F)	0 03 °C (0 05 °F)	
Ni120 (13)		0,02 0 (0,01 1)	0,02 0 (0,01 1)		
Cu50 (14)	OIML R84: 2003 / GOST 6651-94	0,04 °C (0,06 °F)	0,05 °C (0,09 °F)	0,06 °C (0,11 °F)	
Widerstandsgeb	Widerstandsgeber				
10 400 Ω		≤ 0,0055% * MW oder 7 mΩ	≤ 0,0073% * MW oder 10 mΩ	\leq 0,008% * (MW - MBA) oder 11 m\Omega	
10 2 000 Ω		≤ 0,007% * (MW - MBA) oder 47 mΩ	≤ 0,009% * (MW - MBA) oder 60 mΩ	\leq 0,0067% * (MW - MBA) oder 67 m Ω	

1) Der größere Wert ist gültig

Langzeitdrift Thermoelemente	(TC)	und Spannungsgeber	
------------------------------	------	--------------------	--

Bezeichnung	Standard	Langzeitdrift (±) ¹⁾		
		nach 1 Jahr	nach 3 Jahren	nach 5 Jahren
		Messwertbezogen		
Тур А (30)	IEC 60584-1	≤ 0,049% * (MW - MBA) oder 0,75 °C (1,35 °F)	≤ 0,063% * (MW - MBA) oder 0,98 °C (1,76 °F)	≤ 0,068% * (MW - MBA) oder 1,06 °C (1,91 °F)
Тур В (31)	ASTM 2250-5	1,75 °C (3,15 °F)	2,30 °C (4,14 °F)	2,50 °C (4,50 °F)
Тур С (32)	IEC 60584-1 ASTM E230-3 ASTM E988-96	0,80 °C (1,44 °F)	1,02 °C (1,84 °F)	1,10 °C (1,98 °F)
Typ D (33)	ASTM E988-96	0,97 ℃ (1,75 ℉)	1,25 °C (2,25 °F)	1,36 °C (2,45 °F)
Тур Е (34)	IEC 60584-1 ASTM E230-3	0,28 °C (0,50 °F)	0,36 °C (0,65 °F)	0,39 °C (0,70 °F)

Bezeichnung	Standard	Langzeitdrift (±) ¹⁾			
Тур Ј (35)		0,34 °C (0,61 °F)	0,44 °C (0,79 °F)	0,48 °C (0,86 °F)	
Тур К (36)		0,40 °C (0,72 °F)	0,51 °C (0,92 °F)	0,56 °C (1,01 °F)	
Typ N (37)		0,57 °C (1,03 °F)	0,676 °C (1,37 °F)	0,82 °C (1,48 °F)	
Typ R (38)		1,28 °C (2,30 °F)	1,69 °C (3,04 °F)	1 OF °C (2 22 °T)	
Typ S (39)		1,29 °C (2,32 °F)	1,70 °C (3,06 °F)	- 1,05 C (5,55 F)	
Тур Т (40)		0,42 °C (0,76 °F)	0,55 °C (0,99 °F)	0,60 °C (1,08 °F)	
Typ L (41)	DIN 42710	0,28 °C (0,50 °F)	0,36 °C (0,65 °F)	0,40 °C (0,72 °F)	
Typ U (42)	DIN 45710	0,41 °C (0,74 °F)	0,54 °C (0,97 °F)	0,58 °C (1,04 °F)	
Typ L (43)	GOST R8.585-2001	0,34 °C (0,61 °F)	0,45 ℃ (0,81 °F)	0,48 °C (0,86 °F)	
Spannungsgeber (mV)					
-20 100 mV		\leq 0,027% * MW oder 9 μ V	\leq 0,035% * MW oder 12 μV	\leq 0,038% * MW oder 13 μV	

1) Der größere Wert ist gültig

Langzeitdrift Analogausgang

Langzeitdrift D/A ¹⁾ (±)		
nach 1 Jahr	nach 3 Jahren	nach 5 Jahren
0,030%	0,036%	0,038%

1) Prozentangaben bezogen auf die konfigurierte Messspanne des analogen Ausgangssignals.

Einfluss der Vergleichs- Pt100 DIN IEC 60751 Kl. B (interne Vergleichsstelle bei Thermoelementen TC) stelle

13.5 Umgebung

Umgebungstemperatur	−40 +85 °C (−40 +185 °F), für Ex-Bereich siehe Ex-Dokumentation.
Lagerungstemperatur	−50 +100 °C (−58 +212 °F)
Einsatzhöhe	Bis zu 4000 m (4374,5 yard) über Normalnull.
Feuchte	Betauung: • Zulässig • Max. rel. Feuchte: 95 % nach IEC 60068-2-30
Klimaklasse	Klimaklasse C1 nach IEC 60654-1
Schutzart	Mit Schraubklemmen: IP 20. Im eingebauten Zustand vom verwendeten Anschlusskopf oder Feldgehäuse abhängig.
Stoß- und Schwingungsfes- tigkeit	Schwingungsfestigkeit gemäß DNVGL-CG-0339 : 2015 und DIN EN 60068-2-27 2 100 Hz bei 4g (erhöhte Schwingungsbeanspruchung)

	Stoßfestigkeit nach KTA 3505 (Abschnitt 5.8.4 Stoßprüfung)				
Elektromagnetische Ver-	CE Konformität				
träglichkeit (EMV)	Elektromagnetische Verträglichkeit gemäß allen relevanten Anforderungen der IEC/EN 61326-Serie und NAMUR Empfehlung EMV (NE21). Details sind aus der Konformitätser- klärung ersichtlich. Alle Prüfungen wurden sowohl mit als auch ohne laufende digitale HART [®] -Kommunikation bestanden. Um eine störungsfreie HART [®] -Kommunikation unter EMV-Einfluss sicherzustellen, muss eine geschirmte Leitung, mit beidseitiger Schirmauf- lage auf Erde, verwendet werden.				
	Maximale Messabweichung < 1 % vom Messbereich.				
	Störfestigkeit nach IEC/EN 61326-Serie, Anforderung Industrieller Bereich				
	Störaussendung nach IEC/EN 61326-Serie, Betriebsmittel der Klasse B				
Isolationsklasse	Klasse III				
Überspannungskategorie	Überspannungskategorie II				
Verschmutzungsgrad	Verschmutzungssgrad 2				

13.6 Konstruktiver Aufbau

Bauform, Maße

Angaben in mm (in)

Kopftransmitter

🖻 10 Ausführung mit Schraubklemmen

A Federweg $L \ge 5$ mm (nicht bei US - M4 Befestigungsschrauben)

B CDI-Schnittstelle für den Anschluss eines Konfigurationstools

Gewicht	40 50 g (1,4 1,8 oz)
Werkstoffe	Alle verwendeten Werkstoffe sind RoHS-konform.
	 Gehäuse: Polycarbonat (PC) Anschlussklemmen: Schraubklemmen, Messing vernickelt und Kontakt vergoldet oder verzinnt Verguss: QSIL 553

13.7 Zertifikate und Zulassungen

Aktuell verfügbare Zertifikate und Zulassungen zum Produkt sind über den Produktkonfigurator unter <u>www.endress.com</u> auswählbar:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- 3. Konfiguration auswählen.

Zertifizierung HART®	Der Temperaturtransmitter ist von der FieldComm Group™ registriert. Das Gerät erfüllt die Anforderungen der HART® Communication Protocol Specifications, Revision 7.

MTTF

168 Jahre

Bei der mittleren Ausfallzeit (Mean Time to Failure, MTTF) handelt es sich um die theoretisch zu erwartende Zeitspanne, bis das Gerät während des Normalbetriebs ausfällt. Der Begriff MTTF wird für Systeme verwendet, die nicht reparierbar sind, so z. B. Temperaturtransmitter.

www.addresses.endress.com

