Description of Device Parameters

Proservo NMS80

Tank Gauging
Table of contents

1 **About this document** 4
 1.1 Document function 4
 1.2 Symbols 4
 1.3 Documentation 6

2 **Overview of the operating menu** 7

3 **The "Expert" menu** 31
 3.1 "System" submenu 34
 3.2 "Sensor" submenu 58
 3.3 "Input/output" submenu 106
 3.4 "Communication" submenu 170
 3.5 "Application" submenu 211
 3.6 "Tank values" submenu 261
 3.7 "Diagnostics" submenu 279

Index 305
1 About this document

1.1 Document function
The document is part of the Operating Instructions and serves as a reference for parameters, providing a detailed explanation of each individual parameter of the operating menu.

1.2 Symbols

1.2.1 Safety symbols

⚠️ DANGER
This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

⚠️ WARNING
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

⚠️ CAUTION
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

⚠️ NOTICE
This symbol contains information on procedures and other facts which do not result in personal injury.

1.2.2 Electrical symbols

～
Alternating current

～～
Direct current and alternating current

～～～
Direct current

接地
Ground connection
A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.

 электро защита (PE)
Protective earth (PE)
Ground terminals that must be connected to ground prior to establishing any other connections.
The ground terminals are located on the interior and exterior of the device:
- Interior ground terminal: protective earth is connected to the mains supply.
- Exterior ground terminal: device is connected to the plant grounding system.

1.2.3 Tool symbols

 ключ
Phillips head screwdriver

 ключ
Flat blade screwdriver
1.2.4 Symbols for certain types of information and graphics

- **Permitted**
 Procedures, processes or actions that are permitted

- **Preferred**
 Procedures, processes or actions that are preferred

- **Forbidden**
 Procedures, processes or actions that are forbidden

- **Tip**
 Indicates additional information

- **Reference to documentation**

- **Reference to graphic**

- **Notice or individual step to be observed**
 1, 2, 3
 Series of steps

- **Result of a step**

- **Visual inspection**

- **Operation via operating tool**

- **Write-protected parameter**
 1, 2, 3, ...
 Item numbers

- **Views**

- **Safety instructions**
 Observe the safety instructions contained in the associated Operating Instructions

- **Temperature resistance of the connection cables**
 Specifies the minimum value of the temperature resistance of the connection cables
1.3 Documentation

The following documentation types are available in the Downloads area of the Endress +Hauser website (www.endress.com/downloads):

For an overview of the scope of the associated Technical Documentation, refer to the following:
- W@M Device Viewer (www.endress.com/deviceviewer): Enter the serial number from the nameplate
- Endress+Hauser Operations App: Enter the serial number from the nameplate or scan the matrix code on the nameplate

1.3.1 Technical Information (TI)

Planning aid
The document contains all the technical data on the device and provides an overview of the accessories and other products that can be ordered for the device.

1.3.2 Brief Operating Instructions (KA)

Guide that takes you quickly to the 1st measured value
The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning.

1.3.3 Operating Instructions (BA)

The Operating Instructions contain all the information that is required in various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.

It also contains a detailed explanation of each individual parameter in the operating menu (except the Expert menu). The description is aimed at those who work with the device over the entire life cycle and perform specific configurations.

1.3.4 Description of Device Parameters (GP)

The Description of Device Parameters provides a detailed explanation of each individual parameter in the 2nd part of the operating menu: the Expert menu. It contains all the device parameters and allows direct access to the parameters by entering a specific code. The description is aimed at those who work with the device over the entire life cycle and perform specific configurations.

1.3.5 Safety Instructions (XA)

Depending on the approval, the following Safety Instructions (XA) are supplied with the device. They are an integral part of the Operating Instructions.

The nameplate indicates the Safety Instructions (XA) that are relevant to the device.

1.3.6 Installation instructions (EA)

Installation Instruction are used to replace a faulty unit with a functioning unit of the same type.
2 Overview of the operating menu

- The following table lists all parameters the "Expert" menu may contain. The page number refers to where a description of the parameter can be found.
- Depending on the device version and parametrization some parameters will not be available in a given situation. For details on the conditions refer to the "Prerequisite" category in the description of the respective parameter.
- The representation essentially corresponds to the menu seen when using an operating tool (e.g. FieldCare). On the local display there may be minor differences in the menu structure. Details are mentioned in the description of the respective submenu.

Navigation

<table>
<thead>
<tr>
<th>Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access (0106)</td>
</tr>
<tr>
<td>Locking status (0004)</td>
</tr>
<tr>
<td>Access status display (0091)</td>
</tr>
<tr>
<td>User role (0005)</td>
</tr>
<tr>
<td>Enter access code (0003)</td>
</tr>
<tr>
<td>System</td>
</tr>
<tr>
<td>Display</td>
</tr>
<tr>
<td>Language (0104)</td>
</tr>
<tr>
<td>Format display (0098)</td>
</tr>
<tr>
<td>Value 1 to 4 display (0107–1 to 4)</td>
</tr>
<tr>
<td>Decimal places 1 to 4 (0095–1 to 4)</td>
</tr>
<tr>
<td>Separator (0101)</td>
</tr>
<tr>
<td>Number format (0099)</td>
</tr>
<tr>
<td>Header (0097)</td>
</tr>
<tr>
<td>Header text (0112)</td>
</tr>
<tr>
<td>Display interval (0096)</td>
</tr>
<tr>
<td>Display damping (0094)</td>
</tr>
</tbody>
</table>
Overview of the operating menu

Proservo NMS80

System units
- Backlight (0111) → Page 41
- Contrast display (0105) → Page 41
- Units preset (0605) → Page 42
- Distance unit (0551) → Page 43
- Pressure unit (0564) → Page 43
- Temperature unit (0557) → Page 43
- Density unit (0555) → Page 44
- Decimal places length (0573) → Page 44
- Decimal places pressure (0608) → Page 44
- Decimal places temperature (0614) → Page 45
- Decimal places density (0609) → Page 45

Date / time
- Date/time (0790) → Page 49
- Set date (0792) → Page 50
- Year (0782) → Page 50
- Month (0787) → Page 51
- Day (0788) → Page 51
- Hour (0789) → Page 51
- Minute (0791) → Page 52

Administration
- Define access code (0093) → Page 55
- Activate SW option (0029) → Page 56
- Device reset (0000) → Page 56
Overview of the operating menu

Sensor

- **Gauge command (8000)**
 - Page 58
- **Gauge status (8081)**
 - Page 59
- **Distance (8103)**
 - Page 59

Information

- **Gross weight (8080)**
 - Page 60
- **Net weight (8007)**
 - Page 60
- **Gauge status (8081)**
 - Page 61
- **Active gauge command (8073)**
 - Page 61
- **Balance flag (8006)**
 - Page 61
- **Displacer status (8160)**
 - Page 61
- **Motor status (8118)**
 - Page 62
- **One-time command status (8201)**
 - Page 62
- **Sensor temperature (8066)**
 - Page 62
- **Detector temperature (8090)**
 - Page 62

Measured values

- **Distance (8103)**
 - Page 64
- **Displacer position (8130)**
 - Page 64
- **Liquid level (8072)**
 - Page 65
- **Upper interface level (8127)**
 - Page 65
- **Upper interface level timestamp (8055)**
 - Page 65
- **Lower interface level (8128)**
 - Page 65
- **Lower interface level timestamp (8061)**
 - Page 66
- **Bottom level (8129)**
 - Page 66
- **Bottom level timestamp (8048)**
 - Page 66
Overview of the operating menu

Proservo NMS80

‣ Spot density

- Measured upper density (8164)
- Upper density timestamp (8067)
- Measured middle density (8165)
- Middle Density Timestamp (8011)
- Measured lower density (8166)
- Lower density timestamp (8122)

‣ Profile density

- Profile point (8170)
- Profile average density (8175)
- Profile density timestamp (8114)

‣ Sensor diag

- Start self check

- Status self check (8192)

‣ Self check

‣ Sensor config

- Post gauge command (8163)

‣ Displacer

- Displacer type (8071)
- Displacer diameter (8014)
- Displacer weight (8010)
- Displacer volume (8008)
- Displacer balance volume (8009)
- Displacer height (8195)
- Immersion depth (8070)
Overview of the operating menu

- **Wiredrum**
 - Drum circumference (8082) → § 77
 - Wire weight (8040) → § 77

- **Safety settings**
 - High stop level (8135) → § 78
 - Low stop level (8069) → § 78
 - Slow hoist zone (8084) → § 79
 - Overtension weight (8097) → § 79
 - Undertension weight (8098) → § 79
 - Output out of range (8218) → § 80

- **Level settings**
 - Upper density (8113) → § 81
 - Middle density (8041) → § 81
 - Lower density (8042) → § 82
 - Process condition (8001) → § 82
 - Standby level (8194) → § 82

- **Balance settings**
 - Level measurement mode (8056) → § 85
 - Interface measurement mode (8064) → § 86
 - Balancing waiting time (8205) → § 86
 - Seek delay (8162) → § 87
 - Weight tolerance (8213) → § 87

- **Spot density**
 - Upper density offset (8176) → § 88
 - Middle density offset (8177) → § 88
Overview of the operating menu

Proservo NMS80

Lower density offset (8178) → 89
Submersion depth (8169) → 89

➡ Profile density → 90
Density measurement mode (8186) → 90
Manual profile level (8182) → 90
Profile density offset distance (8185) → 91
Profile density interval (8174) → 91
Profile density offset (8173) → 91

➡ Calibration → 92

➡ Move displacer → 93
Move distance → 93
Distance (8103) → 93
Move displacer → 94
Motor status (8118) → 94
Move displacer → 94

➡ Sensor calibration → 95
Sensor calibration → 95
Offset weight (8095) → 95
Span weight (8096) → 96
Zero calibration → 96
Calibration status (8031) → 96
Offset calibration → 96
Span calibration → 97

➡ Reference calibration → 98
Reference calibration → 98
Reference position (8046) → 98
Progress → 98
Calibration status (8031) → 99

Drum calibration → 100
Make sure to have → 100
Drum calibration → 100
Calibration time → 101
Set high weight (8116) → 101
Make drum table → 101
Drum table point → 101
Calibration status (8031) → 102
Make low table → 102
Set low weight (8115) → 102

Calibration parameters → 103
Set high weight (8116) → 103
Set low weight (8115) → 103
Reference position (8046) → 104
Offset weight (8095) → 104
Span weight (8096) → 104
Calibration status (8031) → 105

Input/output → 106
HART devices → 107
Number of devices (13051) → 107
HART Device(s) → 108
Device name (14722) → 109
Overview of the operating menu

Proservo NMS80

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polling address (14712)</td>
<td>109</td>
</tr>
<tr>
<td>Device tag (14713)</td>
<td>109</td>
</tr>
<tr>
<td>Operating mode (14745)</td>
<td>109</td>
</tr>
<tr>
<td>Communication status (14710)</td>
<td>110</td>
</tr>
<tr>
<td>Status signal (14760)</td>
<td>110</td>
</tr>
<tr>
<td>#blank#(HART PV - description dependent on device) (14715)</td>
<td>111</td>
</tr>
<tr>
<td>#blank#(HART SV - description dependent on device) (14705)</td>
<td>111</td>
</tr>
<tr>
<td>#blank#(HART TV - description dependent on device) (14706)</td>
<td>111</td>
</tr>
<tr>
<td>#blank#(HART QV - description dependent on device) (14716)</td>
<td>111</td>
</tr>
<tr>
<td>HART device PV mA (14708)</td>
<td>112</td>
</tr>
<tr>
<td>HART device PV % (14709)</td>
<td>112</td>
</tr>
<tr>
<td>Output pressure (14719)</td>
<td>112</td>
</tr>
<tr>
<td>Output density (14720)</td>
<td>113</td>
</tr>
<tr>
<td>Output temperature (14721)</td>
<td>113</td>
</tr>
<tr>
<td>Output vapor temperature (14726)</td>
<td>113</td>
</tr>
<tr>
<td>Output level (14718)</td>
<td>114</td>
</tr>
<tr>
<td>HART device information</td>
<td>115</td>
</tr>
<tr>
<td>Element values</td>
<td>121</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>122</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>123</td>
</tr>
<tr>
<td>NMT device config</td>
<td>125</td>
</tr>
<tr>
<td>NMT device config</td>
<td>131</td>
</tr>
<tr>
<td>Configure device? (14728)</td>
<td>132</td>
</tr>
<tr>
<td>Feature</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Total no. element (14730)</td>
<td>132</td>
</tr>
<tr>
<td>Bottom point (14729)</td>
<td>133</td>
</tr>
<tr>
<td>No element in phase (14756)</td>
<td>133</td>
</tr>
<tr>
<td>Water bottom level offset (14757)</td>
<td>133</td>
</tr>
<tr>
<td>Update water level (14751)</td>
<td>134</td>
</tr>
<tr>
<td>Element setup</td>
<td>134</td>
</tr>
<tr>
<td>Forget device</td>
<td>136</td>
</tr>
<tr>
<td>Operating mode (14453)</td>
<td>137</td>
</tr>
<tr>
<td>Current (14457)</td>
<td>137</td>
</tr>
<tr>
<td>Analog IP</td>
<td>138</td>
</tr>
<tr>
<td>Operating mode (14014)</td>
<td>139</td>
</tr>
<tr>
<td>RTD type (14021)</td>
<td>139</td>
</tr>
<tr>
<td>Ohms offset (14026)</td>
<td>140</td>
</tr>
<tr>
<td>Thermocouple type (14008)</td>
<td>140</td>
</tr>
<tr>
<td>RTD connection type (14022)</td>
<td>141</td>
</tr>
<tr>
<td>Process value (14003)</td>
<td>141</td>
</tr>
<tr>
<td>Process variable (14016)</td>
<td>141</td>
</tr>
<tr>
<td>0 % value (14001)</td>
<td>142</td>
</tr>
<tr>
<td>100 % value (14013)</td>
<td>142</td>
</tr>
<tr>
<td>Input value percent (14002)</td>
<td>142</td>
</tr>
<tr>
<td>Input value (14015)</td>
<td>143</td>
</tr>
<tr>
<td>Temperature offset after conversion (14025)</td>
<td>143</td>
</tr>
</tbody>
</table>
Overview of the operating menu

Minimum probe temperature (14010)

Maximum probe temperature (14011)

Probe position (14009)

Calibration type AIP (14018)

Active calibration (14012)

Damping factor (14004)

Gauge current (14027)

Analog I/O

Operating mode (13958)

Current span (13987)

Fixed current (13989)

Analog input source (13974)

Failure mode (13968)

Error value (13972)

Output out of range (13971)

Error on event (13967)

Input value (13979)

0 % value (13954)

100 % value (13968)

Input value % (13955)

Output value (13969)

Readback value (13957)

Feedback threshold (13956)

Process variable (13964)

Analog input 0% value (13977)
Overview of the operating menu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog input 100% value (13965)</td>
<td>156</td>
</tr>
<tr>
<td>Error event type (13953)</td>
<td>156</td>
</tr>
<tr>
<td>Process value (13963)</td>
<td>156</td>
</tr>
<tr>
<td>Input value in mA (13970)</td>
<td>157</td>
</tr>
<tr>
<td>Input value percent (13978)</td>
<td>157</td>
</tr>
<tr>
<td>Damping factor (13951)</td>
<td>157</td>
</tr>
<tr>
<td>Calibration (13966)</td>
<td>158</td>
</tr>
<tr>
<td>Active calibration (13981)</td>
<td>158</td>
</tr>
<tr>
<td>Used for SIL/WHG (13980)</td>
<td>158</td>
</tr>
<tr>
<td>Expected SIL/WHG chain (13952)</td>
<td>159</td>
</tr>
</tbody>
</table>

Digital Xx-x

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating mode (13911)</td>
<td>161</td>
</tr>
<tr>
<td>Digital input source (13907)</td>
<td>161</td>
</tr>
<tr>
<td>Input value (13901)</td>
<td>162</td>
</tr>
<tr>
<td>Contact type (13912)</td>
<td>162</td>
</tr>
<tr>
<td>Output simulation (13909)</td>
<td>163</td>
</tr>
<tr>
<td>Output value (13902)</td>
<td>164</td>
</tr>
<tr>
<td>Readback value (13903)</td>
<td>164</td>
</tr>
<tr>
<td>Error on event (13916)</td>
<td>164</td>
</tr>
<tr>
<td>Damping factor (13904)</td>
<td>165</td>
</tr>
<tr>
<td>Used for SIL/WHG (13910)</td>
<td>165</td>
</tr>
</tbody>
</table>

Digital input mapping

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital input source 1 (8147)</td>
<td>166</td>
</tr>
<tr>
<td>Digital input source 2 (8148)</td>
<td>166</td>
</tr>
<tr>
<td>Gauge command 0 (8149)</td>
<td>167</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Gauge command 1 (8150)</td>
<td>168</td>
</tr>
<tr>
<td>Gauge command 2 (8151)</td>
<td>168</td>
</tr>
<tr>
<td>Gauge command 3 (8152)</td>
<td>169</td>
</tr>
<tr>
<td>Communication</td>
<td>170</td>
</tr>
<tr>
<td>"Modbus Xx-x" / "V1 Xx-x"</td>
<td></td>
</tr>
<tr>
<td>Communication interface protocol (13201)</td>
<td>171</td>
</tr>
<tr>
<td>Modbus value 1 to 4 (13206-1 to 4)</td>
<td>172</td>
</tr>
<tr>
<td>Modbus discrete 1 to 4 (13240-1 to 4)</td>
<td>172</td>
</tr>
<tr>
<td>Configuration</td>
<td>173</td>
</tr>
<tr>
<td>Baudrate (13203)</td>
<td>173</td>
</tr>
<tr>
<td>Parity (13204)</td>
<td>174</td>
</tr>
<tr>
<td>Modbus address (13205)</td>
<td>174</td>
</tr>
<tr>
<td>Float swap mode (13232)</td>
<td>174</td>
</tr>
<tr>
<td>Invalid data (13243)</td>
<td>175</td>
</tr>
<tr>
<td>Word type (13208)</td>
<td>175</td>
</tr>
<tr>
<td>CRC seed (13248)</td>
<td>176</td>
</tr>
<tr>
<td>Old TSM mode (13213)</td>
<td>176</td>
</tr>
<tr>
<td>Bus termination (13249)</td>
<td>176</td>
</tr>
<tr>
<td>Compatibility mode (13281)</td>
<td>177</td>
</tr>
<tr>
<td>Integer conversion</td>
<td>178</td>
</tr>
<tr>
<td>Level 0% (13214)</td>
<td>178</td>
</tr>
<tr>
<td>Level 100% (13250)</td>
<td>179</td>
</tr>
<tr>
<td>Temperature 0% (13215)</td>
<td>179</td>
</tr>
<tr>
<td>Temperature 100% (13216)</td>
<td>179</td>
</tr>
</tbody>
</table>
Overview of the operating menu

- **Pressure 0% (13217)** → 180
- **Pressure 100% (13251)** → 180
- **Density 0% (13252)** → 180
- **Density 100% (13218)** → 181
- **User 0% (13221)** → 181
- **User 100% (13222)** → 181
- **Percent 0% (13202)** → 182
- **Percent 100% (13234)** → 182

User value source

- **User value 1 to 8 source (13209–1 to 8)** → 183

GP values

- **GP 1 value 0% (13223)** → 184
- **GP 1 value 100% (13224)** → 184
- **GP 2 value 0% (13257)** → 185
- **GP 2 value 100% (13258)** → 185
- **GP 3 value 0% (13259)** → 185
- **GP 3 value 100% (13226)** → 186
- **GP 4 value 0% (13225)** → 186
- **GP 4 value 100% (13227)** → 186

Discrete selector

- **Discrete 1 to 8 selector (13260–1 to 8)** → 187

Configuration

- **Communication interface protocol variant (13269)** → 188
- **V1 address (V1 / MDP) (13235)** → 188
Overview of the operating menu

V1 input selector

- V1 address (BBB / MIC+232) (13236)
 - Page 189
- Level mapping (13268)
 - Page 189
- Line impedance (13266)
 - Page 190
- Compatibility mode (13281)
 - Page 190

- V1 input selector
 - Page 191
- User value 1 to 8 source (13209–1 to 8)
 - Page 191
- Alarm 1 input source (13270)
 - Page 192
- Alarm 2 input source (13271)
 - Page 192
- Alarm 3 input source (13283)
 - Page 193
- Alarm 4 input source (13284)
 - Page 193
- SP 1 value selector (13274)
 - Page 194
- SP 2 value selector (13275)
 - Page 194
- SP 3 value selector (13276)
 - Page 195
- SP 4 value selector (13277)
 - Page 195
- Value percent selector (13282)
 - Page 196

HART output

- HART output
 - Page 197

HART configuration

- HART configuration
 - Page 198
- System polling address (0219)
 - Page 198
- No. of preambles (0217)
 - Page 199
- PV source (11634)
 - Page 199
- Assign PV (0234)
 - Page 199
- 0 % value (11632)
 - Page 200
- 100 % value (11633)
 - Page 201
- PV mA selector (11631)
 - Page 201
Overview of the operating menu

Primary variable (PV) (0201) → 201
Percent of range (0274) → 202
Assign SV (0235) → 202
Secondary variable (SV) (0226) → 203
Assign TV (0236) → 203
Tertiary variable (TV) (0228) → 204
Assign QV (0237) → 204
Quaternary variable (QV) (0203) → 205

Information

HART short tag (0220) → 206
Device tag (0215) → 207
Device revision (0204) → 207
Device ID (0221) → 207
Device type (0209) → 208
Manufacturer ID (0259) → 208
HART revision (0205) → 208
HART descriptor (0212) → 209
HART message (0216) → 209
Hardware revision (0206) → 209
Software revision (0224) → 210
HART date code (0202) → 210

Application

Tank configuration

Process condition (8001) → 211
Level
- Level source (14601) → 213
- Empty (14602) → 214
- Tank reference height (14603) → 214
- Tank level (14655) → 214
- Set level (14604) → 215
- Upper interface level (15003) → 215
- Lower interface level (15004) → 215
- Water level source (14971) → 215
- Water level (14970) → 216
- Manual water level (14959) → 216

Temperature
- Liquid temp source (14972) → 217
- Manual liquid temperature (15015) → 218
- Liquid temperature (14978) → 218
- Air temperature source (14993) → 218
- Manual air temperature (14961) → 219
- Air temperature (14986) → 219
- Vapor temp source (14973) → 219
- Manual vapor temperature (14960) → 220
- Vapor temperature (14985) → 220

Density
- Observed density source (13454) → 221
- Observed density (13452) → 222
- Air density (14980) → 222
Overview of the operating menu

Vapor density (14981) → 222
Measured upper density (15001) → 222
Measured middle density (14997) → 223
Measured lower density (15002) → 223
Water density (13757) → 223
Profile point (8170) → 223
Profile average density (8175) → 224
Profile density timestamp (8114) → 224

Pressure

P1 (bottom) source (14994) → 225
P1 (bottom) (14983) → 226
P1 (bottom) manual pressure (14951) → 226
P1 position (14952) → 227
P1 offset (14953) → 227
P1 absolute / gauge (14954) → 227
P2 (middle) source (14995) → 228
P2 (middle) (14987) → 228
P2 (middle) manual pressure (14955) → 228
P2 offset (14975) → 229
P1-2 distance (14974) → 229
P2 absolute / gauge (14976) → 229
P3 (top) source (14996) → 230
P3 (top) (14988) → 230
P3 (top) manual pressure (14977) → 230
P3 position (14956) → 231
Overview of the operating menu

Proservo NMS80

P3 offset (14957) → 231
P3 absolute / gauge (14958) → 231
Ambient pressure (14962) → 232

GP values → 233

GP 1 to 4 source (14989–1 to 4) → 233
GP 1 to 4 name (14963–1 to 4) → 234
GP Value 1 (14966) → 234
GP Value 2 (14967) → 234
GP Value 3 (14968) → 234
GP Value 4 (14969) → 235

Tank calculation → 235

Local gravity (14979) → 235

HyTD → 238

HyTD correction value (13603) → 238
HyTD mode (14652) → 238
Starting level (13601) → 238
Deformation factor (13602) → 239

CTSh → 243

CTSh correction value (13651) → 243
CTSh mode (14651) → 243
Covered tank (13654) → 244
Stilling well (13653) → 244
Overview of the operating menu

- **Calibration temperature (13652)** → 245
- **Linear expansion coefficient (13655)** → 245

HTMS → 248

- **HTMS mode (13751)** → 248
- **Manual density (15009)** → 249
- **Density value (13753)** → 249
- **Minimum level (13752)** → 249
- **Minimum pressure (13754)** → 250
- **Safety distance (13756)** → 250
- **Hysteresis (13755)** → 250
- **Water density (13757)** → 251

Alarm → 252

- **Alarm mode (13864)** → 253
- **Error value (13851)** → 254
- **Alarm value source (13866)** → 255
- **Alarm value (13863)** → 256
- **HH alarm value (13855)** → 256
- **H alarm value (13854)** → 256
- **L alarm value (13853)** → 257
- **LL alarm value (13852)** → 257
- **HH alarm (13857)** → 257
- **H alarm (13856)** → 258
- **HH+H alarm (13858)** → 258
- **L alarm (13859)** → 258
Overview of the operating menu

Proservo NMS80

LL alarm (13868) → 258
LL+L alarm (13869) → 259
Any error (13867) → 259
Clear alarm (13861) → 259
Alarm hysteresis (13862) → 260
Damping factor (13860) → 260

Tank values

Net weight (8007) → 261
Gauge status (8081) → 261
Balance flag (8006) → 262
Standby level (8194) → 262
One-time command status (8201) → 264

Level

Tank level (14655) → 265
Tank Level % (14654) → 265
Tank ullage (14657) → 266
Tank ullage % (14658) → 266
Upper interface level (15003) → 266
Upper interface level timestamp (8055) → 266
Lower interface level (15004) → 267
Lower interface level timestamp (8061) → 267
Bottom level (15018) → 267
Bottom level timestamp (8048) → 267
Water level (14970) → 268
Measured level (14653) → 268
Overview of the operating menu

- **Distance** (8103) → 268
- **Displacer position** (15019) → 268

Temperature

- **Liquid temperature** (14978) → 269
- **Vapor temperature** (14985) → 269
- **Air temperature** (14986) → 270

NMT element values

- **Element temperature**
- **Element position**

Density

- **Observed density** (13451) → 272
- **Vapor density** (14981) → 273
- **Air density** (14980) → 273
- **Measured upper density** (15001) → 273
- **Upper density timestamp** (8067) → 274
- **Measured middle density** (14997) → 274
- **Middle Density Timestamp** (8011) → 274
- **Measured lower density** (15002) → 274
- **Lower density timestamp** (8122) → 275

Profile density

- **Profile density 0 ... 49** (8068) → 275
- **Profile density position 0 ... 49** (8077) → 275
Overview of the operating menu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>276</td>
</tr>
<tr>
<td>P1 (bottom) (14983)</td>
<td></td>
</tr>
<tr>
<td>P3 (top) (14988)</td>
<td></td>
</tr>
<tr>
<td>GP values</td>
<td>277</td>
</tr>
<tr>
<td>GP 1 to 4 name (14963–1 to 4)</td>
<td></td>
</tr>
<tr>
<td>GP Value 1 (14966)</td>
<td></td>
</tr>
<tr>
<td>GP Value 2 (14967)</td>
<td></td>
</tr>
<tr>
<td>GP Value 3 (14968)</td>
<td></td>
</tr>
<tr>
<td>GP Value 4 (14969)</td>
<td></td>
</tr>
<tr>
<td>Diagnostics</td>
<td>279</td>
</tr>
<tr>
<td>Actual diagnostics (0691)</td>
<td></td>
</tr>
<tr>
<td>Timestamp (0667)</td>
<td></td>
</tr>
<tr>
<td>Previous diagnostics (0690)</td>
<td></td>
</tr>
<tr>
<td>Timestamp (0672)</td>
<td></td>
</tr>
<tr>
<td>Operating time from restart (0653)</td>
<td></td>
</tr>
<tr>
<td>Operating time (0652)</td>
<td></td>
</tr>
<tr>
<td>Date/time (0790)</td>
<td></td>
</tr>
<tr>
<td>Diagnostic list</td>
<td>284</td>
</tr>
<tr>
<td>Diagnostics 1 to 5 (0692–1 to 5)</td>
<td></td>
</tr>
<tr>
<td>Timestamp 1 to 5 (0683–1 to 5)</td>
<td></td>
</tr>
<tr>
<td>Event logbook</td>
<td>285</td>
</tr>
<tr>
<td>Simulation</td>
<td>286</td>
</tr>
<tr>
<td>Device alarm simulation (0654)</td>
<td></td>
</tr>
<tr>
<td>Diagnostic event simulation (0737)</td>
<td></td>
</tr>
<tr>
<td>Simulation distance on (8002)</td>
<td></td>
</tr>
</tbody>
</table>

Proservo NMS80

Endress+Hauser
Overview of the operating menu

- **Simulation distance (8003)**
- **Current output 1 to 2 simulation (13985–1 to 2)**
- **Simulation value (13976)**

Device information

- **Device tag (0011)**
- **Serial number (0009)**
- **Firmware version (0010)**
- **Firmware CRC (8563)**
- **Weight and measures configuration CRC (8564)**
- **Device name (0013)**
- **Order code (0008)**
- **Extended order code 1 to 3 (0023–1 to 3)**
- **ENP version (0012)**
- **Device type (8561)**
- **Module type (8526)**
- **Communication Slot (13285)**

Board info

- **Date/time (0790)**
- **System temperature (8553)**
- **W&M lock switch (8558)**

Data logging

- **Assign channel 1 to 4 (0851–1 to 4)**
Overview of the operating menu

Proservo NMS80

Logging interval (0856) → 298
Clear logging data (0855) → 299

▶ Device check → 301

▶ Commissioning check → 302

Commissioning check → 302
Result drum check (8155) → 302
Step X / 11 (8143) → 302

▶ Commissioning parameter → 303

Step X / 11 (8143) → 303
Result drum check (8155) → 303
Displacer weight tolerance (8161) → 303
Reference calibration incomplete (8157) → 304
3 The "Expert" menu

Navigation

<table>
<thead>
<tr>
<th>Expert</th>
<th>Direct access (0106)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0106)</td>
</tr>
<tr>
<td></td>
<td>→ 31</td>
</tr>
<tr>
<td></td>
<td>Locking status (0004)</td>
</tr>
<tr>
<td></td>
<td>(0004)</td>
</tr>
<tr>
<td></td>
<td>→ 32</td>
</tr>
<tr>
<td></td>
<td>Access status display (0091)</td>
</tr>
<tr>
<td></td>
<td>(0091)</td>
</tr>
<tr>
<td></td>
<td>→ 32</td>
</tr>
<tr>
<td></td>
<td>Access status tooling (0005)</td>
</tr>
<tr>
<td></td>
<td>(0005)</td>
</tr>
<tr>
<td></td>
<td>→ 32</td>
</tr>
<tr>
<td></td>
<td>Enter access code (0003)</td>
</tr>
<tr>
<td></td>
<td>(0003)</td>
</tr>
<tr>
<td></td>
<td>→ 33</td>
</tr>
<tr>
<td></td>
<td>System</td>
</tr>
<tr>
<td></td>
<td>→ 34</td>
</tr>
<tr>
<td></td>
<td>Sensor</td>
</tr>
<tr>
<td></td>
<td>→ 58</td>
</tr>
<tr>
<td></td>
<td>Input/output</td>
</tr>
<tr>
<td></td>
<td>→ 106</td>
</tr>
<tr>
<td></td>
<td>Communication</td>
</tr>
<tr>
<td></td>
<td>→ 170</td>
</tr>
<tr>
<td></td>
<td>Application</td>
</tr>
<tr>
<td></td>
<td>→ 211</td>
</tr>
<tr>
<td></td>
<td>Diagnostics</td>
</tr>
<tr>
<td></td>
<td>→ 279</td>
</tr>
</tbody>
</table>

Direct access

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Direct access (0106)</th>
</tr>
</thead>
<tbody>
<tr>
<td>User entry</td>
<td>0 to 65 535</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

Additional information
Enter the access code of a parameter in order to access this parameter directly (i.e. without navigation).

The direct access code consists of a five digit number and an optional channel code, which specifies an input or output channel, e.g. 00353-2

- Leading zeros need not to be entered.
- If the channel code is not entered, channel 1 is automatically selected.
- In order to access a different channel: Enter the direct access code with the channel code.

In this document, the direct access code is added in brackets after the parameter name in the Navigation category.
The 'Expert' menu

Locking status

Navigation

Indicates the type of locking.

'Hardware locked' (HW)
The device is locked by the 'WP' switch on the main electronics module. To unlock, set the switch into the OFF position.

'WHG locked' (SW)
Unlock the device by entering the appropriate access code in 'Enter access code'.

'SIL locked' (SW)
Unlock the device by entering the appropriate access code in 'Enter access code'.

'Temporarily locked' (SW)
The device is temporarily locked by processes in the device (e.g. data upload/download, reset). The device will automatically be unlocked after completion of these processes.

Description

'Hardware locked' (HW)
The device is locked by the 'WP' switch on the main electronics module. To unlock, set the switch into the OFF position.

'WHG locked' (SW)
Unlock the device by entering the appropriate access code in 'Enter access code'.

'SIL locked' (SW)
Unlock the device by entering the appropriate access code in 'Enter access code'.

'Temporarily locked' (SW)
The device is temporarily locked by processes in the device (e.g. data upload/download, reset). The device will automatically be unlocked after completion of these processes.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Access status display

Navigation

Prerequisite

The device has a local display.

Description

Indicates access authorization to parameters via local display.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

The access authorization can be changed via the Enter access code parameter (→ 33).

If an additional write protection is active, this restricts the current access authorization even further. The write protection status can be viewed via the Locking status parameter (→ 32).

User role

Navigation

Description

Shows the access authorization to the parameters via the operating tool

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
Enter access code

Navigation

Expert → Ent. access code (0003)

Description

Enter access code to disable write protection of parameters.

Additional information

<table>
<thead>
<tr>
<th>Access Type</th>
<th>Access Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>Operator</td>
</tr>
</tbody>
</table>
3.1 "System" submenu

Navigation

Expert → System

- System
 - Display → 35
 - System units → 42
 - Date / time → 49
 - Administration → 55
3.1.1 "Display" submenu

Navigation
Expert → System → Display

<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>35</td>
</tr>
<tr>
<td>Format display</td>
<td>36</td>
</tr>
<tr>
<td>Value 1 to 4 display</td>
<td>37</td>
</tr>
<tr>
<td>Decimal places 1 to 4</td>
<td>38</td>
</tr>
<tr>
<td>Separator</td>
<td>39</td>
</tr>
<tr>
<td>Number format</td>
<td>39</td>
</tr>
<tr>
<td>Header</td>
<td>39</td>
</tr>
<tr>
<td>Header text</td>
<td>40</td>
</tr>
<tr>
<td>Display interval</td>
<td>40</td>
</tr>
<tr>
<td>Display damping</td>
<td>41</td>
</tr>
<tr>
<td>Backlight</td>
<td>41</td>
</tr>
<tr>
<td>Contrast display</td>
<td>41</td>
</tr>
</tbody>
</table>

Language

Navigation
Expert → System → Display → Language (0104)

Prerequisite
The device has a local display.

Description
Set display language.

Selection
- English
- Deutsch
- русский язык (Russian)
- 日本語 (Japanese)
- Español
- 中文 (Chinese)

Factory setting
English
The 'Expert' menu

Proservo NMS80

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Operator</td>
</tr>
</tbody>
</table>

Format display

Navigation

Expert → System → Display → Format display (0098)

Prerequisite

The device has a local display.

Description

Select how measured values are shown on the display.

Selection

- 1 value, max. size
- 1 bargraph + 1 value
- 2 values
- 1 value large + 2 values
- 4 values

Factory setting

2 values

Additional information

1. "Format display" = "1 value, max. size"

2. "Format display" = "1 bargraph + 1 value"

3. "Format display" = "2 values"
The "Expert" menu

4 "Format display" = "1 value large + 2 values"

5 "Format display" = "4 values"

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Operator</td>
</tr>
</tbody>
</table>

- The Value 1 to 4 display (→ 37) parameters specify which measured values are shown on the display and in which order.
- If more measured values are specified than the current display mode permits, the values alternate on the device display. The display time until the next change is configured in the Display interval parameter (→ 40).

Value 1 to 4 display

Navigation

Expert → System → Display → Value 1 display (0107)

Prerequisite

The device has a local display.

Description

Select the measured value that is shown on the local display.

Selection

- None ¹)
- Tank level
- Measured level
- Level linearized
- Tank level %
- Water level ¹)
- Liquid temperature ¹)
- Vapor temperature ¹)
- Air temperature ¹)
- Tank ullage
- Tank ullage %
- Observed density value ¹)
- P1 (bottom) ¹)
- P2 (middle) ¹)
- P3 (top) ¹)

¹) not available for the Value 1 display parameter
The 'Expert' menu

- GP 1 value
- GP 2 value
- GP 3 value
- GP 4 value
- Gauge command
- Gauge status
- AIO B1-3 value
- AIO B1-3 value mA
- AIO B1-3 value %
- AIO C1-3 value
- AIO C1-3 value mA
- AIO C1-3 value %
- AIP B4-8 value
- AIP B4-8 value mA
- AIP B4-8 value %
- AIP C4-8 value
- AIP C4-8 value mA
- AIP C4-8 value %

Factory setting
Depending on device version

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Decimal places 1 to 4

Navigation
Expert → System → Display → Decimal places 1 (0095)

Prerequisite
The device has a local display.

Description
This selection does not affect the measurement and calculation accuracy of the device.

Selection
- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting
x.x

Additional information
The setting does not affect the measuring or computational accuracy of the device.

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Separator

Navigation
Expert → System → Display → Separator (0101)

Prerequisite
The device has a local display.

Description
Select decimal separator for displaying numerical values.

Selection
• .
• ,

Factory setting
.

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Number format

Navigation
Expert → System → Display → Number format (0099)

Prerequisite
The device has a local display.

Description
Choose number format for the display.

Selection
• Decimal
• ft-in-1/16''

Factory setting
Decimal

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

The ft-in-1/16'' option is only valid for distance values.

Header

Navigation
Expert → System → Display → Header (0097)

Prerequisite
The device has a local display.

Description
Select header contents on local display.

Selection
• Device tag
• Free text

Factory setting
Device tag
Meaning of the options

- **Device tag**
 The header contents is defined in the **Device tag** parameter (→ 207).

- **Free text**
 The header contents is defined in the **Header text** parameter (→ 40).

Header text

Navigation

Expert → System → Display → Header text (0112)

Prerequisite

Header (→ 39) = Free text

Description

Enter display header text.

User entry

Character string comprising numbers, letters and special characters (11)

Factory setting

TG-Platform

Display interval

Navigation

Expert → System → Display → Display interval (0096)

Description

Set time measured values are shown on display if display alternates between values.

User entry

1 to 10 s

Factory setting

5 s

Additional information

This parameter is only relevant if the number of selected measuring values exceeds the number of values the selected display format can display simultaneously.
Display damping

Navigation
Expert → System → Display → Display damping (0094)

Prerequisite
The device has a local display.

Description
Set display reaction time to fluctuations in the measured value.

User entry
0.0 to 999.9 s

Factory setting
0.0 s

Additional information
| Read access | Operator |
| Write access | Maintenance |

Backlight

Navigation
Expert → System → Display → Backlight (0111)

Prerequisite
The device has a local display.

Description
Switch the local display backlight on and off.

Selection
- Disable
- Enable

Factory setting
Enable

Additional information
| Read access | Operator |
| Write access | Operator |

Contrast display

Navigation
Expert → System → Display → Contrast display (0105)

Prerequisite
The device has a local display.

Description
Adjust local display contrast setting to ambient conditions (e.g. lighting or reading angle)

User entry
20 to 80 %

Factory setting
30 %

Additional information
| Read access | Operator |
| Write access | Operator |
3.1.2 "System units" submenu

Navigation Expert → System → System units

<table>
<thead>
<tr>
<th>System units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units preset</td>
</tr>
<tr>
<td>Distance unit</td>
</tr>
<tr>
<td>Pressure unit</td>
</tr>
<tr>
<td>Temperature unit</td>
</tr>
<tr>
<td>Density unit</td>
</tr>
<tr>
<td>Decimal places length</td>
</tr>
<tr>
<td>Decimal places pressure</td>
</tr>
<tr>
<td>Decimal places temperature</td>
</tr>
<tr>
<td>Decimal places density</td>
</tr>
</tbody>
</table>

Units preset

Navigation Expert → System → System units → Units preset (0605)

Description Defines a set of units for length, pressure and temperature.

Selection
- mm, bar, °C
- m, bar, °C
- mm, PSI, °C
- ft, PSI, °F
- ft-in-16, PSI, °F
- ft-in-8, PSI, °F
- Customer value

Factory setting mm, bar, °C

Additional information

<table>
<thead>
<tr>
<th></th>
<th>Operator</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write access</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the Customer value option is selected, the units are defined in the following parameters. In any other case these are read-only parameters used to indicate the respective unit:
- Distance unit (→ 43)
- Pressure unit (→ 43)
- Temperature unit (→ 43)
Distance unit

Navigation
- Expert → System → System units → Distance unit (0551)

Description
Select distance unit.

Selection
- **SI units**
 - m
 - mm
 - cm
- **US units**
 - ft
 - in
 - ft-in-16
 - ft-in-8

Factory setting
mm

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance (if Units preset (→ 42) = Customer value)</td>
</tr>
</tbody>
</table>

Pressure unit

Navigation
- Expert → System → System units → Pressure unit (0564)

Selection
- **SI units**
 - bar
 - Pa
 - kPa
 - MPa
 - mbar a
- **US units**
 - psi
- **Other units**
 - inH2O
 - inH2O (68°F)
 - ftH2O (68°F)
 - mmH2O
 - mmHg

Factory setting
bar

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance (if Units preset (→ 42) = Customer value)</td>
</tr>
</tbody>
</table>

Temperature unit

Navigation
- Expert → System → System units → Temperature unit (0557)

Description
Select temperature unit.

Selection
- **SI units**
 - °C
 - K
- **US units**
 - °F
 - °R

Factory setting
°C

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance (if Units preset (→ 42) = Customer value)</td>
</tr>
</tbody>
</table>
Density unit

Navigation

Expert → System → System units → Density unit (0555)

Description

Select density unit.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Other units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/cm³</td>
<td>lb/ft³</td>
<td>°API</td>
</tr>
<tr>
<td>g/ml</td>
<td>lb/gal (us)</td>
<td>SGU</td>
</tr>
<tr>
<td>g/l</td>
<td>lb/in³</td>
<td></td>
</tr>
<tr>
<td>kg/l</td>
<td>STon/yd³</td>
<td></td>
</tr>
<tr>
<td>kg/dm³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/m³</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Factory setting

kg/m³

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Decimal places length

Navigation

Expert → System → System units → Decimal length (0573)

Description

Number of decimal places for length values.

Selection

| x |
| x.x |
| x.xxx |
| x.xxx |
| x.xxxxx |

Factory setting

x.x

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

The setting does not affect the accuracy of the measurement or the calculations.

Decimal places pressure

Navigation

Expert → System → System units → Decimal pressure (0608)

Description

Number of decimal places for pressure values.
Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx
- x.xxxxx

Factory setting

x.xxx

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

The setting does not affect the accuracy of the measurement or the calculations.

Decimal places temperature

Navigation

Expert → System → System units → Decimal temp. (0614)

Description

Number of decimal places for temperature values.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx
- x.xxxxx

Factory setting

x.x

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

The setting does not affect the accuracy of the measurement or the calculations.

Decimal places density

Navigation

Expert → System → System units → Decimal density (0609)

Description

Number of decimal places for density values.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx
- x.xxxxx

Factory setting

x.x
The 'Expert' menu

Proservo NMS80

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

The setting does not affect the accuracy of the measurement or the calculations.
3.1.3 "Date / time" submenu

The **Date / time** submenu is used to set the real-time clock of the device.

Setting the real-time clock via the display and operating module

1. Navigate to Expert → System → Date / time → Set date.
 - The current value of the real-time clock is displayed.

2. If the displayed value is correct: Press \(\leftarrow \) to terminate the wizard.

3. If the displayed value is not correct: Press \(\checkmark \) to edit it.
 - The current value of the **Year** parameter is displayed.

4. If the displayed value is correct: Press \(\checkmark \) to go to the next value.

5. If the displayed value is incorrect: Press \(\leftarrow \) and enter the correct value. Confirm the new value by pressing \(\checkmark \).

6. Repeat the last two steps for the following parameters: **Month, Day, Hour, Minute**.
 - The new value of the real-time clock is displayed.

7. Confirm the new value of the real-time clock by pressing \(\checkmark \).

8. Quit the wizard by pressing \(\checkmark \) again.
Setting the real-time clock via an operating tool (e.g. FieldCare)

1. Navigate to: Expert → System → Date / time

2. Go to the Set date parameter (→ 50) and select the Start option.

3. Use the following parameters to set the date and time: Year, Month, Day, Hour, Minutes.

4. Go to the Set date parameter (→ 50) and select the Confirm time option.

The real-time clock is set to the current date and time.
Structure of the submenu on the display and operating module

Navigation
Expert → System → Date / time

<table>
<thead>
<tr>
<th>► Date / time</th>
<th>➔ 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/time</td>
<td></td>
</tr>
<tr>
<td>► Set date</td>
<td>➔ 53</td>
</tr>
<tr>
<td>Date/time</td>
<td>➔ 53</td>
</tr>
<tr>
<td>Year</td>
<td>➔ 53</td>
</tr>
<tr>
<td>Month</td>
<td>➔ 53</td>
</tr>
<tr>
<td>Day</td>
<td>➔ 53</td>
</tr>
<tr>
<td>Hour</td>
<td>➔ 53</td>
</tr>
<tr>
<td>Minute</td>
<td>➔ 54</td>
</tr>
<tr>
<td>Set date</td>
<td>➔ 54</td>
</tr>
</tbody>
</table>

Structure of the submenu in an operating tool (e.g. FieldCare)

Navigation
Expert → System → Date / time

<table>
<thead>
<tr>
<th>► Date / time</th>
<th>➔ 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/time</td>
<td></td>
</tr>
<tr>
<td>Set date</td>
<td>➔ 50</td>
</tr>
<tr>
<td>Year</td>
<td>➔ 50</td>
</tr>
<tr>
<td>Month</td>
<td>➔ 51</td>
</tr>
<tr>
<td>Day</td>
<td>➔ 51</td>
</tr>
<tr>
<td>Hour</td>
<td>➔ 51</td>
</tr>
<tr>
<td>Minute</td>
<td>➔ 52</td>
</tr>
</tbody>
</table>
Description of parameters

Navigation

Expert → System → Date / time

Date/time

Navigation

Expert → System → Date / time → Date/time (0790)

Description
Displays the device internal real time clock.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Set date

Navigation

Expert → System → Date / time → Set date (0792)

Description
Controls the setting of the real-time clock.

Selection

- Please select
- Abort
- Start
- Confirm time

Factory setting
Please select

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Meaning of the options

- **Please select**
 Prompts the user to select an action.
- **Abort**
 Discards the entered date and time.
- **Start**
 Starts the setting of the real time clock.
- **Confirm time**
 Sets the real-time clock to the entered date and time.

Year

Navigation

Expert → System → Date / time → Year (0782)

Prerequisite
Set date (→ 50) = Start
Description
Enter the current year.

User entry
2016 to 2079

Factory setting
2016

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>Operator</td>
</tr>
<tr>
<td>Write</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Month

Navigation

[Expert → System → Date / time → Month (0787)]

Prerequisite
Set date (→ 50) = Start

Description
Enter the current month.

User entry
1 to 12

Factory setting
1

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>Operator</td>
</tr>
<tr>
<td>Write</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Day

Navigation

[Expert → System → Date / time → Day (0788)]

Prerequisite
Set date (→ 50) = Start

Description
Enter the current day.

User entry
1 to 31

Factory setting
1

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>Operator</td>
</tr>
<tr>
<td>Write</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Hour

Navigation

[Expert → System → Date / time → Hour (0789)]

Prerequisite
Set date (→ 50) = Start
Description
Enter the current hour.

User entry
0 to 23

Factory setting
0

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Minute

Navigation

Expert → System → Date / time → Minute (0791)

Prerequisite

Set date (→ 50) = Start

Description

Enter the current minute.

User entry

0 to 59

Factory setting

0

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
'Set date' wizard

Navigation
Expert → System → Date / time → Set date

Date/time

Navigation
Expert → System → Date / time → Set date → Date/time (0790)
Description
→ 50

Year

Navigation
Expert → System → Date / time → Set date → Year (0782)
Description
→ 50

Month

Navigation
Expert → System → Date / time → Set date → Month (0787)
Description
→ 51

Day

Navigation
Expert → System → Date / time → Set date → Day (0788)
Description
→ 51

Hour

Navigation
Expert → System → Date / time → Set date → Hour (0789)
Description
→ 51
Minute

- **Navigation**: Expert → System → Date / time → Set date → Minute (0791)

- **Description**: → 📆 52

Set date

- **Navigation**: Expert → System → Date / time → Set date → Set date

- **Description**: Confirm the displayed new value of the real-time clock by pressing 🔄.
3.1.4 "Administration" submenu

Structure of the submenu on the display and operating module

Navigation
Expert → System → Administration

```plaintext
[Administration]  
  [Define access code]  
    Define access code  
    Confirm access code  
  Device reset  
  Activate SW option
```

Structure of the submenu in an operating tool (e.g. FieldCare)

Navigation
Expert → System → Administration

```plaintext
[Administration]  
  Define access code  
  Activate SW option  
  Device reset
```
Description of parameters

Navigation
Expert → System → Administration

Define access code

Navigation
Expert → System → Administration → Def. access code (0093)

Description
Define release code for write access to parameters.

User entry
0 to 9 999

Factory setting
0

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

- If the factory setting is not changed or 0 is defined as the access code, the parameters are not write-protected and the configuration data of the device can then always be modified. The user is logged on in the *Maintenance* role.
- The write protection affects all parameters marked with the symbol in this document.
- Once the access code has been defined, write-protected parameters can only be modified if the access code is entered in the *Enter access code* parameter (→ 33).

Activate SW option

Navigation
Expert → System → Administration → Activate SW opt. (0029)

Description
Enter the application package code or code of another re-ordered functionality to enable it

User entry
Positive integer

Factory setting
0

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Device reset

Navigation
Expert → System → Administration → Device reset (0000)

Description
Reset the device configuration - either entirely or in part - to a defined state
Selection

- Cancel
- To factory defaults
- Restart device

Factory setting
Cancel

Additional information

Meaning of the options

- **Cancel**
 No action

- **To factory defaults**
 All parameters are reset to the order-code specific factory setting.

- **Restart device**
 The restart resets every parameter which is stored in the volatile memory (RAM) to the factory setting (e.g. measured value data). The device configuration remains unchanged.

<table>
<thead>
<tr>
<th>Access</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

‘Define access code’ wizard

Navigation
Expert → System → Administration → Def. access code

Define access code

Description
→ 56

Confirm access code

Description
Confirm the entered access code.

User entry
0 to 9999

Factory setting
0

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
3.2 "Sensor" submenu

Navigation
Expert → Sensor

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauge command</td>
<td>58</td>
</tr>
<tr>
<td>Gauge status</td>
<td>59</td>
</tr>
<tr>
<td>Distance</td>
<td>59</td>
</tr>
<tr>
<td>Information</td>
<td>60</td>
</tr>
<tr>
<td>Measured values</td>
<td>63</td>
</tr>
<tr>
<td>Sensor diag</td>
<td>71</td>
</tr>
<tr>
<td>Sensor config</td>
<td>73</td>
</tr>
<tr>
<td>Calibration</td>
<td>92</td>
</tr>
</tbody>
</table>

Gauge command

Navigation
Expert → Sensor → Gauge command (8000)

Description
Gauge operation command to choose the measurement mode of the device.

Selection

- Stop *
- Level
- Up *
- Bottom level *
- Upper I/F level *
- Lower I/F level *
- Upper density *
- Middle density *
- Lower density *
- Repeatability *
- Water dip
- Release overtension *
- Tank profile *
- Interface profile *
- Manual profile *
- Level standby *
- Offset standby *

Factory setting
Stop

Visibility depends on order options or device settings
Gauge status

Navigation

- Expert → Sensor → Gauge status (8081)

Description

 Indicates the current status of the device gauge command.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Distance

Navigation

- Expert → Sensor → Distance (8103)

Description

 Shows measured distance from reference position.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>
3.2.1 "Information" submenu

The Information submenu (→ 60) comprises all display parameters which give information about the current state of the measurement.

Description of parameters

Navigation

Expert → Sensor → Information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross weight</td>
<td>Shows non-compensated measured weight from detector.</td>
</tr>
<tr>
<td>Net weight</td>
<td>Shows the corrected weight data from the detector, as compensated by the drum table. This weight is used for measurement.</td>
</tr>
<tr>
<td>Gauge status</td>
<td></td>
</tr>
<tr>
<td>Active gauge command</td>
<td></td>
</tr>
<tr>
<td>Balance flag</td>
<td></td>
</tr>
<tr>
<td>Displacer status</td>
<td></td>
</tr>
<tr>
<td>Motor status</td>
<td></td>
</tr>
<tr>
<td>One-time command status</td>
<td></td>
</tr>
<tr>
<td>Sensor temperature</td>
<td></td>
</tr>
<tr>
<td>Detector temperature</td>
<td></td>
</tr>
</tbody>
</table>

Gross weight

Navigation

Expert → Sensor → Information → Gross weight (8080)

Description

Shows non-compensated measured weight from detector.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
Gauge status

Navigation

Expert → Sensor → Information → Gauge status (8081)

Description

Indicates the current status of the device gauge command.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Active gauge command

Navigation

Expert → Sensor → Information → Active gauge cmd (8073)

Description

Indicates the currently executed Gauge Command.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Balance flag

Navigation

Expert → Sensor → Information → Balance flag (8006)

Description

Indicates the validity of the Measurement. If balanced, corresponding Value (Liquid Level, Upper Interface, Lower Interface, Tank Bottom) is updated.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Displacer status

Navigation

Expert → Sensor → Information → Displacer status (8160)

Description

Shows the current moving and balancing status of the displacer.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
Motor status

Navigation
Expert → Sensor → Information → Motor status (8118)

Description
Shows the current moving Direction of the Motor.

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

One-time command status

Navigation
Expert → Sensor → Information → One-time Cmd (8201)

Description
Indicates the status of the last executed one-time gauge command.

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Additional information
One-time command is available for all gauge commands, excepting Level, Stop, Up, and Interface.

Sensor temperature

Navigation
Expert → Sensor → Information → Sensor temp. (8066)

Description
Shows the temperature of sensor module electronics.

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Detector temperature

Navigation
Expert → Sensor → Information → Detector temp. (8090)

Description
Shows the temperature of the detector unit.

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
3.2.2 "Measured values" submenu

Navigation
Expert → Sensor → Measured values

<table>
<thead>
<tr>
<th>Measured values</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>64</td>
</tr>
<tr>
<td>Displacer position</td>
<td>64</td>
</tr>
<tr>
<td>Liquid level</td>
<td>65</td>
</tr>
<tr>
<td>Upper interface level</td>
<td>65</td>
</tr>
<tr>
<td>Upper interface level timestamp</td>
<td>65</td>
</tr>
<tr>
<td>Lower interface level</td>
<td>65</td>
</tr>
<tr>
<td>Lower interface level timestamp</td>
<td>66</td>
</tr>
<tr>
<td>Bottom level</td>
<td>66</td>
</tr>
<tr>
<td>Bottom level timestamp</td>
<td>66</td>
</tr>
<tr>
<td>Spot density</td>
<td>67</td>
</tr>
<tr>
<td>Profile density</td>
<td>69</td>
</tr>
</tbody>
</table>
Distance

Navigation
Expert → Sensor → Measured values → Distance (8103)

Description
Shows measured distance from reference position.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

Displacer position

Navigation
Expert → Sensor → Measured values → Displacer pos (8130)

Description
Shows measured displacer position from zero position (tank bottom or datum plate). Value is always updated when displacer moves.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>
Liquid level

Navigation

Expert → Sensor → Measured values → Liquid level (8072)

Description

Shows measured level from zero position (tank bottom or datum plate). Value is updated when device generates a valid level measurement.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Upper interface level

Navigation

Expert → Sensor → Measured values → Upper I/F level (8127)

Description

Shows measured interface level from zero position (tank bottom or datum plate). Value is updated when device generates a valid Interface measurement.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Upper interface level timestamp

Navigation

Expert → Sensor → Measured values → Up I/F timestamp (8055)

Description

Shows timestamp for the last measured upper interface level.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Lower interface level

Navigation

Expert → Sensor → Measured values → Lower I/F level (8128)

Description

Shows measured interface level from zero position (tank bottom or datum plate). Value is updated when device generates a valid interface measurement.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
Lower interface level timestamp

Navigation

Expert → Sensor → Measured values → Lowl/F timestamp (8061)

Description

Shows timestamp of the last measured lower interface level.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Bottom level

Navigation

Expert → Sensor → Measured values → Bottom level (8129)

Description

Shows measured bottom level. Value is updated after a successful tank bottom gauge command.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Bottom level timestamp

Navigation

Expert → Sensor → Measured values → BotLev timestamp (8048)

Description

Shows the timestamp for measured bottom level.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
"Spot density" submenu

Navigation ☁ ☁ Expert → Sensor → Measured values → Spot density

<table>
<thead>
<tr>
<th>Measured upper density → 67</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper density timestamp → 67</td>
</tr>
<tr>
<td>Measured middle density → 67</td>
</tr>
<tr>
<td>Middle Density Timestamp → 68</td>
</tr>
<tr>
<td>Measured lower density → 68</td>
</tr>
<tr>
<td>Lower density timestamp → 68</td>
</tr>
</tbody>
</table>

Measured upper density

Navigation ☁ ☁ Expert → Sensor → Measured values → Spot density → Meas upper dens. (8164)

Description Shows the Measured Upper Density Value.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Upper density timestamp

Navigation ☁ ☁ Expert → Sensor → Measured values → Spot density → UpDens timestamp (8067)

Description Shows timestamp of the last measured upper density.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Measured middle density

Navigation ☁ ☁ Expert → Sensor → Measured values → Spot density → Meas middle dens (8165)

Description Shows the Measured Middle Density Value.
Middle Density Timestamp

Navigation

Expert → Sensor → Measured values → Spot density → MidDensTimestamp (8011)

Description

Shows the timestamp of the last measured middle density.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Measured lower density

Navigation

Expert → Sensor → Measured values → Spot density → Meas lower dens. (8166)

Description

Shows the Measured Lower Density Value.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Lower density timestamp

Navigation

Expert → Sensor → Measured values → Spot density → LowerDensTimestamp (8122)

Description

Shows timestamp of last measured lower density.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
"Profile density" submenu

Navigation

Expert → Sensor → Measured values → Profile density

<table>
<thead>
<tr>
<th>Item</th>
<th>Navigation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile point</td>
<td>Expert → Sensor →</td>
<td>Shows actual number of Density Points measured so far in current operation,</td>
</tr>
<tr>
<td></td>
<td>Measured values →</td>
<td>and the total Number of Points after Density Profile Operation is complete.</td>
</tr>
<tr>
<td></td>
<td>Profile density →</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Profile point</td>
<td></td>
</tr>
<tr>
<td>Profile average density</td>
<td>Expert → Sensor →</td>
<td>Shows the average density calculated after a profile density measurement</td>
</tr>
<tr>
<td></td>
<td>Measured values →</td>
<td>is complete.</td>
</tr>
<tr>
<td></td>
<td>Profile density →</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Profile avg dens</td>
<td></td>
</tr>
<tr>
<td>Profile density timestamp</td>
<td>Expert → Sensor →</td>
<td>Shows the timestamp when the last average density profile was finished.</td>
</tr>
<tr>
<td></td>
<td>Measured values →</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Profile density →</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Profil dens time</td>
<td></td>
</tr>
</tbody>
</table>

Profile point

Navigation

Expert → Sensor → Measured values → Profile density → Profile point (8170)

Description

Shows actual number of Density Points measured so far in current operation, and the total Number of Points after Density Profile Operation is complete.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Profile average density

Navigation

Expert → Sensor → Measured values → Profile density → Profile avg dens (8175)

Description

Shows the average density calculated after a profile density measurement is complete.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Profile density timestamp

Navigation

Expert → Sensor → Measured values → Profile density → Profil dens time (8114)

Description

Shows the timestamp when the last average density profile was finished.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
"Density table" submenu

Navigation

Expert → Sensor → Measured values → Profile density → Density table

Description

Shows measured density table of profile density.
3.2.3 "Sensor diag" submenu

Navigation
Expert → Sensor → Sensor diag

<table>
<thead>
<tr>
<th>▶ Sensor diag</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Start self check ➔ [\text{71}]</td>
</tr>
</tbody>
</table>

| Status self check ⇒ \[\text{71}\] |
| Self check ⇒ \[\text{71}\] |
| Gauge status ⇒ \[\text{72}\] |
| Status self check ⇒ \[\text{72}\] |

"Start self check" submenu

Navigation
Expert → Sensor → Sensor diag → Start self check

Status self check

Navigation
Expert → Sensor → Sensor diag → Start self check → Status (8192)
Description
Shows the status of the self check of the sensor module.

<table>
<thead>
<tr>
<th>Additional information</th>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

"Self check" wizard

Navigation
Expert → Sensor → Sensor diag → Start self check → Self check

Self check

Navigation
Expert → Sensor → Sensor diag → Start self check → Self check → Self check

<table>
<thead>
<tr>
<th>Additional information</th>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Gauge status

Navigation

Expert → Sensor → Sensor diag → Start self check → Self check → Gauge status (8081)

Description

Indicates the current status of the device gauge command.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Status self check

Navigation

Expert → Sensor → Sensor diag → Start self check → Self check → Status (8192)

Description

Shows the status of the self check of the sensor module.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
3.2.4 "Sensor config" submenu

Navigation

Expert → Sensor → Sensor config → Post gauge cmd (8163)

<table>
<thead>
<tr>
<th>Sensor config</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Post gauge command</td>
<td>→ 73</td>
</tr>
<tr>
<td>Displacer</td>
<td>→ 74</td>
</tr>
<tr>
<td>Wiredrum</td>
<td>→ 77</td>
</tr>
<tr>
<td>Safety settings</td>
<td>→ 78</td>
</tr>
<tr>
<td>Level settings</td>
<td>→ 81</td>
</tr>
<tr>
<td>Balance settings</td>
<td>→ 85</td>
</tr>
<tr>
<td>Spot density</td>
<td>→ 88</td>
</tr>
<tr>
<td>Profile density</td>
<td>→ 90</td>
</tr>
</tbody>
</table>

Post gauge command

Navigation

Expert → Sensor → Sensor config → Post gauge cmd (8163)

Description

Defines the gauge command that will be executed after a one-time gauge command has finished.

Selection

- Stop
- Level
- Up
- Upper I/F level
- Lower I/F level
- None

Factory setting

Level

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
"Displacer" submenu

Navigation

Expert → Sensor → Sensor config → Displacer → Displacer type (8071)

Description

Chooses the type of displacer used.

Selection

- Custom diameter
- Diameter 30 mm
- Diameter 50 mm
- Diameter 70 mm
- Diameter 110 mm

Factory setting

Dependent on the device version

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Displacer diameter

Navigation

Expert → Sensor → Sensor config → Displacer → Displacer diameter (8014)

Prerequisite

Displacer type (→ 74) = Custom diameter

Description

Sets the diameter of the cylindrical part of displacer.
Proservo NMS80

User entry 0 to 999.9 mm

Factory setting See label on the device.

Additional information

| Read access | Operator |
| Write access | Maintenance |

Displacer weight

Navigation Expert → Sensor → Sensor config → Displacer → Displacer weight (8010)

Description Set the weight of the displacer in air. Indicated on the displacer in grams.

User entry 10 to 999.9 g

Factory setting See label on the device.

Additional information

| Read access | Operator |
| Write access | Maintenance |

Displacer volume

Navigation Expert → Sensor → Sensor config → Displacer → Displacer volume (8008)

Description Displacer volume indicated on displacer in milliliter.

User entry 10 to 999.9 ml

Factory setting See label on the device.

Additional information

| Read access | Operator |
| Write access | Maintenance |

Displacer balance volume

Description Defines the balance volume of the displacer as the lower part of displacer immersed in liquid. Units in milliliters. Indicated on displacer.

User entry 10 to 999.9 ml

Factory setting See label on the device.
Displacer height

Navigation
Expert → Sensor → Sensor config → Displacer → Displacer height (8195)

Description
Sets the displacer height in mm. Used for density measurement as minimum distance between last profile point and liquid level.

User entry
10 to 300 mm

Factory setting
Dependent on the device version

Additional information

<table>
<thead>
<tr>
<th></th>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td></td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Immersion depth

Navigation
Expert → Sensor → Sensor config → Displacer → Immersion depth (8070)

Description
 Defines distance (mm) from displacer bottom to balancing line defined by balanced volume. Value is needed for correct bottom level measurement.

User entry
0 to 99.9 mm

Factory setting
Dependent on the device version

Additional information

<table>
<thead>
<tr>
<th></th>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td></td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
"Wiredrum" submenu

Navigation
Expert → Sensor → Sensor config → Wiredrum

<table>
<thead>
<tr>
<th>Wiredrum</th>
<th>→ 77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drum circumference</td>
<td></td>
</tr>
<tr>
<td>Wire weight</td>
<td>→ 77</td>
</tr>
</tbody>
</table>

Drum circumference

Navigation
Expert → Sensor → Sensor config → Wiredrum → Drum circumference (8082)

Description
Sets the circumference of the wire drum. Indicated in Label.

User entry
100 to 999.9 mm

Factory setting
See label on the device.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Wire weight

Navigation
Expert → Sensor → Sensor config → Wiredrum → Wire weight (8040)

Description
Defines the weight of the measuring wire in g/10m. Indicated on Label.

User entry
0 to 999.9 g

Factory setting
See label on the device.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
"Safety settings" submenu

Navigation

Expert → Sensor → Sensor config → Safety settings

<table>
<thead>
<tr>
<th>Safety settings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>High stop level</td>
<td>78</td>
</tr>
<tr>
<td>Low stop level</td>
<td>78</td>
</tr>
<tr>
<td>Slow hoist zone</td>
<td>79</td>
</tr>
<tr>
<td>Overtension weight</td>
<td>79</td>
</tr>
<tr>
<td>Undertension weight</td>
<td>79</td>
</tr>
<tr>
<td>Output out of range</td>
<td>80</td>
</tr>
</tbody>
</table>

High stop level

Navigation

Expert → Sensor → Sensor config → Safety settings → High stop level (8135)

Description

Position of the displacer high stop as measured from defined zero position (tank bottom or datum plate).

User entry

−999 999.9 to 999 999.9 mm

Factory setting

20 000 mm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Low stop level

Navigation

Expert → Sensor → Sensor config → Safety settings → Low stop level (8069)

Description

Position of the displacer low stop as measured from defined zero position (tank bottom or datum plate).

User entry

−999 999.9 to 999 999.9 mm

Factory setting

0 mm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Slow hoist zone

Navigation
Expert → Sensor → Sensor config → Safety settings → Slow hoist zone (8084)

Description
Defines the interval in millimeters, measured down from the Reference Position, in which the Displacer reduces moving speed.

User entry
10 to 999.999.9 mm

Factory setting
70 mm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Overtension weight

Navigation
Expert → Sensor → Sensor config → Safety settings → Overtension wgt (8097)

Description
Sets the minimum Weight in grams when Overtension Alarm will be set.

User entry
100 to 999.9 g

Factory setting
350 g

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Undertension weight

Navigation
Expert → Sensor → Sensor config → Safety settings → Undertension wgt (8098)

Description
Defines the undertension error weight. Untertension error will be issued if displacer weight is below this value longer than 7 seconds.

User entry
0 to 300 g

Factory setting
10 g

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
The 'Expert' menu

Output out of range

Navigation
Expert → Sensor → Sensor config → Safety settings → Output out range (8218)

Description
Selection of behavior between Alarm or Last valid value when displacer reached HighStopelevel, LowStopLevel or ReferencePosition.

Selection
- Last valid value
- Alarm
- None

Factory setting
Last valid value

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
"Level settings" submenu

Navigation

Expert → Sensor → Sensor config → Level settings → Upper density (8113)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper density</td>
<td>81</td>
</tr>
<tr>
<td>Middle density</td>
<td>81</td>
</tr>
<tr>
<td>Lower density</td>
<td>82</td>
</tr>
<tr>
<td>Process condition</td>
<td>82</td>
</tr>
<tr>
<td>Standby level</td>
<td>82</td>
</tr>
<tr>
<td>Offset standby distance</td>
<td>83</td>
</tr>
</tbody>
</table>

Upper density

Navigation

Expert → Sensor → Sensor config → Level settings → Upper density (8113)

Description

Sets the density of the upper phase of the liquid.

User entry

50 to 2,000 kg/m³

Factory setting

800 kg/m³

Additional information

| Read access | Operator |
| Write access | Maintenance |

Middle density

Navigation

Expert → Sensor → Sensor config → Level settings → Middle density (8041)

Description

Sets Density of Middle Phase in the Tank if three Phases are available. Otherwise used for the Lower Phase in the Tank if two Phases are available.

User entry

50 to 2,000 kg/m³

Factory setting

1,000 kg/m³

Additional information

| Read access | Operator |
| Write access | Maintenance |
Lower density

Navigation
Expert → Sensor → Sensor config → Level settings → Lower density (8042)

Description
Sets the density of the lower Phase in the tank if three phases are available.

User entry
50 to 2000 kg/m³

Factory setting
1200 kg/m³

Additional information
- **Read access:** Operator
- **Write access:** Maintenance

Process condition

Navigation
Expert → Sensor → Sensor config → Level settings → Process cond. (8001)

Description
Select the liquid condition of the tank.

Selection
- Universal
- Calm surface
- Turbulent surface

Factory setting
Universal

Additional information
For W&M, setting to option **Calm surface** is recommended.

- **Read access:** Operator
- **Write access:** Maintenance

Standby level

Navigation
Expert → Sensor → Sensor config → Level settings → Standby level (8194)

Description
Defines the position in the tank where the displacer waits for the liquid level to rise during standby level gauge command.

User entry
–999999.9 to 999999.9 mm

Factory setting
0 mm

Additional information
- **Read access:** Operator
- **Write access:** Maintenance
Offset standby distance

Navigation

Expert → Sensor → Sensor config → Level settings → Offset distance (8107)

Description

Defines the distance from the current position where the displacer waits for the liquid level to rise during offset standby gauge command.

User entry

0 to 999 999.9 mm

Factory setting

500 mm

Diagram: Displacer waiting for the liquid level to rise during standby level gauge command

1. Gauge reference height
2. Empty
3. Datum plate
4. Standby level
5. Standby distance
6. Reference position
Additional information

8

a: Offset standby distance
"Balance settings" submenu

Navigation

Expert → Sensor → Sensor config → Balance settings

<table>
<thead>
<tr>
<th>Balance settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level measurement mode</td>
</tr>
<tr>
<td>Interface measurement mode</td>
</tr>
<tr>
<td>Balancing waiting time</td>
</tr>
<tr>
<td>Seek delay</td>
</tr>
<tr>
<td>Weight tolerance</td>
</tr>
</tbody>
</table>

The parameter 'Process condition' does a pre-set of the major balancing parameters. For the most applications it's enough to set the correct 'Process condition' parameter which affects the balancing parameter settings automatically.

Level measurement mode

Navigation

Expert → Sensor → Sensor config → Balance settings → Level meas mode (8056)

Description

Chooses the measurement mode used for level measurement.

Selection

- Normal measure mode
- Compensation mode
- Non hysteresis mode

Factory setting

Non hysteresis mode

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
The "Expert" menu

Proservo NMS80

Navigation

Expert → Sensor → Sensor config → Balance settings → Interface mode (8064)

Description

Chooses the measurement mode used for interface level measurements.

Selection

- Non hysteresis mode
- Normal measure mode

Factory setting

Non hysteresis mode

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Balancing waiting time

Navigation

Expert → Sensor → Sensor config → Balance settings → Bal waiting time (8205)

Description

Set the waiting time in seconds, after which the balance flag is turned on if level measurement is balanced (motor has stopped).

User entry

0 to 255 s

Factory setting

4 s
Seek delay

Navigation

Expert → Sensor → Sensor config → Balance settings → Seek delay (8162)

Description

When displacer is balanced, this parameter sets the Delay Time (seconds) before displacer starts to track Level again.

User entry

1 to 255 s

Factory setting

2 s

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Weight tolerance

Navigation

Expert → Sensor → Sensor config → Balance settings → Weight tolerance (8213)

Description

Defines balance weight tolerance in grams, in which the displacer is in balance status.

User entry

0.1 to 100 g

Factory setting

1.6 g

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

10 Balancing parameter
"Spot density" submenu

Navigation

Expert → Sensor → Sensor config → Spot density

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot density</td>
<td></td>
</tr>
<tr>
<td>Upper density offset</td>
<td>→ 88</td>
</tr>
<tr>
<td>Middle density offset</td>
<td>→ 88</td>
</tr>
<tr>
<td>Lower density offset</td>
<td>→ 89</td>
</tr>
<tr>
<td>Submersion depth</td>
<td>→ 89</td>
</tr>
</tbody>
</table>

Upper density offset

Navigation

Expert → Sensor → Sensor config → Spot density → Up dens. offset (8176)

Description

Defines an offset value which is added to the measured upper density value.

User entry

−999.99 to 999.99 kg/m³

Factory setting

0 kg/m³

Additional information

| Read access | Operator |
| Write access | Maintenance |

Middle density offset

Navigation

Expert → Sensor → Sensor config → Spot density → Mid dens. offset (8177)

Description

Defines an Offset Value which is added to the measured Middle Density Value.

User entry

−999.99 to 999.99 kg/m³

Factory setting

0 kg/m³

Additional information

| Read access | Operator |
| Write access | Maintenance |
Lower density offset

Navigation

Expert → Sensor → Sensor config → Spot density → Low dens. offset (8178)

Description

Defines an offset value which is added to the measured lower density value.

User entry

-999.99 to 999.99 kg/m³

Factory setting

0 kg/m³

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Submersion depth

Navigation

Expert → Sensor → Sensor config → Spot density → Submersion depth (8169)

Description

Sets the displacer submersion depth (mm) for spot density operations.

User entry

50 to 99999.9 mm

Factory setting

150 mm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
"Profile density" submenu

Navigation
Expert → Sensor → Sensor config → Profile density

<table>
<thead>
<tr>
<th>Density measurement mode</th>
<th>→ 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual profile level</td>
<td>→ 90</td>
</tr>
<tr>
<td>Profile density offset distance</td>
<td>→ 91</td>
</tr>
<tr>
<td>Profile density interval</td>
<td>→ 91</td>
</tr>
<tr>
<td>Profile density offset</td>
<td>→ 91</td>
</tr>
</tbody>
</table>

Density measurement mode

Navigation
Expert → Sensor → Sensor config → Profile density → Density mode (8186)

Description
In normal measure mode, measures at specified positions. In compensation mode measures using next integer value of drum turns to improve accuracy.

Selection
• Normal measure mode
• Compensation mode

Factory setting
Normal measure mode

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

In normal mode, measures spot densities at requested positions. In compensation mode the Proservo measures the spot densities at multiples of the wiredrum circumference (e.g. every ~ 150 mm (5.91 in))

Manual profile level

Navigation
Expert → Sensor → Sensor config → Profile density → Man profile lvl (8182)

Description
Sets the level position in the tank where the manual profile density operation starts.

User entry
~999999.9 to 999999.9 mm

Factory setting
1000 mm
Profile density offset distance

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Sensor → Sensor config → Profile density → Dens offset dist (8185)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Profile density offset distance [mm] is the distance between start point and first measurement point.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 999 999.9 mm</td>
</tr>
<tr>
<td>Factory setting</td>
<td>500 mm</td>
</tr>
</tbody>
</table>

Profile density interval

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Sensor → Sensor config → Profile density → Density interval (8174)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sets the interval between two measurement points in profile density operation.</td>
</tr>
<tr>
<td>User entry</td>
<td>1 to 100 000 mm</td>
</tr>
<tr>
<td>Factory setting</td>
<td>1 000 mm</td>
</tr>
</tbody>
</table>

Profile density offset

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Sensor → Sensor config → Profile density → Prof dens offset (8173)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Defines an offset value which is added to the measured profile density value.</td>
</tr>
<tr>
<td>User entry</td>
<td>−999.99 to 999.99 kg/m³</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0 kg/m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
3.2.5 "Calibration" submenu

Navigation: Expert → Sensor → Calibration

- Move displacer → 93
- Sensor calibration → 95
- Reference calibration → 98
- Drum calibration → 100
- Calibration parameters → 103
"Move displacer" wizard

Navigation

> Expert → Sensor → Calibration → Move displacer → Move distance

Move distance

Navigation

> Expert → Sensor → Calibration → Move displacer → Move distance

Description

Up or down movement of displacer in mm.

User entry

0 to 999,999.9 mm

Factory setting

0 mm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Distance

Navigation

> Expert → Sensor → Calibration → Move displacer → Distance (8103)

Description

Shows measured distance from reference position.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
Move displacer

Navigation
Expert → Sensor → Calibration → Move displacer → Move displacer

Selection
- Stop
- Move down
- Move up

Factory setting
Stop

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Motor status

Navigation
Expert → Sensor → Calibration → Move displacer → Motor status (8118)

Description
Shows the current moving Direction of the Motor.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

Move displacer

Navigation
Expert → Sensor → Calibration → Move displacer → Move displacer

Selection
- No
- Yes

Factory setting
No

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
"Sensor calibration" wizard

Navigation

<table>
<thead>
<tr>
<th>Sensor calibration</th>
<th>➡️ 95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset weight</td>
<td>➡️ 95</td>
</tr>
<tr>
<td>Span weight</td>
<td>➡️ 96</td>
</tr>
<tr>
<td>Zero calibration</td>
<td>➡️ 96</td>
</tr>
<tr>
<td>Calibration status</td>
<td>➡️ 96</td>
</tr>
<tr>
<td>Offset calibration</td>
<td>➡️ 96</td>
</tr>
<tr>
<td>Span calibration</td>
<td>➡️ 97</td>
</tr>
</tbody>
</table>

Sensor calibration

Navigation

Description

This sequence calibrates the sensor of the servo.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Offset weight

Navigation

Description

Sets the weight that is used for the lower point sensor calibration. Changing the value will delete the calibration data.

User entry

0 to 150 g

Factory setting

Dependent on the device version

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

ℹ️ For density measurement application, it is recommended to apply 50 g.
Span weight

Navigation

Description
Sets the weight that is used for the middle point sensor calibration. Changing the value will delete the calibration data.

User entry
10 to 999.9 g

Factory setting
Dependent on the device version

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Zero calibration

Navigation

Description
In this step the sensor calibration zero weight will be done.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Calibration status

Navigation
Expert → Sensor → Calibration → Sensor cal. → Status (8031)

Description
Gives feedback on the latest status of the calibration process.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

Offset calibration

Navigation

Description
In this step the sensor calibration with offset weight will be done.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Span calibration

Navigation

Expert → Sensor → Calibration → Sensor cal. → Span calibration

Description

In this step the sensor calibration with span weight will be done.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
"Reference calibration" wizard

Navigation

<table>
<thead>
<tr>
<th>Reference calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference calibration</td>
</tr>
<tr>
<td>Reference position</td>
</tr>
<tr>
<td>Progress</td>
</tr>
<tr>
<td>Calibration status</td>
</tr>
</tbody>
</table>

Reference calibration

Navigation

Description

This sequence will move the displacer to the mechanical stop and set the reference position.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Reference position

Navigation

Expert → Sensor → Calibration → Reference cal. → Ref. position (8046)

Description

Defines in mm, during reference calibration, the distance between mechanical stop inside the drum housing and the middle of the wire ring.

User entry

0 to 9999.9 mm

Factory setting

Dependent on the device version

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Progress

Navigation

Expert → Sensor → Calibration → Reference cal. → Progress

Description

Gives feedback on the latest status of the reference calibration process.
Calibration status

Navigation

Expert → Sensor → Calibration → Reference cal. → Status (8031)

Description

Gives feedback on the latest status of the calibration process.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
"Drum calibration" wizard

Drum calibration

Make sure to have

Drum calibration

Calibration time

Set high weight

Make drum table

Drum table point

Calibration status

Make low table

Set low weight

Make sure to have

Additional information

Read access Operator

Write access -

Drum calibration

Description

This sequence will perform a drum calibration.

Additional information

Read access Operator

Write access Maintenance
Calibration time

Navigation
Expert → Sensor → Calibration → Drum cal. → Time

Description
Time until drum calibration is finished.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

Set high weight

Navigation
Expert → Sensor → Calibration → Drum cal. → Set high weight (8116)

Description
High weight that is used for a drum calibration (normally it is the displacer weight).

User entry
10 to 999.9 g

Factory setting
Dependent on the device version

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Make drum table

Navigation
Expert → Sensor → Calibration → Drum cal. → Make drum table

Description
This will perform a drum calibration.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Drum table point

Navigation
Expert → Sensor → Calibration → Drum cal. → Drum table point

Description
Shows the currently measured point of the drum calibration. Maximum number of measured points is 50.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>
Calibration status

Navigation

Expert → Sensor → Calibration → Drum cal. → Status (8031)

Description

Gives feedback on the latest status of the calibration process.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Make low table

Navigation

Expert → Sensor → Calibration → Drum cal. → Make low table

Description

For additional accuracy it is possible to perform a second drum calibration with low weight. Choose 'Yes' or 'No' to start/stop calibration.

Selection

- No
- Yes

Factory setting

No

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Set low weight

Navigation

Expert → Sensor → Calibration → Drum cal. → Set low weight (8115)

Description

Set weight for additional drum calibration sequence.

User entry

10 to 999.9 g

Factory setting

Dependent on the device version

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
"Calibration parameters" submenu

Navigation

☑️ ☑️ Expert → Sensor → Calibration → Calib parameters

Calibration parameters

- Set high weight
- Set low weight
- Reference position
- Offset weight
- Span weight
- Calibration status

Set high weight

Navigation

☑️ ☑️ Expert → Sensor → Calibration → Calib parameters → Set high weight (8116)

Description

High weight that is used for a drum calibration (normally it is the displacer weight).

User entry

10 to 999.9 g

Factory setting

Dependent on the device version

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Set low weight

Navigation

☑️ ☑️ Expert → Sensor → Calibration → Calib parameters → Set low weight (8115)

Description

Set weight for additional drum calibration sequence.

User entry

10 to 999.9 g

Factory setting

Dependent on the device version

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Reference position

Navigation
- Expert → Sensor → Calibration → Calib parameters → Ref. position (8046)

Description
Defines in mm, during reference calibration, the distance between mechanical stop inside the drum housing and the middle of the wire ring.

User entry
0 to 9999.9 mm

Factory setting
Dependent on the device version

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Offset weight

Navigation
- Expert → Sensor → Calibration → Calib parameters → Offset wgt. (8095)

Description
Sets the weight that is used for the lower point sensor calibration. Changing the value will delete the calibration data.

User entry
0 to 150 g

Factory setting
Dependent on the device version

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

For density measurement application, it is recommended to apply 50 g.

Span weight

Navigation
- Expert → Sensor → Calibration → Calib parameters → Span wgt. (8096)

Description
Sets the weight that is used for the middle point sensor calibration. Changing the value will delete the calibration data.

User entry
10 to 999.9 g

Factory setting
Dependent on the device version

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Calibration status

Navigation

Expert → Sensor → Calibration → Calib parameters → Status (8031)

Description

Gives feedback on the latest status of the calibration process.

Additional information

<table>
<thead>
<tr>
<th></th>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>
3.3 "Input/output" submenu

Navigation ☐ ☐ Expert → Input/output

► Input/output

► HART devices → ☐ 107

► Analog IP → ☐ 138

► Analog I/O → ☐ 147

► Digital Xx-x → ☐ 160

► Digital input mapping → ☐ 166
3.3.1 "HART devices" submenu

Navigation

Expert → Input/output → HART devices

<table>
<thead>
<tr>
<th>▶ HART devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of devices → 107</td>
</tr>
<tr>
<td>▶ HART Device(s) → 108</td>
</tr>
<tr>
<td>▶ Forget device → 136</td>
</tr>
<tr>
<td>▶ #blank# → 136</td>
</tr>
</tbody>
</table>

Number of devices

Navigation

Expert → Input/output → HART devices → Number devices (13051)

Description

Shows the number of devices on the HART bus.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
"HART Device(s)" submenu

There is a HART Device(s) submenu for each HART slave device found on the HART loop.

Navigation: Expert → Input/output → HART devices → HART Device(s)

- Device name
- Polling address
- Device tag
- Operating mode
- Communication status
- Status signal
- #blank# (PV - designation dependent on device)
- #blank# (SV - designation dependent on device)
- #blank# (TV - designation dependent on device)
- #blank# (QV - designation dependent on device)
- HART device PV mA
- HART device PV %
- Output pressure
- Output density
- Output temperature
- Output vapor temperature
- Output level

- HART device information
- Element values
Device name

Navigation

[Diagram](#) Expert → Input/output → HART devices → HART Device(s) → Device name (14722)

Description

Shows the name of the transmitter.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

Polling address

Navigation

[Diagram](#) Expert → Input/output → HART devices → HART Device(s) → Polling address (14712)

Description

Shows the polling address of the transmitter.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

Device tag

Navigation

[Diagram](#) Expert → Input/output → HART devices → HART Device(s) → Device tag (14713)

Description

Shows the device tag of the transmitter.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

Operating mode

Navigation

[Diagram](#) Expert → Input/output → HART devices → HART Device(s) → Operating mode (14745)

Prerequisite

Not available if the HART device is a Prothermo NMT.
The 'Expert' menu

Description
Selection of the operation mode PV only or PV,SV,TV,QV. Determines which values are polled from the connected HART Device.

Selection
- PV only
- PV,SV,TV & QV
- Level
- Measured level

Factory setting
PV,SV,TV & QV

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Communication status

Navigation
Expert → Input/output → HART devices → HART Device(s) → Comm. status (14710)

Description
Shows the operating status of the transmitter.

User interface
- Operating normally
- Device offline

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

Status signal

Navigation
Expert → Input/output → HART devices → HART Device(s) → Status signal (14760)

Description
Indicates the current device status in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107.

User interface
- OK
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- ---
- No effect (N)
- ---

Factory setting

--- only visible if the connected device is a Micropilot
#blank# (HART PV - designation dependent on device)

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Input/output → HART devices → HART Device(s) → #blank# (14716)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Shows the first HART variable (PV).</td>
</tr>
<tr>
<td>Additional information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Write access</td>
</tr>
</tbody>
</table>

#blank# (HART SV - designation dependent on device)

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Input/output → HART devices → HART Device(s) → #blank# (14705)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>For HART devices other than NMT: Operating mode (→ 109) = PV,SV,TV & QV</td>
</tr>
<tr>
<td>Description</td>
<td>Shows the second HART variable (SV).</td>
</tr>
<tr>
<td>Additional information</td>
<td>Read access</td>
</tr>
<tr>
<td></td>
<td>Write access</td>
</tr>
</tbody>
</table>

#blank# (HART TV - designation dependent on device)

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Input/output → HART devices → HART Device(s) → #blank# (14706)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>For HART devices other than NMT: Operating mode (→ 109) = PV,SV,TV & QV</td>
</tr>
<tr>
<td>Description</td>
<td>Shows the third HART variable (TV).</td>
</tr>
<tr>
<td>Additional information</td>
<td>Read access</td>
</tr>
<tr>
<td></td>
<td>Write access</td>
</tr>
</tbody>
</table>

#blank# (HART QV - designation dependent on device)

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Input/output → HART devices → HART Device(s) → #blank# (14716)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>For HART devices other than NMT: Operating mode (→ 109) = PV,SV,TV & QV</td>
</tr>
<tr>
<td>Description</td>
<td>Shows the fourth HART variable (QV).</td>
</tr>
<tr>
<td>Additional information</td>
<td>Read access</td>
</tr>
<tr>
<td></td>
<td>Write access</td>
</tr>
</tbody>
</table>
HART device PV mA

Navigation

Expert → Input/output → HART devices → HART Device(s) → HARTDEV PV mA

(14708)

Prerequisite

Not available for Micropilot S FMR5xx and Prothermo 53x.

Description

Shows the first HART variable (PV) in mA.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

HART device PV %

Navigation

Expert → Input/output → HART devices → HART Device(s) → HARTDEV PV %

(14709)

Prerequisite

Not available for Micropilot S FMR5xx and Prothermo 53x.

Description

Shows the first HART variable (PV) in percentage.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Output pressure

Navigation

Expert → Input/output → HART devices → HART Device(s) → Output pressure

(14719)

Prerequisite

Not available for Micropilot S FMR5xx, Prothermo NMT53x and Prothermo NMT8x. In these cases the measured variables are allocated automatically.

Description

Defines which HART variable is the pressure.

Selection

- No value
- Primary variable (PV)
- Secondary variable (SV)
- Tertiary variable (TV)
- Quaternary variable (QV)

Factory setting

No value

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Output density

Navigation

Expert → Input/output → HART devices → HART Device(s) → Output density (14720)

Prerequisite

Not available for Micropilot S FMR5xx, Prothermo NMT53x and Prothermo NMT8x. In these cases the measured variables are allocated automatically.

Description

Defines which HART variable is the density.

Selection

- No value
- Primary variable (PV)
- Secondary variable (SV)
- Tertiary variable (TV)
- Quaternary variable (QV)

Factory setting

No value

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Output temperature

Navigation

Expert → Input/output → HART devices → HART Device(s) → Output temp. (14721)

Prerequisite

Not available for Micropilot S FMR5xx, Prothermo NMT53x and Prothermo NMT8x. In these cases the measured variables are allocated automatically.

Description

Defines which HART variable is the temperature.

Selection

- No value
- Primary variable (PV)
- Secondary variable (SV)
- Tertiary variable (TV)
- Quaternary variable (QV)

Factory setting

No value

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Output vapor temperature

Navigation

Expert → Input/output → HART devices → HART Device(s) → Output vapor tmp (14726)

Prerequisite

Not available for Micropilot S FMR5xx, Prothermo NMT53x and Prothermo NMT8x. In these cases the measured variables are allocated automatically.
The 'Expert' menu

Description
Defines which HART variable is the vapor temperature.

Selection
- No value
- Primary variable (PV)
- Secondary variable (SV)
- Tertiary variable (TV)
- Quaternary variable (QV)

Factory setting
No value

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Output level

Navigation
Expert → Input/output → HART devices → HART Device(s) → Output level (14718)

Prerequisite
Not available for Micropilot S FMR5xx, Prothermo NMT53x and Prothermo NMT8x. In these cases the measured variables are allocated automatically.

Description
Defines which HART variable is the level.

Selection
- No value
- Primary variable (PV)
- Secondary variable (SV)
- Tertiary variable (TV)
- Quaternary variable (QV)

Factory setting
No value

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
"HART device information" submenu

Navigation

Expert → Input/output → HART devices → HART Device(s) → HART device info

<table>
<thead>
<tr>
<th>HART device information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
</tr>
<tr>
<td>Density</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Vapor temperature</td>
</tr>
<tr>
<td>Water level</td>
</tr>
<tr>
<td>Level source</td>
</tr>
<tr>
<td>Tank level to NMT</td>
</tr>
<tr>
<td>Manual value</td>
</tr>
<tr>
<td>HART bus</td>
</tr>
<tr>
<td>Device type</td>
</tr>
<tr>
<td>Device ID</td>
</tr>
<tr>
<td>Device date</td>
</tr>
<tr>
<td>Device description</td>
</tr>
<tr>
<td>Device message</td>
</tr>
<tr>
<td>Software version</td>
</tr>
<tr>
<td>Firmware CRC</td>
</tr>
<tr>
<td>Custody transfer</td>
</tr>
</tbody>
</table>

Pressure

Navigation

Expert → Input/output → HART devices → HART Device(s) → HART device info → Pressure (14723)

Prerequisite

Output pressure (→ 112) = No value
Density

Navigation

 khổng lồ Expert → Input/output → HART devices → HART Device(s) → HART device info → Density (14724)

Prerequisite

Output density (→ 🌋 113) ≠ No value

Description

Shows the density value measured by the connected HART device.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Temperature

Navigation

 khổng lồ Expert → Input/output → HART devices → HART Device(s) → HART device info → Temperature (14725)

Prerequisite

Output temperature (→ 🌋 113) ≠ No value

Description

Shows the temperature measured by the connected HART device.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Vapor temperature

Navigation

 khổng lồ Expert → Input/output → HART devices → HART Device(s) → HART device info → Vapor temp. (14727)

Prerequisite

Output vapor temperature (→ 🌋 113) ≠ No value

Description

Shows the temperature value of the vapor phase measured by the connected HART device.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
Water level

Navigation

The "Expert" menu → Input/output → HART devices → HART Device(s) → HART device info → Water level (14717)

Prerequisite

Output level (→ 114) ≠ No value

Description

Shows the water level value measured by the connected HART device.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

Level source

Navigation

The "Expert" menu → Input/output → HART devices → HART Device(s) → HART device info → Level source (14749)

Prerequisite

Prothermo NMT53x

Description

Shows which source should be used for level reference sent to NMT to determine liquid/vapour temperature. Tank level or manual level.

Selection

- Manual value
- Tank level

Factory setting

Tank level

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Tank level to NMT

Navigation

The "Expert" menu → Input/output → HART devices → HART Device(s) → HART device info → Tank lvl to NMT (14750)

Prerequisite

Prothermo NMT53x with level measurement

Description

Shows the level transferred to NMT.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance</td>
<td>-</td>
</tr>
</tbody>
</table>
The 'Expert' menu

Proservo NMS80

Manual value

Navigation

Expert → Input/output → HART devices → HART Device(s) → HART device info → Manual value (14746)

Prerequisite

Prothermo NMT53x with level measurement

Description

Shows the manual set level.

User entry

Signed floating-point number

Factory setting

0 mm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

HART bus

Navigation

Expert → Input/output → HART devices → HART Device(s) → HART device info → HART bus (14711)

Description

Information about the used IO-Slot.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Device type

Navigation

Expert → Input/output → HART devices → HART Device(s) → HART device info → Device type (14701)

Description

Shows the device type with which the measuring device is registered with the HART Communication Foundation.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Device ID

Navigation

Expert → Input/output → HART devices → HART Device(s) → HART device info → Device ID (14702)

Description

Shows the device ID of the connected HART device.
Proservo NMS80

The "Expert" menu

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Device date

Navigation

Expert → Input/output → HART devices → HART Device(s) → HART device info → Device date (14707)

Description

Shows the date of the connected HART device. (e.g.: the last configuration change).

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Device description

Navigation

Expert → Input/output → HART devices → HART Device(s) → HART device info → Device descr. (14704)

Description

Shows a user defined HART descriptor of the connected device.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Device message

Navigation

Expert → Input/output → HART devices → HART Device(s) → HART device info → Device message (14703)

Description

Shows a user defined HART message of the connected device.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Software version

Navigation

Expert → Input/output → HART devices → HART Device(s) → HART device info → Software version (14747)

Prerequisite

Prothermo NMT53x

Description

Shows the software version of the NMT device.
The 'Expert' menu

Proservo NMS80

<table>
<thead>
<tr>
<th>Additional information</th>
<th>Read access</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Write access</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Firmware CRC

Navigation

Expert → Input/output → HART devices → HART Device(s) → HART device info → Firmware CRC (14758)

User interface

Positive integer

Factory setting

0

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Write access</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Custody transfer

Navigation

Expert → Input/output → HART devices → HART Device(s) → HART device info → Custody transfer (14748)

Prerequisite

Prothermo NMT53x with temperature measurement

Description

Shows information about hardware lock of NMT device. Off -> NMT parameter can be changed. On -> NMT parameter cannot be changed.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Write access</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
“Element values” submenu

This submenu is only available for Prothermo NMT5x.

Navigation

Expert → Input/output → HART devices → HART Device(s) → Element values

“Element temperature” submenu

Navigation

Expert → Input/output → HART devices → HART Device(s) → Element values → Element temp.

Element temperature 1 to 24

Navigation

Expert → Input/output → HART devices → HART Device(s) → Element values → Element temp. → Element temp. 1 to 24 (14984–1 to 24)

Description

Shows the temperature of an element in the NMT.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

“Element position” submenu

Navigation

Expert → Input/output → HART devices → HART Device(s) → Element values → Element position

Element position 1 to 24

Navigation

Expert → Input/output → HART devices → HART Device(s) → Element values → Element position → Element pos. 1 to 24 (15014–1 to 24)

Description

Shows the position of the selected element in the NMT.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
The "Expert" menu

"Diagnostics" submenu

This submenu is only available for Prothermo NMT53x.

Navigation

Expert → Input/output → HART devices → HART Device(s) → Diagnostics

Diagnostic code

<table>
<thead>
<tr>
<th>Description</th>
<th>Shows the current diagnostic code of NMT. Check NMT manual for details.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Last diagnostic

<table>
<thead>
<tr>
<th>Description</th>
<th>Shows the previous diagnostic code of NMT. Check NMT manual for details.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Reference 0

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Prothermo NMT53x with temperature measurement.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
<td>Expert → Input/output → HART devices → HART Device(s) → Diagnostics → Reference 0 (14740)</td>
</tr>
</tbody>
</table>
Proservo NMS80

The "Expert" menu

Reference 17

Navigation

Expert → Input/output → HART devices → HART Device(s) → Diagnostics → Reference 17 (14741)

Prerequisite

Prothermo NMT53x with temperature measurement.

Description

Shows the temperature of internal reference element 17.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

"Diagnostics" submenu

This submenu is only available for Prothermo NMT8x.

Navigation

Expert → Input/output → HART devices → HART Device(s) → Diagnostics

<table>
<thead>
<tr>
<th>Active diagnostics</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous diagnostics</td>
<td>124</td>
</tr>
<tr>
<td>Test resistance</td>
<td>124</td>
</tr>
<tr>
<td>WB frequency ratio</td>
<td>124</td>
</tr>
</tbody>
</table>

Active diagnostics

Navigation

Expert → Input/output → HART devices → HART Device(s) → Diagnostics → Active diagnos. (14754)

User interface

Character string comprising numbers, letters and special characters

Factory setting
Previous diagnostics

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Input/output → HART devices → HART Device(s) → Diagnostics → Prev.diagnostics (14755)</th>
</tr>
</thead>
<tbody>
<tr>
<td>User interface</td>
<td>Character string comprising numbers, letters and special characters</td>
</tr>
</tbody>
</table>

Test resistance

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Input/output → HART devices → HART Device(s) → Diagnostics → Test resistance (14752)</th>
</tr>
</thead>
<tbody>
<tr>
<td>User interface</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0 Ohm</td>
</tr>
</tbody>
</table>

WB frequency ratio

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Input/output → HART devices → HART Device(s) → Diagnostics → WB freq. ratio (14753)</th>
</tr>
</thead>
<tbody>
<tr>
<td>User interface</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
NMT device config submenu

This submenu is only present if the connected HART device is a Prothermo NMT5xx.

Navigation

깐嗟 Expert → Input/output → HART devices → HART Device(s) → NMT dev. config

<table>
<thead>
<tr>
<th>Configure device?</th>
<th>→ 125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access code</td>
<td>→ 126</td>
</tr>
<tr>
<td>Total no. element</td>
<td>→ 126</td>
</tr>
<tr>
<td>Bottom point</td>
<td>→ 127</td>
</tr>
<tr>
<td>Temperature element short</td>
<td>→ 127</td>
</tr>
<tr>
<td>Temperature element open</td>
<td>→ 127</td>
</tr>
<tr>
<td>Output at error</td>
<td>→ 128</td>
</tr>
<tr>
<td>Gain adjust</td>
<td>→ 128</td>
</tr>
<tr>
<td>Kind of interval</td>
<td>→ 128</td>
</tr>
<tr>
<td>Element interval</td>
<td>→ 129</td>
</tr>
<tr>
<td>Update water level</td>
<td>→ 129</td>
</tr>
</tbody>
</table>

Element setup

ırken → 130

Select element	→ 130
Zero adjust	→ 130
Element temperature	→ 131
Element position	→ 131

Description

Enable NMT device configuration.
Access code

Selection
- No
- Yes

Factory setting
No

Additional information
Meaning of the options
- No
 Not configurable
- Yes
 Configurable

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Total no. element

Navigation
Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Total elements (14730)

Description
Shows the total amount of configurable temperature elements.

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Bottom point

Navigation

- Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Bottom point (14729)

Description

Shows the bottom clearance from the end of temperature probe or WB probe.

User entry

Signed floating-point number

Factory setting

0 mm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Temperature element short

Navigation

- Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Temp elem. short (14731)

Description

Sets the displayed temperature if element is broken (shorten).

User entry

Signed floating-point number

Factory setting

0 °C

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Temperature element open

Navigation

- Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Temp. elem. open (14732)

Description

Sets the displayed temperature if element is not connected (open).

User entry

Signed floating-point number

Factory setting

0 °C

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Output at error

Navigation
Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Output at error (14733)

Description
Off -> Defective element will not be used in average calculation. On -> Defective element generate error at output value.

Selection
- Off
- On

Factory setting
Off

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Gain adjust

Navigation
Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Gain adjust (14736)

Description
Adjustment of all shown temperature elements. Also reference elements 0 and 17. e.g. 0.8 -> 80% 1.0 -> 100% of factory calibration 1.2 -> 120%.

User entry
Signed floating-point number

Factory setting
0

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Kind of interval

Navigation
Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Kind of interval (14744)

Description
Determines how the element positions are defined.

Selection
- Even
- Not even

Factory setting
Even
Element interval

Navigation

Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Element interval (14743)

Prerequisite

Kind of interval (→ 128) = Even

Description

Shows the distance between the temperature elements used if kind of interval parameter is set to even.

User entry

Signed floating-point number

Factory setting

0 mm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Update water level

Navigation

Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Water level upd. (14751)

Description

Select if water level value is transferred to NMT or not.

Selection

- Enabled
- Disabled

Factory setting

Disabled

Additional information

- Enabled: Water level value is transferred
- Disabled: Water level value is not transferred

The NMT delivers the average liquid temperature value in a tank by picking up the value of all temperature elements which are covered by liquid and calculating the average value. To select the submerged temperature elements, the NMT receives level information from a tank gauging device. If the water bottom temperature shall be excluded from the measurement, the water level value is used to exclude the temperature elements which are submerged in water.
The 'Expert' menu

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Element setup submenu

Navigation

Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Element setup

Description

Chooses the temperature element to be configured manually.

User entry

1 to 24

Factory setting

1

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Zero adjust

Navigation

Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Element setup → Zero adjust (14735)

Description

Adjusts the offset of the selected temperature element.

User interface

Signed floating-point number

Factory setting

0 None

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Service</td>
</tr>
</tbody>
</table>
Element temperature

Navigation

Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Element setup → Element temp. (14737)

Description
Shows the temperature of the element.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Element position

Navigation

Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Element setup → Element position (14738)

Description
Shows the position of the temperature element.

User interface
Signed floating-point number

Factory setting
0 mm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Service</td>
</tr>
</tbody>
</table>

NMT device config submenu

This submenu is only present if the connected HART device is a Prothermo NMT8x.

Navigation

Expert → Input/output → HART devices → HART Device(s) → NMT dev. config

<table>
<thead>
<tr>
<th>NMT device config</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure device?</td>
</tr>
<tr>
<td>Total no. element</td>
</tr>
<tr>
<td>Bottom point</td>
</tr>
<tr>
<td>No element in phase</td>
</tr>
<tr>
<td>Water bottom level offset</td>
</tr>
</tbody>
</table>
Configure device?

Navigation

- Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Config. device? (14728)

Description

Enable NMT device configuration.

Selection

- No
- Yes

Factory setting

No

Additional information

<table>
<thead>
<tr>
<th>Meaning of the options</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Not configurable</td>
</tr>
<tr>
<td>Yes</td>
<td>Configurable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Total no. element

Navigation

- Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Total elements (14730)

Description

Shows the total amount of configurable temperature elements.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
Bottom point

Navigation

Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Bottom point (14729)

Description

Shows the bottom clearance from the end of temperature probe or WB probe.

User entry

Signed floating-point number

Factory setting

0 mm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

No element in phase

Navigation

Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → No elm. in phase (14756)

Selection

- Alarm
- Warning
- Logbook entry only

Factory setting

Alarm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Operator</td>
</tr>
</tbody>
</table>

Water bottom level offset

Navigation

Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → WB level offset (14757)

User entry

Signed floating-point number

Factory setting

0 mm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Operator</td>
</tr>
</tbody>
</table>
Update water level

Navigation

Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Water level upd. (14751)

Description

Select if water level value is transferred to NMT or not.

Selection

- Enabled
- Disabled

Factory setting

Disabled

Additional information

- Enabled: Water level value is transferred
- Disabled: Water level value is not transferred

The NMT delivers the average liquid temperature value in a tank by picking up the value of all temperature elements which are covered by liquid and calculating the average value. To select the submerged temperature elements, the NMT receives level information from a tank gauging device. If the water bottom temperature shall be excluded from the measurement, the water level value is used to exclude the temperature elements which are submerged in water.

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

"Element setup" submenu

Navigation

Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Element setup

Select element

Navigation

Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Element setup → Select element (14734)

Description

Chooses the temperature element to be configured manually.
Zero adjust

User entry
1 to 24

Factory setting
1

<table>
<thead>
<tr>
<th>Additional information</th>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Navigation
Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Element setup → Zero adjust (14759)

User interface
Signed floating-point number

Factory setting
0 °C

<table>
<thead>
<tr>
<th>Additional information</th>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

Element temperature

Navigation
Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Element setup → Element temp. (14737)

Description
Shows the temperature of the element.

Additional information
Read access: Operator, Write access: -

Element position

Navigation
Expert → Input/output → HART devices → HART Device(s) → NMT dev. config → Element setup → Element position (14738)

Description
Shows the position of the temperature element.

User interface
Signed floating-point number

Factory setting
0 mm

<table>
<thead>
<tr>
<th>Additional information</th>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operator</td>
<td>Service</td>
</tr>
</tbody>
</table>
"Forget device" wizard

This submenu is only available if there is at least one unlocked device at the bus.

Navigation

Expert → Input/output → HART devices → Forget device

Forget device

Navigation

Expert → Input/output → HART devices → Forget device → Forget device

Description

With this function an offline device can be deleted from the device list.

Selection

- HART Device 1 *
- HART Device 2 *
- HART Device 3 *
- HART Device 4 *
- HART Device 5 *
- HART Device 6 *
- HART Device 7 *
- HART Device 8 *
- HART Device 9 *
- HART Device 10 *
- HART Device 11 *
- HART Device 12 *
- HART Device 13 *
- HART Device 14 *
- HART Device 15 *
- None

Factory setting

None

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

HART Bus interface

Navigation

Expert → Input/output → HART devices → #blank#

<table>
<thead>
<tr>
<th>#blank#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating mode</td>
</tr>
<tr>
<td>Current</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
Operating mode

Navigation

[salarié] Expert → Input/output → HART devices → #blank# → Operating mode (14453)

Description

Shows the operation mode of this HART bus.

User interface

- None
- Disable
- HART master
- HART slave +4..20mA output
- HART tunnel

Factory setting

None

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td></td>
</tr>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Current

Navigation

[salarié] Expert → Input/output → HART devices → #blank# → Current (14457)

Description

Shows the actual current on this HART bus.

User interface

0 to 100 000 mA

Factory setting

0 mA

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td></td>
</tr>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
3.3.2 "Analog IP" submenu

There is an Analog IP submenu (→ 138) for each Analog I/O module of the device. This submenu refers to terminals 4 to 8 of this module (the analog input). They are primarily used to connect an RTD. For terminals 1 to 3 (analog input or output) refer to → 147.

Navigation

Expert → Input/output → Analog IP

<table>
<thead>
<tr>
<th>▶ Analog IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating mode</td>
</tr>
<tr>
<td>RTD type</td>
</tr>
<tr>
<td>Ohms offset</td>
</tr>
<tr>
<td>Thermocouple type</td>
</tr>
<tr>
<td>RTD connection type</td>
</tr>
<tr>
<td>Process value</td>
</tr>
<tr>
<td>Process variable</td>
</tr>
<tr>
<td>0 % value</td>
</tr>
<tr>
<td>100 % value</td>
</tr>
<tr>
<td>Input value percent</td>
</tr>
<tr>
<td>Input value</td>
</tr>
<tr>
<td>Temperature offset after conversion</td>
</tr>
</tbody>
</table>
Operating mode

Navigation
Expert → Input/output → Analog IP → Operating mode (14014)

Description
Defines the operating mode of the analog input.

Selection
- Disabled
- RTD temperature input
- Gauge power supply

Factory setting
Disabled

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

RTD type

Navigation
Expert → Input/output → Analog IP → RTD type (14021)

Prerequisite
Operating mode (→ 139) = RTD temperature input

Description
Defines the type of the connected RTD.

Selection
- Cu50 (w=1.428, GOST)
- Cu53 (w=1.426, GOST)
- Cu90; 0°C (w=1.4274, GOST)
- Cu100; 25°C (w=1.4274, GOST)
- Cu100; 0°C (w=1.4274, GOST)
- Pt46 (w=1.391, GOST)
- Pt50 (w=1.391, GOST)
- Pt100(385) (a=0.00385, IEC751)
- Pt100(389) (a=0.00389, Canadian)
- Pt100(391) (a=0.003916, JIS1604)
The 'Expert' menu

- Pt100 (w=1.391, GOST)
- Pt500(385) (a=0.00385, IEC751)
- Pt1000(385) (a=0.00385, IEC751)
- Ni100(617) (a=0.00617, DIN43760)
- Ni120(672) (a=0.00672, DIN43760)
- Ni1000(617) (a=0.00617, DIN43760)

Factory setting

Pt100(385) (a=0.00385, IEC751)

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Ohms offset

Navigation

Expert → Input/output → Analog IP → Ohms offset (14026)

Prerequisite

Operating mode (→ 139) = RTD temperature input

Description

Defines a offset for the resistance. This value is added to the measured resistance before the calculation of the temperature.

User entry

-10.0 to 10.0 Ohm

Factory setting

0 Ohm

Additional information

The value entered in this parameter is added to the measured resistance before the calculation of the temperature.

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Thermocouple type

Navigation

Expert → Input/output → Analog IP → Thermocouple typ (14008)

Description

Defines the type of the connected thermocouple.

Selection

- N type
- B type
- C type
- D type
- J type
- K type
- L type
- L GOST type
- R type
- S type
- T type
- U type
RTD connection type

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Input/output → Analog IP → RTD connect type (14022)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>Operating mode (→ 139) = RTD temperature input</td>
</tr>
<tr>
<td>Description</td>
<td>Defines the connection type of the RTD.</td>
</tr>
</tbody>
</table>
| **Selection** | - 4 wire RTD connection
- 2 wire RTD connection
- 3 wire RTD connection |
| **Factory setting** | 4 wire RTD connection |
| **Additional information** |
| Read access | Operator
Write access | Maintenance |

Process value

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Input/output → Analog IP → Process value (14003)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>Operating mode (→ 139) ≠ Disabled</td>
</tr>
<tr>
<td>Description</td>
<td>Shows the measured value received via the analog input.</td>
</tr>
<tr>
<td>Additional information</td>
<td></td>
</tr>
</tbody>
</table>
| Read access | Operator
Write access | - |

Process variable

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Input/output → Analog IP → Process variable (14016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>Operating mode (→ 139) ≠ RTD temperature input</td>
</tr>
<tr>
<td>Description</td>
<td>Determines type of measured value.</td>
</tr>
</tbody>
</table>
| **Selection** | - Level linearized
- Temperature
- Pressure
- Density |
| **Factory setting** | Level linearized |
Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

0 % value

Navigation

Expert → Input/output → Analog IP → 0 % value (14001)

Prerequisite

Operating mode (→ 139) = 4..20mA input

Description

Defines the value represented by a current of 4mA.

User entry

Signed floating-point number

Factory setting

0 mm

Input value percent

Navigation

Expert → Input/output → Analog IP → Input value [%] (14002)

Prerequisite

Operating mode (→ 139) = 4..20mA input

Description

Shows the input value in percent.

0% corresponds to 4 mA.

100% corresponds to 20 mA.
Additional information

- 0% corresponds to 4 mA
- 100% corresponds to 20 mA

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Input value

Navigation

Space ➤ Expert ➤ Input/output ➤ Analog IP ➤ Input value (14015)

Prerequisite

Operating mode (→ 139) ≠ Disabled

Description

Shows the value received via the analog input.

Temperature offset after conversion

Prerequisite

Operating mode (→ 139) = RTD temperature input

Description

Defines an offset for the measured temperature.
The offset is applied after the resistance of the RTD has been converted to a temperature.

User entry

-20 to 20 °C

Factory setting

0 °C

Minimum probe temperature

Prerequisite

Operating mode (→ 139) = RTD temperature input

Description

Minimum approved temperature of the connected probe.
If the temperature falls below this value, the W&M status will be 'invalid'.

Maintenance
Maximum probe temperature

<table>
<thead>
<tr>
<th>User entry</th>
<th>–213 to 927 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory setting</td>
<td>–100 °C</td>
</tr>
<tr>
<td>Additional info</td>
<td>Read access: Operator</td>
</tr>
<tr>
<td></td>
<td>Write access:</td>
</tr>
<tr>
<td></td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Navigation

- Expert → Input/output → Analog IP → Max. probe temp (14011)

Prerequisite

- Operating mode (→ 139) = RTD temperature input

Description

Maximum approved temperature of the connected probe. If the temperature rises above this value, the W&M status will be 'invalid'.

<table>
<thead>
<tr>
<th>User entry</th>
<th>–213 to 927 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory setting</td>
<td>250 °C</td>
</tr>
<tr>
<td>Additional info</td>
<td>Read access: Operator</td>
</tr>
<tr>
<td></td>
<td>Write access:</td>
</tr>
<tr>
<td></td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Probe position

<table>
<thead>
<tr>
<th>User entry</th>
<th>–5 000 to 30 000 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory setting</td>
<td>5 000 mm</td>
</tr>
<tr>
<td>Additional info</td>
<td>Read access: Operator</td>
</tr>
<tr>
<td></td>
<td>Write access:</td>
</tr>
<tr>
<td></td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Calibration type AIP

Navigation
Expert → Input/output → Analog IP → Cal type AIP (14018)

Prerequisite
Operating mode (→ 139) ≠ Disabled

Description
Select calibration state of the analog input or output.

Selection
- User calibration
- Factory calibration

Factory setting
Factory calibration

Additional information

<table>
<thead>
<tr>
<th>Meaning of the options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not calibrated</td>
</tr>
<tr>
<td>This is a display option only. It can not be selected. It is shown if the analog input is not in a calibrated state.</td>
</tr>
<tr>
<td>User calibration</td>
</tr>
<tr>
<td>Activates a user calibration. The user calibration itself is defined in the User calibration wizard.</td>
</tr>
<tr>
<td>Factory calibration</td>
</tr>
<tr>
<td>Activates the factory calibration which is permanently stored in the device.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Active calibration

Navigation
Expert → Input/output → Analog IP → Act. calibration (14012)

Prerequisite
Operating mode (→ 139) ≠ Disabled

Description
Shows calibration state of the analog input.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Damping factor

Navigation
Expert → Input/output → Analog IP → Damping factor (14004)

Prerequisite
Operating mode (→ 139) ≠ Disabled

Description
Defines the damping constant (in seconds).

User entry
0 to 999.9 s
Factory setting

0 s

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Gauge current

Navigation

Expert → Input/output → Analog IP → Gauge current (14027)

Prerequisite

Operating mode (→ 139) = Gauge power supply

Description

Shows the current on the power supply line for the connected device.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

3.3.3 "Analog I/O" submenu

There is a Analog I/O submenu (→ 147) for each Analog I/O module of the device. This submenu refers to terminals 1 to 3 of this module (an analog input or output). For terminals 4 to 8 (always an analog input) refer to → 138.

Navigation

Expert → Input/output → Analog I/O

- Operating mode
- Current span
- Fixed current
- Analog input source
- Failure mode
- Error value
- Output out of range
- Error on event
- Input value
- 0 % value
- 100 % value
- Input value %
Operating mode

Navigation

- Expert → Input/output → Analog I/O → Operating mode (13958)

Description

Defines the operating mode of the analog I/O module.

Selection

- Disabled
- 4..20mA input
- HART master+4..20mA input
- HART master
- 4..20mA output
- HART slave +4..20mA output

Factory setting

Disabled

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Proservo NMS80

Meaning of the options

<table>
<thead>
<tr>
<th>Operating mode (→ 148)</th>
<th>Direction of signal</th>
<th>Type of signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4...20mA input</td>
<td>Input from 1 external device</td>
<td>Analog (4...20mA)</td>
</tr>
</tbody>
</table>
| HART master+4...20mA input | Input from 1 external device | • Analog (4...20mA)
| | | • HART |
| HART master | Input from up to 6 external devices | HART |
| 4...20mA output | Output to higher-level unit | Analog (4...20mA) |
| HART slave +4...20mA output | Output to higher-level unit | • Analog (4...20mA)
| | | • HART |

Depending on the terminals used, the Analog I/O module is used in the passive or active mode.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Terminals of the I/O module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive (power supply from external source)</td>
<td>1</td>
</tr>
<tr>
<td>Active (power supplied by the device itself)</td>
<td>not used</td>
</tr>
</tbody>
</table>

In the active mode the following conditions must be met:

- Maximum current consumption of the connected HART devices: 24 mA (i.e. 4 mA per device if 6 devices are connected).
- Output voltage of the Ex-d module: 17.0 V@4 mA to 10.5 V@22 mA
- Output voltage of the Ex-ia module: 18.5 V@4 mA to 12.5 V@22 mA

Current span

Navigation
Expert → Input/output → Analog I/O → Current span (13987)

Prerequisite
Operating mode parameter (→ 148) ≠ Disabled option or HART master option

Description
Defines the current range for the measured value transmission.

Selection
- 4...20 mA NE (3.8...20.5 mA)
- 4...20 mA US (3.9...20.8 mA)
- 4...20 mA (4... 20.5 mA)
- Fixed value *

Factory setting
4...20 mA NE (3.8...20.5 mA)

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
Meaning of the options

<table>
<thead>
<tr>
<th>Option</th>
<th>Current range for process variable</th>
<th>Minimum value</th>
<th>Lower alarm signal level</th>
<th>Upper alarm signal level</th>
<th>Maximum value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4...20 mA (4...20.5 mA)</td>
<td>4 to 20.5 mA</td>
<td>3.5 mA</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
<td>22.6 mA</td>
</tr>
<tr>
<td>4...20 mA NE (3.8...20.5 mA)</td>
<td>3.8 to 20.5 mA</td>
<td>3.5 mA</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
<td>22.6 mA</td>
</tr>
<tr>
<td>4...20 mA US (3.9...20.8 mA)</td>
<td>3.9 to 20.8 mA</td>
<td>3.5 mA</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
<td>22.0 mA</td>
</tr>
<tr>
<td>Fixed current</td>
<td>Constant current, defined in the Fixed current parameter (→ 150).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the case of an error, the output current assumes the value defined in the **Failure mode** parameter (→ 151).

Fixed current

Navigation

Expert → Input/output → Analog I/O → Fixed current (13989)

Prerequisite

Current span (→ 149) = Fixed current

Description

Defines the fixed output current.

User entry

4 to 22.5 mA

Factory setting

4 mA

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Analog input source

Navigation

Expert → Input/output → Analog I/O → Analog source (13974)

Prerequisite

- Operating mode (→ 148) = 4..20mA output or HART slave +4..20mA output
- Current span (→ 149) = Fixed current

Description

Defines the process variable transmitted via the AIO.

Selection

- None
- Tank level
- Tank level %
- Tank ullage
- Tank ullage %
- Measured level
- Distance
- Displacer position
- Water level
The "Expert" menu

- Upper interface level
- Lower interface level
- Bottom level
- Tank reference height
- Liquid temperature
- Vapor temperature
- Air temperature
- Observed density value
- Average profile density
- Upper density
- Middle density
- Lower density
- P1 (bottom)
- P2 (middle)
- P3 (top)
- GP 1 ... 4 value
- AIO B1-3 value
- AIO B1-3 value mA
- AIO C1-3 value
- AIO C1-3 value mA
- AIP B4-8 value
- AIP C4-8 value
- Element temperature 1 ... 24
- HART device 1...15 PV
- HART device 1 ... 15 PV mA
- HART device 1 ... 15 PV %
- HART device 1 ... 15 SV
- HART device 1 ... 15 TV
- HART device 1 ... 15 QV

Factory setting

Tank level

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Failure mode

Navigation

Expert → Input/output → Analog I/O → Failure mode (13988)

Prerequisite

Operating mode (→ 148) = 4..20mA output or HART slave +4..20mA output

Description

Defines the output behavior in case of an error.

Selection

- Min.
- Max.
- Last valid value
- Actual value
- Defined value

Factory setting

Max.

3) Visibility depends on order options or device settings
The 'Expert' menu

Proservo NMS80

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Error value

Navigation

Expert → Input/output → Analog I/O → Error value (13972)

Prerequisite

Failure mode (→ 151) = Defined value

Description

Defines the output value in case of an error.

User entry

3.4 to 22.6 mA

Factory setting

22 mA

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Output out of range

Navigation

Expert → Input/output → Analog I/O → Output out range (13971)

Prerequisite

Operating mode (→ 148) = 4..20mA output or HART slave +4..20mA output

Description

Behavior of current output if the value is out of allowed range.

Selection

- Last valid value
- Alarm
- None

Factory setting

Alarm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Error on event

Navigation

Expert → Input/output → Analog I/O → Error on event (13967)

Prerequisite

Operating mode (→ 148) = 4..20mA output or HART slave +4..20mA output

Description

Defines to which type of event (alarm or warning) the output responds.
Selection

- Output related error
- Any error
- Any error or warning

Factory setting

Output related error

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Input value

Navigation

Expert → Input/output → Analog I/O → Input value (13979)

Prerequisite

- Operating mode (→ 148) = 4..20mA output or HART slave +4..20mA output
- Current span (→ 149) ≠ Fixed current

Description

Shows the input value of the analog I/O module.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td></td>
</tr>
</tbody>
</table>

0 % value

Navigation

Expert → Input/output → Analog I/O → 0 % value (13954)

Prerequisite

- Operating mode (→ 148) = 4..20mA output or HART slave +4..20mA output
- Current span (→ 149) ≠ Fixed current

Description

Value corresponding to an output current of 0% (4mA).

User entry

Signed floating-point number

Factory setting

0 Unitless

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td></td>
</tr>
</tbody>
</table>

100 % value

Navigation

Expert → Input/output → Analog I/O → 100 % value (13968)

Prerequisite

- Operating mode (→ 148) = 4..20mA output or HART slave +4..20mA output
- Current span (→ 149) ≠ Fixed current
The 'Expert' menu

Proservo NMS80

Description
Value corresponding to an output current of 100% (20mA).

User entry
Signed floating-point number

Factory setting
0 Unitless

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Input value %

Navigation
Expert → Input/output → Analog I/O → Input value % (13955)

Prerequisite
• Operating mode (→ 148) = 4..20mA output or HART slave +4..20mA output
• Current span (→ 149) ≠ Fixed current

Description
Shows the output value as a percentage of the complete 4...20mA range.

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Output value

Navigation
Expert → Input/output → Analog I/O → Output value (13969)

Prerequisite
Operating mode (→ 148) = 4..20mA output or HART slave +4..20mA output

Description
Shows the output value in mA.

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Readback value

Navigation
Expert → Input/output → Analog I/O → Readback value (13957)

Prerequisite
Operating mode (→ 148) = 4..20mA output or HART slave +4..20mA output

Description
Shows the measured (feedback) current at the output.

User interface
0 to 65 535 µA

Factory setting
0 µA
Feedback threshold

- **Navigation**:
 - Expert → Input/output → Analog I/O → Feedback thresh. (13956)

- **Prerequisite**:
 - Operating mode (→ 148) = 4..20mA output or HART slave +4..20mA output

- **Description**: Shows the feedback threshold.

- **Additional information**:
 - Read access: Operator
 - Write access: -

Process variable

- **Navigation**:
 - Expert → Input/output → Analog I/O → Process variable (13964)

- **Prerequisite**:
 - Operating mode (→ 148) = 4..20mA input or HART master+4..20mA input

- **Description**: Defines the type of measuring variable.

- **Selection**:
 - Level linearized
 - Temperature
 - Pressure
 - Density

- **Factory setting**: Level linearized

- **Additional information**:
 - Read access: Operator
 - Write access: Maintenance

Analog input 0% value

- **Navigation**:
 - Expert → Input/output → Analog I/O → AI 0% value (13977)

- **Prerequisite**:
 - Operating mode (→ 148) = 4..20mA input or HART master+4..20mA input

- **Description**: Value corresponding to an input current of 0% (4mA).

- **User entry**: Signed floating-point number

- **Factory setting**: 0 mm
The 'Expert' menu

Proservo NMS80

Analog input 100% value

Navigation

Expert → Input/output → Analog I/O → AI 100% value (13965)

Prerequisite

Operating mode (→ bb 148) = 4..20mA input or HART master+4..20mA input

Description

Value corresponding to an input current of 100% (20mA).

User entry

Signed floating-point number

Factory setting

0 mm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Error event type

Navigation

Expert → Input/output → Analog I/O → Error event type (13953)

Prerequisite

Operating mode (→ bb 148) ≠ Disabled or HART master

Description

Defines the type of event message (alarm/warning) in case of an error or output out of range in the analog I/O module.

Selection

- None
- Warning
- Alarm

Factory setting

Warning

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Process value

Navigation

Expert → Input/output → Analog I/O → Process value (13963)

Prerequisite

Operating mode (→ bb 148) = 4..20mA input or HART master+4..20mA input

Description

Shows the input value scaled to customer units.
Additional information

<table>
<thead>
<tr>
<th></th>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

Input value in mA

Navigation

Expert → Input/output → Analog I/O → Input val. in mA (13970)

Prerequisite

Operating mode (→ 148) = 4..20mA input or HART master+4..20mA input

Description

Shows the input value in mA.

Additional information

<table>
<thead>
<tr>
<th></th>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

Input value percent

Navigation

Expert → Input/output → Analog I/O → Input value [%] (13978)

Prerequisite

Operating mode (→ 148) = 4..20mA input or HART master+4..20mA input

Description

Shows the input value as a percentage of the complete 4...20mA current range.

Additional information

<table>
<thead>
<tr>
<th></th>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

Damping factor

Navigation

Expert → Input/output → Analog I/O → Damping factor (13951)

Prerequisite

Operating mode (→ 148) ≠ Disabled or HART master

Description

Defines the damping constant (in seconds).

User entry

0 to 999.9 s

Factory setting

0 s

Additional information

<table>
<thead>
<tr>
<th></th>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Calibration

Navigation
Expert → Input/output → Analog I/O → Calibration (13966)

Prerequisite
Operating mode (→ 148) ≠ Disabled or HART master

Description
Select calibration state of the analog input or output.

Selection
- User calibration
- Factory calibration

Factory setting
Factory calibration

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Active calibration

Navigation
Expert → Input/output → Analog I/O → Act. calibration (13981)

Prerequisite
Operating mode (→ 148) ≠ Disabled or HART master

Description
Indicates the calibration status of the Analog I/O module.

Additional information
Meaning of the options
- **User calibration**
 The calibration entered by the user is active.
- **Factory calibration**
 The calibration stored permanently in the device is active.

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Used for SIL/WHG

Navigation
Expert → Input/output → Analog I/O → Used for SIL/WHG (13980)

Prerequisite
- Operating mode (→ 148) = 4..20mA output or HART slave +4..20mA output
- The device has a SIL approval.

Description
Determines whether the discrete I/O module is in SIL/WHG mode.

Selection
- Enabled
- Disabled

Factory setting
Disabled
Expected SIL/WHG chain

Navigation

Expert → Input/output → Analog I/O → SIL/WHG chain (13952)

Prerequisite

- Operating mode (→ 148) = 4..20mA output or HART slave +4..20mA output
- The device has a SIL approval.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
3.3.4 "Digital Xx-x" submenu

- In the operating menu, each digital input or output is designated by the respective slot of the terminal compartment and two terminals within this slot. A1-2, for example, denotes terminals 1 and 2 of slot A. The same is valid for slots B, C and D if they contain a Digital IO module.
- In this document, Xx-x designates any of these submenus. The structure of all these submenus is the same.

![Diagram of digital inputs or outputs](image)

Navigation
Expert → Input/output → Digital Xx-x → Operating mode (13911)

- Operating mode
- Digital input source
- Input value
- Contact type
- Output simulation
- Output value
- Readback value
- Error on event
- Damping factor
- Used for SIL/WHG
Operating mode

Navigation
Expert → Input/output → Digital Xx-x → Operating mode (13911)

Description
Defines the operating mode of the discrete I/O module.

Selection
- Disabled
- Output passive
- Input passive
- Input active

Factory setting
Disabled

Additional information

![Operating modes of the Digital I/O module]

A Input passive
B Input active
C Output passive

Read access
Operator
Write access
Maintenance

Digital input source

Navigation
Expert → Input/output → Digital Xx-x → Digital source (13907)

Prerequisite
Operating mode (→ 161) = Output passive

Description
Defines which device state is indicated by the digital output.

Selection
- None
- Alarm x any
- Alarm x High
- Alarm x HighHigh
- Alarm x High or HighHigh
- Alarm x Low
- Alarm x LowLow
- Alarm x Low or LowLow
- Digital Xx-x
- Primary Modbus x
- Secondary Modbus x

Factory setting
None
Additional information

Meaning of the options

- Alarm x any, Alarm x High, Alarm x HighHigh, Alarm x High or HighHigh, Alarm x Low, Alarm x LowLow, Alarm x Low or LowLow
 The digital output indicates if the selected alarm is currently active. The alarms themselves are defined in the Alarm 1 to 4 submenus.

- Digital Xx-x 4)
 The digital signal present at the digital input Xx-x is passed through to the digital output.

- Modbus A1-4 Discrete x
 Modbus B1-4 Discrete x
 Modbus C1-4 Discrete x
 Modbus D1-4 Discrete x
 The digital value written by the Modbus Master device to the Modbus discrete x parameter 5) is passed to the digital output. For details refer to Special Documentation SD02066G.

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Input value

Navigation

Expert → Input/output → Digital Xx-x → Input value (13901)

Prerequisite

Operating mode (→ 161) = "Input passive" option or "Input active" option

Description

Shows the digital input value.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Contact type

Navigation

Expert → Input/output → Digital Xx-x → Contact type (13912)

Prerequisite

Operating mode (→ 161) = Disabled

Description

Determines the switching behavior of the input or output.

Selection

- Normally open
- Normally closed

Factory setting

Normally open

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

4) Only present if "Operating mode (→ 161)" = "Input passive" or "Input active" for the respective Digital I/O module.

5) Expert → Communication → Modbus Xx-x → Modbus discrete x
Output simulation

Navigation
- Expert → Input/output → Digital Xx-x → Output sim (13909)

Prerequisite
- Operating mode (→ 161) = Output passive

Description
Sets the output to a specific simulated value.

Selection
- Disable
- Simulating active
- Simulating inactive
- Fault 1
- Fault 2

Factory setting
- Disable

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

The digital output consists of two relays connected in series:

![diagram]

Image 15 The two relays of a digital output

1/2 The relays
3/4 The terminals of the digital output

The switching state of these relays is defined by the **Output simulation** parameter as follows:

<table>
<thead>
<tr>
<th>Output simulation</th>
<th>State of relay 1</th>
<th>State of relay 2</th>
<th>Expected result on the terminals of the I/O module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulating active</td>
<td>Closed</td>
<td>Closed</td>
<td>Closed</td>
</tr>
<tr>
<td>Simulating inactive</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
</tr>
<tr>
<td>Fault 1</td>
<td>Closed</td>
<td>Open</td>
<td>Open</td>
</tr>
<tr>
<td>Fault 2</td>
<td>Open</td>
<td>Closed</td>
<td>Open</td>
</tr>
</tbody>
</table>

Information The Fault 1 and Fault 2 options can be used to check the correct switching behavior of the two relays.
Output value

Navigation
Expert → Input/output → Digital Xx-x → Output value (13902)

Prerequisite
Operating mode (→ 161) = Output passive

Description
Shows the digital output value.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Readback value

Navigation
Expert → Input/output → Digital Xx-x → Readback value (13903)

Prerequisite
Operating mode (→ 161) = Output passive

Description
Shows the value read back from the output.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Error on event

Navigation
Expert → Input/output → Digital Xx-x → Error on event (13916)

Prerequisite
Operating mode (→ 161) = Output passive

Description
Defines to which type of events (error or warning) the output responds. Choice: only output related or all.

Selection

- Output related error
- Any error
- Any error or warning

Factory setting
Output related error

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Damping factor

Navigation
- Expert → Input/output → Digital Xx-x → Damping factor (13904)

Prerequisite
- Operating mode (→ 161) = Disabled

Description
Defines the damping constant.

User entry
1 to 10 s

Factory setting
5 s

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Used for SIL/WHG

Navigation
- Expert → Input/output → Digital Xx-x → Used for SIL/WHG (13910)

Prerequisite
- Operating mode (→ 161) = Output passive
- The device has a SIL certificate.

Description
Determines whether the discrete I/O module is in SIL/WHG mode.

Selection
- Enabled
- Disabled

Factory setting
Disabled

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
3.3.5 "Digital input mapping" submenu

Navigation ▶ Expert → Input/output → DI mapping

<table>
<thead>
<tr>
<th>Digital input mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital input source 1</td>
</tr>
<tr>
<td>Digital input source 2</td>
</tr>
<tr>
<td>Gauge command 0</td>
</tr>
<tr>
<td>Gauge command 1</td>
</tr>
<tr>
<td>Gauge command 2</td>
</tr>
<tr>
<td>Gauge command 3</td>
</tr>
</tbody>
</table>

Digital input source 1

Navigation ▶ Expert → Input/output → DI mapping → Digital source 1 (8147)

Description Selects the source of digital input #1 (for gauge command).

Selection
- None
- Digital A1-2 *
- Digital A3-4 *
- Digital B1-2 *
- Digital B3-4 *
- Digital C1-2 *
- Digital C3-4 *
- Digital D1-2 *
- Digital D3-4 *

Factory setting None

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Digital input source 2

Navigation ▶ Expert → Input/output → DI mapping → Digital source 2 (8148)

Description Selects the source of digital input #2 (for gauge command).

* Visibility depends on order options or device settings
Selection

- None
- Digital A1-2 *
- Digital A3-4 *
- Digital B1-2 *
- Digital B3-4 *
- Digital C1-2 *
- Digital C3-4 *
- Digital D1-2 *
- Digital D3-4 *

Factory setting
None

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Gauge command 0

Navigation

Expert → Input/output → DI mapping → Gauge command 0 (8149)

Prerequisite

Digital input source 1 (→ 166) * None

Description
Gauge command assigned to digital input combination 0 (DI2=0, DI1=0).

Selection

- Stop *
- Level
- Up *
- Bottom level *
- Upper I/F level *
- Lower I/F level *
- Upper density *
- Middle density
- Lower density
- Repeatability *
- Water dip
- Release overtension *
- Tank profile *
- Interface profile *
- Manual profile *
- Level standby *
- Offset standby *

Factory setting
Level

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
Gauge command 1

Navigation
Expert → Input/output → DI mapping → Gauge command 1 (8150)

Prerequisite
Digital input source 1 (→) ≠ None

Description
Gauge command assigned to digital input combination 1 (DI2=0, DI1=1).

Selection
- Stop *
- Level
- Up *
- Bottom level *
- Upper I/F level *
- Lower I/F level
- Upper density *
- Middle density *
- Lower density *
- Repeatability *
- Water dip
- Release overtension *
- Tank profile *
- Interface profile *
- Manual profile *
- Level standby *
- Offset standby *

Factory setting
Up

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Gauge command 2

Navigation
Expert → Input/output → DI mapping → Gauge command 2 (8151)

Prerequisite
- Digital input source 1 (→) ≠ None
- Digital input source 2 (→) ≠ None

Description
Gauge command assigned to digital input combination 2 (DI2=1, DI1=0).

Selection
- Stop *
- Level
- Up *
- Bottom level *
- Upper I/F level *
- Lower I/F level
- Upper density *
- Middle density *
- Lower density *
- Repeatability *

* Visibility depends on order options or device settings
Proservo NMS80

The “Expert” menu

- Water dip
- Release overtension
- Tank profile
- Interface profile
- Manual profile
- Level standby
- Offset standby

Factory setting

Stop

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Gauge command 3

Navigation

Expert → Input/output → DI mapping → Gauge command 3 (8152)

Prerequisite

- Digital input source 1 (→ 166) ≠ None
- Digital input source 2 (→ 166) ≠ None

Description

Gauge command assigned to digital input combination 3 (DI2=1, DI1=1).

Selection

- Stop
- Level
- Up
- Bottom level
- Upper I/F level
- Lower I/F level
- Upper density
- Middle density
- Lower density
- Repeatability
- Water dip
- Release overtension
- Tank profile
- Interface profile
- Manual profile
- Level standby
- Offset standby

Factory setting

Upper I/F level

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
3.4 "Communication" submenu

This menu contains a submenu for each digital communication interface of the device. The communication interfaces are designated by "X1-4" where "X" specifies the slot in the terminal compartment and "1-4" the terminals within this slot.

![Diagram of communication interfaces]

16 Designation of the 'Modbus' or 'V1' modules (examples); depending on the device version these modules may also be in slot B or C.

Navigation Expert → Communication
3.4.1 "Modbus Xx-x" or "V1 Xx-x" submenu

This submenu is only present for devices with MODBUS and/or V1 communication interface. There is one submenu of this type for each communication interface.

Navigation

Expert → Communication → Modbus Xx-x / V1 Xx-x

Communication interface protocol

Navigation

Expert → Communication → Modbus X1-4 / V1 X1-4 / WM550 X1-4 → Commu I/F protoc (13201)

Description

Shows the type of communication protocol.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Write access	

Modbus value 1 to 4

Navigation

![Expert → Communication → Modbus Xx-x → Modbus value 1 to 4 (13206–1 to 4)]

Prerequisite

Communication interface protocol (→ 171) = MODBUS

Description

Shows the respective floating point value written by the host system.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

The Modbus interface provides four floating point values which can be written to by the Host system. These values can be linked to specific functions (e.g. providing the air temperature value).

Modbus discrete 1 to 4

Navigation

![Expert → Communication → Modbus Xx-x → Modbus discr. 1 to 4 (13240–1 to 4)]

Prerequisite

Communication interface protocol (→ 171) = MODBUS

Description

Shows the integer value written by the host-system.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

The Modbus interface provides four discrete (integer) registers which can be written to by the Host system. These values can be linked to specific functions (e.g. controlling a discrete output).

In the device these values are converted into the following discrete state values:

- Unknown (integer value 0)
- Inactive (integer value 1)
- Active (integer value 2)
- Invalid (integer value >= 3)
"Configuration" submenu (Modbus)

Only visible for devices with a Modbus I/O module.

Navigation

Expert → Communication → Modbus Xx-x → Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baudrate</td>
</tr>
<tr>
<td>Parity</td>
</tr>
<tr>
<td>Modbus address</td>
</tr>
<tr>
<td>Float swap mode</td>
</tr>
<tr>
<td>Invalid data</td>
</tr>
<tr>
<td>Word type</td>
</tr>
<tr>
<td>CRC seed</td>
</tr>
<tr>
<td>Old TSM mode</td>
</tr>
<tr>
<td>Bus termination</td>
</tr>
<tr>
<td>Compatibility mode</td>
</tr>
</tbody>
</table>

Baudrate

Navigation

Expert → Communication → Modbus X1-4 → Configuration → Baudrate (13203)

Prerequisite

Communication interface protocol (→ 171) = MODBUS

Description

Defines the baud rate of the communication.

Selection

- 600 BAUD
- 1200 BAUD
- 2400 BAUD
- 4800 BAUD*
- 9600 BAUD*
- 19200 BAUD*

Factory setting

9600 BAUD

* Visibility depends on order options or device settings
The "Expert" menu

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Parity

Navigation

Expert → Communication → Modbus X1-4 → Configuration → Parity (13204)

Prerequisite

Communication interface protocol (→ 171) = MODBUS

Description

Defines the parity of the Modbus communication.

Selection

- Odd
- Even
- None / 1 stop bit
- None / 2 stop bits

Factory setting

None / 1 stop bit

Modbus address

Navigation

Expert → Communication → Modbus X1-4 → Configuration → Modbus address (13205)

Prerequisite

Communication interface protocol (→ 171) = MODBUS

Description

Defines the Modbus address of the device.

User entry

1 to 247

Factory setting

1

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Float swap mode

Navigation

Expert → Communication → Modbus X1-4 → Configuration → Float swap mode (13232)

Prerequisite

Communication interface protocol (→ 171) = MODBUS
Description
Sets the format of how the floating point value is transferred on Modbus.

Selection
- Normal 3-2-1-0
- Swap 0-1-2-3
- WW Swap 1-0-3-2

Factory setting
Swap 0-1-2-3

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Invalid data

Navigation
Expert → Communication → Modbus Xx-x → Configuration → Invalid data (13243)

Prerequisite
Communication interface protocol (→ 171) = MODBUS

Description
Sets what byte is sent in a message that contains invalid data.

Selection
- 0x00
- 0xFF

Factory setting
0x00

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Word type

Navigation
Expert → Communication → Modbus Xx-x → Configuration → Word type (13208)

Prerequisite
Communication interface protocol (→ 171) = MODBUS

Description
Selects if the integer value has the range 0 to +65535 or -32768 to +32767.

Selection
- Unsigned
- Signed

Factory setting
Unsigned

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
The 'Expert' menu

Proservo NMS80

CRC seed

Navigation

Expert → Communication → Modbus Xx-x → Configuration → CRC seed (13248)

Prerequisite

Communication interface protocol (→ 171) = MODBUS

Description

CRC seed value selection used for all communication CRC calculations.

Selection

- 0x0000
- 0xFFFF

Factory setting

0xFFFF

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Old TSM mode

Navigation

Expert → Communication → Modbus Xx-x → Configuration → Old TSM mode (13213)

Prerequisite

Communication interface protocol (→ 171) = MODBUS

Description

Selects the type of value available at the NRF590 SW vers.1 compatible modbus map (Address 3000-3195) addresses.

Selection

- Float values
- Integer values

Factory setting

Float values

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Bus termination

Navigation

Expert → Communication → Modbus X1-4 → Configuration → Bus termination (13249)

Prerequisite

Communication interface protocol (→ 171) = MODBUS

Description

Activates or deactivates the bus termination at the device. Should only be activated on the last device in a loop.

Selection

- Off
- On
Compatibility mode

Navigation

Expert → Communication → Modbus Xx-x / V1 Xx-x → Configuration → Comp. mode (13281)

Description

Defines the compatibility mode.

Selection

- Nxx5xx
- Nxx8x

Factory setting

Nxx8x

Additional information

In **NMS5x** mode: Only values which have also existed on NMS5x Gauge status are output on the bus.

In **NMS8x** mode: All Gauge status are available at this parameter.

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
"Integer conversion" submenu

Only visible for devices with a Modbus I/O module.

Navigation

Expert → Communication → Modbus Xx-x → Integer conversion

<table>
<thead>
<tr>
<th>Integer conversion</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0%</td>
<td>→ 178</td>
</tr>
<tr>
<td>Level 100%</td>
<td>→ 179</td>
</tr>
<tr>
<td>Temperature 0%</td>
<td>→ 179</td>
</tr>
<tr>
<td>Temperature 100%</td>
<td>→ 179</td>
</tr>
<tr>
<td>Pressure 0%</td>
<td>→ 180</td>
</tr>
<tr>
<td>Pressure 100%</td>
<td>→ 180</td>
</tr>
<tr>
<td>Density 0%</td>
<td>→ 180</td>
</tr>
<tr>
<td>Density 100%</td>
<td>→ 181</td>
</tr>
<tr>
<td>User 0%</td>
<td>→ 181</td>
</tr>
<tr>
<td>User 100%</td>
<td>→ 181</td>
</tr>
<tr>
<td>Percent 0%</td>
<td>→ 182</td>
</tr>
<tr>
<td>Percent 100%</td>
<td>→ 182</td>
</tr>
</tbody>
</table>

Level 0%

Navigation

Expert → Communication → Modbus Xx-x → Integer conversion → Level 0% (13214)

Description

Defines the level that represents 0% on the integer value scale.

User entry

Signed floating-point number

Factory setting

0.00 mm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Level 100%

Navigation
Expert → Communication → Modbus Xx-x → Integer convers → Level 100% (13250)

Description
Defines the level that represents 100% on the integer value scale.

User entry
Signed floating-point number

Factory setting
30.0 mm

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Temperature 0%

Navigation
Expert → Communication → Modbus Xx-x → Integer convers → Temperature 0% (13215)

Description
 Defines the temperature that represents 0% on the integer value scale.

User entry
Signed floating-point number

Factory setting
233.15 °C

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Temperature 100%

Navigation
Expert → Communication → Modbus Xx-x → Integer convers → Temperature 100% (13216)

Description
Defines the temperature that represents 100% on the integer value scale.

User entry
Signed floating-point number

Factory setting
373.15 °C

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
<tr>
<td>Pressure 0%</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>Navigation</td>
<td>Expert → Communication → Modbus Xx-x → Integer converters → Pressure 0% (13217)</td>
</tr>
<tr>
<td>Description</td>
<td>Defines the pressure that represents 0% on the integer value scale.</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0 bar</td>
</tr>
<tr>
<td>Additional information</td>
<td>Read access</td>
</tr>
<tr>
<td></td>
<td>Write access</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User entry</td>
</tr>
<tr>
<td>Factory setting</td>
</tr>
<tr>
<td>Additional information</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Density 0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User entry</td>
</tr>
<tr>
<td>Factory setting</td>
</tr>
<tr>
<td>Additional information</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Density 100%

Navigation

Expert → Communication → Modbus Xx:x → Integer convrs → Density 100%

(13218)

Description

Defines the density that represents 100% on the integer value scale.

User entry

Signed floating-point number

Factory setting

1000 kg/m³

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

User 0%

Navigation

Expert → Communication → Modbus Xx:x → Integer convrs → User 0%

(13221)

Description

Defines the value of the user selected variable that represents 0% on the integer value scale.

User entry

Signed floating-point number

Factory setting

0

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

User 100%

Navigation

Expert → Communication → Modbus Xx:x → Integer convrs → User 100%

(13222)

Description

Defines the value of the user selected variable that represents 100% on the integer value scale.

User entry

Signed floating-point number

Factory setting

0

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Percent 0%

Navigation

Expert → Communication → Modbus Xx-x → Integer conver → Percent 0% (13202)

Description

Defines the percentage of the measured value that represents 0% on the integer value scale.

User entry

-200 to +400 %

Factory setting

0.00 %

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Percent 100%

Navigation

Expert → Communication → Modbus Xx-x → Integer conver → Percent 100% (13234)

Description

Defines the percentage of the measured value that represents 100% on the integer value scale.

User entry

-200 to +400 %

Factory setting

100 %

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
"User value source" submenu

Only visible for devices with a Modbus I/O module.

Navigation

[Expert → Communication → Modbus Xx-x → UserVal source → UserVal 1 source (13209)]

User value 1 to 8 source

Navigation

[Expert → Communication → Modbus Xx-x → UserVal source → UserVal 1 to 8 source (13209–1 to 8)]

Description

Selects which parameter shall be transmitted as User value x.

Selection

- None
- Tank ullage
- Distance
- Upper interface level
- Lower interface level
- Bottom level
- Average profile density
- Vapor density
- Manual density
- P1 position
- P3 position
- GP 1...4 value
- AIO B1-3 value
- AIO C1-3 value
- AIP B4-8 value
- AIP C4-8 value
- HART device 1...15 PV
- HART device 1...15 PV mA
- HART device 1...15 PV %
- HART device 1...15 SV
- HART device 1...15 TV
- HART device 1...15 QV

Factory setting

None

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

6) Visibility depends on order options or device settings
"GP values" submenu

Navigation

Expert → Communication → Modbus Xx-x → GP values → GP 1 value 0% (13223)

GP 1 value 0%

Description
Defines the GP1 value that represents 0% on the integer value scale.

User entry
Signed floating-point number

Factory setting
0 Unitless

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

GP 1 value 100%

Description
Defines the GP1 value that represents 100% on the integer value scale.

User entry
Signed floating-point number

Factory setting
0 Unitless
GP 2 value 0%

Navigation

Expert → Communication → Modbus Xx-x → GP values → GP 2 value 0% (13257)

Description

Defines the GP2 value that represents 0% on the integer value scale.

User entry

Signed floating-point number

Factory setting

0 None

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

GP 2 value 100%

Navigation

Expert → Communication → Modbus Xx-x → GP values → GP 2 value 100% (13258)

Description

Defines the GP2 value that represents 100% on the integer value scale.

User entry

Signed floating-point number

Factory setting

0 None

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

GP 3 value 0%

Navigation

Expert → Communication → Modbus Xx-x → GP values → GP 3 value 0% (13259)

Description

Defines the GP3 value that represents 0% on the integer value scale.

User entry

Signed floating-point number

Factory setting

0 Unitless

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
The 'Expert' menu

Proservo NMS80

GP 3 value 100%

Navigation

Expert → Communication → Modbus Xx-x → GP values → GP 3 value 100% (13226)

Description

Defines the GP3 value that represents 100% on the integer value scale.

User entry

Signed floating-point number

Factory setting

0 Unitless

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

GP 4 value 0%

Navigation

Expert → Communication → Modbus Xx-x → GP values → GP 4 value 0% (13225)

Description

Defines the GP4 value that represents 0% on the integer value scale.

User entry

Signed floating-point number

Factory setting

0 Unitless

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

GP 4 value 100%

Navigation

Expert → Communication → Modbus Xx-x → GP values → GP 4 value 100% (13227)

Description

Defines the GP4 value that represents 100% on the integer value scale.

User entry

Signed floating-point number

Factory setting

0 Unitless

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
"Discrete selector" submenu

Navigation

Expert → Communication → Modbus Xx-x → Discrete select

Discrete 1 selector

Navigation

Expert → Communication → WM550 X1-4 → Discrete select → Discrete 1select

Description
Determines the input source which is transferred as Alarm bit [n] value in the corresponding WM550 tasks.

Selection

- None
- Balance flag option Visibility depends on order options or device settings
- Alarm 1...4 any
- Alarm 1...4 HighHigh
- Alarm 1...4 High or HighHigh
- Alarm 1...4 High
- Alarm 1...4 Low
- Alarm 1...4 Low or LowLow
- Alarm 1...4 LowLow
- Digital Xx-x

Factory setting

None

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
"Configuration" submenu (V1)
Only visible for devices with a V1 I/O module.

Navigation
Expert → Communication → V1 Xx-x → Configuration

Communication interface protocol variant

Description
Determines which variant of the V1 protocol is used.

User interface
- None
- V1*

Factory setting
None

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

V1 address

Navigation
Expert → Communication → V1 Xx-x → Configuration → V1 address (13235)

Prerequisite
Communication interface protocol variant (→ 188) = V1

Description
Identifier of the device for the V1 communication.

User entry
0 to 99

* Visibility depends on order options or device settings
V1 address

Navigation

Expert → Communication → V1 Xx-x → Configuration → V1 address (13236)

Prerequisite

Communication interface protocol variant (→ 188)

Description

Identifier of the previous device for V1 communication.

User entry

0 to 255

Factory setting

1

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Level mapping

Navigation

Expert → Communication → V1 Xx-x → Configuration → Level mapping (13268)

Prerequisite

Communication interface protocol (→ 171) = V1

Description

Determines the transmittable range of levels.

Selection

- +ve
- +ve & -ve

Factory setting

+ve

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

In V1, the level is always represented by a number in the range from 0 to 999999. This number corresponds to a level as follows:

“Level mapping” = “+ve”

<table>
<thead>
<tr>
<th>Number</th>
<th>Corresponding level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0 mm</td>
</tr>
<tr>
<td>999999</td>
<td>999999.9 mm</td>
</tr>
</tbody>
</table>
"Level mapping" = "+ve & -ve"

<table>
<thead>
<tr>
<th>Number</th>
<th>Corresponding level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0 mm</td>
</tr>
<tr>
<td>500000</td>
<td>500000.0 mm</td>
</tr>
<tr>
<td>500001</td>
<td>-0.1 mm</td>
</tr>
<tr>
<td>999999</td>
<td>-499999.9 mm</td>
</tr>
</tbody>
</table>

Line impedance

Navigation

Expert → Communication → V1 Xx-x → Configuration → Line impedance (13266)

Prerequisite

Communication interface protocol (→ 171) = V1

Description

Adjusts the impedance of the communication line.

User entry

0 to 15

Factory setting

15

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

The line impedance affects the voltage difference between a logical 0 and a logical 1 on the message of the device to the bus. The default setting is suitable for most applications.

Compatibility mode

Navigation

Expert → Communication → Modbus Xx-x / V1 Xx-x → Configuration → Comp. mode (13281)

Description

Defines the compatibility mode.

Selection

- Nxx5xx
- Nxx8x

Factory setting

Nxx8x

Additional information

In NMS5x mode: Only values which have also existed on NMS5x Gauge status are output on the bus.

In NMS8x mode: All Gauge status are available at this parameter.

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
"V1 input selector" submenu (V1)

Only visible for devices with a V1 I/O module.

Navigation

Expert → Communication → V1 Xx-x → V1 input select.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>User value 1 to 8 source</td>
<td>191</td>
</tr>
<tr>
<td>Alarm 1 input source</td>
<td>192</td>
</tr>
<tr>
<td>Alarm 2 input source</td>
<td>192</td>
</tr>
<tr>
<td>Alarm 3 input source</td>
<td>193</td>
</tr>
<tr>
<td>Alarm 4 input source</td>
<td>193</td>
</tr>
<tr>
<td>SP 1 value selector</td>
<td>194</td>
</tr>
<tr>
<td>SP 2 value selector</td>
<td>194</td>
</tr>
<tr>
<td>SP 3 value selector</td>
<td>195</td>
</tr>
<tr>
<td>SP 4 value selector</td>
<td>195</td>
</tr>
<tr>
<td>Value percent selector</td>
<td>196</td>
</tr>
</tbody>
</table>

User value 1 to 8 source

Navigation

Expert → Communication → V1 Xx-x → V1 input select. → UserVal 1 to 8 source (13209–1 to 8)

Description

Selects which parameter shall be transmitted as User value x.

Selection

- None
- Tank ullage
- Distance
- Upper interface level
- Lower interface level
- Bottom level
- Average profile density 7)
- Vapor density
- Manual density
- P1 position
- P3 position
- GP 1...4 value

7) Visibility depends on order options or device settings
The "Expert" menu

- AIO B1-3 value
- AIO C1-3 value
- AIP B4-8 value
- AIP C4-8 value
- HART device 1...15 PV
- HART device 1...15 PV mA
- HART device 1...15 PV %
- HART device 1...15 SV
- HART device 1...15 TV
- HART device 1...15 QV

Factory setting

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Alarm 1 input source

Navigation

Expert → Communication → V1 Xx-x → V1 input select. → Alarm1 input src (13270)

Description

Determines which discrete value will be transmitted as V1 alarm 1 status.

Selection

- None
- Alarm 1-4 any
- Alarm 1-4 HighHigh
- Alarm 1-4 High or HighHigh
- Alarm 1-4 High
- Alarm 1-4 Low
- Alarm 1-4 Low or LowLow
- Alarm 1-4 LowLow

Factory setting

None

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Alarm 2 input source

Navigation

Expert → Communication → V1 Xx-x → V1 input select. → Alarm2 input src (13271)

Description

Determines which discrete value will be transmitted as V1 alarm 2 status.

Selection

- None
- Alarm 1-4 any
- Alarm 1-4 HighHigh
- Alarm 1-4 High or HighHigh
- Alarm 1-4 High
- Alarm 1-4 Low
- Alarm 1-4 Low or LowLow
- Alarm 1-4 LowLow

Factory setting

None

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Alarm 3 input source

Navigation

Expert → Communication → V1 Xx-x → V1 input select → Alarm3 in-source (13283)

Description

Determines which discrete value will be transmitted as V1 alarm 3 status in Z0 and Z1 message.

Selection

- None
- Alarm 1-4 any
- Alarm 1-4 HighHigh
- Alarm 1-4 High or HighHigh
- Alarm 1-4 High
- Alarm 1-4 Low
- Alarm 1-4 Low or LowLow
- Alarm 1-4 LowLow

Factory setting

None

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Alarm 4 input source

Navigation

Expert → Communication → V1 Xx-x → V1 input select → Alarm4 in-source (13284)

Description

Determines which discrete value will be transmitted as V1 alarm 4 status in Z0 and Z1 message.

Selection

- None
- Alarm 1-4 any
- Alarm 1-4 HighHigh
- Alarm 1-4 High or HighHigh
- Alarm 1-4 High
- Alarm 1-4 Low
- Alarm 1-4 Low or LowLow
- Alarm 1-4 LowLow

Factory setting

None
The 'Expert' menu

<table>
<thead>
<tr>
<th>Additional information</th>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

SP 1 value selector

Navigation

Expert → Communication → V1 → V1 input select → SP1 value select (13274)

Description

Selects which discrete value will be transmitted as V1 External Status bit 1 in Z0/Z1 message.

Selection

- None
- Digital A1-2
- Digital A3-4
- Digital B1-2
- Digital B3-4
- Digital C1-2
- Digital C3-4
- Digital D1-2
- Digital D3-4

Factory setting

None

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

SP 2 value selector

Navigation

Expert → Communication → V1 → V1 input select → SP2 value select (13275)

Description

Selects which discrete value will be transmitted as V1 external status bit 2 in Z0/Z1 message.

Selection

- None
- Digital A1-2
- Digital A3-4
- Digital B1-2
- Digital B3-4
- Digital C1-2
- Digital C3-4
- Digital D1-2
- Digital D3-4

Factory setting

None

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
SP 3 value selector

Navigation
Expert → Communication → V1 → V1 input select. → SP3 value select (13276)

Description
Selects which discrete value will be transmitted as V1 external status bit 3 in Z0/Z1 message.

Selection
- None
- Digital A1-2
- Digital A3-4
- Digital B1-2
- Digital B3-4
- Digital C1-2
- Digital C3-4
- Digital D1-2
- Digital D3-4

Factory setting
None

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

SP 4 value selector

Navigation
Expert → Communication → V1 → V1 input select. → SP4 value select (13277)

Description
Selects which discrete value will be transmitted as V1 external status bit 4 in Z0/Z1 message.

Selection
- None
- Digital A1-2
- Digital A3-4
- Digital B1-2
- Digital B3-4
- Digital C1-2
- Digital C3-4
- Digital D1-2
- Digital D3-4

Factory setting
None

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
Value percent selector

Navigation
Expert → Communication → V1 → V1 input select → Value % select

Description
Selects which value shall be transmitted as a 0..100% value in the V1 Z0/Z1 message.

Selection
- None
- Tank level %
- Tank ullage %
- AIO B1-3 value %
- AIO C1-3 value %

Factory setting
None

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
3.4.2 "HART output" submenu

Navigation
Expert → Communication → HART output

- HART output
 - HART configuration → 198
 - Information → 206
“HART configuration” submenu

Navigation ➔ ➔ Expert → Communication → HART output → HART config.

<table>
<thead>
<tr>
<th>➔ HART configuration</th>
<th>➔ 198</th>
</tr>
</thead>
<tbody>
<tr>
<td>System polling address</td>
<td>➔ 198</td>
</tr>
<tr>
<td>No. of preambles</td>
<td>➔ 199</td>
</tr>
<tr>
<td>PV source</td>
<td>➔ 199</td>
</tr>
<tr>
<td>Assign PV</td>
<td>➔ 199</td>
</tr>
<tr>
<td>0 % value</td>
<td>➔ 200</td>
</tr>
<tr>
<td>100 % value</td>
<td>➔ 201</td>
</tr>
<tr>
<td>PV mA selector</td>
<td>➔ 201</td>
</tr>
<tr>
<td>Primary variable (PV)</td>
<td>➔ 201</td>
</tr>
<tr>
<td>Percent of range</td>
<td>➔ 202</td>
</tr>
<tr>
<td>Assign SV</td>
<td>➔ 202</td>
</tr>
<tr>
<td>Secondary variable (SV)</td>
<td>➔ 203</td>
</tr>
<tr>
<td>Assign TV</td>
<td>➔ 203</td>
</tr>
<tr>
<td>Tertiary variable (TV)</td>
<td>➔ 204</td>
</tr>
<tr>
<td>Assign QV</td>
<td>➔ 204</td>
</tr>
<tr>
<td>Quaternary variable (QV)</td>
<td>➔ 205</td>
</tr>
</tbody>
</table>

System polling address

Navigation ➔ ➔ Expert → Communication → HART output → HART config. → Polling address (0219)

Description
Device address for HART communication.

User entry
0 to 63

Factory setting
15
Proservo NMS80

The "Expert" menu

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

No. of preambles

Navigation

Expert → Communication → HART output → HART config. → No. of preambles (0217)

Description

Defines the number of preambles in the HART telegram.

User entry

5 to 20

Factory setting

5

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

PV source

Navigation

Expert → Communication → HART output → HART config. → PV source (11634)

Description

Decides, if the PV configuration is according to an analog output (HART slave) or customized (in case of HART tunneling only).

Selection

- AIO B1-3 *
- AIO C1-3 *
- Custom

Factory setting

Custom

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Assign PV

Navigation

Expert → Communication → HART output → HART config. → Assign PV (0234)

Prerequisite

PV source (→ 199) = Custom

Description

Assign a measured variable to the primary dynamic variable (PV).

Additional information:

The assigned measured variable is also used by the current output.

* Visibility depends on order options or device settings
Selection

- None
- Tank level
- Tank ullage
- Measured level
- Distance
- Displacer position
- Water level
- Upper interface level
- Lower interface level
- Bottom level
- Tank reference height
- Liquid temperature
- Vapor temperature
- Air temperature
- Observed density value
- Average profile density
- Upper density
- Middle density
- Lower density
- P1 (bottom)
- P2 (middle)
- P3 (top)
- GP 1 value
- GP 2 value
- GP 3 value
- GP 4 value

Factory setting

Tank level

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

The Measured level option doesn't contain a unit. If a unit is needed, select the Tank level option.

0 % value

0 mm

Navigation

Expert → Communication → HART output → HART config. → 0 % value (11632)

Prerequisite

PV source = Custom

Description

0% value of the primary variable (PV).

User entry

Signed floating-point number

Factory setting

0 mm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
100 % value

Navigation
Expert → Communication → HART output → HART config. → 100 % value (11633)

Prerequisite
PV source = Custom

Description
100% value of the primary variable (PV).

User entry
Signed floating-point number

Factory setting
0 mm

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

PV mA selector

Navigation
Expert → Communication → HART output → HART config. → PV mA selector (11631)

Prerequisite
PV source = Custom

Description
Assigns a current to the primary HART variable (PV).

Selection
- None
- AIO B1-3 value mA *
- AIO C1-3 value mA *

Factory setting
None

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Primary variable (PV)

Navigation
Expert → Communication → HART output → HART config. → Primary var (PV) (0201)

Description
Shows the current measured value of the primary dynamic variable (PV)

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
Percent of range

Navigation

Expert → Communication → HART output → HART config. → Percent of range (0274)

Description
Shows the value of the primary variable (PV) as a percentage of the defined 0% to 100% range.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Assign SV

Navigation

Expert → Communication → HART output → HART config. → Assign SV (0235)

Description
Assign a measured variable to the second dynamic variable (SV).

Selection
- None
- Tank level
- Tank ullage
- Measured level
- Distance
- Displacer position
- Water level
- Upper interface level
- Lower interface level
- Bottom level
- Tank reference height
- Liquid temperature
- Vapor temperature
- Air temperature
- Observed density value
- Average profile density
- Upper density
- Middle density
- Lower density
- P1 (bottom)
- P2 (middle)
- P3 (top)
- GP 1 value
- GP 2 value
- GP 3 value
- GP 4 value

Factory setting
Liquid temperature

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

The Measured level option doesn't contain a unit. If a unit is needed, select the Tank level option.
Secondary variable (SV)

Navigation

Expert → Communication → HART output → HART config. → Second.var(SV) (0226)

Prerequisite

Assign SV (→ 202) = None

Description

Shows the current measured value of the secondary dynamic variable (SV)

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Assign TV

Navigation

Expert → Communication → HART output → HART config. → Assign TV (0236)

Description

Assign a measured variable to the tertiary dynamic variable (TV).

Selection

- None
- Tank level
- Tank ullage
- Measured level
- Distance
- Displacer position
- Water level
- Upper interface level
- Lower interface level
- Bottom level
- Tank reference height
- Liquid temperature
- Vapor temperature
- Air temperature
- Observed density value
- Average profile density
- Upper density
- Middle density
- Lower density
- P1 (bottom)
- P2 (middle)
- P3 (top)
- GP 1 value
- GP 2 value
- GP 3 value
- GP 4 value

Factory setting

Water level

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

The Measured level option doesn't contain a unit. If a unit is needed, select the Tank level option.
Tertiary variable (TV)

Navigation

Expert → Communication → HART output → HART config. → Tertiary var(TV) (0228)

Prerequisite

Assign TV (→ 203) ≠ None

Description

Shows the current measured value of the tertiary (third) dynamic variable (TV)

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Assign QV

Navigation

Expert → Communication → HART output → HART config. → Assign QV (0237)

Description

Assign a measured variable to the quaternary dynamic variable (QV).

Selection

- None
- Tank level
- Tank ullage
- Measured level
- Distance
- Displacer position
- Water level
- Upper interface level
- Lower interface level
- Bottom level
- Tank reference height
- Liquid temperature
- Vapor temperature
- Air temperature
- Observed density value
- Average profile density
- Upper density
- Middle density
- Lower density
- P1 (bottom)
- P2 (middle)
- P3 (top)
- GP 1 value
- GP 2 value
- GP 3 value
- GP 4 value

Factory setting

Observed density value
Quaternary variable (QV)

<table>
<thead>
<tr>
<th>Navigation</th>
<th>📊 📊 Expert → Communication → HART output → HART config. → Quaterna.var(QV) (0203)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>Assign QV (→ 🔍 204) ≠ None</td>
</tr>
<tr>
<td>Description</td>
<td>Shows the current measured value of the quaternary (fourth) dynamic variable (QV)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
<td>Maintenance</td>
</tr>
<tr>
<td>Write access</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
"Information" submenu

Navigation
Expert → Communication → HART output → Information

<table>
<thead>
<tr>
<th>Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HART short tag</td>
<td>➔ 206</td>
</tr>
<tr>
<td>Device tag</td>
<td>➔ 207</td>
</tr>
<tr>
<td>Device revision</td>
<td>➔ 207</td>
</tr>
<tr>
<td>Device ID</td>
<td>➔ 207</td>
</tr>
<tr>
<td>Device type</td>
<td>➔ 208</td>
</tr>
<tr>
<td>Manufacturer ID</td>
<td>➔ 208</td>
</tr>
<tr>
<td>HART revision</td>
<td>➔ 208</td>
</tr>
<tr>
<td>HART descriptor</td>
<td>➔ 209</td>
</tr>
<tr>
<td>HART message</td>
<td>➔ 209</td>
</tr>
<tr>
<td>Hardware revision</td>
<td>➔ 209</td>
</tr>
<tr>
<td>Software revision</td>
<td>➔ 210</td>
</tr>
<tr>
<td>HART date code</td>
<td>➔ 210</td>
</tr>
</tbody>
</table>

HART short tag

Navigation
Expert → Communication → HART output → Information → HART short tag (0220)

Description
Defines the short tag for the measuring point.

Maximum length: 8 characters
Allowed characters: A-Z, 0-9, certain special characters

User entry
Character string comprising numbers, letters and special characters (8)

Factory setting
NMS8x

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Device tag

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → HART output → Information → Device tag (0215)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Enter a unique name for the measuring point to identify the device quickly within the plant.</td>
</tr>
<tr>
<td>User entry</td>
<td>Character string comprising numbers, letters and special characters (32)</td>
</tr>
<tr>
<td>Factory setting</td>
<td>NMS8x</td>
</tr>
<tr>
<td>Additional information</td>
<td>Read access</td>
</tr>
<tr>
<td></td>
<td>Write access</td>
</tr>
</tbody>
</table>

Device revision

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → HART output → Information → Device revision (0204)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Shows the device revision with which the device is registered with the HART Communication Foundation</td>
</tr>
<tr>
<td>User interface</td>
<td>0 to 255</td>
</tr>
<tr>
<td>Factory setting</td>
<td>6</td>
</tr>
<tr>
<td>Additional information</td>
<td>Read access</td>
</tr>
<tr>
<td></td>
<td>Write access</td>
</tr>
</tbody>
</table>

Device ID

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → HART output → Information → Device ID (0221)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Shows the device ID for identifying the device in a HART network</td>
</tr>
<tr>
<td>User interface</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Factory setting</td>
<td>123456</td>
</tr>
<tr>
<td>Additional information</td>
<td>Read access</td>
</tr>
<tr>
<td></td>
<td>Write access</td>
</tr>
</tbody>
</table>
The 'Expert' menu

Device type

Navigation
Expert → Communication → HART output → Information → Device type (0209)

Description
Shows the device type with which the measuring device is registered with the HART Communication Foundation.

User interface
0 to 65535

Factory setting
4397

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Manufacturer ID

Navigation
Expert → Communication → HART output → Information → Manufacturer ID (0259)

Description
Shows the device’s manufacturer ID registered with the HART Communication Foundation.

User interface
0 to 65535

Factory setting
17

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

HART revision

Navigation
Expert → Communication → HART output → Information → HART revision (0205)

Description
HART revision used by the device.

User interface
5 to 7

Factory setting
7

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
HART descriptor

Navigation
Expert → Communication → HART output → Information → HART descriptor (0212)

Description
Enter description for the measuring point

User entry
Character string comprising numbers, letters and special characters (16)

Factory setting
NMS8x

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

HART message

Navigation
Expert → Communication → HART output → Information → HART message (0216)

Description
Use this function to define a HART message which is sent via the HART protocol when requested by the master.
Maximum length: 32 characters
Allowed characters: A-Z, 0-9, certain special characters

User entry
Character string comprising numbers, letters and special characters (32)

Factory setting
NMS8x

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Hardware revision

Navigation
Expert → Communication → HART output → Information → Hardware rev. (0206)

Description
Hardware revision of the device.

User interface
0 to 30

Factory setting
1

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>
Software revision

Navigation

Expert → Communication → HART output → Information → Software rev. (0224)

Description

Software revision of the device.

User interface

0 to 255

Factory setting

6

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

HART date code

Navigation

Expert → Communication → HART output → Information → HART date code (0202)

Description

Enter date of the last configuration change. Use this format yyyy-mm-dd

User entry

Character string comprising numbers, letters and special characters (10)

Factory setting

2009-07-20

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
3.5 "Application" submenu

Navigation: Expert → Application

- Tank configuration → 211
- Tank calculation → 235
- Alarm → 252

3.5.1 "Tank configuration" submenu

Navigation: Expert → Application → Tank config

Process condition

- Level → 213
- Temperature → 217
- Density → 221
- Pressure → 225
- GP values → 233

Process condition

Navigation: Expert → Application → Tank config → Process cond. (8001)

Description: Select the liquid condition of the tank.

Selection:
- Universal
- Calm surface
- Turbulent surface

Factory setting: Universal

Additional information: For W&M, setting to option Calm surface is recommended.
The 'Expert' menu

<table>
<thead>
<tr>
<th>Access</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
"Level" submenu

Navigation

Expert → Application → Tank config → Level → Level source (14601)

Description

Defines the source of the level value.

Selection

- No input value
- HART device 1 ... 15 level
- Level SR *
- Level *
- Displacer position *
- AIO B1-3 value *
- AIO C1-3 value *
- AIP B4-8 value *
- AIP C4-8 value *

Factory setting

Dependent on the device version

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
Empty

Navigation
Expert → Application → Tank config → Level → Empty (14602)

Description
Distance from reference point to zero position (tank bottom or datum plate).

User entry
0 to 10000.00 mm

Factory setting
Dependent on the device version

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

The reference point is the reference line of the calibration window.

Tank reference height

Navigation
Expert → Application → Tank config → Level → Tank ref height (14603)

Description
Defines the distance from the dipping reference point to the zero position (tank bottom or datum plate).

User entry
0 to 10000.00 mm

Factory setting
Dependent on the device version

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Tank level

Navigation
Expert → Application → Tank config → Level → Tank level (14655)

Description
Shows the distance from the zero position (tank bottom or datum plate) to the product surface.

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
Set level

Navigation
Expert → Application → Tank config → Level → Set level (14604)

Description
If the level measured by the device does not match the actual level obtained by a manual dip, enter the correct level into this parameter.

User entry
0 to 10000.00 mm

Factory setting
0 mm

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

The device adjusts the **Empty** parameter (→ 214) according to the entered value, such that the measured level will match the actual level.

Upper interface level

Navigation
Expert → Application → Tank config → Level → Upper I/F level (15003)

Description
Shows measured interface level from zero position (tank bottom or datum plate). Value is updated when device generates a valid Interface measurement.

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Maintenance</td>
</tr>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Lower interface level

Navigation
Expert → Application → Tank config → Level → Lower I/F level (15004)

Description
Shows measured interface level from zero position (tank bottom or datum plate). Value is updated when device generates a valid interface measurement.

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Maintenance</td>
</tr>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Water level source

Navigation
Expert → Application → Tank config → Level → Water level src (14971)

Description
Defines the source of the bottom water level.
Selection

- Manual value
- Bottom level
- HART device 1 ... 15 level
- AIO B1-3 value
- AIO C1-3 value
- AIP B4-8 value
- AIP C4-8 value

Factory setting

Manual value

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Water level

Navigation

Expert → Application → Tank config → Level → Water level (14970)

Description

Shows the bottom water level.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Manual water level

Navigation

Expert → Application → Tank config → Level → Man. water level (14959)

Prerequisite

Water level source (→ 215) = Manual value

Description

Defines the manual value of the bottom water level.

User entry

-2 000 to 5 000 mm

Factory setting

0 mm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
"Temperature" submenu

Navigation
Expert → Application → Tank config → Temperature

<table>
<thead>
<tr>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid temp source</td>
</tr>
<tr>
<td>Manual liquid temperature</td>
</tr>
<tr>
<td>Liquid temperature</td>
</tr>
<tr>
<td>Air temperature source</td>
</tr>
<tr>
<td>Manual air temperature</td>
</tr>
<tr>
<td>Air temperature</td>
</tr>
<tr>
<td>Vapor temp source</td>
</tr>
<tr>
<td>Manual vapor temperature</td>
</tr>
<tr>
<td>Vapor temperature</td>
</tr>
</tbody>
</table>

Liquid temp source

Navigation
Expert → Application → Tank config → Temperature → Liq temp source (14972)

Description
Defines source from which the liquid temperature is obtained.

Selection
- Manual value
- HART device 1 ... 15 temperature
- AIO B1-3 value
- AIO C1-3 value
- AIP B4-8 value
- AIP C4-8 value

Factory setting
Manual value

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Manual liquid temperature

Navigation

Expert → Application → Tank config → Temperature → Man. liquid temp (15015)

Prerequisite

Liquid temp source (→ 217) = Manual value

Description

Defines the manual value of the liquid temperature.

User entry

−50 to 300 °C

Factory setting

25 °C

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Liquid temperature

Navigation

Expert → Application → Tank config → Temperature → Liquid temp. (14978)

Description

Shows the average or spot temperature of the measured liquid.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Air temperature source

Navigation

Expert → Application → Tank config → Temperature → Air temp. source (14993)

Description

Defines source from which the air temperature is obtained.

Selection

- Manual value
- HART device 1 ... 15 temperature
- AIO B1-3 value
- AIO C1-3 value
- AIP B4-8 value
- AIP C4-8 value

Factory setting

Manual value

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Manual air temperature

Navigation
Expert → Application → Tank config → Temperature → Manual air temp. (14961)

Prerequisite
Air temperature source (→ 218) = Manual value

Description
Defines the manual value of the air temperature.

User entry
-50 to 300 °C

Factory setting
25 °C

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Air temperature

Navigation
Expert → Application → Tank config → Temperature → Air temp. (14986)

Description
Shows the air temperature.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Vapor temp source

Navigation
Expert → Application → Tank config → Temperature → Vapor temp src (14973)

Description
Defines the source from which the vapor temperature is obtained.

Selection
- Manual value
- HART device 1 ... 15 vapor temp
- AIO B1-3 value
- AIO C1-3 value
- AIP B4-8 value
- AIP C4-8 value

Factory setting
Manual value

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Manual vapor temperature

Navigation
Expert → Application → Tank config → Temperature → Man. vapor temp. (14960)

Prerequisite
Vapor temp source (→ 219) = Manual value

Description
Defines the manual value of the vapor temperature.

User entry
-50 to 300 °C

Factory setting
25 °C

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Vapor temperature

Navigation
Expert → Application → Tank config → Temperature → Vapor temp. (14985)

Description
Shows the measured vapor temperature.

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
"Density" submenu

Navigation

[Expert] → [Application] → [Tank config] → [Density]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed density source</td>
<td>➔ 221</td>
</tr>
<tr>
<td>Observed density</td>
<td>➔ 222</td>
</tr>
<tr>
<td>Air density</td>
<td>➔ 222</td>
</tr>
<tr>
<td>Vapor density</td>
<td>➔ 222</td>
</tr>
<tr>
<td>Measured upper density</td>
<td>➔ 222</td>
</tr>
<tr>
<td>Measured middle density</td>
<td>➔ 223</td>
</tr>
<tr>
<td>Measured lower density</td>
<td>➔ 223</td>
</tr>
<tr>
<td>Water density</td>
<td>➔ 223</td>
</tr>
<tr>
<td>Profile point</td>
<td>➔ 223</td>
</tr>
<tr>
<td>Profile average density</td>
<td>➔ 224</td>
</tr>
<tr>
<td>Profile density timestamp</td>
<td>➔ 224</td>
</tr>
</tbody>
</table>

Observed density source

Navigation

[Expert] → [Application] → [Tank config] → [Density] → [Density source (13454)]

Description

Determines how the density is obtained.

Selection

- HTG
- HTMS
- Average profile density
- Upper density
- Middle density
- Lower density

Factory setting

Dependent on the device version

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
Observed density

Navigation

Expert → Application → Tank config → Density → Observed density (13452)

Description

Shows the measured or calculated density.

Additional information

<table>
<thead>
<tr>
<th></th>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

Air density

Navigation

Expert → Application → Tank config → Density → Air density (14980)

Description

Defines the density of the air surrounding the tank.

User entry

0.0 to 500.0 kg/m³

Factory setting

1.2 kg/m³

Additional information

<table>
<thead>
<tr>
<th></th>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Vapor density

Navigation

Expert → Application → Tank config → Density → Vapor density (14981)

Description

Defines the density of the gas phase in the tank.

User entry

0.0 to 500.0 kg/m³

Factory setting

1.2 kg/m³

Additional information

<table>
<thead>
<tr>
<th></th>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Measured upper density

Navigation

Expert → Application → Tank config → Density → Meas upper dens. (15001)

Description

Shows the density of the upper phase.
Measured middle density

Navigation
- Expert → Application → Tank config → Density → Meas middle dens (14997)

Description
Density of the middle phase.

Additional information
- Read access: Operator
- Write access: -

Measured lower density

Navigation
- Expert → Application → Tank config → Density → Meas lower dens. (15002)

Description
Density of the lower phase.

Additional information
- Read access: Maintenance
- Write access: -

Water density

Navigation
- Expert → Application → Tank config → Density → Water density (13757)

Description
Density of the water in the tank.

User entry
Signed floating-point number

Factory setting
1 000 kg/m³

Additional information
- Read access: Operator
- Write access: Maintenance

Profile point

Navigation
- Expert → Application → Tank config → Density → Profile point (8170)

Description
Shows actual number of Density Points measured so far in current operation, and the total Number of Points after Density Profile Operation is complete.
Profile average density

Navigation
Expert → Application → Tank config → Density → Profile avg dens (8175)

Description
Shows the average density calculated after a profile density measurement is complete.

Additional information

<table>
<thead>
<tr>
<th></th>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

Profile density timestamp

Navigation
Expert → Application → Tank config → Density → Profil dens time (8114)

Description
Shows the timestamp when the last average density profile was finished.

Additional information

<table>
<thead>
<tr>
<th></th>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>
“Pressure” submenu

Navigation
Expert → Application → Tank config → Pressure

<table>
<thead>
<tr>
<th>Pressure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 (bottom) source</td>
<td>(\rightarrow) 226</td>
</tr>
<tr>
<td>P1 (bottom)</td>
<td>(\rightarrow) 226</td>
</tr>
<tr>
<td>P1 (bottom) manual pressure</td>
<td>(\rightarrow) 226</td>
</tr>
<tr>
<td>P1 position</td>
<td>(\rightarrow) 227</td>
</tr>
<tr>
<td>P1 offset</td>
<td>(\rightarrow) 227</td>
</tr>
<tr>
<td>P1 absolute / gauge</td>
<td>(\rightarrow) 227</td>
</tr>
<tr>
<td>P2 (middle) source</td>
<td>(\rightarrow) 228</td>
</tr>
<tr>
<td>P2 (middle)</td>
<td>(\rightarrow) 228</td>
</tr>
<tr>
<td>P2 (middle) manual pressure</td>
<td>(\rightarrow) 228</td>
</tr>
<tr>
<td>P2 offset</td>
<td>(\rightarrow) 229</td>
</tr>
<tr>
<td>P1-2 distance</td>
<td>(\rightarrow) 229</td>
</tr>
<tr>
<td>P2 absolute / gauge</td>
<td>(\rightarrow) 229</td>
</tr>
<tr>
<td>P3 (top) source</td>
<td>(\rightarrow) 230</td>
</tr>
<tr>
<td>P3 (top)</td>
<td>(\rightarrow) 230</td>
</tr>
<tr>
<td>P3 (top) manual pressure</td>
<td>(\rightarrow) 230</td>
</tr>
<tr>
<td>P3 position</td>
<td>(\rightarrow) 231</td>
</tr>
<tr>
<td>P3 offset</td>
<td>(\rightarrow) 231</td>
</tr>
<tr>
<td>P3 absolute / gauge</td>
<td>(\rightarrow) 231</td>
</tr>
<tr>
<td>Ambient pressure</td>
<td>(\rightarrow) 232</td>
</tr>
</tbody>
</table>
P1 (bottom) source

Navigation

Expert → Application → Tank config → Pressure → P1 (bot) source (14994)

Description

Defines the source of the bottom pressure (P1).

Selection

- Manual value
- HART device 1 ... 15 pressure
- A1O B1-3 value
- AIO C1-3 value
- AIP B4-8 value
- AIP C4-8 value

Factory setting

Manual value

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

P1 (bottom)

Navigation

Expert → Application → Tank config → Pressure → P1 (bottom) (14983)

Description

Shows the pressure at the tank bottom.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

P1 (bottom) manual pressure

Navigation

Expert → Application → Tank config → Pressure → P1 (bot) manual (14951)

Prerequisite

P1 (bottom) source (→ 226) = Manual value

Description

Defines the manual value of the bottom pressure (P1).

User entry

-25 to 25 bar

Factory setting

0 bar

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
P1 position

Navigation
Expert → Application → Tank config → Pressure → P1 position (14952)

Description
Defines the position of the bottom pressure transmitter (P1), measured from zero position (tank bottom or datum plate).

User entry
-10 000 to 100 000 mm

Factory setting
5 000 mm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

P1 offset

Navigation
Expert → Application → Tank config → Pressure → P1 offset (14953)

Description
Offset for the bottom pressure (P1). The offset is added to the measured pressure prior to any tank calculation.

User entry
-25 to 25 bar

Factory setting
0 bar

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

P1 absolute / gauge

Navigation
Expert → Application → Tank config → Pressure → P1 absolut/gauge (14954)

Description
Defines whether the connected pressure transmitter measures an absolute or a gauge pressure.

Selection
- Absolute
- Gauge

Factory setting
Gauge

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
P2 (middle) source

Navigation

Expert → Application → Tank config → Pressure → P2 (mid) source (14995)

Description

Defines the source of the middle pressure (P2).

Selection

- Manual value
- HART device 1 ... 15 pressure
- AIO B1-3 value
- AIO C1-3 value
- AIP B4-8 value
- AIP C4-8 value

Factory setting

Manual value

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

P2 (middle)

Navigation

Expert → Application → Tank config → Pressure → P2 (middle) (14987)

Description

Shows the pressure (P2) at the middle transmitter.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

P2 (middle) manual pressure

Navigation

Expert → Application → Tank config → Pressure → P2 (mid) manual (14955)

Prerequisite

P2 (middle) source (→ 228) = Manual value

Description

Defines the manual value of the middle pressure (P2).

User entry

-25 to 25 bar

Factory setting

0 bar

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
P2 offset

Navigation
Expert → Application → Tank config → Pressure → P2 offset (14975)

Description
Defines the offset for the middle pressure (P2).
The offset is added to the measured pressure prior to any tank calculation.

User entry
-25 to 2.5 bar

Factory setting
0 bar

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

P1-2 distance

Navigation
Expert → Application → Tank config → Pressure → P1-2 distance (14974)

Description
Defines the distance between the bottom and the middle pressure transmitter.

User entry
0 to 100000 mm

Factory setting
2000 mm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

P2 absolute / gauge

Navigation
Expert → Application → Tank config → Pressure → P2 absolut/gauge (14976)

Description
Defines whether the connected pressure transmitter measures an absolute or a gauge pressure.

Selection
- Absolute
- Gauge

Factory setting
Gauge

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
P3 (top) source

Navigation

Expert → Application → Tank config → Pressure → P3 (top) source (14996)

Description

Defines the source of the top pressure (P3).

Selection

- Manual value
- HART device 1 ... 15 pressure
- AIO B1-3 value
- AIO C1-3 value
- AIP B4-8 value
- AIP C4-8 value

Factory setting

Manual value

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

P3 (top)

Navigation

Expert → Application → Tank config → Pressure → P3 (top) (14988)

Description

Shows the pressure (P3) at the top transmitter.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

P3 (top) manual pressure

Navigation

Expert → Application → Tank config → Pressure → P3 (top) manual (14977)

Prerequisite

P3 (top) source (→ 230) = Manual value

Description

Defines the manual value of the top pressure (P3).

User entry

-2.5 to 2.5 bar

Factory setting

0 bar

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
P3 position

Navigation
Expert → Application → Tank config → Pressure → P3 position (14956)

Description
Defines the position of the top pressure transmitter (P3), measured from zero position (tank bottom or datum plate).

User entry
0 to 100,000 mm

Factory setting
20,000 mm

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

P3 offset

Navigation
Expert → Application → Tank config → Pressure → P3 offset (14957)

Description
Offset for the top pressure (P3). The offset is added to the measured pressure prior to any tank calculation.

User entry
–2.5 to 2.5 bar

Factory setting
0 bar

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

P3 absolute / gauge

Navigation
Expert → Application → Tank config → Pressure → P3 absolut/gauge (14958)

Description
Defines whether the connected pressure transmitter measures an absolute or a gauge pressure.

Selection
- Absolute
- Gauge

Factory setting
Gauge

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
The "Expert" menu

Ambient pressure

Navigation
Expert → Application → Tank config → Pressure → Ambient pressure (14962)

Description
Defines the manual value of the ambient pressure.

User entry
0 to 2.5 bar

Factory setting
1 bar

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
"GP values" submenu

Navigation

Expert → Application → Tank config → GP values

<table>
<thead>
<tr>
<th>GP values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GP 1 to 4 source</td>
<td>→ 233</td>
</tr>
<tr>
<td>GP 1 to 4 name</td>
<td>→ 234</td>
</tr>
<tr>
<td>GP Value 1</td>
<td>→ 234</td>
</tr>
<tr>
<td>GP Value 2</td>
<td>→ 234</td>
</tr>
<tr>
<td>GP Value 3</td>
<td>→ 234</td>
</tr>
<tr>
<td>GP Value 4</td>
<td>→ 235</td>
</tr>
</tbody>
</table>

GP 1 to 4 source

Navigation

Expert → Application → Tank config → GP values → GP 1 to 4 source (14989–1 to 4)

Description

Source of the general purpose value 1 GP1.

Selection

- No input value
- SM S distance
- Average profile density
- Net weight
- AIO B1-3 value
- AIO C1-3 value
- AIP B4-8 value
- AIP C4-8 value
- HART device 1...15 PV
- HART device 1...15 SV
- HART device 1...15 TV
- HART device 1...15 QV
- Modbus A1-4 Value 1...4
- Modbus B1-4 Value 1...4
- Modbus C1-4 Value 1...4
- Modbus D1-4 Value 1...4

Factory setting

No input value

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
The 'Expert' menu

GP 1 to 4 name

Navigation

Expert → Application → Tank config → GP values → GP 1 name (14963)

Description

Defines the label associated with the respective GP value.

User entry

Character string comprising numbers, letters and special characters (15)

Factory setting

GP Value 1

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

GP Value 1

Navigation

Expert → Application → Tank config → GP values → GP Value 1 (14966)

Description

Displays the value that will be used as general purpose value.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

GP Value 2

Navigation

Expert → Application → Tank config → GP values → GP Value 2 (14967)

Description

Displays the value that will be used as general purpose value.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

GP Value 3

Navigation

Expert → Application → Tank config → GP values → GP Value 3 (14968)

Description

Displays the value that will be used as general purpose value.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>
GP Value 4

Navigation

Expert → Application → Tank config → GP values → GP Value 4 (14969)

Description

Displays the value that will be used as general purpose value.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Write access

-

3.5.2 "Tank calculation" submenu

Navigation

Expert → Application → Tank calculation

Local gravity

Navigation

Expert → Application → Tank calculation → Local gravity (14979)

Description

Shows the manually entered local gravity value.

User entry

9.0 to 10.0 m/s²

Factory setting

9.807 m/s²
“HyTD” submenu

Overview

Hydrostatic Tank Deformation can be used to compensate the vertical movement of the Gauge Reference Height (GRH) due to bulging of the tank shell caused by the hydrostatic pressure exerted by the liquid stored in the tank. The compensation is based on a linear approximation obtained from manual hand dips at several levels distributed over the full range of the tank.

![Diagram of hydrostatic tank deformation (HyTD)](image)

17 Correction of the hydrostatic tank deformation (HyTD)

- A 'Distance' (level below \(L_0 \) → 'HyTD correction value' = 0)
- B Gauge Reference Height (GRH)
- C HyTD correction value
- D 'Distance' (level above \(L_0 \) → 'HyTD correction value' > 0)
Linear approximation of the HyTD correction

The real amount of deformation varies non-linearly with the level due to the construction of the tank. However, as the correction values are typically small compared to the measured level, a simple straight line method can be used with good results.

![Graph showing linear approximation]

Calculation of the HyTD correction

1. Linear correction according to "Deformation factor (→ § 239)"
2. Real correction
3. Starting level (→ § 238)
4. Measured level
5. HyTD correction value (→ § 238)

Calculation of the HyTD correction

\[
\begin{align*}
\text{If } L &< L_0 \Rightarrow C_{\text{HyTD}} = 0 \\
\text{If } L &> L_0 \Rightarrow C_{\text{HyTD}} = -(L - L_0) \times D
\end{align*}
\]

<table>
<thead>
<tr>
<th>L</th>
<th>Measured level</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_0</td>
<td>Starting level</td>
</tr>
<tr>
<td>C_{\text{HyTD}}</td>
<td>HyTD correction value</td>
</tr>
<tr>
<td>D</td>
<td>Deformation factor</td>
</tr>
</tbody>
</table>
Description of parameters

Navigation
Expert → Application → Tank calculation → HyTD

HyTD correction value

Navigation
Expert → Application → Tank calculation → HyTD → HyTD corr. value (13603)

Description
Shows the correction value from the Hydrostatic Tank Deformation.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

HyTD mode

Navigation
Expert → Application → Tank calculation → HyTD → HyTD mode (14652)

Description
Activates or deactivates the calculation of the Hydrostatic Tank Deformation.

Selection
- No
- Yes

Factory setting
No

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Starting level

Navigation
Expert → Application → Tank calculation → HyTD → Starting level (13601)

Description
Defines the starting level for the Hydrostatic Tank Deformation. Levels below this value are not corrected.
User entry 0 to 5 000 mm
Factory setting 500 mm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Deformation factor

Navigation Expert → Application → Tank calculation → HyTD → Deform factor (13602)

Description Defines the deformation factor for the HyTD (change of device position per change of level).

User entry -1.0 to 1.0 %
Factory setting 0.2 %

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
"CTSh" submenu

Overview

CTSh (correction for the thermal expansion of the tank shell) compensates for effects on the Gauge Reference Height (GRH) and on the expansion or contraction of the measuring wire due to temperature effects on the tank shell or stilling well. The temperature effects are separated into two parts, respectively affecting the 'dry' and 'wetted' part of the tank shell or stilling well. The correction function is based on thermal expansion coefficients of steel and insulation factors for both the 'dry' and 'wet' parts of the wire and the tank shell. The temperatures used for the correction can be selected from on manual or measured values.

- This correction is recommended for the following situations:
 - if the operating temperature deviates considerably from the temperature during calibration ($\Delta T > 10 ^\circ C$ (18 °F))
 - for extremely high tanks
 - for refrigerated, cryogenic or heated applications

- As the use of this correction will influence the innage level reading, it is recommended to ensure the manual hand dip and level verification procedures are being conducted correctly before enabling this correction method.

- This mode cannot be used in conjunction with HTG because the level is not measured relative to the gauge reference height with HTG.
CTSh: Calculation of the wall temperature

Depending on the parameters **Covered tank** (→ 244) and **Stilling well** (→ 244), the temperatures T_W of the wetted and T_D of the dry part of the tank wall are calculated as follows:

<table>
<thead>
<tr>
<th>Covered tank (→ 244)</th>
<th>Stilling well (→ 244)</th>
<th>T_W</th>
<th>T_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covered</td>
<td></td>
<td>T_P</td>
<td>T_V</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>T_P</td>
<td>T_V</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>$(7/8) T_P + (1/8) T_A$</td>
<td>$(1/2) T_V + (1/2) T_A$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open top</th>
<th></th>
<th>T_P</th>
<th>T_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td>T_P</td>
<td>T_A</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>$(7/8) T_P + (1/8) T_A$</td>
<td>T_A</td>
</tr>
</tbody>
</table>

1) This option is also valid for insulated tanks without a stilling well. This is due to the temperature inside and outside of the tank shell being the same due to the insulation of the tank.
1 Covered tank (→ 244) = Covered; Stilling well (→ 244) = Yes
2 Covered tank (→ 244) = Covered; Stilling well (→ 244) = No
3 Covered tank (→ 244) = Open top; Stilling well (→ 244) = Yes
4 Covered tank (→ 244) = Open top; Stilling well (→ 244) = No
5 Insulated tank: Covered tank (→ 244) = Open top; Stilling well (→ 244) = Yes
The "Expert" menu

CTSh: Calculation of the correction

\[C_{CTSh} = \alpha_{\text{tank}} (H - L) (T_{D} - T_{\text{cal}}) + \alpha_{\text{wire}} L (T_{W} - T_{\text{cal}}) - \alpha_{\text{wire}} S_{\text{P}} (T_{r} - T_{\text{cal}}) \]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRH</td>
<td>Tank reference height</td>
</tr>
<tr>
<td>L</td>
<td>Level</td>
</tr>
<tr>
<td>T_D</td>
<td>Temperature of the dry part of the tank shell (calculated from T_P, T_V and T_A)</td>
</tr>
<tr>
<td>T_W</td>
<td>Temperature of the wetted part of the tank shell (calculated from T_P, T_V and T_A)</td>
</tr>
<tr>
<td>T_cal</td>
<td>Temperature at which the measurement has been calibrated</td>
</tr>
<tr>
<td>(\alpha_{\text{tank}})</td>
<td>Linear expansion coefficient of tank</td>
</tr>
<tr>
<td>(\alpha_{\text{wire}})</td>
<td>Linear expansion coefficient of wire</td>
</tr>
<tr>
<td>(C_{CTSh})</td>
<td>CTSh correction value</td>
</tr>
</tbody>
</table>

Description of parameters

Navigation

- Expert → Application → Tank calculation → CTSh

CTSh correction value

Navigation

- Expert → Application → Tank calculation → CTSh → CTSh corr value (13651)

Description

Shows the CTSh correction value.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
The 'Expert' menu

CTSh mode

Navigation
Expert → Application → Tank calculation → CTSh → CTSh mode (14651)

Description
Activates or deactivates the CTSh.

Selection
- No
- Yes
- With wire *
- Only wire *

Factory setting
No

Additional information
| Read access | Operator |
| Write access | Maintenance |

Covered tank

Navigation
Expert → Application → Tank calculation → CTSh → Covered tank (13654)

Description
Determines whether the tank is covered.

Selection
- Open top
- Covered

Factory setting
Open top

Additional information
| Read access | Operator |
| Write access | Maintenance |

The Covered option is only valid for fixed tank roofs. For a floating roof select Open top.

Stilling well

Navigation
Expert → Application → Tank calculation → CTSh → Stilling well (13653)

Description
Determines whether the device is mounted on a stilling well.

Selection
- No
- Yes

Factory setting
No

* Visibility depends on order options or device settings
Calibration temperature

Navigation
- Expert → Application → Tank calculation → CTSh → Calibration temp (13652)

Description
Specify temperature at which the measurement has been calibrated.

User entry
-50 to 250 °C

Factory setting
25 °C

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Linear expansion coefficient

Navigation
- Expert → Application → Tank calculation → CTSh → Linear exp coeff (13655)

Description
Defines the linear expansion coefficient of the tank shell material.

User entry
0 to 100 ppm

Factory setting
15 ppm

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Wire expansion coefficient

Navigation
- Expert → Application → Tank calculation → CTSh → Wire exp coeff (13656)

Description
Defines the expansion coefficient of the wire material of the drum. Value is programmed in factory.

User entry
0 to 100 ppm

Factory setting
15 ppm
"HTMS" submenu

Overview

The Hybrid Tank Measurement System (HTMS) is a method to calculate the density of a product in a tank based on both a (top mounted) level and at least one (bottom mounted) pressure measurement. An additional pressure sensor can be installed at the top of the tank to provide information about the vapor pressure and to make the density calculation more accurate. The calculation method also takes into account a possible level of water at the bottom of the tank to make density calculations as accurate as possible.

HTMS parameters

![Diagram of HTMS parameters]

- **A** Product
- **B** Water

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Navigation path</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 (Bottom pressure)</td>
<td>Setup → Advanced setup → Tank configuration → Pressure → P1 (bottom)</td>
</tr>
<tr>
<td>H₁ (Position of P1 transmitter)</td>
<td>Setup → Advanced setup → Tank configuration → Pressure → P1 position</td>
</tr>
<tr>
<td>P3 (Top pressure)</td>
<td>Setup → Advanced setup → Tank configuration → Pressure → P3 (top)</td>
</tr>
<tr>
<td>H₃ (Position of P3 transmitter)</td>
<td>Setup → Advanced setup → Tank configuration → Pressure → P3 position</td>
</tr>
<tr>
<td>ρ₁ (Density of the product)¹</td>
<td>• Measured value: Setup → Advanced setup → Calculation → HTMS → Density value</td>
</tr>
<tr>
<td></td>
<td>13753</td>
</tr>
<tr>
<td></td>
<td>• User-defined value: Setup → Advanced setup → Calculation → HTMS → Manual upper</td>
</tr>
<tr>
<td></td>
<td>density (14998)</td>
</tr>
<tr>
<td>ρᵥ (Vapor density)</td>
<td>Expert → Application → Tank configuration → Density → Vapor density</td>
</tr>
<tr>
<td>ρₐ (Ambient air temperature)</td>
<td>Setup → Advanced setup → Tank configuration → Density → Air density</td>
</tr>
<tr>
<td>g (Local gravity)</td>
<td>Expert → Application → Tank Calculation → Local gravity</td>
</tr>
<tr>
<td>Lᵥ (Level of the product)</td>
<td>Operation → Tank level (14655)</td>
</tr>
<tr>
<td>Lₗ (Bottom water level)</td>
<td>Operation → Water level (14970)</td>
</tr>
<tr>
<td>V = Lₗ - H₁</td>
<td></td>
</tr>
<tr>
<td>Δᵥ = L₉₁ - Lₗ = L₉₁ - V - H₁</td>
<td></td>
</tr>
</tbody>
</table>

¹) Depending on the situation this parameter is measured or a user-defined value is used.
HTMS modes

Two HTMS modes can be selected in the **HTMS mode** parameter (→ 248). The mode determines whether one or two pressure values are used. Depending on the selected mode a number of additional parameters are required for the calculation of the product density.

The **HTMS P1+P3** option must be used in pressurized tanks in order to compensate for the pressure of the vapor phase.

<table>
<thead>
<tr>
<th>HTMS mode (→ 248)</th>
<th>Measured variables</th>
<th>Required additional parameters</th>
<th>Calculated variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTMS P1</td>
<td>• P₁</td>
<td>• g</td>
<td>ρₚ</td>
</tr>
<tr>
<td></td>
<td>• Lₚ</td>
<td>• Hₚ₁</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lₗ (optional)</td>
<td></td>
</tr>
<tr>
<td>HTMS P1+P3</td>
<td>• P₁, P₃</td>
<td>• ρₜ</td>
<td>ρₚ (more precise calculation for pressurized tanks)</td>
</tr>
<tr>
<td></td>
<td>• Lₚ</td>
<td>• ½</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hₚ₁</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hₚ₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lₗ (optional)</td>
<td></td>
</tr>
</tbody>
</table>

Minimum level

The density of the product can only be calculated if the product has a minimum thickness:

\[Δₚ ≥ Δ_{p,min} \]

This is equivalent to the following condition for the product level:

\[Lₚ - V ≥ Δ_{p,min} + H_{p1} = L_{min} \]

Lₘᵢₙ is defined in the **Minimum level** parameter (→ 249). As can be seen from the formula it always must be bigger than Hₚ₁.

If Lₚ - V falls below this limit, the density is calculated as follows:

- If a previous calculated value is available, this value will be kept as long as no new calculation is possible.
- If no value was previously calculated, the manual value (defined in the **Manual upper density** parameter) will be used.

Hysteresis

The level of the product in a tank is not constant but slightly varies, due for example to filling disturbances. If the level oscillates around the changeover level (**Minimum level** (→ 249)), the algorithm will constantly switch between calculating the value and holding the previous result. To avoid this effect a positional hysteresis is defined around the changeover point.
21 HTMS hysteresis

1 Value calculated
2 Value held/manual
Lmin Minimum level (→ 249)
Hr Hysteresis (→ 250)

Description of parameters

Navigation Expert → Application → Tank calculation → HTMS

<table>
<thead>
<tr>
<th>HTMS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HTMS mode</td>
<td>→ 248</td>
</tr>
<tr>
<td>Manual density</td>
<td>→ 249</td>
</tr>
<tr>
<td>Density value</td>
<td>→ 249</td>
</tr>
<tr>
<td>Minimum level</td>
<td>→ 249</td>
</tr>
<tr>
<td>Minimum pressure</td>
<td>→ 250</td>
</tr>
<tr>
<td>Safety distance</td>
<td>→ 250</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>→ 250</td>
</tr>
<tr>
<td>Water density</td>
<td>→ 251</td>
</tr>
</tbody>
</table>

HTMS mode

Navigation Expert → Application → Tank calculation → HTMS → HTMS mode (13751)

Description Defines the HTMS mode. Depending on the mode one or two pressure transmitters are used.

Selection

- HTMS P1
- HTMS P1+P3

Factory setting HTMS P1
Proservo NMS80

The “Expert” menu

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Meaning of the options

- HTMS P1
 Only a bottom pressure transmitter (P1) is used.
- HTMS P1+P3
 A bottom (P1) and top (P3) pressure transmitter are used. This option should be selected for pressurized tanks.

Manual density

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Tank calculation → HTMS → Manual density (15009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Defines the manual density.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 3 000 kg/m³</td>
</tr>
<tr>
<td>Factory setting</td>
<td>800 kg/m³</td>
</tr>
<tr>
<td>Additional information</td>
<td>Read access</td>
</tr>
<tr>
<td></td>
<td>Write access</td>
</tr>
</tbody>
</table>

Density value

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Tank calculation → HTMS → Density value (13753)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Shows the calculated product density.</td>
</tr>
</tbody>
</table>

Minimum level

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Tank calculation → HTMS → Min. level (13752)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Defines the minimum product level for a HTMS calculation.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 20 000 mm</td>
</tr>
<tr>
<td>Factory setting</td>
<td>7 000 mm</td>
</tr>
</tbody>
</table>
The 'Expert' menu

Minimum pressure

Navigation

Expert → Application → Tank calculation → HTMS → Min. pressure (13754)

Description

Defines the minimum pressure for a HTMS calculation. If the pressure P1 (or the difference P1 - P3) falls below the limit defined in this parameter, the density retains its last value or the manual value is used instead.

User entry

0 to 100 bar

Factory setting

0.1 bar

Safety distance

Navigation

Expert → Application → Tank calculation → HTMS → Safety distance (13756)

Description

Defines the minimum level which must be present above the bottom pressure sensor before its signal is used for the calculation.

User entry

0 to 10000 mm

Factory setting

2000 mm

Hysteresis

Navigation

Expert → Application → Tank calculation → HTMS → Hysteresis (13755)

Description

Defines the hysteresis for the HTMS calculation. Prevents constant switching if the level is near the switch-over point.

User entry

0 to 2000 mm

Factory setting

50 mm
Water density

Navigation

Expert → Application → Tank calculation → HTMS → Water density (13757)

Description

Density of the water in the tank.

User entry

Signed floating-point number

Factory setting

1 000 kg/m³

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
3.5.3 "Alarm" submenu

Navigation # # Expert → Application → Alarm

"Alarm" submenu

Navigation # # Expert → Application → Alarm → Alarm

<table>
<thead>
<tr>
<th>Alarm</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm mode</td>
<td>→ 253</td>
</tr>
<tr>
<td>Error value</td>
<td>→ 254</td>
</tr>
<tr>
<td>Alarm value source</td>
<td>→ 255</td>
</tr>
<tr>
<td>Alarm value</td>
<td>→ 256</td>
</tr>
<tr>
<td>HH alarm value</td>
<td>→ 256</td>
</tr>
<tr>
<td>H alarm value</td>
<td>→ 256</td>
</tr>
<tr>
<td>L alarm value</td>
<td>→ 257</td>
</tr>
<tr>
<td>LL alarm value</td>
<td>→ 257</td>
</tr>
<tr>
<td>HH alarm</td>
<td>→ 257</td>
</tr>
<tr>
<td>H alarm</td>
<td>→ 258</td>
</tr>
<tr>
<td>HH+H alarm</td>
<td>→ 258</td>
</tr>
<tr>
<td>L alarm</td>
<td>→ 258</td>
</tr>
<tr>
<td>LL alarm</td>
<td>→ 258</td>
</tr>
<tr>
<td>LL+L alarm</td>
<td>→ 259</td>
</tr>
<tr>
<td>Any error</td>
<td>→ 259</td>
</tr>
<tr>
<td>Clear alarm</td>
<td>→ 259</td>
</tr>
<tr>
<td>Alarm hysteresis</td>
<td>→ 260</td>
</tr>
<tr>
<td>Damping factor</td>
<td>→ 260</td>
</tr>
</tbody>
</table>
Alarm mode

Navigation

Expert → Application → Alarm → Alarm → Alarm mode (13864)

Description

Defines the alarm mode of the selected alarm.

Selection

- Off
- On
- Latching

Factory setting

Off

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Meaning of the options

- **Off**
 No alarms are generated.

- **On**
 An alarm disappears if the alarm condition is no longer present (taking into consideration the hysteresis).

- **Latching**
 All alarms remain active until the user selects Clear alarm (→ 259) = Yes or the power is switched off and on.
Principle of the limit evaluation

A Alarm mode (→ K253) = On
B Alarm mode (→ K253) = Latching
1 HH alarm value (→ K256)
2 H alarm value (→ K256)
3 L alarm value (→ K257)
4 LL alarm value (→ K257)
5 HH alarm (→ K257)
6 H alarm (→ K258)
7 L alarm (→ K258)
8 LL alarm (→ K258)
9 "Clear alarm (→ K259)" = "Yes" or power off-on
10 Hysteresis (→ K260)

Error value

Navigation
Expert → Application → Alarm → Alarm → Error value (13851)

Prerequisite
Alarm mode (→ K253) ≠ Off

Description
Defines the alarm to be issued if the input value is invalid.

Selection
• No alarm
• HH+H alarm
• H alarm
• L alarm
• LL+L alarm
• All alarms

Factory setting
All alarms

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Alarm value source

Navigation

Expert → Application → Alarm → Alarm → Alarm source (13866)

Prerequisite

Alarm mode (→ 253) = Off

Description

Determines the process variable to be monitored.

Selection

- Tank level
- Liquid temperature
- Vapor temperature
- Water level
- P1 (bottom)
- P2 (middle)
- P3 (top)
- Observed density value
- Volume
- Flow velocity
- Volume flow
- Vapor density
- Middle density
- Upper density
- Correction
- Tank level %
- GP 1...4 value
- Measured level
- P3 position
- Tank reference height
- Local gravity
- P1 position
- Manual density
- Tank ullage
- Average profile density
- Lower density
- Upper interface level
- Lower interface level
- Bottom level
- Displacer position
- HART device 1...15 PV
- HART device 1...15 SV
- HART device 1...15 TV
- HART device 1...15 QV
- HART device 1...15 PV mA
- HART device 1...15 PV %
- Element temperature 1...24
- AIO B1-3 value
- AIO C1-3 value
- AIP B4-8 value
- AIP C4-8 value
- None

Factory setting

None

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Alarm value

Navigation

Expert → Application → Alarm → Alarm → Alarm value (13863)

Prerequisite

Alarm mode (→ 253) ≠ Off

Description

Shows the current value of the process variable being monitored.

User interface

Signed floating-point number

Factory setting

0 None

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

HH alarm value

Navigation

Expert → Application → Alarm → Alarm → HH alarm value (13855)

Prerequisite

Alarm mode (→ 253) ≠ Off

Description

Defines the high-high(HH) limit value.

User entry

Signed floating-point number

Factory setting

0 None

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

H alarm value

Navigation

Expert → Application → Alarm → Alarm → H alarm value (13854)

Prerequisite

Alarm mode (→ 253) ≠ Off

Description

Defines the high(H) limit value.

User entry

Signed floating-point number

Factory setting

0 None

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
L alarm value

Navigation

Expert → Application → Alarm → Alarm → L alarm value (13853)

Prerequisite

Alarm mode (→ 253) ≠ Off

Description

Defines the low limit value.

User entry

Signed floating-point number

Factory setting

0 None

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

LL alarm value

Navigation

Expert → Application → Alarm → Alarm → LL alarm value (13852)

Prerequisite

Alarm mode (→ 253) ≠ Off

Description

Defines the low-low(LL) limit value.

User entry

Signed floating-point number

Factory setting

0 None

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

HH alarm

Navigation

Expert → Application → Alarm → Alarm → HH alarm (13857)

Prerequisite

Alarm mode (→ 253) ≠ Off

Description

Shows whether an HH alarm is currently active.

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
H alarm

Navigation
Expert → Application → Alarm → Alarm → H alarm (13856)

Prerequisite
Alarm mode (→ 253) ≠ Off

Description
Shows whether an H alarm is currently active.

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>Operator</td>
</tr>
<tr>
<td>Write</td>
<td>-</td>
</tr>
</tbody>
</table>

HH+H alarm

Navigation
Expert → Application → Alarm → Alarm → HH+H alarm (13858)

Prerequisite
Alarm mode (→ 253) ≠ Off

Description
Shows whether an HH or H alarm is currently active.

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>Operator</td>
</tr>
<tr>
<td>Write</td>
<td>-</td>
</tr>
</tbody>
</table>

L alarm

Navigation
Expert → Application → Alarm → Alarm → L alarm (13859)

Prerequisite
Alarm mode (→ 253) ≠ Off

Description
Shows whether an L alarm is currently active.

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>Operator</td>
</tr>
<tr>
<td>Write</td>
<td>-</td>
</tr>
</tbody>
</table>

LL alarm

Navigation
Expert → Application → Alarm → Alarm → LL alarm (13868)

Prerequisite
Alarm mode (→ 253) ≠ Off

Description
Shows whether an LL alarm is currently active.
Additional information

<table>
<thead>
<tr>
<th></th>
<th>Read access</th>
<th>Operator</th>
<th>Write access</th>
<th>-</th>
</tr>
</thead>
</table>

LL+L alarm

Navigation

Expert → Application → Alarm → Alarm → LL+L alarm (13869)

Prerequisite Alarm mode (→ 253) ≠ Off

Description Shows whether an LL or L alarm is currently active.

Additional information

<table>
<thead>
<tr>
<th></th>
<th>Read access</th>
<th>Operator</th>
<th>Write access</th>
<th>-</th>
</tr>
</thead>
</table>

Any error

Navigation

Expert → Application → Alarm → Alarm → Any error (13867)

Prerequisite Alarm mode (→ 253) ≠ Off

Description Show whether any alarm is currently active.

User interface

- Unknown
- Inactive
- Active
- Error

Factory setting Unknown

Additional information

<table>
<thead>
<tr>
<th></th>
<th>Read access</th>
<th>Operator</th>
<th>Write access</th>
<th>-</th>
</tr>
</thead>
</table>

Clear alarm

Navigation

Expert → Application → Alarm → Alarm → Clear alarm (13861)

Prerequisite Alarm mode (→ 253) = Latching

Description Deletes an alarm which is still active although the alarm condition is no longer present.

Selection

- No
- Yes

Factory setting No
Alarm hysteresis

Navigation

Expert → Application → Alarm → Alarm → Alarm hysteresis (13862)

Prerequisite

Alarm mode (→ 253) ≠ Off

Description

Defines the hysteresis for the limit values. The hysteresis prevents constant changes of the alarm state if the level is near one of the limit values.

User entry

Signed floating-point number

Factory setting

0.001

Description

Defines the hysteresis for the limit values. The hysteresis prevents constant changes of the alarm state if the level is near one of the limit values.

User entry

Signed floating-point number

Factory setting

0.001

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Damping factor

Navigation

Expert → Application → Alarm → Alarm → Damping factor (13860)

Description

Defines the damping constant (in seconds).

User entry

0 to 999.9 s

Factory setting

0 s

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
3.6 "Tank values" submenu

Navigation

[Expert ➔ Tank values](#)

<table>
<thead>
<tr>
<th>▶ Tank values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net weight ➔ 261</td>
</tr>
<tr>
<td>Gauge status ➔ 261</td>
</tr>
<tr>
<td>Balance flag ➔ 262</td>
</tr>
<tr>
<td>Standby level ➔ 262</td>
</tr>
<tr>
<td>Offset standby distance ➔ 263</td>
</tr>
<tr>
<td>One-time command status ➔ 264</td>
</tr>
<tr>
<td>▶ Level ➔ 264</td>
</tr>
<tr>
<td>▶ Temperature ➔ 269</td>
</tr>
<tr>
<td>▶ Density ➔ 272</td>
</tr>
<tr>
<td>▶ Pressure ➔ 276</td>
</tr>
<tr>
<td>▶ GP values ➔ 277</td>
</tr>
</tbody>
</table>

Net weight

Navigation

[Expert ➔ Tank values ➔ Net weight (8007)](#)

Description

Shows the corrected weight data from the detector, as compensated by the drum table. This weight is used for measurement.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td></td>
</tr>
</tbody>
</table>

Gauge status

Navigation

[Expert ➔ Tank values ➔ Gauge status (8081)](#)

Description

Indicates the current status of the device gauge command.
Balance flag

Navigation

Expert → Tank values → Balance flag (8006)

Description

Indicates the validity of the Measurement. If balanced, corresponding Value (Liquid Level, Upper Interface, Lower Interface, Tank Bottom) is updated.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Standby level

Navigation

Expert → Tank values → Standby level (8194)

Description

Defines the position in the tank where the displacer waits for the liquid level to rise during standby level gauge command.

User entry

-999999.9 to 999999.9 mm

Factory setting

0 mm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
Displacer waiting for the liquid level to rise during standby level gauge command

1. Gauge reference height
2. Empty
3. Datum plate
4. Standby level
5. Standby distance
6. Reference position

Offset standby distance

Navigation

Expert → Tank values → Offset distance (8107)

Description

Defines the distance from the current position where the displacer waits for the liquid level to rise during offset standby gauge command.

User entry

0 to 999 999.9 mm

Factory setting

500 mm
The 'Expert' menu

Additional information

![Diagram of a tank with level and ullage measurements.](image)

One-time command status

Navigation

- Open the 'Expert' menu → Tank values → One-time Cmd (8201)

Description

Indicates the status of the last executed one-time gauge command.

Additional information

- **Read access**: Operator
- **Write access**: -

Additional information

One-time command is available for all gauge commands, excepting Level, Stop, Up, and Interface.

3.6.1 "Level" submenu

Navigation

- Open the 'Expert' menu → Tank values → Level

<table>
<thead>
<tr>
<th>Level</th>
<th>Tank level</th>
<th>→ 265</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tank Level %</td>
<td>→ 265</td>
</tr>
<tr>
<td></td>
<td>Tank ullage</td>
<td>→ 266</td>
</tr>
<tr>
<td></td>
<td>Tank ullage %</td>
<td>→ 266</td>
</tr>
</tbody>
</table>
Tank level

Navigation

Expert → Tank values → Level → Tank level (14655)

Description

Shows the distance from the zero position (tank bottom or datum plate) to the product surface.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

Tank Level %

Navigation

Expert → Tank values → Level → Tank Level % (14654)

Description

Shows the level as a percentage of the full measuring range.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>
The 'Expert' menu

Tank ullage

Navigation
Expert → Tank values → Level → Tank ullage (14657)

Description
Shows the remaining empty space in the tank.

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Tank ullage %

Navigation
Expert → Tank values → Level → Tank ullage % (14658)

Description
Shows the remaining empty space in percentage related to parameter tank reference height.

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Upper interface level

Navigation
Expert → Tank values → Level → Upper I/F level (15003)

Description
Shows measured interface level from zero position (tank bottom or datum plate). Value is updated when device generates a valid Interface measurement.

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Maintenance</td>
</tr>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Upper interface level timestamp

Navigation
Expert → Tank values → Level → Up I/F timestamp (8055)

Description
Shows timestamp for the last measured upper interface level.

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
Lower interface level

Navigation

[Mentor] Expert → Tank values → Level → Lower I/F level (15004)

Description

Shows measured interface level from zero position (tank bottom or datum plate). Value is updated when device generates a valid interface measurement.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Lower interface level timestamp

Navigation

[Mentor] Expert → Tank values → Level → LowI/F timestamp (8061)

Description

Shows timestamp of the last measured lower interface level.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Bottom level

Navigation

[Mentor] Expert → Tank values → Level → Bottom level (15018)

Description

Shows the bottom level.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Bottom level timestamp

Navigation

[Mentor] Expert → Tank values → Level → BotLev timestamp (8048)

Description

Shows the timestamp for measured bottom level.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
Water level

Navigation
Expert → Tank values → Level → Water level (14970)

Description
Shows the bottom water level.

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Measured level

Navigation
Expert → Tank values → Level → Measured level (14653)

Description
Shows the measured level without any correction from the tank calculations.

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Distance

Navigation
Expert → Tank values → Level → Distance (8103)

Description
Shows the measured distance from reference position.

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Displacer position

Navigation
Expert → Tank values → Level → Displacer pos (15019)

Description
Shows the displacer position.

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
3.6.2 "Temperature" submenu

Navigation
Expert → Tank values → Temperature

Temperature

- **Liquid temperature**
 - [269](#)
- **Vapor temperature**
 - [269](#)
- **Air temperature**
 - [270](#)

NMT element values

- **Element temperature**
 - [270](#)
- **Element position**
 - [270](#)

Liquid temperature

Navigation
Expert → Tank values → Temperature → Liquid temp. (14978)

Description
Shows the average or spot temperature of the measured liquid.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operator</td>
</tr>
</tbody>
</table>

Write access
- [Operator](#)

Vapor temperature

Navigation
Expert → Tank values → Temperature → Vapor temp. (14985)

Description
Shows the measured vapor temperature.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operator</td>
</tr>
</tbody>
</table>

Write access
- [Operator](#)
Air temperature

Navigation

Expert → Tank values → Temperature → Air temp. (14986)

Description

Shows the air temperature.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

"NMT element values" submenu

Navigation

Expert → Tank values → Temperature → NMT elem. values

"Element temperature" submenu

Navigation

Expert → Tank values → Temperature → NMT elem. values → Element temp. → Element temp 0 to 23 (14984)

Element temperature 1 to 24

Navigation

Expert → Tank values → Temperature → NMT elem. values → Element temp. → Element temp 1 to 24 (14984–1 to 24)

Description

Shows the temperature of an element in the NMT.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

"Element position" submenu

Navigation

Expert → Tank values → Temperature → NMT elem. values → Element position

Element position 1 to 24

Navigation

Expert → Tank values → Temperature → NMT elem. values → Element position → Element pos. 1 to 24 (15014–1 to 24)

Description

Shows the position of the selected element in the NMT.
Additional information

<table>
<thead>
<tr>
<th></th>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Operator</td>
<td>-</td>
</tr>
<tr>
<td>Read access</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Write access</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
3.6.3 "Density" submenu

Navigation

Expert → Tank values → Density

Observed density

Description

Calculated density of the product.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

This value is calculated from different measured variables depending on the selected calculation method.
Observed density temperature

Navigation
Expert → Tank values → Density → Obs. dens. temp. (13453)

Description
Corresponding temperature of measured density. Can be used for reference density calculation.

User interface
Signed floating-point number

Factory setting
0 °C

Vapor density

Navigation
Expert → Tank values → Density → Vapor density (14981)

Description
Defines the density of the gas phase in the tank.

User entry
0.0 to 500.0 kg/m³

Factory setting
1.2 kg/m³

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Air density

Navigation
Expert → Tank values → Density → Air density (14980)

Description
Defines the density of the air surrounding the tank.

User entry
0.0 to 500.0 kg/m³

Factory setting
1.2 kg/m³

Additional information
<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Measured upper density

Navigation
Expert → Tank values → Density → Meas upper dens. (15001)

Description
Shows the density of the upper phase.
Upper density timestamp

Navigation

Expert → Tank values → Density → UpDens timestamp (8067)

Description

Shows timestamp of the last measured upper density.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td></td>
</tr>
</tbody>
</table>
Lower density timestamp

Navigation

Expert → Tank values → Density → LowerDensTimestp (8122)

Description

Shows timestamp of last measured lower density.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Write access</th>
<th>-</th>
</tr>
</thead>
</table>

"Profile density" submenu

Navigation

Expert → Tank values → Density → Profile density

Profile density 0 to 49

Navigation

Expert → Tank values → Density → Profile density → Profile dens 0 to 49 (8068)

Description

Shows the density measurement at the corresponding profile density position.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Write access</th>
<th>-</th>
</tr>
</thead>
</table>

Profile density position 0 to 49

Navigation

Expert → Tank values → Density → Profile density → Profile pos 0 to 49 (8077)

Description

Shows the position where the corresponding density was measured.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Write access</th>
<th>-</th>
</tr>
</thead>
</table>
3.6.4 "Pressure" submenu

Navigation

Expert → Tank values → Pressure

<table>
<thead>
<tr>
<th>➤ Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 (bottom) ➤ 276</td>
</tr>
<tr>
<td>P3 (top) ➤ 276</td>
</tr>
</tbody>
</table>

P1 (bottom)

Navigation

Expert → Tank values → Pressure → P1 (bottom) (14983)

Description

Shows the pressure at the tank bottom.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

P3 (top)

Navigation

Expert → Tank values → Pressure → P3 (top) (14988)

Description

Shows the pressure (P3) at the top transmitter.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
3.6.5 "GP values" submenu

Navigation

Expert → Tank values → GP values

GP values

- **GP 1 to 4 name**
 - GP Value 1
 - GP Value 2
 - GP Value 3
 - GP Value 4

GP 1 to 4 name

Navigation

Expert → Tank values → GP values → GP 1 name (14963)

Description

Defines the label associated with the respective GP value.

User entry

Character string comprising numbers, letters and special characters (15)

Factory setting

GP Value 1

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

GP Value 1

Navigation

Expert → Tank values → GP values → GP Value 1 (14966)

Description

Displays the value that will be used as general purpose value.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

GP Value 2

Navigation

Expert → Tank values → GP values → GP Value 2 (14967)

Description

Displays the value that will be used as general purpose value.
The 'Expert' menu

Proservo NMS80

GP Value 3

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Tank values → GP values → GP Value 3 (14968)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the value that will be used as general purpose value.</td>
</tr>
<tr>
<td>Additional information</td>
<td>Read access Operator</td>
</tr>
<tr>
<td></td>
<td>Write access -</td>
</tr>
</tbody>
</table>

GP Value 4

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Tank values → GP values → GP Value 4 (14969)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the value that will be used as general purpose value.</td>
</tr>
<tr>
<td>Additional information</td>
<td>Read access Operator</td>
</tr>
<tr>
<td></td>
<td>Write access -</td>
</tr>
</tbody>
</table>
3.7 "Diagnostics" submenu

Navigation 📃 Expert → Diagnostics

Diagnostics

- Actual diagnostics
- Timestamp
- Previous diagnostics
- Timestamp
- Operating time from restart
- Operating time
- Date/time

Diagnostic list

- Diagnostics 1 to 5
- Timestamp 1 to 5

Event logbook

Simulation

- Device alarm simulation
- Diagnostic event simulation
- Simulation distance on
- Simulation distance
- Current output 1 to 2 simulation
- Simulation value

Device information

- Device tag
- Serial number
- Firmware version
The ‘Expert’ menu

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmware CRC</td>
<td>290</td>
</tr>
<tr>
<td>Weight and measures configuration CRC</td>
<td>290</td>
</tr>
<tr>
<td>Device name</td>
<td>291</td>
</tr>
<tr>
<td>Order code</td>
<td>291</td>
</tr>
<tr>
<td>Extended order code 1 to 3</td>
<td>291</td>
</tr>
<tr>
<td>ENP version</td>
<td>291</td>
</tr>
<tr>
<td>Device type</td>
<td>292</td>
</tr>
<tr>
<td>Module type</td>
<td>292</td>
</tr>
<tr>
<td>Communication Slot</td>
<td>292</td>
</tr>
<tr>
<td>Board info</td>
<td>294</td>
</tr>
<tr>
<td>Date/time</td>
<td>283</td>
</tr>
<tr>
<td>System temperature</td>
<td>294</td>
</tr>
<tr>
<td>W&M lock switch</td>
<td>294</td>
</tr>
<tr>
<td>Data logging</td>
<td>296</td>
</tr>
<tr>
<td>Assign channel 1 to 4</td>
<td>297</td>
</tr>
<tr>
<td>Logging interval</td>
<td>298</td>
</tr>
<tr>
<td>Clear logging data</td>
<td>299</td>
</tr>
<tr>
<td>Device check</td>
<td>301</td>
</tr>
<tr>
<td>Commissioning check</td>
<td>302</td>
</tr>
<tr>
<td>Commissioning check</td>
<td>302</td>
</tr>
<tr>
<td>Result drum check</td>
<td>302</td>
</tr>
<tr>
<td>Step X / 11</td>
<td>302</td>
</tr>
<tr>
<td>Commissioning parameter</td>
<td>303</td>
</tr>
<tr>
<td>Step X / 11</td>
<td>303</td>
</tr>
</tbody>
</table>
Actual diagnostics

Navigation

Expert → Diagnostics → Actual diagnos. (0691)

Description

Displays the currently active diagnostic message.

If there is more than one pending diagnostic event, the message for the diagnostic event with the highest priority is displayed.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

The display consists of:
- Symbol for event behavior
- Code for diagnostic behavior
- Operating time of occurrence
- Event text

If several messages are active at the same time, the messages with the highest priority is displayed.

Information on what is causing the message, and remedy measures, can be viewed via the symbol on the display.

Timestamp

Navigation

Expert → Diagnostics → Timestamp (0667)

Description

Displays the timestamp for the currently active diagnostic message.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Previous diagnostics

Navigation

Expert → Diagnostics → Prev.diagnostics (0690)

Description

Displays the diagnostic message for the last diagnostic event that has ended.
The display consists of:
- Symbol for event behavior
- Code for diagnostic behavior
- Operating time of occurrence
- Event text

If several messages are active at the same time, the messages with the highest priority is displayed.

Information on what is causing the message, and remedy measures, can be viewed via the symbol on the display.

Timestamp

Navigation

 Expert → Diagnostics → Timestamp (0672)

Description

Displays the timestamp of the diagnostic message generated for the last diagnostic event that has ended.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Write access</th>
<th>-</th>
</tr>
</thead>
</table>

Operating time from restart

Navigation

 Expert → Diagnostics → Time fr. restart (0653)

Description

Indicates how long the device has been in operation since the last time the device was restarted.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Write access</th>
<th>-</th>
</tr>
</thead>
</table>

Operating time

Navigation

 Expert → Diagnostics → Operating time (0652)

Description

Indicates how long the device has been in operation.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Write access</th>
<th>-</th>
</tr>
</thead>
</table>
Date/time

Navigation

Expert → Diagnostics → Date/time (0790)

Description
Displays the device internal real time clock.

Additional information

<table>
<thead>
<tr>
<th>Access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
3.7.1 "Diagnostic list" submenu

Navigation

Expert → Diagnostics → Diagnostic list

Diagnostics 1 to 5

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 1 to 5 (0692–1 to 5)

Description

Displays the currently active diagnostic message with the highest priority.

Additional information

The display consists of:
- Symbol for event behavior
- Code for diagnostic behavior
- Operating time of occurrence
- Event text

Timestamp 1 to 5

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp 1 to 5 (0683–1 to 5)

Description

Timestamp of the diagnostic message.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
3.7.2 "Event logbook" submenu

Structure of the submenu on the local display

Navigation ➔ Expert → Diagnostics → Event logbook

Description of parameters

Navigation ➔ ➔ Expert → Diagnostics → Event logbook
3.7.3 "Simulation" submenu

Navigation
Expert → Diagnostics → Simulation

<table>
<thead>
<tr>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device alarm simulation → 286</td>
</tr>
<tr>
<td>Diagnostic event simulation → 286</td>
</tr>
<tr>
<td>Simulation distance on → 287</td>
</tr>
<tr>
<td>Simulation distance → 287</td>
</tr>
<tr>
<td>Current output 1 to 2 simulation → 287</td>
</tr>
<tr>
<td>Simulation value → 288</td>
</tr>
</tbody>
</table>

Device alarm simulation

Navigation
Expert → Diagnostics → Simulation → Dev. alarm sim. (0654)

Description
Switch the device alarm on and off.

Selection
- Off
- On

Factory setting
Off

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Diagnostic event simulation

Navigation
Expert → Diagnostics → Simulation → Diag. event sim. (0737)

Description
Select a diagnostic event to simulate this event.

Selection
The diagnostic events of the device

Factory setting
Off
Simulation distance on

Navigation

Expert → Diagnostics → Simulation → Sim distance on (8002)

Description

Switches the distance simulation on or off.

Selection

- Off
- On

Factory setting

Off

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

1. To terminate the simulation, select Off.

Simulation distance

Navigation

Expert → Diagnostics → Simulation → Sim distance (8003)

Prerequisite

Simulation distance on (→ 287) = On

Description

Defines the distance value to be simulated.

User entry

Signed floating-point number

Factory setting

0 mm

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Current output N simulation

Navigation

Expert → Diagnostics → Simulation → Curr.outp N sim. (13985)

Prerequisite

- The device has an Anlog I/O module.
- Operating mode (→ 148) = 4..20mA output or HART slave +4..20mA output

Description

Switches the simulation of the current on or off.
The 'Expert' menu

Selection
- Off
- On

Factory setting
Off

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

Simulation value

Navigation
Expert → Diagnostics → Simulation → Simulation value (13976)

Prerequisite
Current output simulation (→ 287) = On

Description
Defines the current to be simulated.

User entry
3.4 to 23 mA

Factory setting
The current at the time the simulation was started.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
3.7.4 "Device information" submenu

Navigation
- Expert → Diagnostics → Device info

Device information

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device tag</td>
<td></td>
</tr>
<tr>
<td>Serial number</td>
<td></td>
</tr>
<tr>
<td>Firmware version</td>
<td></td>
</tr>
<tr>
<td>Firmware CRC</td>
<td></td>
</tr>
<tr>
<td>Weight and measures configuration CRC</td>
<td></td>
</tr>
<tr>
<td>Device name</td>
<td></td>
</tr>
<tr>
<td>Order code</td>
<td></td>
</tr>
<tr>
<td>Extended order code 1 to 3</td>
<td></td>
</tr>
<tr>
<td>ENP version</td>
<td></td>
</tr>
<tr>
<td>Device type</td>
<td></td>
</tr>
<tr>
<td>Module type</td>
<td></td>
</tr>
<tr>
<td>Communication Slot</td>
<td></td>
</tr>
<tr>
<td>Recovery state</td>
<td></td>
</tr>
</tbody>
</table>

Device tag

Navigation
- Expert → Diagnostics → Device info → Device tag (0011)

Description
Shows the device tag.

User interface
Character string comprising numbers, letters and special characters

Factory setting
- none -

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
Serial number

Navigation
Expert → Diagnostics → Device info → Serial number (0009)

Description
The serial number is a unique alphanumerical code identifying the device. It is printed on the nameplate. In combination with the Operations app it allows to access all device related documentation.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

Firmware version

Navigation
Expert → Diagnostics → Device info → Firmware version (0010)

Description
Displays the device firmware version installed.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

Firmware CRC

Navigation
Expert → Diagnostics → Device info → Firmware CRC (8563)

Description
Result of the cyclic redundancy check of the firmware.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>

Weight and measures configuration CRC

Navigation
Expert → Diagnostics → Device info → W&M config CRC (8564)

Description
Result of the cyclic redundancy check of the weights and measure relevant parameters.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>-</td>
</tr>
</tbody>
</table>
Device name

Navigation

Expert → Diagnostics → Device info → Device name (0013)

Description

Use this function to display the device name. It can also be found on the nameplate.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Order code

Navigation

Expert → Diagnostics → Device info → Order code (0008)

Description

Shows the device order code.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Service</td>
</tr>
</tbody>
</table>

Extended order code 1 to 3

Navigation

Expert → Diagnostics → Device info → Ext. order cd. 1 (0023)

Description

Display the three parts of the extended order code.

User interface

Character string comprising numbers, letters and special characters

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>Service</td>
</tr>
</tbody>
</table>

The extended order code indicates the selected option of all ordering features and thus uniquely identifies the device.

ENP version

Navigation

Expert → Diagnostics → Device info → ENP version (0012)

Description

Shows the version of the electronic nameplate (ENP).

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
The 'Expert' menu

Device type

Navigation

Expert → Diagnostics → Device info → Device type (8561)

Description

Displays the device type.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Write access</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module type

Navigation

Expert → Diagnostics → Device info → Module type (8526)

Description

Shows the type of installed IO module.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Write access</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Communication Slot

Navigation

Expert → Diagnostics → Device info → Comm. Slot (13285)

Description

Indicates which IOM slot contains the communication protocol interface board.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Write access</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recovery state

Navigation

Expert → Diagnostics → Device info → Recovery state (8565)

Description

Indicate the state of the backup data process.

User interface

- Inactive
- distributing
- restoring
- Distribution done
- Distribution failed
- Operating normally
- Restore done
- Restore failed
Factory setting Inactive
"Board info" submenu

Navigation

Expert → Diagnostics → Device info → Board info

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/time</td>
<td>Displays the device internal real time clock.</td>
</tr>
<tr>
<td>System temperature</td>
<td>Shows the electronic temperature of the main board.</td>
</tr>
<tr>
<td>W&M lock switch</td>
<td>Shows the position of the weights and measure (WP) switch.</td>
</tr>
</tbody>
</table>

Date/time

Navigation

Expert → Diagnostics → Device info → Board info → Date/time (0790)

Description

Displays the device internal real time clock.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

System temperature

Navigation

Expert → Diagnostics → Device info → Board info → System temp. (8553)

Description

Shows the electronic temperature of the main board.

User interface

Signed floating-point number

Factory setting

0 °C

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

W&M lock switch

Navigation

Expert → Diagnostics → Device info → Board info → W&M lock switch (8558)

Description

Shows the position of the weights and measure (WP) switch.

User interface

- Enabled
- Disabled
Factory setting

Enabled

Additional information

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>Operator</td>
</tr>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
3.7.5 "Data logging" submenu

Structure of the submenu on the local display

Navigation ▶ Expert → Diagnostics → Data logging

- Assigned channel 1 to 4
- Logging interval
- Clear logging data

Structure of the submenu in an operating tool

Navigation ▶ Expert → Diagnostics → Data logging

- Assigned channel 1 to 4
- Logging interval
- Clear logging data
Description of parameters

Navigation
Expert → Diagnostics → Data logging

Assign channel 1 to 4

Navigation
Expert → Diagnostics → Data logging → Assign chan. 1 (0851)

Description
Assign a process variable to logging channel.

Selection

- Off
- Tank level
- Measured level
- Tank level %
- Distance
- Water level
- Upper interface level
- Lower interface level
- Displacer position
- Upper density
- Middle density
- Lower density
- Bottom level
- Average profile density *
- Liquid temperature
- Vapor temperature
- Air temperature
- Tank ullage
- Tank ullage %
- Observed density value
- P1 (bottom)
- P2 (middle)
- P3 (top)
- GP 1 value
- GP 2 value
- GP 3 value
- GP 4 value
- AIO B1-3 value *
- AIO B1-3 value mA *
- AIO B1-3 value %
- AIO C1-3 value
- AIO C1-3 value mA *
- AIO C1-3 value %
- AIP B4-8 value *
- AIP C4-8 value *
- Absolute echo amplitude *
- Amplitude eval distance *
- DiffPhase *

Factory setting
Off

* Visibility depends on order options or device settings
The 'Expert' menu

Additional information

A total of 1000 measured values can be logged. This means:
- 1000 data points if 1 logging channel is used
- 500 data points if 2 logging channels are used
- 333 data points if 3 logging channels are used
- 250 data points if 4 logging channels are used

If the maximum number of data points is reached, the oldest data points in the data log are cyclically overwritten in such a way that the last 1000, 500, 333 or 250 measured values are always in the log (ring memory principle).

The logged data are deleted if a new option is selected in this parameter.

Read access	Operator
Write access | Maintenance

Logging interval

Navigation

- Expert → Diagnostics → Data logging → Logging interval (0856)
- Expert → Diagnostics → Data logging → Logging interval (0856)

Description

Define the logging interval t_{log} for data logging. This value defines the time interval between the individual data points in the memory.

User entry

1.0 to 3 600.0 s

Factory setting

10.0 s

Additional information

This parameter defines the interval between the individual data points in the data log, and thus the maximum loggable process time T_{log}:
- If 1 logging channel is used: $T_{log} = 1000 \cdot t_{log}$
- If 2 logging channels are used: $T_{log} = 500 \cdot t_{log}$
- If 3 logging channels are used: $T_{log} = 333 \cdot t_{log}$
- If 4 logging channels are used: $T_{log} = 250 \cdot t_{log}$

Once this time elapses, the oldest data points in the data log are cyclically overwritten such that a time of T_{log} always remains in the memory (ring memory principle).

The logged data are deleted if this parameter is changed.

Example

When using 1 logging channel
- $T_{log} = 1000 \cdot 1 \text{ s} = 1000 \text{ s} \approx 16.5 \text{ min}$
- $T_{log} = 1000 \cdot 10 \text{ s} = 10000 \text{ s} \approx 2.75 \text{ h}$
- $T_{log} = 1000 \cdot 80 \text{ s} = 80000 \text{ s} \approx 22 \text{ h}$
- $T_{log} = 1000 \cdot 3600 \text{ s} = 3600000 \text{ s} \approx 41 \text{ d}$

Read access	Operator
Write access | Maintenance
Clear logging data

Navigation
- Expert → Diagnostics → Data logging → Clear logging (0855)
- Expert → Diagnostics → Data logging → Clear logging (0855)

Description
Clear the entire logging data.

Selection
- Cancel
- Clear data

Factory setting
Cancel

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
"Display channel 1 to 4" submenu

The Display channel 1 to 4 submenu is only available when operating via the local display. When operating via FieldCare, the diagram can be displayed in the "Event List / HistoROM" function.

The Display channel 1 to 4 submenu displays the measured value trend of the respective logging channel.

- x-axis: displays 125 to 500 measured values of a process variable (the number of values depending on the number of selected channels).

- y-axis: displays the approximate measured value span and constantly adapts this to the ongoing measurement.

To quit the diagram and to return to the operating menu, press ▼ and ▶ simultaneously.

Navigation
Expert → Diagnostics → Data logging → Displ.channel 1 to 4
3.7.6 "Device check" submenu

Navigation

Expert → Diagnostics → Device check

Device check
"Commissioning check" wizard

Navigation

Expert → Diagnostics → Device check → Commission check

Commissioning check

Result drum check

Step X / 11

Description
This sequence supports checking of the hardware on sensor side and correct installation of the sensor.

Additional information

Read access | Operator
Write access | Maintenance

Description
Gives feedback on the latest status of the commissioning check.

Additional information

Read access | Operator
Write access |

Description
Indicates which step of the commissioning check is currently running.

Additional information

Read access | Operator
Write access | -
"Commissioning parameter" submenu

Navigation
Expert → Diagnostics → Device check → Commission para.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Commissioning parameter</td>
<td></td>
</tr>
<tr>
<td>Step X / 11</td>
<td></td>
</tr>
</tbody>
</table>
→ 303 |
| Result drum check |
→ 303 |
| Displacer weight tolerance |
→ 303 |
| Reference calibration incomplete |
→ 304 |

Step X / 11

Navigation
Expert → Diagnostics → Device check → Commission para. → Step X / 11 (8143)

Description
Indicates which step of the commissioning check is currently running.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Result drum check

Navigation
Expert → Diagnostics → Device check → Commission para. → Result drum chk (8155)

Description
Gives feedback on the latest status of the commissioning check.

Additional information

<table>
<thead>
<tr>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>

Displacer weight tolerance

Navigation
Expert → Diagnostics → Device check → Commission para. → DispWeightToler (8161)

Description
Sets the tolerance of the displacer weight verification during commissioning check.

User interface
0 to 99.9 g

Factory setting
5 g
The 'Expert' menu

Proservo NMS80

<table>
<thead>
<tr>
<th>Additional information</th>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Write access</td>
<td>Service</td>
</tr>
</tbody>
</table>

Reference calibration incomplete

<table>
<thead>
<tr>
<th>Navigation</th>
<th>专家 → 调试 → 设备检查 → 委派参数 → 参考校正不完整 (8157)</th>
</tr>
</thead>
<tbody>
<tr>
<td>User interface</td>
<td>0 to 1</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
<th>Read access</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Write access</td>
<td>-</td>
</tr>
</tbody>
</table>
Index

Symbols

blank (Parameter) 111
blank (Submenu) 136

0 ... 9
0 % value (Parameter) 142, 153, 200
100 % value (Parameter) 142, 153, 201

A
Access code (Parameter) 126
Access status display (Parameter) 32
Activate SW option (Parameter) 56
Active calibration (Parameter) 145, 158
Active diagnostics (Parameter) 123
Active gauge command (Parameter) 61
Actual diagnostics (Parameter) 281
Administration (Submenu) 55, 56
Air density (Parameter) 222, 273
Air temperature (Parameter) 219, 270
Air temperature source (Parameter) 218
Alarm (Submenu) 252
Alarm 1 input source (Parameter) 192
Alarm 2 input source (Parameter) 192
Alarm 3 input source (Parameter) 193
Alarm 4 input source (Parameter) 193
Alarm hysteresis (Parameter) 260
Alarm mode (Parameter) 253
Alarm value (Parameter) 256
Alarm value source (Parameter) 255
Ambient pressure (Parameter) 232
Analog I/O (Submenu) 147
Analog input 0% value (Parameter) 155
Analog input 100% value (Parameter) 156
Analog input source (Parameter) 150
Analog IP (Submenu) 138
Any error (Parameter) 259
Application (Submenu) 211
Assign channel 1 (Parameter) 297
Assign PV (Parameter) 199
Assign QV (Parameter) 204
Assign SV (Parameter) 202
Assign TV (Parameter) 203

B
Backlight (Parameter) 41
Balance flag (Parameter) 61, 262
Balance settings (Submenu) 85
Balancing waiting time (Parameter) 86
Baudrate (Parameter) 173
Board info (Submenu) 294
Bottom level (Parameter) 66, 267
Bottom level timestamp (Parameter) 66, 267
Bottom point (Parameter) 127, 133
Bus termination (Parameter) 176

C
Calibration (Parameter) 158
Calibration (Submenu) 92
Calibration parameters (Submenu) 103
Calibration status (Parameter) 96, 99, 102, 105
Calibration temperature (Parameter) 245
Calibration time (Parameter) 101
Calibration type AIP (Parameter) 145
Clear alarm (Parameter) 259
Clear logging data (Parameter) 299
Commissioning check (Parameter) 302
Commissioning check (Wizard) 302
Commissioning parameter (Submenu) 303
Communication (Submenu) 170
Communication interface protocol (Parameter) 171
Communication interface protocol variant (Parameter) 188
Communication Slot (Parameter) 292
Communication status (Parameter) 110
Compatibility mode (Parameter) 177, 190
Configuration (Submenu) 173, 188
Configure device? (Parameter) 125, 132
Confirm access code (Parameter) 57
Contact type (Parameter) 162
Contrast display (Parameter) 41
Covered tank (Parameter) 244
CRC seed (Parameter) 176
CTSh (Submenu) 243
CTSh correction value (Parameter) 243
CTSh mode (Parameter) 244
Current (Parameter) 137
Current output N simulation (Parameter) 287
Current span (Parameter) 149
Custody transfer (Parameter) 120

D
Damping factor (Parameter) 145, 157, 165, 260
Data logging (Submenu) 296, 297
Date / time (Submenu) 49, 50
Date/time (Parameter) 50, 53, 283, 294
Day (Parameter) 51, 53
Decimal places 1 (Parameter) 38
Decimal places density (Parameter) 45
Decimal places length (Parameter) 44
Decimal places pressure (Parameter) 44
Decimal places temperature (Parameter) 45
Define access code (Parameter) 56, 57
Define access code (Wizard) 57
Deformation factor (Parameter) 239
Density (Parameter) 116
Density (Submenu) 221, 272
Density 0% (Parameter) 180
Density 100% (Parameter) 181
Density measurement mode (Parameter) 90
Density table (Submenu) 70
Density unit (Parameter) 44
Density value (Parameter) 249
Detector temperature (Parameter) 62
<table>
<thead>
<tr>
<th>Device alarm simulation (Parameter)</th>
<th>286</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device check (Submenu)</td>
<td>301</td>
</tr>
<tr>
<td>Device date (Parameter)</td>
<td>119</td>
</tr>
<tr>
<td>Device description (Parameter)</td>
<td>119</td>
</tr>
<tr>
<td>Device ID (Parameter)</td>
<td>118, 207</td>
</tr>
<tr>
<td>Device information (Submenu)</td>
<td>289</td>
</tr>
<tr>
<td>Device message (Parameter)</td>
<td>119</td>
</tr>
<tr>
<td>Device name (Parameter)</td>
<td>109, 291</td>
</tr>
<tr>
<td>Device reset (Parameter)</td>
<td>56</td>
</tr>
<tr>
<td>Device revision (Parameter)</td>
<td>207</td>
</tr>
<tr>
<td>Device tag (Parameter)</td>
<td>109, 207, 289</td>
</tr>
<tr>
<td>Device type (Parameter)</td>
<td>118, 208, 292</td>
</tr>
<tr>
<td>Diagnostic code (Parameter)</td>
<td>122</td>
</tr>
<tr>
<td>Diagnostic event simulation (Parameter)</td>
<td>286</td>
</tr>
<tr>
<td>Diagnostic list (Submenu)</td>
<td>284</td>
</tr>
<tr>
<td>Diagnostics (Submenu)</td>
<td>122, 123, 279</td>
</tr>
<tr>
<td>Diagnostics 1 to 5 (Parameter)</td>
<td>284</td>
</tr>
<tr>
<td>Digital input mapping (Submenu)</td>
<td>166</td>
</tr>
<tr>
<td>Digital input source (Parameter)</td>
<td>161</td>
</tr>
<tr>
<td>Digital input source 1 (Parameter)</td>
<td>166</td>
</tr>
<tr>
<td>Digital input source 2 (Parameter)</td>
<td>166</td>
</tr>
<tr>
<td>Digital Xx-x (Submenu)</td>
<td>160</td>
</tr>
<tr>
<td>Direct access</td>
<td>111</td>
</tr>
<tr>
<td>#blank# (14705)</td>
<td>111</td>
</tr>
<tr>
<td>#blank# (14706)</td>
<td>111</td>
</tr>
<tr>
<td>#blank# (14716)</td>
<td>111</td>
</tr>
<tr>
<td>0 % value (11632)</td>
<td>200</td>
</tr>
<tr>
<td>0 % value (13954)</td>
<td>153</td>
</tr>
<tr>
<td>0 % value (14001)</td>
<td>142</td>
</tr>
<tr>
<td>100 % value (11633)</td>
<td>201</td>
</tr>
<tr>
<td>100 % value (13968)</td>
<td>153</td>
</tr>
<tr>
<td>100 % value (14013)</td>
<td>142</td>
</tr>
<tr>
<td>Access code (14714)</td>
<td>126</td>
</tr>
<tr>
<td>Access status display (0091)</td>
<td>32</td>
</tr>
<tr>
<td>Activate SW option (0029)</td>
<td>56</td>
</tr>
<tr>
<td>Active calibration (13961)</td>
<td>158</td>
</tr>
<tr>
<td>Active calibration (14012)</td>
<td>145</td>
</tr>
<tr>
<td>Active diagnostics (13974)</td>
<td>123</td>
</tr>
<tr>
<td>Active gauge command (8073)</td>
<td>61</td>
</tr>
<tr>
<td>Actual diagnostics (0691)</td>
<td>281</td>
</tr>
<tr>
<td>Air density (14980)</td>
<td>222, 273</td>
</tr>
<tr>
<td>Air temperature (14986)</td>
<td>219, 270</td>
</tr>
<tr>
<td>Air temperature source (14993)</td>
<td>218</td>
</tr>
<tr>
<td>Alarm 1 input source (13270)</td>
<td>192</td>
</tr>
<tr>
<td>Alarm 2 input source (13271)</td>
<td>192</td>
</tr>
<tr>
<td>Alarm 3 input source (13273)</td>
<td>193</td>
</tr>
<tr>
<td>Alarm 4 input source (13274)</td>
<td>193</td>
</tr>
<tr>
<td>Alarm hysteresis (13862)</td>
<td>260</td>
</tr>
<tr>
<td>Alarm mode (13864)</td>
<td>253</td>
</tr>
<tr>
<td>Alarm value (13863)</td>
<td>256</td>
</tr>
<tr>
<td>Alarm value source (13866)</td>
<td>255</td>
</tr>
<tr>
<td>Ambient pressure (14962)</td>
<td>232</td>
</tr>
<tr>
<td>Analog input 0 % value (13977)</td>
<td>155</td>
</tr>
<tr>
<td>Analog input 100 % value (13965)</td>
<td>156</td>
</tr>
<tr>
<td>Analog input source (13974)</td>
<td>150</td>
</tr>
<tr>
<td>Any error (13867)</td>
<td>259</td>
</tr>
<tr>
<td>Assign channel 1 (0851)</td>
<td>297</td>
</tr>
<tr>
<td>Assign PV (0234)</td>
<td>199</td>
</tr>
<tr>
<td>Assign QV (0237)</td>
<td>204</td>
</tr>
<tr>
<td>Assign SV (0235)</td>
<td>202</td>
</tr>
<tr>
<td>Assign TV (0236)</td>
<td>203</td>
</tr>
<tr>
<td>Backlight (0111)</td>
<td>41</td>
</tr>
<tr>
<td>Balance flag (8006)</td>
<td>61, 262</td>
</tr>
<tr>
<td>Balancing waiting time (8205)</td>
<td>86</td>
</tr>
<tr>
<td>Baudrate (13203)</td>
<td>173</td>
</tr>
<tr>
<td>Bottom level (8129)</td>
<td>66</td>
</tr>
<tr>
<td>Bottom level (15018)</td>
<td>267</td>
</tr>
<tr>
<td>Bottom level timestamp (8048)</td>
<td>66, 267</td>
</tr>
<tr>
<td>Bottom point (14729)</td>
<td>127, 133</td>
</tr>
<tr>
<td>Bus termination (13249)</td>
<td>176</td>
</tr>
<tr>
<td>Calibration (13966)</td>
<td>158</td>
</tr>
<tr>
<td>Calibration status (8031)</td>
<td>96, 99, 102, 105</td>
</tr>
<tr>
<td>Calibration temperature (13652)</td>
<td>245</td>
</tr>
<tr>
<td>Calibration type AIP (14018)</td>
<td>145</td>
</tr>
<tr>
<td>Clear alarm (13861)</td>
<td>259</td>
</tr>
<tr>
<td>Clear logging data (0855)</td>
<td>299</td>
</tr>
<tr>
<td>Communication interface protocol (13201)</td>
<td>171</td>
</tr>
<tr>
<td>Communication interface protocol variant (13269)</td>
<td>188</td>
</tr>
<tr>
<td>Communication Slot (13285)</td>
<td>292</td>
</tr>
<tr>
<td>Communication status (14710)</td>
<td>110</td>
</tr>
<tr>
<td>Compatibility mode (13281)</td>
<td>177, 190</td>
</tr>
<tr>
<td>Configure device? (14728)</td>
<td>125, 132</td>
</tr>
<tr>
<td>Contact type</td>
<td>162</td>
</tr>
<tr>
<td>Digital Xx-x (13912)</td>
<td>41</td>
</tr>
<tr>
<td>Contrast display (0105)</td>
<td>244</td>
</tr>
<tr>
<td>Covered tank (13654)</td>
<td>176</td>
</tr>
<tr>
<td>CRC seed (13248)</td>
<td>243</td>
</tr>
<tr>
<td>CTSh correction value (13651)</td>
<td>244</td>
</tr>
<tr>
<td>CTSh mode (14651)</td>
<td>137</td>
</tr>
<tr>
<td>Current (14457)</td>
<td>287</td>
</tr>
<tr>
<td>Current span (13987)</td>
<td>149</td>
</tr>
<tr>
<td>Custody transfer (14748)</td>
<td>120</td>
</tr>
<tr>
<td>Damping factor</td>
<td>165</td>
</tr>
<tr>
<td>Digital Xx-x (13904)</td>
<td>260</td>
</tr>
<tr>
<td>Damping factor (13860)</td>
<td>157</td>
</tr>
<tr>
<td>Damping factor (13951)</td>
<td>145</td>
</tr>
<tr>
<td>Damping factor (14004)</td>
<td>50, 53, 283, 294</td>
</tr>
<tr>
<td>Date/time (0790)</td>
<td>51, 53</td>
</tr>
<tr>
<td>Day (0788)</td>
<td>38</td>
</tr>
<tr>
<td>Decimal places 1 (0095)</td>
<td>45</td>
</tr>
<tr>
<td>Decimal places density (0609)</td>
<td>44</td>
</tr>
<tr>
<td>Decimal places length (0573)</td>
<td>44</td>
</tr>
<tr>
<td>Decimal places pressure (0608)</td>
<td>45</td>
</tr>
<tr>
<td>Decimal places temperature (0614)</td>
<td>56</td>
</tr>
<tr>
<td>Define access code (0093)</td>
<td>239</td>
</tr>
<tr>
<td>Deformation factor</td>
<td>116</td>
</tr>
<tr>
<td>Density (14724)</td>
<td>180</td>
</tr>
<tr>
<td>Density 0% (13252)</td>
<td>181</td>
</tr>
<tr>
<td>Density 100% (13218)</td>
<td>90</td>
</tr>
<tr>
<td>Density measurement mode (8186)</td>
<td>44</td>
</tr>
<tr>
<td>Density unit (0555)</td>
<td>249</td>
</tr>
<tr>
<td>Density value (13753)</td>
<td>62</td>
</tr>
<tr>
<td>Detector temperature (8090)</td>
<td>286</td>
</tr>
<tr>
<td>Device alarm simulation (0654)</td>
<td>119</td>
</tr>
<tr>
<td>Device date (14707)</td>
<td>119</td>
</tr>
<tr>
<td>Device description (14704)</td>
<td>119</td>
</tr>
<tr>
<td>Device ID (0221)</td>
<td>207</td>
</tr>
<tr>
<td>Device ID (14702)</td>
<td>118</td>
</tr>
<tr>
<td>Device message (14703)</td>
<td>119</td>
</tr>
<tr>
<td>Device name (0013)</td>
<td>291</td>
</tr>
<tr>
<td>Device name (14722)</td>
<td>109</td>
</tr>
<tr>
<td>Device reset (0000)</td>
<td>56</td>
</tr>
<tr>
<td>Device revision (0204)</td>
<td>207</td>
</tr>
<tr>
<td>Device tag (0011)</td>
<td>289</td>
</tr>
<tr>
<td>Device tag (0215)</td>
<td>207</td>
</tr>
<tr>
<td>Device tag (14713)</td>
<td>109</td>
</tr>
<tr>
<td>Device type (0209)</td>
<td>208</td>
</tr>
<tr>
<td>Device type (8561)</td>
<td>292</td>
</tr>
<tr>
<td>Device type (14701)</td>
<td>118</td>
</tr>
<tr>
<td>Diagnostic code (14739)</td>
<td>122</td>
</tr>
<tr>
<td>Diagnostic event simulation (0737)</td>
<td>286</td>
</tr>
<tr>
<td>Diagnostics 1 to 5 (0692–1 to 5)</td>
<td>284</td>
</tr>
</tbody>
</table>

Digital input source

Digital Xx-x (13907)	161
Digital input source 1 (8147)	166
Digital input source 2 (8148)	166
Direct access (0106)	31
Discrete 1 selector (13260)	187
Displacer balance volume (8009)	75
Displacer diameter (8014)	74
Displacer height (8195)	76
Displacer position (8130)	64
Displacer position (15019)	268
Displacer status (8160)	61
Displacer type (8071)	74
Displacer volume (8008)	75
Displacer weight (8010)	75

Displacer weight tolerance (8161) | 303 |

Display damping (0094) | 41 |

Display interval (0096) | 40 |

Distance (8103) | 59, 64, 93, 268 |

Distance unit (0551) | 43 |

Drum circumference (8082) | 77 |

Element interval (14743) | 129 |

Element position (14738) | 131, 135 |

Element position 1 to 24 (15014–1 to 24) | 121, 270 |

Element temperature (14737) | 131, 135 |

Element temperature 1 to 24 (14984–1 to 24) | 121, 270 |

Empty (14602) | 214 |

ENP version (0012) | 291 |

Enter access code (0000) | 33 |

Error event type (13953) | 156 |

Error on event

| Digital Xx-x (13916) | 164 |
| Error on event (13967) | 152 |

Error value (13851) | 254 |

Error value (13972) | 152 |

Expected SIL/WHG chain (13952) | 159 |

Extended order code 1 (0023) | 291 |

Failure mode (13988) | 151 |

Feedback threshold (13956) | 155 |

Firmware CRC (8563) | 290 |

Firmware CRC (14758) | 120 |

Firmware version (0010) | 290 |

Fixed current (13989) | 150 |

Float swap mode (13232) | 174 |

Format display (0098) | 36 |

Gain adjust (14736) | 128 |

Gauge command (8000) | 58 |

Gauge command 0 (8149) | 167 |

Gauge command 1 (8150) | 168 |

Gauge command 2 (8151) | 168 |

Gauge command 3 (8152) | 169 |

Gauge current (14027) | 146 |

Gauge status (8081) | 59, 61, 72, 261 |

GP 1 name (14963) | 234, 277 |

GP 1 to 4 source (14989–1 to 4) | 233 |

GP 1 value 0% (13223) | 184 |

GP 1 value 100% (13224) | 184 |

GP 2 value 0% (13257) | 185 |

GP 2 value 100% (13258) | 185 |

GP 3 value 0% (13259) | 185 |

GP 3 value 100% (13262) | 185 |

GP 4 value 0% (13225) | 186 |

GP 4 value 100% (13227) | 186 |

GP Value 1 (14966) | 234, 277 |

GP Value 2 (14967) | 234, 277 |

GP Value 3 (14968) | 234, 278 |

GP Value 4 (14969) | 235, 278 |

Gross weight (8080) | 60 |

H alarm (13856) | 258 |

H alarm value (13854) | 256 |

Hardware revision (0206) | 209 |

HART bus (14711) | 118 |

HART date code (0202) | 210 |

HART descriptor (0212) | 209 |

HART device PV % (14709) | 112 |

HART device PV mA (14708) | 112 |

HART message (0216) | 209 |

HART revision (0205) | 208 |

HART short tag (0220) | 206 |

Header (0097) | 39 |

Header text (0112) | 40 |

HH alarm (13857) | 257 |

HH alarm value (13855) | 256 |

HH+H alarm (13858) | 258 |

High stop level (8135) | 78 |

Hour (0789) | 51, 53 |

HTMS mode (13751) | 248 |

Hysteresis (13755) | 250 |

HyTD correction value (13603) | 238 |

HyTD mode (14652) | 238 |

Immersion depth (8070) | 76 |

Input value

Digital Xx-x (13901)	162
Input value (13979)	153
Input value (14015)	143
Input value % (13955)	154
Input value in mA (13970)	157
Input value percent (13978)	157
Input value percent (14002)	142
Interface measurement mode (8064)	86
Invalid data (13243)	175
Kind of interval (14744) .. 128
L alarm (13859) .. 258
L alarm value (13853) 257
Language (0104) .. 35
Last diagnostic (14742) 122
Level 0% (13214) .. 178
Level 100% (13250) 179
Level mapping (13268) 189
Level measurement mode (8056) 85
Level source (14601) 213
Level source (14749) 117
Line impedance (13266) 190
Linear expansion coefficient (13655) 245
Liquid level (8072) 65
Liquid temp source (14972) 217
Liquid temperature (14978) 218, 269
LL alarm (13859) ... 258
LL alarm value (13852) 257
LL+L alarm (13869) 259
Local gravity (14979) 235
Locking status (0004) 32
Logging interval (0856) 298
Low stop level (8069) 78
Lower density (8042) 82
Lower density offset (8178) 89
Lower density timestamp (8122) 68, 275
Lower interface level (8128) 65
Lower interface level (15004) 215, 267
Lower interface level timestamp (8061) 66, 267
Manual air temperature (14961) 219
Manual density (15009) 249
Manual liquid temperature (15015) 218
Manual profile level (8182) 90
Manual value (14746) 118
Manual vapor temperature (14960) 220
Manual water level (14959) 216
Manufacturer ID (0259) 208
Maximum probe temperature (14011) 144
Measured level (14653) 268
Measured lower density (8166) 68
Measured lower density (15002) 223, 274
Measured middle density (8165) 67
Measured middle density (14997) 223, 274
Measured upper density (8164) 67
Measured upper density (15001) 222, 273
Middle density (8041) 81
Middle density offset (8177) 88
Middle Density Timestamp (8011) 68, 274
Minimum level (13752) 249
Minimum pressure (13754) 250
Minimum probe temperature (14010) 143
Minute (0791) ... 52, 54
Modbus address (13205) 174
Modbus discrete 1 to 4 (15320–1 to 4) 172
Modbus value 1 to 4 (13206–1 to 4) 172
Module type (8526) 292
Month (0787) ... 51, 53
Motor status (8118) 62, 94
Net weight (8007) 60, 261
No element in phase (14756) 133
No. of preambles (0217) 199
Number format (0099) 39
Number of devices (13051) 107
Observed density (13451) 272
Observed density (13452) 222
Observed density source (13454) 221
Observed density temperature (13453) 273
Offset standby distance (8107) 83, 263
Offset weight (8095) 95, 104
Ohms offset (14026) 140
Old TSM mode (13213) 176
One-time command status (8201) 62, 264
Operating mode ...
Digital Xx-x (13911) 161
Operating mode (13958) 148
Operating mode (14014) 159
Operating mode (14453) 137
Operating mode (14745) 109
Operating time (0652) 282
Operating time from restart (0653) 282
Order code (0008) 291
Output at error (14733) 128
Output density (14720) 113
Output level (14718) 114
Output out of range (8218) 80
Output out of range (13971) 152
Output pressure (14719) 112
Output simulation ..
Digital Xx-x (13909) 163
Output temperature (14721) 113
Output value ...
Digital Xx-x (13902) 164
Output value (13969) 154
Output vapor temperature (14726) 113
Overtension weight (8097) 79
P1 (bottom) ... 226, 276
P1 (bottom) manual pressure (14951) 226
P1 (bottom) source (14994) 226
P1 absolute / gauge (14954) 227
P1 offset (14953) .. 227
P1 position (14952) 227
P1-2 distance (14974) 229
P2 (middle) ... 228
P2 (middle) manual pressure (14955) 228
P2 (middle) source (14995) 228
P2 absolute / gauge (14976) 229
P2 offset (14975) .. 229
P3 (top) .. 230, 276
P3 (top) manual pressure (14977) 230
P3 absolute / gauge (14996) 230
P3 offset (14957) .. 231
P3 position (14958) 231
Parity (13204) ... 174
Percent 0% (13202) 182
Percent 100% (13234) 182
Percent of range (0274) 202
Polling address (14712) 109
Post gauge command (8163) .. 73
Pressure (14723) ... 115
Pressure 0% (13217) .. 180
Pressure 100% (13251) .. 180
Pressure unit (0564) ... 43
Previous diagnostics (0690) ... 281
Previous diagnostics (14755) 124
Primary variable (PV) (0201) 201
Probe position (14009) .. 144
Process condition (8001) .. 82, 211
Process value (13963) .. 156
Process value (14003) ... 141
Process variable (13964) .. 155
Process variable (14016) .. 141
Profile average density (8175) 69, 224
Profile density 0 to 49 (8068) 275
Profile density interval (8174) 91
Profile density offset (8173) 91
Profile density offset distance (8185) 91
Profile density position 0 to 49 (8077) 275
Profile density timestamp (8114) 69, 224
Profile point (8170) ... 69, 223
PV mA selector (11631) .. 201
PV source (11634) ... 199
Quaternary variable (QV) (0203) 205

Readback value

Digital Xx-x (13903) ... 164
Readback value (13957) ... 154
Recovery state (8565) ... 292
Reference O (14740) .. 122
Reference 17 (14741) .. 123
Reference calibration incomplete (8157) 304
Reference position (8046) 98, 104
Result drum check (8155) 302, 303
RTD connection type (14022) 141
RTD type (14021) ... 139
Safety distance (13756) .. 250
Secondary variable (SV) (0226) 203
Seek delay (8162) ... 87
Select element (14734) ... 130, 134
Sensor temperature (8066) 62
Separator (0101) ... 39
Serial number (0009) ... 290
Set date (0792) ... 50
Set high weight (8116) .. 101, 103
Set level (14604) ... 215
Set low weight (8115) ... 102, 103
Simulation distance (8003) 287
Simulation distance on (8002) 287
Simulation value (13976) ... 288
Slow hoist zone (8084) .. 79
Software revision (0224) ... 210
Software version (14747) 119
SP 1 value selector (13274) 194
SP 2 value selector (13275) 194
SP 3 value selector (13276) 195
SP 4 value selector (13277) 195
Span weight (8096) ... 96, 104
Standby level (8194) .. 82, 262
Starting level (13601) ... 238
Status self check (8192) ... 71, 72
Status signal (14760) .. 110
Step X / 11 (8143) ... 302, 303
Stilling well (13653) ... 244
Submersion depth (8169) ... 89
System polling address (0219) 198
System temperature (8553) 294
Tank level (14655) ... 214, 265
Tank Level % (14654) ... 265
Tank level to NMT (14750) 117
Tank reference height (14603) 214
Tank uillage (14657) .. 266
Tank uillage % (14658) ... 266
Tank temperature (14725) 116
Temperature 0% (13215) ... 179
Temperature 100% (13216) 179
Temperature element open (14732) 127
Temperature element short (14731) 127
Temperature offset after conversion (14025) 143
Temperature unit (0557) ... 43
Tertiary variable (TV) (0228) 204
Test resistance (14752) .. 124
Thermocouple type (14008) 140
Timestamp (0667) ... 281
Timestamp (0672) ... 282
Timestamp 1 to 5 (0683-1 to 5) 284
Total no. element (14730) 126, 132
Undertension weight (8098) 79
Units preset (0605) .. 42
Update water level (14751) 129, 134
Upper density (8113) .. 81
Upper density offset (8176) 88
Upper density timestamp (8067) 67, 274
Upper interface level (8127) 65
Upper interface level (15003) 215, 266
Upper interface level timestamp (8055) 65, 266

Used for SIL/WHG

Digital Xx-x (13910) .. 165
Used for SIL/WHG (13980) 158
User 0% (13221) ... 181
User 100% (13222) ... 181
User role (0005) ... 32
User value 1 to 8 source (13209-1 to 8) 183, 191
V1 address (13235) ... 188
V1 address (13236) ... 189
Value 1 display (0107) .. 37
Value percent selector (13282) 196
Vapor density (14981) ... 222, 273
Vapor temp source (14973) 219
Vapor temperature (14727) 116
Vapor temperature (14985) 220, 269
WB lock switch (8558) .. 294
Water bottom level offset (14757) 133
Water density (13757) .. 223, 251
Water level (14717) .. 117
Water level (14970) ... 216, 268
Water level source (14971) 215
WB frequency ratio (14753) 124
Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Proservo NMS80</th>
</tr>
</thead>
<tbody>
<tr>
<td>310</td>
<td>Endress+Hauser</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight and measures configuration CRC (8564)</td>
<td>290</td>
</tr>
<tr>
<td>Weight tolerance (8213)</td>
<td>87</td>
</tr>
<tr>
<td>Wire expansion coefficient (13656)</td>
<td>245</td>
</tr>
<tr>
<td>Wire weight (8040)</td>
<td>77</td>
</tr>
<tr>
<td>Word type (13208)</td>
<td>175</td>
</tr>
<tr>
<td>Year (0782)</td>
<td>50, 53</td>
</tr>
<tr>
<td>Zero adjust (14735)</td>
<td>130</td>
</tr>
<tr>
<td>Zero adjust (14759)</td>
<td>135</td>
</tr>
<tr>
<td>Direct access (Parameter)</td>
<td>31</td>
</tr>
<tr>
<td>Discrete 1 selector (Parameter)</td>
<td>187</td>
</tr>
<tr>
<td>Discrete selector (Submenu)</td>
<td>187</td>
</tr>
<tr>
<td>Displacer (Submenu)</td>
<td>74</td>
</tr>
<tr>
<td>Displacer diameter (Parameter)</td>
<td>74</td>
</tr>
<tr>
<td>Displacer height (Parameter)</td>
<td>76</td>
</tr>
<tr>
<td>Displacer position (Parameter)</td>
<td>64, 268</td>
</tr>
<tr>
<td>Displacer status (Parameter)</td>
<td>61</td>
</tr>
<tr>
<td>Displacer type (Parameter)</td>
<td>74</td>
</tr>
<tr>
<td>Displacer volume (Parameter)</td>
<td>75</td>
</tr>
<tr>
<td>Displacer weight (Parameter)</td>
<td>75</td>
</tr>
<tr>
<td>Displacer weight tolerance (Parameter)</td>
<td>303</td>
</tr>
<tr>
<td>Display (Submenu)</td>
<td>35</td>
</tr>
<tr>
<td>Display channel 1 to 4 (Submenu)</td>
<td>300</td>
</tr>
<tr>
<td>Display damping (Parameter)</td>
<td>41</td>
</tr>
<tr>
<td>Display interval (Parameter)</td>
<td>40</td>
</tr>
<tr>
<td>Distance (Parameter)</td>
<td>59, 64, 93, 268</td>
</tr>
<tr>
<td>Distance unit (Parameter)</td>
<td>43</td>
</tr>
<tr>
<td>Document</td>
<td>4</td>
</tr>
<tr>
<td>Document function</td>
<td>4</td>
</tr>
<tr>
<td>Drum calibration (Parameter)</td>
<td>100</td>
</tr>
<tr>
<td>Drum calibration (Wizard)</td>
<td>100</td>
</tr>
<tr>
<td>Drum circumference (Parameter)</td>
<td>77</td>
</tr>
<tr>
<td>Drum table point (Parameter)</td>
<td>101</td>
</tr>
<tr>
<td>Element interval (Parameter)</td>
<td>129</td>
</tr>
<tr>
<td>Element position (Parameter)</td>
<td>131, 135</td>
</tr>
<tr>
<td>Element position (Submenu)</td>
<td>121, 270</td>
</tr>
<tr>
<td>Element position 1 to 24 (Parameter)</td>
<td>121, 270</td>
</tr>
<tr>
<td>Element setup (Submenu)</td>
<td>130, 134</td>
</tr>
<tr>
<td>Element temperature (Parameter)</td>
<td>131, 135</td>
</tr>
<tr>
<td>Element temperature (Submenu)</td>
<td>121, 270</td>
</tr>
<tr>
<td>Element temperature 1 to 24 (Parameter)</td>
<td>121, 270</td>
</tr>
<tr>
<td>Element values (Submenu)</td>
<td>121</td>
</tr>
<tr>
<td>Empty (Parameter)</td>
<td>214</td>
</tr>
<tr>
<td>ENP version (Parameter)</td>
<td>291</td>
</tr>
<tr>
<td>Enter access code (Parameter)</td>
<td>33</td>
</tr>
<tr>
<td>Error event type (Parameter)</td>
<td>156</td>
</tr>
<tr>
<td>Error on event (Parameter)</td>
<td>152, 164</td>
</tr>
<tr>
<td>Error value (Parameter)</td>
<td>152, 254</td>
</tr>
<tr>
<td>Event logbook (Submenu)</td>
<td>285</td>
</tr>
<tr>
<td>Expected SIL/WHG chain (Parameter)</td>
<td>159</td>
</tr>
<tr>
<td>Expert (Menu)</td>
<td>7, 31</td>
</tr>
<tr>
<td>Extended order code 1 (Parameter)</td>
<td>291</td>
</tr>
<tr>
<td>Failure mode (Parameter)</td>
<td>151</td>
</tr>
<tr>
<td>Feedback threshold (Parameter)</td>
<td>155</td>
</tr>
<tr>
<td>Firmware CRC (Parameter)</td>
<td>120, 290</td>
</tr>
<tr>
<td>Firmware version (Parameter)</td>
<td>290</td>
</tr>
<tr>
<td>Fixed current (Parameter)</td>
<td>150</td>
</tr>
<tr>
<td>Float swap mode (Parameter)</td>
<td>174</td>
</tr>
<tr>
<td>Forget device (Parameter)</td>
<td>136</td>
</tr>
<tr>
<td>Forget device (Wizard)</td>
<td>136</td>
</tr>
<tr>
<td>Format display (Parameter)</td>
<td>36</td>
</tr>
</tbody>
</table>

G

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain adjust (Parameter)</td>
<td>128</td>
</tr>
<tr>
<td>Gauge command (Parameter)</td>
<td>58</td>
</tr>
<tr>
<td>Gauge command 0 (Parameter)</td>
<td>167</td>
</tr>
<tr>
<td>Gauge command 1 (Parameter)</td>
<td>168</td>
</tr>
<tr>
<td>Gauge command 2 (Parameter)</td>
<td>168</td>
</tr>
<tr>
<td>Gauge command 3 (Parameter)</td>
<td>169</td>
</tr>
<tr>
<td>Gauge current (Parameter)</td>
<td>146</td>
</tr>
<tr>
<td>Gauge status (Parameter)</td>
<td>59, 61, 72, 261</td>
</tr>
<tr>
<td>GP 1 name (Parameter)</td>
<td>234, 277</td>
</tr>
<tr>
<td>GP 1 to 4 source (Parameter)</td>
<td>233</td>
</tr>
<tr>
<td>GP 1 value 0% (Parameter)</td>
<td>184</td>
</tr>
<tr>
<td>GP 1 value 100% (Parameter)</td>
<td>184</td>
</tr>
<tr>
<td>GP 2 value 0% (Parameter)</td>
<td>185</td>
</tr>
<tr>
<td>GP 2 value 100% (Parameter)</td>
<td>185</td>
</tr>
<tr>
<td>GP 3 value 0% (Parameter)</td>
<td>185</td>
</tr>
<tr>
<td>GP 3 value 100% (Parameter)</td>
<td>186</td>
</tr>
<tr>
<td>GP 4 value 0% (Parameter)</td>
<td>186</td>
</tr>
<tr>
<td>GP 4 value 100% (Parameter)</td>
<td>186</td>
</tr>
<tr>
<td>GP Value 1 (Parameter)</td>
<td>234, 277</td>
</tr>
<tr>
<td>GP Value 2 (Parameter)</td>
<td>234, 277</td>
</tr>
<tr>
<td>GP Value 3 (Parameter)</td>
<td>234, 278</td>
</tr>
<tr>
<td>GP Value 4 (Parameter)</td>
<td>235, 278</td>
</tr>
<tr>
<td>GP values (Submenu)</td>
<td>184, 233, 277</td>
</tr>
<tr>
<td>Gross weight (Parameter)</td>
<td>60</td>
</tr>
</tbody>
</table>

H

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H alarm (Parameter)</td>
<td>258</td>
</tr>
<tr>
<td>H alarm value (Parameter)</td>
<td>256</td>
</tr>
<tr>
<td>Hardware revision (Parameter)</td>
<td>209</td>
</tr>
<tr>
<td>HART bus (Parameter)</td>
<td>118</td>
</tr>
<tr>
<td>HART configuration (Submenu)</td>
<td>198</td>
</tr>
<tr>
<td>HART date code (Parameter)</td>
<td>210</td>
</tr>
<tr>
<td>HART descriptor (Parameter)</td>
<td>209</td>
</tr>
<tr>
<td>HART device information (Submenu)</td>
<td>115</td>
</tr>
<tr>
<td>HART device PV % (Parameter)</td>
<td>112</td>
</tr>
<tr>
<td>HART device PV mA (Parameter)</td>
<td>112</td>
</tr>
<tr>
<td>HART Device(s) (Submenu)</td>
<td>108</td>
</tr>
<tr>
<td>HART devices (Submenu)</td>
<td>107</td>
</tr>
<tr>
<td>HART message (Parameter)</td>
<td>209</td>
</tr>
<tr>
<td>HART output (Submenu)</td>
<td>197</td>
</tr>
<tr>
<td>HART revision (Parameter)</td>
<td>208</td>
</tr>
<tr>
<td>HART short tag (Parameter)</td>
<td>206</td>
</tr>
<tr>
<td>Header (Parameter)</td>
<td>39</td>
</tr>
<tr>
<td>Header text (Parameter)</td>
<td>40</td>
</tr>
<tr>
<td>HH alarm (Parameter)</td>
<td>257</td>
</tr>
<tr>
<td>HH alarm value (Parameter)</td>
<td>256</td>
</tr>
<tr>
<td>HH+H alarm (Parameter)</td>
<td>258</td>
</tr>
<tr>
<td>High stop level (Parameter)</td>
<td>78</td>
</tr>
<tr>
<td>Hour (Parameter)</td>
<td>51, 53</td>
</tr>
<tr>
<td>HTMS (Submenu)</td>
<td>248</td>
</tr>
<tr>
<td>Manual vapor temperature (Parameter)</td>
<td>220</td>
</tr>
<tr>
<td>Manual water level (Parameter)</td>
<td>216</td>
</tr>
<tr>
<td>Manufacturer ID (Parameter)</td>
<td>208</td>
</tr>
<tr>
<td>Maximum probe temperature (Parameter)</td>
<td>144</td>
</tr>
<tr>
<td>Measured level (Parameter)</td>
<td>268</td>
</tr>
<tr>
<td>Measured lower density (Parameter)</td>
<td>68, 223, 274</td>
</tr>
<tr>
<td>Measured middle density (Parameter)</td>
<td>67, 223, 274</td>
</tr>
<tr>
<td>Measured upper density (Parameter)</td>
<td>67, 222, 273</td>
</tr>
<tr>
<td>Measured values (Parameter)</td>
<td>63</td>
</tr>
<tr>
<td>Menu</td>
<td>Expert</td>
</tr>
<tr>
<td>Middle density (Parameter)</td>
<td>81</td>
</tr>
<tr>
<td>Middle density offset (Parameter)</td>
<td>88</td>
</tr>
<tr>
<td>Middle Density Timestamp (Parameter)</td>
<td>68, 274</td>
</tr>
<tr>
<td>Minimum level (Parameter)</td>
<td>249</td>
</tr>
<tr>
<td>Minimum pressure (Parameter)</td>
<td>250</td>
</tr>
<tr>
<td>Minimum probe temperature (Parameter)</td>
<td>143</td>
</tr>
<tr>
<td>Minute (Parameter)</td>
<td>52, 54</td>
</tr>
<tr>
<td>Modbus address (Parameter)</td>
<td>174</td>
</tr>
<tr>
<td>Modbus discrete 1 to 4 (Parameter)</td>
<td>172</td>
</tr>
<tr>
<td>Modbus value 1 to 4 (Parameter)</td>
<td>172</td>
</tr>
<tr>
<td>Module type (Parameter)</td>
<td>292</td>
</tr>
<tr>
<td>Month (Parameter)</td>
<td>51, 53</td>
</tr>
<tr>
<td>Motor status (Parameter)</td>
<td>62, 94</td>
</tr>
<tr>
<td>Move displacer (Parameter)</td>
<td>94</td>
</tr>
<tr>
<td>Move displacer (Wizard)</td>
<td>93</td>
</tr>
<tr>
<td>Move distance (Parameter)</td>
<td>93</td>
</tr>
<tr>
<td>Net weight (Parameter)</td>
<td>60, 261</td>
</tr>
<tr>
<td>NMT device config (Submenu)</td>
<td>125, 131</td>
</tr>
<tr>
<td>NMT element values (Submenu)</td>
<td>270</td>
</tr>
<tr>
<td>No element in phase (Parameter)</td>
<td>133</td>
</tr>
<tr>
<td>No. of preambles (Parameter)</td>
<td>199</td>
</tr>
<tr>
<td>Number format (Parameter)</td>
<td>39</td>
</tr>
<tr>
<td>Number of devices (Parameter)</td>
<td>107</td>
</tr>
<tr>
<td>Observed density (Parameter)</td>
<td>222, 272</td>
</tr>
<tr>
<td>Observed density source (Parameter)</td>
<td>221</td>
</tr>
<tr>
<td>Observed density temperature (Parameter)</td>
<td>273</td>
</tr>
<tr>
<td>Offset calibration (Parameter)</td>
<td>96</td>
</tr>
<tr>
<td>Offset standby distance (Parameter)</td>
<td>83, 263</td>
</tr>
<tr>
<td>Offset weight (Parameter)</td>
<td>95, 104</td>
</tr>
<tr>
<td>Ohms offset (Parameter)</td>
<td>140</td>
</tr>
<tr>
<td>Old TSM mode (Parameter)</td>
<td>176</td>
</tr>
<tr>
<td>One-time command status (Parameter)</td>
<td>62, 264</td>
</tr>
<tr>
<td>Operating mode (Parameter)</td>
<td>109, 137, 139, 148, 161</td>
</tr>
<tr>
<td>Operating time (Parameter)</td>
<td>282</td>
</tr>
<tr>
<td>Operating time from restart (Parameter)</td>
<td>282</td>
</tr>
<tr>
<td>Order code (Parameter)</td>
<td>291</td>
</tr>
<tr>
<td>Output at error (Parameter)</td>
<td>128</td>
</tr>
<tr>
<td>Output density (Parameter)</td>
<td>113</td>
</tr>
<tr>
<td>Output level (Parameter)</td>
<td>114</td>
</tr>
<tr>
<td>Output out of range (Parameter)</td>
<td>80, 152</td>
</tr>
<tr>
<td>Output pressure (Parameter)</td>
<td>112</td>
</tr>
<tr>
<td>Output simulation (Parameter)</td>
<td>163</td>
</tr>
<tr>
<td>Output temperature (Parameter)</td>
<td>113</td>
</tr>
<tr>
<td>Output value (Parameter)</td>
<td>154, 164</td>
</tr>
</tbody>
</table>

Interface measurement mode (Parameter)	86
Hysteresis (Parameter)	250
HyTD (Submenu)	238
HyTD correction value (Parameter)	238
HyTD mode (Parameter)	238
Immersion depth (Parameter)	76
Information (Submenu)	60, 206
Input value (Parameter)	143, 153, 162
Input value % (Parameter)	154
Input value in mA (Parameter)	157
Input value percent (Parameter)	142, 157
Input/output (Submenu)	106
Interface measurement mode (Parameter)	86
Invalid data (Parameter)	175
Kind of interval (Parameter)	128
L alarm (Parameter)	258
L alarm value (Parameter)	257
Language (Parameter)	35
Last diagnostic (Parameter)	122
Level (Submenu)	213, 264
Level 0% (Parameter)	178
Level 100% (Parameter)	179
Level mapping (Parameter)	189
Level measurement mode (Parameter)	85
Level settings (Submenu)	81
Level source (Parameter)	117, 213
Line impedance (Parameter)	190
Linear expansion coefficient (Parameter)	245
Liquid level (Parameter)	65
Liquid temp source (Parameter)	217
Liquid temperature (Parameter)	218, 269
LL alarm (Parameter)	258
LL alarm value (Parameter)	257
LL+L alarm (Parameter)	259
Local gravity (Parameter)	235
Locking status (Parameter)	32
Logging interval (Parameter)	298
Low stop level (Parameter)	78
Lower density (Parameter)	82
Lower density offset (Parameter)	89
Lower density timestamp (Parameter)	68, 275
Lower interface level (Parameter)	65, 215, 267
Lower interface level timestamp (Parameter)	66, 267
Make drum table (Parameter)	101
Make low table (Parameter)	102
Make sure to have (Parameter)	100
Manual air temperature (Parameter)	219
Manual density (Parameter)	249
Manual liquid temperature (Parameter)	218
Manual profile level (Parameter)	90
Manual value (Parameter)	118

Index
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output vapor temperature</td>
<td>113</td>
</tr>
<tr>
<td>Overtension weight</td>
<td>79</td>
</tr>
<tr>
<td>P1 (bottom) manual pressure</td>
<td>226</td>
</tr>
<tr>
<td>P1 (bottom) source</td>
<td>226</td>
</tr>
<tr>
<td>P1 absolute / gauge</td>
<td>227</td>
</tr>
<tr>
<td>P1 offset</td>
<td>227</td>
</tr>
<tr>
<td>P1 position</td>
<td>227</td>
</tr>
<tr>
<td>P1-2 distance</td>
<td>229</td>
</tr>
<tr>
<td>P2 (middle) manual pressure</td>
<td>228</td>
</tr>
<tr>
<td>P2 (middle) source</td>
<td>228</td>
</tr>
<tr>
<td>P2 absolute / gauge</td>
<td>229</td>
</tr>
<tr>
<td>P2 offset</td>
<td>229</td>
</tr>
<tr>
<td>P3 (top) manual pressure</td>
<td>230</td>
</tr>
<tr>
<td>P3 (top) source</td>
<td>230</td>
</tr>
<tr>
<td>P3 absolute / gauge</td>
<td>231</td>
</tr>
<tr>
<td>P3 offset</td>
<td>231</td>
</tr>
<tr>
<td>P3 position</td>
<td>231</td>
</tr>
<tr>
<td>Parity</td>
<td>174</td>
</tr>
<tr>
<td>Percent 0% (Parameter)</td>
<td>182</td>
</tr>
<tr>
<td>Percent 100% (Parameter)</td>
<td>182</td>
</tr>
<tr>
<td>Percent of range</td>
<td>202</td>
</tr>
<tr>
<td>Polling address</td>
<td>109</td>
</tr>
<tr>
<td>Post gauge command</td>
<td>73</td>
</tr>
<tr>
<td>Pressure (Parameter)</td>
<td>115</td>
</tr>
<tr>
<td>Pressure (Submenu)</td>
<td>225, 276</td>
</tr>
<tr>
<td>Pressure 0% (Parameter)</td>
<td>180</td>
</tr>
<tr>
<td>Pressure 100% (Parameter)</td>
<td>180</td>
</tr>
<tr>
<td>Pressure unit (Parameter)</td>
<td>43</td>
</tr>
<tr>
<td>Previous diagnostics (Parameter)</td>
<td>124, 281</td>
</tr>
<tr>
<td>Primary variable (PV)</td>
<td>201</td>
</tr>
<tr>
<td>Probe position</td>
<td>144</td>
</tr>
<tr>
<td>Process condition</td>
<td>82, 211</td>
</tr>
<tr>
<td>Process value</td>
<td>141, 156</td>
</tr>
<tr>
<td>Process variable</td>
<td>141, 155</td>
</tr>
<tr>
<td>Profile average density</td>
<td>69, 224</td>
</tr>
<tr>
<td>Profile density</td>
<td>69, 90, 275</td>
</tr>
<tr>
<td>Profile density 0 to 49 (Parameter)</td>
<td>275</td>
</tr>
<tr>
<td>Profile density interval (Parameter)</td>
<td>91</td>
</tr>
<tr>
<td>Profile density offset</td>
<td>91</td>
</tr>
<tr>
<td>Profile density offset distance (Parameter)</td>
<td>91</td>
</tr>
<tr>
<td>Profile density position 0 to 49 (Parameter)</td>
<td>275</td>
</tr>
<tr>
<td>Profile density timestamp</td>
<td>69, 224</td>
</tr>
<tr>
<td>Profile point</td>
<td>69, 223</td>
</tr>
<tr>
<td>Progress (Parameter)</td>
<td>98</td>
</tr>
<tr>
<td>PV mA selector</td>
<td>201</td>
</tr>
<tr>
<td>PV source (Parameter)</td>
<td>199</td>
</tr>
<tr>
<td>Reference 17 (Parameter)</td>
<td>123</td>
</tr>
<tr>
<td>Reference calibration (Parameter)</td>
<td>98</td>
</tr>
<tr>
<td>Reference calibration (Wizard)</td>
<td>98</td>
</tr>
<tr>
<td>Reference calibration incomplete (Parameter)</td>
<td>304</td>
</tr>
<tr>
<td>Reference position (Parameter)</td>
<td>98, 104</td>
</tr>
<tr>
<td>Result drum check</td>
<td>302, 303</td>
</tr>
<tr>
<td>RTD connection type</td>
<td>141</td>
</tr>
<tr>
<td>RTD type (Parameter)</td>
<td>139</td>
</tr>
<tr>
<td>Safety distance (Parameter)</td>
<td>250</td>
</tr>
<tr>
<td>Safety Instructions (XA)</td>
<td>6</td>
</tr>
<tr>
<td>Safety settings (Submenu)</td>
<td>78</td>
</tr>
<tr>
<td>Secondary variable (SV) (Parameter)</td>
<td>203</td>
</tr>
<tr>
<td>Seek delay (Parameter)</td>
<td>87</td>
</tr>
<tr>
<td>Select element (Parameter)</td>
<td>130, 134</td>
</tr>
<tr>
<td>Self check (Parameter)</td>
<td>71</td>
</tr>
<tr>
<td>Self check (Wizard)</td>
<td>71</td>
</tr>
<tr>
<td>Sensor (Submenu)</td>
<td>58</td>
</tr>
<tr>
<td>Sensor calibration (Parameter)</td>
<td>95</td>
</tr>
<tr>
<td>Sensor calibration (Wizard)</td>
<td>95</td>
</tr>
<tr>
<td>Separator (Parameter)</td>
<td>39</td>
</tr>
<tr>
<td>Serial number (Parameter)</td>
<td>290</td>
</tr>
<tr>
<td>Set date (Parameter)</td>
<td>50, 54</td>
</tr>
<tr>
<td>Set date (Wizard)</td>
<td>53</td>
</tr>
<tr>
<td>Set high weight (Parameter)</td>
<td>101, 103</td>
</tr>
<tr>
<td>Set level (Parameter)</td>
<td>215</td>
</tr>
<tr>
<td>Set low weight (Parameter)</td>
<td>102, 103</td>
</tr>
<tr>
<td>Simulation (Submenu)</td>
<td>286</td>
</tr>
<tr>
<td>Simulation distance (Parameter)</td>
<td>287</td>
</tr>
<tr>
<td>Simulation distance on (Parameter)</td>
<td>287</td>
</tr>
<tr>
<td>Simulation value (Parameter)</td>
<td>288</td>
</tr>
<tr>
<td>Slow hoist zone (Parameter)</td>
<td>79</td>
</tr>
<tr>
<td>Software revision (Parameter)</td>
<td>210</td>
</tr>
<tr>
<td>Software version (Parameter)</td>
<td>119</td>
</tr>
<tr>
<td>SP 1 value selector</td>
<td>194</td>
</tr>
<tr>
<td>SP 2 value selector</td>
<td>194</td>
</tr>
<tr>
<td>SP 3 value selector</td>
<td>195</td>
</tr>
<tr>
<td>SP 4 value selector</td>
<td>195</td>
</tr>
<tr>
<td>Span calibration (Parameter)</td>
<td>97</td>
</tr>
<tr>
<td>Span weight (Parameter)</td>
<td>96, 104</td>
</tr>
<tr>
<td>Spot density (Submenu)</td>
<td>67, 88</td>
</tr>
<tr>
<td>Standby level (Parameter)</td>
<td>82, 262</td>
</tr>
<tr>
<td>Start self check (Submenu)</td>
<td>71</td>
</tr>
<tr>
<td>Starting level (Parameter)</td>
<td>238</td>
</tr>
<tr>
<td>Status self check (Parameter)</td>
<td>71, 72</td>
</tr>
<tr>
<td>Status signal (Parameter)</td>
<td>110</td>
</tr>
<tr>
<td>Step X / 11 (Parameter)</td>
<td>302, 303</td>
</tr>
<tr>
<td>Stilling well (Parameter)</td>
<td>244</td>
</tr>
<tr>
<td>Submenu</td>
<td>136</td>
</tr>
<tr>
<td>Administration</td>
<td>55, 56</td>
</tr>
<tr>
<td>Alarm</td>
<td>252</td>
</tr>
<tr>
<td>Analog I/O</td>
<td>147</td>
</tr>
<tr>
<td>Analog IP</td>
<td>138</td>
</tr>
<tr>
<td>Application</td>
<td>211</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Submenu</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#blank#</td>
<td>136</td>
</tr>
<tr>
<td>Administration</td>
<td>55, 56</td>
</tr>
<tr>
<td>Alarm</td>
<td>252</td>
</tr>
<tr>
<td>Analog I/O</td>
<td>147</td>
</tr>
<tr>
<td>Analog IP</td>
<td>138</td>
</tr>
<tr>
<td>Application</td>
<td>211</td>
</tr>
<tr>
<td>Balance settings</td>
<td>85</td>
</tr>
<tr>
<td>------------------</td>
<td>----</td>
</tr>
<tr>
<td>Board info</td>
<td>294</td>
</tr>
<tr>
<td>Calibration</td>
<td>92</td>
</tr>
<tr>
<td>Calibration parameters</td>
<td>103</td>
</tr>
<tr>
<td>Commissioning parameter</td>
<td>303</td>
</tr>
<tr>
<td>Communication</td>
<td>170</td>
</tr>
<tr>
<td>Configuration</td>
<td>173, 188</td>
</tr>
<tr>
<td>CTSi</td>
<td>243</td>
</tr>
<tr>
<td>Data logging</td>
<td>296, 297</td>
</tr>
<tr>
<td>Date / time</td>
<td>49, 50</td>
</tr>
<tr>
<td>Density</td>
<td>221, 272</td>
</tr>
<tr>
<td>Density table</td>
<td>70</td>
</tr>
<tr>
<td>Device check</td>
<td>301</td>
</tr>
<tr>
<td>Device information</td>
<td>289</td>
</tr>
<tr>
<td>Diagnostic list</td>
<td>284</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>122, 123, 279</td>
</tr>
<tr>
<td>Digital input mapping</td>
<td>166</td>
</tr>
<tr>
<td>Digital Xx-x</td>
<td>160</td>
</tr>
<tr>
<td>Discrete selector</td>
<td>187</td>
</tr>
<tr>
<td>Displacer</td>
<td>74</td>
</tr>
<tr>
<td>Display</td>
<td>35</td>
</tr>
<tr>
<td>Display channel 1 to 4</td>
<td>300</td>
</tr>
<tr>
<td>Element position</td>
<td>121, 270</td>
</tr>
<tr>
<td>Element setup</td>
<td>130, 134</td>
</tr>
<tr>
<td>Element temperature</td>
<td>121, 270</td>
</tr>
<tr>
<td>Element values</td>
<td>121</td>
</tr>
<tr>
<td>Event logbook</td>
<td>285</td>
</tr>
<tr>
<td>GP values</td>
<td>184, 233, 277</td>
</tr>
<tr>
<td>HART configuration</td>
<td>198</td>
</tr>
<tr>
<td>HART device information</td>
<td>115</td>
</tr>
<tr>
<td>HART Device(s)</td>
<td>108</td>
</tr>
<tr>
<td>HART devices</td>
<td>107</td>
</tr>
<tr>
<td>HART output</td>
<td>197</td>
</tr>
<tr>
<td>HTMS</td>
<td>248</td>
</tr>
<tr>
<td>HyTD</td>
<td>238</td>
</tr>
<tr>
<td>Information</td>
<td>60, 206</td>
</tr>
<tr>
<td>Input/output</td>
<td>106</td>
</tr>
<tr>
<td>Integer conversion</td>
<td>178</td>
</tr>
<tr>
<td>Level</td>
<td>213, 264</td>
</tr>
<tr>
<td>Level settings</td>
<td>81</td>
</tr>
<tr>
<td>Measured values</td>
<td>63</td>
</tr>
<tr>
<td>NMT device config</td>
<td>125, 131</td>
</tr>
<tr>
<td>NMT element values</td>
<td>270</td>
</tr>
<tr>
<td>Pressure</td>
<td>225, 276</td>
</tr>
<tr>
<td>Profile density</td>
<td>69, 90, 275</td>
</tr>
<tr>
<td>Safety settings</td>
<td>78</td>
</tr>
<tr>
<td>Sensor</td>
<td>58</td>
</tr>
<tr>
<td>Sensor config</td>
<td>73</td>
</tr>
<tr>
<td>Sensor diag</td>
<td>71</td>
</tr>
<tr>
<td>Simulation</td>
<td>286</td>
</tr>
<tr>
<td>Spot density</td>
<td>67, 88</td>
</tr>
<tr>
<td>Start self check</td>
<td>71</td>
</tr>
<tr>
<td>System</td>
<td>34</td>
</tr>
<tr>
<td>System units</td>
<td>42</td>
</tr>
<tr>
<td>Tank calculation</td>
<td>235</td>
</tr>
<tr>
<td>Tank configuration</td>
<td>211</td>
</tr>
<tr>
<td>Tank values</td>
<td>261</td>
</tr>
<tr>
<td>Temperature</td>
<td>217, 269</td>
</tr>
<tr>
<td>User value source</td>
<td>183</td>
</tr>
<tr>
<td>V1 input selector</td>
<td>191</td>
</tr>
<tr>
<td>Wiredrum</td>
<td>77</td>
</tr>
<tr>
<td>Submersion depth (Parameter)</td>
<td>89</td>
</tr>
<tr>
<td>System (Submenu)</td>
<td>34</td>
</tr>
<tr>
<td>System polling address (Parameter)</td>
<td>198</td>
</tr>
<tr>
<td>System temperature (Parameter)</td>
<td>294</td>
</tr>
<tr>
<td>System units (Submenu)</td>
<td>42</td>
</tr>
<tr>
<td>Tank calculation (Submenu)</td>
<td>235</td>
</tr>
<tr>
<td>Tank configuration (Submenu)</td>
<td>211</td>
</tr>
<tr>
<td>Tank level (Parameter)</td>
<td>214, 265</td>
</tr>
<tr>
<td>Tank Level % (Parameter)</td>
<td>265</td>
</tr>
<tr>
<td>Tank level to NMT (Parameter)</td>
<td>117</td>
</tr>
<tr>
<td>Tank reference height (Parameter)</td>
<td>214</td>
</tr>
<tr>
<td>Tank ullage (Parameter)</td>
<td>266</td>
</tr>
<tr>
<td>Tank ullage % (Parameter)</td>
<td>266</td>
</tr>
<tr>
<td>Tank values (Submenu)</td>
<td>261</td>
</tr>
<tr>
<td>Tank Level % (Parameter)</td>
<td>265</td>
</tr>
<tr>
<td>Temperature (Parameter)</td>
<td>116</td>
</tr>
<tr>
<td>Temperature (Submenu)</td>
<td>217, 269</td>
</tr>
<tr>
<td>Temperature 0% (Parameter)</td>
<td>179</td>
</tr>
<tr>
<td>Temperature 100% (Parameter)</td>
<td>179</td>
</tr>
<tr>
<td>Temperature element open (Parameter)</td>
<td>127</td>
</tr>
<tr>
<td>Temperature element short (Parameter)</td>
<td>127</td>
</tr>
<tr>
<td>Temperature offset after conversion (Parameter)</td>
<td>143</td>
</tr>
<tr>
<td>Temperature unit (Parameter)</td>
<td>43</td>
</tr>
<tr>
<td>Tertiary variable (TV) (Parameter)</td>
<td>204</td>
</tr>
<tr>
<td>Test resistance (Parameter)</td>
<td>124</td>
</tr>
<tr>
<td>Thermocouple type (Parameter)</td>
<td>140</td>
</tr>
<tr>
<td>Timestamp (Parameter)</td>
<td>281, 282</td>
</tr>
<tr>
<td>Temperature element short (Parameter)</td>
<td>127</td>
</tr>
<tr>
<td>Total no. element (Parameter)</td>
<td>126, 132</td>
</tr>
<tr>
<td>Undertension weight (Parameter)</td>
<td>79</td>
</tr>
<tr>
<td>Units preset (Parameter)</td>
<td>42</td>
</tr>
<tr>
<td>Update water level (Parameter)</td>
<td>129, 134</td>
</tr>
<tr>
<td>Upper density (Parameter)</td>
<td>81</td>
</tr>
<tr>
<td>Upper density offset (Parameter)</td>
<td>88</td>
</tr>
<tr>
<td>Upper density timestamp (Parameter)</td>
<td>67, 274</td>
</tr>
<tr>
<td>Upper interface level (Parameter)</td>
<td>65, 215, 266</td>
</tr>
<tr>
<td>Upper interface level timestamp (Parameter)</td>
<td>65, 266</td>
</tr>
<tr>
<td>Used for SIL/WHG (Parameter)</td>
<td>158, 165</td>
</tr>
<tr>
<td>User 0% (Parameter)</td>
<td>181</td>
</tr>
<tr>
<td>User 100% (Parameter)</td>
<td>181</td>
</tr>
<tr>
<td>User role (Parameter)</td>
<td>32</td>
</tr>
<tr>
<td>User value 1 to 8 source (Parameter)</td>
<td>183, 191</td>
</tr>
<tr>
<td>User value source (Submenu)</td>
<td>183</td>
</tr>
<tr>
<td>V1 address (Parameter)</td>
<td>188, 189</td>
</tr>
<tr>
<td>V1 input selector (Submenu)</td>
<td>191</td>
</tr>
<tr>
<td>Value 1 display (Parameter)</td>
<td>37</td>
</tr>
<tr>
<td>Value percent selector (Parameter)</td>
<td>196</td>
</tr>
<tr>
<td>Vapor density (Parameter)</td>
<td>222, 273</td>
</tr>
<tr>
<td>Vapor temp source (Parameter)</td>
<td>219</td>
</tr>
<tr>
<td>Vapor temperature (Parameter)</td>
<td>116, 220, 269</td>
</tr>
<tr>
<td>W&M lock switch (Parameter)</td>
<td>294</td>
</tr>
</tbody>
</table>

Index
Index

Proservo NMS80

Water bottom level offset (Parameter) 133
Water density (Parameter) 223, 251
Water level (Parameter) 117, 216, 268
Water level source (Parameter) 215
WB frequency ratio (Parameter) 124
Weight and measures configuration CRC (Parameter) 290
Weight tolerance (Parameter) 87
Wire expansion coefficient (Parameter) 245
Wire weight (Parameter) 77
Wiredrum (Submenu) 77
Wizard
 Commissioning check 302
 Define access code 57
 Drum calibration 100
 Forget device 136
 Move displacer 93
 Reference calibration 98
 Self check 71
 Sensor calibration 95
 Set date 53
Word type (Parameter) 175

Y
Year (Parameter) 50, 53

Z
Zero adjust (Parameter) 130, 135
Zero calibration (Parameter) 96