Operating Instructions

Levelflex FMP56, FMP57

HART

Guided wave radar
Table of contents

1 Important document information 5
1.1 Purpose of this document 5
1.2 Symbols 5
 1.2.1 Safety symbols 5
 1.2.2 Electrical symbols 5
 1.2.3 Tool symbols 5
 1.2.4 Symbols for certain types of information and graphics 6
1.3 Documentation 7
 1.3.1 Technical Information (TI) 7
 1.3.2 Brief Operating Instructions (KA) 7
 1.3.3 Safety Instructions (XA) 7
 1.3.4 Functional Safety Manual (FY) 7
1.4 Terms and abbreviations 7
1.5 Registered trademarks 8

2 Basic safety instructions 9
2.1 Requirements for the personnel 9
2.2 Intended use 9
2.3 Workplace safety 10
2.4 Operational safety 10
2.5 Product safety 10
 2.5.1 CE mark 10
 2.5.2 EAC conformity 10

3 Product description 11
3.1 Product design 11
 3.1.1 Levelflex FMP56/FMP57 11
 3.1.2 Electronics housing 12

4 Incoming acceptance and product identification 13
4.1 Incoming acceptance 13
4.2 Product identification 13
 4.2.1 Nameplate 14

5 Storage, transport 15
5.1 Storage temperature 15
5.2 Transporting the product to the measuring point 15

6 Mounting 16
6.1 Mounting requirements 16
 6.1.1 Suitable mounting position 16
 6.1.2 Mounting under confined conditions .. 18
 6.1.3 Notes on the mechanical load of the probe 19
 6.1.4 Information concerning the process connection 23
 6.1.5 Securing the probe 25
 6.1.6 Special installation situations 27

6.2 Mounting the measuring device 31
 6.2.1 Tool list 31
 6.2.2 Shortening the probe 31
 6.2.3 Mounting the device 33
 6.2.4 Mounting the "Sensor, remote" version 34
 6.2.5 Turning the transmitter housing 36
 6.2.6 Turning the display 37
6.3 Post-installation check 37

7 Electrical connection 39
7.1 Connecting requirements 39
 7.1.1 Terminal assignment 39
 7.1.2 Cable specification 43
 7.1.3 Device plug 43
 7.1.4 Supply voltage 45
 7.1.5 Overvoltage protection 48
7.2 Connecting the device 48
 7.2.1 Opening cover 49
 7.2.2 Connecting 49
 7.2.3 Plug-in spring-force terminals 49
 7.2.4 Closing the cover of the connection compartment 50
7.3 Post-connection check 50

8 Operation methods 51
8.1 Overview 51
 8.1.1 Local operation 51
 8.1.2 Operation with remote display and operating module FHX50 52
 8.1.3 Operation via Bluetooth® wireless technology 53
 8.1.4 Remote operation 54
8.2 Structure and function of the operating menu 55
 8.2.1 Structure of the operating menu 55
 8.2.2 User roles and related access authorization 57
 8.2.3 Data access - Security 57
8.3 Display and operating module 62
 8.3.1 Display 62
 8.3.2 Operating elements 65
 8.3.3 Entering numbers and text 66
 8.3.4 Opening the context menu 67
 8.3.5 Envelope curve display on the display and operating module 69

9 Device integration via the HART protocol 70
9.1 Overview of the Device Description files (DD) 70
9.2 HART device variables and measuring values 70
Levelflex FMP56, FMP57 HART

10 Commissioning via SmartBlue (App) .. 71
10.1 Prerequisites 71
10.2 SmartBlue App 71
10.3 Envelope curve display in SmartBlue 71

11 Commissioning using the Commissioning Wizard 73

12 Commissioning via operating menu 74
12.1 Function check 74
12.2 Setting the operating language 74
12.3 Configuring level measurement 75
12.4 Recording the reference envelope curve 77
12.5 Configuring the local display 78
 12.5.1 Factory setting of local display for level measurements 78
 12.5.2 Adjusting the local display 78
12.6 Configuring the current outputs 79
 12.6.1 Factory setting of current outputs for level measurements 79
 12.6.2 Adjusting the current outputs 79
12.7 Configuration management 80
12.8 Protecting settings from unauthorized access 81

13 Diagnostics and troubleshooting ... 82
13.1 General troubleshooting 82
 13.1.1 General errors 82
 13.1.2 Error - SmartBlue operation 84
 13.1.3 Parametrization errors 85
13.2 Diagnostic information on local display 86
 13.2.1 Diagnostic message 86
 13.2.2 Calling up remedial measures 88
13.3 Diagnostic event in the operating tool 89
13.4 Diagnostic list 90
13.5 List of diagnostic events 91
13.6 Event logbook 93
 13.6.1 Event history 93
 13.6.2 Filtering the event logbook 93
 13.6.3 Overview of information events 93
13.7 Firmware history 95

14 Maintenance 96
14.1 Exterior cleaning 96
14.2 General cleaning instructions 96

15 Repair 97
15.1 General information 97
 15.1.1 Repair concept 97
 15.1.2 Repair of Ex-certified devices 97
 15.1.3 Replacing electronics modules 97
 15.1.4 Replacing a device 97
15.2 Spare parts 98

16 Accessories 99
16.1 Device-specific accessories 99
 16.1.1 Weather protection cover 99
 16.1.2 Mounting bracket for electronics housing 100
 16.1.3 Rod extension / centering device 101
 16.1.4 Mounting kit, insulated 102
 16.1.5 Remote display FHX50 102
 16.1.6 Overvoltage protection 103
 16.1.7 Bluetooth module BT10 for HART devices 104
16.2 Communication-specific accessories 105
16.3 Service-specific accessories 106
16.4 System components 106

17 Operating menu 108
17.1 Overview of the operating menu (SmartBlue) 108
17.2 Overview of the operating menu (display module) 113
17.3 Overview of the operating menu (operating tool) 120
 17.4 "Setup" menu 126
 17.4.1 "Mapping" wizard 132
 17.4.2 "Advanced setup" submenu 133
17.5 "Diagnostics" menu 180
 17.5.1 "Diagnostic list" submenu 182
 17.5.2 "Event logbook" submenu 183
 17.5.3 "Device information" submenu 184
 17.5.4 "Measured values" submenu 187
 17.5.5 "Data logging" submenu 189
 17.5.6 "Simulation" submenu 192
 17.5.7 "Device check" submenu 197
 17.5.8 "Heartbeat" submenu 199

Index 200

Endress+Hauser
1 Important document information

1.1 Purpose of this document
These Operating Instructions contain all the information that is required in the various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.

1.2 Symbols

1.2.1 Safety symbols

⚠️ **DANGER**
This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

⚠️ **WARNING**
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

⚠️ **CAUTION**
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

⚠️ **NOTICE**
This symbol contains information on procedures and other facts which do not result in personal injury.

1.2.2 Electrical symbols

\(\sim\)
Alternating current

\(\sim\)
Direct current and alternating current

\(\sim\)
Direct current

\(\parallel\)
Ground connection

A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.

㈱ **Protective earth (PE)**
Ground terminals that must be connected to ground prior to establishing any other connections.

The ground terminals are located on the interior and exterior of the device:
- Interior ground terminal: protective earth is connected to the mains supply.
- Exterior ground terminal: device is connected to the plant grounding system.

1.2.3 Tool symbols

люч ●
Phillips head screwdriver
1.2.4 Symbols for certain types of information and graphics

- **Permitted**
 Procedures, processes or actions that are permitted

- **Preferred**
 Procedures, processes or actions that are preferred

- **Forbidden**
 Procedures, processes or actions that are forbidden

- **Tip**
 Indicates additional information

- Reference to documentation

- Reference to graphic

- Notice or individual step to be observed

- Series of steps

- Result of a step

- Visual inspection

- Operation via operating tool

- Write-protected parameter

- Item numbers

- Views

- **Safety instructions**
 Observe the safety instructions contained in the associated Operating Instructions

- **Temperature resistance of the connection cables**
 Specifies the minimum value of the temperature resistance of the connection cables
1.3 Documentation

The following types of documentation are available in the Download Area of the Endress + Hauser website (www.endress.com/downloads):

- For an overview of the scope of the associated Technical Documentation, refer to the following:
 - Device Viewer (www.endress.com/deviceviewer): Enter the serial number from the nameplate
 - Endress+Hauser Operations app: Enter serial number from nameplate or scan matrix code on nameplate.

1.3.1 Technical Information (TI)

Planning aid
The document contains all the technical data on the device and provides an overview of the accessories and other products that can be ordered for the device.

1.3.2 Brief Operating Instructions (KA)

Guide that takes you quickly to the 1st measured value
The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning.

1.3.3 Safety Instructions (XA)

Depending on the approval, the following Safety Instructions (XA) are supplied with the device. They are an integral part of the Operating Instructions.

- The nameplate indicates the Safety Instructions (XA) that are relevant to the device.

1.3.4 Functional Safety Manual (FY)

Depending on the SIL approval, the Functional Safety Manual (FY) is an integral part of the Operating Instructions and applies in addition to the Operating Instructions, Technical Information and ATEX Safety Instructions.

- The different requirements that apply for the protective function are described in the Functional Safety Manual (FY).

1.4 Terms and abbreviations

BA
Document type "Operating Instructions"

KA
Document type "Brief Operating Instructions"

TI
Document type "Technical Information"

SD
Document type "Special Documentation"

XA
Document type "Safety Instructions"

PN
Nominal pressure

MWP
Maximum working pressure
The MWP is indicated on the nameplate.
ToF
Time of Flight

FieldCare
Scalable software tool for device configuration and integrated plant asset management solutions

DeviceCare
Universal configuration software for Endress+Hauser HART, PROFIBUS, FOUNDATION Fieldbus and Ethernet field devices

DTM
Device Type Manager

DD
Device Description for HART communication protocol

εᵣ (Dk value)
Relative dielectric constant

PLC
Programmable logic controller (PLC)

CDI
Common Data Interface

Operating tool
The term "operating tool" is used in place of the following operating software:
- FieldCare / DeviceCare, for operation via HART communication and PC
- SmartBlue app, for operation using an Android or iOS smartphone or tablet

BD
Blocking Distance; no signals are analyzed within the BD.

PFS
Pulse Frequency Status (Switch output)

1.5 Registered trademarks

HART®
Registered trademark of the FieldComm Group, Austin, Texas, USA

Bluetooth®
The Bluetooth® word mark and logos are registered trademarks owned by the Bluetooth SIG, Inc. and any use of such marks by Endress+Hauser is under license. Other trademarks and trade names are those of their respective owners.

Apple®
Apple, the Apple logo, iPhone, and iPod touch are trademarks of Apple Inc., registered in the U.S. and other countries. App Store is a service mark of Apple Inc.

Android®
Android, Google Play and the Google Play logo are trademarks of Google Inc.

KALREZ®, VITON®
Registered trademarks of DuPont Performance Elastomers L.L.C., Wilmington, DE USA

TEFLON®
Registered trademark of E.I. DuPont de Nemours & Co., Wilmington, USA

TRI-CLAMP®
Registered trademark of Ladish & Co., Inc., Kenosha, USA
2 Basic safety instructions

2.1 Requirements for the personnel
The personnel for installation, commissioning, diagnostics and maintenance must fulfill the following requirements:
- Trained, qualified specialists must have a relevant qualification for this specific function and task.
- Are authorized by the plant owner/operator.
- Are familiar with federal/national regulations.
- Before starting work, read and understand the instructions in the manual and supplementary documentation as well as the certificates (depending on the application).
- Follow instructions and comply with basic conditions.

The operating personnel must fulfill the following requirements:
- Are instructed and authorized according to the requirements of the task by the facility's owner-operator.
- Follow the instructions in this manual.

2.2 Intended use
Application and media
The measuring device described in this manual is intended only for the level measurement of bulk solids. Depending on the version ordered, the measuring device can also measure potentially explosive, flammable, poisonous and oxidizing media.

If the limit values specified in the "Technical data" and the conditions listed in the instructions and additional documentation are observed, the measuring device may be used for the following measurements only:
- Measured process variables: level
- Calculable process variables: volume or mass in any shape of vessel (calculated from the level by the linearization functionality)

To ensure that the measuring device remains in proper condition for the operation time:
- Use the measuring device only for media to which the process-wetted materials have an adequate level of resistance.
- Observe the limit values in the "Technical data".

Incorrect use
The manufacturer is not liable for damage caused by improper or non-intended use.

Clarification of borderline cases:
- For special fluids and fluids for cleaning, Endress+Hauser is glad to provide assistance in verifying the corrosion resistance of fluid-wetted materials, but does not accept any warranty or liability.

Residual risks
Due to heat transfer from the process as well as power loss in the electronics, the temperature of the electronics housing and the assemblies contained therein (e.g. display module, main electronics module and I/O electronics module) may rise up to 80 °C (176 °F). When in operation, the sensor may reach a temperature close to the medium temperature.

Danger of burns from contact with surfaces!
- In the event of high medium temperatures, ensure protection against contact to prevent burns.
2.3 Workplace safety
When working on and with the device:
▶ Wear the required protective equipment according to federal or national regulations.

2.4 Operational safety
Risk of injury!
▶ Operate the device only if it is in proper technical condition, free from errors and faults.
▶ The operator is responsible for the interference-free operation of the device.

Modifications to the device
Unauthorized modifications to the device are not permitted and can lead to unforeseeable dangers:
▶ If modifications are nevertheless required, consult with the manufacturer.

Repair
To ensure continued operational safety and reliability:
▶ Carry out repairs on the device only if they are expressly permitted.
▶ Observe federal/national regulations pertaining to the repair of an electrical device.
▶ Use only original spare parts and accessories from the manufacturer.

Hazardous area
To eliminate danger to persons or the installation when the device is used in the hazardous area (e.g. explosion protection, pressure vessel safety):
▶ Check the nameplate to verify whether the ordered device can be put to its intended use in the hazardous area.
▶ Observe the specifications in the separate supplementary documentation, which is an integral part of this manual.

2.5 Product safety
This measuring device is designed in accordance with good engineering practice to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate. It meets the general safety standards and legal requirements.

NOTICE
Loss of degree of protection by opening of the device in humid environments
▶ If the device is opened in a humid environment, the degree of protection indicated on the nameplate is no longer valid. This may also impair the safe operation of the device.

2.5.1 CE mark
The measuring system meets the legal requirements of the applicable EU directives. These are listed in the corresponding EU Declaration of Conformity together with the standards applied.

The manufacturer confirms successful testing of the device by affixing to it the CE mark.

2.5.2 EAC conformity
The measuring system meets the legal requirements of the applicable EAC guidelines. These are listed in the corresponding EAC Declaration of Conformity along with the standards applied.

The manufacturer confirms successful testing of the device by affixing to it the EAC mark.
3 Product description

3.1 Product design

3.1.1 Levelflex FMP56/FMP57

1 Design of the Levelflex

1 Electronics housing
2 Process connection (here as an example: flange)
3 Rope probe
4 End-of-probe weight
5 Rod probe
3.1.2 Electronics housing

2 Design of the electronics housing

1 Electronics compartment cover
2 Display module
3 Main electronics module
4 Cable glands (1 or 2, depending on instrument version)
5 Nameplate
6 I/O electronics module
7 Terminals (pluggable spring terminals)
8 Connection compartment cover
9 Grounding terminal
4 Incoming acceptance and product identification

4.1 Incoming acceptance
Check the following during incoming acceptance:
- Are the order codes on the delivery note and the product sticker identical?
- Are the goods undamaged?
- Do the nameplate data match the ordering information on the delivery note?
- If required (see nameplate): are the Safety Instructions (XA) provided?

If one of these conditions is not met, please contact your Endress+Hauser sales office.

4.2 Product identification
The following options are available for the identification of the measuring device:
- Nameplate specifications
- Order code with breakdown of the device features on the delivery note
- Enter the serial number from the nameplate in W@M Device Viewer (www.endress.com/deviceviewer): all the information about the device is displayed.
- Enter the serial number on the nameplate into the Endress+Hauser Operations App or scan the 2-D matrix code (QR code) on the nameplate with the Endress+Hauser Operations App: all the information about the measuring device is displayed.
4.2.1 Nameplate

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Device name</td>
</tr>
<tr>
<td>2</td>
<td>Manufacturer address</td>
</tr>
<tr>
<td>3</td>
<td>Order code</td>
</tr>
<tr>
<td>4</td>
<td>Serial number (Ser. no.)</td>
</tr>
<tr>
<td>5</td>
<td>Extended order code (Ext. ord. cd.)</td>
</tr>
<tr>
<td>6</td>
<td>Process pressure</td>
</tr>
<tr>
<td>7</td>
<td>Gas phase compensation: reference length</td>
</tr>
<tr>
<td>8</td>
<td>Certificate symbol</td>
</tr>
<tr>
<td>9</td>
<td>Certificate- and approval-related data</td>
</tr>
<tr>
<td>10</td>
<td>Degree of protection: e.g. IP, NEMA</td>
</tr>
<tr>
<td>11</td>
<td>Document number of the Safety Instructions: e.g. XA, ZD, ZE</td>
</tr>
<tr>
<td>12</td>
<td>2-D matrix code (QR code)</td>
</tr>
<tr>
<td>13</td>
<td>Modification mark</td>
</tr>
<tr>
<td>14</td>
<td>Manufacturing date: year-month</td>
</tr>
<tr>
<td>15</td>
<td>Permitted temperature range for cable</td>
</tr>
<tr>
<td>16</td>
<td>Device revision (Dev.Rev.)</td>
</tr>
<tr>
<td>17</td>
<td>Additional information about the device version (certificates, approvals, communication protocol): e.g. SIL, PROFIBUS</td>
</tr>
<tr>
<td>18</td>
<td>Firmware version (FW)</td>
</tr>
<tr>
<td>19</td>
<td>CE mark, C-Tick</td>
</tr>
<tr>
<td>20</td>
<td>DeviceID</td>
</tr>
<tr>
<td>21</td>
<td>Materials in contact with process</td>
</tr>
<tr>
<td>22</td>
<td>Permitted ambient temperature (T_a)</td>
</tr>
<tr>
<td>23</td>
<td>Size of the cable gland thread</td>
</tr>
<tr>
<td>24</td>
<td>Probe length</td>
</tr>
<tr>
<td>25</td>
<td>Signal outputs</td>
</tr>
<tr>
<td>26</td>
<td>Supply voltage</td>
</tr>
</tbody>
</table>

Up to 33 characters of the extended order code are indicated on the nameplate. If the extended order code contains additional characters, these cannot be displayed. However, the complete extended order code can also be displayed via the device operating menu: **Extended order code 1 to 3** parameter
5 Storage, transport

5.1 Storage temperature
- Permitted storage temperature: –40 to +80 °C (–40 to +176 °F)
- Use original packaging.

5.2 Transporting the product to the measuring point

WARNING
Housing or rod may become damaged or pull off.
Danger of injury!
- Transport the measuring device to the measuring point in its original packaging or by the process connection.
- Always secure lifting equipment (slings, eyes, etc.) at the process connection and never lift the device by the electronic housing or probe. Pay attention to the center of gravity of the device so that it does not tilt or slip unintentionally.
- Follow the safety instructions and transport conditions for devices weighing more than 18 kg (39.6 lbs) (IEC 61010).
6 Mounting

6.1 Mounting requirements

6.1.1 Suitable mounting position

Spacing requirements when mounting

- Distance (A) between the vessel wall and rod and rope probes:
 - For smooth metallic walls: > 50 mm (2 in)
 - For plastic walls: > 300 mm (12 in) to metallic parts outside the vessel
 - For concrete walls: > 500 mm (20 in), otherwise the permitted measuring range may be reduced.
- Distance (B) between rod probes and internal fittings (3): > 300 mm (12 in)
- When using more than one Levelflex:
 Minimum distance between the sensor axes: 100 mm (3.94 in)
- Distance (C) from the end of the probe to the bottom of the vessel:
 - Rope probe: > 150 mm (6 in)
 - Rod probe: > 10 mm (0.4 in)
Additional conditions

- When mounting outdoors, a weather protection cover (1) can be used to protect the device against extreme weather conditions.
- In metallic vessels, preferably do not mount the probe in the center of the vessel (2), as this would lead to increased interference echoes. If a central mounting position cannot be avoided, it is essential to perform interference echo suppression (mapping) after commissioning the device.
- Do not mount the probe in the filling curtain (3).
- Avoid buckling the rope probe during installation or operation (e.g. as a result of product movement against silo wall) by selecting a suitable mounting location.
- The probe must be checked regularly for damage during operation.

1. In the case of freely suspended rope probes (probe end not fixed at the bottom), the distance between the probe rope and internal fittings, which can change due to the movement of the product, must never be less than 300 mm (12 in). Occasional contact between the probe end weight and the cone of the vessel, however, does not influence the measurement provided that the dielectric constant is at least DC = 1.8.

When the housing is mounted in a recess (e.g. in a concrete ceiling), observe a minimum distance of 100 mm (4 in) between the cover of the connection compartment/electronics compartment and the wall. Otherwise the connection compartment/electronics compartment will not be accessible after installation.
6.1.2 Mounting under confined conditions

Mounting with remote probe

The device version with a remote probe is suitable for applications with restricted mounting space. In this case, the electronics housing is mounted at a separate position from the probe.

- Product structure, feature 600 "Probe design":
 - Version MB "Sensor remote, 3m cable"
 - Version MC "Sensor remote, 6m cable"
 - Version MD "Sensor remote, 9m cable"
- The connecting cable is included in the delivery with these versions.
 Minimum bending radius: 100 mm (4 inch)
- The mounting bracket for the electronics housing is included in the delivery with these versions. Mounting options:
 - Wall mounting
 - Mounting on DN32 to DN50 (1-1/4 to 2 inch) post or pipe
- The connection cable has one straight plug and one plug angled at 90°. Depending on the local conditions the angled plug can be connected at the probe or at the electronics housing.

The probe, electronics and connection cable are mutually compatible and bear a common serial number. Only components with the same serial number may be connected to one another.
6.1.3 Notes on the mechanical load of the probe

Tensile load

Bulk solids exert tensile forces on rope probes which increase with:
- The probe length, i.e. the maximum cover
- The bulk density of the product
- The silo diameter and
- The diameter of the probe rope

As the tensile forces also depend greatly on the flowability of the product, a higher safety factor is necessary for highly viscous products and if there is a risk of cornice buildup. In critical cases it is better to use a 6 mm (0.24 in) rope instead of a 4 mm (0.16 in) one.

The same forces also act on the silo ceiling. The tensile forces on a fixed rope are always greater, but cannot be calculated. Observe the tensile loading capacity of the probes.

Ways to reduce the tensile forces:
- Shorten the probe.
- If the maximum tensile load is exceeded, check whether it would be possible to use a non-contact ultrasonic or level radar device.

The following diagrams show typical loads for common bulk solids as reference values. The calculation was performed for the following conditions:
- Calculation according to DIN 1055, Part 6 for the cylindrical part of the silo
- Suspended probe (probe end not fixed at the bottom)
- Free-flowing bulk solid, i.e. mass flow. A calculation for core flow is not possible. In the event of collapsing cornices, considerably higher loads can occur.
- The specification for tensile forces contains safety factor 2 (in addition to the safety factors already contained in DIN 1055), which compensates for the normal fluctuation range in pourable bulk solids.

![Diagram](image)

5 Silica sand in metal silo with smooth walls; tensile load as a function of level L for rope diameters 6 mm (0.24 in) and 4 mm (0.16 in)

A Silo diameter 12 m (40 ft)
B Silo diameter 9 m (30 ft)
C Silo diameter 6 m (20 ft)
D Silo diameter 3 m (10 ft)
6 Polyethylene pellets in metal silo with smooth walls; tensile load as a function of level L for rope diameters 6 mm (0.24 in) and 4 mm (0.16 in)

A Silo diameter 12 m (40 ft)
B Silo diameter 9 m (30 ft)
C Silo diameter 6 m (20 ft)
D Silo diameter 3 m (10 ft)

7 Wheat in metal silo with smooth walls; tensile load as a function of level L for rope diameters 6 mm (0.24 in) and 4 mm (0.16 in)

A Silo diameter 12 m (40 ft)
B Silo diameter 9 m (30 ft)
C Silo diameter 6 m (20 ft)
D Silo diameter 3 m (10 ft)
Cement in metal silo with smooth walls; tensile load as a function of level L for rope diameters 6 mm (0.24 in) and 4 mm (0.16 in)

<table>
<thead>
<tr>
<th>Silo Diameter</th>
<th>Tensile Loading Capacity</th>
<th>Max. Breaking Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 12 m (40 ft)</td>
<td>12 kN</td>
<td>20 kN</td>
</tr>
<tr>
<td>B 9 m (30 ft)</td>
<td>12 kN</td>
<td>20 kN</td>
</tr>
<tr>
<td>C 6 m (20 ft)</td>
<td>12 kN</td>
<td>20 kN</td>
</tr>
<tr>
<td>D 3 m (10 ft)</td>
<td>12 kN</td>
<td>20 kN</td>
</tr>
</tbody>
</table>

Tensile loading capacity of rope probe and breaking load (silo ceiling)

The ceiling of the silo must be designed to withstand the maximum breaking load.

FMP56

Rope 4mm (1/6") 316
- Tensile loading capacity 12 kN
- Max. breaking load 20 kN

Rope 6mm (1/4") PA>steel
- Tensile loading capacity 30 kN
- Max. breaking load 42 kN

FMP57

Rope 4mm (1/6") 316
- Tensile loading capacity 12 kN
- Max. breaking load 20 kN

Rope 6mm (1/4") 316
- Tensile loading capacity 30 kN
- Max. breaking load 42 kN

Rope 8mm (1/3") PA>steel
- Tensile loading capacity 30 kN
- Max. breaking load 42 kN
Lateral loading capacity (flexural strength) of rod probes

**FMP57**

Rod 16mm (0.63”) 316L
30 Nm
6.1.4 Information concerning the process connection

Probes are mounted on the process connection with threaded connections or flanges. If there is the danger with this installation that the probe end moves so much that it occasionally touches the vessel floor or cone, the probe may need to be shortened at the lower end and fixed in place.

Threaded connection

Mounting with threaded connection; flush with the vessel ceiling

Seal

The thread and the type of seal comply with DIN 3852 Part 2, screwed plug, form A. The following types of sealing ring can be used:

- For thread G3/4": According to DIN 7603 with dimensions 27 mm × 32 mm
- For thread G1/-1/2": According to DIN 7603 with dimensions 48 mm × 55 mm

Use a sealing ring according to this standard in form A, C or D and of a material that offers appropriate resistance for the application.

Nozzle installation

FMP56

Rope, Ø 4 mm (0.16 in)

Length H:

120 mm (4.7 in)
FMP57

Rope, Ø 4 mm (0.16 in)
Length H:
94 mm (3.7 in)

Rope, Ø 6 mm (0.24 in)
Length H:
135 mm (5.3 in)

- Permissible nozzle diameter: ≤ 150 mm (6 in)
 For larger diameters, the near-range measuring capability may be reduced.
 For large nozzles, see the section "Mounting in nozzles ≥ DN300"
- Permissible nozzle height: ≤ 150 mm (6 in)
 For larger heights, the near-range measuring capability may be reduced.
 Larger nozzle heights are possible in special cases (on request), see section "Rod extension/centering device HMP40 for FMP57".
- The end of the nozzle should be flush with the tank ceiling in order to avoid ringing effects.

> In thermally insulated vessels, the nozzle should also be insulated in order to prevent condensate formation.

Rod extension/centering device HMP40 for FMP57

For FMP57 with rope probes, the rod extension/centering device HMP40 is available as an accessory. It must be used if the probe rope would otherwise come into contact with the lower edge of the nozzle.

> This accessory consists of the extension rod, corresponding to the nozzle height, on which a centering disk is also mounted if the nozzles are narrow or when used in bulk solids. We deliver this component separately from the device. Please order a correspondingly shorter probe length.

Only use centering disks with small diameters (DN40 and DN50) if there is no significant build-up in the nozzle above the disk. The nozzle must not become clogged with product.

Mounting in nozzles ≥ DN300

If installation in nozzles ≥ 300 mm (12 in) is unavoidable, installation must be carried out in accordance with the following diagram in order to avoid interference signals in the near range.

1. Lower edge of the nozzle
2. Approximately flush with the lower edge of the nozzle (±50 mm)
3. Plate, nozzle Ø 300 mm (12 in) = plate Ø ≥ 280 mm (11 in); nozzle Ø ≥ 400 mm (16 in) = plate Ø ≥ 350 mm (14 in)
4. Pipe Ø 150 to 180 mm
6.1.5 Securing the probe

Securing rope probes

- The end of the rope probe must be secured (fixed down) under the following conditions:
 - If the probe would otherwise temporarily come into contact with the vessel wall, the cone, internal fittings/beams or another part of the installation
 - If the probe would otherwise get closer than 0.5 m (1.6 ft) to a concrete wall.
- A female thread is provided in the probe weight to secure the end of the probe:
 - Rope 4 mm (1/6"), 316: M 14
 - Rope 6 mm (1/4"), 316: M 20
 - Rope 6 mm (1/4"), PA>steel: M14
 - Rope 8mm (1/3"), PA>steel: M20
- Far higher tensile loads occur on the probe when it is secured (fixed down). Therefore, preferably use the 6 mm (1/4") rope probe.
- When fixed down, the end of the probe must be either reliably grounded or reliably insulated. Use an insulated fastening kit if it is not otherwise possible to secure the probe with a reliably insulated connection.
- If grounded fastening is used, the search for a positive probe end echo must be activated. Otherwise, automatic probe length correction is not possible.
 Setting: **Positive EOP** option
- To prevent an extremely high tensile load (e.g. due to thermal expansion) and the risk of the rope breaking, the rope must be slack. Required sag: ≥ 10 mm/(1 m rope length) [0.12 in/(1 ft rope length)].
 Pay attention to the tensile loading capacity of rope probes.
Securing rod probes

- For WHG approval: A support is required for probe lengths ≥ 3 m (10 ft).
- In general, rod probes must be secured in the event of horizontal flow (e.g. from an agitator) or strong vibrations.
- Only secure rod probes directly at the end of the probe.

NOTICE

Poor grounding of the probe end may cause incorrect measurements.
- Use a sleeve with a narrow bore to ensure good electrical contact between the sleeve and the probe rod.

NOTICE

Welding can damage the main electronics module.
- Before welding: Ground the probe rod and remove the electronics.

Unit of measurement mm (in)

1 Probe rod, uncoated
2 Sleeve with narrow bore to ensure electrical contact between the sleeve and the rod.
3 Short metal pipe, e.g. welded in place
4 Probe rod, coated
5 Plastic sleeve, e.g. PTFE, PEEK, PPS
6 Short metal pipe, e.g. welded in place
6.1.6 Special installation situations

Concrete silos
Installation in a thick concrete ceiling, for example, should be flush with the lower edge. Alternatively, the probe can also be installed in a pipe that must not protrude over the lower edge of the silo ceiling. The pipe should be as short as possible. For installation suggestions, see the diagram below.

![Diagram showing special installation situations for concrete silos.](image)

1 Metal plate
2 Metal pipe
3 Rod extension/centering device HMP40 (see ‘Accessories’)

Installation with rod extension/centering device (accessory):
Strong dust generation can lead to build-up behind the centering disk. This can result in interference reflections. For other installation options, please contact Endress + Hauser.
Mounting from the side

- If installation from above is not possible, the device can also be mounted from the side
- Always secure the rope probe in this case
- Support the rod and coax probe if the lateral load-bearing capacity is exceeded
- Only secure rod probes at the end of the probe
Non-metal vessels

1 Non-metal vessel
2 Metal sheet or metal flange

To ensure good measurement results when mounting on non-metal vessels
- Use a device with a metal flange (minimum size DN50/2”).
- Alternatively: at the process connection, mount a metal sheet with a diameter of at least 200 mm (8 in) at a right angle to the probe.
Vessel with thermal insulation

If process temperatures are high, the device must be included in normal vessel insulation (1) in order to prevent the electronics heating up as a result of thermal radiation or convection. The insulation may not go beyond the points labeled "MAX" in the drawings.

10 Process connection with thread
1 Vessel insulation
2 Compact device
3 Sensor, remote

11 Process connection with flange - FMP57
1 Vessel insulation
2 Compact device
3 Sensor, remote
6.2 Mounting the measuring device

6.2.1 Tool list

<table>
<thead>
<tr>
<th>Tool</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF 8 mm</td>
<td></td>
</tr>
<tr>
<td>AF 36 mm</td>
<td></td>
</tr>
<tr>
<td>AF 55 mm</td>
<td></td>
</tr>
<tr>
<td>3 mm</td>
<td></td>
</tr>
<tr>
<td>6 mm</td>
<td></td>
</tr>
<tr>
<td>4 mm</td>
<td></td>
</tr>
</tbody>
</table>

- To shorten rope probes: use a saw or bolt cutters
- To shorten rod or coax probes: use a saw
- For flanges and other process connections: use an appropriate mounting tool

6.2.2 Shortening the probe

Shortening rod probes
Rod probes must be shortened if the distance to the vessel floor or outlet cone is less than 10 mm (0.4 in). To shorten, saw off the bottom end of the rod probe.

Shortening rope probes
Rope probes must be shortened if the distance to the vessel floor or outlet cone is less than 150 mm (6 in).

![Diagram of a rod probe with dimensions marked]

Rope material 316
- A: 4 mm (0.16 in)
- B: 40 mm (1.6 in)
- C: 3 mm; 5 Nm (3.69 lbf ft)
Rope material 316
- A: 6 mm (0.24 in)
- B: 70.5 mm (2.78 in)
- C: 4 mm; 15 Nm (11.06 lbf ft)

Rope material PA > steel
- A: 6 mm (0.24 in)
- B: 40 mm (1.6 in)
- C: 3 mm; 5 Nm (3.69 lbf ft)

Rope material PA > steel
- A: 8 mm (0.31 in)
- B: 70.5 mm (2.78 in)
- C: 4 mm; 15 Nm (11.06 lbf ft)

1. Using an Allen key, loosen the set screws on the rope weight. Note: The set screws have a clamping coating in order to prevent them from becoming loose accidentally. A higher torque is therefore required to loosen the screws.
2. Remove the released rope from the weight.
3. Measure off the new rope length.
4. At the point to be shortened, wrap adhesive tape around the rope to prevent it from fraying.
5. Saw off the rope at a right angle or cut it off with a bolt cutter.
6. Insert the rope completely into the weight.
7. Screw the set screws back into place. Due to the clamping coating of the set screws, it is not necessary to apply a locking compound.

Entering the new probe length
After shortening the probe:
1. Go to the Probe settings submenu and perform a probe length correction.
For documentation purposes, enter the new probe length into the quick reference guide which can be found in the electronics housing behind the display module.

6.2.3 Mounting the device

Mounting devices with a threaded connection

Screw the device with the threaded connection into a sleeve or flange and then secure it to the process vessel via the sleeve/flange.

- When screwing into place, turn by the hex bolt only:
 - Thread 3/4": ø 36 mm
 - Thread 1-1/2": ø 55 mm
- Maximum permissible tightening torque:
 - Thread 3/4": 45 Nm
 - Thread 1-1/2": 450 Nm
- Recommended torque when using the supplied aramid fiber seal and a process pressure of 40 bar (only FMP51, no seal is included with FMP54):
 - Thread 3/4": 25 Nm
 - Thread 1-1/2": 140 Nm
- When installing in metal vessels, ensure there is good metal contact between the process connection and the vessel.
Mounting devices with a flange

If a seal is used to mount the device, use uncoated metal screws to ensure good electrical contact between the process flange and the probe flange.

Mounting rope probes

NOTICE

Electrostatic discharge can damage the electronics.

- Ground the housing before lowering the rope probe into the vessel.

Pay attention to the following when introducing the rope probe into the vessel:

- Uncoil the rope slowly and lower it carefully into the vessel.
- Make sure the rope does not bend or buckle.
- Avoid uncontrolled swinging of the weight, as this could damage internal fittings in the vessel.

Mounting rope probes in a partially filled silo

If a silo is retrofitted with a Levelflex, it is not always possible to empty the silo. If the vessel is at least 2/3 empty, it is possible to mount the rope probe even in a partially filled silo. In this case, if possible perform a visual inspection after mounting: the rope should not become tangled or knotted when the silo is emptied. The probe rope must hang fully extended before an accurate measurement can be performed.

6.2.4 **Mounting the "Sensor, remote" version**

This section only applies for devices with the version "Probe design" = "Sensor, remote" (feature 600, version MB/MC/MD).

The following is included in the delivery with the version "Probe design" = "Remote":

- The probe with process connection
- The electronics housing
- The mounting bracket for mounting the electronics housing on a wall or post
- The connection cable (length as ordered). The cable has one straight plug and one plug angled at 90°. Depending on the local conditions the angled plug can be connected at the probe or at the electronics housing.
CAUTION

Mechanical stress can damage the plugs of the connection cable or cause them to become loose.

- Mount the probe and the electronics housing securely before connecting the connecting cable.
- Lay the connecting cable in such a way that it is not exposed to mechanical stress. Minimum bending radius: 100 mm (4 in).
- When connecting the cable, connect the straight plug before you connect the angled plug. Torque for the union nuts of both plugs: 6 Nm.

The probe, electronics and connection cable are mutually compatible and bear a common serial number. Only components with the same serial number may be connected to one another.

In the event of strong vibrations, a locking compound, e.g. Loctite 243, can also be used on the plug-in connectors.

Mounting the electronics housing

![Diagram showing mounting the electronics housing](image)

12 Mounting the electronics housing with the mounting bracket. Unit of measurement mm (in)

A Wall mounting
B Post mounting

Connecting the connecting cable

![Diagram showing AF 18 mm connection](image)
Connecting the connecting cable. The cable can be connected in the following ways: Unit of measurement mm (in)

A Angled plug at the probe
B Angled plug at the electronics housing
C Length of the remote cable as ordered

6.2.5 Turning the transmitter housing

To provide easier access to the connection compartment or display module, the transmitter housing can be turned:

1. Unscrew the securing screw using an open-ended wrench.
2. Rotate the housing in the desired direction.
3. Tighten the securing screw (1.5 Nm for plastic housing; 2.5 Nm for aluminum or stainless steel housing).
6.2.6 Turning the display

Opening the cover

1. Loosen the screw of the securing clamp of the electronics compartment cover using an Allen key (3 mm) and turn the clamp 90° counterclockwise.
2. Unscrew the electronics compartment cover and check the cover seal; replace it if necessary.

Turning the display module

1. Pull out the display module with a gentle rotational movement.
2. Turn the display module to the desired position: Max. 8 × 45° in each direction.
3. Feed the coiled cable into the gap between the housing and main electronics module and plug the display module into the electronics compartment until it engages.

Closing the cover of the electronics compartment

1. Screw down the cover of the electronics compartment.
2. Turn the securing clamp 90° in the clockwise direction and, using an Allen key (3 mm), tighten the screw of the securing clamp on the electronics compartment cover with 2.5 Nm.

6.3 Post-installation check

☐ Is the device undamaged (visual inspection)?
☐ Does the device comply with the measuring point specifications?
 ▪ Process temperature
 ▪ Process pressure
 ▪ Ambient temperature range
 ▪ Measuring range

☐ Are the measuring point identification and labeling correct (visual inspection)?

☐ Is the device adequately protected against precipitation and direct sunlight?

☐ Is the device adequately protected against impact?

☐ Are all mounting and safety screws securely tightened?

☐ Is the device properly secured?
7 Electrical connection

7.1 Connecting requirements

7.1.1 Terminal assignment

Terminal assignment, 2-wire: 4 to 20 mA HART

![Terminal assignment diagram]

- **A** Without integrated overvoltage protection
- **B** With integrated overvoltage protection
- **1** Connection 4 to 20 mA, HART passive: terminals 1 and 2, without integrated overvoltage protection
- **2** Connection 4 to 20 mA, HART passive: terminals 1 and 2, with integrated overvoltage protection
- **3** Terminal for cable shield

Block diagram, 2-wire: 4 to 20 mA HART

![Block diagram diagram]

- **1** Active barrier for power supply (e.g., RN221N); observe terminal voltage
- **2** Resistor for HART communication (≥ 250 Ω); observe maximum load
- **3** Connection for Commubox FXA195 or FieldXpert SFX350/SFX370 (via VIATOR Bluetooth modem)
- **4** Analog display unit; observe maximum load
- **5** Cable screen; observe cable specification
- **6** Measuring device
Terminal assignment, 2-wire: 4 to 20 mA HART, switch output

[Diagram]

16 Terminal assignment, 2-wire: 4 to 20 mA HART, switch output
A Without integrated overvoltage protection
B With integrated overvoltage protection
1 Connection 4 to 20 mA, HART passive: terminals 1 and 2, without integrated overvoltage protection
2 Connection, switch output (open collector): terminals 3 and 4, without integrated overvoltage protection
3 Connection, switch output (open collector): terminals 3 and 4, with integrated overvoltage protection
4 Connection 4 to 20 mA, HART passive: terminals 1 and 2, with integrated overvoltage protection
5 Terminal for cable shield

Block diagram, 2-wire: 4 to 20 mA HART, switch output

[Diagram]

17 Block diagram, 2-wire: 4 to 20 mA HART, switch output
1 Active barrier for power supply (e.g. RN221N); observe terminal voltage
2 Resistor for HART communication (≥ 250 Ω); observe maximum load
3 Connection for Commubox FXA195 or FieldXpert SFX350/SFX370 (via VIATOR Bluetooth modem)
4 Analog display unit; observe maximum load
5 Cable screen; observe cable specification
6 Measuring device
7 Switch output (open collector)

Terminal assignment, 2-wire: 4 to 20 mA HART, 4 to 20 mA

[Diagram]

18 Terminal assignment, 2-wire: 4 to 20 mA HART, 4 to 20 mA
A Without integrated overvoltage protection
B With integrated overvoltage protection
1 Connection current output 1, 4 to 20 mA HART passive: terminals 1 and 2, without integrated overvoltage protection
2 Connection current output 2, 4 to 20 mA: terminals 3 and 4, without integrated overvoltage protection
3 Connection current output 2, 4 to 20 mA: terminals 3 and 4, with integrated overvoltage protection
4 Connection current output 1, 4 to 20 mA HART passive: terminals 1 and 2, with integrated overvoltage protection
5 Terminal for cable shield
Levelflex FMP56, FMP57 HART

Electrical connection

Block diagram, 2-wire: 4 to 20 mA HART, 4 to 20 mA

1. Active barrier for power supply (e.g. RN221N), current output 1; observe terminal voltage
2. Resistor for HART communication (≥ 250 Ω); observe maximum load
3. Connection for Commubox FXA195 or FieldXpert SFX350/SFX370 (via VIATOR Bluetooth modem)
4. Analog display unit; observe maximum load
5. Cable screen; observe cable specification
6. Measuring device
7. Analog display unit; observe maximum load
8. Active barrier for power supply (e.g. RN221N), current output 2; observe terminal voltage

Terminal assignment, 4-wire: 4 to 20 mA HART (10.4 to 48 V_{DC})

1. Connection 4 to 20 mA HART (active): terminals 3 and 4
2. Connection, supply voltage: terminals 1 and 2
3. Terminal for cable shield

Block diagram, 4-wire: 4 to 20 mA HART (10.4 to 48 V_{DC})

1. Evaluation unit, e.g. PLC
2. Resistor for HART communication (≥ 250 Ω); observe maximum load
3. Connection for Commubox FXA195 or FieldXpert SFX350/SFX370 (via VIATOR Bluetooth modem)
4. Analog display unit; observe maximum load
5. Cable screen; observe cable specification
6. Measuring device
7. Supply voltage; observe terminal voltage, observe cable specification
Terminal assignment, 4-wire: 4 to 20 mA HART (90 to 253 V\textsubscript{AC})

1	Connection 4 to 20 mA HART (active): terminals 3 and 4
2	Connection, supply voltage: terminals 1 and 2
3	Terminal for cable shield

CAUTION

To ensure electrical safety:

- Do not disconnect the protective ground connection.
- Disconnect the device from the supply voltage before disconnecting the protective ground.

- Connect protective ground to the inner ground terminal (3) before connecting the supply voltage. If necessary, connect the potential matching line to the outer ground terminal.

- In order to ensure electromagnetic compatibility (EMC): do **not** ground the device exclusively via the protective ground conductor of the supply cable. Instead, the functional grounding must also be connected to the process connection (flange or threaded connection) or to the external ground terminal.

- An easily accessible power switch must be installed in the proximity of the device. The power switch must be marked as a disconnector for the device (IEC/EN61010).

Block diagram, 4-wire: 4 to 20 mA HART (90 to 253 V\textsubscript{AC})

1	Evaluation unit, e.g. PLC
2	Resistor for HART communication (≥ 250 Ω); observe maximum load
3	Connection for Commubox FXA195 or FieldXpert SFX350/SFX370 (via VIATOR Bluetooth modem)
4	Analog display unit; observe maximum load
5	Cable screen; observe cable specification
6	Measuring device
7	Supply voltage; observe terminal voltage, observe cable specification
Connection examples for the switch output

For HART devices, the switch output is available as an option.

![Connection of a relay](image1.png)

For optimum interference immunity we recommend to connect an external resistor (internal resistance of the relay or pull-up resistor) of < 1000 Ω.

7.1.2 Cable specification

- **Devices without integrated overvoltage protection**
 Pluggable spring-force terminals for wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG)

- **Devices with integrated overvoltage protection**
 Screw terminals for wire cross-sections 0.2 to 2.5 mm² (24 to 14 AWG)

- For ambient temperature $T_U \geq 60 \, ^\circ C$ (140 °F): use cable for temperature $T_U + 20 \, K$.

HART

- A normal device cable suffices if only the analog signal is used.
- A shielded cable is recommended if using the HART protocol. Observe grounding concept of the plant.
- For 4-wire devices: Standard device cable is sufficient for the power line.

7.1.3 Device plug

In the case of the device versions with a plug, the housing does not need to be opened to connect the signal cable.
Pin assignment of M12 plug

1. Signal +
2. Not assigned
3. Signal -
4. Ground

Pin assignment of 7/8" plug

1. Signal -
2. Signal +
3. Not assigned
4. Shielding
7.1.4 Supply voltage

2-wire; 4-20mA HART, passive

2-wire; 4-20mA HART\(^1\)

| Feature 020 in the product structure: option A |
| Feature 010 in the product structure |
| At ambient temperatures \(T_a \leq -30 \, ^\circ C \), a terminal voltage \(U \geq 14 \, V \) is required to start the device with the minimum failure current (3.6 mA). At ambient temperatures \(T_a > 60 \, ^\circ C \), a terminal voltage \(U \geq 12 \, V \) is required to start the device with the minimum failure current (3.6 mA). The start-up current can be configured. If the device is operated with a fixed current \(I \geq 4.5 \, mA \) (HART Multidrop mode), a voltage \(U \geq 11.5 \, V \) in the entire ambient temperature range suffices.

| If the Bluetooth module is used, the minimum supply voltage increases by 2 V. |
| At ambient temperatures \(T_a < -30 \, ^\circ C \), a terminal voltage \(U \geq 16 \, V \) is required to start the device with the minimum failure current (3.6 mA). |
Electrical connection

Levelflex FMP56, FMP57 HART

2-wire; 4-20 mA HART, switch output

<table>
<thead>
<tr>
<th>"Approval" 2)</th>
<th>Terminal voltage U at device</th>
<th>Maximum load R, depending on the supply voltage U_0 of the power supply unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Non-hazardous</td>
<td>13.5 to 35 V 3) 4)</td>
<td></td>
</tr>
<tr>
<td>• Ex nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ex ia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ex ic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ex d</td>
<td>ia</td>
<td>/ XP</td>
</tr>
<tr>
<td>• Ex ta / DIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• CSA GP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ex ia / IS</td>
<td>13.5 to 30 V 3) 4)</td>
<td></td>
</tr>
<tr>
<td>• Ex ia + Ex d</td>
<td>ia</td>
<td>/ IS + XP</td>
</tr>
</tbody>
</table>

1) Feature 020 in the product structure: option B
2) Feature 010 in the product structure
3) At ambient temperatures $T_a \leq -30 \, ^\circ C$, a terminal voltage $U \geq 16 \, V$ is required to start the device with the minimum failure current (3.6 mA).
4) If the Bluetooth module is used, the minimum supply voltage increases by 2 V.

2-wire; 4-20 mA HART, 4-20 mA

<table>
<thead>
<tr>
<th>"Approval" 2)</th>
<th>Terminal voltage U at device</th>
<th>Maximum load R, depending on the supply voltage U_0 of the power supply unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Channel 1: 13.5 to 30 V 3) 4) 5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Channel 2: 12 to 30 V</td>
<td></td>
</tr>
</tbody>
</table>

1) Feature 020 in the product structure: option C
2) Feature 010 in the product structure
3) At ambient temperatures $T_a \leq -30 \, ^\circ C$, a terminal voltage $U \geq 16 \, V$ is required to start the device with the minimum failure current (3.6 mA).
4) At ambient temperatures $T_a \leq -40 \, ^\circ C$, the maximum terminal voltage must be limited to $U \leq 28 \, V$.
5) If the Bluetooth module is used, the minimum supply voltage increases by 2 V.
Electrical connection

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated polarity reversal protection</td>
<td>Yes</td>
</tr>
<tr>
<td>Permitted residual ripple with $f = 0$ to 100 Hz</td>
<td>$U_{ss} < 1 \text{ V}$</td>
</tr>
<tr>
<td>Permitted residual ripple with $f = 100$ to 10000 Hz</td>
<td>$U_{ss} < 10 \text{ mV}$</td>
</tr>
</tbody>
</table>
4-wire, 4-20mA HART, active

<table>
<thead>
<tr>
<th>"Power supply; output" 1)</th>
<th>Terminal voltage U</th>
<th>Maximum load R\text{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>K: 4-wire 90-253 V\text{AC}; 4-20mA HART</td>
<td>90 to 253 V\text{AC} (50 to 60 Hz), overvoltage category II</td>
<td>500 Ω</td>
</tr>
<tr>
<td>L: 4-wire 10.4-48 V\text{DC}; 4-20mA HART</td>
<td>10.4 to 48 V\text{DC}</td>
<td></td>
</tr>
</tbody>
</table>

1) Feature 020 in the product structure

7.1.5 Overvoltage protection

If the measuring device is used for level measurement in flammable liquids which requires the use of overvoltage protection according to DIN EN 60079-14, standard for test procedures 60060-1 (10 kA, pulse 8/20 μs), an overvoltage protection module has to be installed.

Integrated overvoltage protection module

An integrated overvoltage protection module is available for 2-wire HART as well as PROFIBUS PA and FOUNDATION Fieldbus devices.

Product structure: Feature 610 "Accessory mounted", option NA "Overvoltage protection".

<table>
<thead>
<tr>
<th>Technical data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance per channel</td>
<td>$2 \times 0.5 \Omega \text{ max.}$</td>
</tr>
<tr>
<td>Threshold DC voltage</td>
<td>400 to 700 V</td>
</tr>
<tr>
<td>Threshold impulse voltage</td>
<td>$< 800 \text{ V}$</td>
</tr>
<tr>
<td>Capacitance at 1 MHz</td>
<td>$< 1.5 \text{ pF}$</td>
</tr>
<tr>
<td>Nominal arrest impulse voltage (8/20 μs)</td>
<td>10 kA</td>
</tr>
</tbody>
</table>

External overvoltage protection module

HAW562 or HAW569 from Endress+Hauser are suited as external overvoltage protection.

For detailed information please refer to the following documents:
- HAW562: TI01012K
- HAW569: TI01013K

7.2 Connecting the device

WARNING

Explosion Hazard!
- Observe applicable national standards.
- Comply with the specifications in the Safety Instructions (XA).
- Use specified cable glands only.
- Check to ensure that the power supply matches the information on the nameplate.
- Switch off the power supply before connecting the device.
- Connect the potential matching line to the outer ground terminal before applying the power supply.

Required tools/accessories:
- For devices with a cover lock: Allen key AF3
- Wire stripper
- When using stranded cables: One ferrule for every wire to be connected.
7.2.1 Opening cover

1. Loosen the screw of the securing clamp of the connection compartment cover using an Allen key (3 mm) and turn the clamp 90° counterclockwise.
2. Unscrew the connection compartment cover and check the cover seal; replace it if necessary.

7.2.2 Connecting

1. Push the cable through the cable entry. To ensure tight sealing, do not remove the sealing ring from the cable entry.
2. Remove the cable sheath.
3. Strip the cable ends 10 mm (0.4 in). In the case of stranded cables, also fit wire end ferrules.
4. Firmly tighten the cable glands.
5. Connect the cable according to the terminal assignment.
6. If using shielded cables: Connect the cable shield to the ground terminal.

7.2.3 Plug-in spring-force terminals

The electrical connection of device versions without an integrated overvoltage protection is via plug-in spring-force terminals. Rigid conductors or flexible conductors with ferrules can be inserted directly into the terminal without using the lever, and create a contact automatically.
To remove the cable from the terminal again:

1. Using a flat-blade screwdriver ≤ 3 mm, press down on the slot between the two terminal holes
2. Simultaneously pull the cable end out of the terminal.

7.2.4 Closing the cover of the connection compartment

1. Screw down the cover of the connection compartment.
2. Turn the securing clamp 90 ° in the clockwise direction and, using an Allen key (3 mm), tighten the screw of the securing clamp on the connection compartment cover with 2.5 Nm.

7.3 Post-connection check

- Is the device or cable undamaged (visual inspection)?
- Do the cables used comply with the requirements?
- Do the mounted cables have adequate strain relief?
- Are all the cable glands installed, firmly tightened and leak-tight?
- Does the supply voltage match the specifications on the nameplate?
- Is the terminal assignment correct?
- If necessary, has a protective ground connection been established?
- If supply voltage is present, is the device ready for operation and do values appear on the display module?
- Are all the housing covers installed and tightened?
- Is the securing clamp firmly tightened?
8 Operation methods

8.1 Overview

8.1.1 Local operation

<table>
<thead>
<tr>
<th>Operation with</th>
<th>Pushbuttons</th>
<th>Touch Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order code for "Display; Operation"</td>
<td>Option C SD02"</td>
<td>Option E SD03"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display elements</th>
<th>4-line display</th>
<th>4-line display white background lighting; switches to red in event of device error</th>
</tr>
</thead>
</table>

Format for displaying measured variables and status variables can be individually configured.

Permitted ambient temperature for the display: –20 to +70 °C (–4 to +158 °F)

The readability of the display may be impaired at temperatures outside the temperature range.

<table>
<thead>
<tr>
<th>Operating elements</th>
<th>local operation with 3 push buttons (, , )</th>
<th>external operation via touch control; 3 optical keys: , , </th>
</tr>
</thead>
</table>

Operating elements also accessible in various hazardous areas.

<table>
<thead>
<tr>
<th>Additional functionality</th>
<th>Data backup function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The device configuration can be saved in the display module.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Data comparison function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The device configuration saved in the display module can be compared to the current device configuration.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Data transfer function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The transmitter configuration can be transmitted to another device using the display module.</td>
</tr>
</tbody>
</table>
8.1.2 Operation with remote display and operating module FHX50

1 Display and operating module SD03, optical keys; can be operated through the glass of the cover
2 Display and operating module SD02, push buttons; cover must be removed
8.1.3 Operation via Bluetooth® wireless technology

Requirements

![Diagram](image)

- **Device with Bluetooth module**
 1. Electronics housing of the device
 2. Bluetooth module

This operation option is only available for devices with Bluetooth module. There are the following options:

- The device has been ordered with a Bluetooth module:
 Feature 610 "Accessory Mounted", option NF "Bluetooth"
- The Bluetooth module has been ordered as an accessory (ordering number: 71377355) and has been mounted. See Special Documentation SD02252F.

Operation via SmartBlue (app)

![Diagram](image)

- **Operation via SmartBlue (app)**
 1. Transmitter power supply unit
 2. Smartphone / tablet with SmartBlue (app)
 3. Transmitter with Bluetooth module
8.1.4 Remote operation

Via HART protocol

![Diagram of remote operation via HART protocol]

- 1. PLC (programmable logic controller)
- 2. Transmitter power supply unit, e.g., RN42
- 3. Connection for Commubox FXA195 and AMS Trex™ device communicator
- 4. AMS Trex™ device communicator
- 5. Computer with operating tool (e.g., DeviceCare/FieldCare, AMS Device View, SIMATIC PDM)
- 6. Commubox FXA195 (USB)
- 7. Field Xpert SMT70
- 8. Bluetooth modem with connecting cable (e.g., VIATOR)
- 9. Transmitter

Via service interface (CDI)

![Diagram of service interface (CDI)]

1. Computer with FieldCare/DeviceCare operating tool
2. Commubox FXA291
3. Service interface (CDI) of the measuring device (= Endress+Hauser Common Data Interface)
8.2 Structure and function of the operating menu

8.2.1 Structure of the operating menu

<table>
<thead>
<tr>
<th>Menu</th>
<th>Submenu / parameter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td></td>
<td>Defines the operating language of the local display</td>
</tr>
<tr>
<td>Commissioning</td>
<td></td>
<td>Launches the interactive wizard for guided commissioning. Additional settings generally do not need to be made in the other menus when the wizard is finished.</td>
</tr>
<tr>
<td>Setup</td>
<td>Parameter 1</td>
<td>Once values have been set for these parameters, the measurement should generally be completely configured.</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parameter N</td>
<td></td>
</tr>
</tbody>
</table>
| | **Advanced setup** | Contains additional submenus and parameters:
 - For more customized configuration of the measurement (adaptation to special measuring conditions).
 - For converting the measured value (scaling, linearization).
 - For scaling the output signal. |
| **Diagnostics** | **Diagnostic list** | Contains up to 5 currently active error messages. |
| | **Event logbook** | Contains the last 20 messages (which are no longer active). |
| | **Device information** | Contains information for identifying the device. |
| | **Measured values** | Contains all current measured values. |
| | **Data logging** | Contains the history of the individual measuring values. |
| | **Simulation** | Is used to simulate measured values or output values. |
| | **Device check** | Contains all parameters needed to check the measurement capability of the device. |
| | **Heartbeat** | Contains all the wizards for the Heartbeat Verification and Heartbeat Monitoring application packages. |
| **Expert** | | Contains all the parameters of the device (including those that are already contained in one of the other menus). This menu is organized according to the function blocks of the device. The parameters of the Expert menu are described in: GP01000F (HART) |
| **System** | | Contains all higher-level device parameters that do not pertain either to the measurement or to measured value communication. |
| **Sensor** | | Contains all parameters needed to configure the measurement. |
| **Output** | | - Contains all parameters needed to configure the analog current output.
 - Contains all parameters needed to configure the switch output (PFS). |
Operation methods

Levelflex FMP56, FMP57 HART

<table>
<thead>
<tr>
<th>Menu</th>
<th>Submenu / parameter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Communication</td>
<td>Contains all parameters needed to configure the digital communication interface.</td>
</tr>
<tr>
<td></td>
<td>Diagnostics</td>
<td>Contains all parameters needed to detect and analyze operational errors.</td>
</tr>
</tbody>
</table>

1) If you are operating via operating tools (e.g. FieldCare), the “Language” parameter is located under “Setup → Advanced setup → Display”
2) Only if operating via an FDT/DTM system
3) Only available if operating via the local display
4) Only available if operating via DeviceCare or FieldCare
5) When you call up the “Expert” menu, you are always asked for an access code. If a customer-specific access code has not been defined, “0000” must be entered.
8.2.2 User roles and related access authorization

The two user roles Operator and Maintenance have different write access to the parameters if a device-specific access code has been defined. This protects the device configuration via the local display from unauthorized access.

Access authorization to parameters

<table>
<thead>
<tr>
<th>User role</th>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without access code (from the factory)</td>
<td>With access code</td>
</tr>
<tr>
<td>Operator</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Maintenance</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

If an incorrect access code is entered, the user obtains the access rights of the Operator role.

The user role with which the user is currently logged on is indicated by the Access status display parameter (for display operation) or Access status tooling parameter (for tool operation).

8.2.3 Data access - Security

Write protection via access code

Using the device-specific access code, the parameters for the measuring device configuration are write-protected and their values can no longer be changed via local operation.

Define access code via local display

1. Navigate to: Setup → Advanced setup → Administration → Define access code → Define access code
2. Define a max. 4-digit numeric code as an access code.
3. Repeat the numeric code in the Confirm access code parameter to confirm it.
 ▶️ The -symbol appears in front of all write-protected parameters.

Define access code via operating tool (e.g. FieldCare)

1. Navigate to: Setup → Advanced setup → Administration → Define access code
2. Define a max. 4-digit numeric code as an access code.
 ▶️ Write protection is active.

Parameters that can always be changed

The write protection does not include certain parameters that do not affect the measurement. Despite the defined access code, these parameters can always be modified even if the other parameters are locked.

The device automatically locks the write-protected parameters again if a key is not pressed for 10 minutes in the navigation and editing view. If the user goes from the navigation and editing mode back to the measured value display mode, the device automatically locks the write-protected parameters after 60 s.

- If write access is activated via an access code, it can only be deactivated again via this access code ➔ 58.
- In the 'Description of Device Parameters' documents, each write-protected parameter is identified with the -symbol.
Disabling write protection via access code
If the ☑ symbol appears in front of a parameter on the local display, the parameter is write-protected by a device-specific access code and its value cannot currently be changed via the local display → ☑ 57.

The locking of the write access via local operation can be disabled by entering the device-specific access code.

1. After you press ☑, the input prompt for the access code appears.
2. Enter the access code.
 ▲ The ☑-symbol in front of the parameters disappears; all previously write-protected parameters are now re-enabled.

Deactivation of the write protection via access code
Via local display
1. Navigate to: Setup → Advanced setup → Administration → Define access code → Define access code
2. Enter 0000.
3. Repeat 0000 in the Confirm access code parameter to confirm.
 ▲ The write protection is deactivated. Parameters can be changed without entering an access code.

Via an operating tool (e.g. FieldCare)
1. Navigate to: Setup → Advanced setup → Administration → Define access code
2. Enter 0000.
 ▲ The write protection is deactivated. Parameters can be changed without entering an access code.

Write protection via write protection switch
Unlike parameter write protection via a user-specific access code, this allows the user to lock write access to the entire operating menu - apart from the "Contrast display" parameter.

The parameter values are now read only and cannot be edited any more (exception "Contrast display" parameter):
- Via local display
- Via service interface (CDI)
- Via HART protocol
1. Loosen the securing clamp.
2. Unscrew the electronics compartment cover.
3. Pull out the display module with a gentle rotational movement. To make it easier to access the write protection switch, attach the display module to the edge of the electronics compartment.
4. Setting the write protection switch (WP) on the main electronics module to the **ON** position enables hardware write protection. Setting the write protection switch (WP) on the main electronics module to the **OFF** position (factory setting) disables hardware write protection.

If hardware write protection is enabled, the **Hardware locked** option is displayed in the **Locking status** parameter. In addition, on the local display the 🗝️ symbol appears in front of the parameters in the header of the operational display and in the navigation view.

If hardware write protection is disabled, no option is displayed in the **Locking status** parameter. On the local display, the 🗝️ symbol disappears from in front of the parameters in the header of the operational display and in the navigation view.

5. Feed the cable into the gap between the housing and main electronics module and plug the display module into the electronics compartment in the desired direction until it engages.

6. Reverse the removal procedure to reassemble the transmitter.
Enabling and disabling the keypad lock
Access to the entire operating menu via local operation can be locked via the keypad lock. When access is locked, it is no longer possible to navigate through the operating menu or change the values of individual parameters. Users can only read the measured values on the operational display.

The keypad lock is switched on and off via a context menu.

Switching on the keypad lock

1 SD03 display module only
The keypad lock is switched on automatically:
• If the device has not been operated via the display for > 1 minute.
• Each time the device is restarted.

To activate the keylock manually:
1. The device is in the measured value display.
 Press \[\text{Home} \] for at least 2 seconds.
 \[\text{Home} \] A context menu appears.
2. In the context menu select the Keylock on option.
 \[\text{Home} \] The keypad lock is switched on.

If the user attempts to access the operating menu while the keypad lock is active, the message Keylock on appears.

Switching off the keypad lock

1. The keypad lock is switched on.
 Press \[\text{Home} \] for at least 2 seconds.
 \[\text{Home} \] A context menu appears.
2. In the context menu select the Keylock off option.
 \[\text{Home} \] The keypad lock is switched off.

Bluetooth® wireless technology
Signal transmission via Bluetooth® wireless technology uses a cryptographic technique tested by the Fraunhofer Institute
• The device is not visible via Bluetooth® wireless technology without the SmartBlue app
• Only one point-to-point connection between one sensor and one smartphone or tablet is established
8.3 Display and operating module

8.3.1 Display

1. Measured value display (1 value max. size)
1.1 Header containing tag and error symbol (if an error is active)
1.2 Measured value symbols
1.3 Measured value
1.4 Unit
2. Measured value display (bar graph + 1 value)
2.1 Bargraph for measured value 1
2.2 Measured value 1 (including unit)
2.3 Measured value symbols for measured value 1
2.4 Measured value 2
2.5 Unit for measured value 2
2.6 Measured value symbols for measured value 2
3. Parameter display (here: parameter with picklist)
3.1 Header containing parameter name and error symbol (if an error is active)
3.2 Picklist; \(\text{☐}\) marks the current parameter value.
4. Input matrix for numbers
5. Input matrix for alphanumeric and special characters
Display symbols for the submenus

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| ![Symbol] | Display/operat.
Is displayed:
• In the main menu next to the "Display/operat." selection
• In the header on the left in the 'Display/operat.' menu |
| ![Symbol] | Setup
Is displayed:
• In the main menu next to the 'Setup' selection
• In the header on the left in the 'Setup' menu |
| ![Symbol] | Expert
Is displayed:
• In the main menu next to the 'Expert' selection
• In the header on the left in the 'Expert' menu |
| ![Symbol] | Diagnostics
Is displayed:
• In the main menu next to the 'Diagnostics' selection
• In the header on the left in the 'Diagnostics' menu |

Status signals

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| ![Symbol] | "Failure"
A device error has occurred. The measured value is no longer valid. |
| ![Symbol] | "Function check"
The device is in the service mode (e.g. during a simulation). |
| ![Symbol] | "Out of specification"
The device is operated:
• Outside of its technical specifications (e.g. during startup or a cleaning)
• Outside of the configuration performed by the user (e.g. level outside the configured range) |
| ![Symbol] | "Maintenance required"
Maintenance is required. The measured value is still valid. |

Display symbols for locking status

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| ![Symbol] | Read-only parameter
The parameter shown is only for display purposes and cannot be edited. |
| ![Symbol] | Device locked
• In front of a parameter name: The device is locked via software and/or hardware.
• In the header of the measured value screen: The device is locked via hardware. |
Measured value symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level</td>
</tr>
<tr>
<td></td>
<td>Distance</td>
</tr>
<tr>
<td></td>
<td>Current output</td>
</tr>
<tr>
<td></td>
<td>Measured current</td>
</tr>
<tr>
<td></td>
<td>Terminal voltage</td>
</tr>
<tr>
<td></td>
<td>Electronics or sensor temperature</td>
</tr>
</tbody>
</table>

Measuring channels

1. Measuring channel 1
 ![Measuring channel 1](image) A0032897
2. Measuring channel 2
 ![Measuring channel 2](image) A0032898

Status of the measured value

- **“Alarm” status**
 ![Alarm](image) A0018361
 The measurement is interrupted. The output assumes the defined alarm condition. A diagnostic message is generated.

- **“Warning” status**
 ![Warning](image) A0018360
 The device continues to measure. A diagnostic message is generated.
8.3.2 Operating elements

<table>
<thead>
<tr>
<th>Key</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| ![Minus key](image) A010813 | **Minus key**
In a menu, submenu
Moves the selection bar upwards in a picklist.
In the text and numeric editor
In the input mask, moves the selection bar to the left (backwards). |
| ![Plus key](image) A010829 | **Plus key**
In a menu, submenu
Moves the selection bar downwards in a picklist.
In the text and numeric editor
In the input mask, moves the selection bar to the right (forwards). |
| ![Enter key](image) A010828 | **Enter key**
For measured value display
- Pressing the key briefly opens the operating menu.
- Pressing the key for 2 s opens the context menu.
In a menu, submenu
- Pressing the key briefly:
 - Opens the selected menu, submenu or parameter.
 - Pressing the key for 2 s in a parameter:
 - If present, opens the help text for the function of the parameter.
In the text and numeric editor
- Pressing the key briefly:
 - Opens the selected group.
 - Carries out the selected action.
- Pressing the key for 2 s confirms the edited parameter value. |
| ![Escape key combination](image) A010839 | **Escape key combination (press keys simultaneously)**
In a menu, submenu
- Pressing the key briefly:
 - Exits the current menu level and takes you to the next higher level.
 - If help text is open, closes the help text of the parameter.
- Pressing the key for 2 s returns you to the measured value display (‘home position’).
In the text and numeric editor
Closes the text or numeric editor without applying changes. |
| ![Minus/Enter key combination](image) A010838 | **Minus/Enter key combination (press and hold down the keys simultaneously)**
Reduces the contrast (brighter setting). |
| ![Plus/Enter key combination](image) A010837 | **Plus/Enter key combination (press and hold down the keys simultaneously)**
Increases the contrast (darker setting). |
8.3.3 Entering numbers and text

<table>
<thead>
<tr>
<th>Numeric editor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
<td>Meaning</td>
</tr>
<tr>
<td>0</td>
<td>Selection of numbers from 0 to 9.</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>Inserts decimal separator at the cursor position.</td>
</tr>
<tr>
<td>–</td>
<td>Inserts minus sign at the cursor position.</td>
</tr>
<tr>
<td>✓</td>
<td>Confirms selection.</td>
</tr>
<tr>
<td>←</td>
<td>Moves the input position one position to the left.</td>
</tr>
<tr>
<td>x</td>
<td>Exits the input without applying the changes.</td>
</tr>
<tr>
<td>C</td>
<td>Clears all entered characters.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text editor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
<td>Meaning</td>
</tr>
<tr>
<td>ABC_</td>
<td>Selection of letters from A to Z</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>XYZ</td>
<td></td>
</tr>
</tbody>
</table>

Input mask

The following input and operating symbols are available in the input mask of the numeric and text editor:

Numeric editor

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Selection of numbers from 0 to 9.</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>Inserts decimal separator at the cursor position.</td>
</tr>
<tr>
<td>–</td>
<td>Inserts minus sign at the cursor position.</td>
</tr>
<tr>
<td>✓</td>
<td>Confirms selection.</td>
</tr>
<tr>
<td>←</td>
<td>Moves the input position one position to the left.</td>
</tr>
<tr>
<td>x</td>
<td>Exits the input without applying the changes.</td>
</tr>
<tr>
<td>C</td>
<td>Clears all entered characters.</td>
</tr>
</tbody>
</table>

Text editor

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC_</td>
<td>Selection of letters from A to Z</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>XYZ</td>
<td></td>
</tr>
</tbody>
</table>
8.3.4 Opening the context menu

Using the context menu, the user can call up the following menus quickly and directly from the operational display:

- Setup
- Conf. backup disp.
- Envelope curve
- Keylock on

Calling up and closing the context menu

The user is in the operational display.

1. Press \(\mathbb{E}\) for 2 s.
 \(\Rightarrow\) The context menu opens.

2. Press \(\mathbb{F} + \mathbb{G}\) simultaneously.
 \(\Rightarrow\) The context menu is closed and the operational display appears.

Calling up the menu via the context menu

1. Open the context menu.
2. Press \(\mathbb{F}\) to navigate to the desired menu.
3. Press ‹ to confirm the selection.
 ➩ The selected menu opens.
8.3.5 Envelope curve display on the display and operating module

In order to assess the measuring signal, the envelope curve and - if a mapping has been recorded - the mapping curve can be shown on the display and operating module:

![Envelope curve display diagram](image-url)
9 Device integration via the HART protocol

9.1 Overview of the Device Description files (DD)

HART

<table>
<thead>
<tr>
<th>Manufacturer ID</th>
<th>0x11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device type</td>
<td>0x1122</td>
</tr>
<tr>
<td>HART specification</td>
<td>7.0</td>
</tr>
<tr>
<td>DD files</td>
<td>For information and files see:</td>
</tr>
<tr>
<td></td>
<td>• www.endress.com</td>
</tr>
<tr>
<td></td>
<td>• www.fieldcommggroup.org</td>
</tr>
</tbody>
</table>

9.2 HART device variables and measuring values

On delivery the following measuring values are assigned to the HART device variables:

Device variables for level measurements

<table>
<thead>
<tr>
<th>Device variable</th>
<th>Measuring value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary variable (PV)</td>
<td>Level linearized</td>
</tr>
<tr>
<td>Secondary variable (SV)</td>
<td>Unfiltered distance</td>
</tr>
<tr>
<td>Tertiary variable (TV)</td>
<td>Absolute echo amplitude</td>
</tr>
<tr>
<td>Quaternary variable (QV)</td>
<td>Relative echo amplitude</td>
</tr>
</tbody>
</table>

The allocation of the measuring values to the device variables can be changed in the following submenu:

Expert → Communication → Output
10 Commissioning via SmartBlue (App)

10.1 Prerequisites

System requirements
The SmartBlue app is available for download for use with a smartphone or tablet.
- iOS devices: iPhone 5S or higher from iOS11; iPad 5th generation or higher from iOS11; iPod Touch 6th generation or higher from iOS11
- Devices with Android: from Android 6.0 and Bluetooth® 4.0

Initial password
The serial number of the device serves as the initial password when the connection is established for the first time.

Note the following if the Bluetooth module is removed from one device and installed in another device: the password that is changed by the user is only saved in the Bluetooth module and not in the device itself.

10.2 SmartBlue App

1. Scan the QR code or enter “SmartBlue” in the search field of the App Store.

2. Start SmartBlue.

3. Select device from livelist displayed.

4. Enter the login data:
 - User name: admin
 - Password: serial number of the device

5. Tap the icons for more information.

After logging in for the first time, change the password!

10.3 Envelope curve display in SmartBlue

Envelope curves can be displayed and recorded in SmartBlue.

In addition to the envelope curve, the following values are displayed:
- D = Distance
- L = Level
- A = Absolute amplitude
- With screenshots, the displayed section (zoom function) is saved
- With video sequences, the whole area without zoom function is saved all the time
36 Envelope curve display (sample) in SmartBlue for Android

1. Record video
2. Create screenshot
3. Display mapping menu
4. Start/stop video recording
5. Move time on time axis

37 Envelope curve display (sample) in SmartBlue for iOS

1. Record video
2. Create screenshot
3. Display mapping menu
4. Start/stop video recording
5. Move time on time axis
11 Commissioning using the Commissioning Wizard

A Wizard is provided in FieldCare and DeviceCare ¹ that guides the user through the initial commissioning process.

1. Connect the device with FieldCare or DeviceCare.
2. Open the device in FieldCare or DeviceCare.
 - The dashboard (homepage) of the device is displayed:

 ![Dashboard Image]

 1 'Commissioning' button calls up the wizard

3. Click "Commissioning" to launch the Wizard.
4. Enter the appropriate value in each parameter or select the appropriate option. These values are written directly to the device.
5. Click "Next" to go to the next page.
6. Once all the pages have been completed, click 'Finish' to close the Wizard.

If you cancel the Wizard before all the necessary parameters have been entered, the device may be in an undefined state. In such situations, it is advisable to reset the device to the factory default settings.

¹) DeviceCare is available for download at www.software-products.endress.com. To download the software, it is necessary to register in the Endress +Hauser software portal.
12 Commissioning via operating menu

12.1 Function check
Before commissioning your measuring point, ensure that the post-installation and post-connection checks have been performed:

12.2 Setting the operating language
Factory setting: English or ordered local language

38 Taking the example of the local display
12.3 Configuring level measurement

![Diagram of level measurement setup]

- **LN** Probe length
- **R** Reference point of measurement
- **D** Distance
- **L** Level
- **E** Empty calibration (= zero point)
- **F** Full calibration (= span)

If the εₚ value is lower than 7 in the case of rope probes, measurement is not possible in the area of the tensioning weight. The empty calibration E should not exceed LN - 250 mm (LN - 10 in) in these cases.

1. **Setup → Device tag**
 - Enter device tag.
2. **Navigate to: Setup → Distance unit**
 - Select the distance unit.
3. **Navigate to: Setup → Bin type**
 - Select bin type.
4. **Navigate to: Setup → Empty calibration**
 - Specify the empty distance E (distance from reference point R to 0% mark).
5. **Navigate to: Setup → Full calibration**
 - Specify the full distance F (distance from the 0% mark to the 100% mark).
6. **Navigate to: Setup → Level**
 - Displays the measured level L.
7. **Navigate to: Setup → Distance**
 - Displays the distance D between the reference point R and the level L.
8. **Navigate to: Setup → Signal quality**
 - Displays the signal quality of the analyzed level echo.
9. **Operation via local display:**
 - Navigate to: Setup → Mapping → Confirm distance
 - Compare the distance displayed with the actual value to start recording an interference echo map (where applicable).
Operation via operating tool:

Navigate to: Setup → Confirm distance

Compare the distance displayed with the actual value to start recording an interference echo map (where applicable).
12.4 Recording the reference envelope curve

After the measurement has been configured, it is recommended to record the current envelope curve as a reference envelope curve. This can then be used later for diagnostic purposes. The **Save reference curve** parameter is used to record the envelope curve.

Path in the menu
Expert → Diagnostics → Envelope diagnostics → Save reference curve

Meaning of the options
- No
 No action
- Yes
 The current envelope curve is saved as a reference curve.

This submenu is only visible for the "Service" user role in devices supplied with software version 01.00.zz or 01.01.zz.

The reference envelope curve can only be displayed in the envelope curve diagram of FieldCare after it has been loaded from the device into FieldCare. The "Load Reference Curve" function in FieldCare is used for this.

![Load Reference Curve function](image)
12.5 Configuring the local display

12.5.1 Factory setting of local display for level measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Factory setting for devices with 1 current output</th>
<th>Factory setting for devices with 2 current outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format display</td>
<td>1 value, max. size</td>
<td>1 value, max. size</td>
</tr>
<tr>
<td>Value 1 display</td>
<td>Level linearized</td>
<td>Level linearized</td>
</tr>
<tr>
<td>Value 2 display</td>
<td>Distance</td>
<td>Distance</td>
</tr>
<tr>
<td>Value 3 display</td>
<td>Current output 1</td>
<td>Current output 1</td>
</tr>
<tr>
<td>Value 4 display</td>
<td>None</td>
<td>Current output 2</td>
</tr>
</tbody>
</table>

12.5.2 Adjusting the local display

The local display can be adjusted in the following submenu:
Set up → Advanced setup → Display
12.6 Configuring the current outputs

12.6.1 Factor setting of current outputs for level measurements

<table>
<thead>
<tr>
<th>Current output</th>
<th>Assigned measured value</th>
<th>4mA value</th>
<th>20mA value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Level linearized</td>
<td>0% or the corresponding linearized value</td>
<td>100% or the corresponding linearized value</td>
</tr>
<tr>
<td>2(^1)</td>
<td>Relative echo amplitude</td>
<td>0 mV</td>
<td>2000 mV</td>
</tr>
</tbody>
</table>

\(^1\) For devices with two current outputs

12.6.2 Adjusting the current outputs

The current outputs can be adjusted in the following submenus:

Basic settings
Set up → Advanced setup → Current output 1 to 2

Advanced settings
Expert → Output 1 to 2 → Current output 1 to 2
See "Description of Device Parameters" GP01000F
12.7 Configuration management

After commissioning, you can save the current device configuration, copy it to another measuring point or restore the previous device configuration. You can do so using the Configuration management parameter and the options available.

Path in the menu
Setup → Advanced setup → Configuration backup display → Configuration management

Meaning of the options

- **Cancel**
 No action is executed and the user exits the parameter.

- **Execute backup**
 A backup copy of the current device configuration is saved from the HistoROM (integrated in the device) to the display module of the device.

- **Restore**
 The last backup copy of the device configuration is copied from the display module to the HistoROM of the device.

- **Duplicate**
 The transmitter configuration of the device is duplicated to another device using the display module. The following parameters, which characterize the individual measuring point are **not** transferred:
 - HART date code
 - HART short tag
 - HART message
 - HART descriptor
 - HART address
 - Device tag
 - Medium type

- **Compare**
 The device configuration saved in the display module is compared to the current device configuration of the HistoROM. The result of the comparison is displayed in the Comparison result parameter.

- **Clear backup data**
 The backup copy of the device configuration is deleted from the display module of the device.

While this action is in progress, the configuration cannot be edited via the local display and a message on the processing status appears on the display.

If an existing backup copy is restored on a device other than the original device using the Restore option, in some cases individual device functions may not be available. In some cases it is also not possible to restore the original state by resetting to the "as-delivered" state.

The Duplicate option should always be used to copy the configuration to another device.
12.8 Protecting settings from unauthorized access

The settings can be protected from unauthorized access in two ways:

- Locking via parameters (software locking)
- Locking via write protection switch (hardware locking)
13 Diagnostics and troubleshooting

13.1 General troubleshooting

13.1.1 General errors

<table>
<thead>
<tr>
<th>Error</th>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device does not respond.</td>
<td>Supply voltage does not match the value indicated on the nameplate.</td>
<td>Connect the correct voltage.</td>
</tr>
<tr>
<td></td>
<td>The polarity of the supply voltage is wrong.</td>
<td>Correct the polarity.</td>
</tr>
<tr>
<td></td>
<td>The cables do not contact the terminals properly.</td>
<td>Ensure electrical contact between the cable and the terminal.</td>
</tr>
</tbody>
</table>
| Values on the display invisible | Contrast setting is too weak or too strong. | • Increase contrast by pressing \(\uparrow\) and \(\downarrow\) simultaneously.
• Decrease contrast by pressing \(\downarrow\) and \(\uparrow\) simultaneously.
The plug of the display cable is not connected correctly. | Connect the plug correctly. |
<p>| Display is defective. | | Replace display. |
| "Communication error" is indicated on the display when starting the device or connecting the display. | Electromagnetic interference | Check grounding of the device. |
| | Broken display cable or display plug. | Replace display. |
| Duplication of parameters via display from one device to another not working. Only the 'Save' and 'Cancel' options are available. | Display with backup is not properly detected if a data backup was not carried out on the new device previously. | Connect display (with backup) and restart device. |
| Output current <3.6 mA | Signal cable connection incorrect. | Check connection. |
| | Electronics module is defective. | Replace electronics. |
| HART communication does not function. | Communication resistor missing or incorrectly installed. | Install the communication resistor (250 (\Omega)) correctly. |
| | Commubox is connected incorrectly. | Connect Commubox correctly. |
| | Commubox is not set to "HART". | Set Commubox selector switch to "HART". |
| CDI communication does not work. | Wrong setting of the COM port on the computer. | Check the setting of the COM port on the computer and change it if necessary. |
| Device measures incorrectly. | Parameter configuration error | Check and correct the parameter configuration. |
| No communication with device via SmartBlue | No Bluetooth connection | Enable Bluetooth function on smartphone or tablet |
| | The device is already connected with another smartphone/tablet | Disconnect the device from the other smartphone/tablet |
| | Bluetooth module not connected | Connect Bluetooth module (see SD02252F). |
| Login via SmartBlue not possible | Device is being put into operation for the first time | Enter initial password (ID of Bluetooth module) and change it |</p>
<table>
<thead>
<tr>
<th>Error</th>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device cannot be operated via SmartBlue</td>
<td>Incorrect password entered</td>
<td>Enter the correct password, paying attention to lower/upper case</td>
</tr>
</tbody>
</table>
| Device cannot be operated via SmartBlue | Password forgotten | Contact Endress+Hauser Service
(www.addresses.endress.com) |
13.1.2 Error - SmartBlue operation

<table>
<thead>
<tr>
<th>Error</th>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device is not visible in the live list</td>
<td>No Bluetooth connection</td>
<td>Enable Bluetooth® function on smartphone or tablet</td>
</tr>
<tr>
<td></td>
<td>Bluetooth® function of sensor disabled, perform recovery sequence</td>
<td></td>
</tr>
<tr>
<td>Device is not visible in the live list</td>
<td>The device is already connected with another smartphone/tablet</td>
<td>Only one point-to-point connection is established between a sensor and a smartphone or tablet</td>
</tr>
<tr>
<td>Device is visible in the live list but cannot be accessed via SmartBlue</td>
<td>Android end device</td>
<td>Is the location function enabled for the app, was it approved the first time?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GPS or positioning function must be activated for certain Android versions in conjunction with Bluetooth®</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Activate GPS - close the app fully and restart - enable the positioning function for the app</td>
</tr>
<tr>
<td>Device is visible in the live list but cannot be accessed via SmartBlue</td>
<td>Apple end device</td>
<td>Log in as standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enter user name 'admin'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enter initial password (ID of the Bluetooth module) paying attention to lower/upper case</td>
</tr>
<tr>
<td>Login via SmartBlue not possible</td>
<td>Device is being put into operation for the first time</td>
<td>Enter initial password (ID of the Bluetooth module) and change; paying attention to lower/upper case</td>
</tr>
<tr>
<td>Device cannot be operated via SmartBlue</td>
<td>Incorrect password entered</td>
<td>Enter correct password</td>
</tr>
<tr>
<td>Device cannot be operated via SmartBlue</td>
<td>Password forgotten</td>
<td>Contact the Endress+Hauser Service department (www.addresses.endress.com)</td>
</tr>
</tbody>
</table>
13.1.3 Parametrization errors

Parametrization errors for level measurements

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| Measured value is incorrect | If measured distance (Setup → Distance) matches the real distance: Calibration error | • Check the Empty calibration parameter (→ 127) and correct if necessary.
• Check the Full calibration parameter (→ 127) and correct if necessary.
• Check the linearization and correct if necessary (Linearization submenu (→ 141)). |
| | If measured distance (Setup → Distance) does not match the real distance: An interference echo is present. | Carry out mapping (Confirm distance parameter (→ 130)). |
| No change of measured value on filling/emptying | An interference echo is present. | Carry out mapping (Confirm distance parameter (→ 130)). |
| | Buildup at the probe. | Clean the probe. |
| | Error in the echo tracking. | Deactivate echo tracking (Expert → Sensor → Echo tracking → Evaluation mode = History off). |
| Echo lost diagnostic message appears after the supply voltage is switched on. | Noise level too high during initialization phase. | Enter Empty calibration parameter (→ 127) again. |
| Device displays a level when the tank is empty. | Incorrect probe length | • Perform probe length correction (Confirm probe length parameter (→ 156)).
• Carry out mapping over the entire probe length when the tank is empty (Confirm distance parameter (→ 130)). |
| Wrong slope of the level over the entire measuring range | Wrong bin property selected. | Select the correct Bin type parameter (→ 126). |
13.2 Diagnostic information on local display

13.2.1 Diagnostic message

Faults detected by the self-monitoring system of the measuring device are displayed as a diagnostic message in alternation with the measured value display.

<table>
<thead>
<tr>
<th>Measured value display in alarm condition</th>
<th>Diagnostic message</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1</td>
<td>S</td>
</tr>
<tr>
<td>XXXXXXXXXXXX</td>
<td>20.50</td>
</tr>
<tr>
<td>x 1</td>
<td></td>
</tr>
</tbody>
</table>

1 Status signal
2 Status symbol (symbol for event level)
3 Status symbol with diagnostic event
4 Event text
5 Operating elements

Status signals

F
-- *Failure (F)* option
A device error has occurred. The measured value is no longer valid.

C
-- *Function check (C)* option
The device is in the service mode (e.g. during a simulation).

S
-- *Out of specification (S)* option
The device is operated:
 - Outside of its technical specifications (e.g. during startup or a cleaning)
 - Outside of the configuration performed by the user (e.g. level outside the configured range)

M
-- *Maintenance required (M)* option
Maintenance is required. The measured value is still valid.

Status symbol (symbol for event level)

Φ
-- *Alarm* status
The measurement is interrupted. The signal outputs adopt the defined alarm condition. A diagnostic message is generated.

△
-- *Warning* status
The device continues to measure. A diagnostic message is generated.
Diagnostic event and event text

The fault can be identified by means of the diagnostic event. The event text helps you by providing information about the fault. In addition, the associated status symbol is displayed in front of the diagnostic event.

<table>
<thead>
<tr>
<th>Diagnostic event</th>
<th>Status symbol</th>
<th>Status signal</th>
<th>Event number</th>
<th>Event text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>△</td>
<td>S</td>
<td>441</td>
<td>Curr.output 1</td>
</tr>
</tbody>
</table>

If two or more diagnostic events occur simultaneously, only the diagnostic message with the highest priority is shown. Additional queued diagnostic messages can be shown in the **Diagnostic list** submenu.

Past diagnostic messages that are no longer pending are shown as follows:
- On the local display:
 - In the **Event logbook** submenu
- In FieldCare:
 - Via the "Event List /HistoROM" function.

Operating elements

<table>
<thead>
<tr>
<th>Operating functions in menu, submenu</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Plus key</td>
</tr>
<tr>
<td>Opens the message about the remedial measures.</td>
</tr>
<tr>
<td>▼ Enter key</td>
</tr>
<tr>
<td>Opens the operating menu.</td>
</tr>
</tbody>
</table>
13.2.2 Calling up remedial measures

The user is in the diagnostic message.

1. Press \(\bigcirc \) (\(\bigcirc \) symbol).
 \(\downarrow \) The Diagnostic list submenu opens.

2. Select the desired diagnostic event with \(\bigcirc \) or \(\bigcirc \) and press \(\bigcirc \).
 \(\downarrow \) The message for the remedial measures for the selected diagnostic event opens.

3. Press \(\bigcirc + \bigcirc \) simultaneously.
 \(\downarrow \) The message about the remedial measures closes.

The user is in the Diagnostics menu at an entry for a diagnostics event, e.g. in the Diagnostic list or in Previous diagnostics.

1. Press \(\bigcirc \).
 \(\downarrow \) The message for the remedial measures for the selected diagnostic event opens.

2. Press \(\bigcirc + \bigcirc \) simultaneously.
 \(\downarrow \) The message about the remedial measures closes.
13.3 Diagnostic event in the operating tool

If a diagnostic event is present in the device, the status signal appears in the top left status in the operating tool along with the corresponding symbol for event level in accordance with NAMUR NE 107:

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)

A: Via the operating menu

1. Navigate to the Diagnostics menu.
 - In the Actual diagnostics parameter, the diagnostic event is shown with event text.

2. On the right in the display range, hover the cursor over the Actual diagnostics parameter.
 - A tool tip with remedial measures for the diagnostic event appears.

B: Via the "Create documentation" function

1. Select the 'Create documentation' function.

2. Select the 'Data overview' is marked.
3. Click "Save as ..." and save a PDF of the protocol.
 The protocol contains the diagnostic messages and remedy information.

C: Via the "Eventlist / Extended HistoROM" function

1. Select the "Eventlist / Extended HistoROM" function.
2. Select the "Load Eventlist" function.
 The list of events, including remedy information, is shown in the "Data overview" window.

13.4 Diagnostic list

In the Diagnostic list submenu, up to 5 currently pending diagnostic messages can be displayed. If more than 5 messages are pending, the messages with the highest priority are shown on the display.

Navigation path
Diagnostics → Diagnostic list

Calling up and closing the remedial measures

1. Press ▼.
 The message for the remedial measures for the selected diagnostic event opens.
2. Press ▼ + ▼ simultaneously.
 The message about the remedial measures closes.
13.5 List of diagnostic events

<table>
<thead>
<tr>
<th>Diagnostic number</th>
<th>Short text</th>
<th>Remedy instructions</th>
<th>Status signal [from the factory]</th>
<th>Diagnostic behavior [from the factory]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic of sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Broken probe detected</td>
<td>1. Check map 2. Check sensor</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>046</td>
<td>Build-up detected</td>
<td>Clean sensor</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>104</td>
<td>HF cable</td>
<td>1. Dry HF cable connection 2. Change HF cable</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>105</td>
<td>HF cable</td>
<td>1. Tighten HF cable connection 2. Check sensor 3. Change HF cable</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>106</td>
<td>Sensor</td>
<td>1. Check sensor 2. Check HF cable 3. Contact service</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>Diagnostic of electronic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>Software incompatible</td>
<td>1. Check software 2. Flash or change main electronics module</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>252</td>
<td>Modules incompatible</td>
<td>1. Check if correct electronic module is plugged 2. Replace electronic module</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>261</td>
<td>Electronic modules</td>
<td>1. Restart device 2. Check electronic modules 3. Change I/O Module or main electronics</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>262</td>
<td>Module connection</td>
<td>1. Check module connections 2. Change electronic modules</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>270</td>
<td>Main electronic failure</td>
<td>Change main electronic module</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>271</td>
<td>Main electronic failure</td>
<td>1. Restart device 2. Change main electronic module</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>272</td>
<td>Main electronic failure</td>
<td>1. Restart device 2. Contact service</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>273</td>
<td>Main electronic failure</td>
<td>1. Emergency operation via display 2. Change main electronics</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>275</td>
<td>I/O module defective</td>
<td>Change I/O module</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>276</td>
<td>I/O module faulty</td>
<td>1. Restart device 2. Change I/O module</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>276</td>
<td>I/O module faulty</td>
<td></td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>282</td>
<td>Data storage</td>
<td>1. Restart device 2. Contact service</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>283</td>
<td>Memory content</td>
<td>1. Transfer data or reset device 2. Contact service</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>311</td>
<td>Electronic failure</td>
<td>Maintenance required! 1. Do not perform reset 2. Contact service</td>
<td>M</td>
<td>Warning</td>
</tr>
<tr>
<td>Diagnostic of configuration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>410</td>
<td>Data transfer</td>
<td>1. Check connection 2. Retry data transfer</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>411</td>
<td>Up-/download active</td>
<td>Up-/download active, please wait</td>
<td>C</td>
<td>Warning</td>
</tr>
<tr>
<td>412</td>
<td>Processing download</td>
<td>Download active, please wait</td>
<td>C</td>
<td>Warning</td>
</tr>
<tr>
<td>Diagnostic number</td>
<td>Short text</td>
<td>Remedy instructions</td>
<td>Status signal [from the factory]</td>
<td>Diagnostic behavior [from the factory]</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------------------</td>
<td>--</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>431</td>
<td>Trim 1 to 2</td>
<td>Carry out trim</td>
<td>C</td>
<td>Warning</td>
</tr>
<tr>
<td>435</td>
<td>Linearization</td>
<td>Check linearization table</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>437</td>
<td>Configuration incompatible</td>
<td>1. Restart device</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>438</td>
<td>Dataset</td>
<td>1. Check data set file 2. Check device configuration 3. Up- and download new configuration</td>
<td>M</td>
<td>Warning</td>
</tr>
<tr>
<td>441</td>
<td>Current output 1 to 2</td>
<td>1. Check process 2. Check current output settings</td>
<td>S</td>
<td>Warning</td>
</tr>
<tr>
<td>484</td>
<td>Failure mode simulation</td>
<td>Deactivate simulation</td>
<td>C</td>
<td>Alarm</td>
</tr>
<tr>
<td>485</td>
<td>Simulation measured value</td>
<td>Deactivate simulation</td>
<td>C</td>
<td>Warning</td>
</tr>
<tr>
<td>491</td>
<td>Current output 1 to 2 simulation</td>
<td>Deactivate simulation</td>
<td>C</td>
<td>Warning</td>
</tr>
<tr>
<td>494</td>
<td>Switch output simulation</td>
<td>Deactivate simulation switch output</td>
<td>C</td>
<td>Warning</td>
</tr>
<tr>
<td>495</td>
<td>Diagnostic event simulation</td>
<td>Deactivate simulation</td>
<td>C</td>
<td>Warning</td>
</tr>
<tr>
<td>585</td>
<td>Simulation distance</td>
<td>Deactivate simulation</td>
<td>C</td>
<td>Warning</td>
</tr>
</tbody>
</table>

Diagnostic of process

<table>
<thead>
<tr>
<th>Diagnostic number</th>
<th>Short text</th>
<th>Remedy instructions</th>
<th>Status signal [from the factory]</th>
<th>Diagnostic behavior [from the factory]</th>
</tr>
</thead>
<tbody>
<tr>
<td>801</td>
<td>Energy too low</td>
<td>Increase supply voltage</td>
<td>S</td>
<td>Warning</td>
</tr>
<tr>
<td>803</td>
<td>Current loop</td>
<td>1. Check wiring 2. Change I/O module</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>825</td>
<td>Operating temperature</td>
<td>1. Check ambient temperature 2. Check process temperature</td>
<td>S</td>
<td>Warning</td>
</tr>
<tr>
<td>825</td>
<td>Operating temperature</td>
<td>2. Check process temperature</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>921</td>
<td>Change of reference</td>
<td>1. Check reference configuration 2. Check pressure 3. Check sensor</td>
<td>S</td>
<td>Warning</td>
</tr>
<tr>
<td>936</td>
<td>EMC interference</td>
<td>Check installation on EMC</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>941</td>
<td>Echo lost</td>
<td>Check parameter ‘DC value’</td>
<td>F</td>
<td>Alarm 1)</td>
</tr>
<tr>
<td>942</td>
<td>In safety distance</td>
<td>1. Check level 2. Check safety distance 3. Reset self holding</td>
<td>S</td>
<td>Alarm 1)</td>
</tr>
<tr>
<td>943</td>
<td>In blocking distance</td>
<td>Reduced accuracy 1. Check level</td>
<td>S</td>
<td>Warning</td>
</tr>
<tr>
<td>944</td>
<td>Level range</td>
<td>Reduced accuracy 1. Check level</td>
<td>S</td>
<td>Warning</td>
</tr>
<tr>
<td>950</td>
<td>Advanced diagnostic 1 to 2 occurred</td>
<td>Maintain your diagnostic event</td>
<td>M</td>
<td>Warning 2)</td>
</tr>
</tbody>
</table>

1) Diagnostic behavior can be changed.

2) Warning level of 950 is only displayed and not audible.
13.6 Event logbook

13.6.1 Event history

A chronological overview of the event messages that have occurred is provided in the
Event list submenu.^{21}

Navigation path
Diagnostics → Event logbook → Event list

A maximum of 100 event messages can be displayed in chronological order.

Die Ereignishistorie umfasst Einträge zu:
- Diagnostic events
- Information events

In addition to the operation time of its occurrence, each event is also assigned a symbol
that indicates whether the event has occurred or is ended:
- Diagnostic event
 - eventId: Event has occurred
 - eventId: Event has ended
- Information event
 - eventId: Event has occurred

Calling up and closing the remedial measures

1. Press \bigcirc
 ← The message for the remedial measures for the selected diagnostic event opens.

2. Press \bigcirc + \bigcirc simultaneously.
 ← The message about the remedial measures closes.

13.6.2 Filtering the event logbook

Using the Filter options parameter, you can define which category of event messages is
displayed in the Event list submenu.

Navigation path
Diagnostics → Event logbook → Filter options

Filter categories
- All
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- Information

13.6.3 Overview of information events

<table>
<thead>
<tr>
<th>Info number</th>
<th>Info name</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1000</td>
<td>--------(Device ok)</td>
</tr>
<tr>
<td>I1089</td>
<td>Power on</td>
</tr>
<tr>
<td>I1090</td>
<td>Configuration reset</td>
</tr>
<tr>
<td>I1091</td>
<td>Configuration changed</td>
</tr>
</tbody>
</table>

2) This submenu is only available for operation via local display. In the case of operation via FieldCare, the event list can be displayed with the "Event List / HistoROM" functionality of FieldCare.
<table>
<thead>
<tr>
<th>Info number</th>
<th>Info name</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1092</td>
<td>Embedded HistoROM deleted</td>
</tr>
<tr>
<td>I1110</td>
<td>Write protection switch changed</td>
</tr>
<tr>
<td>I1137</td>
<td>Electronic changed</td>
</tr>
<tr>
<td>I1151</td>
<td>History reset</td>
</tr>
<tr>
<td>I1154</td>
<td>Reset terminal voltage min/max</td>
</tr>
<tr>
<td>I1155</td>
<td>Reset electronic temperature</td>
</tr>
<tr>
<td>I1156</td>
<td>Memory error trend</td>
</tr>
<tr>
<td>I1157</td>
<td>Memory error event list</td>
</tr>
<tr>
<td>I1184</td>
<td>Display connected</td>
</tr>
<tr>
<td>I1185</td>
<td>Display backup done</td>
</tr>
<tr>
<td>I1186</td>
<td>Restore via display done</td>
</tr>
<tr>
<td>I1187</td>
<td>Settings downloaded with display</td>
</tr>
<tr>
<td>I1188</td>
<td>Display data cleared</td>
</tr>
<tr>
<td>I1189</td>
<td>Backup compared</td>
</tr>
<tr>
<td>I1256</td>
<td>Display: access status changed</td>
</tr>
<tr>
<td>I1264</td>
<td>Safety sequence aborted</td>
</tr>
<tr>
<td>I1335</td>
<td>Firmware changed</td>
</tr>
<tr>
<td>I1397</td>
<td>Fieldbus: access status changed</td>
</tr>
<tr>
<td>I1398</td>
<td>CDI: access status changed</td>
</tr>
<tr>
<td>I1512</td>
<td>Download started</td>
</tr>
<tr>
<td>I1513</td>
<td>Download finished</td>
</tr>
<tr>
<td>I1514</td>
<td>Upload started</td>
</tr>
<tr>
<td>I1515</td>
<td>Upload finished</td>
</tr>
<tr>
<td>I1554</td>
<td>Safety sequence started</td>
</tr>
<tr>
<td>I1555</td>
<td>Safety sequence confirmed</td>
</tr>
<tr>
<td>I1556</td>
<td>Safety mode off</td>
</tr>
</tbody>
</table>
13.7 Firmware history

<table>
<thead>
<tr>
<th>Date</th>
<th>Firmware version</th>
<th>Modifications</th>
<th>Operating Instructions</th>
<th>Description of Device Parameters</th>
<th>Technical Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.2010</td>
<td>01.00.zz</td>
<td>Original software</td>
<td>BA01004F/00/EN/05.10</td>
<td>GP01000F/00/EN/05.10</td>
<td>TI01004F/00/EN/05.10</td>
</tr>
<tr>
<td>01.2011</td>
<td>01.01.zz</td>
<td>• SIL integrated</td>
<td>BA01004F/00/EN/10.10</td>
<td>GP01000F/00/EN/10.10</td>
<td>TI01004F/00/EN/10.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Improvements and bugfixes</td>
<td>BA01004F/00/EN/13.11</td>
<td>GP01000F/00/EN/13.11</td>
<td>TI01004F/00/EN/13.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Additional languages</td>
<td>BA01004F/00/EN/14.12</td>
<td></td>
<td>TI01004F/00/EN/14.12</td>
</tr>
<tr>
<td>02.2014</td>
<td>01.02.zz</td>
<td>• Support of SD03</td>
<td>BA01004F/00/EN/15.13</td>
<td>GP01000F/00/EN/14.13</td>
<td>TI01004F/00/EN/16.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Additional languages</td>
<td>BA01004F/00/EN/16.14</td>
<td>GP01000F/00/EN/15.14</td>
<td>TI01004F/00/EN/17.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• HistROM functionality enhanced</td>
<td>BA01004F/00/EN/16.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• "Advanced Diagnostics" function block integrated</td>
<td>BA01004F/00/EN/16.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Improvements and bugfixes</td>
<td>BA01004F/00/EN/16.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.2016</td>
<td>01.03.zz</td>
<td>• Update to HART 7</td>
<td>BA01004F/00/EN/17.16</td>
<td>GP01000F/00/EN/16.16</td>
<td>TI01004F/00/EN/18.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• All 17 languages available in the device</td>
<td>BA01004F/00/EN/18.16</td>
<td></td>
<td>TI01004F/00/EN/20.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Improvements and bugfixes</td>
<td>BA01004F/00/EN/20.18</td>
<td></td>
<td>TI01004F/00/EN/22.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• HistoROM functionality enhanced</td>
<td>BA01004F/00/EN/18.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• "Advanced Diagnostics" function block integrated</td>
<td>BA01004F/00/EN/20.16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Contains information on the Heartbeat wizards available in the current DTM version for DeviceCare and FieldCare.
2) Contains information on the Bluetooth interface.

The firmware version can explicitly be ordered via the product structure. In this way it is possible to ensure compatibility of the firmware version with an existing or planned system integration.
14 Maintenance

No special maintenance work is required.

14.1 Exterior cleaning

When cleaning the exterior, always use cleaning agents that do not corrode the surface of the housing and the seals.

14.2 General cleaning instructions

Dirt or buildup may form on the probe depending on the application. A thin, even layer has little impact on the measurement. Thick layers can dampen the signal and reduce the measuring range. Very uneven deposit formation or caking (e.g. due to crystallization) can result in incorrect measurements. In such cases, use a non-contact measuring principle, or regularly inspect the probe for contamination.

Cleaning with sodium hydroxide solution (e.g. in CIP procedures): if the coupling is wetted, larger measurement errors can occur than under reference operating conditions. Wetting can cause temporary incorrect measurements.
15 Repair

15.1 General information

15.1.1 Repair concept
Under the Endress+Hauser repair concept, devices have a modular design and repairs can be carried out by Endress+Hauser Service or by properly trained customers.
Spare parts are grouped into logical kits with the associated replacement instructions.
For more information on service and spare parts, please contact Endress+Hauser Service.

15.1.2 Repair of Ex-certified devices

WARNING
Incorrect repair can compromise electrical safety!
Explosion Hazard!

‣ Repairs to Ex-certified devices must be carried out by Endress+Hauser Service or by specialist personnel according to national regulations.
‣ Relevant standards and national regulations on hazardous areas, safety instructions and certificates must be observed.
‣ Use only original Endress+Hauser spare parts.
‣ Please note the device designation on the nameplate. Only identical parts may be used as replacements.
‣ Carry out repairs according to the instructions.
‣ Only the Endress+Hauser service team is permitted to modify a certified device and convert it to another certified version.

15.1.3 Replacing electronics modules
When electronics modules have been replaced the device does not need to be recalibrated as the parameters are saved in the HistoROM inside the housing. It may be necessary when replacing the main electronics to record a new interference echo suppression.

15.1.4 Replacing a device
Once a complete device has been replaced, the parameters can be transferred back into the device using one of the following methods:

‣ Using the display module
 Prerequisite: The configuration of the old device was saved previously to the display module.
‣ Via FieldCare
 Prerequisite: The configuration of the old device was saved previously to the computer using FieldCare.

You can continue measuring without performing a new calibration. Only interference echo suppression may need to be carried out once again.
15.2 **Spare parts**

- Some replaceable measuring device components are identified by means of a spare part nameplate. This contains information about the spare part.
- In the connection compartment cover of the device there is a spare part nameplate which contains the following information:
 - A list of the most important spare parts for the measuring device, including their ordering information.
 - The URL to the W@M Device Viewer (www.endress.com/deviceviewer): All the spare parts for the measuring device, along with the order code, are listed here and can be ordered. If available, users can also download the associated Installation Instructions.

![Example for spare part nameplate in the connection compartment cover](image)

Measuring device serial number:

- Located on the device and spare part nameplate.
- Can be read out via the ‘Serial number’ parameter in the ‘Device information’ submenu.

15.3 **Return**

The requirements for safe device return can vary depending on the device type and national legislation.

1. Refer to the web page for information:
 - http://www.endress.com/support/return-material
 - Select the region.
2. Return the device if repairs or a factory calibration are required, or if the wrong device was ordered or delivered.

15.4 **Disposal**

If required by the Directive 2012/19/EU on waste electrical and electronic equipment (WEEE), the product is marked with the depicted symbol in order to minimize the disposal of WEEE as unsorted municipal waste. Do not dispose of products bearing this marking as unsorted municipal waste. Instead, return them to the manufacturer for disposal under the applicable conditions.
16 Accessories

16.1 Device-specific accessories

16.1.1 Weather protection cover

The weather protection cover can be ordered together with the device via the "Accessory enclosed" product structure.

Material

316L

Order number for accessories:

71162242
16.1.2 Mounting bracket for electronics housing

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting bracket for electronics housing</td>
<td></td>
</tr>
</tbody>
</table>

45 Mounting bracket for electronics housing; engineering unit: mm (in)

A Wall mounting

B Post mounting

With "remote sensor" device versions (see feature 060 in the product structure), the mounting bracket is included in the scope of delivery. However, it can also be ordered separately as an accessory (order number: 71102216).
16.1.3 Rod extension / centering device

Description

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Description</th>
</tr>
</thead>
</table>
| Rod extension / centering device HMP40 | - Suitable for: FMP57
- Permitted temperature at lower edge of nozzle:
 - without centering disk: no restriction
 - with centering disk: -40 to +150 °C (-40 to +302 °F)
- Additional information: SD01002F |

1. **Nozzle height**
2. **Extension rod**
3. **Centering disk**

Approval:

<table>
<thead>
<tr>
<th>Approval</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Non-hazardous area</td>
</tr>
<tr>
<td>M</td>
<td>FM DIP Cl.II Div.1 Gr.E-G N.I., Zone 21.22</td>
</tr>
<tr>
<td>P</td>
<td>CSA DIP Cl.II Div.1 Gr.G + coal dust N.I.</td>
</tr>
<tr>
<td>S</td>
<td>FM Cl.I, II, III Div.1 Gr.A-G N.I., Zone 0,1,2,20,21,22</td>
</tr>
<tr>
<td>U</td>
<td>CSA Cl.I, II, III Div.1 Gr.A-G N.I., Zone 0,1,2</td>
</tr>
<tr>
<td>1</td>
<td>ATEX II 1G</td>
</tr>
<tr>
<td>2</td>
<td>ATEX II 1D</td>
</tr>
</tbody>
</table>

Extension rod; height of nozzle:

<table>
<thead>
<tr>
<th>Height</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>115mm; 150-250mm / 6-10’</td>
</tr>
<tr>
<td>2</td>
<td>215mm; 250-350mm / 10-14’</td>
</tr>
<tr>
<td>3</td>
<td>315mm; 350-450mm / 14-18’</td>
</tr>
<tr>
<td>4</td>
<td>415mm; 450-550mm / 18-22’</td>
</tr>
<tr>
<td>9</td>
<td>Special version; TSP no. to be specified</td>
</tr>
</tbody>
</table>

Centering disk:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Not selected</td>
</tr>
<tr>
<td>B</td>
<td>DN40 / 1-1/2”, inside-d. = 40-45mm, PPS</td>
</tr>
<tr>
<td>C</td>
<td>DN50 / 2”, inside-d. = 50-57mm, PPS</td>
</tr>
<tr>
<td>D</td>
<td>DN80 / 3”, inside-d. = 80-85mm, PPS</td>
</tr>
<tr>
<td>E</td>
<td>DN80 / 3”, inside-d. = 76-79mm, PPS</td>
</tr>
<tr>
<td>G</td>
<td>DN100 / 4”, inside-d. = 100-110mm, PPS</td>
</tr>
<tr>
<td>H</td>
<td>DN150 / 6”, inside-d. = 152-164mm, PPS</td>
</tr>
<tr>
<td>J</td>
<td>DN200 / 8”, inside-d. = 210-215mm, PPS</td>
</tr>
<tr>
<td>K</td>
<td>DN250 / 10”, inside-d. = 253-269mm, PPS</td>
</tr>
<tr>
<td>Y</td>
<td>Special version; TSP no. to be specified</td>
</tr>
</tbody>
</table>
16.1.4 Mounting kit, insulated

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting kit, insulated</td>
<td>suitable for</td>
</tr>
<tr>
<td>• FMP56</td>
<td>• FMP57</td>
</tr>
</tbody>
</table>

46 Scope of delivery of mounting kit:

1. Insulation sleeve
2. Eye bolt

To secure rope probes so that they are reliably insulated.
Maximum process temperature: 150 °C (300 °F)
For rope probes 4 mm (\(\frac{3}{16}\) in) or 6 mm (\(\frac{1}{4}\) in) with PA>steel:
- Diameter \(D = 20\) mm (0.8 in)
- Order number: 52014249
For rope probes 6 mm (\(\frac{1}{4}\) in) or 8 mm (\(\frac{1}{3}\) in) with PA>steel:
- Diameter \(D = 25\) mm (1 in)
- Order number: 52014250

Due to the risk of electrostatic charge, the insulation sleeve is not suitable for use in hazardous areas! In this case, the probe must be secured so that it is reliably grounded.

The mounting kit can also be ordered directly with the device (Levelflex product structure, feature 620 'Accessory enclosed', version PG 'mounting kit, insulated, rope').

16.1.5 Remote display FHX50

1. Insulation sleeve
2. Eye bolt
3. Remote display
4. Connection cable

The remote display can be used to monitor the process level and is suitable for remote operation of the device.
Technical data
- Material:
 - Plastic PBT
 - 316L/1.4404
 - Aluminum
- Degree of protection: IP68 / NEMA 6P and IP66 / NEMA 4x
- Suitable for display modules:
 - SD02 (push buttons)
 - SD03 (touch control)
- Connecting cable:
 - Cable supplied with device up to 30 m (98 ft)
 - Standard cable supplied by customer up to 60 m (196 ft)
- Ambient temperature: –40 to 80 °C (–40 to 176 °F)
- Ambient temperature (option): –50 to 80 °C (–58 to 176 °F) 3)

Ordering information
- If the remote display is to be used, the device version "Prepared for display FHX50" must be ordered.
 For the FHX50, the option "Prepared for display FHX50" must be selected under 'Measuring device version'.
- If a measuring device has not been ordered with the version "Prepared for display FHX50" and is to be retrofitted with an FHX50, the version "Not prepared for display FHX50" must be ordered for the FHX50 under 'Measuring device version'. In this case, a retrofit kit for the device is supplied with the FHX50. The kit can be used to prepare the device so that the FHX50 can be used.

Use of the FHX50 may be restricted for transmitters with an approval. A device may only be retrofitted with the FHX50 if the option "Prepared for FHX50" is listed in the associated Safety Instructions (XA) under Basic specifications, 'Display, operation'.

Also pay attention to the Safety Instructions (XA) of the FHX50.

Retrofitting is not possible on transmitters with:
- An approval for use in areas with flammable dust (dust ignition-proof approval)
- Type of protection Ex nA

For details, see the "Special Documentation" SD01007F

16.1.6 Overvoltage protection

The surge arrester for loop-powered devices can be ordered together with the device via the 'Accessory mounted' section of the product order structure.

The surge arrester can be used for loop-powered devices.
- 1-channel devices - OVP10
- 2-channel devices - OVP20

3) This range applies if the option JN "Transmitter ambient temperature" –50 °C (–58 °F) was selected in feature 580 "Test, Certificate". If the temperature is permanently below –40 °C (–40 °F), higher failure rates can be expected.
Technical data
- Resistance per channel: $2 \times 0.5 \, \Omega_{\text{max}}$
- Threshold DC voltage: 400 to 700 V
- Threshold surge voltage: < 800 V
- Capacitance at 1 MHz: < 1.5 pF
- Nominal leakage current (8/20 μs): 10 kA
- Suitable for conductor cross-sections: 0.2 to 2.5 mm² (24 to 14 AWG)

If retrofitting:
- Order number for 1-channel devices (OVP10): 71128617
- Order number for 2-channel devices (OVP20): 71128619
- The use of the OVP module may be restricted depending on the transmitter approval. A device may only be retrofitted with the OVP module if the option NA (overvoltage protection) is listed under Optional specifications in the Safety Instructions (XA) associated with the device.
- In order to keep the necessary safety distances when using the surge arrester module, the housing cover also needs to be replaced when the device is retrofitted.
 Depending on the housing type, the suitable cover can be ordered using the following order number:
 - Housing GT18: 71185516
 - Housing GT19: 71185518
 - Housing GT20: 71185517

For details, see the "Special Documentation" SD01090F

16.1.7 Bluetooth module BT10 for HART devices
The Bluetooth module BT10 can be ordered together with the device via the "Accessory mounted" section of the product order structure.
Technical data
- Quick and easy setup with the SmartBlue app
- No additional tools or adapters needed
- Signal curve via SmartBlue (app)
- Encrypted single point-to-point data transmission (tested by Fraunhofer Institute) and password-protected communication via Bluetooth® wireless technology
- Range under reference conditions:
 > 10 m (33 ft)
- When the Bluetooth module is used, the minimum supply voltage of the device increases by up to 3 V.

If retrofitting:
- Order number: 71377355
- The use of the Bluetooth module may be restricted depending on the transmitter approval. A device may only be retrofitted with the Bluetooth module if the option NF (Bluetooth module) is listed under Optional specifications in the Safety Instructions (XA) associated with the device.

For details, see the "Special Documentation" SD02252F

16.2 Communication-specific accessories

Commubox FXA195 HART
For intrinsically safe HART communication with FieldCare via the USB interface

For details, see "Technical Information" TI00404F

Commubox FXA291
Connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) and the USB port of a computer or laptop
Order number: 51516983

For details, see "Technical Information" TI00405C

HART Loop Converter HMX50
Is used to evaluate and convert dynamic HART process variables to analog current signals or limit values
Order number: 71063562

For details, see "Technical Information" TI00429F and Operating Instructions BA00371F

WirelessHART adapter SWA70
- Is used for the wireless connection of field devices
- The WirelessHART adapter can be easily integrated into field devices and existing infrastructures, offers data protection and transmission safety and can be operated in parallel with other wireless networks

For details, see Operating Instructions BA00061S

Fieldgate FXA42
Fieldgates enable communication between connected 4 to 20 mA, Modbus RS485 and Modbus TCP devices and SupplyCare Hosting or SupplyCare Enterprise. The signals are transmitted either via Ethernet TCP/IP, WLAN or mobile communications (UMTS). Advanced automation capabilities are available, such as an integrated Web-PLC, OpenVPN and other functions.

For details, see "Technical Information" TI01297S and Operating Instructions BA01778S.
Accessories

SupplyCare Enterprise SCE30B
Inventory management software that displays the level, volume, mass, temperature, pressure, density or other parameters of tanks. The parameters are recorded and transmitted by means of gateways like Fieldgate FXA42, Connect Sensor FXA30B or other gateway types.
This Web-based software is installed on a local server and can also be visualized and operated with mobile terminals such as a smartphone or tablet.

For details, see Technical Information TI01228S and Operating Instructions BA00055S

SupplyCare Hosting SCH30
Inventory management software that displays the level, volume, mass, temperature, pressure, density or other parameters of tanks. The parameters are recorded and transmitted by means of gateways like Fieldgate FXA42, Connect Sensor FXA30B or other gateway types.
SupplyCare Hosting is offered as a hosting service (Software as a Service, SaaS). In the Endress+Hauser portal, the user is provided with the data over the Internet.

For details, see Technical Information TI01229S and Operating Instructions BA00050S

Field Xpert SFX350
Field Xpert SFX350 is a mobile computer for commissioning and maintenance. It enables efficient device configuration and diagnostics for HART and FOUNDATION Fieldbus devices in the **non-Ex area**.

For details, see Operating Instructions BA01202S

Field Xpert SFX370
Field Xpert SFX370 is a mobile computer for commissioning and maintenance. It enables efficient device configuration and diagnostics for HART and FOUNDATION Fieldbus devices in the **non-Ex area** and the **Ex area**.

For details, see Operating Instructions BA01202S

16.3 Service-specific accessories

DeviceCare SFE100
Configuration tool for HART, PROFIBUS and FOUNDATION Fieldbus field devices

Technical Information TI01134S

FieldCare SFE500
FDT-based plant asset management tool
It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.

Technical Information TI00028S

16.4 System components

Memograph M graphic data manager
The Memograph M graphic data manager provides information on all the relevant process variables. Measured values are recorded correctly, limit values are monitored and measuring points analyzed. The data are stored in the 256 MB internal memory and also on a SD card or USB stick.

Technical Information TI00133R and Operating Instructions BA00247R
RN221N
Active barrier with power supply for safe separation of 4 to 20 mA standard signal circuits. Offers bidirectional HART transmission.

Technical Information TI00073R and Operating Instructions BA00202R

RN221
Supply unit for powering two 2-wire measuring devices solely in the non-Ex area. Bidirectional communication is possible via the HART communication jacks.

Technical Information TI00081R and Brief Operating Instructions KA00110R
17 Operating menu

17.1 Overview of the operating menu (SmartBlue)

<table>
<thead>
<tr>
<th>Navigation</th>
<th>SmartBlue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup</td>
<td></td>
</tr>
<tr>
<td>Device tag</td>
<td>→ 126</td>
</tr>
<tr>
<td>Distance unit</td>
<td>→ 126</td>
</tr>
<tr>
<td>Bin type</td>
<td>→ 126</td>
</tr>
<tr>
<td>Empty calibration</td>
<td>→ 127</td>
</tr>
<tr>
<td>Full calibration</td>
<td>→ 127</td>
</tr>
<tr>
<td>Level</td>
<td>→ 128</td>
</tr>
<tr>
<td>Distance</td>
<td>→ 128</td>
</tr>
<tr>
<td>Signal quality</td>
<td>→ 129</td>
</tr>
<tr>
<td>Confirm distance</td>
<td>→ 130</td>
</tr>
<tr>
<td>Present mapping</td>
<td>→ 131</td>
</tr>
<tr>
<td>Mapping end point</td>
<td>→ 131</td>
</tr>
<tr>
<td>Record map</td>
<td>→ 131</td>
</tr>
<tr>
<td>Advanced setup</td>
<td></td>
</tr>
<tr>
<td>Locking status</td>
<td>→ 133</td>
</tr>
<tr>
<td>Access status tooling</td>
<td>→ 133</td>
</tr>
<tr>
<td>Enter access code</td>
<td>→ 134</td>
</tr>
<tr>
<td>Level</td>
<td></td>
</tr>
<tr>
<td>Medium type</td>
<td>→ 135</td>
</tr>
<tr>
<td>Medium property</td>
<td>→ 135</td>
</tr>
<tr>
<td>Process property</td>
<td>→ 136</td>
</tr>
</tbody>
</table>
Level unit

- **Advanced process conditions** → 137
- **Level unit** → 138
- **Blocking distance** → 138
- **Level correction** → 139

Linearization

- **Linearization type** → 143
- **Unit after linearization** → 144
- **Free text** → 145
- **Level linearized** → 146
- **Maximum value** → 146
- **Diameter** → 146
- **Intermediate height** → 147
- **Table mode** → 147
- **Table number** → 148
- **Level** → 148
- **Level** → 149
- **Customer value** → 149
- **Activate table** → 149

Probe settings

- **Probe grounded** → 155
- **Present probe length** → 155
- **Confirm probe length** → 156

Safety settings

- **Output echo lost** → 150
- **Value echo lost** → 150
<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp at echo lost</td>
<td>151</td>
</tr>
<tr>
<td>Blocking distance</td>
<td>138</td>
</tr>
<tr>
<td>Current output 1 to 2</td>
<td>158</td>
</tr>
<tr>
<td>Assign current output</td>
<td>158</td>
</tr>
<tr>
<td>Current span</td>
<td>159</td>
</tr>
<tr>
<td>Fixed current</td>
<td>159</td>
</tr>
<tr>
<td>Damping output</td>
<td>160</td>
</tr>
<tr>
<td>Failure mode</td>
<td>160</td>
</tr>
<tr>
<td>Failure current</td>
<td>161</td>
</tr>
<tr>
<td>Output current 1 to 2</td>
<td>161</td>
</tr>
<tr>
<td>Switch output</td>
<td>162</td>
</tr>
<tr>
<td>Switch output function</td>
<td>162</td>
</tr>
<tr>
<td>Assign status</td>
<td>163</td>
</tr>
<tr>
<td>Assign limit</td>
<td>163</td>
</tr>
<tr>
<td>Assign diagnostic behavior</td>
<td>163</td>
</tr>
<tr>
<td>Switch-on value</td>
<td>164</td>
</tr>
<tr>
<td>Switch-on delay</td>
<td>165</td>
</tr>
<tr>
<td>Switch-off value</td>
<td>165</td>
</tr>
<tr>
<td>Switch-off delay</td>
<td>166</td>
</tr>
<tr>
<td>Failure mode</td>
<td>166</td>
</tr>
<tr>
<td>Switch status</td>
<td>166</td>
</tr>
<tr>
<td>Invert output signal</td>
<td>166</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>180</td>
</tr>
<tr>
<td>Actual diagnostics</td>
<td>180</td>
</tr>
<tr>
<td>Timestamp</td>
<td>180</td>
</tr>
</tbody>
</table>
Operating menu

<table>
<thead>
<tr>
<th>Category</th>
<th>Subcategories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous diagnostics</td>
<td>→ 180</td>
</tr>
<tr>
<td>Timestamp</td>
<td>→ 181</td>
</tr>
<tr>
<td>Operating time from restart</td>
<td>→ 181</td>
</tr>
<tr>
<td>Operating time</td>
<td>→ 174</td>
</tr>
<tr>
<td>Diagnostic list</td>
<td>→ 182</td>
</tr>
<tr>
<td>Diagnostics 1 to 5</td>
<td>→ 182</td>
</tr>
<tr>
<td>Timestamp 1 to 5</td>
<td>→ 182</td>
</tr>
<tr>
<td>Measured values</td>
<td>→ 187</td>
</tr>
<tr>
<td>Distance</td>
<td>→ 128</td>
</tr>
<tr>
<td>Level linearized</td>
<td>→ 146</td>
</tr>
<tr>
<td>Output current 1 to 2</td>
<td>→ 161</td>
</tr>
<tr>
<td>Measured current 1</td>
<td>→ 188</td>
</tr>
<tr>
<td>Terminal voltage 1</td>
<td>→ 188</td>
</tr>
<tr>
<td>Device information</td>
<td>→ 184</td>
</tr>
<tr>
<td>Device tag</td>
<td>→ 184</td>
</tr>
<tr>
<td>Serial number</td>
<td>→ 184</td>
</tr>
<tr>
<td>Firmware version</td>
<td>→ 184</td>
</tr>
<tr>
<td>Device name</td>
<td>→ 184</td>
</tr>
<tr>
<td>Order code</td>
<td>→ 185</td>
</tr>
<tr>
<td>Extended order code 1 to 3</td>
<td>→ 185</td>
</tr>
<tr>
<td>Device revision</td>
<td>→ 185</td>
</tr>
<tr>
<td>Device ID</td>
<td>→ 185</td>
</tr>
</tbody>
</table>
Operating menu

Levelflex FMP56, FMP57 HART

Device type	→ 186
Manufacturer ID	→ 186
Simulation	→ 193
Assign measurement variable	→ 194
Process variable value	→ 194
Current output 1 to 2 simulation	→ 194
Value current output 1 to 2	→ 195
Switch output simulation	→ 195
Switch status	→ 195
Device alarm simulation	→ 196
17.2 Overview of the operating menu (display module)

Navigation

<table>
<thead>
<tr>
<th>Setup</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td></td>
</tr>
<tr>
<td>Device tag</td>
<td>→ 126</td>
</tr>
<tr>
<td>Distance unit</td>
<td>→ 126</td>
</tr>
<tr>
<td>Bin type</td>
<td>→ 126</td>
</tr>
<tr>
<td>Empty calibration</td>
<td>→ 127</td>
</tr>
<tr>
<td>Full calibration</td>
<td>→ 127</td>
</tr>
<tr>
<td>Level</td>
<td>→ 128</td>
</tr>
<tr>
<td>Distance</td>
<td>→ 128</td>
</tr>
<tr>
<td>Signal quality</td>
<td>→ 129</td>
</tr>
</tbody>
</table>

Mapping

<table>
<thead>
<tr>
<th>Advanced setup</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirm distance</td>
<td>→ 132</td>
</tr>
<tr>
<td>Mapping end point</td>
<td>→ 132</td>
</tr>
<tr>
<td>Record map</td>
<td>→ 132</td>
</tr>
<tr>
<td>Distance</td>
<td>→ 132</td>
</tr>
</tbody>
</table>

Level

<table>
<thead>
<tr>
<th>Advanced setup</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Locking status</td>
<td>→ 133</td>
</tr>
<tr>
<td>Access status display</td>
<td>→ 134</td>
</tr>
<tr>
<td>Enter access code</td>
<td>→ 134</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium type</td>
<td>→ 135</td>
</tr>
<tr>
<td>Medium property</td>
<td>→ 135</td>
</tr>
<tr>
<td>Process property</td>
<td>→ 136</td>
</tr>
</tbody>
</table>
Advanced process conditions

- Level unit → 138
- Blocking distance → 138
- Level correction → 139

Linearization

- Linearization type → 143
- Unit after linearization → 144
- Free text → 145
- Maximum value → 146
- Diameter → 146
- Intermediate height → 147
- Table mode → 147

Edit table

- Level
- Customer value

Safety settings

- Output echo lost → 150
- Value echo lost → 150
- Ramp at echo lost → 151
- Blocking distance → 138

SIL/WHG confirmation

Deactivate SIL/WHG

- Reset write protection → 154
- Code incorrect → 154
Levelflex FMP56, FMP57 HART

Operating menu

- **Probe settings**
 - Probe grounded ➔ 155
- **Probe length correction**
 - Confirm probe length ➔ 157
 - Present probe length ➔ 157
- **Current output 1 to 2**
 - Assign current output ➔ 158
 - Current span ➔ 159
 - Fixed current ➔ 159
 - Damping output ➔ 160
 - Failure mode ➔ 160
 - Failure current ➔ 161
 - Output current 1 to 2 ➔ 161
- **Switch output**
 - Switch output function ➔ 162
 - Assign status ➔ 163
 - Assign limit ➔ 163
 - Assign diagnostic behavior ➔ 163
 - Switch-on value ➔ 164
 - Switch-on delay ➔ 165
 - Switch-off value ➔ 165
 - Switch-off delay ➔ 166
 - Failure mode ➔ 166
 - Switch status ➔ 166
 - Invert output signal ➔ 166
Operating menu

Levelflex FMP56, FMP57 HART

- Display
 - Language
 - Format display
 - Value 1 to 4 display
 - Decimal places 1 to 4
 - Display interval
 - Display damping
 - Header
 - Header text
 - Separator
 - Number format
 - Decimal places menu
 - Backlight
 - Contrast display

- Configuration backup display
 - Operating time
 - Last backup
Levelflex FMP56, FMP57 HART

Operating menu

- Configuration management → 174
- Comparison result → 175
 - Administration → 177
 - Define access code → 179
 - Define access code
 - Confirm access code
 - Device reset
 - Diagnosis → 180
 - Actual diagnostics
 - Previous diagnostics
 - Operating time from restart
 - Operating time
 - Diagnostic list
 - Diagnostics 1 to 5
 - Event logbook
 - Filter options
 - Event list
 - Device information
 - Device tag
 - Serial number
 - Firmware version
 - Device name
 - Order code
 - Extended order code 1 to 3
 - Device revision
Measured values

- **Distance**
- **Level linearized**
- **Output current 1 to 2**
- **Measured current 1**
- **Terminal voltage 1**

Data logging

- **Assign channel 1 to 4**
- **Logging interval**
- **Clear logging data**

Display channel 1 to 4

Simulation

- **Assign measurement variable**
- **Process variable value**
- **Current output 1 to 2 simulation**
- **Value current output 1 to 2**
- **Switch output simulation**
- **Switch status**
- **Device alarm simulation**

Device check

- **Start device check**
- **Result device check**
| Last check time | → 197 |
| Level signal | → 198 |
| Launch signal | → 198 |
17.3 Overview of the operating menu (operating tool)

Navigation
Operating menu

<table>
<thead>
<tr>
<th>Setup</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device tag</td>
<td>126</td>
</tr>
<tr>
<td>Distance unit</td>
<td>126</td>
</tr>
<tr>
<td>Bin type</td>
<td>126</td>
</tr>
<tr>
<td>Empty calibration</td>
<td>127</td>
</tr>
<tr>
<td>Full calibration</td>
<td>127</td>
</tr>
<tr>
<td>Level</td>
<td>128</td>
</tr>
<tr>
<td>Distance</td>
<td>128</td>
</tr>
<tr>
<td>Signal quality</td>
<td>129</td>
</tr>
<tr>
<td>Confirm distance</td>
<td>130</td>
</tr>
<tr>
<td>Present mapping</td>
<td>131</td>
</tr>
<tr>
<td>Mapping end point</td>
<td>131</td>
</tr>
<tr>
<td>Record map</td>
<td>131</td>
</tr>
<tr>
<td>Advanced setup</td>
<td>133</td>
</tr>
<tr>
<td>Locking status</td>
<td>133</td>
</tr>
<tr>
<td>Access status tooling</td>
<td>133</td>
</tr>
<tr>
<td>Enter access code</td>
<td>134</td>
</tr>
<tr>
<td>Level</td>
<td>135</td>
</tr>
<tr>
<td>Medium type</td>
<td>135</td>
</tr>
<tr>
<td>Medium property</td>
<td>135</td>
</tr>
<tr>
<td>Process property</td>
<td>136</td>
</tr>
<tr>
<td>Advanced process conditions</td>
<td>137</td>
</tr>
<tr>
<td>Level unit</td>
<td>138</td>
</tr>
</tbody>
</table>
Operating menu

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocking distance</td>
<td>138</td>
</tr>
<tr>
<td>Level correction</td>
<td>139</td>
</tr>
<tr>
<td>Linearization</td>
<td>141</td>
</tr>
<tr>
<td>Linearization type</td>
<td>143</td>
</tr>
<tr>
<td>Unit after linearization</td>
<td>144</td>
</tr>
<tr>
<td>Free text</td>
<td>145</td>
</tr>
<tr>
<td>Level linearized</td>
<td>146</td>
</tr>
<tr>
<td>Maximum value</td>
<td>146</td>
</tr>
<tr>
<td>Diameter</td>
<td>146</td>
</tr>
<tr>
<td>Intermediate height</td>
<td>147</td>
</tr>
<tr>
<td>Table mode</td>
<td>147</td>
</tr>
<tr>
<td>Table number</td>
<td>148</td>
</tr>
<tr>
<td>Level</td>
<td>148</td>
</tr>
<tr>
<td>Level</td>
<td>149</td>
</tr>
<tr>
<td>Customer value</td>
<td>149</td>
</tr>
<tr>
<td>Activate table</td>
<td>149</td>
</tr>
<tr>
<td>Safety settings</td>
<td>150</td>
</tr>
<tr>
<td>Output echo lost</td>
<td>150</td>
</tr>
<tr>
<td>Value echo lost</td>
<td>150</td>
</tr>
<tr>
<td>Ramp at echo lost</td>
<td>151</td>
</tr>
<tr>
<td>Blocking distance</td>
<td>138</td>
</tr>
<tr>
<td>SIL/WHG confirmation</td>
<td>153</td>
</tr>
<tr>
<td>Deactivate SIL/WHG</td>
<td>154</td>
</tr>
<tr>
<td>Reset write protection</td>
<td>154</td>
</tr>
<tr>
<td>Code incorrect</td>
<td>154</td>
</tr>
</tbody>
</table>
Probe settings

- Probe grounded
- Present probe length
- Confirm probe length

Current output 1 to 2

- Assign current output
- Current span
- Fixed current
- Damping output
- Failure mode
- Failure current
- Output current 1 to 2

Switch output

- Switch output function
- Assign status
- Assign limit
- Assign diagnostic behavior
- Switch-on value
- Switch-on delay
- Switch-off value
- Switch-off delay
- Failure mode
- Switch status
- Invert output signal
Operating menu

Display

- Language → 168
- Format display → 168
- Value 1 to 4 display → 170
- Decimal places 1 to 4 → 170
- Display interval → 170
- Display damping → 171
- Header → 171
- Header text → 171
- Separator → 172
- Number format → 172
- Decimal places menu → 172
- Backlight → 172
- Contrast display → 173

Configuration backup display

- Operating time → 174
- Last backup → 174
- Configuration management → 174
- Backup state → 175
- Comparison result → 175

Administration

- Define access code → 177
- Device reset → 177

Diagnostics

- Actual diagnostics → 180
Operating menu

Leveflex FMP56, FMP57 HART

- **Timestamp**
- **Previous diagnostics**
- **Timestamp**
- **Operating time from restart**
- **Operating time**

Diagnostic list
- **Diagnostics 1 to 5**
- **Timestamp 1 to 5**

Device information
- **Device tag**
- **Serial number**
- **Firmware version**
- **Device name**
- **Order code**
- **Extended order code 1 to 3**
- **Device revision**
- **Device ID**
- **Device type**
- **Manufacturer ID**

Measured values
- **Distance**
- **Level linearized**
- **Output current 1 to 2**
- **Measured current 1**
- **Terminal voltage 1**
<table>
<thead>
<tr>
<th>Data logging</th>
<th>→</th>
<th>189</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign channel 1 to 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logging interval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear logging data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simulation</th>
<th>→</th>
<th>193</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign measurement variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process variable value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current output 1 to 2 simulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value current output 1 to 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch output simulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device alarm simulation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device check</th>
<th>→</th>
<th>197</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start device check</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Result device check</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last check time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Launch signal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heartbeat</th>
<th>→</th>
<th>199</th>
</tr>
</thead>
</table>
17.4 "Setup" menu

- : Indicates how to navigate to the parameter using the display and operating module
- : Indicates how to navigate to the parameter using operating tools (e.g. FieldCare)
- : Indicates parameters that can be locked via the access code.

Navigation

Device tag

Navigation

- Setup → Device tag

Description

Enter a unique name for the measuring point to identify the device quickly within the plant.

User entry

Character string comprising numbers, letters and special characters (32)

Distance unit

Navigation

- Setup → Distance unit

Description

Used for the basic calibration (Empty / Full).

Selection

- SI units
 - mm
 - m
- US units
 - ft
 - in

Bin type

Navigation

- Setup → Bin type

Prerequisite

Medium type (→ 135) = Solid

Description

Specify bin type.

Selection

- Concrete
- Plastic wood
- Metallic
- Aluminium
Empty calibration

Navigation

Setup → Empty calibr.

Description
Distance between process connection and minimum level (0%).

User entry
Depending on the probe

Factory setting
Depending on the probe

Additional information

![Diagram](image)

47 Empty calibration (E) for level measurements in bulk solids.

Full calibration

Navigation

Setup → Full calibr.

Description
Distance between minimum level (0%) and maximum level (100%).

User entry
Depending on the probe

Factory setting
Depending on the probe
Additional information

48 Full calibration (F) for level measurements in bulk solids

Level

Navigation ➕ Setup → Level

Description Displays measured level L_L (before linearization).

Additional information

49 Level in case of bulk solid measurements

The unit is defined in the Level unit parameter (→ 138).

Distance

Navigation ➕ Setup → Distance

Description Displays the measured distance D_L between the reference point (lower edge of the flange or threaded connection) and the level.
Additional information

50 Distance for bulk solid measurements

The unit is defined in the **Distance unit** parameter (→ 126).

Signal quality

Navigation

Setup → Signal quality

Description

Displays the signal quality of the evaluated echo.

Additional information

Meaning of the display options

- **Strong**
 The evaluated echo exceeds the threshold by at least 10 mV.
- **Medium**
 The evaluated echo exceeds the threshold by at least 5 mV.
- **Weak**
 The evaluated echo exceeds the threshold by less than 5 mV.
- **No signal**
 The device does not find a usable echo.

The signal quality indicated in this parameter always refers to the currently evaluated echo: either the level/interface echo 4) or the end-of-probe echo. To differentiate between these two, the quality of the end-of-probe echo is always displayed in brackets.

In case of a lost echo (**Signal quality = No signal**) the device generates the following error message:

- F941, for **Output echo lost (→ 150)** = Alarm.
- S941, if another option has been selected in **Output echo lost (→ 150)**.

4) Of these two echoes the one with the lower quality is indicated.
Confirm distance

Navigation
Setup → Confirm distance

Description
Specify, whether the measured distance matches the real distance.
Depending on the selection the device automatically sets the range of mapping.

Selection
- Manual map
- Distance ok
- Distance unknown *
- Distance too small *
- Distance too big *
- Tank empty
- Delete map

Additional information
Meaning of the options
- Manual map
 To be selected if the range of mapping is to be defined manually in the Mapping end point parameter (→ 131). In this case it is not necessary to confirm the distance.
- Distance ok
 To be selected if the measured distance matches the actual distance. The device performs a mapping.
- Distance unknown
 To be selected if the actual distance is unknown. A mapping can not be performed in this case.
- Distance too small
 To be selected if the measured distance is smaller than the actual distance. The device searches for the next echo and returns to the Confirm distance parameter. The distance is recalculated and displayed. The comparison must be repeated until the displayed distance matches the actual distance. After this, the recording of the map can be started by selecting Distance ok.
- Distance too big
 To be selected if the measured distance exceeds the actual distance. The device adjusts the signal evaluation and returns to the Confirm distance parameter. The distance is recalculated and displayed. The comparison must be repeated until the displayed distance matches the actual distance. After this, the recording of the map can be started by selecting Distance ok.
- Tank empty
 To be selected if the tank is completely empty. The device records a mapping covering the complete measuring range.
 To be selected if the tank is completely empty. The device records a mapping covering the complete measuring range minus Map gap to LN.
- Factory map
 To be selected if the present mapping curve (if one exists) is to be deleted. The device returns to the Confirm distance parameter and a new mapping can be recorded.

When operating via the display module, the measured distance is displayed together with this parameter for reference purposes.

If the teaching procedure with the Distance too small option or the Distance too big option is quit before the distance has been confirmed, a map is not recorded and the teaching procedure is reset after 60 s.

* Visibility depends on order options or device settings
5) Only available for "Expert → Sensor → Echo tracking → Evaluation mode parameter" = "Short time history" or "Long time history"
Present mapping

Navigation

Setup → Present mapping

Description

Indicates up to which distance a mapping has already been recorded.

Mapping end point

Navigation

Setup → Map. end point

Prerequisite

Confirm distance (→ 130) = Manual map or Distance too small

Description

Specify new end of the mapping.

User entry

0 to 200 000.0 m

Additional information

This parameter defines up to which distance the new mapping is to be recorded. The distance is measured from the reference point, i.e. from the lower edge of the mounting flange or the threaded connection.

For reference purposes the Present mapping parameter (→ 131) is displayed together with this parameter. It indicates up to which distance a mapping has already been recorded.

Record map

Navigation

Setup → Record map

Prerequisite

Confirm distance (→ 130) = Manual map or Distance too small

Description

Start recording of the map.

Selection

- No
- Record map
- Delete map

Additional information

Meaning of the options

- No
 The map is not recorded.
- Record map
 The map is recorded. After the recording is completed, the new measured distance and the new mapping range appear on the display. When operating via the local display, these values must be confirmed by pressing .
- Delete map
 The mapping (if one exists) is deleted and the device displays the recalculated measured distance and the mapping range. When operating via the local display, these values must be confirmed by pressing .
17.4.1 "Mapping" wizard

The Mapping wizard is only available when operating via the local display. When operating via an operating tool, all parameters concerning the mapping are located directly in the Setup menu (→ 126).

In the Mapping wizard two parameters are displayed simultaneously on the display module at any one time. The upper parameter can be edited, whereas the lower parameter is displayed for reference purposes only.

Navigation ➔ Setup → Mapping

Confirm distance

Navigation ➔ Setup → Mapping → Confirm distance

Description ➔ 130

Mapping end point

Navigation ➔ Setup → Mapping → Map. end point

Description ➔ 131

Record map

Navigation ➔ Setup → Mapping → Record map

Description ➔ 131

Distance

Navigation ➔ Setup → Mapping → Distance

Description ➔ 128
17.4.2 "Advanced setup" submenu

Navigation ⚙ Setup → Advanced setup

Locking status

Description Indicates the write protection with the highest priority that is currently active.

User interface
- Hardware locked
- SIL locked
- CT active - defined parameters
- WHG locked
- Temporarily locked

Additional information

Meaning and priorities of the types of write protection
- Hardware locked (priority 1)
 The DIP switch for hardware locking is activated on the main electronics module. This locks write access to the parameters.
- SIL locked (priority 2)
 The SIL mode is activated. Writing access to the relevant parameters is denied.
- WHG locked (priority 3)
 The WHG mode is activated. Writing access to the relevant parameters is denied.
- Temporarily locked (priority 4)
 Write access to the parameters is temporarily locked on account of internal processes in progress in the device (e.g. data upload/download, reset etc.). The parameters can be modified as soon as the processes are complete.

On the display module, the ⬅️ symbol appears in front of parameters that cannot be modified since they are write-protected.

Access status tooling

Navigation ⚙ Setup → Advanced setup

Description Shows the access authorization to the parameters via the operating tool.

Additional information

The access authorization can be changed via the Enter access code parameter (ʼ→ ⚙ 134).

If additional write protection is active, this restricts the current access authorization even further. The write protection status can be viewed via the Locking status parameter (ʼ→ ⚙ 133).
Access status display

Navigation
Setup → Advanced setup → Access stat.disp

Prerequisite
The device has a local display.

Description
Indicates access authorization to parameters via local display.

Additional information
- The access authorization can be changed via the Enter access code parameter (→ 134).
- If additional write protection is active, this restricts the current access authorization even further. The write protection status can be viewed via the Locking status parameter (→ 133).

Enter access code

Navigation
Setup → Advanced setup → Ent. access code

Description
Enter access code to disable write protection of parameters.

User entry
0 to 9999

Additional information
- The customer-specific access code that was defined in the Define access code parameter (→ 177) must be entered for local operation.
- If an incorrect access code is entered, users retain their current access authorization.
- The write protection affects all parameters marked with the symbol in the document. On the local display, the symbol in front of a parameter indicates that the parameter is write-protected.
- If no key is pressed for 10 minutes or the user goes from the navigation and editing mode back to the measured value display mode, the device automatically locks the write-protected parameters after another 60 s.
- Please contact your Endress+Hauser Sales Center if you lose your access code.
"Level" submenu

Navigation ─ Setup → Advanced setup → Level

Medium type

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Setup → Advanced setup → Level → Medium type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Specify type of medium.</td>
</tr>
</tbody>
</table>
| User interface | • Liquid
| | • Solid |
| Factory setting | FMP56, FMP57: Solid |
| Additional information | This parameter determines the value of several other parameters and strongly influences the complete signal evaluation. Therefore, it is strongly recommended not to change the factory setting. |

Medium property

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Setup → Advanced setup → Level → Medium property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>EOP level evaluation = Fix DC</td>
</tr>
<tr>
<td>Description</td>
<td>Specify the dielectric constant ε_r of the medium.</td>
</tr>
</tbody>
</table>
| Selection | • Unknown
| | • DC 1.4 ... 1.6
| | • DC 1.6 ... 1.9
| | • DC 1.9 ... 2.5
| | • DC 2.5 ... 4
| | • DC 4 ... 7
| | • DC 7 ... 15
| | • DC > 15 |
| Factory setting | Depends on the Medium type (→ 135) and Medium group parameters. |
Operating menu
Levelflex FMP56, FMP57 HART

Additional information

Dependency of "Medium type" and "Medium group"

<table>
<thead>
<tr>
<th>Medium type (→ 135)</th>
<th>Medium group</th>
<th>Medium property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td></td>
<td>Unknown</td>
</tr>
<tr>
<td>Liquid</td>
<td>Water based (DC >= 6)</td>
<td>DC 4 ... 7</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td>Unknown</td>
</tr>
</tbody>
</table>

For the dielectric constants (DC values) of many media commonly used in industry, please refer to:
- Dielectric constant (DC value) Compendium CP01076F
- The Endress+Hauser "DC Values app" (available for Android and iOS)

If EOP level evaluation = Fix DC, the exact dielectric constant must be specified in the DC value parameter. The Medium property parameter therefore does not apply in this case.

Process property

Navigation
Setup → Advanced setup → Level → Process property

Description
Specify typical rate of level change.

Selection
For "Medium type" = "Liquid"
- Very fast > 10 m (400 in)/min
- Fast > 1 m (40 in)/min
- Standard < 1 m (40 in)/min
- Medium < 10 cm (4 in) /min
- Slow < 1 cm (0.4 in) /min
- No filter / test

For "Medium type" = "Solid"
- Very fast > 100 m (333 ft) /h
- Fast > 10 m (33 ft) /h
- Standard < 10 m (33 ft) /h
- Medium < 1 m (3 ft) /h
- Slow < 0.1 m (0.3 ft) /h
- No filter / test

Additional information
The device adjusts the signal evaluation filters and the damping of the output signal to the typical rate of level change defined in this parameter:

For "Operating mode" = "Level" and "Medium type" = "Liquid"

<table>
<thead>
<tr>
<th>Process property</th>
<th>Step response time / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very fast > 10 m (400 in)/min</td>
<td>5</td>
</tr>
<tr>
<td>Fast > 1 m (40 in)/min</td>
<td>5</td>
</tr>
<tr>
<td>Standard < 1 m (40 in)/min</td>
<td>14</td>
</tr>
<tr>
<td>Medium < 10 cm (4 in) /min</td>
<td>39</td>
</tr>
<tr>
<td>Slow < 1 cm (0.4 in) /min</td>
<td>76</td>
</tr>
<tr>
<td>No filter / test</td>
<td>< 1</td>
</tr>
</tbody>
</table>
For "Operating mode" = 'Level' and 'Medium type' = 'Solid'

<table>
<thead>
<tr>
<th>Process property</th>
<th>Step response time / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very fast > 100 m (333 ft) /h</td>
<td>37</td>
</tr>
<tr>
<td>Fast > 10 m (33 ft) /h</td>
<td>37</td>
</tr>
<tr>
<td>Standard < 10 m (33 ft) /h</td>
<td>74</td>
</tr>
<tr>
<td>Medium < 1 m (3ft) /h</td>
<td>146</td>
</tr>
<tr>
<td>Slow < 0.1 m (0.3ft) /h</td>
<td>290</td>
</tr>
<tr>
<td>No filter / test</td>
<td>< 1</td>
</tr>
</tbody>
</table>

For "Operating mode" = 'Interface' or 'Interface with capacitance'

<table>
<thead>
<tr>
<th>Process property</th>
<th>Step response time / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very fast > 10 m (400 in)/min</td>
<td>5</td>
</tr>
<tr>
<td>Fast > 1 m (40 in)/min</td>
<td>5</td>
</tr>
<tr>
<td>Standard < 1 m (40in) /min</td>
<td>23</td>
</tr>
<tr>
<td>Medium < 10 cm (4in) /min</td>
<td>47</td>
</tr>
<tr>
<td>Slow < 1 cm (0.4in) /min</td>
<td>81</td>
</tr>
<tr>
<td>No filter / test</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Advanced process conditions

Navigation

- Setup → Advanced setup → Level → Adv. conditions

Description

Specify additional process conditions (if required).

Selection

- None
- Oil/Water condensate
- Probe near tank bottom
- Build up
- Foam (>5cm/0.16ft)

Additional information

Meaning of the options

- **Oil/Water condensate** (only Medium type = Liquid)
 Makes sure that in the case of two-phase media only the total level is detected (example: oil/condensate application).

- **Probe near tank bottom** (only for Medium type = Liquid)
 Improves the empty detection, especially if the probe is mounted close to the tank bottom.

- **Build up**
 Increases EOP range upper area in order to ensure a safe empty-detection even if the end-of-probe signal has shifted due to build-up.
 Enables a safe empty-detection even if the end-of-probe signal has shifted due to build-up.

- **Foam (>5cm/0.16ft)** (only for Medium type = Liquid)
 Optimizes the signal evaluation in applications with foam formation.
Level unit

Navigation

 mower Setup → Advanced setup → Level → Level unit

Description

Select level unit.

Selection

- **SI units**
 - %
 - m
 - mm

- **US units**
 - ft
 - in

Additional information

The level unit may differ from the distance unit defined in the Distance unit parameter (→ 126):

- The unit defined in the Distance unit parameter is used for the basic calibration (Empty calibration (→ 127) and Full calibration (→ 127)).
- The unit defined in the Level unit parameter is used to display the (unlinearized) level.

Blocking distance

Navigation

 mower Setup → Advanced setup → Level → Blocking dist.

Description

Specify upper blocking distance UB.

User entry

0 to 200 m

Factory setting

- For rod and rope probes up to 8 m (26 ft): 200 mm (8 in)
- For rod and rope probes above 8 m (26 ft): 0.025 * Sondenlänge

Additional information

Signals in the upper blocking distance are only evaluated if they have been outside the blocking distance when the device was switched on and move into the blocking distance due to a level change during operation. Signals which are already in the blocking distance when the device is switched on, are ignored.

- This behavior is only valid if the following two conditions are met:
 - Expert → Sensor → Echo tracking → Evaluation mode = Short time history or Long time history
 - Expert → Sensor → Gas phase compensation → GPC mode= On, Without correction or External correction

 If one of these conditions is not met, signals in the blocking distance will always be ignored.

- A different behavior for signals in the blocking distance can be defined in the Blocking distance evaluation mode parameter.

- If required, a different behavior for signals in the blocking distance can be defined by the Endress+Hauser service.
Level correction

Navigation

Setup → Advanced setup → Level → Level correction

Description

Specify level correction (if required).

User entry

−200 000.0 to 200 000.0 %

Additional information

The value specified in this parameter is added to the measured level (before linearization).
"Linearization" submenu

1. Selection of linearization type and unit
2. Configuration of the linearization
 A. Linearization type (→ 143) = None
 B. Linearization type (→ 143) = Linear
 C. Linearization type (→ 143) = Table
 D. Linearization type (→ 143) = Pyramid bottom
 E. Linearization type (→ 143) = Conical bottom
 F. Linearization type (→ 143) = Angled bottom
 G. Linearization type (→ 143) = Horizontal cylinder
 H. Linearization type (→ 143) = Sphere
I. For "Operating mode" = "Interface" or "Interface with capacitance": interface before linearization (measured in the level unit)
I’. For "Operating mode" = "Interface" or "Interface with capacitance": interface after linearization (corresponds to volume or weight)
L. Level before linearization (measured in level unit)
L’. Level linearized (→ 146) (corresponds to volume or weight)
M. Maximum value (→ 146)
d. Diameter (→ 146)
h. Intermediate height (→ 147)
Structure of the submenu on the local display

Navigation ➡️ Setup ➡️ Advanced setup ➡️ Linearization

<table>
<thead>
<tr>
<th>➤ Linearization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearization type</td>
</tr>
<tr>
<td>Unit after linearization</td>
</tr>
<tr>
<td>Free text</td>
</tr>
<tr>
<td>Maximum value</td>
</tr>
<tr>
<td>Diameter</td>
</tr>
<tr>
<td>Intermediate height</td>
</tr>
<tr>
<td>Table mode</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>➤ Edit table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
</tr>
<tr>
<td>Customer value</td>
</tr>
</tbody>
</table>

Activate table
Structure of the submenu in the operating tool (e.g. FieldCare)

Navigation ➡️ Setup → Advanced setup → Linearization

- Linearization type
- Unit after linearization
- Free text
- Level linearized
- Maximum value
- Diameter
- Intermediate height
- Table mode
- Table number
- Level
- Level
- Level
- Customer value
- Activate table
Description of the parameters

Navigation

Setup → Advanced setup → Linearization

Description

Select linearization type.

Selection

- None
- Linear
- Table
- Pyramid bottom
- Conical bottom
- Angled bottom
- Horizontal cylinder
- Sphere

Additional information

<table>
<thead>
<tr>
<th>Linearization Types</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>A None</td>
<td>![Diagram A]</td>
</tr>
<tr>
<td>B Table</td>
<td>![Diagram B]</td>
</tr>
<tr>
<td>C Pyramid bottom</td>
<td>![Diagram C]</td>
</tr>
<tr>
<td>D Conical bottom</td>
<td>![Diagram D]</td>
</tr>
<tr>
<td>E Angled bottom</td>
<td>![Diagram E]</td>
</tr>
<tr>
<td>F Sphere</td>
<td>![Diagram F]</td>
</tr>
<tr>
<td>G Horizontal cylinder</td>
<td>![Diagram G]</td>
</tr>
</tbody>
</table>

A0021476

53 Linearization types

A None
B Table
C Pyramid bottom
D Conical bottom
E Angled bottom
F Sphere
G Horizontal cylinder
Operating menu

Levelflex FMP56, FMP57 HART

Meaning of the options

• None
 The level is output in the level unit without being converted (linearized) beforehand.

• Linear
 The output value (volume/weight) is proportional to the level L. This applies, for example, to vertical cylindrical tanks and silos. The following parameters must also be specified:
 • Unit after linearization (→ 144)
 • Maximum value (→ 146): maximum volume or weight

• Table
 The relationship between the measured level L and the output value (volume/weight) is defined by a linearization table consisting of up to 32 pairs of values "level - volume" or "level - weight" respectively. The following parameters must also be specified:
 • Unit after linearization (→ 144)
 • Table mode (→ 147)
 • For every point in the table: Level (→ 148)
 • For every point in the table: Customer value (→ 149)
 • Activate table (→ 149)

• Pyramid bottom
 The output value corresponds to the volume or weight in a silo with a pyramid bottom. The following parameters must also be specified:
 • Unit after linearization (→ 144)
 • Maximum value (→ 146): maximum volume or weight
 • Intermediate height (→ 147): the height of the pyramid

• Conical bottom
 The output value corresponds to the volume or weight in a tank with a conical bottom. The following parameters must also be specified:
 • Unit after linearization (→ 144)
 • Maximum value (→ 146): maximum volume or weight
 • Intermediate height (→ 147): the height of the cone

• Angled bottom
 The output value corresponds to the volume or weight in a silo with an angled bottom. The following parameters must also be specified:
 • Unit after linearization (→ 144)
 • Maximum value (→ 146): maximum volume or weight
 • Intermediate height (→ 147): height of the angled bottom

• Horizontal cylinder
 The output value corresponds to the volume or weight in a horizontal cylinder. The following parameters must also be specified:
 • Unit after linearization (→ 144)
 • Maximum value (→ 146): maximum volume or weight
 • Diameter (→ 146)

• Sphere
 The output value corresponds to the volume or weight in a spherical tank. The following parameters must also be specified:
 • Unit after linearization (→ 144)
 • Maximum value (→ 146): maximum volume or weight
 • Diameter (→ 146)

Unit after linearization

Navigation

Setup → Advanced setup → Linearization → Unit lineariz.

Prerequisite

Linearization type (→ 143) ≠ None
Description

Select the unit for the linearized value.

Selection

Selection/input (uint16)

- 1095 = [short Ton]
- 1094 = [lb]
- 1088 = [kg]
- 1092 = [Ton]
- 1048 = [US Gal.]
- 1049 = [Imp. Gal.]
- 1043 = [ft³]
- 1571 = [cm³]
- 1035 = [dm³]
- 1034 = [m³]
- 1038 = [l]
- 1041 = [hl]
- 1342 = [%]
- 1010 = [m]
- 1012 = [mm]
- 1018 = [ft]
- 1019 = [inch]
- 1351 = [l/s]
- 1352 = [l/min]
- 1353 = [l/h]
- 1347 = [m³/s]
- 1348 = [m³/min]
- 1349 = [m³/h]
- 1356 = [ft³/s]
- 1357 = [ft³/min]
- 1358 = [ft³/h]
- 1362 = [US Gal./s]
- 1363 = [US Gal./min]
- 1364 = [US Gal./h]
- 1367 = [Imp. Gal./s]
- 1359 = [Imp. Gal./min]
- 32815 = [Ml/s]
- 32816 = [Ml/min]
- 32817 = [Ml/h]
- 1355 = [Ml/d]

Additional information

The selected unit is only used for display purposes. The measured value is not converted on the basis of the selected unit.

Distance-to-distance linearization is also possible, i.e. a linearization from the level unit to another length unit. Select the Linear linearization mode for this purpose. To specify the new level unit, select the Free text option in the Unit after linearization parameter and enter the unit in the Free text parameter (→ 145).

Free text

Navigation

Setup → Advanced setup → Linearization → Free text

Prerequisite

Unit after linearization (→ 144) = Free text

Description

Enter unit symbol.
Operating menu

User entry
Up to 32 alphanumerical characters (letters, numbers, special characters)

Level linearized

Navigation
Setup → Advanced setup → Linearization → Level linearized

Description
Displays linearized level.

Additional information
The unit is defined by the Unit after linearization parameter → 144.

Maximum value

Navigation
Setup → Advanced setup → Linearization → Maximum value

Prerequisite
Linearization type (→ 143) has one of the following values:
- Linear
- Pyramid bottom
- Conical bottom
- Angled bottom
- Horizontal cylinder
- Sphere

Description
Linearized value corresponding to a level of 100%.

User entry
-50 000.0 to 50 000.0 %

Diameter

Navigation
Setup → Advanced setup → Linearization → Diameter

Prerequisite
Linearization type (→ 143) has one of the following values:
- Horizontal cylinder
- Sphere

Description
Diameter of the cylindrical or spherical tank.

User entry
0 to 9 999.999 m

Additional information
The unit is defined in the Distance unit parameter (→ 126).
Intermediate height

Navigation
Setup → Advanced setup → Linearization → Intermed. height

Prerequisite
Linearization type (→ 143) has one of the following values:
- Pyramid bottom
- Conical bottom
- Angled bottom

Description
Height of the pyramid, conical or angled bottom.

User entry
0 to 200 m

Additional information

The unit is defined in the Distance unit parameter (→ 126).

Table mode

Navigation
Setup → Advanced setup → Linearization → Table mode

Prerequisite
Linearization type (→ 143) = Table

Description
Select editing mode of the linearization table.

Selection
- Manual
- Semiautomatic
- Clear table
- Sort table

Additional information
Meaning of the options
- Manual
 The level and the associated linearized value are entered manually for each linearization point.
- Semiautomatic
 The level is measured by the device for each linearization point. The associated linearized value is entered manually.
- Clear table
 Deletes the existing linearization table.
- Sort table
 Rearranges the linearization points into an ascending order.
Conditions the linearization table must meet:

- The table may consist of up to 32 pairs of values "Level - Linearized Value".
- The table must be monotonic (monotonically increasing or decreasing).
- The first linearization point must refer to the minimum level.
- The last linearization point must refer to the maximum level.

Before entering a linearization table, the values for Empty calibration (→ 127) and Full calibration (→ 127) must be set correctly.

If values of the table need to be changed after the full or empty calibration have been changed, a correct evaluation is only ensured if the existing table is deleted and the complete table is entered again. To do so delete the existing table (Table mode → 147) = Clear table. Then enter a new table.

How to enter the table

- Via FieldCare
 The table points can be entered via the Table number (→ 148), Level (→ 148) and Customer value (→ 149) parameters. As an alternative, the graphic table editor may be used: Device Operation → Device Functions → Additional Functions → Linearization (Online/Offline)
- Via local display
 Select the Edit table submenu to call up the graphic table editor. The table is displayed and can be edited line by line.

The factory setting for the level unit is "%". If you want to enter the linearization table in physical units, you must select the appropriate unit in the Level unit parameter (→ 138) beforehand.

If a decreasing table is entered, the values for 20 mA and 4 mA of the current output are interchanged. That means: 20 mA refers to the lowest level, whereas 4 mA refers to the highest level.

Table number

Navigation

- Setup → Advanced setup → Linearization → Table number

Prerequisite

- Linearization type (→ 143) = Table

Description

Select table point you are going to enter or change.

User entry

1 to 32

Level (Manual)

Navigation

- Setup → Advanced setup → Linearization → Level

Prerequisite

- Linearization type (→ 143) = Table
 - Table mode (→ 147) = Manual

Description

Enter level value of the table point (value before linearization).

User entry

Signed floating-point number
Level (Semiautomatic)

Navigation

Setup → Advanced setup → Linearization → Level

Prerequisite

- Linearization type (→ 143) = Table
- Table mode (→ 147) = Semiautomatic

Description

Displays measured level (value before linearization). This value is transmitted to the table.

Customer value

Navigation

Setup → Advanced setup → Linearization → Customer value

Prerequisite

Linearization type (→ 143) = Table

Description

Enter linearized value for the table point.

User entry

Signed floating-point number

Activate table

Navigation

Setup → Advanced setup → Linearization → Activate table

Prerequisite

Linearization type (→ 143) = Table

Description

Activate (enable) or deactivate (disable) the linearization table.

Selection

- Disable
- Enable

Additional information

Meaning of the options

- **Disable**
 The measured level is not linearized.
 If Linearization type (→ 143) = Table at the same time, the device issues error message F435.

- **Enable**
 The measured level is linearized according to the table.

 When editing the table, the Activate table parameter is automatically reset to Disable and must be reset to Enable after the table has been entered.
"Safety settings" submenu

Navigation ⊆ ⊆ Setup → Advanced setup → Safety sett.

Output echo lost

Navigation ⊆ ⊆ Setup → Advanced setup → Safety sett. → Output echo lost

Description
Output signal in case of a lost echo.

Selection
• Last valid value
• Ramp at echo lost
• Value echo lost
• Alarm

Additional information
Meaning of the options
• Last valid value
The last valid value is kept in the case of a lost echo.
• Ramp at echo lost 6)
In the case of a lost echo the output value is continuously shifted towards 0% or 100%.
The slope of the ramp is defined in the Ramp at echo lost parameter (→ ⊆ 151).
• Value echo lost 6)
In the case of a lost echo the output assumes the value defined in the Value echo lost parameter (→ ⊆ 150).
• Alarm
In the case of a lost echo the device generates an alarm; see the Failure mode parameter (→ ⊆ 160)

Value echo lost

Navigation ⊆ ⊆ Setup → Advanced setup → Safety sett. → Value echo lost

Prerequisite
Output echo lost (→ ⊆ 150) = Value echo lost

Description
Output value in case of a lost echo

User entry
0 to 200 000.0 %

Additional information
Use the unit which has been defined for the measured value output:
• without linearization: Level unit (→ ⊆ 138)
• with linearization: Unit after linearization (→ ⊆ 144)

6) Only visible if "Linearization type (→ ⊆ 143)" = "None"
Ramp at echo lost

Navigation
Setup → Advanced setup → Safety sett. → Ramp echo lost

Prerequisite
Output echo lost (→ 150) = Ramp at echo lost

Description
Slope of the ramp in the case of a lost echo

User entry
Signed floating-point number

Additional information

- The unit for the slope of the ramp is "percentage of the measuring range per minute" (%/min).
- For a negative slope of the ramp: The measured value is continuously decreased until it reaches 0%.
- For a positive slope of the ramp: The measured value is continuously increased until it reaches 100%.

Blocking distance

Navigation
Setup → Advanced setup → Safety sett. → Blocking dist.

Description
Specify upper blocking distance UB.

User entry
0 to 200 m

Factory setting
- For rod and rope probes up to 8 m (26 ft): 200 mm (8 in)
- For rod and rope probes above 8 m (26 ft): 0.025 * Sondenlänge

Additional information
Signals in the upper blocking distance are only evaluated if they have been outside the blocking distance when the device was switched on and move into the blocking distance.
due to a level change during operation. Signals which are already in the blocking distance when the device is switched on, are ignored.

This behavior is only valid if the following two conditions are met:
- Expert → Sensor → Echo tracking → Evaluation mode = Short time history or Long time history
- Expert → Sensor → Gas phase compensation → GPC mode= On, Without correction or External correction

If one of these conditions is not met, signals in the blocking distance will always be ignored.

A different behavior for signals in the blocking distance can be defined in the Blocking distance evaluation mode parameter.

If required, a different behavior for signals in the blocking distance can be defined by the Endress+Hauser service.

54 Blocking distance (UB) for bulk solid measurements
"SIL/WHG confirmation" wizard

The **SIL/WHG confirmation** wizard is only available for devices with SIL or WHG approval (Feature 590: "Additional Approval", option LA: "SIL" or LC: "WHG overfill prevention") which are currently not in the SIL- or WHG-locked state.

The **SIL/WHG confirmation** wizard is required to lock the device according to SIL or WHG. For details refer to the "Functional Safety Manual" of the respective device, which describes the locking procedure and the parameters of the sequence.

Navigation

Setup → Advanced setup → SIL/WHG confirm.
"Deactivate SIL/WHG" wizard

The Deactivate SIL/WHG wizard (→ 154) is only visible if the device is SIL-locked or WHG-locked. For details refer to the "Functional Safety Manual" of the respective device.

Navigation Setup → Advanced setup → Deactiv. SIL/WHG

Reset write protection

Navigation Setup → Advanced setup → Deactiv. SIL/WHG → Res. write prot.

Description Enter unlocking code.

User entry 0 to 65535

Code incorrect

Navigation Setup → Advanced setup → Deactiv. SIL/WHG → Code incorrect

Description Indicates that a wrong unlocking code has been entered. Select procedure.

Selection • Reenter code
• Abort sequence
"Probe settings" submenu

The Probe settings submenu helps to ensure that the end of probe signal within the envelope curve is correctly assigned by the evaluation algorithm. The assignment is correct if the length of probe indicated by the device matches the actual length of the probe. The automatic probe length correction can only be performed if the probe is installed in the vessel and is completely uncovered (no medium). For partially filled vessels and if the probe length is known, select Confirm probe length (→ 156) = Manual input in order to enter the value manually.

If a mapping (interference echo suppression) has been recorded after shortening the probe, it is no longer possible to perform an automatic probe length correction. In this case there are two options:

- Delete the map using the Record map parameter (→ 131) before performing the automatic probe length correction. After the probe length correction, a new map can be recorded using the Record map parameter (→ 131).
- Alternative: Select Confirm probe length (→ 156) = Manual input and enter the probe length manually into the Present probe length parameter → 155.

An automatic probe length correction is only possible after the correct option has been selected in the Probe grounded parameter (→ 155).

Navigation Setup → Advanced setup → Probe settings

Probe grounded

Prerequisite Operating mode = Level

Description Specify whether the probe is grounded.

Selection

- No
- Yes

Present probe length

Description

- In most cases:
 Displays the length of the probe according to the currently measured end-of-probe signal.
- For Confirm probe length (→ 156) = Manual input:
 Enter actual length of probe.

User entry 0 to 200 m
Confirm probe length

Navigation
Setup → Advanced setup → Probe settings → Confirm length

Description
Select, whether the value displayed in the Present probe length parameter matches the actual length of the probe. Based on this input, the device performs a probe length correction.

Selection
- Probe length OK
- Probe length too small
- Probe length too big
- Probe covered
- Manual input
- Probe length unknown

Additional information
Meaning of the options
- **Probe length OK**
 To be selected if the indicated length is correct. An adjustment is not required. The device quits the sequence.
- **Probe length too small**
 To be selected if the displayed length is smaller than the actual length of the probe. A different end of probe signal is allocated and the newly calculated length is displayed in the Present probe length parameter. This procedure has to be repeated until the displayed value matches the actual length of the probe.
- **Probe length too big**
 To be selected if the displayed length is bigger than the actual length of the probe. A different end of probe signal is allocated and the newly calculated length is indicated in the Present probe length parameter. This procedure has to be repeated until the displayed value matches the actual length of the probe.
- **Probe covered**
 To be selected if the probe is (partially or completely) covered. A probe length correction is impossible in this case. The device quits the sequence.
- **Manual input**
 To be selected if no automatic probe length correction is to be performed. Instead, the actual length of the probe must be entered manually into the Present probe length parameter.
- **Probe length unknown**
 To be selected if the actual length of the probe is unknown. A probe length correction is impossible in this case and the device quits the sequence.

7) When operated via FieldCare, the Manual input option needs not to be selected explicitly. In FieldCare the length of the probe can always be edited.
"Probe length correction" wizard

The **Probe length correction** wizard is only available when operating via the local display. When operating via an operating tool, all parameters concerning the probe length correction are located directly in the **Probe settings** submenu (→ 155).

Navigation
Setup → Advanced setup → Probe settings → Prob.length corr

<table>
<thead>
<tr>
<th>Confirm probe length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Setup → Advanced setup → Probe settings → Prob.length corr → Confirm length</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>→ 156</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Present probe length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Setup → Advanced setup → Probe settings → Prob.length corr → Pres. length</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>→ 155</td>
</tr>
</tbody>
</table>
"Current output 1 to 2" submenu

The Current output 2 submenu (→ 158) is only available for devices with two current outputs.

Navigation

Setup → Advanced setup → Curr.output 1 to 2

Assign current output 1 to 2

Navigation

Setup → Advanced setup → Curr.output 1 to 2 → Assign curr.

Description

Select process variable for current output.

Selection

- Level linearized
- Distance
- Electronic temperature
- Relative echo amplitude
- Analog output adv. diagnostics 1
- Analog output adv. diagnostics 2

Factory setting

For level measurements

- Current output 1: Level linearized
- Current output 2 8): Level linearized

Additional information

Definition of the current range for the process variables

<table>
<thead>
<tr>
<th>Process variable</th>
<th>4 mA value</th>
<th>20 mA value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level linearized</td>
<td>0 % 1) or the associated linearized value</td>
<td>100 % 2) or the associated linearized value</td>
</tr>
<tr>
<td>Distance</td>
<td>0 (i.e. level is at the reference point)</td>
<td>Empty calibration (→ 127) (i.e. level is at 0 %)</td>
</tr>
<tr>
<td>Electronic temperature</td>
<td>-50 °C (-58 °F)</td>
<td>100 °C (212 °F)</td>
</tr>
<tr>
<td>Relative echo amplitude</td>
<td>0 mV</td>
<td>2,000 mV</td>
</tr>
<tr>
<td>Analog output adv. diagnostics 1/2</td>
<td>0 mA value</td>
<td>depending on the parametrization of the Advanced Diagnostics</td>
</tr>
</tbody>
</table>

1) the 0% level is defined by Empty calibration parameter (→ 127)
2) The 100% level is defined by Full calibration parameter (→ 127)

It may be necessary to adjust the 4mA and 20mA values to the application (especially in the case of the Analog output adv. diagnostics 1/2 option).

This can be done by the following parameters:

- Expert → Output → Current output 1 to 2 → Turn down
- Expert → Output → Current output 1 to 2 → 4 mA value
- Expert → Output → Current output 1 to 2 → 20 mA value

8) only for devices with two current outputs
Current span

Navigation
Set up → Advanced setup → Curr.output 1 to 2 → Current span

Description
Determines the current range used to transmit the measured value.

‘4...20mA’:
Measured variable: 4 ...20 mA

‘4...20mA NAMUR’:
Measured variable: 3.8 ... 20.5 mA

‘4...20mA US’:
Measured variable: 3.9 ... 20.8 mA

‘Fixed current’:
Measured variable transmitted via HART only

Note:
Currents below 3.6 mA or above 21.95 mA can be used to signal an alarm.

Selection
- 4...20 mA
- 4...20 mA NAMUR
- 4...20 mA US
- Fixed current

Additional information
Meaning of the options

<table>
<thead>
<tr>
<th>Option</th>
<th>Current range for process variable</th>
<th>Lower alarm signal level</th>
<th>Upper alarm signal level</th>
</tr>
</thead>
<tbody>
<tr>
<td>4...20 mA</td>
<td>4 to 20.5 mA</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
</tr>
<tr>
<td>4...20 mA NAMUR</td>
<td>3.8 to 20.5 mA</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
</tr>
<tr>
<td>4...20 mA US</td>
<td>3.9 to 20.8 mA</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
</tr>
<tr>
<td>Fixed current</td>
<td>Constant current, defined in the Fixed current parameter (→ 159).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- In the case of an error, the output current assumes the value defined in the Failure mode parameter (→ 160).
- If the measured value is out of the measuring range, Current output diagnostic message is issued.

In a HART multidrop loop only one device can use the analog current to transmit a signal. For all other devices one must set:
- Current span = Fixed current
- Fixed current (→ 159) = 4 mA

Fixed current

Navigation
Set up → Advanced setup → Curr.output 1 to 2 → Fixed current

Prerequisite
Current span (→ 159) = Fixed current

Description
Define constant value of the output current.

User entry
4 to 22.5 mA
Damping output

- **Navigation**: Setup → Advanced setup → Curr.output 1 to 2 → Damping out.
- **Description**: Reaction time of the output signal on fluctuation in the measured value.
- **User entry**: 0.0 to 999.9 s
- **Additional information**: Fluctuations of the measured value affect the output current with an exponential delay, the time constant τ of which is defined in this parameter. With a small time constant the output reacts immediately to changes of the measured value. With a big time constant the reaction of the output is more delayed. For $\tau = 0$ (factory setting) there is no damping.

Failure mode

- **Navigation**: Setup → Advanced setup → Curr.output 1 to 2 → Failure mode
- **Prerequisite**: Current span (→ 159) ≠ Fixed current
- **Description**: Defines which current the output assumes in the case of an error.
 - ‘Min.’: $< 3.6\text{mA}$
 - ‘Max.’: $> 21.95\text{mA}$
 - ‘Last valid value’: Last valid value before occurrence of the error.
 - ‘Actual value’: Output current is equal to the measured value; error is ignored.
 - ‘Defined value’: User defined value.
- **Selection**: - Min.
 - Max.
 - Last valid value
 - Actual value
 - Defined value
Additional information

Meaning of the options

- **Min.**
 The current output adopts the value of the lower alarm level according to the **Current span** parameter (→ 159).

- **Max.**
 The current output adopts the value of the upper alarm level according to the **Current span** parameter (→ 159).

- **Last valid value**
 The current remains constant at the last value it had before the error occurred.

- **Actual value**
 The output current follows the actual measured value; the error is ignored.

- **Defined value**
 The output current assumes the value defined in the **Failure current** parameter (→ 161).

The error behavior of other output channels is not influenced by these settings but is defined in separate parameters.

Failure current

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Setup → Advanced setup → Curr.output 1 to 2 → Failure current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>Failure mode (→ 160) = Defined value</td>
</tr>
<tr>
<td>Description</td>
<td>Defines which current the output assumes in case of an error.</td>
</tr>
<tr>
<td>User entry</td>
<td>3.59 to 22.5 mA</td>
</tr>
</tbody>
</table>

Output current 1 to 2

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Setup → Advanced setup → Curr.output 1 to 2 → Output curr. 1 to 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Shows the actual calculated value of the output current.</td>
</tr>
</tbody>
</table>
"Switch output" submenu

The Switch output submenu (→ 162) is only visible for devices with switch output. 9)

Navigation Setup → Advanced setup → Switch output

Switch output function

Navigation Setup → Advanced setup → Switch output → Switch out funct

Description

Defines the function of the switch output.

'Off'
The switch output is always open (non-conductive).

'On'
The switch output is always closed (conductive).

'Diagnostic behavior'
The switch output is normally closed and is only opened if a diagnostic event is present.

'Limit'
The switch output is normally closed and is only opened if a measured variable exceeds a defined limit.

'Digital output'
The switch output is controlled by one of the digital output blocks of the device.

Selection

- Off
- On
- Diagnostic behavior
- Limit
- Digital Output

Additional information

Meaning of the options

- Off
 The output is always open (non-conductive).
- On
 The output is always closed (conductive).
- Diagnostic behavior
 The output is normally closed and is only opened if a diagnostic event is present. The Assign diagnostic behavior parameter (→ 163) determines for which type of event the output is opened.
- Limit
 The output is normally closed and is only opened if a measured variable exceeds or falls below a defined limit. The limit values are defined by the following parameters:
 - Assign limit (→ 163)
 - Switch-on value (→ 164)
 - Switch-off value (→ 165)
- Digital Output
 The switching state of the output tracks the output value of a DI function block. The function block is selected in the Assign status parameter (→ 163).

The Off and On options can be used to simulate the switch output.

9) Ordering feature 020 "Power supply; Output", option B, E or G
Assign status

Navigation
Setup → Advanced setup → Switch output → Assign status

Prerequisite
Switch output function (→ 162) = Digital Output

Description
Assigns a Discrete Output Block or an Advanced Diagnostic Block to the switch output.

Selection
- Off
- Digital output AD 1
- Digital output AD 2

Additional information
The Digital output AD 1 and Digital output AD 2 options refer to the Advanced Diagnostic Blocks. A switch signal generated in these blocks can be transmitted via the switch output.

Assign limit

Navigation
Setup → Advanced setup → Switch output → Assign limit

Prerequisite
Switch output function (→ 162) = Limit

Description
Defines which process variable will be checked for limit violation.

Selection
- Off
- Level linearized
- Distance
- Interface linearized *
- Interface distance *
- Thickness upper layer *
- Terminal voltage
- Electronic temperature
- Measured capacitance *
- Relative echo amplitude
- Relative interface amplitude *
- Absolute echo amplitude
- Absolute interface amplitude *

Assign diagnostic behavior

Navigation
Setup → Advanced setup → Switch output → Assign diag. beh

Prerequisite
Switch output function (→ 162) = Diagnostic behavior

Description
Defines to which behavior of diagnostic events the switch output reacts.

* Visibility depends on order options or device settings
Switch-on value

Navigation

- Setup → Advanced setup → Switch output → Switch-on value

Prerequisite

- Switch output function (→ 162) = Limit

Description

Defines the switch-on point.
The output is closed if the assigned process variable rises above this point.

User entry

- Signed floating-point number

Additional information

The switching behavior depends on the relative position of the **Switch-on value** and **Switch-off value** parameters:

Switch-on value > Switch-off value

- The output is closed if the measured value is larger than **Switch-on value**.
- The output is opened if the measured value is smaller than **Switch-off value**.

Diagram

![Diagram showing switch-on and switch-off values](image)

- **A** Switch-on value
- **B** Switch-off value
- **C** Output closed (conductive)
- **D** Output opened (non-conductive)

Switch-on value < Switch-off value

- The output is closed if the measured value is smaller than **Switch-on value**.
- The output is opened if the measured value is larger than **Switch-off value**.
Switch-on delay

Navigation
- Setup → Advanced setup → Switch output → Switch-on delay

Prerequisite
- Switch output function (→ 162) = Limit
- Assign limit (→ 163) ≠ Off

Description
Defines the delay applied before the output is switched on.

User entry
0.0 to 100.0 s

Switch-off value

Navigation
- Setup → Advanced setup → Switch output → Switch-off value

Prerequisite
- Switch output function (→ 162) = Limit

Description
Defines the switch-off point. The output is opened if the assigned process variable falls below this point.

User entry
Signed floating-point number

Additional information
The switching behavior depends on the relative position of the Switch-on value and Switch-off value parameters; description: see the Switch-on value parameter (→ 164).
Operating menu

Levelflex FMP56, FMP57 HART

Switch-off delay

Navigation

Setup → Advanced setup → Switch output → Switch-off delay

Prerequisite

- Switch output function (→ 162) = Limit
- Assign limit (→ 163) ≠ Off

Description

Defines the delay applied before the output is switched off.

User entry

0.0 to 100.0 s

Failure mode

Navigation

Setup → Advanced setup → Switch output → Failure mode

Prerequisite

Switch output function (→ 162) = Limit or Digital Output

Description

Defines the state of the switch output in case of an error.

Selection

- Actual status
- Open
- Closed

Additional information

Switch status

Navigation

Setup → Advanced setup → Switch output → Switch status

Description

Current status of the switch output.

Invert output signal

Navigation

Setup → Advanced setup → Switch output → Invert outp.sig.

Description

'No'
The switch output behaves as per its parameter setting.

'Yes'
The switching behavior is inverted as compared to its parameter setting.

Selection

- No
- Yes
Additional information

Meaning of the options

- **No**
 The behavior of the switch output is as described above.

- **Yes**
 The states *Open* and *Closed* are inverted as compared to the description above.
"Display" submenu

Display submenu is only visible if a display module is connected to the device.

Navigation

Setup → Advanced setup → Display

Language

Navigation

Setup → Advanced setup → Display → Language

Description

Set display language.

Selection

- English
- Deutsch *
- Français *
- Español *
- Italiano *
- Nederlands *
- Portuguesa *
- Polski *
- русский язык (Russian) *
- Svenska *
- Türkçe *
- 中文 (Chinese) *
- 日本語 (Japanese) *
- 한국어 (Korean) *
- Bahasa Indonesia *
- tiếng Việt (Vietnamese) *
- čeština (Czech) *

Factory setting

The language selected in feature 500 of the product structure.

If no language has been selected: English

Additional information

Format display

Navigation

Setup → Advanced setup → Display → Format display

Description

Select how measured values are shown on the display.

Selection

- 1 value, max. size
- 1 bargraph + 1 value
- 2 values
- 1 value large + 2 values
- 4 values

* Visibility depends on order options or device settings
Additional information

355 Format display = "1 value, max. size"

356 Format display = "1 bargraph + 1 value"

357 Format display = "2 values"

358 Format display = "1 value large + 2 values"

359 Format display = "4 values"

- The Value 1 to 4 display → 170 parameters specify which measured values are shown on the display and in which order.
- If more measured values are specified than the current display mode permits, the values alternate on the device display. The display time until the next change is configured in the Display interval parameter (→ 170).
Value 1 to 4 display

Navigation

Setup → Advanced setup → Display → Value 1 display

Description

Select the measured value that is shown on the local display.

Selection

- Level linearized
- Distance
- Interface linearized *
- Interface distance *
- Thickness upper layer *
- Current output 1
- Measured current
- Current output 2 *
- Terminal voltage
- Electronic temperature
- Measured capacitance *
- Analog output adv. diagnostics 1
- Analog output adv. diagnostics 2

Factory setting

For level measurements

- Value 1 display: Level linearized
- Value 2 display: Distance
- Value 3 display: Current output 1
- Value 4 display: None

Decimal places 1 to 4

Navigation

Setup → Advanced setup → Display → Decimal places 1

Description

This selection does not affect the measurement and calculation accuracy of the device.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Additional information

The setting does not affect the measuring or computational accuracy of the device.

Display interval

Navigation

Setup → Advanced setup → Display → Display interval

Description

Set time measured values are shown on display if display alternates between values.

User entry

1 to 10 s

* Visibility depends on order options or device settings
Additional information

This parameter is only relevant if the number of selected measuring values exceeds the number of values the selected display format can display simultaneously.

Display damping

Navigation

Setup → Advanced setup → Display → Display damping

Description

Set display reaction time to fluctuations in the measured value.

User entry

0.0 to 999.9 s

Header

Navigation

Setup → Advanced setup → Display → Header

Description

Select header contents on local display.

Selection

• Device tag
• Free text

Additional information

Position of the header text on the display

Meaning of the options

• Device tag
 Is defined in the Device tag parameter (→ 126).
• Free text
 Is defined in the Header text parameter (→ 171).

Header text

Navigation

Setup → Advanced setup → Display → Header text

Prerequisite

Header (→ 171) = Free text

Description

Enter display header text.

User entry

Character string comprising numbers, letters and special characters (12)

Additional information

The number of characters which can be displayed depends on the characters used.
Separator

Navigation

Setup → Advanced setup → Display → Separator

Description

Select decimal separator for displaying numerical values.

Selection

- .
- ,

Number format

Navigation

Setup → Advanced setup → Display → Number format

Description

Choose number format for the display.

Selection

- Decimal
- ft-in-1/16''

Additional information

The **ft-in-1/16''** option is only valid for distance units.

Decimal places menu

Navigation

Setup → Advanced setup → Display → Dec. places menu

Description

Select number of decimal places for the representation of numbers within the operating menu.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Additional information

- Is only valid for numbers in the operating menu (e.g. Empty calibration, Full calibration), but not for the measured value display. The number of decimal places for the measured value display is defined in the Decimal places 1 to 4 → 170 parameters.
- The setting does not affect the accuracy of the measurement or the calculations.

Backlight

Navigation

Setup → Advanced setup → Display → Backlight

Prerequisite

The device has the SD03 local display (with optical keys).

Description

Switch the local display backlight on and off.
Selection

- Disable
- Enable

Additional information

Meaning of the options

- **Disable**
 Switches the backlight off.

- **Enable**
 Switches the backlight on.

Regardless of the setting in this parameter the backlight may be automatically switched off by the device if the supply voltage is too low.

Contrast display

Navigation

Setup → Advanced setup → Display → Contrast display

Description

Adjust local display contrast setting to ambient conditions (e.g. lighting or reading angle).

User entry

20 to 80 %

Factory setting

Dependent on the display.

Additional information

Setting the contrast via push-buttons:

- Darker: press the buttons simultaneously.
- Brighter: press the buttons simultaneously.
"Configuration backup display" submenu

This submenu is only visible if a display module is connected to the device.

The configuration of the device can be saved to the display module at a certain point of time (backup). The saved configuration can be restored to the device if required, e.g. in order to bring the device back into a defined state. The configuration can also be transferred to a different device of the same type using the display module.

Navigation
Setup → Advanced setup → Conf.backup disp

Operating time

Navigation
Setup → Advanced setup → Conf.backup disp → Operating time

Description
Indicates how long the device has been in operation.

Additional information
Maximum time
9 999 d (≈ 27 years)

Last backup

Navigation
Setup → Advanced setup → Conf.backup disp → Last backup

Description
Indicates when the last data backup was saved to the display module.

Configuration management

Navigation
Setup → Advanced setup → Conf.backup disp → Config. managem.

Description
Select action for managing the device data in the display module.

Selection
- Cancel
- Execute backup
- Restore
- Duplicate
- Compare
- Clear backup data
Additional information

Meaning of the options

- **Cancel**
 No action is executed and the user exits the parameter.

- **Execute backup**
 A backup copy of the current device configuration in the HistoROM (built-in in the device) is saved to the display module of the device.

- **Restore**
 The last backup copy of the device configuration is copied from the display module to the HistoROM of the device.

- **Duplicate**
 The transmitter configuration is duplicated to another device using the transmitter display module. The following parameters, which characterize the individual measuring point are **not** included in the transmitted configuration:
 - HART date code
 - HART short tag
 - HART message
 - HART descriptor
 - HART address
 - Device tag
 - Medium type

- **Compare**
 The device configuration saved in the display module is compared to the current device configuration of the HistoROM. The result of this comparison is displayed in the **Comparison result** parameter (→ 175).

- **Clear backup data**
 The backup copy of the device configuration is deleted from the display module of the device.

 While this action is in progress, the configuration cannot be edited via the local display and a message on the processing status appears on the display.

 If an existing backup is restored to a different device using the **Restore** option, it may occur that some device functionalities are no longer available. In some cases even a device reset will not restore the original status.

 In order to transmit a configuration to a different device, the **Duplicate** option should always be used.

Backup state

Navigation

[] Setup → Advanced setup → Conf.backup disp → Backup state

Description

Displays which backup action is currently in progress.

Comparison result

Navigation

[] Setup → Advanced setup → Conf.backup disp → Compar. result

Description

Comparison between present device data and display backup.
Additional information

Meaning of the display options

- **Settings identical**
 The current device configuration of the HistoROM is identical to the backup copy in the display module.

- **Settings not identical**
 The current device configuration of the HistoROM is not identical to the backup copy in the display module.

- **No backup available**
 There is no backup copy of the device configuration of the HistoROM in the display module.

- **Backup settings corrupt**
 The current device configuration of the HistoROM is corrupt or not compatible with the backup copy in the display module.

- **Check not done**
 The device configuration of the HistoROM has not yet been compared to the backup copy in the display module.

- **Dataset incompatible**
 The data sets are incompatible and can not be compared.

 To start the comparison, set **Configuration management (→ 174) = Compare.**

 If the transmitter configuration has been duplicated from a different device by **Configuration management (→ 174) = Duplicate**, the new device configuration in the HistoROM is only partially identical to the configuration stored in the display module: Sensor specific properties (e.g. the mapping curve) are not duplicated. Thus, the result of the comparison will be **Settings not identical.**
"Administration" submenu

Navigation
Setup → Advanced setup → Administration

Description
Define access code for write access to parameters.

User entry
0 to 9999

Additional information

- If the factory setting is not changed or if '0' is entered, the parameters are not write-protected and the device configuration data can therefore always be modified. The user is logged on in the "Maintenance" role.
- The write protection affects all parameters marked with the symbol in the document. On the local display, the symbol in front of a parameter indicates that the parameter is write-protected.
- Once the access code has been defined, write-protected parameters can only be modified if the access code is entered in the Enter access code parameter (→ 134).
- Please contact your Endress+Hauser Sales Center if you lose the access code.
- If operating via the local display: the new access code is only valid once it has been confirmed in the Confirm access code parameter (→ 179).

Device reset

Navigation
Setup → Advanced setup → Administration → Device reset

Description
Reset the device configuration - either entirely or in part - to a defined state.

Selection
- Cancel
- To factory defaults
- To delivery settings
- Of customer settings
- To transducer defaults
- Restart device

Additional information

- **Meaning of the options**
 - **Cancel**
 No action
 - **To factory defaults**
 All parameters are reset to the order-code specific factory setting.
 - **To delivery settings**
 All parameters are reset to the delivery setting. The delivery setting may differ from the factory default if customer specific settings have been ordered.
 This option is only visible if customer specific settings have been ordered.
- **Of customer settings**
 All customer parameters are reset to their factory setting. Service parameters, however, remain unchanged.

- **To transducer defaults**
 Every measurement-related parameter is reset to its factory setting. Service parameters and communication-related parameters, however, remain unchanged.

- **Restart device**
 The restart resets every parameter which is stored in the volatile memory (RAM) to the factory setting (e.g. measured value data). The device configuration remains unchanged.
The **Define access code** wizard is only available when operating via the local display. When operating via an operating tool, the **Define access code** parameter is located directly in the **Administration** submenu. The **Confirm access code** parameter is not available for operation via operating tool.

Navigation

Setup → Advanced setup → Administration → Def. access code

Description

→ 177

Define access code

Navigation

Setup → Advanced setup → Administration → Def. access code → Def. access code

Description

→ 177

Confirm access code

Navigation

Setup → Advanced setup → Administration → Def. access code → Confirm code

Description

Confirm the entered access code.

User entry

0 to 9999
17.5 "Diagnostics" menu

Navigation ➤ Diagnostics

Actual diagnostics

Navigation ➤ Diagnostics → Actual diagnos.

Description Displays current diagnostic message.

Additional information The display consists of:
- Symbol for event behavior
- Code for diagnostic behavior
- Operating time of occurrence
- Event text

If several messages are active at the same time, the messages with the highest priority is displayed.

Information on what is causing the message, and remedy measures, can be viewed via the symbol on the display.

Timestamp

Navigation ➤ Diagnostics → Timestamp

Description Displays the timestamp for the currently active diagnostic message.

Previous diagnostics

Navigation ➤ Diagnostics → Prev.diagnostics

Description Displays the last diagnostic message which has been active before the current message.

Additional information The display consists of:
- Symbol for event behavior
- Code for diagnostic behavior
- Operating time of occurrence
- Event text

The condition displayed may still apply. Information on what is causing the message, and remedy measures, can be viewed via the symbol on the display.
Operating menu

Timestamp

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Diagnostics → Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Shows the timestamp of the previous diagnostic message.</td>
</tr>
</tbody>
</table>

Operating time from restart

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Diagnostics → Time fr. restart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the time the device has been in operation since the last device restart.</td>
</tr>
</tbody>
</table>

Operating time

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Diagnostics → Operating time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Indicates how long the device has been in operation.</td>
</tr>
</tbody>
</table>

Additional information

- Maximum time
 - 9999 d (≈ 27 years)
17.5.1 "Diagnostic list" submenu

Navigation Diagnostics → Diagnostic list

Description Display the current diagnostics messages with the highest to fifth-highest priority.

Additional information

- Symbol for event behavior
- Code for diagnostic behavior
- Operating time of occurrence
- Event text

Timestamp 1 to 5

Navigation Diagnostics → Diagnostic list → Timestamp 1 to 5

Description Timestamp of the diagnostic message.
17.5.2 "Event logbook" submenu

The Event logbook submenu is only available when operating via the local display. When operating via FieldCare, the event list can be displayed in the FieldCare function 'Event List / HistoROM'.

Navigation Diagnostics → Event logbook

Filter options

Description
Define which category of event messages is shown in the Events list submenu.

Selection
- All
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- Information (I)

Additional information
- This parameter is only used for operation via the local display.
- The status signals are categorized according to NAMUR NE 107.

"Event list" submenu

The Event list submenu displays the history of past events of the category selected in the Filter options parameter (→ 183). A maximum of 100 events are displayed in chronological order.

The following symbols indicate whether an event has occurred or has ended:
- ➔: Event has occurred
- ➝: Event has ended

Information on what is causing the message, and remedy instructions, can be viewed via the button.

Display format
- For event messages in category I: information event, event text, "recording event" symbol and time the event occurred
- For event messages in category F, M, C, S (status signal): diagnostics event, event text, "recording event" symbol and time the event occurred

Navigation Diagnostics → Event logbook → Event list
17.5.3 "Device information" submenu

Navigation
Diagnostics → Device info

Device tag

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Diagnostics → Device info → Device tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Enter the name for the measuring point.</td>
</tr>
<tr>
<td>User interface</td>
<td>Character string comprising numbers, letters and special characters</td>
</tr>
</tbody>
</table>

Serial number

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Diagnostics → Device info → Serial number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Shows the serial number of the measuring device.</td>
</tr>
</tbody>
</table>
| **Additional information** | Uses of the serial number
- To identify the device quickly, e.g. when contacting Endress+Hauser.
- To obtain specific information on the device using the Device Viewer: www.endress.com/deviceviewer
- The serial number is also indicated on the nameplate. |

Firmware version

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Diagnostics → Device info → Firmware version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Shows the device firmware version installed.</td>
</tr>
<tr>
<td>User interface</td>
<td>xx.yy.zz</td>
</tr>
<tr>
<td>Additional information</td>
<td>For firmware versions differing only in the last two digits ("zz") there is no difference concerning functionality or operation.</td>
</tr>
</tbody>
</table>

Device name

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Diagnostics → Device info → Device name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Shows the name of the transmitter.</td>
</tr>
</tbody>
</table>
Order code

Navigation
Diagnostics → Device info → Order code

Description
Shows the device order code.

User interface
Character string comprising numbers, letters and special characters

Additional information
The order code is generated from the extended order code, which defines all device features of the product structure. In contrast, the device features cannot be read directly from the order code.

Extended order code 1 to 3

Navigation
Diagnostics → Device info → Ext. order cd. 1

Description
Display the three parts of the extended order code.

User interface
Character string comprising numbers, letters and special characters

Additional information
The extended order code indicates the version of all the features of the product structure and thus uniquely identifies the device.

Device revision

Navigation
Diagnostics → Device info → Device revision

Description
Shows the device revision with which the device is registered with the HART Communication Foundation.

Additional information
The device revision is used to allocate the correct Device Description file (DD) to the device.

Device ID

Navigation
Diagnostics → Device info → Device ID

Description
Shows the device ID for identifying the device in a HART network.

Additional information
In addition to the Device type and Manufacturer ID, the Device ID is part of the unique device identification (Unique ID) which characterizes each HART device unambiguously.
Device type

Navigation
Diagnostis → Device info → Device type

Description
Shows the device type with which the measuring device is registered with the HART Communication Foundation.

Manufacturer ID

Navigation
Diagnostis → Device info → Manufacturer ID

Description
Use this function to view the manufacturer ID with which the measuring device is registered with the HART Communication Foundation.

User interface
2-digit hexadecimal number

Factory setting
0x11 (for Endress+Hauser)
17.5.4 "Measured values" submenu

Navigation Diagnostics → Measured val.

Distance

Navigation Diagnostics → Measured val. → Distance
Description Displays the measured distance D_L between the reference point (lower edge of the flange or threaded connection) and the level.

Additional information

![Diagram of distance measurement](image)

60 Distance for bulk solid measurements

The unit is defined in the Distance unit parameter → 126.

Level linearized

Navigation Diagnostics → Measured val. → Level linearized
Description Displays linearized level.

Additional information

The unit is defined by the Unit after linearization parameter → 144.

Output current 1 to 2

Navigation Diagnostics → Measured val. → Output curr. 1 to 2
Description Shows the actual calculated value of the output current.
Measured current 1

Navigation

Diagnostics → Measured val. → Measur. curr. 1

Prerequisite

Only available for current output 1

Description

Shows the current value of the current output which is currently measured.

Terminal voltage 1

Navigation

Diagnostics → Measured val. → Terminal volt. 1

Description

Shows the current terminal voltage that is applied at the output.
17.5.5 "Data logging" submenu

Navigation
Diagnostics → Data logging

Description
Assign a process variable to logging channel.

Selection
- Off
- Level linearized
- Distance
- Unfiltered distance
- Interface linearized
- Interface distance
- Unfiltered interface distance
- Thickness upper layer
- Current output 1
- Measured current
- Current output 2
- Terminal voltage
- Electronic temperature
- Measured capacitance
- Absolute echo amplitude
- Relative echo amplitude
- Absolute interface amplitude
- Relative interface amplitude
- Absolute EOP amplitude
- EOP shift
- Noise of signal
- Calculated DC value
- Analog output adv. diagnostics 1
- Analog output adv. diagnostics 2

Additional information
A total of 1000 measured values can be logged. This means:
- 1000 data points if 1 logging channel is used
- 500 data points if 2 logging channels are used
- 333 data points if 3 logging channels are used
- 250 data points if 4 logging channels are used

If the maximum number of data points is reached, the oldest data points in the data log are cyclically overwritten in such a way that the last 1000, 500, 333 or 250 measured values are always in the log (ring memory principle).

The logged data are deleted if a new option is selected in this parameter.

* Visibility depends on order options or device settings
Logging interval

Navigation
- Diagnostics → Data logging → Logging interval
- Diagnostics → Data logging → Logging interval

Description
Define the logging interval t_{log} for data logging. This value defines the time interval between the individual data points in the memory.

User entry
1.0 to 3600.0 s

Additional information
This parameter defines the interval between the individual data points in the data log, and thus the maximum loggable process time T_{log}:
- If 1 logging channel is used: $T_{log} = 1000 \cdot t_{log}$
- If 2 logging channels are used: $T_{log} = 500 \cdot t_{log}$
- If 3 logging channels are used: $T_{log} = 333 \cdot t_{log}$
- If 4 logging channels are used: $T_{log} = 250 \cdot t_{log}$

Once this time elapses, the oldest data points in the data log are cyclically overwritten such that a time of T_{log} always remains in the memory (ring memory principle).

The logged data are deleted if this parameter is changed.

Example

When using 1 logging channel
- $T_{log} = 1000 \cdot 1 \text{ s} = 1000 \text{ s} \approx 16.5 \text{ min}$
- $T_{log} = 1000 \cdot 10 \text{ s} = 10000 \text{ s} \approx 2.75 \text{ h}$
- $T_{log} = 1000 \cdot 80 \text{ s} = 80000 \text{ s} \approx 22 \text{ h}$
- $T_{log} = 1000 \cdot 3600 \text{ s} = 3600000 \text{ s} \approx 41 \text{ d}$

Clear logging data

Navigation
- Diagnostics → Data logging → Clear logging
- Diagnostics → Data logging → Clear logging

Description
Clear the entire logging data.

Selection
- Cancel
- Clear data
"Display channel 1 to 4" submenu

The Display channel 1 to 4 submenus are only available for operation via the local display. When operating via FieldCare, the logging diagram can be displayed in the FieldCare function "Event List / HistoROM".

The Display channel 1 to 4 submenus invoke a diagram of the logging history of the respective channel.

- x-axis: depending on the number of selected channels, 250 to 1000 measured values of a process variable are displayed.
- y-axis: covers the approximate measured value span and constantly adapts this to the measurement.

To return to the operating menu, press ▶️ and ◀️ simultaneously.

Navigation ◀️▶️ Diagnostics → Data logging → Displ.channel 1 to 4
17.5.6 "Simulation" submenu

The Simulation submenu is used to simulate specific measuring values or other conditions. This helps to check the correct configuration of the device and connected control units.

Conditions which can be simulated

<table>
<thead>
<tr>
<th>Condition to be simulated</th>
<th>Associated parameters</th>
</tr>
</thead>
</table>
| Specific value of a process variable | • Assign measurement variable (→ 194)
 | • Process variable value (→ 194) |
| Specific value of the output current | • Current output simulation (→ 194)
 | • Value current output (→ 195) |
| Specific state of the switch output | • Switch output simulation (→ 195)
 | • Switch status (→ 195) |
| Existence of an alarm | Device alarm simulation (→ 196) |
| Existence of a specific diagnostic message | Diagnostic event simulation (→ 196) |
Structure of the submenu

Navigation
Expert → Diagnostics → Simulation

<table>
<thead>
<tr>
<th>Simulation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign measurement variable</td>
<td>→ 194</td>
</tr>
<tr>
<td>Process variable value</td>
<td>→ 194</td>
</tr>
<tr>
<td>Current output 1 to 2 simulation</td>
<td>→ 194</td>
</tr>
<tr>
<td>Value current output 1 to 2</td>
<td>→ 195</td>
</tr>
<tr>
<td>Switch output simulation</td>
<td>→ 195</td>
</tr>
<tr>
<td>Switch status</td>
<td>→ 195</td>
</tr>
<tr>
<td>Device alarm simulation</td>
<td>→ 196</td>
</tr>
<tr>
<td>Diagnostic event simulation</td>
<td>→ 196</td>
</tr>
</tbody>
</table>
Description of parameters

Navigation ➔ Expert → Diagnostics → Simulation

Assign measurement variable

Navigation ➔ Expert → Diagnostics → Simulation → Assign meas.var.

Description
Defines the process variable to be simulated.

Selection
- Off
- Level
- Interface
- Thickness upper layer
- Level linearized
- Interface linearized
- Thickness linearized

Additional information
- The value of the variable to be simulated is defined in the Process variable value parameter (➔ 194).
- If Assign measurement variable ≠ Off, a simulation is active. This is indicated by a diagnostic message of the Function check (C) category.

Process variable value

Navigation ➔ Expert → Diagnostics → Simulation → Proc. var. value

Prerequisite
Assign measurement variable (➔ 194) ≠ Off

Description
Defines the value of the selected variable. The outputs assume values or states according to this value.

User entry
Signed floating-point number

Additional information
Downstream measured value processing and the signal output use this simulation value. In this way, users can verify whether the measuring device has been configured correctly.

Current output 1 to 2 simulation

Navigation ➔ Expert → Diagnostics → Simulation → Curr.out. 1 to 2 sim.

Description
Switch the simulation of the current output on and off.

* Visibility depends on order options or device settings
Selection

- Off
- On

Additional information
An active simulation is indicated by a diagnostic message of the Function check (C) category.

Value current output 1 to 2

Navigation
Panel → Expert → Diagnostics → Simulation → Value curr.out 1 to 2

Prerequisite
Current output simulation (→ 194) = On

Description
Defines the value of the simulated output current.

User entry
3.59 to 22.5 mA

Additional information
The current output assumes the value specified in this parameter. In this way, users can verify the correct adjustment of the current output and the correct function of connected control units.

Switch output simulation

Navigation
Panel → Expert → Diagnostics → Simulation → Switch sim.

Description
Switch the simulation of the switch output on and off.

Selection
- Off
- On

Switch status

Navigation
Panel → Expert → Diagnostics → Simulation → Switch status

Prerequisite
Switch output simulation (→ 195) = On

Description
Current status of the switch output.

Selection
- Open
- Closed

Additional information
The switch status assumes the value defined in this parameter. This helps to check correct operation of connected control units.
Device alarm simulation

Navigation

Expert → Diagnostics → Simulation → Dev. alarm sim.

Description

Switch the device alarm on and off.

Selection

- Off
- On

Additional information

When selecting the **On** option, the device generates an alarm. This helps to check the correct output behavior of the device in the case of an alarm.

An active simulation is indicated by the **C484 Failure mode simulation** diagnostic message.

Diagnostic event simulation

Navigation

Expert → Diagnostics → Simulation → Diag. event sim.

Description

Select the diagnostic event to be simulated.

Note:
To terminate the simulation, select 'Off'.

Additional information

When operated via the local display, the selection list can be filtered according to the event categories (**Diagnostic event category** parameter).
17.5.7 "Device check" submenu

Navigation Diagnostics → Device check

Start device check

Navigation Diagnostics → Device check → Start dev. check
Description Start a device check.
Selection
• No
• Yes
Additional information In the case of a lost echo a device check can not be performed.

Result device check

Navigation Diagnostics → Device check → Result dev.check
Description Displays the result of the device check.
Additional information Meaning of the display options
• Installation ok
 Measurement possible without restrictions.
• Accuracy reduced
 A measurement is possible. However, the measuring accuracy may be reduced due to the signal amplitudes.
• Measurement capability reduced
 A measurement is currently possible. However, there is the risk of an echo loss. Check the mounting position of the device and the dielectric constant of the medium.
• Check not done
 No device check has been performed.

Last check time

Navigation Diagnostics → Device check → Last check time
Description Displays the operating time at which the last device check has been performed.
User interface Character string comprising numbers, letters and special characters
Operating menu

Levelflex FMP56, FMP57 HART

Level signal

Navigation

Device check → Level signal

Prerequisite

Device check has been performed.

Description

Displays result of the device check for the level signal.

User interface

• Check not done
• Check not OK
• Check OK

Additional information

For **Level signal = Check not OK**: Check the mounting position of the device and the dielectric constant of the medium.

Launch signal

Navigation

Device check → Launch signal

Prerequisite

Device check has been performed.

Description

Displays result of the display check for the launch signal.

User interface

• Check not done
• Check not OK
• Check OK

Additional information

For **Launch signal = Check not OK**: Check the mounting position of the device. In non-metallic vessels use a metal plate or a metal flange.
17.5.8 "Heartbeat" submenu

The Heartbeat submenu is only available via FieldCare or DeviceCare. It contains the wizards which are part of the Heartbeat Verification and Heartbeat Monitoring application packages.

Detailed description
SD01872F

Navigation ➔ Diagnostics → Heartbeat
Index

A
- Access authorization to parameters
 - Read access ... 57
 - Write access ... 57
- Access code ... 57
 - Incorrect input 57
- Access status display (Parameter) 134
 - Access status tooling (Parameter) 133

Accessories
- Communication-specific 105
- Device-specific .. 99
- Service-specific .. 106
- System components 106
- Activate table (Parameter) 149
- Actual diagnostics (Parameter) 180
- Administration (Submenu) 177
 - Advanced process conditions (Parameter) 137
 - Advanced setup (Submenu) 133
- Application ... 9
 - Assign channel 1 to 4 (Parameter) 189
 - Assign current output (Parameter) 158
 - Assign diagnostic behavior (Parameter) 163
 - Assign limit (Parameter) 163
 - Assign measurement variable (Parameter) 194
 - Assign status (Parameter) 163

B
- Backlight (Parameter) 172
- Backup state (Parameter) 175
- Bin type (Parameter) 126
- Blocking distance (Parameter) 138, 151
 - Bluetooth® wireless technology 53
- Device alarm simulation (Parameter) 196
- Device check (Submenu) 197
- Device Descriptions 70
 - Device ID (Parameter) 185
 - Device information (Submenu) 184
 - Device name (Parameter) 184
 - Device replacement 97
 - Device revision (Parameter) 185
 - Device tag (Parameter) 126, 184
 - Device type (Parameter) 186
- Diagnostic event .. 87
 - In the operating tool 89
 - Diagnostic event simulation (Parameter) 196
- Diagnostic events ... 86
- Diagnostic list .. 90
- Diagnostic list (Submenu) 182
- Diagnostic message 86
- Diagnostics
 - Symbols ... 86
- Diagnostics (Menu) .. 180
 - Diagnostics 1 (Parameter) 182
 - Diameter (Parameter) 146
- DIP switch
 - see Write protection switch
- Display (Submenu) 168
- Display and operating module FHX50 52
- Display channel 1 to 4 (Submenu) 191
- Display damping (Parameter) 171
- Display interval (Parameter) 170
- Display module ... 62
- Display symbols .. 63
- Disposal .. 98
- Distance (Parameter) 128, 132, 187
- Distance unit (Parameter) 126
- Document
 - Purpose .. 5

C
- Cleaning ... 96
- Clear logging data (Parameter) 190
- Code incorrect (Parameter) 154
- Comparison result (Parameter) 175
- Configuration backup display (Submenu) 174
- Configuration management (Parameter) 174
- Configuration of a level measurement 75
- Configuring level measurement 75
- Confirm access code (Parameter) 179
- Confirm distance (Parameter) 130, 132
- Confirm probe length (Parameter) 156, 157
- Context menu .. 67
- Contrast display (Parameter) 173
- Current output 1 to 2 (Submenu) 158
- Current output 1 to 2 simulation (Parameter) 194
- Current span (Parameter) 159
- Customer value (Parameter) 149

D
- Damping output (Parameter) 160
- Data logging (Submenu) 189
- DD .. 70
- Deactivate SIL/WHG (Wizard) 154
- Decimal places 1 (Parameter) 170
- Decimal places menu (Parameter) 172
- Define access code (Parameter) 177, 179
- Define access code (Wizard) 179
- Define the access code 57
- Device alarm simulation (Parameter) 196
- Device check (Submenu) 197
- Device Descriptions 70
- Device ID (Parameter) 185
- Device information (Submenu) 184
- Device name (Parameter) 184
- Device replacement 97
- Device revision (Parameter) 185
- Device tag (Parameter) 126, 184
- Device type (Parameter) 186
- Diagnostic event ... 87
 - In the operating tool 89
- Diagnostic event simulation (Parameter) 196
- Diagnostic events ... 86
- Diagnostic list .. 90
- Diagnostic list (Submenu) 182
- Diagnostic message 86
- Diagnostics
 - Symbols ... 86
- Diagnostics (Menu) .. 180
 - Diagnostics 1 (Parameter) 182
 - Diameter (Parameter) 146
- DIP switch
 - see Write protection switch
- Display (Submenu) 168
- Display and operating module FHX50 52
- Display channel 1 to 4 (Submenu) 191
- Display damping (Parameter) 171
- Display interval (Parameter) 170
- Display module ... 62
- Display symbols .. 63
- Disposal .. 98
- Distance (Parameter) 128, 132, 187
- Distance unit (Parameter) 126
- Document
 - Purpose .. 5

E
- Electronics housing
 - Design ... 12
 - Empty calibration (Parameter) 127
 - Enter access code (Parameter) 134
 - Envelope curve display 69
 - Event history .. 93
 - Event level
 - Explanation ... 86
 - Symbols ... 86
 - Event list (Submenu) 183
 - Event logbook (Submenu) 183

Endress+Hauser
Event text ..	87
Events list ..	93
Extended order code 1 (Parameter)	185
Exterior cleaning ..	96

F
- Failure current (Parameter) .. 161
- Failure mode (Parameter) .. 160, 166
- FH50 ... 52
- Field of application
 - Residual risks .. 9
- Filter options (Parameter) ... 183
- Filtering the event logbook 93
- Firmware version (Parameter) 184
- Fixed current (Parameter) .. 159
- Flange ... 34
- Format display (Parameter) .. 168
- Free text (Parameter) ... 145
- Full calibration (Parameter) 127
- Functional Safety Manual (FY) 7
- FV (HART device variable) .. 70

H
- Hardware write protection ... 58
- HART device variables ... 70
- HART protocol ... 54
- HART-Integration ... 70
- Header (Parameter) .. 171
- Header text (Parameter) ... 171
- Heartbeat (Submenu) .. 199
- Housing
 - Design .. 12
 - Turning ... 36

I
- Input mask .. 66
- Intended use .. 9
- Intermediate height (Parameter) 147
- Invert output signal (Parameter) 166

K
- Keypad lock
 - Disabling ... 61
 - Enabling .. 61

L
- Language (Parameter) .. 168
- Last backup (Parameter) ... 174
- Last check time (Parameter) 197
- Launch signal (Parameter) 198
- Level (Parameter) .. 128, 148, 149
- Level (Submenu) ... 135
- Level correction (Parameter) 139
- Level linearized (Parameter) 146, 187
- Level signal (Parameter) ... 148
- Level unit (Parameter) .. 138
- Linearization (Submenu) .. 141, 142, 143
- Linearization type (Parameter) 143
- Local display .. 51

see Diagnostic message

M
- Maintenance .. 96
- Managing the device configuration 80
- Manufacturer ID (Parameter) 186
- Mapping (Wizard) .. 132
- Mapping end point (Parameter) 131, 132
- Maximum value (Parameter) 146
- Measured current 1 (Parameter) 188
- Measured value symbols .. 64
- Measured values (Submenu) 187
- Media ... 9
- Medium property (Parameter) 135
- Medium type (Parameter) ... 135
- Menu
 - Diagnostics .. 180
 - Setup .. 126
- Mounting position for level measurements 16
- Operational safety ... 10
- Order code (Parameter) .. 185
- Output current 1 to 2 (Parameter) 161, 187
- Output echo lost (Parameter) 150
- Overvoltage protection
 - General information ... 48

N
- Non-metal vessels .. 29
- Number format (Parameter) 172

O
- Operating elements
 - Diagnostic message ... 87
- Operating module .. 62
- Operating time (Parameter) 174, 181
- Operating time from restart (Parameter) 181
- Operational safety ... 10
- Order code (Parameter) .. 185
- Output current 1 to 2 (Parameter) 161, 187
- Output echo lost (Parameter) 150
- Overvoltage protection
 - General information ... 48

P
- Present mapping (Parameter) 131
- Present probe length (Parameter) 155, 157
- Previous diagnostics (Parameter) 180
- Probe grounded (Parameter) 155
- Probe length correction (Wizard) 157
- Probe settings (Submenu) ... 155
- Process property (Parameter) 136
- Process variable value (Parameter) 194
- Product safety ... 10
- Purpose of this document .. 5
- PV (HART device variable) 70

R
- Ramp at echo lost (Parameter) 151
- Read access .. 57
- Record map (Parameter) ... 131, 132
- Registered trademarks .. 8
- Remedial measures
 - Calling up ... 88
Index

Closing .. 88
Remote operation 54
Repair concept 97
Replacing a device 97
Requirements for personnel 9
Reset write protection (Parameter) 154
Result device check (Parameter) 197
Return ... 98
Rod probe
 Design ... 11
 Rod probes
 Lateral loading capacity 22
 Shortening 31
Rope probe
 Design ... 11
 Rope probes
 Mounting 34
 Shortening 31

S
Safety instructions
 Basic ... 9
Safety Instructions (XA) 7
Safety settings (Submenu) 150
Securing rod probes 26
Securing rope probes 25
Separator (Parameter) 172
Serial number (Parameter) 184
Service interface (CDI) 54
Setting the operating language 74
Settings
 Managing the device configuration 80
 Operating language 74
Setup (Menu) 126
Signal quality (Parameter) 129
SIL/WHG confirmation (Wizard) 153
Simulation (Submenu) 193, 194
Spare parts .. 98
 Nameplate 98
Start device check (Parameter) 197
Status signals 63, 86
Submenu
 Administration 177
 Advanced setup 133
 Configuration backup display 174
 Current output 1 to 2 158
 Data logging 189
 Device check 197
 Device information 184
 Diagnostic list 182
 Display .. 168
 Display channel 1 to 4 191
 Event list ... 183
 Event logbook 183
 Events list .. 93
 Heartbeat ... 199
 Level .. 135
 Linearization 141, 142, 143
 Measured values 187
 Probe settings 155
 Safety settings 150
 Simulation ... 193, 194
 Switch output 162
 SV (HART device variable) 70
 Switch output (Submenu) 162
 Switch output function (Parameter) 162
 Switch output simulation (Parameter) 195
 Switch status (Parameter) 166, 195
 Switch-off delay (Parameter) 166
 Switch-off value (Parameter) 165
 Switch-on delay (Parameter) 165
 Switch-on value (Parameter) 164
 Symbols
 For correction 66
 In the text and numeric editor 66
 System components 106

T
Table mode (Parameter) 147
Table number (Parameter) 148
Terminal voltage 1 (Parameter) 188
Thermal insulation 30
Threaded connection 33
Timestamp (Parameter) 180, 181
Timestamp 1 to 5 (Parameter) 182
 Tool .. 31
 Transmitter
 Turning the display 37
 Turning the display module 37
 Transmitter housing
 Turning .. 36
 Troubleshooting 82
 Turning the display 37
 Turning the display module 37
 TV (HART device variable) 70

U
Unit after linearization (Parameter) 144
Use of the measuring device
 see Intended use 14
Use of the measuring devices
 Borderline cases 9
 Incorrect use 9

V
Value 1 display (Parameter) 170
Value current output 1 to 2 (Parameter) 195
Value echo lost (Parameter) 150

W
Wizard
 Deactivate SIL/WHG 154
 Define access code 179
 Mapping .. 132
 Probe length correction 157
 SIL/WHG confirmation 153
 Workplace safety 10
 Write access 57
Write protection
 Via access code 57
 Via write protection switch 58
Write protection switch 58