Operating Instructions
Levelflex FMP51, FMP52, FMP54
PROFIBUS PA

Guided wave radar
1. Scan the QR code.

Order code:
Ext. ord. cd.:
Ser. no.:
Table of contents

1 Important document information 5
 1.1 Purpose of this document 5
 1.2 Symbols 5
 1.2.1 Safety symbols 5
 1.2.2 Electrical symbols 5
 1.2.3 Tool symbols 5
 1.2.4 Symbols for certain types of information and graphics 6
 1.3 Documentation 7
 1.3.1 Technical Information (TI) 7
 1.3.2 Brief Operating Instructions (KA) . 7
 1.3.3 Safety Instructions (XA) 7
 1.3.4 Functional Safety Manual (FY) 7
 1.4 Terms and abbreviations 7
 1.5 Registered trademarks 8

2 Basic safety instructions 9
 2.1 Requirements for the personnel 9
 2.2 Intended use 9
 2.3 Workplace safety 10
 2.4 Operational safety 10
 2.5 Product safety 10
 2.5.1 CE mark 10
 2.5.2 EAC conformity 11

3 Product description 12
 3.1 Product design 12
 3.1.1 Levelflex FMP51/FMP52/FMP54/ FMP55 .. 12
 3.1.2 Electronics housing 13

4 Incoming acceptance and product identification 14
 4.1 Incoming acceptance 14
 4.2 Product identification 14
 4.2.1 Nameplate 15

5 Storage, transport 16
 5.1 Storage temperature 16
 5.2 Transporting the product to the measuring point 16

6 Mounting 17
 6.1 Mounting requirements 17
 6.1.1 Suitable mounting position 17
 6.1.2 Mounting under confined conditions 19
 6.1.3 Notes on the mechanical load of the probe 21
 6.1.4 Lateral loading capacity (flexural strength) of coax probes 22

6.1.5 Information concerning the process connection 23
 6.1.6 Mounting cladded flanges 25
 6.1.7 Securing the probe 26
 6.1.8 Special installation situations 30

6.2 Mounting the measuring device 42
 6.2.1 Tool list 42
 6.2.2 Mounting the FMP54 rod probe 43
 6.2.3 Shortening the probe 43
 6.2.4 FMP54 with gas phase compensation: Mounting the probe rod 46
 6.2.5 Mounting the device 47
 6.2.6 Mounting the 'Sensor, remote' version 48
 6.2.7 Turning the transmitter housing 50
 6.2.8 Turning the display 51

6.3 Post-installation check 51

7 Electrical connection 53
 7.1 Connecting requirements 53
 7.1.1 Terminal assignment 53
 7.1.2 Cable specification 55
 7.1.3 Device plug 55
 7.1.4 Supply voltage 56
 7.1.5 Overvoltage protection 56
 7.2 Connecting the device 57
 7.2.1 Opening cover 57
 7.2.2 Connecting 57
 7.2.3 Plug-in spring-force terminals 58
 7.2.4 Closing the cover of the connection compartment 58
 7.3 Post-connection check 58

8 Operation methods 60
 8.1 Overview 60
 8.1.1 Local operation 60
 8.1.2 Operation with remote display and operating module FHX50 61
 8.1.3 Remote operation 61
 8.2 Structure and function of the operating menu 62
 8.2.1 Structure of the operating menu 62
 8.2.2 User roles and related access authorization 64
 8.2.3 Data access - Security 64
 8.3 Display and operating module 69
 8.3.1 Display 69
 8.3.2 Operating elements 72
 8.3.3 Entering numbers and text 73
 8.3.4 Opening the context menu 74
 8.3.5 Envelope curve display on the display and operating module 76

Endress+Hauser
Table of contents

Levelex FMP51, FMP52, FMP54 PROFIBUS PA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Integration into a PROFIBUS network</td>
<td>76</td>
</tr>
<tr>
<td>9.1 Overview of device master file (GSD)</td>
<td>76</td>
</tr>
<tr>
<td>9.2 Setting the device address</td>
<td>77</td>
</tr>
<tr>
<td>9.2.1 Hardware addressing</td>
<td>77</td>
</tr>
<tr>
<td>9.2.2 Software addressing</td>
<td>77</td>
</tr>
<tr>
<td>10 Commissioning using the Commissioning Wizard</td>
<td>78</td>
</tr>
<tr>
<td>11 Commissioning via operating menu</td>
<td>79</td>
</tr>
<tr>
<td>11.1 Function check</td>
<td>79</td>
</tr>
<tr>
<td>11.2 Setting the operating language</td>
<td>79</td>
</tr>
<tr>
<td>11.3 Checking the reference distance</td>
<td>79</td>
</tr>
<tr>
<td>11.4 Configuring level measurement</td>
<td>81</td>
</tr>
<tr>
<td>11.5 Configuring interface measurement</td>
<td>83</td>
</tr>
<tr>
<td>11.6 Recording the reference envelope curve</td>
<td>85</td>
</tr>
<tr>
<td>11.7 Configuring the local display</td>
<td>86</td>
</tr>
<tr>
<td>11.7.1 Factory setting of local display for level measurements</td>
<td>86</td>
</tr>
<tr>
<td>11.7.2 Factory setting of local display for interface measurements</td>
<td>86</td>
</tr>
<tr>
<td>11.7.3 Adjusting the local display</td>
<td>86</td>
</tr>
<tr>
<td>11.8 Configuration management</td>
<td>87</td>
</tr>
<tr>
<td>11.9 Protecting settings from unauthorized access</td>
<td>88</td>
</tr>
<tr>
<td>12 Diagnostics and troubleshooting</td>
<td>89</td>
</tr>
<tr>
<td>12.1 General troubleshooting</td>
<td>89</td>
</tr>
<tr>
<td>12.1.1 General errors</td>
<td>89</td>
</tr>
<tr>
<td>12.1.2 Parametrization errors</td>
<td>90</td>
</tr>
<tr>
<td>12.2 Diagnostic information on local display</td>
<td>92</td>
</tr>
<tr>
<td>12.2.1 Diagnostic message</td>
<td>92</td>
</tr>
<tr>
<td>12.2.2 Calling up remedial measures</td>
<td>94</td>
</tr>
<tr>
<td>12.3 Diagnostic event in the operating tool</td>
<td>95</td>
</tr>
<tr>
<td>12.4 Diagnostic list</td>
<td>96</td>
</tr>
<tr>
<td>12.5 List of diagnostic events</td>
<td>97</td>
</tr>
<tr>
<td>12.6 Event logbook</td>
<td>98</td>
</tr>
<tr>
<td>12.6.1 Event history</td>
<td>98</td>
</tr>
<tr>
<td>12.6.2 Filtering the event logbook</td>
<td>99</td>
</tr>
<tr>
<td>12.6.3 Overview of information events</td>
<td>99</td>
</tr>
<tr>
<td>12.7 Firmware history</td>
<td>101</td>
</tr>
<tr>
<td>13 Maintenance</td>
<td>102</td>
</tr>
<tr>
<td>13.1 Exterior cleaning</td>
<td>102</td>
</tr>
<tr>
<td>13.2 General cleaning instructions</td>
<td>102</td>
</tr>
<tr>
<td>14 Repair</td>
<td>103</td>
</tr>
<tr>
<td>14.1 General information</td>
<td>103</td>
</tr>
<tr>
<td>14.1.1 Repair concept</td>
<td>103</td>
</tr>
<tr>
<td>14.1.2 Repair of Ex-certified devices</td>
<td>103</td>
</tr>
<tr>
<td>14.1.3 Replacing electronics modules</td>
<td>103</td>
</tr>
<tr>
<td>14.1.4 Replacing a device</td>
<td>103</td>
</tr>
<tr>
<td>14.2 Spare parts</td>
<td>104</td>
</tr>
<tr>
<td>15 Accessories</td>
<td>105</td>
</tr>
<tr>
<td>15.1 Device-specific accessories</td>
<td>105</td>
</tr>
<tr>
<td>15.1.1 Weather protection cover</td>
<td>105</td>
</tr>
<tr>
<td>15.1.2 Mounting bracket for electronics housing</td>
<td>106</td>
</tr>
<tr>
<td>15.1.3 Rod extension / centering device</td>
<td>107</td>
</tr>
<tr>
<td>15.1.4 Mounting kit, insulated</td>
<td>108</td>
</tr>
<tr>
<td>15.1.5 Centering star</td>
<td>109</td>
</tr>
<tr>
<td>15.1.6 Centering weight</td>
<td>112</td>
</tr>
<tr>
<td>15.1.7 Remote display FHX50</td>
<td>113</td>
</tr>
<tr>
<td>15.1.8 Overvoltage protection</td>
<td>114</td>
</tr>
<tr>
<td>15.1.9 Bluetooth module BT10 for HART devices</td>
<td>115</td>
</tr>
<tr>
<td>15.2 Communication-specific accessories</td>
<td>116</td>
</tr>
<tr>
<td>15.3 Service-specific accessories</td>
<td>116</td>
</tr>
<tr>
<td>15.4 System components</td>
<td>116</td>
</tr>
<tr>
<td>16 Operating menu</td>
<td>117</td>
</tr>
<tr>
<td>16.1 Overview of the operating menu (display module)</td>
<td>117</td>
</tr>
<tr>
<td>16.2 Overview of the operating menu (operating tool)</td>
<td>124</td>
</tr>
<tr>
<td>16.3 'Setup' menu</td>
<td>131</td>
</tr>
<tr>
<td>16.3.1 'Mapping' wizard</td>
<td>144</td>
</tr>
<tr>
<td>16.3.2 'Analog input 1 to 6' submenu</td>
<td>145</td>
</tr>
<tr>
<td>16.3.3 'Advanced setup' submenu</td>
<td>147</td>
</tr>
<tr>
<td>16.4 'Diagnostics' menu</td>
<td>197</td>
</tr>
<tr>
<td>16.4.1 'Diagnostic list' submenu</td>
<td>199</td>
</tr>
<tr>
<td>16.4.2 'Event logbook' submenu</td>
<td>200</td>
</tr>
<tr>
<td>16.4.3 'Device information' submenu</td>
<td>201</td>
</tr>
<tr>
<td>16.4.4 'Measured values' submenu</td>
<td>203</td>
</tr>
<tr>
<td>16.4.5 'Analog input 1 to 6' submenu</td>
<td>206</td>
</tr>
<tr>
<td>16.4.6 'Data logging' submenu</td>
<td>208</td>
</tr>
<tr>
<td>16.4.7 'Simulation' submenu</td>
<td>211</td>
</tr>
<tr>
<td>16.4.8 'Device check' submenu</td>
<td>215</td>
</tr>
<tr>
<td>16.4.9 'Heartbeat' submenu</td>
<td>217</td>
</tr>
<tr>
<td>Index</td>
<td>218</td>
</tr>
</tbody>
</table>
1 Important document information

1.1 Purpose of this document
These Operating Instructions contain all the information that is required in the various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.

1.2 Symbols

1.2.1 Safety symbols

[DANGER]
This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

[WARNING]
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

[CAUTION]
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

[NOTICE]
This symbol contains information on procedures and other facts which do not result in personal injury.

1.2.2 Electrical symbols

[~]
Alternating current

[~ ~]
Direct current and alternating current

[~ ~ ~ ~ ~ ~ ~]
Direct current

[÷]
Ground connection

A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.

[Protective earth (PE)]
Ground terminals that must be connected to ground prior to establishing any other connections.

The ground terminals are located on the interior and exterior of the device:
- Interior ground terminal: protective earth is connected to the mains supply.
- Exterior ground terminal: device is connected to the plant grounding system.

1.2.3 Tool symbols

[Phillips head screwdriver]
Phillips head screwdriver
1.2.4 Symbols for certain types of information and graphics

- **Permitted**
 Procedures, processes or actions that are permitted

- **Preferred**
 Procedures, processes or actions that are preferred

- **Forbidden**
 Procedures, processes or actions that are forbidden

- **Tip**
 Indicates additional information

- **Reference to documentation**

- **Reference to graphic**

- **Notice or individual step to be observed**

- **Series of steps**

- **Result of a step**

- **Visual inspection**

- **Operation via operating tool**

- **Write-protected parameter**

- **Item numbers**

- **Views**

- **Safety instructions**
 Observe the safety instructions contained in the associated Operating Instructions

- **Temperature resistance of the connection cables**
 Specifies the minimum value of the temperature resistance of the connection cables
1.3 Documentation

The following types of documentation are available in the Download Area of the Endress + Hauser website (www.endress.com/downloads):

For an overview of the scope of the associated Technical Documentation, refer to the following:
- Device Viewer (www.endress.com/deviceviewer): Enter the serial number from the nameplate
- Endress+Hauser Operations app: Enter serial number from nameplate or scan matrix code on nameplate.

1.3.1 Technical Information (TI)
Planning aid
The document contains all the technical data on the device and provides an overview of the accessories and other products that can be ordered for the device.

1.3.2 Brief Operating Instructions (KA)
Guide that takes you quickly to the 1st measured value
The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning.

1.3.3 Safety Instructions (XA)
Depending on the approval, the following Safety Instructions (XA) are supplied with the device. They are an integral part of the Operating Instructions.

The nameplate indicates the Safety Instructions (XA) that are relevant to the device.

1.3.4 Functional Safety Manual (FY)
Depending on the SIL approval, the Functional Safety Manual (FY) is an integral part of the Operating Instructions and applies in addition to the Operating Instructions, Technical Information and ATEX Safety Instructions.

The different requirements that apply for the protective function are described in the Functional Safety Manual (FY).

1.4 Terms and abbreviations

BA
Document type "Operating Instructions"

KA
Document type "Brief Operating Instructions"

TI
Document type "Technical Information"

SD
Document type "Special Documentation"

XA
Document type "Safety Instructions"

PN
Nominal pressure

MWP
Maximum working pressure
The MWP is indicated on the nameplate.
ToF
Time of Flight

$\varepsilon_r \text{ (Dk value)}$
Relative dielectric constant

PLC
Programmable logic controller (PLC)

CDI
Common Data Interface

BD
Blocking Distance; no signals are analyzed within the BD.

PLC
Programmable logic controller (PLC)

CDI
Common Data Interface

PFS
Pulse Frequency Status (Switch output)

1.5 Registered trademarks

PROFIBUS®
Registered trademark of the PROFIBUS User Organization, Karlsruhe, Germany

Bluetooth®
The Bluetooth® word mark and logos are registered trademarks owned by the Bluetooth SIG, Inc. and any use of such marks by Endress+Hauser is under license. Other trademarks and trade names are those of their respective owners.

Apple®
Apple, the Apple logo, iPhone, and iPod touch are trademarks of Apple Inc., registered in the U.S. and other countries. App Store is a service mark of Apple Inc.

Android®
Android, Google Play and the Google Play logo are trademarks of Google Inc.

KALREZ®; VITON®
Registered trademarks of DuPont Performance Elastomers L.L.C., Wilmington, DE USA

TEFLON®
Registered trademark of E.I. DuPont de Nemours & Co., Wilmington, USA

TRI-CLAMP®
Registered trademark of Ladish & Co., Inc., Kenosha, USA

NORD-LOCK®
Registered trademark of Nord-Lock International AB

FISHER®
Registered trademark of Fisher Controls International LLC, Marshalltown, USA

MASONEILAN®
Registered trademark of Dresser, Inc., Addison, USA
2 Basic safety instructions

2.1 Requirements for the personnel

The personnel for installation, commissioning, diagnostics and maintenance must fulfill the following requirements:

‣ Trained, qualified specialists must have a relevant qualification for this specific function and task.
‣ Are authorized by the plant owner/operator.
‣ Are familiar with federal/national regulations.
‣ Before starting work, read and understand the instructions in the manual and supplementary documentation as well as the certificates (depending on the application).
‣ Follow instructions and comply with basic conditions.

The operating personnel must fulfill the following requirements:

‣ Are instructed and authorized according to the requirements of the task by the facility's owner-operator.
‣ Follow the instructions in this manual.

2.2 Intended use

Application and media

The measuring device described in this manual is intended only for the level and interface measurement of liquids. Depending on the version ordered, the measuring device can also measure potentially explosive, flammable, poisonous and oxidizing media.

If the limit values specified in the "Technical data" and the conditions listed in the instructions and additional documentation are observed, the measuring device may be used for the following measurements only:

‣ Measured process variables: level and/or interface height
‣ Calculable process variables: volume or mass in any shape of vessel (calculated from the level by the linearization functionality)

To ensure that the measuring device remains in proper condition for the operation time:

‣ Use the measuring device only for media to which the process-wetted materials have an adequate level of resistance.
‣ Observe the limit values in the "Technical data".

Incorrect use

The manufacturer is not liable for damage caused by improper or non-intended use.

Clarification of borderline cases:

‣ For special fluids and fluids for cleaning, Endress+Hauser is glad to provide assistance in verifying the corrosion resistance of fluid-wetted materials, but does not accept any warranty or liability.

Residual risks

Due to heat transfer from the process as well as power loss in the electronics, the temperature of the electronics housing and the assemblies contained therein (e.g. display module, main electronics module and I/O electronics module) may rise up to 80 °C (176 °F). When in operation, the sensor may reach a temperature close to the medium temperature.

Danger of burns from contact with surfaces!

‣ In the event of high medium temperatures, ensure protection against contact to prevent burns.
2.3 Workplace safety

When working on and with the device:

‣ Wear the required protective equipment according to federal or national regulations.

With separable probe rods, medium may penetrate the joints between the individual parts of the rod. This medium may escape when the joints are loosened. This can cause injuries in the case of dangerous (e.g., aggressive or toxic) media.

‣ When loosening the joints between the individual parts of the probe rod, wear appropriate protective equipment according to the medium.

2.4 Operational safety

Risk of injury!

‣ Operate the device only if it is in proper technical condition, free from errors and faults.

‣ The operator is responsible for the interference-free operation of the device.

Modifications to the device

Unauthorized modifications to the device are not permitted and can lead to unforeseeable dangers:

‣ If modifications are nevertheless required, consult with the manufacturer.

Repair

To ensure continued operational safety and reliability:

‣ Carry out repairs on the device only if they are expressly permitted.

‣ Observe federal/national regulations pertaining to the repair of an electrical device.

‣ Use only original spare parts and accessories from the manufacturer.

Hazardous area

To eliminate danger to persons or the installation when the device is used in the hazardous area (e.g. explosion protection, pressure vessel safety):

‣ Check the nameplate to verify whether the ordered device can be put to its intended use in the hazardous area.

‣ Observe the specifications in the separate supplementary documentation, which is an integral part of this manual.

2.5 Product safety

This measuring device is designed in accordance with good engineering practice to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate. It meets the general safety standards and legal requirements.

NOTICE

Loss of degree of protection by opening of the device in humid environments

‣ If the device is opened in a humid environment, the degree of protection indicated on the nameplate is no longer valid. This may also impair the safe operation of the device.

2.5.1 CE mark

The measuring system meets the legal requirements of the applicable EU directives. These are listed in the corresponding EU Declaration of Conformity together with the standards applied.

The manufacturer confirms successful testing of the device by affixing to it the CE mark.
2.5.2 EAC conformity
The measuring system meets the legal requirements of the applicable EAC guidelines. These are listed in the corresponding EAC Declaration of Conformity along with the standards applied.

The manufacturer confirms successful testing of the device by affixing to it the EAC mark.
3 Product description

3.1 Product design

3.1.1 Levelflex FMP51/FMP52/FMP54/FMP55

1 Design of the Levelflex

1 Electronics housing
2 Process connection (here as an example: flange)
3 Rope probe
4 End-of-probe weight
5 Rod probe
6 Coax probe
3.1.2 Electronics housing

Design of the electronics housing

1 Electronics compartment cover
2 Display module
3 Main electronics module
4 Cable glands (1 or 2, depending on instrument version)
5 Nameplate
6 I/O electronics module
7 Terminals (pluggable spring terminals)
8 Connection compartment cover
9 Grounding terminal
4 Incoming acceptance and product identification

4.1 Incoming acceptance

Check the following during incoming acceptance:

- Are the order codes on the delivery note and the product sticker identical?
- Are the goods undamaged?
- Do the nameplate data match the ordering information on the delivery note?
- If required (see nameplate): are the Safety Instructions (XA) provided?

If one of these conditions is not met, please contact your Endress+Hauser sales office.

4.2 Product identification

The following options are available for the identification of the measuring device:

- Nameplate specifications
- Order code with breakdown of the device features on the delivery note
- Enter the serial number from the nameplate in W@M Device Viewer (www.endress.com/deviceviewer): all the information about the device is displayed.
- Enter the serial number on the nameplate into the Endress+Hauser Operations App or scan the 2-D matrix code (QR code) on the nameplate with the Endress+Hauser Operations App: all the information about the measuring device is displayed.
4.2.1 Nameplate

![Diagram of a nameplate](image)

- **Device name**
- **Manufacturer address**
- **Order code**
- **Serial number (Ser. no.)**
- **Extended order code (Ext. ord. cd.)**
- **Process pressure**
- **Gas phase compensation: reference length**
- **Certificate symbol**
- **Certificate- and approval-related data**
- **Degree of protection: e.g. IP, NEMA**
- **Document number of the Safety Instructions: e.g. XA, ZD, ZE**
- **2-D matrix code (QR code)**
- **Modification mark**
- **Manufacturing date: year-month**
- **Permitted temperature range for cable**
- **Device revision (Dev.Rev.)**
- **Additional information about the device version (certificates, approvals, communication protocol): e.g. SIL, PROIBUS**
- **Firmware version (FW)**
- **CE mark, C-Tick**
- **DeviceID**
- **Materials in contact with process**
- **Permitted ambient temperature (T_a)**
- **Size of the cable gland thread**
- **Probe length**
- **Signal outputs**
- **Supply voltage**

Up to 33 characters of the extended order code are indicated on the nameplate. If the extended order code contains additional characters, these cannot be displayed. However, the complete extended order code can also be displayed via the device operating menu: **Extended order code 1 to 3 parameter**
5 Storage, transport

5.1 Storage temperature
- Permitted storage temperature: –40 to +80 °C (–40 to +176 °F)
- Use original packaging.
- Option for FMP51 and FMP54: –50 to +80 °C (–58 to +176 °F)
 This range applies if the option JN "Transmitter ambient temperature" –50 °C (–58 °F) was selected in order code 580 'Test, Certificate'. If the temperature is permanently below –40 °C (–40 °F), higher failure rates can be expected.

5.2 Transporting the product to the measuring point

⚠️ WARNING
Housing or rod may become damaged or pull off.
Danger of injury!
- Transport the measuring device to the measuring point in its original packaging or by the process connection.
- Always secure lifting equipment (slings, eyes, etc.) at the process connection and never lift the device by the electronic housing or probe. Pay attention to the center of gravity of the device so that it does not tilt or slip unintentionally.
- Follow the safety instructions and transport conditions for devices weighing more than 18 kg (39.6 lbs) (IEC 61010).
6 Mounting

6.1 Mounting requirements

6.1.1 Suitable mounting position

Spacing requirements when mounting

- Distance (A) between the vessel wall and rod and rope probes:
 - For smooth metallic walls: > 50 mm (2 in)
 - For plastic walls: > 300 mm (12 in) to metallic parts outside the vessel
 - For concrete walls: > 500 mm (20 in), otherwise the permitted measuring range may be reduced.
- Distance (B) between rod probes and internal fittings (3): > 300 mm (12 in)
- When using more than one Levelflex:
 Minimum distance between the sensor axes: 100 mm (3.94 in)
- Distance (C) from the end of the probe to the bottom of the vessel:
 - Rope probe: > 150 mm (6 in)
 - Rod probe: > 10 mm (0.4 in)
 - Coax probe: > 10 mm (0.4 in)

Coax probes can be mounted at any distance to the wall and internal fixtures.
Additional conditions

- When mounting outdoors, a weather protection cover (1) can be used to protect the device against extreme weather conditions.
- In metallic vessels, preferably do not mount the probe in the center of the vessel (2), as this would lead to increased interference echoes. If a central mounting position cannot be avoided, it is essential to perform interference echo suppression (mapping) after commissioning the device.
- Do not mount the probe in the filling curtain (3).
- Avoid buckling the rope probe during installation or operation (e.g. as a result of product movement against silo wall) by selecting a suitable mounting location.

In the case of freely suspended rope probes (probe end not fixed at the bottom), the distance between the probe rope and internal fittings, which can change due to the movement of the product, must never be less than 300 mm (12 in). Occasional contact between the probe end weight and the cone of the vessel, however, does not influence the measurement provided that the dielectric constant is at least DC = 1.8.

When the housing is mounted in a recess (e.g. in a concrete ceiling), observe a minimum distance of 100 mm (4 in) between the cover of the connection compartment/electronics compartment and the wall. Otherwise the connection compartment/electronics compartment will not be accessible after installation.
6.1.2 Mounting under confined conditions

Mounting with remote probe
The device version with a remote probe is suitable for applications with restricted mounting space. In this case, the electronics housing is mounted at a separate position from the probe.

Product structure, feature 600 "Probe design":
- Version MB "Sensor remote, 3m cable"
- Version MC "Sensor remote, 6m cable"
- Version MD "Sensor remote, 9m cable"
- The connecting cable is included in the delivery with these versions. Minimum bending radius: 100 mm (4 inch)
- The mounting bracket for the electronics housing is included in the delivery with these versions. Mounting options:
 - Wall mounting
 - Mounting on DN32 to DN50 (1-1/4 to 2 inch) post or pipe
- The connection cable has one straight plug and one plug angled at 90°. Depending on the local conditions the angled plug can be connected at the probe or at the electronics housing.

The probe, electronics and connection cable are mutually compatible and bear a common serial number. Only components with the same serial number may be connected to one another.
Separable probes

The use of separable rod probes (Ø 16 mm) is advisable in confined mounting conditions (limited distance to the ceiling).

- Max. probe length 10 m (394 in)
- Max. lateral loading capacity 30 Nm
- Probes can be separated several times, with the individual parts having the following lengths:
 - 500 mm (20 in)
 - 1000 mm (40 in)

The joints between the individual rod segments are secured by the enclosed Nord Lock washers. Install the pre-assembled washers in pairs, cam face to cam face.
6.1.3 Notes on the mechanical load of the probe

Tensile loading capacity of rope probes

FMP51
- Rope 4mm (1/6") 316
 - 5 kN
- Rope 4mm (1/6") Alloy C
 - 5 kN
- Rope 4mm (1/6") PFA>316L
 - 1 kN

FMP52
- Rope 4mm (1/6") PFA>316
 - 2 kN

FMP54
- Rope 4mm (1/6") 316
 - 10 kN

Lateral loading capacity (flexural strength) of rod probes

FMP51
- Rod 8mm (1/3") 316L
 - 10 Nm
- Rod 12mm (1/2") 316L
 - 30 Nm
- Rod 12mm (1/2") AlloyC
 - 30 Nm
- Rod 16mm (0.63") 316L separable
 - 30 Nm

FMP52
- Rod 16mm (0.63") PFA>316L
 - 30 Nm

FMP54
- Rod 16mm (0.63") 316L
 - 30 Nm
- Rod 16mm (0.63") 316L separable
 - 30 Nm

Later al load (bending moment) from flow conditions

The formula for calculating the bending moment M acting on the probe:

$$M = c_w \times \rho / 2 \times v^2 \times d \times L \times (L_N - 0.5 \times L)$$

With:
- c_w: coefficient of friction
- ρ [kg/m3]: density of the medium
- v [m/s]: flow velocity of the medium, perpendicular to the probe rod
- d [m]: diameter of the probe rod
- L [m]: level
LN [m]: probe length

Sample calculation

- Coefficient of friction c_w: 0.9 (assuming turbulent flow - high Reynolds number)
- Density ρ [kg/m3]: 1000 (e.g. water)
- Probe diameter d [m]: 0.008
- $L = L_N$ (unfavorable conditions)

![Diagram](image)

6.1.4 Lateral loading capacity (flexural strength) of coax probes

FMP51
- Probe Ø 21.3 mm 316L
 - 60 Nm
- Probe Ø 42.4 mm 316L
 - 300 Nm
- Probe Ø 42.4 mm AlloyC
 - 300 Nm

FMP54
- Probe Ø 42.4 mm 316L
 - 300 Nm
6.1.5 Information concerning the process connection

Probes are mounted on the process connection with threaded connections or flanges. If there is the danger with this installation that the probe end moves so much that it occasionally touches the vessel floor or cone, the probe may need to be shortened at the lower end and fixed in place.

Threaded connection

Seal

The thread and the type of seal comply with DIN 3852 Part 2, screwed plug, form A. The following types of sealing ring can be used:

- For thread G3/4": According to DIN 7603 with dimensions 27 mm × 32 mm
- For thread G1/-1/2": According to DIN 7603 with dimensions 48 mm × 55 mm

Use a sealing ring according to this standard in form A, C or D and of a material that offers appropriate resistance for the application.

Nozzle installation

H Length of the centering rod or the rigid part of the rope probe
Mounting

- Permissible nozzle diameter: ≤ 150 mm (6 in)
 For larger diameters, the near-range measuring capability may be reduced.
 For large nozzles, see the section "Mounting in nozzles ≥ DN300"
- Permissible nozzle height: ≤ 150 mm (6 in)
 For larger heights, the near-range measuring capability may be reduced.
 Larger nozzle heights are possible in special cases (on request), see sections "Centering rod for FMP51 and FMP52" and "Rod extension/centering device HMP40 for FMP54".
- The end of the nozzle should be flush with the tank ceiling in order to avoid ringing effects.

In thermally insulated vessels, the nozzle should also be insulated in order to prevent condensate formation.

Centering rod

In the case of rope probes, it may be necessary to use a version with a centering rod so that the rope does not come in contact with the nozzle wall during the process.

The length of the optional centering rod determines the maximum nozzle height.

Rod extension/centering device HMP40 for FMP54

For FMP54 with rope probes, the rod extension/centering device HMP40 is available as an accessory. It must be used if the probe rope would otherwise come into contact with the lower edge of the nozzle.

- This accessory consists of the extension rod, corresponding to the nozzle height, on which a centering disk is also mounted if the nozzles are narrow or when used in bulk solids.
 - This component is delivered separately from the device. Order a correspondingly shorter probe length.
 - Only use centering disks with small diameters (DN40 and DN50) if there is no significant build-up in the nozzle above the disk. The nozzle must not become clogged with product.

Mounting in nozzles ≥ DN300

If installation in nozzles ≥ 300 mm (12 in) is unavoidable, installation must be carried out in accordance with the following diagram in order to avoid interference signals in the near range.

1. Lower edge of the nozzle
2. Approximately flush with the lower edge of the nozzle (±50 mm)
3. Plate, nozzle Ø 300 mm (12 in) = plate Ø 280 mm (11 in); nozzle Ø ≥ 400 mm (16 in) = plate Ø ≥ 350 mm (14 in)
4. Pipe Ø 150 to 180 mm
6.1.6 **Mounting cladded flanges**

Note the following for cladded flanges:

- Use the same number of flange screws as the number of flange bores provided.
- Tighten the screws with the necessary torque (see Table).
- Retighten after 24 hours or after the first temperature cycle.
- Depending on the process pressure and temperature, check and retighten the screws, where necessary, at regular intervals.

The PTFE flange cladding normally acts simultaneously as a seal between the nozzle and the device flange.

<table>
<thead>
<tr>
<th>Flange size</th>
<th>Number of screws</th>
<th>Tightening torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN40/PN40</td>
<td>4</td>
<td>35 to 55 Nm</td>
</tr>
<tr>
<td>DN50/PN16</td>
<td>4</td>
<td>45 to 65 Nm</td>
</tr>
<tr>
<td>DN50/PN40</td>
<td>4</td>
<td>45 to 65 Nm</td>
</tr>
<tr>
<td>DN80/PN16</td>
<td>8</td>
<td>40 to 55 Nm</td>
</tr>
<tr>
<td>DN80/PN40</td>
<td>8</td>
<td>40 to 55 Nm</td>
</tr>
<tr>
<td>DN100/PN16</td>
<td>8</td>
<td>40 to 60 Nm</td>
</tr>
<tr>
<td>DN100/PN40</td>
<td>8</td>
<td>55 to 80 Nm</td>
</tr>
<tr>
<td>DN150/PN16</td>
<td>8</td>
<td>75 to 115 Nm</td>
</tr>
<tr>
<td>DN150/PN40</td>
<td>8</td>
<td>95 to 145 Nm</td>
</tr>
<tr>
<td>ASME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1½’/150lbs</td>
<td>4</td>
<td>20 to 30 Nm</td>
</tr>
<tr>
<td>1½’/300lbs</td>
<td>4</td>
<td>30 to 40 Nm</td>
</tr>
<tr>
<td>2’/150lbs</td>
<td>4</td>
<td>40 to 55 Nm</td>
</tr>
<tr>
<td>2’/300lbs</td>
<td>8</td>
<td>20 to 30 Nm</td>
</tr>
<tr>
<td>3’/150lbs</td>
<td>4</td>
<td>65 to 95 Nm</td>
</tr>
<tr>
<td>3’/300lbs</td>
<td>8</td>
<td>40 to 55 Nm</td>
</tr>
<tr>
<td>4’/150lbs</td>
<td>8</td>
<td>45 to 70 Nm</td>
</tr>
<tr>
<td>4’/300lbs</td>
<td>8</td>
<td>55 to 80 Nm</td>
</tr>
<tr>
<td>6’/150lbs</td>
<td>8</td>
<td>85 to 125 Nm</td>
</tr>
<tr>
<td>6’/300lbs</td>
<td>12</td>
<td>60 to 90 Nm</td>
</tr>
<tr>
<td>JIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10K 40A</td>
<td>4</td>
<td>30 to 45 Nm</td>
</tr>
<tr>
<td>10K 50A</td>
<td>4</td>
<td>40 to 60 Nm</td>
</tr>
<tr>
<td>10K 80A</td>
<td>8</td>
<td>25 to 35 Nm</td>
</tr>
<tr>
<td>10K 100A</td>
<td>8</td>
<td>35 to 55 Nm</td>
</tr>
<tr>
<td>10K 100A</td>
<td>8</td>
<td>75 to 115 Nm</td>
</tr>
</tbody>
</table>
6.1.7 Securing the probe

Securing rope probes

The end of the rope probe must be secured (fixed down) under the following conditions:
- If the probe would otherwise temporarily come into contact with the vessel wall, the cone, internal fittings/beams or another part of the installation
- A female thread is provided in the probe weight to secure the end of the probe:
 Rope 4 mm (1/6"), 316: M 14
- When fixed down, the end of the probe must be either reliably grounded or reliably insulated. Use an insulated fastening kit if it is not otherwise possible to secure the probe with a reliably insulated connection.
- If grounded fastening is used, the search for a positive probe end echo must be activated. Otherwise, automatic probe length correction is not possible.
 Navigation: Expert → Sensor → EOP evaluation → EOP search mode
 Setting: Positive EOP option
- To prevent an extremely high tensile load (e.g. due to thermal expansion) and the risk of the rope breaking, the rope must be slack. Required sag: ≥ 10 mm/(1 m rope length) [0.12 in/(1 ft rope length)].
 Pay attention to the tensile loading capacity of rope probes.
Securing rod probes

- For WHG approval: A support is required for probe lengths ≥ 3 m (10 ft).
- In general, rod probes must be secured in the event of horizontal flow (e.g. from an agitator) or strong vibrations.
- Only secure rod probes directly at the end of the probe.

NOTICE

Poor grounding of the probe end may cause incorrect measurements.

- Use a sleeve with a narrow bore to ensure good electrical contact between the sleeve and the probe rod.

Unit of measurement mm (in)

1. Probe rod, uncoated
2. Sleeve with narrow bore to ensure electrical contact between the sleeve and the rod.
3. Short metal pipe, e.g. welded in place
4. Probe rod, coated
5. Plastic sleeve, e.g. PTFE, PEEK, PPS
6. Short metal pipe, e.g. welded in place

Probe Ø 8 mm (0.31 in)
- a < Ø 14 mm (0.55 in)
- b = Ø 8.5 mm (0.34 in)

Probe Ø 12 mm (0.47 in)
- a < Ø 20 mm (0.78 in)
- b = Ø 12.5 mm (0.52 in)

Probe Ø 16 mm (0.63 in)
- a < Ø 26 mm (1.02 in)
- b = Ø 16.5 mm (0.65 in)
NOTICE

Welding can damage the main electronics module.

- Before welding: Ground the probe rod and remove the electronics.
Securing coax probes

For WHG approval: A support is required for probe lengths ≥ 3 m (10 ft).

Coax probes can be secured (fixed) at any point in the ground tube.
6.1.8 Special installation situations

Bypasses and stilling wells

The use of centering disks/stars/weights (available as accessories) is recommended in bypass and stilling well applications.

As the measuring signal penetrates many plastics, installation in plastic bypasses or stilling wells can produce incorrect results. For this reason use a metal bypass or stilling well.

![Diagram of mounting options](image)

<table>
<thead>
<tr>
<th>6</th>
<th>Engineering unit: mm (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Mounting in stilling well</td>
</tr>
<tr>
<td>B</td>
<td>Mounting in bypass</td>
</tr>
<tr>
<td>C</td>
<td>Centering disk/centering star/centering weight</td>
</tr>
<tr>
<td>1</td>
<td>Metal centering disk (316L) for level measurement</td>
</tr>
<tr>
<td>2</td>
<td>Securing screw; torque: 25 Nm ± 5 Nm</td>
</tr>
<tr>
<td>3</td>
<td>Non-metal centering star (PEEK, PFA) preferred for interface measurement</td>
</tr>
<tr>
<td>4</td>
<td>Metal centering weight (316L) for level measurement</td>
</tr>
<tr>
<td>5</td>
<td>Minimum distance between probe end and lower edge of bypass 10 mm (0.4 in)</td>
</tr>
</tbody>
</table>

- Pipe diameter: > 40 mm (1.6 in) (for rod probes).
- A rod probe can be installed in pipes with a diameter of up to 150 mm (6 in). The use of a coax probe is recommended for larger pipe diameters.
- Side outlets, holes, slots and welds - with a maximum inward projection of 5 mm (0.2 in) - do not affect the measurement.
- There should not be any changes in the diameter of the pipe.
- The probe must be 100 mm (4 in) longer than the lower outlet.
• The probes must not touch the pipe wall within the measuring range. Support or brace the probe if necessary. All rope probes are prepared for bracing in vessels (tensioning weight with anchor hole).
• If a metal centering disk is mounted at the end of the probe rod, the signal for detecting the end of the probe is reliably defined.
 Note: The non-metal centering stars made of PEEK or PFA are recommended for interface measurements. When using metal centering disks, it is important to ensure that the lower medium covers the centering disk at all times. Otherwise, incorrect interface measurements can result.
• Coax probes can be used within any restrictions provided that the pipe diameter permits their installation.

For bypasses with condensate formation (water) and a medium with a low dielectric constant (e.g. hydrocarbons):

Over time, the bypass fills with condensate up to the lower outlet. When levels are low, the level echo is masked by the echo of the condensate as a result. In this range, the level of the condensate is output and the correct value is only output when levels are higher. For this reason, ensure that the lower outlet is 100 mm (4 in) below the lowest level to be measured and fit a metal centering disk at the level of the lower edge of the lower outlet.

In thermally insulated vessels, the bypass should also be insulated in order to prevent condensate formation.

Assignment of centering disk/centering star/centering weight to the pipe diameter

Metal centering disk (316L)
for level measurement

Rod centering disk (Ød) 45 mm (1.77 in)
for pipe diameter (ØD)
DN50/2" to DN65/2½"

Rod centering disk (Ød) 75 mm (2.95 in)
for pipe diameter (ØD)
DN80/3" to DN100/4"

Rope centering disk (Ød) 75 mm (2.95 in)
for pipe diameter (ØD)
DN80/3" to DN100/4"

Metal centering weight (316L)
for level measurement

Rope centering weight (Ød) 45 mm (1.77 in), h 60 mm (2.36 in)
for pipe diameter (ØD)
DN50/2"

Rope centering weight (Ød) 75 mm (2.95 in), h 30 mm (1.81 in)
for pipe diameter (ØD)
DN80/3"

Rope centering weight (Ød) 95 mm (3.74 in), h 30 mm (1.81 in)
for pipe diameter (ØD)
DN100/4"

Non-metal centering star (PEEK)
For level and interface measurement, operating temperature:
−60 to +250 °C (−76 to 482 °F)

Rod centering star (Ød) 48 to 95 mm (1.89 to 3.74 in)
for pipe diameter (ØD)
≥ DN50/2"
Non-metal centering star (PFA)
For level and interface measurement, operating temperature:
−200 to +250 °C (−328 to +482 °F)

Rod centering star (Ød) 37 mm (1.46 in)
for pipe diameter (ØD)
≥ 40 mm (1.57 in)
Horizontal cylindrical and vertical tanks

1 Coax probe

- Any distance from wall provided occasional contact is avoided.
- Use a coax probe (1) if installing in tanks with many internal fixtures or internal fixtures located close to the probe.
Underground tanks

In the case of nozzles with large diameters, use a coax probe to avoid reflections at the nozzle wall.
Mounting at an angle

- For mechanical reasons, the probe should be installed as vertically as possible.
- If the probe is installed at an angle, the length of the probe must be reduced depending on the angle of installation.
 - $\alpha = 5^\circ$: LN$_{\text{max}}$. 4 m (13.1 ft)
 - $\alpha = 10^\circ$: LN$_{\text{max}}$. 2 m (6.6 ft)
 - $\alpha = 30^\circ$: LN$_{\text{max}}$. 1 m (3.3 ft)
Non-metal vessels

To ensure good measurement results when mounting on non-metal vessels
- Use a device with a metal flange (minimum size DN50/2”).
- Alternatively: at the process connection, mount a metal sheet with a diameter of at least 200 mm (8 in) at a right angle to the probe.

A metal surface is not required at the process connection in the case of coax probes.
Plastic and glass vessels: Mounting the probe on the outside wall

In the case of plastic and glass vessels, the probe can also be mounted on the outside wall under certain conditions.

![Diagram of plastic or glass vessel with mounting components](image)

1. Plastic or glass vessel
2. Metal plate with screw-in sleeve
3. No space between vessel wall and probe!

Requirements
- Dielectric constant of the medium: $\varepsilon_r > 7$.
- Non-conductive vessel wall.
- Maximum wall thickness (a):
 - Plastic: < 15 mm (0.6 in)
 - Glass: < 10 mm (0.4 in)
- No metal reinforcements on the vessel.

Note the following when mounting the device:
- Mount the probe directly on the vessel wall without any space between the wall and probe.
- To prevent any influence on the measurement, fit a plastic half pipe with a diameter of at least 200 mm (8 in), or a similar protective unit, on the probe.
- For vessel diameters less than 300 mm (12 in):
 - On the opposite side of the vessel, fit a grounding plate that is conductively connected to the process connection and covers around half of the vessel's circumference.
- For vessel diameters of 300 mm (12 in) and higher:
 - At the process connection, fit a metal plate with a diameter of at least 200 mm (8 in) at a right angle to the probe (see above).

Adjustment when mounting on the vessel exterior

When the probe is mounted on the outside of the vessel wall, the speed of propagation of the signal is reduced. There are two ways to compensate for this.

Compensation via gas phase compensation factor

The effect of the dielectric wall is comparable to the effect of a dielectric gas phase and can therefore be corrected in the same way. The correction factor is calculated as the quotient of the actual probe length L_N and the probe length measured when the vessel is empty.

1. The device determines the position of the probe end echo in the differential curve. Therefore, the value of the measured probe length depends on the mapping curve. In order to obtain a more accurate value, it is advisable to determine the measured probe length manually using the envelope curve display in FieldCare.

1. Parameter Expert → Sensor → Gas phase compensation → GPC mode
 - Select the Const. GPC factor option.
2. Parameter Expert → Sensor → Gas phase compensation → Const. GPC factor
 Quotient: Enter "(actual probe length)/(measured probe length)".

Compensation via the calibration parameters

If it is necessary to actually compensate for a gas phase, the gas phase compensation function is not available for the correction of external mounting. The calibration parameters (Empty calibration and Full calibration) must be adjusted in this case. Furthermore, a value that is greater than the actual probe length must be entered in the Present probe length parameter. In all three cases, the correction factor is the quotient of the probe length measured when the vessel is empty and the actual probe LN.

The device searches for the probe end echo in the differential curve. Therefore, the value of the measured probe length depends on the mapping curve. In order to obtain a more accurate value, it is advisable to determine the measured probe length manually using the envelope curve display in FieldCare.

1. Parameter Setup → Empty calibration
 Increase the parameter value by the factor "(measured probe length)/(actual probe length)".

2. Parameter Setup → Full calibration
 Increase the parameter value by the factor "(measured probe length)/(actual probe length)".

3. Parameter Setup → Advanced setup → Probe settings → Probe length correction → Confirm probe length
 Select the Manual input option.

4. Parameter Setup → Advanced setup → Probe settings → Probe length correction → Present probe length
 Enter the measured probe length.
Vessel with thermal insulation

If process temperatures are high, the device must be included in normal vessel insulation (1) in order to prevent the electronics heating up as a result of thermal radiation or convection. The insulation may not go beyond the points labeled 'MAX' in the drawings.

![Diagram of vessel with thermal insulation](image-url)

7 Process connection with thread
1. Vessel insulation
2. Compact device
3. Sensor, remote

![Diagram of process connection with thread](image-url)

B Process connection with flange
1. Vessel insulation
2. Compact device
3. Sensor, remote

![Diagram of process connection with flange](image-url)
1. Vessel insulation
2. Compact device
3. Sensor, remote

*The XT version is not recommended for saturated steam above 200 °C (392 °F); the HT version should be used instead.

1. Vessel insulation
2. Compact device
3. Sensor, remote

*The XT version is not recommended for saturated steam above 200 °C (392 °F); the HT version should be used instead.
Replacing a displacer system in an existing displacer chamber

FMP51 and FMP54 are a perfect replacement for a conventional displacer system in an existing displacer chamber. Flanges that suit Fisher and Masoneline displacer chambers are available for this purpose (special product for FMP51; feature 100 of the product structure, options LN|, LP|, LQ| for FMP54). Thanks to menu-guided local operation, commissioning the Levelflex only takes a few minutes. Replacement is also possible when partially filled, and wet calibration is not required.

Your benefits:
- No moving parts, therefore zero-maintenance operation.
- Not affected by process influences such as temperature, density, turbulence and vibrations.
- The rod probes can be easily shortened or replaced. Therefore, the probe can also be easily adjusted on site.

Planning instructions:
- In normal cases, use a rod probe. When installing into a metal displacer chamber up to 150 mm, you have all the advantages of a coax probe.
- Contact between the probe and the side wall must be avoided. Where necessary, use a centering disk or centering star at the bottom end of the probe.
- The centering disk or centering star must be adapted as accurately as possible to the internal diameter of the displacer chamber to also ensure correct operation around the probe end.

Additional information regarding interface measurement
- In the case of oil and water, the centering star should be positioned at the lower edge of the lower outlet (water level).
- There should not be any changes in the diameter of the pipe. Use the coax probe if necessary.
- It must be ensured that rod probes do not come into contact with the wall. Where necessary, use a centering star at the end of the probe.
- The non-metal centering stars made of PEEK or PFA are recommended for interface measurements. When using metal centering disks, it is important to ensure that the lower medium covers the centering disk at all times. Otherwise, incorrect interface measurements can result.
6.2 Mounting the measuring device

6.2.1 Tool list

- To shorten rope probes: use a saw or bolt cutters
- To shorten rod or coax probes: use a saw
- For flanges and other process connections: use an appropriate mounting tool
6.2.2 Mounting the FMP54 rod probe

Coax probes are ready mounted and adjusted upon delivery. Once installed, they are ready for immediate use. Additional settings are not necessary.

FMP54 devices are supplied with the rod probe disassembled. The probe must be mounted as follows prior to installation:

1. Screw the threaded sleeve onto the connection thread (M10x1) of the gland as far as the end stop. In doing so, ensure that the chamfer is oriented towards the gland.
2. Fit Nord Lock washers on the connection thread. Install the pre-assembled washers in pairs, cam face to cam face.
3. Screw the probe rod onto the threaded bolt, hold it steady by the threaded sleeve with an open-end wrench (14 mm AF) and tighten at the wrench flats of the probe rod using an open-end wrench (14 mm AF). Torque 15 Nm.

6.2.3 Shortening the probe

Shortening rod probes

Rod probes must be shortened if the distance to the vessel floor or outlet cone is less than 10 mm (0.4 in). To shorten, saw off the bottom end of the rod probe.

Coated rod probes cannot be shortened.

Shortening rope probes

Rope probes must be shortened if the distance to the vessel floor or outlet cone is less than 150 mm (6 in).

Coated rope probes cannot be shortened.
Mounting

Levelflex FMP51, FMP52, FMP54 PROFIBUS PA

Rope material 316

- A: 4 mm (0.16 in)
- B: 40 mm (1.6 in)
- C: 3 mm; 5 Nm (3.69 lbf ft)

1. Using the Allen key, loosen the setscrews on the rope weight or on the fastener for the centering disk. Note: The setscrews have a clamping coating in order to prevent them from becoming loose accidentally. A higher torque is therefore required to loosen the screws.

2. Remove the released rope from the weight or from the sleeve.

3. Measure off the new rope length.

4. At the point to be shortened, wrap adhesive tape around the rope to prevent it from fraying.

5. Saw off the rope at a right angle or cut it off with a bolt cutter.

6. Insert the rope completely into the weight or sleeve.

7. Screw the setscrews back into place. Due to the clamping coating of the setscrews, it is not necessary to apply a locking compound.

Shortening coax probes

Coax probes must be shortened if the distance to the vessel floor or outlet cone is less than 10 mm (0.4 in).

Coax probes can be shortened by a maximum of 80 mm (3.2 in) from the bottom. They have centering devices on the inside to secure the rod centrally in the pipe. A raised edge holds the centering devices in place on the rod. It is possible to shorten the probe up to approx. 10 mm (0.4 in) below the centering device.

To shorten, saw off the bottom end of the coax probe.
Entering the new probe length

After shortening the probe:

1. Go to the **Probe settings** submenu and perform a probe length correction.

2. **Field for the new probe length**

 For documentation purposes, enter the new probe length into the quick reference guide which can be found in the electronics housing behind the display module.
6.2.4 FMP54 with gas phase compensation: Mounting the probe rod

This section only applies to the FMP54 with the gas phase compensation function (product structure: feature 540 "Application packages", option EF or EG)

Coax probes

Coax probes with reference reflection are ready mounted and adjusted upon delivery. Once installed, they are ready for immediate use. Additional settings are not necessary.

Rod probes

Rod probes with reference reflection are supplied with the rod probe disassembled. The rod probe must be mounted as follows prior to installation:

The joints between the individual rod segments are secured by the enclosed Nord Lock washers. Install the pre-assembled washers in pairs, cam face to cam face.

1. Screw the threaded sleeve onto the connection thread (M10x1) of the gland as far as the end stop. In doing so, ensure that the chamfer is oriented towards the gland.
2. Fit Nord Lock washers on the connection thread.
3. Screw the probe rod with the larger diameter onto the connection thread and fasten it hand-tight.
4. Fit the second pair of Nord Lock washers on the threaded bolt.
5. Screw the probe rod with the smaller diameter onto the threaded bolt, hold it steady by the threaded sleeve with an open-end wrench (14 mm AF) and tighten at the wrench flats of the probe rod using an open-end wrench (14 mm AF). Torque 15 Nm.

After mounting the rod probe in the stilling well or bypass, check and - if necessary - correct the setting of the reference distance in the unpressurized state.
6.2.5 Mounting the device

Mounting devices with a threaded connection

Screw the device with the threaded connection into a sleeve or flange and then secure it to
the process vessel via the sleeve/flange.

- When screwing into place, turn by the hex bolt only:
 - Thread 3/4": ø 36 mm
 - Thread 1-1/2": ø 55 mm
- Maximum permissible tightening torque:
 - Thread 3/4": 45 Nm
 - Thread 1-1/2": 450 Nm
- Recommended torque when using the supplied aramid fiber seal and a process
 pressure of 40 bar (only FMP51, no seal is included with FMP54):
 - Thread 3/4": 25 Nm
 - Thread 1-1/2": 140 Nm
- When installing in metal vessels, ensure there is good metal contact between the
 process connection and the vessel.

Mounting devices with a flange

If a seal is used to mount the device, use uncoated metal screws to ensure good electrical
contact between the process flange and the probe flange.

Mounting rope probes

NOTICE

Electrostatic discharge can damage the electronics.

- Ground the housing before lowering the rope probe into the vessel.
Pay attention to the following when introducing the rope probe into the vessel:
- Uncoil the rope slowly and lower it carefully into the vessel.
- Make sure the rope does not bend or buckle.
- Avoid uncontrolled swinging of the weight, as this could damage internal fittings in the vessel.

6.2.6 Mounting the "Sensor, remote" version

This section only applies for devices with the version "Probe design" = "Sensor, remote" (feature 600, version MB/MC/MD).

The following is included in the delivery with the version "Probe design" = "Remote":
- The probe with process connection
- The electronics housing
- The mounting bracket for mounting the electronics housing on a wall or post
- The connection cable (length as ordered). The cable has one straight plug and one plug angled at 90°. Depending on the local conditions the angled plug can be connected at the probe or at the electronics housing.

CAUTION
Mechanical stress can damage the plugs of the connection cable or cause them to become loose.
- Mount the probe and the electronics housing securely before connecting the connecting cable.
- Lay the connecting cable in such a way that it is not exposed to mechanical stress. Minimum bending radius: 100 mm (4 in).
- When connecting the cable, connect the straight plug before you connect the angled plug. Torque for the union nuts of both plugs: 6 Nm.

The probe, electronics and connection cable are mutually compatible and bear a common serial number. Only components with the same serial number may be connected to one another.

In the event of strong vibrations, a locking compound, e.g. Loctite 243, can also be used on the plug-in connectors.
Mounting the electronics housing

11 Mounting the electronics housing with the mounting bracket. Unit of measurement mm (in)

A Wall mounting
B Post mounting

Connecting the connecting cable

AF 18 mm
12 Connecting the connecting cable. The cable can be connected in the following ways:

- **A** Angled plug at the probe
- **B** Angled plug at the electronics housing
- **C** Length of the remote cable as ordered

6.2.7 Turning the transmitter housing

To provide easier access to the connection compartment or display module, the transmitter housing can be turned:

1. Unscrew the securing screw using an open-ended wrench.
2. Rotate the housing in the desired direction.
3. Tighten the securing screw (1.5 Nm for plastic housing; 2.5 Nm for aluminum or stainless steel housing).
6.2.8 Turning the display

Opening the cover

1. Loosen the screw of the securing clamp of the electronics compartment cover using an Allen key (3 mm) and turn the clamp 90° counterclockwise.
2. Unscrew the electronics compartment cover and check the cover seal; replace it if necessary.

Turning the display module

1. Pull out the display module with a gentle rotational movement.
2. Turn the display module to the desired position: Max. 8 × 45° in each direction.
3. Feed the coiled cable into the gap between the housing and main electronics module and plug the display module into the electronics compartment until it engages.

Closing the cover of the electronics compartment

1. Screw down the cover of the electronics compartment.
2. Turn the securing clamp 90° in the clockwise direction and, using an Allen key (3 mm), tighten the screw of the securing clamp on the electronics compartment cover with 2.5 Nm.

6.3 Post-installation check

☐ Is the device undamaged (visual inspection)?
☐ Does the device comply with the measuring point specifications?
 - Process temperature
 - Process pressure
 - Ambient temperature range
 - Measuring range

☐ Are the measuring point identification and labeling correct (visual inspection)?

☐ Is the device adequately protected against precipitation and direct sunlight?

☐ Is the device adequately protected against impact?

☐ Are all mounting and safety screws securely tightened?

☐ Is the device properly secured?
7 Electrical connection

7.1 Connecting requirements

7.1.1 Terminal assignment

Terminal assignment, 4-wire: 4 to 20 mA HART (90 to 253 V\text{AC})

1. Connection 4 to 20 mA HART (active): terminals 3 and 4
2. Connection, supply voltage: terminals 1 and 2
3. Terminal for cable shield

⚠️ CAUTION
To ensure electrical safety:
- Do not disconnect the protective ground connection.
- Disconnect the device from the supply voltage before disconnecting the protective ground.

1. Connect protective ground to the inner ground terminal (3) before connecting the supply voltage. If necessary, connect the potential matching line to the outer ground terminal.

2. In order to ensure electromagnetic compatibility (EMC): do not ground the device exclusively via the protective ground conductor of the supply cable. Instead, the functional grounding must also be connected to the process connection (flange or threaded connection) or to the external ground terminal.

3. An easily accessible power switch must be installed in the proximity of the device. The power switch must be marked as a disconnector for the device (IEC/EN61010).
Electrical connection

Terminal assignment PROFIBUS PA / FOUNDATION Fieldbus

A
Without integrated overvoltage protection

B
With integrated overvoltage protection

1 Connection, PROFIBUS PA / FOUNDATION Fieldbus: terminals 1 and 2, without integrated overvoltage protection

2 Connection, switch output (open collector): terminals 3 and 4, without integrated overvoltage protection

3 Connection, switch output (open collector): terminals 3 and 4, with integrated overvoltage protection

4 Connection, PROFIBUS PA / FOUNDATION Fieldbus: terminals 1 and 2, with integrated overvoltage protection

5 Terminal for cable shield

Block diagram PROFIBUS PA / FOUNDATION Fieldbus

1 Cable screen; observe cable specification

2 Connection PROFIBUS PA / FOUNDATION Fieldbus

3 Measuring device

4 Switch output (open collector)
Connection examples for the switch output

16 Connection of a relay

17 Connection to a digital input

1 Pull-up resistor
2 Digital input

For optimum interference immunity we recommend to connect an external resistor (internal resistance of the relay or pull-up resistor) of < 1000 Ω.

7.1.2 Cable specification

- **Devices without integrated overvoltage protection**
 Pluggable spring-force terminals for wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG)
- **Devices with integrated overvoltage protection**
 Screw terminals for wire cross-sections 0.2 to 2.5 mm² (24 to 14 AWG)
- For ambient temperature $T_U \geq 60 \, ^\circ C$ (140 °F): use cable for temperature $T_U + 20 \, K$.

PROFIBUS

Use a twisted, screened two-wire cable, preferably cable type A.

For further information on the cable specifications, see Operating Instructions BA00034S "PROFIBUS DP/PA: Guidelines for planning and commissioning", PNO Guideline 2.092 "PROFIBUS PA User and Installation Guideline" and IEC 61158-2 (MBP).

7.1.3 Device plug

In the case of the device versions with a plug, the housing does not need to be opened to connect the signal cable.

18 Pin assignment of M12 plug

1 Signal +
2 Not assigned
3 Signal -
4 Ground
7.1.4 Supply voltage

PROFIBUS PA, FOUNDATION Fieldbus

<table>
<thead>
<tr>
<th>“Power supply; output”¹</th>
<th>“Approval”²</th>
<th>Terminal voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>E: 2-wire; FOUNDATION Fieldbus, switch output</td>
<td>• Non-hazardous</td>
<td>9 to 32 V ³</td>
</tr>
<tr>
<td>G: 2-wire; PROFIBUS PA, switch output</td>
<td>• Ex nA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ex nA/ia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ex ic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ex ic/ia / XP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ex ta / DIP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CSA GP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ex ia / IS</td>
<td>9 to 30 V ³</td>
</tr>
<tr>
<td></td>
<td>• Ex ia + Ex d/ia / IS + XP</td>
<td></td>
</tr>
</tbody>
</table>

1) Feature 020 in the product structure
2) Feature 010 in the product structure
3) Input voltages up to 35 V do not destroy the device.

<table>
<thead>
<tr>
<th>Polarity-dependent</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>FISCO/FNICO compliant according to IEC 60079-27</td>
<td>Yes</td>
</tr>
</tbody>
</table>

7.1.5 Overvoltage protection

If the measuring device is used for level measurement in flammable liquids which requires the use of overvoltage protection according to DIN EN 60079-14, standard for test procedures 60060-1 (10 kA, pulse 8/20 μs), an overvoltage protection module has to be installed.

Integrated overvoltage protection module

An integrated overvoltage protection module is available for 2-wire HART as well as PROFIBUS PA and FOUNDATION Fieldbus devices.

Product structure: Feature 610 "Accessory mounted", option NA "Overvoltage protection".

<table>
<thead>
<tr>
<th>Technical data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance per channel</td>
</tr>
<tr>
<td>Threshold DC voltage</td>
</tr>
<tr>
<td>Threshold impulse voltage</td>
</tr>
<tr>
<td>Capacitance at 1 MHz</td>
</tr>
<tr>
<td>Nominal arrest impulse voltage (8/20 μs)</td>
</tr>
</tbody>
</table>

External overvoltage protection module

HAW562 or HAW569 from Endress+Hauser are suited as external overvoltage protection.

For detailed information please refer to the following documents:
- HAW562: TI01012K
- HAW569: TI01013K
7.2 Connecting the device

WARNING

Explosion Hazard!

- Observe applicable national standards.
- Comply with the specifications in the Safety Instructions (XA).
- Use specified cable glands only.
- Check to ensure that the power supply matches the information on the nameplate.
- Switch off the power supply before connecting the device.
- Connect the potential matching line to the outer ground terminal before applying the power supply.

Required tools/accessories:

- For devices with a cover lock: Allen key AF3
- Wire stripper
- When using stranded cables: One ferrule for every wire to be connected.

7.2.1 Opening cover

1. Loosen the screw of the securing clamp of the connection compartment cover using an Allen key (3 mm) and turn the clamp 90° counterclockwise.
2. Unscrew the connection compartment cover and check the cover seal; replace it if necessary.

7.2.2 Connecting

1. Push the cable through the cable entry. To ensure tight sealing, do not remove the sealing ring from the cable entry.
2. Remove the cable sheath.
3. Strip the cable ends 10 mm (0.4 in). In the case of stranded cables, also fit wire end ferrules.
4. Firmly tighten the cable glands.
5. Connect the cable according to the terminal assignment.

6. If using shielded cables: Connect the cable shield to the ground terminal.

7.2.3 Plug-in spring-force terminals

The electrical connection of device versions without an integrated overvoltage protection is via plug-in spring-force terminals. Rigid conductors or flexible conductors with ferrules can be inserted directly into the terminal without using the lever, and create a contact automatically.

To remove the cable from the terminal again:
1. Using a flat-blade screwdriver ≤ 3 mm, press down on the slot between the two terminal holes
2. Simultaneously pull the cable end out of the terminal.

7.2.4 Closing the cover of the connection compartment

1. Screw down the cover of the connection compartment.
2. Turn the securing clamp 90 ° in the clockwise direction and, using an Allen key (3 mm), tighten the screw of the securing clamp on the connection compartment cover with 2.5 Nm.

7.3 Post-connection check

- Is the device or cable undamaged (visual inspection)?
- Do the cables used comply with the requirements?
☐ Do the mounted cables have adequate strain relief?
☐ Are all the cable glands installed, firmly tightened and leak-tight?
☐ Does the supply voltage match the specifications on the nameplate?
☐ Is the terminal assignment correct?
☐ If necessary, has a protective ground connection been established?
☐ If supply voltage is present, is the device ready for operation and do values appear on the display module?
☐ Are all the housing covers installed and tightened?
☐ Is the securing clamp firmly tightened?
8 Operation methods

8.1 Overview

8.1.1 Local operation

<table>
<thead>
<tr>
<th>Operation with</th>
<th>Pushbuttons</th>
<th>Touch Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order code for "Display; Operation"</td>
<td>Option C 'SD02'</td>
<td>Option E 'SD03'</td>
</tr>
<tr>
<td>Display elements</td>
<td>4-line display</td>
<td>4-line display with background lighting; switches to red in event of device error</td>
</tr>
<tr>
<td>Format for displaying measured variables and status variables can be individually configured</td>
<td>Similar to Pushbuttons</td>
<td></td>
</tr>
<tr>
<td>Permitted ambient temperature for the display: –20 to +70 °C (–4 to +158 °F)</td>
<td>Similar to Pushbuttons</td>
<td></td>
</tr>
<tr>
<td>Operating elements</td>
<td>local operation with 3 buttons (, ▼, ▼)</td>
<td>external operation via touch control; 3 optical keys: ▼, ▼, ▼</td>
</tr>
<tr>
<td>Operating elements also accessible in various hazardous areas</td>
<td>Similar to Pushbuttons</td>
<td></td>
</tr>
<tr>
<td>Additional functionality</td>
<td>Data backup function</td>
<td>The device configuration can be saved in the display module.</td>
</tr>
<tr>
<td></td>
<td>Data comparison function</td>
<td>The device configuration saved in the display module can be compared to the current device configuration.</td>
</tr>
<tr>
<td></td>
<td>Data transfer function</td>
<td>The transmitter configuration can be transmitted to another device using the display module.</td>
</tr>
</tbody>
</table>
8.1.2 Operation with remote display and operating module FHX50

21 FHX50 operating options
1 Display and operating module SD03, optical keys; can be operated through the glass of the cover
2 Display and operating module SD02, push buttons; cover must be removed

8.1.3 Remote operation

Via PROFIBUS PA protocol

1 Segment coupler
2 Computer with PROFlasch and operating tool (e.g. DeviceCare/FieldCare)
3 PLC (programmable logic controller)
4 Transmitter
5 Additional functions (valves etc.)

Via service interface (CDI)
8.2 Structure and function of the operating menu

8.2.1 Structure of the operating menu

<table>
<thead>
<tr>
<th>Menu</th>
<th>Submenu / parameter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>1)</td>
<td>Defines the operating language of the local display</td>
</tr>
<tr>
<td>Commissioning</td>
<td>2)</td>
<td>Launches the interactive wizard for guided commissioning. Additional settings generally do not need to be made in the other menus when the wizard is finished.</td>
</tr>
<tr>
<td>Setup</td>
<td>Parameter 1 ... Parameter N</td>
<td>Once values have been set for these parameters, the measurement should generally be completely configured.</td>
</tr>
<tr>
<td>Advanced setup</td>
<td></td>
<td>Contains additional submenus and parameters:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For more customized configuration of the measurement (adaptation to special measuring conditions).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For converting the measured value (scaling, linearization).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For scaling the output signal.</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>Diagnostic list</td>
<td>Contains up to 5 currently active error messages.</td>
</tr>
<tr>
<td></td>
<td>Event logbook 3)</td>
<td>Contains the last 20 messages (which are no longer active).</td>
</tr>
<tr>
<td></td>
<td>Device information</td>
<td>Contains information for identifying the device.</td>
</tr>
<tr>
<td></td>
<td>Measured values</td>
<td>Contains all current measured values.</td>
</tr>
<tr>
<td></td>
<td>Data logging</td>
<td>Contains the history of the individual measuring values.</td>
</tr>
<tr>
<td></td>
<td>Simulation</td>
<td>Is used to simulate measured values or output values.</td>
</tr>
<tr>
<td></td>
<td>Device check</td>
<td>Contains all parameters needed to check the measurement capability of the device.</td>
</tr>
<tr>
<td>Heartbeat 4)</td>
<td></td>
<td>Contains all the wizards for the Heartbeat Verification and Heartbeat Monitoring application packages.</td>
</tr>
<tr>
<td>Expert 5)</td>
<td></td>
<td>Contains all the parameters of the device (including those that are already contained in one of the other menus). This menu is organized according to the function blocks of the device. The parameters of the Expert menu are described in: GP01001F (PROFIBUS PA)</td>
</tr>
<tr>
<td>System</td>
<td></td>
<td>Contains all higher-level device parameters that do not pertain either to the measurement or to measured value communication.</td>
</tr>
<tr>
<td>Sensor</td>
<td></td>
<td>Contains all parameters needed to configure the measurement.</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td>Contains all parameters needed to configure the switch output (PFS).</td>
</tr>
</tbody>
</table>
Operation methods

<table>
<thead>
<tr>
<th>Menu</th>
<th>Submenu / parameter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td></td>
<td>Contains all parameters needed to configure the digital communication interface.</td>
</tr>
<tr>
<td>Diagnostics</td>
<td></td>
<td>Contains all parameters needed to detect and analyze operational errors.</td>
</tr>
</tbody>
</table>

1) If you are operating via operating tools (e.g. FieldCare), the "Language" parameter is located under "Setup → Advanced setup → Display".
2) Only if operating via an FDT/DTM system.
3) Only available if operating via the local display.
4) Only available if operating via DeviceCare or FieldCare.
5) When you call up the "Expert" menu, you are always asked for an access code. If a customer-specific access code has not been defined, "0000" must be entered.
8.2.2 User roles and related access authorization

The two user roles Operator and Maintenance have different write access to the parameters if a device-specific access code has been defined. This protects the device configuration via the local display from unauthorized access (Verweisziel existiert nicht, aber @y.link.required='true').

Access authorization to parameters

<table>
<thead>
<tr>
<th>User role</th>
<th>Read access</th>
<th>Write access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without access code (from the factory)</td>
<td>With access code (from the factory)</td>
</tr>
<tr>
<td>Operator</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Maintenance</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

If an incorrect access code is entered, the user obtains the access rights of the Operator role.

The user role with which the user is currently logged on is indicated by the Access status display parameter (for display operation) or Access status tooling parameter (for tool operation).

8.2.3 Data access - Security

Write protection via access code

Using the device-specific access code, the parameters for the measuring device configuration are write-protected and their values can no longer be changed via local operation.

Define access code via local display

1. Navigate to: Setup → Advanced setup → Administration → Define access code → Define access code
2. Define a max. 4-digit numeric code as an access code.
3. Repeat the numeric code in the Confirm access code parameter to confirm it.
 🔔 The ☐-symbol appears in front of all write-protected parameters.

Define access code via operating tool (e.g. FieldCare)

1. Navigate to: Setup → Advanced setup → Administration → Define access code
2. Define a max. 4-digit numeric code as an access code.
 🔔 Write protection is active.

Parameters that can always be changed

The write protection does not include certain parameters that do not affect the measurement. Despite the defined access code, these parameters can always be modified even if the other parameters are locked.

The device automatically locks the write-protected parameters again if a key is not pressed for 10 minutes in the navigation and editing view. If the user goes from the navigation and editing mode back to the measured value display mode, the device automatically locks the write-protected parameters after 60 s.

- If write access is activated via an access code, it can only be deactivated again via this access code → ☐ 65.
- In the "Description of Device Parameters" documents, each write-protected parameter is identified with the ☐-symbol.
Disabling write protection via access code

If the ☑ symbol appears in front of a parameter on the local display, the parameter is write-protected by a device-specific access code and its value cannot currently be changed via the local display → ☑ 64.

The locking of the write access via local operation can be disabled by entering the device-specific access code.

1. After you press ☐, the input prompt for the access code appears.
2. Enter the access code.
 - The ☑-symbol in front of the parameters disappears; all previously write-protected parameters are now re-enabled.

Deactivation of the write protection via access code

Via local display

1. Navigate to: Setup → Advanced setup → Administration → Define access code → Define access code
2. Enter 0000.
3. Repeat 0000 in the Confirm access code parameter to confirm.
 - The write protection is deactivated. Parameters can be changed without entering an access code.

Via an operating tool (e.g. FieldCare)

1. Navigate to: Setup → Advanced setup → Administration → Define access code
2. Enter 0000.
 - The write protection is deactivated. Parameters can be changed without entering an access code.

Write protection via write protection switch

Unlike parameter write protection via a user-specific access code, this allows the user to lock write access to the entire operating menu - apart from the "Contrast display" parameter.

The parameter values are now read only and cannot be edited any more (exception "Contrast display" parameter):
- Via local display
- Via PROFIBUS PA protocol
- Via PROFIBUS DP protocol
1. Loosen the securing clamp.
2. Unscrew the electronics compartment cover.
3. Pull out the display module with a gentle rotational movement. To make it easier to access the write protection switch, attach the display module to the edge of the electronics compartment.
4. Setting the write protection switch (WP) on the main electronics module to the **ON** position enables hardware write protection. Setting the write protection switch (WP) on the main electronics module to the **OFF** position (factory setting) disables hardware write protection.

 If hardware write protection is enabled, the **Hardware locked** option is displayed in the **Locking status** parameter. In addition, on the local display the 🔒 symbol appears in front of the parameters in the header of the operational display and in the navigation view.

 If hardware write protection is disabled, no option is displayed in the **Locking status** parameter. On the local display, the 🔒 symbol disappears from in front of the parameters in the header of the operational display and in the navigation view.

5. Feed the cable into the gap between the housing and main electronics module and plug the display module into the electronics compartment in the desired direction until it engages.

6. Reverse the removal procedure to reassemble the transmitter.
Enabling and disabling the keypad lock

Access to the entire operating menu via local operation can be locked via the keypad lock. When access is locked, it is no longer possible to navigate through the operating menu or change the values of individual parameters. Users can only read the measured values on the operational display.

The keypad lock is switched on and off via a context menu.

Switching on the keypad lock

1. SD03 display module only

The keypad lock is switched on automatically:
- If the device has not been operated via the display for > 1 minute.
- Each time the device is restarted.

To activate the keylock manually:

1. The device is in the measured value display.
 - Press for at least 2 seconds.
 - A context menu appears.

2. In the context menu select the **Keylock on** option.
 - The keypad lock is switched on.

If the user attempts to access the operating menu while the keypad lock is active, the message **Keylock on** appears.

Switching off the keypad lock

1. The keypad lock is switched on.
 - Press for at least 2 seconds.
 - A context menu appears.

2. In the context menu select the **Keylock off** option.
 - The keypad lock is switched off.

Bluetooth® wireless technology

Signal transmission via Bluetooth® wireless technology uses a cryptographic technique tested by the Fraunhofer Institute
- The device is not visible via Bluetooth® wireless technology without the SmartBlue app
- Only one point-to-point connection between one sensor and one smartphone or tablet is established
8.3 Display and operating module

8.3.1 Display

2. Display format on the display and operating module

1. Measured value display (1 value max. size)
 1.1 Header containing tag and error symbol (if an error is active)
 1.2 Measured value symbols
 1.3 Measured value
 1.4 Unit

2. Measured value display (bar graph + 1 value)
 2.1 Bargraph for measured value 1
 2.2 Measured value 1 (including unit)
 2.3 Measured value symbols for measured value 1
 2.4 Measured value 2
 2.5 Unit for measured value 2
 2.6 Measured value symbols for measured value 2

3. Parameter display (here: parameter with picklist)
 3.1 Header containing parameter name and error symbol (if an error is active)
 3.2 Picklist; ☑ marks the current parameter value.

4. Input matrix for numbers

5. Input matrix for alphanumeric and special characters
Display symbols for the submenus

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| ![Symbol](image1.png) | Display/operat. Is displayed:
• In the main menu next to the "Display/operat." selection
• In the header on the left in the "Display/operat." menu |
| ![Symbol](image2.png) | Setup Is displayed:
• In the main menu next to the "Setup" selection
• In the header on the left in the "Setup" menu |
| ![Symbol](image3.png) | Expert Is displayed:
• In the main menu next to the "Expert" selection
• In the header on the left in the "Expert" menu |
| ![Symbol](image4.png) | Diagnostics Is displayed:
• In the main menu next to the "Diagnostics" selection
• In the header on the left in the "Diagnostics" menu |

Status signals

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"Failure" A device error has occurred. The measured value is no longer valid.</td>
</tr>
<tr>
<td></td>
<td>"Function check" The device is in the service mode (e.g. during a simulation).</td>
</tr>
</tbody>
</table>
| ![Symbol](image7.png) | "Out of specification" The device is operated:
• Outside of its technical specifications (e.g. during startup or a cleaning)
• Outside of the configuration performed by the user (e.g. level outside the configured range) |
| ![Symbol](image8.png) | "Maintenance required" Maintenance is required. The measured value is still valid. |

Display symbols for locking status

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Read-only parameter The parameter shown is only for display purposes and cannot be edited.</td>
</tr>
</tbody>
</table>
| ![Symbol](image10.png) | Device locked
• In front of a parameter name: The device is locked via software and/or hardware.
• In the header of the measured value screen: The device is locked via hardware. |
Measured value symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level</td>
</tr>
<tr>
<td></td>
<td>Distance</td>
</tr>
<tr>
<td></td>
<td>Current output</td>
</tr>
<tr>
<td></td>
<td>Measured current</td>
</tr>
<tr>
<td></td>
<td>Terminal voltage</td>
</tr>
<tr>
<td></td>
<td>Electronics or sensor temperature</td>
</tr>
</tbody>
</table>

Measuring channels

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Measuring channel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measuring channel 1</td>
</tr>
<tr>
<td></td>
<td>Measuring channel 2</td>
</tr>
</tbody>
</table>

Status of the measured value

- **"Alarm" status**
 - The measurement is interrupted. The output assumes the defined alarm condition. A diagnostic message is generated.

- **"Warning" status**
 - The device continues to measure. A diagnostic message is generated.
8.3.2 Operating elements

<table>
<thead>
<tr>
<th>Key</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minus key
In a menu, submenu
Moves the selection bar upwards in a picklist.
In the text and numeric editor
In the input mask, moves the selection bar to the left (backwards).</td>
</tr>
<tr>
<td></td>
<td>Plus key
In a menu, submenu
Moves the selection bar downwards in a picklist.
In the text and numeric editor
In the input mask, moves the selection bar to the right (forwards).</td>
</tr>
<tr>
<td></td>
<td>Enter key
For measured value display
• Pressing the key briefly opens the operating menu.
• Pressing the key for 2 s opens the context menu.
In a menu, submenu
• Pressing the key briefly:
 • Opens the selected menu, submenu or parameter.
 • Pressing the key for 2 s in a parameter:
 • If present, opens the help text for the function of the parameter.
In the text and numeric editor
• Pressing the key briefly:
 • Opens the selected group.
 • Carries out the selected action.
• Pressing the key for 2 s confirms the edited parameter value.</td>
</tr>
<tr>
<td></td>
<td>Escape key combination (press keys simultaneously)
In a menu, submenu
• Pressing the key briefly:
 • Exits the current menu level and takes you to the next higher level.
 • If help text is open, closes the help text of the parameter.
In the text and numeric editor
Closes the text or numeric editor without applying changes.</td>
</tr>
<tr>
<td></td>
<td>Minus/Enter key combination (press and hold down the keys simultaneously)
Reduces the contrast (brighter setting).</td>
</tr>
<tr>
<td></td>
<td>Plus/Enter key combination (press and hold down the keys simultaneously)
Increases the contrast (darker setting).</td>
</tr>
</tbody>
</table>
8.3.3 Entering numbers and text

Input mask

The following input and operating symbols are available in the input mask of the numeric and text editor:

Numeric editor

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Selection of numbers from 0 to 9.</td>
</tr>
<tr>
<td>…</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>Inserts decimal separator at the cursor position.</td>
</tr>
<tr>
<td>–</td>
<td>Inserts minus sign at the cursor position.</td>
</tr>
<tr>
<td>✔</td>
<td>Confirms selection.</td>
</tr>
<tr>
<td>←</td>
<td>Moves the input position one position to the left.</td>
</tr>
<tr>
<td>X</td>
<td>Exits the input without applying the changes.</td>
</tr>
<tr>
<td>C</td>
<td>Clears all entered characters.</td>
</tr>
</tbody>
</table>

Text editor

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC_</td>
<td>Selection of letters from A to Z</td>
</tr>
<tr>
<td>…</td>
<td></td>
</tr>
<tr>
<td>XYZ</td>
<td></td>
</tr>
</tbody>
</table>

Operating elements

1. Editing view
2. Display area of the entered values
3. Input mask
4. Operating elements
Operation methods

Levelflex FMP51, FMP52, FMP54 PROFIBUS PA

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Aa1@]</td>
<td>Toggle between upper-case and lower-case letters, for entering numbers, and for entering special characters.</td>
</tr>
<tr>
<td>[✓]</td>
<td>Confirms selection.</td>
</tr>
<tr>
<td>[XC]</td>
<td>Switches to the selection of the correction tools.</td>
</tr>
<tr>
<td>[X]</td>
<td>Exits the input without applying the changes.</td>
</tr>
<tr>
<td>[C]</td>
<td>Clears all entered characters.</td>
</tr>
</tbody>
</table>

Text correction under [XC]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C]</td>
<td>Clears all entered characters.</td>
</tr>
<tr>
<td>[¬]</td>
<td>Moves the input position one position to the right.</td>
</tr>
<tr>
<td>[¬]</td>
<td>Moves the input position one position to the left.</td>
</tr>
<tr>
<td>[✗]</td>
<td>Deletes one character immediately to the left of the input position.</td>
</tr>
</tbody>
</table>

8.3.4 Opening the context menu

Using the context menu, the user can call up the following menus quickly and directly from the operational display:

- Setup
- Conf. backup disp.
- Envelope curve
- Keylock on

Calling up and closing the context menu

The user is in the operational display.

1. Press [←] for 2 s.

The context menu opens.

2. Press [□] + [□] simultaneously.

The context menu is closed and the operational display appears.

Calling up the menu via the context menu

1. Open the context menu.
2. Press [□] to navigate to the desired menu.
3. Press ✪ to confirm the selection.
 ✪ The selected menu opens.
8.3.5 Envelope curve display on the display and operating module

In order to assess the measuring signal, the envelope curve and - if a mapping has been recorded - the mapping curve can be shown on the display and operating module:

9 Integration into a PROFIBUS network

9.1 Overview of device master file (GSD)

<table>
<thead>
<tr>
<th>Manufacturer ID</th>
<th>17 (0x11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ident number</td>
<td>0x1558</td>
</tr>
<tr>
<td>Profile version</td>
<td>3.02</td>
</tr>
<tr>
<td>GSD file</td>
<td>Information and files available at:</td>
</tr>
<tr>
<td></td>
<td>• www.endress.com</td>
</tr>
<tr>
<td></td>
<td>• www.profibus.org</td>
</tr>
</tbody>
</table>
9.2 Setting the device address

9.2.1 Hardware addressing

1. Set switch 8 to the "OFF" position.
2. Using switches 1 to 7, set the address as indicated in the table below.
 The change of address takes effect after 10 seconds. The device is restarted.

<table>
<thead>
<tr>
<th>Switch</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value in "ON" position</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>Value in "OFF" position</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Example of hardware addressing; switch 8 is set to the "OFF" position; switches 1 to 7 define the address.

9.2.2 Software addressing

1. Set switch 8 to "ON".
2. The device restarts automatically and reports the current address (factory setting: 126).
3. Configuring the address via the operating menu: Setup → Device address

Example of software addressing; switch 8 is set to the "ON" position; the address is defined in the operating menu (Setup → Device address).
10 Commissioning using the Commissioning Wizard

A Wizard is provided in FieldCare and DeviceCare ¹ that guides the user through the initial commissioning process.

1. Connect the device with FieldCare or DeviceCare.
2. Open the device in FieldCare or DeviceCare.
3. The dashboard (homepage) of the device is displayed:

```
1  "Commissioning" button calls up the wizard
```

4. Click "Commissioning" to launch the Wizard.
5. Enter the appropriate value in each parameter or select the appropriate option. These values are written directly to the device.
6. Click "Next" to go to the next page.
7. Once all the pages have been completed, click "Finish" to close the Wizard.

If you cancel the Wizard before all the necessary parameters have been entered, the device may be in an undefined state. In such situations, it is advisable to reset the device to the factory default settings.

¹) DeviceCare is available for download at www.software-products.endress.com. To download the software, it is necessary to register in the Endress +Hauser software portal.
11 Commissioning via operating menu

11.1 Function check
Before commissioning your measuring point, ensure that the post-installation and post-connection checks have been performed:

11.2 Setting the operating language
Factory setting: English or ordered local language

11.3 Checking the reference distance
This section only applies to the FMP54 with the gas phase compensation function (product structure: feature 540 'Application packages', option EF or EG)

Coax probes with gas phase compensation are calibrated on delivery. Rod probes, on the other hand, must be recalibrated after mounting:
After mounting the rod probe in the stilling well or bypass, check and - if necessary - correct the setting of the reference distance in the unpressurized state. The level should be at least 200 mm below the reference distance L_{ref} in order to achieve maximum accuracy.

<table>
<thead>
<tr>
<th>Step</th>
<th>Parameter</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Expert → Sensor → Gas phase compensation → GPC mode</td>
<td>Select the On option to enable gas phase compensation.</td>
</tr>
<tr>
<td>2</td>
<td>Expert → Sensor → Gas phase compensation → Present reference distance</td>
<td>Check if the current reference distance displayed corresponds with the nominal value (300 mm or 550 mm, see nameplate). If yes: No further action is required. If not: Continue with Step 3.</td>
</tr>
<tr>
<td>3</td>
<td>Expert → Sensor → Gas phase compensation → Reference distance</td>
<td>Adopt the value displayed under the Present reference distance parameter. This corrects the reference distance.</td>
</tr>
</tbody>
</table>

For a detailed description of all parameters, see: GP01001F, "Levelflex - Description of Device Parameters - PROFIBUS PA"
11.4 Configuring level measurement

If the e_ℓ value is lower than 7 in the case of rope probes, measurement is not possible in the area of the tensioning weight. The empty calibration E should not exceed LN - 250 mm ($LN - 10$ in) in these cases.

1. Navigate to: Setup → Device tag
 - Enter device tag.
2. Navigate to: Setup → Device address
 - Enter the bus address of the device (only for software addressing).
3. For devices in the "Interface measurement" application package:
 Navigate to: Setup → Operating mode
 - Select the Level option.
4. Navigate to: Setup → Distance unit
 - Select the distance unit.
5. Navigate to: Setup → Tank type
 - Select tank type.
6. For Tank type parameter = Bypass / pipe:
 Navigate to: Setup → Tube diameter
 - Specify the diameter of the bypass or stilling well.
7. Navigate to: Setup → Medium group
 - Specify the medium group: (Water based (DC >= 4) or Others)
8. Navigate to: Setup → Empty calibration
 - Specify the empty distance E (distance from reference point R to 0% mark).
9. Navigate to: Setup → Full calibration
 - Specify the full distance F (distance from the 0% mark to the 100% mark).
10. Navigate to: Setup → Level
 ➞ Displays the measured level L.

11. Navigate to: Setup → Distance
 ➞ Displays the distance D between the reference point R and the level L.

12. Navigate to: Setup → Signal quality
 ➞ Displays the signal quality of the analyzed level echo.

13. Operation via local display:
 Navigate to: Setup → Mapping → Confirm distance
 ➞ Compare the distance displayed with the actual value in order to start recording
 an interference echo map if necessary 2).

14. Operation via operating tool:
 Navigate to: Setup → Confirm distance
 ➞ Compare the distance displayed with the actual value to start recording an
 interference echo map (where applicable) 2).

2) For FMP54 with gas phase compensation (product structure: feature 560 ‘Application Package’, option ‘EF’ or ‘EG’), an interference echo map may not be recorded.
11.5 Configuring interface measurement

An interface measurement is only possible if the device has the corresponding software option. In the product structure: feature 540 'Application Package', option EB 'Interface measurement'.

![Diagram of interface measurement](image)

Configuration parameters for interface measurement

- **LN** Probe length
- **R** Reference point of measurement
- **DL** Interface distance (distance from flange to lower medium)
- **LI** Interface
- **DL** Distance
- **LL** Level
- **UP** Thickness upper layer
- **E** Empty calibration (= zero point)
- **F** Full calibration (= span)

1. Navigate to: Setup → Device tag
 - Enter device tag.
2. Navigate to: Setup → Device address
 - Enter the bus address of the device (only for software addressing).
3. Navigate to: Setup → Operating mode
 - Select the Interface option.
4. Navigate to: Setup → Distance unit
 - Select the distance unit.
5. Navigate to: Setup → Tank type
 - Select tank type.
6. For Tank type parameter = Bypass / pipe:
 - Navigate to: Setup → Tube diameter
 - Specify the diameter of the bypass or stilling well.
7. Navigate to: Setup → Tank level
 - Specify the tank level (Fully flooded or Partially filled)
8. Navigate to: Setup → Distance to upper connection
 - In bypasses: Specify the distance from the reference point R to the lower edge of the upper outflow. In all other cases, retain the factory setting.
9. Navigate to: Setup → DC value
 ➮ Specify the relative dielectric constant \((\varepsilon_r) \) of the upper medium.

10. Navigate to: Setup → Empty calibration
 ➮ Specify the empty distance \(E \) (distance from reference point \(R \) to 0% mark).

11. Navigate to: Setup → Full calibration
 ➮ Specify the full distance \(F \) (distance from the 0% mark to the 100% mark).

12. Navigate to: Setup → Level
 ➮ Displays the measured level \(L \).

13. Navigate to: Setup → Interface
 ➮ Displays the interface height \(L_I \).

14. Navigate to: Setup → Distance
 ➮ Displays the distance \(D_L \) between the reference point \(R \) and the level \(L \).

15. Navigate to: Setup → Interface distance
 ➮ Displays the distance \(D_I \) between the reference point \(R \) and the interface \(L_I \).

16. Navigate to: Setup → Signal quality
 ➮ Displays the signal quality of the analyzed level echo.

17. Operation via local display:
 Navigate to: Setup → Mapping → Confirm distance
 ➮ Compare the distance displayed with the actual value in order to start recording an interference echo map if necessary \(^3\).

18. Via an operating tool (e.g. FieldCare):
 Navigate to: Setup → Confirm distance
 ➮ Compare the distance displayed with the actual value to start recording an interference echo map (where applicable) \(^3\).

\(^3\) For FMP54 with gas phase compensation (product structure: feature 540 'Application Package', option 'EF' or 'EG'), an interference echo map may not be recorded.
11.6 Recording the reference envelope curve

After the measurement has been configured, it is recommended to record the current envelope curve as a reference envelope curve. This can then be used later for diagnostic purposes. The Save reference curve parameter is used to record the envelope curve.

Path in the menu
Expert → Diagnostics → Envelope diagnostics → Save reference curve

Meaning of the options

- No
 No action
- Yes
 The current envelope curve is saved as a reference curve.

This submenu is only visible for the "Service" user role in devices supplied with software version 01.00.zz.

The reference envelope curve can only be displayed in the envelope curve diagram of FieldCare after it has been loaded from the device into FieldCare. The "Load Reference Curve" function in FieldCare is used for this.

 29 "Load Reference Curve" function
11.7 Configuring the local display

11.7.1 Factory setting of local display for level measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Factory setting for devices with 1 current output</th>
<th>Factory setting for devices with 2 current outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format display</td>
<td>1 value, max. size</td>
<td>1 value, max. size</td>
</tr>
<tr>
<td>Value 1 display</td>
<td>Level linearized</td>
<td>Level linearized</td>
</tr>
<tr>
<td>Value 2 display</td>
<td>Distance</td>
<td>Distance</td>
</tr>
<tr>
<td>Value 3 display</td>
<td>Current output 1</td>
<td>Current output 1</td>
</tr>
<tr>
<td>Value 4 display</td>
<td>None</td>
<td>Current output 2</td>
</tr>
</tbody>
</table>

11.7.2 Factory setting of local display for interface measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Factory setting for devices with 1 current output</th>
<th>Factory setting for devices with 2 current outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format display</td>
<td>1 value, max. size</td>
<td>1 value, max. size</td>
</tr>
<tr>
<td>Value 1 display</td>
<td>Interface linearized</td>
<td>Interface linearized</td>
</tr>
<tr>
<td>Value 2 display</td>
<td>Level linearized</td>
<td>Level linearized</td>
</tr>
<tr>
<td>Value 3 display</td>
<td>Thickness upper layer</td>
<td>Current output 1</td>
</tr>
<tr>
<td>Value 4 display</td>
<td>Current output 1</td>
<td>Current output 2</td>
</tr>
</tbody>
</table>

11.7.3 Adjusting the local display

The local display can be adjusted in the following submenu:
Setup → Advanced setup → Display
11.8 Configuration management

After commissioning, you can save the current device configuration, copy it to another measuring point or restore the previous device configuration. You can do so using the Configuration management parameter and the options available.

Path in the menu
Setup → Advanced setup → Configuration backup display → Configuration management

Meaning of the options
- **Cancel**
 No action is executed and the user exits the parameter.
- **Execute backup**
 A backup copy of the current device configuration is saved from the HistoROM (integrated in the device) to the display module of the device.
- **Restore**
 The last backup copy of the device configuration is copied from the display module to the HistoROM of the device.
- **Duplicate**
 The transmitter configuration of the device is duplicated to another device using the display module. The following parameters, which characterize the individual measuring point are not transferred:
 - Medium type
- **Compare**
 The device configuration saved in the display module is compared to the current device configuration of the HistoROM. The result of the comparison is displayed in the Comparison result parameter.
- **Clear backup data**
 The backup copy of the device configuration is deleted from the display module of the device.

While this action is in progress, the configuration cannot be edited via the local display and a message on the processing status appears on the display.

If an existing backup copy is restored on a device other than the original device using the Restore option, in some cases individual device functions may not be available. In some cases it is also not possible to restore the original state by resetting to the "as-delivered" state.

The Duplicate option should always be used to copy the configuration to another device.
11.9 Protecting settings from unauthorized access

The settings can be protected from unauthorized access in two ways:

- Locking via parameters (software locking)
- Locking via write protection switch (hardware locking)
12 Diagnostics and troubleshooting

12.1 General troubleshooting

12.1.1 General errors

<table>
<thead>
<tr>
<th>Error</th>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device does not respond.</td>
<td>Supply voltage not connected.</td>
<td>Connect the correct voltage.</td>
</tr>
<tr>
<td></td>
<td>The cables do not contact the terminals</td>
<td>Ensure electrical contact between the cable</td>
</tr>
<tr>
<td></td>
<td>properly.</td>
<td>and the terminal.</td>
</tr>
<tr>
<td>Values on the display invisible</td>
<td>Contrast setting is too weak or too strong.</td>
<td>• Increase contrast by pressing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and simultaneously.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Decrease contrast by pressing and simultaneously.</td>
</tr>
<tr>
<td></td>
<td>The plug of the display cable is not</td>
<td>Connect the plug correctly.</td>
</tr>
<tr>
<td></td>
<td>connected correctly.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display is defective.</td>
<td>Replace display.</td>
</tr>
<tr>
<td>"Communication error" is indicated</td>
<td>Electromagnetic interference</td>
<td>Check grounding of the device.</td>
</tr>
<tr>
<td>on the display when starting the</td>
<td>Broken display cable or display plug.</td>
<td>Replace display.</td>
</tr>
<tr>
<td>device or connecting the display.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplication of parameters via</td>
<td>Display with backup is not properly</td>
<td>Connect display (with backup) and</td>
</tr>
<tr>
<td>display from one device to another</td>
<td>detected if a data backup was not</td>
<td>restart device.</td>
</tr>
<tr>
<td>not working. Only the 'Save' and</td>
<td>carried out on the new device previously.</td>
<td></td>
</tr>
<tr>
<td>'Cancel' options are available.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDI communication does not work.</td>
<td>Wrong setting of the COM port on the</td>
<td>Check the setting of the COM port on</td>
</tr>
<tr>
<td></td>
<td>computer.</td>
<td>the computer and change it if necessary.</td>
</tr>
<tr>
<td>Device measures incorrectly.</td>
<td>Parameter configuration error</td>
<td>Check and correct the parameter configuration.</td>
</tr>
</tbody>
</table>

Endress+Hauser
12.1.2 Parametrization errors

Parametrization errors for level measurements

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| Measured value is incorrect | If measured distance (Setup → Distance) matches the real distance: Calibration error
If measured distance (Setup → Distance) does not match the real distance: An interference echo is present. | • Check the Empty calibration parameter (→ 133) and correct if necessary.
• Check the Full calibration parameter (+ 134) and correct if necessary.
• Check the linearization and correct if necessary (Linearization submenu (+ 161)).
Carry out mapping (Confirm distance parameter (→ 141)). |
| No change of measured value on filling/emptying | An interference echo is present. | Carry out mapping (Confirm distance parameter (→ 141)).
Buildup at the probe. | Clean the probe.
Error in the echo tracking. | Deactivate echo tracking (Expert → Sensor → Echo tracking → Evaluation mode = History off). |
| Echo lost diagnostic message appears after the supply voltage is switched on. | Echo threshold too high. | Increase the blocking distance (Blocking distance parameter (→ 152)).
If necessary, select a more detailed setting with the Medium parameter (→ 133).
Level echo suppressed. | Delete the map and record it again if necessary (Record map parameter (→ 143)). |
| Device displays a level when the tank is empty. | Incorrect probe length | Perform probe length correction (Confirm probe length parameter (→ 177)).
Interference echo | Carry out mapping over the entire probe length when the tank is empty (Confirm distance parameter (→ 141)). |
| Wrong slope of the level over the entire measuring range | Wrong tank type selected. | Select the correct Tank type parameter (→ 132). |

Parametrization errors for interface measurements

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| With the setting Tank level = Fully flooded, the interface level displayed jumps to higher values when the tank is emptied. | The total level is detected outside the upper blocking distance. | Increase the blocking distance (Blocking distance parameter (→ 152)).
Set Tank level parameter (→ 138) = Partially filled. |
<p>| With the setting Tank level = Partially filled, the total level displayed jumps to lower values when the tank is filled. | The total level goes to the upper blocking distance. | Reduce the blocking distance (Blocking distance parameter (→ 152)). |
| Incorrect slope of the interface measured value | The dielectric constant (DC value) of the upper medium is incorrectly set. | Enter the correct dielectric constant (DC value) of the upper medium (DC value parameter (→ 139)). |
| The measured value for the interface and the total level are identical. | The echo threshold for the total level is too high due to an incorrect dielectric constant. | Enter the correct dielectric constant (DC value) of the upper medium (DC value parameter (→ 139)). |</p>
<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>The total level jumps to the interface level in the case of thin interfaces.</td>
<td>The thickness of the upper medium is lower than 60 mm.</td>
<td>Measurement of the interface is only possible for interface heights greater than 60 mm.</td>
</tr>
<tr>
<td>Interface measured value jumps.</td>
<td>Emulsion layer present.</td>
<td>Emulsion layers impair the measurement. Contact Endress+Hauser.</td>
</tr>
</tbody>
</table>
12.2 Diagnostic information on local display

12.2.1 Diagnostic message

Faults detected by the self-monitoring system of the measuring device are displayed as a diagnostic message in alternation with the measured value display.

<table>
<thead>
<tr>
<th>Measured value display in alarm condition</th>
<th>Diagnostic message</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1</td>
<td>△ S</td>
</tr>
<tr>
<td>XXXXXXXXXX</td>
<td>XXXXXXXXXX</td>
</tr>
<tr>
<td>20.50</td>
<td>△ S</td>
</tr>
<tr>
<td>S801</td>
<td>△ S S801</td>
</tr>
<tr>
<td>Menu</td>
<td></td>
</tr>
<tr>
<td>Supply voltage</td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td></td>
</tr>
</tbody>
</table>

1 Status signal
2 Status symbol (symbol for event level)
3 Status symbol with diagnostic event
4 Event text
5 Operating elements

Status signals

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **F** | "Failure (F)" option
A device error has occurred. The measured value is no longer valid. |
| **C** | "Function check (C)" option
The device is in the service mode (e.g. during a simulation). |
| **S** | "Out of specification (S)" option
The device is operated:
• Outside of its technical specifications (e.g. during startup or a cleaning)
• Outside of the configuration performed by the user (e.g. level outside the configured range) |
| **M** | "Maintenance required (M)" option
Maintenance is required. The measured value is still valid. |

Status symbol (symbol for event level)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| ☑ | "Alarm" status
The measurement is interrupted. The signal outputs adopt the defined alarm condition. A diagnostic message is generated. |
| △ | "Warning" status
The device continues to measure. A diagnostic message is generated. |
Diagnostic event and event text

The fault can be identified by means of the diagnostic event. The event text helps you by providing information about the fault. In addition, the associated status symbol is displayed in front of the diagnostic event.

<table>
<thead>
<tr>
<th>Diagnostic event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status symbol</td>
</tr>
<tr>
<td>Status signal</td>
</tr>
<tr>
<td>Event number</td>
</tr>
<tr>
<td>Event text</td>
</tr>
</tbody>
</table>

Example: Δ S A0032904 441 Curr.output 1

If two or more diagnostic events occur simultaneously, only the diagnostic message with the highest priority is shown. Additional queued diagnostic messages can be shown in the Diagnostic list submenu.

Past diagnostic messages that are no longer pending are shown as follows:
- On the local display:
 - In the Event logbook submenu
- In FieldCare:
 - Via the "Event List /HistoROM" function.

Operating elements

<table>
<thead>
<tr>
<th>Operating functions in menu, submenu</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Plus key]</td>
</tr>
<tr>
<td>Opens the message about the remedial measures.</td>
</tr>
</tbody>
</table>

| [Enter key] |
| Opens the operating menu. |
12.2.2 Calling up remedial measures

The user is in the diagnostic message.

1. Press \(\boxed{\text{F1}} \) (\(\text{△} \) symbol).
 \(\Rightarrow \) The Diagnostic list submenu opens.

2. Select the desired diagnostic event with \(\boxed{\text{F1}} \) or \(\boxed{\text{F2}} \) and press \(\boxed{\text{F3}} \).
 \(\Rightarrow \) The message for the remedial measures for the selected diagnostic event opens.

3. Press \(\boxed{\text{F4}} \) + \(\boxed{\text{F6}} \) simultaneously.
 \(\Rightarrow \) The message about the remedial measures closes.

The user is in the Diagnostics menu at an entry for a diagnostics event, e.g. in the Diagnostic list or in Previous diagnostics.

1. Press \(\boxed{\text{F1}} \).
 \(\Rightarrow \) The message for the remedial measures for the selected diagnostic event opens.

2. Press \(\boxed{\text{F4}} \) + \(\boxed{\text{F6}} \) simultaneously.
 \(\Rightarrow \) The message about the remedial measures closes.

\(\boxed{\text{F3}} \) Message for remedial measures

1. Diagnostic information
2. Short text
3. Service ID
4. Diagnostic behavior with diagnostic code
5. Operation time when error occurred
6. Remedial measures
12.3 Diagnostic event in the operating tool

If a diagnostic event is present in the device, the status signal appears in the top left status in the operating tool along with the corresponding symbol for event level in accordance with NAMUR NE 107:

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)

A: Via the operating menu

1. Navigate to the Diagnostics menu.
 - In the Actual diagnostics parameter, the diagnostic event is shown with event text.

2. On the right in the display range, hover the cursor over the Actual diagnostics parameter.
 - A tool tip with remedial measures for the diagnostic event appears.

B: Via the "Create documentation" function

1. Select the 'Create documentation' function.

2. Make sure 'Data overview' is marked.
3. Click "Save as ..." and save a PDF of the protocol.
 🔴 The protocol contains the diagnostic messages and remedy information.

C: Via the "Eventlist / Extended HistoROM" function

1. Select the "Eventlist / Extended HistoROM" function.
2. Select the "Load Eventlist" function.
 🔴 The list of events, including remedy information, is shown in the "Data overview" window.

12.4 Diagnostic list

In the Diagnostic list submenu, up to 5 currently pending diagnostic messages can be displayed. If more than 5 messages are pending, the messages with the highest priority are shown on the display.

Navigation path
Diagnostics → Diagnostic list

Calling up and closing the remedial measures

1. Press ❯.
 🔴 The message for the remedial measures for the selected diagnostic event opens.

2. Press 🔄 + 🔄 simultaneously.
 🔴 The message about the remedial measures closes.
12.5 List of diagnostic events

<table>
<thead>
<tr>
<th>Diagnostic number</th>
<th>Short text</th>
<th>Remedy instructions</th>
<th>Status signal [from the factory]</th>
<th>Diagnostic behavior [from the factory]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic of sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 003 | Broken probe detected | 1. Check map
2. Check sensor | F | Alarm |
| 046 | Build-up detected | Clean sensor | F | Alarm |
| 104 | HF cable | 1. Dry HF cable connection
2. Change HF cable | F | Alarm |
| 105 | HF cable | 1. Tighten HF cable connection
2. Check sensor
3. Change HF cable | F | Alarm |
| 106 | Sensor | 1. Check sensor
2. Check HF cable
3. Contact service | F | Alarm |
| **Diagnostic of electronic** | | | | |
| 242 | Software incompatible | 1. Check software
2. Flash or change main electronics module | F | Alarm |
| 252 | Modules incompatible | 1. Check electronic modules
2. Change I/O or main electronic module | F | Alarm |
| 261 | Electronic modules | 1. Restart device
2. Check electronic modules
3. Change I/O Modul or main electronics | F | Alarm |
| 262 | Module connection | 1. Check module connections
2. Change electronic modules | F | Alarm |
| 270 | Main electronic failure | Change main electronic module | F | Alarm |
| 271 | Main electronic failure | 1. Restart device
2. Change main electronic module | F | Alarm |
| 272 | Main electronic failure | 1. Restart device
2. Contact service | F | Alarm |
| 273 | Main electronic failure | 1. Emergency operation via display
2. Change main electronics | F | Alarm |
| 275 | I/O module failure | Change I/O module | F | Alarm |
| 276 | I/O module failure | 1. Restart device
2. Change I/O module | F | Alarm |
| 282 | Data storage | 1. Restart device
2. Contact service | F | Alarm |
| 283 | Memory content | 1. Transfer data or reset device
2. Contact service | F | Alarm |
| 311 | Electronic failure | 1. Transfer data or reset device
2. Contact service | F | Alarm |
| 311 | Electronic failure | Maintenance required!
1. Do not perform reset
2. Contact service | M | Warning |
| **Diagnostic of configuration** | | | | |
| 410 | Data transfer | 1. Check connection
2. Retry data transfer | F | Alarm |
| 412 | Processing Download | Download active, please wait | C | Warning |
12.6 Event logbook

12.6.1 Event history

A chronological overview of the event messages that have occurred is provided in the Event list submenu.

1) Diagnostic behavior can be changed.

4) This submenu is only available for operation via local display. In the case of operation via FieldCare, the event list can be displayed with the ‘Event List / HistoROM’ functionality of FieldCare.

Endress+Hauser
Navigation path
Diagnostics → Event logbook → Event list

A maximum of 100 event messages can be displayed in chronological order.

Die Ereignishistorie umfasst Einträge zu:
- Diagnostic events
- Information events

In addition to the operation time of its occurrence, each event is also assigned a symbol that indicates whether the event has occurred or is ended:
- Diagnostic event
 - ✓: Event has occurred
 - ☒: Event has ended
- Information event
 - ✓: Event has occurred

Calling up and closing the remedial measures
1. Press 
 - The message for the remedial measures for the selected diagnostic event opens.
2. Press  +  simultaneously.
 - The message about the remedial measures closes.

12.6.2 Filtering the event logbook
Using the Filter options parameter, you can define which category of event messages is displayed in the Event list submenu.

Navigation path
Diagnostics → Event logbook → Filter options

Filter categories
- All
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- Information

12.6.3 Overview of information events

<table>
<thead>
<tr>
<th>Info number</th>
<th>Info name</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1000</td>
<td>--------(Device ok)</td>
</tr>
<tr>
<td>I1089</td>
<td>Power on</td>
</tr>
<tr>
<td>I1090</td>
<td>Configuration reset</td>
</tr>
<tr>
<td>I1091</td>
<td>Configuration changed</td>
</tr>
<tr>
<td>I1092</td>
<td>Trend data deleted</td>
</tr>
<tr>
<td>I1110</td>
<td>Write protection switch changed</td>
</tr>
<tr>
<td>I1137</td>
<td>Electronic changed</td>
</tr>
<tr>
<td>I1151</td>
<td>History reset</td>
</tr>
<tr>
<td>I1154</td>
<td>Reset terminal voltage min/max</td>
</tr>
<tr>
<td>I1155</td>
<td>Reset electronic temperature</td>
</tr>
<tr>
<td>I1156</td>
<td>Memory error trend</td>
</tr>
<tr>
<td>I1157</td>
<td>Memory error event list</td>
</tr>
<tr>
<td>Info number</td>
<td>Info name</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>I1185</td>
<td>Display backup done</td>
</tr>
<tr>
<td>I1186</td>
<td>Restore via display done</td>
</tr>
<tr>
<td>I1187</td>
<td>Settings downloaded with display</td>
</tr>
<tr>
<td>I1188</td>
<td>Display data cleared</td>
</tr>
<tr>
<td>I1189</td>
<td>Backup compared</td>
</tr>
<tr>
<td>I1256</td>
<td>Display: access status changed</td>
</tr>
<tr>
<td>I1264</td>
<td>Safety sequence aborted</td>
</tr>
<tr>
<td>I1335</td>
<td>Firmware changed</td>
</tr>
<tr>
<td>I1397</td>
<td>Fieldbus: access status changed</td>
</tr>
<tr>
<td>I1398</td>
<td>CDI: access status changed</td>
</tr>
<tr>
<td>I1512</td>
<td>Download started</td>
</tr>
<tr>
<td>I1513</td>
<td>Download finished</td>
</tr>
<tr>
<td>I1514</td>
<td>Upload started</td>
</tr>
<tr>
<td>I1515</td>
<td>Upload finished</td>
</tr>
</tbody>
</table>
12.7 Firmware history

<table>
<thead>
<tr>
<th>Date</th>
<th>Firmware version</th>
<th>Modifications</th>
<th>Documentation (FMP51, FMP52, FMP54, PROFIBUS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.2011</td>
<td>01.00.zz</td>
<td>Original software</td>
<td>BA01006F/00/EN/10.10 GP01001F/00/EN/10.10 TI01001F/00/EN/13.11</td>
</tr>
<tr>
<td>02.2015</td>
<td>01.01.zz</td>
<td>• Support of SD03
• Additional languages
• HistorOM functionality enhanced
• “Advanced Diagnostics” function block integrated
• Improvements and bugfixes</td>
<td>BA01006F/00/EN/15.14 BA01006F/00/EN/16.16 ¹) GP01001F/00/EN/13.14 TI01001F/00/EN/18.14 TI01001F/00/EN/22.16 ¹)</td>
</tr>
</tbody>
</table>

¹) Contains information on the Heartbeat wizards available in the current DTM version for DeviceCare and FieldCare.

The firmware version can explicitly be ordered via the product structure. In this way it is possible to ensure compatibility of the firmware version with an existing or planned system integration.
13 Maintenance

No special maintenance work is required.

13.1 Exterior cleaning

When cleaning the exterior, always use cleaning agents that do not corrode the surface of the housing and the seals.

13.2 General cleaning instructions

Dirt or buildup may form on the probe depending on the application. A thin, even layer has little impact on the measurement. Thick layers can dampen the signal and reduce the measuring range. Very uneven deposit formation or caking (e.g. due to crystallization) can result in incorrect measurements. In such cases, use a non-contact measuring principle, or regularly inspect the probe for contamination.

Cleaning with sodium hydroxide solution (e.g. in CIP procedures): if the coupling is wetted, larger measurement errors can occur than under reference operating conditions. Wetting can cause temporary incorrect measurements.
14 Repair

14.1 General information

14.1.1 Repair concept
Under the Endress+Hauser repair concept, devices have a modular design and repairs can be carried out by Endress+Hauser Service or by properly trained customers.
Spare parts are grouped into logical kits with the associated replacement instructions.
For more information on service and spare parts, please contact Endress+Hauser Service.

14.1.2 Repair of Ex-certified devices

WARNING
Incorrect repair can compromise electrical safety!
Explosion Hazard!
- Repairs to Ex-certified devices must be carried out by Endress+Hauser Service or by specialist personnel according to national regulations.
- Relevant standards and national regulations on hazardous areas, safety instructions and certificates must be observed.
- Use only original Endress+Hauser spare parts.
- Please note the device designation on the nameplate. Only identical parts may be used as replacements.
- Carry out repairs according to the instructions.
- Only the Endress+Hauser service team is permitted to modify a certified device and convert it to another certified version.

14.1.3 Replacing electronics modules
When electronics modules have been replaced the device does not need to be recalibrated as the parameters are saved in the HistoROM inside the housing. It may be necessary when replacing the main electronics to record a new interference echo suppression.

14.1.4 Replacing a device
Once a complete device has been replaced, the parameters can be transferred back into the device using one of the following methods:

- Using the display module
 Prerequisite: The configuration of the old device was saved previously to the display module.
- Via FieldCare
 Prerequisite: The configuration of the old device was saved previously to the computer using FieldCare.

You can continue measuring without performing a new calibration. Only interference echo suppression may need to be carried out once again.
14.2 Spare parts

- Some replaceable measuring device components are identified by means of a spare part nameplate. This contains information about the spare part.
- In the connection compartment cover of the device there is a spare part nameplate which contains the following information:
 - A list of the most important spare parts for the measuring device, including their ordering information.
 - The URL to the W@M Device Viewer (www.endress.com/deviceviewer):
 All the spare parts for the measuring device, along with the order code, are listed here and can be ordered. If available, users can also download the associated Installation Instructions.

![Example for spare part nameplate in the connection compartment cover](image)

Measuring device serial number:
- Located on the device and spare part nameplate.
- Can be read out via the 'Serial number' parameter in the 'Device information' submenu.

14.3 Return

The requirements for safe device return can vary depending on the device type and national legislation.

1. Refer to the web page for information:
 http://www.endress.com/support/return-material
 - Select the region.
2. Return the device if repairs or a factory calibration are required, or if the wrong device was ordered or delivered.

14.4 Disposal

If required by the Directive 2012/19/EU on waste electrical and electronic equipment (WEEE), the product is marked with the depicted symbol in order to minimize the disposal of WEEE as unsorted municipal waste. Do not dispose of products bearing this marking as unsorted municipal waste. Instead, return them to the manufacturer for disposal under the applicable conditions.
15 Accessories

15.1 Device-specific accessories

15.1.1 Weather protection cover
The weather protection cover can be ordered together with the device via the "Accessory enclosed" product structure.

Material
316L

Order number for accessories:
71162242
15.1.2 Mounting bracket for electronics housing

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting bracket for electronics housing</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram B](A0014793)

34 Mounting bracket for electronics housing; engineering unit: mm (in)

- **A** Wall mounting
- **B** Post mounting

With "remote sensor" device versions (see feature 060 in the product structure), the mounting bracket is included in the scope of delivery. However, it can also be ordered separately as an accessory (order number: 71102216).
15.1.3 Rod extension / centering device

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Description</th>
</tr>
</thead>
</table>
| Rod extension / centering device HMP40 | Suitable for: FMP54
Permitted temperature at lower edge of nozzle:
- without centering disk: no restriction
- with centering disk: -40 to +150 °C (-40 to +302 °F)
Additional information: SD01002F |

![Diagram of rod extension / centering device](image)

1	Nozzle height
2	Extension rod
3	Centering disk

Approval:
- **A**: Non-hazardous area
- **M**: FM DIP Cl.II Div.1 Gr.E-G N.I., Zone 21.22
- **P**: CSA DIP Cl.II Div.1 Gr.G + coal dust N.I.
- **S**: FM Cl.I, II, III Div.1 Gr.A-G N.I., Zone 0,1,2,20,21,22
- **U**: CSA Cl.I, II, III Div.1 Gr.A-G N.I., Zone 0,1,2
- **1**: ATEX II 1G
- **2**: ATEX II 1D

Extension rod; height of nozzle:
- **1**: 115mm; 150-250mm / 6-10"
- **2**: 215mm; 250-350mm / 10-14"
- **3**: 315mm; 350-450mm / 14-18"
- **4**: 415mm; 450-550mm / 18-22"
- **9**: Special version; TSP no. to be specified

Centering disk:
- **A**: Not selected
- **B**: DN40 / 1-1/2", inside-d. = 40-45mm, PPS
- **C**: DN50 / 2", inside-d. = 50-57mm, PPS
- **D**: DN80 / 3", inside-d. = 80-85mm, PPS
- **E**: DN80 / 3", inside-d. = 76-78mm, PPS
- **G**: DN100 / 4", inside-d. = 100-110mm, PPS
- **H**: DN150 / 6", inside-d. = 152-164mm, PPS
- **J**: DN200 / 8", inside-d. = 210-215mm, PPS
- **K**: DN250 / 10", inside-d. = 253-269mm, PPS
- **Y**: Special version; TSP no. to be specified
15.1.4 Mounting kit, insulated

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting kit, insulated</td>
<td>suitable for</td>
</tr>
<tr>
<td>• FMP51</td>
<td>• FMP54</td>
</tr>
</tbody>
</table>

35 Scope of delivery of mounting kit:

1. **Insulation sleeve**
2. **Eye bolt**

To secure rope probes so that they are reliably insulated.
Maximum process temperature: 150 °C (300 °F)

For rope probes 4 mm (⅛ in) or 6 mm (⅛ in) with PA>steel:
- Diameter D = 20 mm (0.8 in)
- Order number: 52014249

For rope probes 6 mm (⅛ in) or 8 mm (⅝ in) with PA>steel:
- Diameter D = 25 mm (1 in)
- Order number: 52014250

Due to the risk of electrostatic charge, the insulation sleeve is not suitable for use in hazardous areas! In this case, the probe must be secured so that it is reliably grounded.

⚠️ The mounting kit can also be ordered directly with the device (Levelflex product structure, feature 620 'Accessory enclosed', version PG ‘mounting kit, insulated, rope’).
15.1.5 Centering star

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centering star PEEK</td>
<td>Suitable for probes with a rod diameter of 16 mm (0.6 in) and can be used in pipes from DN50 to DN100. The markings make it easier to cut to size, ensuring that the centering star can be adjusted to the pipe diameter. See also Operating Instructions SD02316F.</td>
</tr>
<tr>
<td></td>
<td>Material of centering star: PEEK</td>
</tr>
<tr>
<td></td>
<td>Material of retaining rings: PH15-7Mo (UNS S15700)</td>
</tr>
<tr>
<td></td>
<td>Permitted process temperature range: –60 to +250 °C (–76 to +482 °F)</td>
</tr>
<tr>
<td></td>
<td>Order number: 71069064</td>
</tr>
</tbody>
</table>

• If the centering star is used in a bypass, it must be positioned below the lower bypass outlet. This must be taken into account when choosing the probe length. In general, the centering star should not be mounted more than 50 mm (1.97”) above the probe tip. It is advised not to use the PEEK centering star in the measuring range of the rod probe.

• The PEEK centering star can also be ordered directly with the device (Levelflex product structure, feature 610 ‘Accessory mounted’, option OD). In this case, it is not secured to the rod using the retaining rings, but instead is secured using a hexagonal-headed bolt (A4-70) and a Nord Lock washer (1.4547) at the tip of the probe rod.

The centering star is suitable for probes with a rod diameter of 16 mm (0.6 in) and can be used in pipes from DN50 to DN100. The markings make it easier to cut to size, ensuring that the centering star can be adjusted to the pipe diameter. See also Operating Instructions SD02316F.

- Material of centering star: PEEK
- Material of retaining rings: PH15-7Mo (UNS S15700)
- Permitted process temperature range: –60 to +250 °C (–76 to +482 °F)
- Order number: 71069064

If the centering star is used in a bypass, it must be positioned below the lower bypass outlet. This must be taken into account when choosing the probe length. In general, the centering star should not be mounted more than 50 mm (1.97”) above the probe tip. It is advised not to use the PEEK centering star in the measuring range of the rod probe.

The PEEK centering star can also be ordered directly with the device (Levelflex product structure, feature 610 ‘Accessory mounted’, option OD). In this case, it is not secured to the rod using the retaining rings, but instead is secured using a hexagonal-headed bolt (A4-70) and a Nord Lock washer (1.4547) at the tip of the probe rod.
Accessories

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Description</th>
</tr>
</thead>
</table>
| Centering star PFA | • 16.4 mm (0.65 in)
• 37 mm (1.46 in)
suitable for
• FMP51
• FMP52
• FMP54 |

Diagram

![Centering star PFA diagram](image)

- **A**: For probe 8 mm (0.3 in)
- **B**: For probes 12 mm (0.47 in) and 16 mm (0.63 in)

The centering star is suitable for probes with a rod diameter of 8 mm (0.3 in), 12 mm (0.47 in) and 16 mm (0.63 in) (including coated rod probes) and can be used in pipes from DN40 to DN50. See also Operating Instructions BA00378F/00/A2.

- Material: PFA
- Permitted process temperature range: -200 to +250 °C (-328 to +482 °F)
- Order number
 - Probe 8 mm (0.3 in): 71162453
 - Probe 12 mm (0.47 in): 71157270
 - Probe 16 mm (0.63 in): 71069065

The PFA centering star can also be ordered directly with the device (Levelflex product structure, feature 610 'Accessory mounted', option OE).
<table>
<thead>
<tr>
<th>Accessories</th>
<th>Description</th>
</tr>
</thead>
</table>
| Centering star PEEK, Ø 48 to 95 mm (1.9 to 3.7 in) suitable for • FMP51 • FMP52 • FMP54 | The centering star is suitable for probes with a rope diameter of 4 mm (1/6 in) (including coated rope probes). See also Operating Instructions SD01961F:
 • Material: PEEK
 • Permitted process temperature range: −60 to +250 °C (−76 to +482 °F)
 • Order number
 • 71373490 (1x)
 • 71373492 (5x) |
15.1.6 Centering weight

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Description</th>
</tr>
</thead>
</table>
| Centering weight 316L 45 mm (1.77 in) | suitable for
 - FMP51
 - FMP54 |

The centering weight is suitable for probes with a rope diameter of 4 mm (¹⁄₆ in) and can be used in DN50/2” pipes.

Material: 316L

The centering weight can be ordered directly with the device (product structure Levelflex) or as a probe without a process connection (product structure XPF0005-) using feature 610 'Accessory mounted', version 08 (for pipe DN50/2”).
Centering weight 316L

- ø 75 mm (2.95 in)
- ø 95 mm (3.7 in)

Suitable for
- FMP51
- FMP54

<table>
<thead>
<tr>
<th>øA</th>
<th>øB</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.5 mm (2.07 in) for DN80/3" pipe</td>
<td>55.5 mm (2.19 in) for DN100/4" pipe</td>
</tr>
<tr>
<td>62.5 mm (2.47 in) for DN100/4" pipe</td>
<td>65.5 mm (2.58 in) for DN100/4" pipe</td>
</tr>
</tbody>
</table>

The centering weight is suitable for probes with a rope diameter of 4 mm (¹⁄₆ in) and can be used in DN80/3" or DN100/4" pipes.

Material: 316L

The centering weight can be ordered directly with the device (product structure Levelflex) or as a probe without a process connection (product structure XPF0005-) using feature 610 "Accessory mounted", version OL (for pipe DN80/3") or OM (for pipe DN100/4").

Remote display FHX50

1.
2.
3.
4.
Technical data
- Material:
 - Plastic PBT
 - 316L/1.4404
 - Aluminum
- Degree of protection: IP68 / NEMA 6P and IP66 / NEMA 4x
- Suitable for display modules:
 - SD02 (push buttons)
 - SD03 (touch control)
- Connecting cable:
 - Cable supplied with device up to 30 m (98 ft)
 - Standard cable supplied by customer up to 60 m (196 ft)
 - Ambient temperature: –40 to 80 °C (–40 to 176 °F)
 - Ambient temperature (option): –50 to 80 °C (–58 to 176 °F) 5)

Ordering information
- If the remote display is to be used, the device version "Prepared for display FHX50" must be ordered.
 For the FHX50, the option "Prepared for display FHX50" must be selected under "Measuring device version".
- If a measuring device has not been ordered with the version "Prepared for display FHX50" and is to be retrofitted with an FHX50, the version "Not prepared for display FHX50" must be ordered for the FHX50 under "Measuring device version". In this case, a retrofit kit for the device is supplied with the FHX50. The kit can be used to prepare the device so that the FHX50 can be used.

Use of the FHX50 may be restricted for transmitters with an approval. A device may only be retrofitted with the FHX50 if the option "Prepared for FHX50" is listed in the associated Safety Instructions (XA) under Basic specifications, "Display, operation".

Also pay attention to the Safety Instructions (XA) of the FHX50.

Retrofitting is not possible on transmitters with:
- An approval for use in areas with flammable dust (dust ignition-proof approval)
- Type of protection Ex nA

For details, see the "Special Documentation" SD01007F

15.1.8 Overvoltage protection
The surge arrester for loop-powered devices can be ordered together with the device via the "Accessory mounted" section of the product order structure.

The surge arrester can be used for loop-powered devices.
- 1-channel devices - OVP10
- 2-channel devices - OVP20

5) This range applies if the option JN "Transmitter ambient temperature" –50 °C (–58 °F) was selected in feature 580 "Test, Certificate". If the temperature is permanently below –40 °C (–40 °F), higher failure rates can be expected.
Levelflex FMP51, FMP52, FMP54 PROFIBUS PA

Accessories

Technical data
- Resistance per channel: $2 \times 0.5 \, \Omega_{\text{max}}$
- Threshold DC voltage: 400 to 700 V
- Threshold surge voltage: < 800 V
- Capacitance at 1 MHz: $< 1.5 \, \text{pF}$
- Nominal leakage current (8/20 μs): 10 kA
- Suitable for conductor cross-sections: 0.2 to 2.5 mm² (24 to 14 AWG)

If retrofitting:
- Order number for 1-channel devices (OVP10): 71128617
- Order number for 2-channel devices (OVP20): 71128619
- The use of the OVP module may be restricted depending on the transmitter approval. A device may only be retrofitted with the OVP module if the option NA (overvoltage protection) is listed under Optional specifications in the Safety Instructions (XA) associated with the device.
- In order to keep the necessary safety distances when using the surge arrester module, the housing cover also needs to be replaced when the device is retrofitted.
 Depending on the housing type, the suitable cover can be ordered using the following order number:
 - Housing GT18: 71185516
 - Housing GT19: 71185518
 - Housing GT20: 71185517

For details, see the ‘Special Documentation’ SD01090F

15.1.9 Bluetooth module BT10 for HART devices

The Bluetooth module BT10 can be ordered together with the device via the ‘Accessory mounted’ section of the product order structure.
Technical data
- Quick and easy setup with the SmartBlue app
- No additional tools or adapters needed
- Signal curve via SmartBlue (app)
- Encrypted single point-to-point data transmission (tested by Fraunhofer Institute) and password-protected communication via Bluetooth® wireless technology
- Range under reference conditions:
 > 10 m (33 ft)
- When the Bluetooth module is used, the minimum supply voltage of the device increases by up to 3 V.

If retrofitting:
- Order number: 71377355
- The use of the Bluetooth module may be restricted depending on the transmitter approval. A device may only be retrofitted with the Bluetooth module if the option \textit{NF} (Bluetooth module) is listed under \textit{Optional specifications} in the Safety Instructions (XA) associated with the device.

For details, see the “Special Documentation” SD02252F

15.2 Communication-specific accessories

Commubox FXA291
Connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) and the USB port of a computer or laptop
Order number: 51516983

For details, see "Technical Information" TI00405C

15.3 Service-specific accessories

DeviceCare SFE100
Configuration tool for HART, PROFIBUS and FOUNDATION Fieldbus field devices
Technical Information TI01134S

FieldCare SFE500
FDT-based plant asset management tool
It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.
Technical Information TI00028S

15.4 System components

Memograph M graphic data manager
The Memograph M graphic data manager provides information on all the relevant process variables. Measured values are recorded correctly, limit values are monitored and measuring points analyzed. The data are stored in the 256 MB internal memory and also on a SD card or USB stick.
Technical Information TI00133R and Operating Instructions BA00247R
16 Operating menu

16.1 Overview of the operating menu (display module)

Navigation Operating menu

<table>
<thead>
<tr>
<th>Language</th>
</tr>
</thead>
</table>

† Setup

| Device tag |
| Device address |
| Operating mode |
| Distance unit |
| Tank type |
| Tube diameter |
| Tank level |
| Distance to upper connection |
| DC value |
| Medium group |
| Empty calibration |
| Full calibration |
| Level |
| Interface |
| Distance |
| Interface distance |
| Signal quality |

† Mapping

| Confirm distance |
Operating menu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapping end point</td>
<td>144</td>
</tr>
<tr>
<td>Record map</td>
<td>144</td>
</tr>
<tr>
<td>Distance</td>
<td>144</td>
</tr>
<tr>
<td>Analog inputs</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 6</td>
<td>145</td>
</tr>
<tr>
<td>Channel</td>
<td>145</td>
</tr>
<tr>
<td>PV filter time</td>
<td>145</td>
</tr>
<tr>
<td>Fail safe type</td>
<td>146</td>
</tr>
<tr>
<td>Fail safe value</td>
<td>146</td>
</tr>
<tr>
<td>Advanced setup</td>
<td>147</td>
</tr>
<tr>
<td>Locking status</td>
<td>147</td>
</tr>
<tr>
<td>Access status display</td>
<td>148</td>
</tr>
<tr>
<td>Enter access code</td>
<td>148</td>
</tr>
<tr>
<td>Level</td>
<td>149</td>
</tr>
<tr>
<td>Medium type</td>
<td>149</td>
</tr>
<tr>
<td>Medium property</td>
<td>149</td>
</tr>
<tr>
<td>Process property</td>
<td>150</td>
</tr>
<tr>
<td>Advanced process conditions</td>
<td>151</td>
</tr>
<tr>
<td>Level unit</td>
<td>152</td>
</tr>
<tr>
<td>Blocking distance</td>
<td>152</td>
</tr>
<tr>
<td>Level correction</td>
<td>153</td>
</tr>
<tr>
<td>Interface</td>
<td>154</td>
</tr>
<tr>
<td>Process property</td>
<td>154</td>
</tr>
<tr>
<td>DC value lower medium</td>
<td>154</td>
</tr>
<tr>
<td>Level unit</td>
<td>155</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Blocking distance</td>
<td>155</td>
</tr>
<tr>
<td>Level correction</td>
<td>156</td>
</tr>
<tr>
<td>Automatic DC calculation</td>
<td>159</td>
</tr>
<tr>
<td>Manual thickness upper layer</td>
<td>159</td>
</tr>
<tr>
<td>DC value</td>
<td>159</td>
</tr>
<tr>
<td>Use calculated DC value</td>
<td>159</td>
</tr>
<tr>
<td>Linearization</td>
<td>161</td>
</tr>
<tr>
<td>Linearization type</td>
<td>163</td>
</tr>
<tr>
<td>Unit after linearization</td>
<td>164</td>
</tr>
<tr>
<td>Free text</td>
<td>165</td>
</tr>
<tr>
<td>Maximum value</td>
<td>166</td>
</tr>
<tr>
<td>Diameter</td>
<td>166</td>
</tr>
<tr>
<td>Intermediate height</td>
<td>167</td>
</tr>
<tr>
<td>Table mode</td>
<td>167</td>
</tr>
<tr>
<td>Edit table</td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td></td>
</tr>
<tr>
<td>Customer value</td>
<td></td>
</tr>
<tr>
<td>Activate table</td>
<td>169</td>
</tr>
<tr>
<td>Safety settings</td>
<td>171</td>
</tr>
<tr>
<td>Output echo lost</td>
<td>171</td>
</tr>
<tr>
<td>Value echo lost</td>
<td>171</td>
</tr>
<tr>
<td>Ramp at echo lost</td>
<td>172</td>
</tr>
<tr>
<td>Blocking distance</td>
<td>152</td>
</tr>
<tr>
<td>WHG confirmation</td>
<td>174</td>
</tr>
<tr>
<td>Operating menu</td>
<td>Levelflex FMP51, FMP52, FMP54 PROFIBUS PA</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>Deactivate WHG</td>
<td>→ 175</td>
</tr>
<tr>
<td>Reset write protection</td>
<td>→ 175</td>
</tr>
<tr>
<td>Code incorrect</td>
<td>→ 175</td>
</tr>
<tr>
<td>Probe settings</td>
<td>→ 176</td>
</tr>
<tr>
<td>Probe grounded</td>
<td>→ 176</td>
</tr>
<tr>
<td>Probe length correction</td>
<td>→ 178</td>
</tr>
<tr>
<td>Confirm probe length</td>
<td>→ 178</td>
</tr>
<tr>
<td>Present probe length</td>
<td>→ 178</td>
</tr>
<tr>
<td>Switch output</td>
<td>→ 179</td>
</tr>
<tr>
<td>Switch output function</td>
<td>→ 179</td>
</tr>
<tr>
<td>Assign status</td>
<td>→ 179</td>
</tr>
<tr>
<td>Assign limit</td>
<td>→ 180</td>
</tr>
<tr>
<td>Assign diagnostic behavior</td>
<td>→ 180</td>
</tr>
<tr>
<td>Switch-on value</td>
<td>→ 181</td>
</tr>
<tr>
<td>Switch-on delay</td>
<td>→ 182</td>
</tr>
<tr>
<td>Switch-off value</td>
<td>→ 182</td>
</tr>
<tr>
<td>Switch-off delay</td>
<td>→ 183</td>
</tr>
<tr>
<td>Failure mode</td>
<td>→ 183</td>
</tr>
<tr>
<td>Switch status</td>
<td>→ 183</td>
</tr>
<tr>
<td>Invert output signal</td>
<td>→ 183</td>
</tr>
<tr>
<td>Display</td>
<td>→ 185</td>
</tr>
<tr>
<td>Language</td>
<td>→ 185</td>
</tr>
<tr>
<td>Format display</td>
<td>→ 185</td>
</tr>
<tr>
<td>Value 1 to 4 display</td>
<td>→ 187</td>
</tr>
<tr>
<td>Decimal places 1 to 4</td>
<td>→ 187</td>
</tr>
</tbody>
</table>
Operating menu

Display interval → 188
Display damping → 188
Header → 188
Header text → 189
Separator → 189
Number format → 189
Decimal places menu → 189
Backlight → 190
Contrast display → 190

► Configuration backup display → 191
Operating time → 191
Last backup → 191
Configuration management → 191
Comparison result → 192

► Administration → 194

► Define access code → 196
Define access code → 196
Confirm access code → 196
Device reset → 194

Diagnostics → 197
Actual diagnostics → 197
Previous diagnostics → 197
Operating time from restart → 198
Operating time → 191
Operating menu

Levelflex FMP51, FMP52, FMP54 PROFIBUS PA

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic list</td>
<td>199</td>
</tr>
<tr>
<td>Event logbook</td>
<td>200</td>
</tr>
<tr>
<td>Device information</td>
<td>201</td>
</tr>
<tr>
<td>Measured values</td>
<td>203</td>
</tr>
<tr>
<td>Analog inputs</td>
<td>206</td>
</tr>
</tbody>
</table>

Diagnostic list

- Diagnostics 1 to 5

Event logbook

- Filter options
- Event list

Device information

- Device tag
- Serial number
- Firmware version
- Device name
- Order code
- Extended order code 1 to 3
- Status PROFIBUS Master Config
- PROFIBUS ident number

Measured values

- Distance
- Level linearized
- Interface distance
- Interface linearized
- Thickness upper layer
- Terminal voltage 1
- Switch status

Analog inputs

- Analog input 1 to 6
 - Channel
Operating menu

<table>
<thead>
<tr>
<th>Menu</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out value</td>
<td>206</td>
</tr>
<tr>
<td>Out status</td>
<td>207</td>
</tr>
<tr>
<td>Out status HEX</td>
<td>207</td>
</tr>
<tr>
<td>Data logging</td>
<td>208</td>
</tr>
<tr>
<td>Assign channel 1 to 4</td>
<td>208</td>
</tr>
<tr>
<td>Logging interval</td>
<td>208</td>
</tr>
<tr>
<td>Clear logging data</td>
<td>209</td>
</tr>
<tr>
<td>Display channel 1 to 4</td>
<td>210</td>
</tr>
<tr>
<td>Simulation</td>
<td>212</td>
</tr>
<tr>
<td>Assign measurement variable</td>
<td>213</td>
</tr>
<tr>
<td>Value process variable</td>
<td>213</td>
</tr>
<tr>
<td>Switch output simulation</td>
<td>213</td>
</tr>
<tr>
<td>Switch status</td>
<td>214</td>
</tr>
<tr>
<td>Simulation device alarm</td>
<td>214</td>
</tr>
<tr>
<td>Diagnostic event category</td>
<td>214</td>
</tr>
<tr>
<td>Simulation diagnostic event</td>
<td>214</td>
</tr>
<tr>
<td>Device check</td>
<td>215</td>
</tr>
<tr>
<td>Start device check</td>
<td>215</td>
</tr>
<tr>
<td>Result device check</td>
<td>215</td>
</tr>
<tr>
<td>Last check time</td>
<td>215</td>
</tr>
<tr>
<td>Level signal</td>
<td>216</td>
</tr>
<tr>
<td>Launch signal</td>
<td>216</td>
</tr>
<tr>
<td>Interface signal</td>
<td>216</td>
</tr>
</tbody>
</table>
16.2 Overview of the operating menu (operating tool)

Navigation Operating menu

- Setup
 - Device tag
 - Device address
 - Operating mode
 - Distance unit
 - Tank type
 - Tube diameter
 - Medium group
 - Empty calibration
 - Full calibration
 - Level
 - Distance
 - Signal quality
 - Tank level
 - Distance to upper connection
 - DC value
 - Interface
 - Interface distance
 - Confirm distance
 - Present mapping
 - Mapping end point
 - Record map
Analog inputs

- **Analog input 1 to 6**
 - Channel
 - PV filter time
 - Fail safe type
 - Fail safe value

Advanced setup

- Locking status
- Access status tooling
- Enter access code

Level

- Medium type
- Medium property
- Process property
- Advanced process conditions
- Level unit
- Blocking distance
- Level correction

Interface

- Process property
- DC value lower medium
- Level unit
- Blocking distance
- Level correction
- Manual thickness upper layer
<table>
<thead>
<tr>
<th>Operating menu</th>
<th>Lelevel FMP51, FMP52, FMP54 PROFIBUS PA</th>
</tr>
</thead>
</table>

Measured thickness upper layer	157
DC value	157
Calculated DC value	157
Use calculated DC value	158

Linearization

Linearization type	163
Unit after linearization	164
Free text	165
Level linearized	166
Interface linearized	166
Maximum value	166
Diameter	166
Intermediate height	167
Table mode	167
Table number	168
Level	169
Level	169
Customer value	169
Activate table	169

Safety settings

Output echo lost	171
Value echo lost	171
Ramp at echo lost	172
Blocking distance	152

WHG confirmation

| 174 |
Deactivate WHG

- Reset write protection
- Code incorrect

Probe settings

- Probe grounded
- Present probe length
- Confirm probe length

Switch output

- Switch output function
- Assign status
- Assign limit
- Assign diagnostic behavior
- Switch-on value
- Switch-on delay
- Switch-off value
- Switch-off delay
- Failure mode
- Switch status
- Invert output signal

Display

- Language
- Format display
- Value 1 to 4 display
- Decimal places 1 to 4
- Display interval
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display damping</td>
<td>188</td>
</tr>
<tr>
<td>Header</td>
<td>188</td>
</tr>
<tr>
<td>Header text</td>
<td>189</td>
</tr>
<tr>
<td>Separator</td>
<td>189</td>
</tr>
<tr>
<td>Number format</td>
<td>189</td>
</tr>
<tr>
<td>Decimal places menu</td>
<td>189</td>
</tr>
<tr>
<td>Backlight</td>
<td>190</td>
</tr>
<tr>
<td>Contrast display</td>
<td>190</td>
</tr>
<tr>
<td>Configuration backup display</td>
<td>191</td>
</tr>
<tr>
<td>Operating time</td>
<td>191</td>
</tr>
<tr>
<td>Last backup</td>
<td>191</td>
</tr>
<tr>
<td>Configuration management</td>
<td>191</td>
</tr>
<tr>
<td>Backup state</td>
<td>192</td>
</tr>
<tr>
<td>Comparison result</td>
<td>192</td>
</tr>
<tr>
<td>Administration</td>
<td>194</td>
</tr>
<tr>
<td>Define access code</td>
<td>194</td>
</tr>
<tr>
<td>Device reset</td>
<td>194</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>197</td>
</tr>
<tr>
<td>Actual diagnostics</td>
<td>197</td>
</tr>
<tr>
<td>Timestamp</td>
<td>197</td>
</tr>
<tr>
<td>Previous diagnostics</td>
<td>197</td>
</tr>
<tr>
<td>Operating time from restart</td>
<td>198</td>
</tr>
<tr>
<td>Operating time</td>
<td>191</td>
</tr>
</tbody>
</table>
Diagnostic list

- Diagnostics 1 to 5
- Timestamp 1 to 5

Device information

- Device tag
- Serial number
- Firmware version
- Device name
- Order code
- Extended order code 1 to 3
- Status PROFIBUS Master Config
- PROFIBUS ident number

Measured values

- Distance
- Level linearized
- Interface distance
- Interface linearized
- Thickness upper layer
- Terminal voltage 1
- Switch status

Analog inputs

Analog input 1 to 6

- Channel
- Out value
Operating menu

Out status
- Out status
- Out status HEX

<table>
<thead>
<tr>
<th>Data logging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign channel 1 to 4</td>
</tr>
<tr>
<td>Logging interval</td>
</tr>
<tr>
<td>Clear logging data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign measurement variable</td>
</tr>
<tr>
<td>Value process variable</td>
</tr>
<tr>
<td>Switch output simulation</td>
</tr>
<tr>
<td>Switch status</td>
</tr>
<tr>
<td>Simulation device alarm</td>
</tr>
<tr>
<td>Simulation diagnostic event</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start device check</td>
</tr>
<tr>
<td>Result device check</td>
</tr>
<tr>
<td>Last check time</td>
</tr>
<tr>
<td>Level signal</td>
</tr>
<tr>
<td>Launch signal</td>
</tr>
<tr>
<td>Interface signal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heartbeat</th>
</tr>
</thead>
</table>

→ 207
→ 207
→ 208
→ 208
→ 208
→ 208
→ 209
→ 212
→ 213
→ 213
→ 213
→ 214
→ 214
→ 214
→ 215
→ 215
→ 215
→ 215
→ 215
→ 216
→ 216
→ 216
→ 217
16.3 "Setup" menu

- **Setup**: Indicates how to navigate to the parameter using the display and operating module
- **FieldCare**: Indicates how to navigate to the parameter using operating tools (e.g. FieldCare)
- **Access code**: Indicates parameters that can be locked via the access code.

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Setup → Device tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Enter tag for measuring point.</td>
</tr>
<tr>
<td>User entry</td>
<td>Up to 32 alphanumerical characters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Setup → Device address</th>
</tr>
</thead>
</table>
| **Description** | • for **Address mode = Software**: Enter bus address.
| | • for **Address mode = Hardware**: Displays bus address. |
| **User entry** | 0 to 126 |

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Setup → Operating mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>The device has the "interface measurement" application package (available for FMP51, FMP52, FMP54) ⑥.</td>
</tr>
<tr>
<td>Description</td>
<td>Select operating mode.</td>
</tr>
</tbody>
</table>
| **Selection** | • Level
| | • Interface with capacitance *
| | • Interface * |
| **Factory setting** | FMP51/FMP52/FMP54: **Level** |

⑥ Product structure: Feature 540 "Application Package", Option EB "Interface measurement"
* Visibility depends on order options or device settings
Distance unit

Navigation Setup → Distance unit

Description Length unit for distance calculation.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>ft</td>
</tr>
<tr>
<td>m</td>
<td>in</td>
</tr>
</tbody>
</table>

Tank type

Navigation Setup → Tank type

Prerequisite Medium type (→ 149) = Liquid

Description Select tank type.

Selection

| Metallic | Bypass / pipe | Non metallic | Mounted outside | Coaxial |

Factory setting Depending on the probe

Additional information

- Depending on the probe some of the options mentioned above may not be available or there may be additional options.
- For coax probes and probes with metallic center washer Tank type parameter corresponds to the type of probe and cannot be changed.

Tube diameter

Navigation Setup → Tube diameter

Prerequisite

- Tank type (→ 132) = Bypass / pipe
- The probe is coated.

Description Specify diameter of bypass or stilling well.

User entry 0 to 9.999 m
Medium group

Navigation

Setup → Medium group

Prerequisite

- For FMP51/FMP52/FMP54/FMP55: Operating mode (→ 131) = Level
- Medium type (→ 149) = Liquid

Description

Select medium group.

Selection

- Others
- Water based (DC >= 4)

Additional information

This parameter roughly specifies the dielectric constant (DC) of the medium. For a more detailed definition of the DC use the Medium property parameter (→ 149).

The Medium group parameter presets the Medium property parameter (→ 149) as follows:

<table>
<thead>
<tr>
<th>Medium group</th>
<th>Medium property (→ 149)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Others</td>
<td>Unknown</td>
</tr>
<tr>
<td>Water based (DC >= 4)</td>
<td>DC 4 ... 7</td>
</tr>
</tbody>
</table>

The Medium property parameter can be changed at a later point of time. However, when doing so, the Medium group parameter retains its value. Only the Medium property parameter is relevant for the signal evaluation.

The measuring range may be reduced for small dielectric constants. For details refer to the Technical Information (TI) of the respective device.

Empty calibration

Navigation

Setup → Empty calibr.

Description

Distance process connection to min. level.

User entry

Depending on the probe

Factory setting

Depending on the probe
Additional information

36 Empty calibration (E) for level measurements in liquids

37 Empty calibration (E) for interface measurements

In the case of interface measurements the Empty calibration parameter is valid for both, the total and the interface level.

Full calibration

Navigation

Setup → Full calibr.

Description

Span: max. level - min level.

User entry

Depending on the probe

Factory setting

Depending on the probe
Additional information

38 Full calibration (F) for level measurements in liquids

39 Full calibration (F) for interface measurements

In the case of interface measurements the Full calibration parameter is valid for both, the total and the interface level.

Level

Navigation

Setup → Level

Description

Displays measured level \(L \) (before linearization).
Additional information

40 Level in case of liquid measurements

41 Level in case of interface measurements

- The unit is defined in the Level unit parameter (→ 152).
- In case of interface measurements, this parameter always refers to the total level.

Distance

Navigation

Setup → Distance

Description

Displays the measured distance \(D_L \) between the reference point (lower edge of the flange or threaded connection) and the level.
Additional information

42 Distance for liquid measurements

43 Distance for interface measurements

The unit is defined in the **Distance unit** parameter (→ 132).

Signal quality

Navigation

Setup → Signal quality

Description

Displays the signal quality of the evaluated echo.

Additional information

Meaning of the display options

- **Strong**
 The evaluated echo exceeds the threshold by at least 10 mV.
- **Medium**
 The evaluated echo exceeds the threshold by at least 5 mV.
- **Weak**
 The evaluated echo exceeds the threshold by less than 5 mV.
- **No signal**
 The device does not find a usable echo.
The signal quality indicated in this parameter always refers to the currently evaluated echo: either the level/interface echo or the end-of-probe echo. To differentiate between these two, the quality of the end-of-probe echo is always displayed in brackets.

In case of a lost echo (Signal quality = No signal) the device generates the following error message:

- F941, for Output echo lost (→ 171) = Alarm.
- S941, if another option has been selected in Output echo lost (→ 171).

Tank level

Navigation

Setup → Tank level

Prerequisite

Operating mode (→ 131) = Interface

Description

Specify whether the tank or bypass is completely flooded or not.

Selection

- Partially filled
- Fully flooded

Additional information

Meaning of the options

- **Partially filled**
 The device searches for 2 echo signals, one for the interface and one for the total level.

- **Fully flooded**
 The device searches for the interface level only. With this setting it is essential that the upper level signal always is within the upper blocking distance (UB) in order to avoid that it is evaluated by mistake.

1

2

UB

1. Partially filled
2. Fully flooded
UB. Upper blocking distance

7) Of these two echoes the one with the lower quality is indicated.
Distance to upper connection

Navigation
Setup → Dist. up.connect

Prerequisite
The device has the "Interface measurement" application package.

Description
Specify distance D_U to upper connection.

User entry
0 to 200 m

Factory setting
- For Tank level → 138 = Partially filled: 0 mm (0 in)
- For Tank level → 138 = Fully flooded: 250 mm (9.8 in)

Additional information

Dependence on the "Tank level" parameter
- Tank level → 138 = Partially filled:
 In this case the Distance to upper connection parameter does not influence the measurement. Thus, the default setting needs not to be changed.
- Tank level → 138 = Fully flooded:
 In this case enter the distance D_U between the reference point and the lower edge of the upper connection.

DC value

Navigation
Setup → DC value

Prerequisite
The device has the "Interface measurement" application package.

Description
Specify the relative dielectric constant ε_r of the upper medium (DC_1).

User entry
1.0 to 100

8) Product structure: Feature 540 "Application Package", Option EB "Interface measurement"
9) Product structure: feature 540 'Application packages', option EB 'Interface measurement'
Operating menu

Levelflex FMP51, FMP52, FMP54 PROFIBUS PA

Additional information

DC1 Relative dielectric constant of the upper medium.

ℹ️ For the dielectric constants (DC values) of many media commonly used in industry, please refer to:
- Dielectric constant (DC value) Compendium CP01076F
- The Endress+Hauser "DC Values app" (available for Android and iOS)

Interface

Navigation

Setup ➔ Interface

Prerequisite

Operating mode ➔ Interface or Interface with capacitance

Description

Displays the measured interface level \(L_I\) (before linearization).

Additional information

ℹ️ The unit is defined in the Level unit parameter ➔ 152.
Interface distance

Navigation

Setup → Interface dist.

Prerequisite

Operating mode (→ 131) = Interface or Interface with capacitance

Description

Displays the measured distance D_I between the reference point (lower edge of flange or threaded connection) and the interface.

Additional information

The unit is defined in the Distance unit parameter (→ 132).

Confirm distance

Navigation

Setup → Confirm distance

Description

Specify, whether the measured distance matches the real distance. Depending on the selection the device automatically sets the range of mapping.

Selection

- Manual map
- Distance ok
- Distance unknown
- Distance too small *
- Distance too big *
- Tank empty
- Delete map

* Visibility depends on order options or device settings
Additional information

Meaning of the options

- **Manual map**
 To be selected if the range of mapping is to be defined manually in the **Mapping end point** parameter (→ 143). In this case it is not necessary to confirm the distance.

- **Distance ok**
 To be selected if the measured distance matches the actual distance. The device performs a mapping.

- **Distance unknown**
 To be selected if the actual distance is unknown. A mapping can not be performed in this case.

- **Distance too small**
 To be selected if the measured distance is smaller than the actual distance. The device searches for the next echo and returns to the **Confirm distance** parameter. The distance is recalculated and displayed. The comparison must be repeated until the displayed distance matches the actual distance. After this, the recording of the map can be started by selecting **Distance ok**.

- **Distance too big**
 Only available for "Expert → Sensor → Echo tracking → **Evaluation mode** parameter" = "Short time history" or "Long time history"
 To be selected if the measured distance exceeds the actual distance. The device adjusts the signal evaluation and returns to the **Confirm distance** parameter. The distance is recalculated and displayed. The comparison must be repeated until the displayed distance matches the actual distance. After this, the recording of the map can be started by selecting **Distance ok**.

- **Tank empty**
 To be selected if the tank is completely empty. The device records a mapping covering the complete measuring range.

- **Factory map**
 To be selected if the present mapping curve (if one exists) is to be deleted. The device returns to the **Confirm distance** parameter and a new mapping can be recorded.

- **Mapping gap to LN**

 When operating via the display module, the measured distance is displayed together with this parameter for reference purposes.

 For interface measurements the distance always refers to the total level (not the interface level).

 If the teaching procedure with the **Distance too small** option or the **Distance too big** option is quit before the distance has been confirmed, a map is not recorded and the teaching procedure is reset after 60 s.

 For FMP54 with gas phase compensation (product structure: feature 540 "Application Package", option EF or EG) a map must not be recorded.

Present mapping

Navigation

Setup → Present mapping

Description

Indicates up to which distance a mapping has already been recorded.
Mapping end point

Navigation

Setup → Map. end point

Prerequisite

Confirm distance (→ 141) = Manual map or Distance too small

Description

Specify new end of the mapping.

User entry

0 to 200,000.0 m

Additional information

This parameter defines up to which distance the new mapping is to be recorded. The distance is measured from the reference point, i.e. from the lower edge of the mounting flange or the threaded connection.

For reference purposes the Present mapping parameter (→ 142) is displayed together with this parameter. It indicates up to which distance a mapping has already been recorded.

Record map

Navigation

Setup → Record map

Prerequisite

Confirm distance (→ 141) = Manual map or Distance too small

Description

Start recording of the map.

Selection

- No
- Record map
- Delete map

Additional information

Meaning of the options

- No
 The map is not recorded.
- Record map
 The map is recorded. After the recording is completed, the new measured distance and the new mapping range appear on the display. When operating via the local display, these values must be confirmed by pressing .
- Delete map
 The mapping (if one exists) is deleted and the device displays the recalculated measured distance and the mapping range. When operating via the local display, these values must be confirmed by pressing .
16.3.1 "Mapping" wizard

The Mapping wizard is only available when operating via the local display. When operating via an operating tool, all parameters concerning the mapping are located directly in the Setup menu (→ 131).

In the Mapping wizard two parameters are displayed simultaneously on the display module at any one time. The upper parameter can be edited, whereas the lower parameter is displayed for reference purposes only.

Navigation
Setup → Mapping

| Confirm distance |
|-----------------|---
| **Navigation** | Setup → Mapping → Confirm distance |
| **Description** | → 141 |

| Mapping end point |
|-----------------|---
| **Navigation** | Setup → Mapping → Map. end point |
| **Description** | → 143 |

| Record map |
|-------------|---
| **Navigation** | Setup → Mapping → Record map |
| **Description** | → 143 |

| Distance |
|----------|---
| **Navigation** | Setup → Mapping → Distance |
| **Description** | → 136 |
16.3.2 "Analog input 1 to 6" submenu

There is an Analog input submenu for each AI block of the device. The AI block is used to configure the measured value transmission to the bus.

Only the most basic properties of the AI blocks can be configured in this submenu. For a detailed configuration of the AI blocks refer to Expert → Analog inputs → Analog input 1 to 6.

Navigation ➤ Expert → Analog inputs → Analog input 1 to 6

Channel

Navigation ➤ Expert → Analog inputs → Analog input 1 to 6 → Channel

Description Standard parameter CHANNEL of the Analog Input Block according to the PROFIBUS Profile.

Selection

- Level linearized
- Distance
- Interface linearized *
- Interface distance *
- Thickness upper layer *
- Terminal voltage
- Electronic temperature
- Measured capacitance *
- Absolute echo amplitude
- Relative echo amplitude
- Absolute interface amplitude *
- Relative interface amplitude *
- Absolute EOP amplitude
- Noise of signal
- EOP shift
- Calculated DC value *
- Sensor debug
- Analog output adv. diagnostics 1
- Analog output adv. diagnostics 2

Additional information Allocates a measured value to the AI block.

PV filter time

Navigation ➤ Expert → Analog inputs → Analog input 1 to 6 → PV filter time

Description Standard parameter PV_FTIME of the Analog Input Block according to the PROFIBUS profile.

User entry Positive floating-point number

* Visibility depends on order options or device settings
Additional information

This parameter defines the damping constant τ (in seconds) for the output of the Analog Input Block.

Fail safe type

Navigation

[Expert] → Analog inputs → Analog input 1 to 6 → Fail safe type

Description

Standard parameter **FSAFE_TYPE** of the Analog Input Block according to the PROFIBUS profile.

Selection

- Fail safe value
- Fallback value
- Off

Additional information

Meaning of the options

This parameter specifies the output value of the Analog Input block in the event of an error.

- **Fail safe value**
 The output value in the event of an error is defined in the **Fail safe value** parameter (→ 146).

- **Fallback value**
 The last output value that was valid before the error occurred is retained.

- **Off**
 The output value follows the current measured value. The status is set to BAD.

Fail safe value

Navigation

[Expert] → Analog inputs → Analog input 1 to 6 → Fail safe value

Prerequisite

Fail safe type (→ 146) = Fail safe value

Description

Standard parameter **FSAFE_VALUE** of the Analog Input Block according to the PROFIBUS profile.

User entry

Signed floating-point number

Additional information

This parameter defines the output value of the Analog Input Block in case of an error.
16.3.3 "Advanced setup" submenu

Navigation ┖ Setup → Advanced setup

Locking status

Description Indicates the write protection with the highest priority that is currently active.

User interface
- Hardware locked
- SIL locked
- WHG locked
- Temporarily locked

Additional information Meaning and priorities of the types of write protection
- **Hardware locked (priority 1)**
 The DIP switch for hardware locking is activated on the main electronics module. This locks write access to the parameters.
- **SIL locked (priority 2)**
 The SIL mode is activated. Writing access to the relevant parameters is denied.
- **WHG locked (priority 3)**
 The WHG mode is activated. Writing access to the relevant parameters is denied.
- **Temporarily locked (priority 4)**
 Write access to the parameters is temporarily locked on account of internal processes in progress in the device (e.g. data upload/download, reset etc.). The parameters can be modified as soon as the processes are complete.

On the display module, the ⬇ symbol appears in front of parameters that cannot be modified since they are write-protected.

Access status tooling

Navigation ┖ Setup → Advanced setup → Access stat.tool

Description Shows the access authorization to the parameters via the operating tool.

Additional information
- The access authorization can be changed via the Enter access code parameter (→ 148).
- If additional write protection is active, this restricts the current access authorization even further. The write protection status can be viewed via the Locking status parameter (→ 147).
Access status display

Navigation
- Setup → Advanced setup → Access stat.disp

Prerequisite
- The device has a local display.

Description
- Indicates access authorization to parameters via local display.

Additional information
- The access authorization can be changed via the **Enter access code** parameter (→ 148).
- If additional write protection is active, this restricts the current access authorization even further. The write protection status can be viewed via the **Locking status** parameter (→ 147).

Enter access code

Navigation
- Setup → Advanced setup → Ent. access code

Description
- Enter access code to disable write protection of parameters.

User entry
- 0 to 9999

Additional information
- The customer-specific access code that was defined in the **Define access code** parameter (→ 194) must be entered for local operation.
- If an incorrect access code is entered, users retain their current access authorization.
- The write protection affects all parameters marked with the symbol in the document. On the local display, the symbol in front of a parameter indicates that the parameter is write-protected.
- If no key is pressed for 10 minutes or the user goes from the navigation and editing mode back to the measured value display mode, the device automatically locks the write-protected parameters after another 60 s.

Please contact your Endress+Hauser Sales Center if you lose your access code.
"Level" submenu

Level submenu (→ 149) is only visible for Operating mode (→ 131) = Level

Navigation ➔ Setup → Advanced setup → Level

Description
Specify type of medium.

User interface
- Liquid
- Solid

Factory setting
FMP50, FMP51, FMP52, FMP53, FMP54, FMP55: Liquid

Additional information
The Solid option is only available for Operating mode (→ 131) = Level

This parameter determines the value of several other parameters and strongly influences the complete signal evaluation. Therefore, it is strongly recommended not to change the factory setting.

Medium property

Navigation ➔ Setup → Advanced setup → Level → Medium property

Prerequisite
- Operating mode (→ 131) = Level
- EOP level evaluation ≠ Fix DC

Description
Specify the dielectric constant ε_r of the medium.

Selection
- Unknown
- DC 1.4 ... 1.6
- DC 1.6 ... 1.9
- DC 1.9 ... 2.5
- DC 2.5 ... 4
- DC 4 ... 7
- DC 7 ... 15
- DC > 15

Factory setting
Depends on the Medium type (→ 149) and Medium group (→ 133) parameters.
Additional information

Dependency of "Medium type" and "Medium group"

<table>
<thead>
<tr>
<th>Medium type (→ 149)</th>
<th>Medium group (→ 133)</th>
<th>Medium property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>Liquid</td>
<td>Water based (DC >= 4)</td>
<td>DC 4 ... 7</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

For the dielectric constants (DC values) of many media commonly used in industry, please refer to:
- Dielectric constant (DC value) Compendium CP01076F
- The Endress+Hauser "DC Values app" (available for Android and iOS)

If EOP level evaluation = Fix DC, the exact dielectric constant must be specified in the DC value parameter (→ 139). The Medium property parameter therefore does not apply in this case.

Process property

Navigation

Setup → Advanced setup → Level → Process property

Description

Specify typical rate of level change.

Selection

For "Medium type" = "Liquid"
- Very fast > 10 m (400 in)/min
- Fast > 1 m (40 in)/min
- Standard < 1 m (40in) /min
- Medium < 10 cm (4in) /min
- Slow < 1 cm (0.4in) /min
- No filter / test

For "Medium type" = "Solid"
- Very fast > 100 m (333 ft) /h
- Fast > 10 m (33 ft) /h
- Standard < 10 m (33 ft) /h
- Medium < 1 m (3ft) /h
- Slow < 0.1 m (0.3ft) /h
- No filter / test

Additional information

The device adjusts the signal evaluation filters and the damping of the output signal to the typical rate of level change defined in this parameter:

For "Operating mode" = "Level" and "Medium type" = "Liquid"

<table>
<thead>
<tr>
<th>Process property</th>
<th>Step response time / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very fast > 10 m (400 in)/min</td>
<td>5</td>
</tr>
<tr>
<td>Fast > 1 m (40 in)/min</td>
<td>5</td>
</tr>
<tr>
<td>Standard < 1 m (40in) /min</td>
<td>14</td>
</tr>
<tr>
<td>Medium < 10 cm (4in) /min</td>
<td>39</td>
</tr>
<tr>
<td>Slow < 1 cm (0.4in) /min</td>
<td>76</td>
</tr>
<tr>
<td>No filter / test</td>
<td>< 1</td>
</tr>
</tbody>
</table>
For "Operating mode" = "Level" and "Medium type" = "Solid"

<table>
<thead>
<tr>
<th>Process property</th>
<th>Step response time / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very fast > 100 m (333 ft) /h</td>
<td>37</td>
</tr>
<tr>
<td>Fast > 10 m (33 ft) /h</td>
<td>37</td>
</tr>
<tr>
<td>Standard < 10 m (33 ft) /h</td>
<td>74</td>
</tr>
<tr>
<td>Medium < 1 m (3 ft) /h</td>
<td>146</td>
</tr>
<tr>
<td>Slow < 0.1 m (0.3 ft) /h</td>
<td>290</td>
</tr>
<tr>
<td>No filter / test</td>
<td>< 1</td>
</tr>
</tbody>
</table>

For "Operating mode" = "Interface" or "Interface with capacitance"

<table>
<thead>
<tr>
<th>Process property</th>
<th>Step response time / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very fast > 10 m (400 in)/min</td>
<td>5</td>
</tr>
<tr>
<td>Fast > 1 m (40 in)/min</td>
<td>5</td>
</tr>
<tr>
<td>Standard < 1 m (40 in) /min</td>
<td>23</td>
</tr>
<tr>
<td>Medium < 10 cm (4 in) /min</td>
<td>47</td>
</tr>
<tr>
<td>Slow < 1 cm (0.4 in) /min</td>
<td>81</td>
</tr>
<tr>
<td>No filter / test</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Advanced process conditions

Navigation

Setup → Advanced setup → Level → Adv. conditions

Prerequisite

Operating mode (→ 131) = Level

Description

Specify additional process conditions (if required).

Selection

- None
- Oil/Water condensate
- Probe near tank bottom
- Build up
- Foam (>5cm/0.16ft)

Additional information

Meaning of the options

- **Oil/Water condensate** (only Medium type = Liquid)
 Makes sure that in the case of two-phase media only the total level is detected (example: oil/condensate application).

- **Probe near tank bottom** (only for Medium type = Liquid)
 Improves the empty detection, especially if the probe is mounted close to the tank bottom.

- **Build up**
 Increases EOP range upper area in order to ensure a safe empty-detection even if the end-of-probe signal has shifted due to build-up. Enables a safe empty-detection even if the end-of-probe signal has shifted due to build-up.

- **Foam (>5cm/0.16ft)** (only for Medium type = Liquid)
 Optimizes the signal evaluation in applications with foam formation.
Level unit

Navigation

Setup → Advanced setup → Level → Level unit

Description

Select level unit.

Selection

* SI units
 * %
 * m
 * mm

* US units
 * ft
 * in

Additional information

The level unit may differ from the distance unit defined in the Distance unit parameter (→ 132):

- The unit defined in the Distance unit parameter is used for the basic calibration (Empty calibration (→ 133) and Full calibration (→ 134)).
- The unit defined in the Level unit parameter is used to display the (unlinearized) level.

Blocking distance

Navigation

Setup → Advanced setup → Level → Blocking dist.

Description

Specify upper blocking distance UB.

User entry

0 to 200 m

Factory setting

- For coax probes: 0 mm (0 in)
- For rod and rope probes up to 8 m (26 ft): 200 mm (8 in)
- For rod and rope probes above 8 m (26 ft): 0.025 * Sondenlänge

For FMP51/FMP52/FMP54 with the Interface measurement application package 1) and for FMP55:
100 mm (3.9 in) for all antenna types

Additional information

Signals in the upper blocking distance are only evaluated if they have been outside the blocking distance when the device was switched on and move into the blocking distance due to a level change during operation. Signals which are already in the blocking distance when the device is switched on, are ignored.

This behavior is only valid if the following two conditions are met:

- Expert → Sensor → Echo tracking → Evaluation mode = Short time history or Long time history
- Expert → Sensor → Gas phase compensation → GPC mode= On, Without correction or External correction

If one of these conditions is not met, signals in the blocking distance will always be ignored.

A different behavior for signals in the blocking distance can be defined in the Blocking distance evaluation mode parameter.

If required, a different behavior for signals in the blocking distance can be defined by the Endress+Hauser service.

1) Ordering feature 540 "Application Package", option EB "Interface measurement"
Level correction

Navigation

Setup → Advanced setup → Level → Level correction

Description

Specify level correction (if required).

User entry

-200 000.0 to 200 000.0 %

Additional information

The value specified in this parameter is added to the measured level (before linearization).

44 Blocking distance (UB) for liquid measurements
"Interface" submenu

Navigation ➤ Setup → Advanced setup → Interface

Process property

Description
Specify typical rate of change for the interface position.

Selection
- Fast > 1 m (40 in)/min
- Standard < 1 m (40in) /min
- Medium < 10 cm (4in) /min
- Slow < 1 cm (0.4in) /min
- No filter / test

Additional information
The device adjusts the signal evaluation filters and the damping of the output signal to the typical rate of level change defined in this parameter:

<table>
<thead>
<tr>
<th>Process property</th>
<th>Step response time / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast > 1 m (40 in)/min</td>
<td>5</td>
</tr>
<tr>
<td>Standard < 1 m (40in) /min</td>
<td>15</td>
</tr>
<tr>
<td>Medium < 10 cm (4in) /min</td>
<td>40</td>
</tr>
<tr>
<td>Slow < 1 cm (0.4in) /min</td>
<td>74</td>
</tr>
<tr>
<td>No filter / test</td>
<td>2.2</td>
</tr>
</tbody>
</table>

DC value lower medium

Navigation ➤ Setup → Advanced setup → Interface → DC lower medium

Prerequisite
Operating mode (→ 131) = Interface or Interface with capacitance

Description
Specify the dielectric constant ε_r of the lower medium.

User entry
1 to 100

Additional information
For the dielectric constants (DC values) of many media commonly used in industry, please refer to:
- Dielectric constant (DC value) Compendium CP01076F
- The Endress+Hauser "DC Values app" (available for Android and iOS)

The factory setting, ε_r = 80, applies for water at 20 °C (68 °F).
Level unit

Navigation ➙ ➙ Setup → Advanced setup → Interface → Level unit

Description Select level unit.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>ft</td>
</tr>
<tr>
<td>m</td>
<td>in</td>
</tr>
<tr>
<td>mm</td>
<td></td>
</tr>
</tbody>
</table>

Additional information

The level unit may differ from the distance unit defined in the Distance unit parameter (→ 132):

- The unit defined in the Distance unit parameter is used for the basic calibration (Empty calibration (→ 133) and Full calibration (→ 134)).
- The unit defined in the Level unit parameter is used to display the (unlinearized) level and interface position.

Blocking distance

Navigation ➙ ➙ Setup → Advanced setup → Interface → Blocking dist.

Description Specify upper blocking distance UB.

User entry 0 to 200 m

Factory setting

- For coax probes: 100 mm (3.9 in)
- For rod and rope probes up to 8 m (26 ft): 200 mm (8 in)
- For rod and rope probes above 8 m (26 ft): 0.025 * length of probe

Additional information

Echoes from within the blocking distance are not taken into account in the signal evaluation. The upper blocking distance is used

- to suppress interference echoes at the top end of the probe.
- to suppress the echo of the total level in the case of flooded bypasses.
Level correction

Navigation

Setup → Advanced setup → Interface → Level correction

Description

Specify level correction (if required).

User entry

-200 000.0 to 200 000.0 %

Additional information

The value specified in this parameter is added to the measured total and interface levels (before linearization).

Manual thickness upper layer

Navigation

Setup → Advanced setup → Interface → Man.thick.up.lay

Description

Specify the manually determined interface thickness UP (i.e. the thickness of the upper medium).

User entry

0 to 200 m
Measured thickness upper layer

Navigation

Setup → Advanced setup → Interface → Meas.thick.u.lay

Description

Displays the measured interface thickness. (Thickness UP of the upper medium).

DC value

Navigation

Setup → Advanced setup → Interface → DC value

Description

Displays relative dielectric constant ε_r of the upper medium (DC1) before correction.

Calculated DC value

Navigation

Setup → Advanced setup → Interface → Calc. DC value

Description

Displays calculated (i.e. corrected) relative dielectric constant ε_r (DC1) of the upper medium.
Use calculated DC value

Navigation

Setup → Advanced setup → Interface → Use calc. DC

Description

Specify whether the calculated dielectric constant is to be used.

Selection

- Save and exit
- Cancel and exit

Additional information

Meaning of the options

- **Save and exit**

 The calculated constant is assumed to be the correct one.

- **Cancel and exit**

 The calculated dielectric constant is rejected; the previous dielectric constant remains active.

- On the local display, the **Calculated DC value** parameter (→ 157) is displayed together with this parameter.
"Automatic DC calculation" wizard

The **Automatic DC calculation** wizard is only available when operating via the local display. When operating via an operating tool, all parameters concerning the automatic DC calculation are located directly in the **Interface** submenu (→ 154)

In the **Automatic DC calculation** wizard two parameters are displayed simultaneously on the display module at any one time. The upper parameter can be edited, whereas the lower parameter is displayed for reference purposes only.

Navigation
Setup → Advanced setup → Interface → Autom. DC calc.

Manual thickness upper layer

Navigation
Setup → Advanced setup → Interface → Autom. DC calc. → Man.thick.up.lay

Description
→ 156

DC value

Navigation
Setup → Advanced setup → Interface → Autom. DC calc. → DC value

Description
→ 157

Use calculated DC value

Navigation
Setup → Advanced setup → Interface → Autom. DC calc. → Use calc. DC

Description
→ 158
"Linearization" submenu

45 Linearization: Conversion of the level and, if applicable, interface into a volume or a weight; the conversion depends on the vessel shape

1 Selection of linearization type and unit
2 Configuration of the linearization
A Linearization type (→ 163) = None
B Linearization type (→ 163) = Linear
C Linearization type (→ 163) = Table
D Linearization type (→ 163) = Pyramid bottom
E Linearization type (→ 163) = Conical bottom
F Linearization type (→ 163) = Angled bottom
G Linearization type (→ 163) = Horizontal cylinder
H Linearization type (→ 163) = Sphere
I For "Operating mode (→ 131)" = "Interface" or "Interface with capacitance": interface before linearization (measured in the level unit)
I' For "Operating mode (→ 131)" = "Interface" or "Interface with capacitance": interface after linearization (corresponds to volume or weight)
L Level before linearization (measured in level unit)
L' Level linearized (→ 166) (corresponds to volume or weight)
M Maximum value (→ 166)
d Diameter (→ 166)
h Intermediate height (→ 167)
Structure of the submenu on the local display

Navigation ➕ Setup → Advanced setup → Linearization

▶ Linearization

- Linearization type
- Unit after linearization
- Free text
- Maximum value
- Diameter
- Intermediate height
- Table mode

▶ Edit table

- Level
- Customer value

Activate table
Structure of the submenu in the operating tool (e.g. FieldCare)

Navigation

Setup → Advanced setup → Linearization

▶ Linearization

- Linearization type
- Unit after linearization
- Free text
- Level linearized
- Interface linearized
- Maximum value
- Diameter
- Intermediate height
- Table mode
- Table number
- Level
- Level
- Customer value
- Activate table
Description of the parameters

Navigation

Setup → Advanced setup → Linearization → Lineariz. type

Description

Select linearization type.

Selection

- None
- Linear
- Table
- Pyramid bottom
- Conical bottom
- Angled bottom
- Horizontal cylinder
- Sphere

Additional information

- 46 Linearization types
 A None
 B Table
 C Pyramid bottom
 D Conical bottom
 E Angled bottom
 F Sphere
 G Horizontal cylinder
Meaning of the options

- **None**
 The level is output in the level unit without being converted (linearized) beforehand.

- **Linear**
 The output value (volume/weight) is proportional to the level L. This applies, for example, to vertical cylindrical tanks and silos. The following parameters must also be specified:
 - **Unit after linearization** (∙ [164])
 - **Maximum value** (∙ [166]): maximum volume or weight

- **Table**
 The relationship between the measured level L and the output value (volume/weight) is defined by a linearization table consisting of up to 32 pairs of values "level - volume" or "level - weight" respectively. The following parameters must also be specified:
 - **Unit after linearization** (∙ [164])
 - **Table mode** (∙ [167])
 - **For every point in the table**: Level (∙ [169])
 - **For every point in the table**: Customer value (∙ [169])
 - **Activate table** (∙ [169])

- **Pyramid bottom**
 The output value corresponds to the volume or weight in a silo with a pyramid bottom. The following parameters must also be specified:
 - **Unit after linearization** (∙ [164])
 - **Maximum value** (∙ [166]): maximum volume or weight
 - **Intermediate height** (∙ [167]): the height of the pyramid

- **Conical bottom**
 The output value corresponds to the volume or weight in a tank with a conical bottom. The following parameters must also be specified:
 - **Unit after linearization** (∙ [164])
 - **Maximum value** (∙ [166]): maximum volume or weight
 - **Intermediate height** (∙ [167]): the height of the cone

- **Angled bottom**
 The output value corresponds to the volume or weight in a silo with an angled bottom. The following parameters must also be specified:
 - **Unit after linearization** (∙ [164])
 - **Maximum value** (∙ [166]): maximum volume or weight
 - **Intermediate height** (∙ [167]): height of the angled bottom

- **Horizontal cylinder**
 The output value corresponds to the volume or weight in a horizontal cylinder. The following parameters must also be specified:
 - **Unit after linearization** (∙ [164])
 - **Maximum value** (∙ [166]): maximum volume or weight
 - **Diameter** (∙ [166])

- **Sphere**
 The output value corresponds to the volume or weight in a spherical tank. The following parameters must also be specified:
 - **Unit after linearization** (∙ [164])
 - **Maximum value** (∙ [166]): maximum volume or weight
 - **Diameter** (∙ [166])
Description
Select the unit for the linearized value.

Selection
Selection/input (uint16)
- 1095 = [short Ton]
- 1094 = [lb]
- 1088 = [kg]
- 1092 = [Ton]
- 1048 = [US Gal.]
- 1049 = [Imp. Gal.]
- 1043 = [ft³]
- 1571 = [cm³]
- 1035 = [dm³]
- 1034 = [m³]
- 1038 = [l]
- 1041 = [hl]
- 1342 = [%]
- 1010 = [m]
- 1012 = [mm]
- 1018 = [ft]
- 1019 = [inch]
- 1351 = [l/s]
- 1352 = [l/min]
- 1353 = [l/h]
- 1347 = [m³/s]
- 1348 = [m³/min]
- 1349 = [m³/h]
- 1356 = [ft³/s]
- 1357 = [ft³/min]
- 1358 = [ft³/h]
- 1362 = [US Gal./s]
- 1363 = [US Gal./min]
- 1364 = [US Gal./h]
- 1367 = [Imp. Gal./s]
- 1359 = [Imp. Gal./min]
- 1355 = [l/d]

Additional information
The selected unit is only used for display purposes. The measured value is not converted on the basis of the selected unit.

Distance-to-distance linearization is also possible, i.e. a linearization from the level unit to another length unit. Select the Linearization mode for this purpose. To specify the new level unit, select the Free text option in the Unit after linearization parameter and enter the unit in the Free text parameter (→ 164).

Free text

Navigation
Setup → Advanced setup → Linearization → Free text

Prerequisite
Unit after linearization (→ 164) = Free text

Description
Enter unit symbol.
User entry
Up to 32 alphanumerical characters (letters, numbers, special characters)

Level linearized

Navigation
Setup → Advanced setup → Linearization → Level linearized

Description
Displays linearized level.

Additional information
- The unit is defined by the Unit after linearization parameter → 164.
- For interface measurements, this parameter always refers to the total level.

Interface linearized

Navigation
Setup → Advanced setup → Linearization → Interf. lineariz

Prerequisite
Operating mode (→ 131) = Interface or Interface with capacitance

Description
Displays the linearized interface height.

Additional information
The unit is defined in the Unit after linearization parameter → 164.

Maximum value

Navigation
Setup → Advanced setup → Linearization → Maximum value

Prerequisite
Linearization type (→ 163) has one of the following values:
- Linear
- Pyramid bottom
- Conical bottom
- Angled bottom
- Horizontal cylinder
- Sphere

User entry
-50 000.0 to 50 000.0 %

Diameter

Navigation
Setup → Advanced setup → Linearization → Diameter

Prerequisite
Linearization type (→ 163) has one of the following values:
- Horizontal cylinder
- Sphere
Intermediate height

User entry

0 to 9999.999 m

Additional information

The unit is defined in the Distance unit parameter (→ 132).

Navigation

Setup → Advanced setup → Linearization → Intermed. height

Prerequisite

Linearization type (→ 163) has one of the following values:
- Pyramid bottom
- Conical bottom
- Angled bottom

User entry

0 to 200 m

Additional information

The unit is defined in the Distance unit parameter (→ 132).

Table mode

Navigation

Setup → Advanced setup → Linearization → Table mode

Prerequisite

Linearization type (→ 163) = Table

Description

Select editing mode of the linearization table.

Selection

- Manual
- Semiautomatic *
- Clear table
- Sort table

* Visibility depends on order options or device settings
Additional information

Meaning of the options

- **Manual**
 The level and the associated linearized value are entered manually for each linearization point.

- **Semiautomatic**
 The level is measured by the device for each linearization point. The associated linearized value is entered manually.

- **Clear table**
 Deletes the existing linearization table.

- **Sort table**
 Rearranges the linearization points into an ascending order.

Conditions the linearization table must meet:

- The table may consist of up to 32 pairs of values "Level - Linearized Value".
- The table must be monotonic (monotonically increasing or decreasing).
- The first linearization point must refer to the minimum level.
- The last linearization point must refer to the maximum level.

Before entering a linearization table, the values for **Empty calibration** (→ ≪ 133) and **Full calibration** (→ ≪ 134) must be set correctly.

If values of the table need to be changed after the full or empty calibration have been changed, a correct evaluation is only ensured if the existing table is deleted and the complete table is entered again. To do so delete the existing table (**Table mode** (→ ≪ 167) = Clear table). Then enter a new table.

How to enter the table

- **Via FieldCare**
 The table points can be entered via the **Table number** (→ ≪ 168), **Level** (→ ≪ 169) and **Customer value** (→ ≪ 169) parameters. As an alternative, the graphic table editor may be used: Device Operation → Device Functions → Additional Functions → Linearization (Online/Offline)

- **Via local display**
 Select the **Edit table** submenu to call up the graphic table editor. The table is displayed and can be edited line by line.

The factory setting for the level unit is "%". If you want to enter the linearization table in physical units, you must select the appropriate unit in the **Level unit** parameter (→ ≪ 152) beforehand.

Table number

Navigation

Setup → Advanced setup → Linearization → Table number

Prerequisite

Linearization type (→ ≪ 163) = Table

Description

Select table point you are going to enter or change.

User entry

1 to 32
Level (Manual)

Navigation
- Setup → Advanced setup → Linearization → Level

Prerequisite
- Linearization type (→ 163) = Table
 - Table mode (→ 167) = Manual

Description
Enter level value of the table point (value before linearization).

User entry
Signed floating-point number

Level (Semiautomatic)

Navigation
- Setup → Advanced setup → Linearization → Level

Prerequisite
- Linearization type (→ 163) = Table
 - Table mode (→ 167) = Semiautomatic

Description
Displays measured level (value before linearization). This value is transmitted to the table.

Customer value

Navigation
- Setup → Advanced setup → Linearization → Customer value

Prerequisite
Linearization type (→ 163) = Table

Description
Enter linearized value for the table point.

User entry
Signed floating-point number

Activate table

Navigation
- Setup → Advanced setup → Linearization → Activate table

Prerequisite
Linearization type (→ 163) = Table

Description
Activate (enable) or deactivate (disable) the linearization table.

Selection
- Disable
- Enable
Additional information

Meaning of the options

- **Disable**
 The measured level is not linearized.
 If **Linearization type (→ 163) = Table** at the same time, the device issues error message F435.

- **Enable**
 The measured level is linearized according to the table.

Information

- When editing the table, the **Activate table** parameter is automatically reset to **Disable** and must be reset to **Enable** after the table has been entered.
"Safety settings" submenu

Navigation

Setup → Advanced setup → Safety sett.

Output echo lost

Navigation

Setup → Advanced setup → Safety sett. → Output echo lost

Description

Output signal in case of a lost echo.

Selection

- Last valid value
- Ramp at echo lost
- Value echo lost
- Alarm

Additional information

Meaning of the options
- Last valid value
 The last valid value is kept in the case of a lost echo.
- Ramp at echo lost
 In the case of a lost echo the output value is continously shifted towards 0% or 100%.
 The slope of the ramp is defined in the Ramp at echo lost parameter (→ 172).
- Value echo lost
 In the case of a lost echo the output assumes the value defined in the Value echo lost parameter (→ 171).
- Alarm
 In the case of a lost echo the device generates an alarm; see the Failure mode parameter

Value echo lost

Navigation

Setup → Advanced setup → Safety sett. → Value echo lost

Prerequisite

Output echo lost (→ 171) = Value echo lost

Description

Output value in case of a lost echo

User entry

0 to 200 000.0 %

Additional information

Use the unit which has been defined for the measured value output:
- without linearization: Level unit (→ 152)
- with linearization: Unit after linearization (→ 164)

12) Only visible if “Linearization type (→ 163)” = "None"
Ramp at echo lost

Navigation
Setup → Advanced setup → Safety sett. → Ramp echo lost

Prerequisite
Output echo lost (→ 171) = Ramp at echo lost

Description
Slope of the ramp in the case of a lost echo

User entry
Signed floating-point number

Additional information

- The unit for the slope of the ramp is "percentage of the measuring range per minute" (%/min).
- For a negative slope of the ramp: The measured value is continuously decreased until it reaches 0%.
- For a positive slope of the ramp: The measured value is continuously increased until it reaches 100%.

Blocking distance

Navigation
Setup → Advanced setup → Safety sett. → Blocking dist.

Description
Specify upper blocking distance UB.

User entry
0 to 200 m

Factory setting
- For coax probes: 0 mm (0 in)
- For rod and rope probes up to 8 m (26 ft): 200 mm (8 in)
- For rod and rope probes above 8 m (26 ft): 0.025 * Sondenlänge
For FMP51/FMP52/FMP54 with the **Interface measurement** application package \(^\text{13)}\) and for FMP55:
100 mm (3.9 in) for all antenna types

Additional information

Signals in the upper blocking distance are only evaluated if they have been outside the blocking distance when the device was switched on and move into the blocking distance due to a level change during operation. Signals which are already in the blocking distance when the device is switched on, are ignored.

This behavior is only valid if the following two conditions are met:
- Expert → Sensor → Echo tracking → Evaluation mode = **Short time history** or **Long time history**
- Expert → Sensor → Gas phase compensation → GPC mode = **On**, **Without correction** or **External correction**

If one of these conditions is not met, signals in the blocking distance will always be ignored.

A different behavior for signals in the blocking distance can be defined in the **Blocking distance evaluation mode** parameter.

If required, a different behavior for signals in the blocking distance can be defined by the Endress+Hauser service.

\(^{13)}\) Ordering feature 540 "Application Package", option EB "Interface measurement"
"WHG confirmation" wizard

The WHG confirmation wizard is only available for devices with WHG approval (Feature 590: "Additional Approval", option LC: "WHG overfill prevention") which are currently not in the WHG-locked state.

The WHG confirmation wizard is used to lock the device according to WHG. For details refer to the "Functional Safety Manual" of the respective device, which describes the locking procedure and the parameters of the sequence.

Navigation ☐ ☐ Setup → Advanced setup → WHG confirmation
"Deactivate WHG" wizard

The **Deactivate WHG** wizard (→ 175) is only visible if the device is WHG-locked. For details refer to the "Functional Safety Manual" of the respective device.

Navigation

Setup → Advanced setup → Deactivate WHG

Reset write protection

Navigation

Setup → Advanced setup → Deactivate WHG → Res. write prot.

Description

Enter unlocking code.

User entry

0 to 65535

Code incorrect

Navigation

Setup → Advanced setup → Deactivate WHG → Code incorrect

Description

Indicates that a wrong unlocking code has been entered. Select procedure.

Selection

- Reenter code
- Abort sequence
"Probe settings" submenu

The Probe settings submenu helps to ensure that the end of probe signal within the envelope curve is correctly assigned by the evaluation algorithm. The assignment is correct if the length of probe indicated by the device matches the actual length of the probe. The automatic probe length correction can only be performed if the probe is installed in the vessel and is completely uncovered (no medium). For partially filled vessels and if the probe length is known, select Confirm probe length (→ 177) = Manual input in order to enter the value manually.

If a mapping (interference echo suppression) has been recorded after shortening the probe, it is no longer possible to perform an automatic probe length correction. In this case there are two options:
- Delete the map using the Record map parameter (→ 143) before performing the automatic probe length correction. After the probe length correction, a new map can be recorded using the Record map parameter (→ 143).
- Alternative: Select Confirm probe length (→ 177) = Manual input and enter the probe length manually into the Present probe length parameter → 176.

An automatic probe length correction is only possible after the correct option has been selected in the Probe grounded parameter (→ 176).

Navigation ➤ Setup → Advanced setup → Probe settings

Probe grounded

Navigation ➤ Setup → Advanced setup → Probe settings → Probe grounded

Prerequisite Operating mode (→ 131) = Level

Description Specify whether the probe is grounded.

Selection ➤ No ➤ Yes

Present probe length

Navigation ➤ Setup → Advanced setup → Probe settings → Pres. length

Description ➤ In most cases:
Displays the length of the probe according to the currently measured end-of-probe signal.
- For Confirm probe length (→ 177) = Manual input:
Enter actual length of probe.

User entry 0 to 200 m
Confirm probe length

Navigation
Setup → Advanced setup → Probe settings → Confirm length

Description
Select, whether the value displayed in the Present probe length parameter matches the actual length of the probe. Based on this input, the device performs a probe length correction.

Selection
- Probe length OK
- Probe length too small
- Probe length too big
- Probe covered
- Manual input
- Probe length unknown

Additional information
Meaning of the options

- **Probe length OK**
 To be selected if the indicated length is correct. An adjustment is not required. The device quits the sequence.

- **Probe length too small**
 To be selected if the displayed length is smaller than the actual length of the probe. A different end of probe signal is allocated and the newly calculated length is displayed in the Present probe length parameter. This procedure has to be repeated until the displayed value matches the actual length of the probe.

- **Probe length too big**
 To be selected if the displayed length is bigger than the actual length of the probe. A different end of probe signal is allocated and the newly calculated length is indicated in the Present probe length parameter. This procedure has to be repeated until the displayed value matches the actual length of the probe.

- **Probe covered**
 To be selected if the probe is (partially or completely) covered. A probe length correction is impossible in this case. The device quits the sequence.

- **Manual input**
 To be selected if no automatic probe length correction is to be performed. Instead, the actual length of the probe must be entered manually into the Present probe length parameter.

- **Probe length unknown**
 To be selected if the actual length of the probe is unknown. A probe length correction is impossible in this case and the device quits the sequence.

14) When operated via FieldCare, the Manual input option needs not to be selected explicitly. In FieldCare the length of the probe can always be edited.
"Probe length correction" wizard

The **Probe length correction** wizard is only available when operating via the local display. When operating via an operating tool, all parameters concerning the probe length correction are located directly in the **Probe settings** submenu (→ 176).

Navigation

Setup → Advanced setup → Probe settings → Prob. length corr

Confirm probe length

Navigation

Setup → Advanced setup → Probe settings → Prob. length corr → Confirm length

Description

→ 177

Present probe length

Navigation

Setup → Advanced setup → Probe settings → Prob. length corr → Pres. length

Description

→ 176
"Switch output" submenu

The switch output submenu (→ 179) is only visible for devices with switch output. 15)

Navigation Setup → Advanced setup → Switch output

Switch output function

Navigation Setup → Advanced setup → Switch output → Switch output function

Description Select function for switch output.

Selection

- Off
- On
- Diagnostic behavior
- Limit
- Digital Output

Additional information Meaning of the options

- Off
 The output is always open (non-conductive).
- On
 The output is always closed (conductive).
- Diagnostic behavior
 The output is normally closed and is only opened if a diagnostic event is present. The Assign diagnostic behavior parameter (→ 180) determines for which type of event the output is opened.
- Limit
 The output is normally closed and is only opened if a measured variable exceeds or falls below a defined limit. The limit values are defined by the following parameters:
 - Assign limit (→ 180)
 - Switch-on value (→ 181)
 - Switch-off value (→ 182)
- Digital Output
 The switching state of the output tracks the output value of a DI function block. The function block is selected in the Assign status parameter (→ 179).

The Off and On options can be used to simulate the switch output.

Assign status

Navigation Setup → Advanced setup → Switch output → Assign status

Prerequisite Switch output function (→ 179) = Digital Output

Description Select device status for switch output.

15) Ordering feature 020 'Power supply; Output', option B, E or G
Selection

- Off
- Digital output AD 1
- Digital output AD 2
- Digital output 1
- Digital output 2
- Digital output 3
- Digital output 4

Additional information

The **Digital output AD 1** and **Digital output AD 2** options refer to the Advanced Diagnostic Blocks. A switch signal generated in these blocks can be transmitted via the switch output.

Assign limit

Navigation

Setup → Advanced setup → Switch output → Assign limit

Prerequisite

Switch output function (→ 179) = Limit

Selection

- Off
- Level linearized
- Distance
- Interface linearized *
- Interface distance *
- Thickness upper layer *
- Terminal voltage
- Electronic temperature
- Measured capacitance *
- Relative echo amplitude
- Relative interface amplitude *
- Absolute echo amplitude
- Absolute interface amplitude *

Assign diagnostic behavior

Navigation

Setup → Advanced setup → Switch output → Assign diag. beh

Prerequisite

Switch output function (→ 179) = Diagnostic behavior

Description

Select diagnostic behavior for switch output.

Selection

- Alarm
- Alarm or warning
- Warning

* Visibility depends on order options or device settings
Navigation

Setup → Advanced setup → Switch output → Switch-on value

Prerequisite

Switch output function (→ 179) = Limit

Description

Enter measured value for the switch-on point.

User entry

Signed floating-point number

Additional information

The switching behavior depends on the relative position of the **Switch-on value** and **Switch-off value** parameters:

Switch-on value > Switch-off value
- The output is closed if the measured value is larger than **Switch-on value**.
- The output is opened if the measured value is smaller than **Switch-off value**.

Switch-on value < Switch-off value
- The output is closed if the measured value is smaller than **Switch-on value**.
- The output is opened if the measured value is larger than **Switch-off value**.

A Switch-on value
B Switch-off value
C Output closed (conductive)
D Output opened (non-conductive)
Switch-on delay

Navigation

Setup → Advanced setup → Switch output → Switch-on delay

Prerequisite

- Switch output function (→ 179) = Limit
- Assign limit (→ 180) = Off

Description

Define delay for the switch-on of status output.

User entry

0.0 to 100.0 s

Switch-off value

Navigation

Setup → Advanced setup → Switch output → Switch-off value

Prerequisite

Switch output function (→ 179) = Limit

Description

Enter measured value for the switch-off point.

User entry

Signed floating-point number

Additional information

The switching behavior depends on the relative position of the Switch-on value and Switch-off value parameters; description: see the Switch-on value parameter (→ 181).
Switch-off delay

Navigation
Setup → Advanced setup → Switch output → Switch-off delay

Prerequisite
- Switch output function (→ 179) = Limit
- Assign limit (→ 180) = Off

Description
Define delay for the switch-off of status output.

User entry
0.0 to 100.0 s

Failure mode

Navigation
Setup → Advanced setup → Switch output → Failure mode

Prerequisite
Switch output function (→ 179) = Limit or Digital Output

Description
Define output behavior in alarm condition.

Selection
- Actual status
- Open
- Closed

Additional information

Switch status

Navigation
Setup → Advanced setup → Switch output → Switch status

Description
Shows the current switch output status.

Invert output signal

Navigation
Setup → Advanced setup → Switch output → Invert outp.sig.

Description
Invert the output signal.

Selection
- No
- Yes
Additional information

<table>
<thead>
<tr>
<th>Meaning of the options</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
<tr>
<td>The behavior of the switch output is as described above.</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>The states Open and Closed are inverted as compared to the description above.</td>
</tr>
</tbody>
</table>
"Display" submenu

Display submenu is only visible if a display module is connected to the device.

Navigation

Setup → Advanced setup → Display

Language

Navigation

Setup → Advanced setup → Display → Language

Description

Set display language.

Selection

- English
- Deutsch *
- Français *
- Español *
- Italiano *
- Nederlands *
- Portuguesa *
- Polski *
- русский язык (Russian) *
- Svenska *
- Türkçe *
- 中文 (Chinese) *
- 日本語 (Japanese) *
- 한국어 (Korean) *
- Bahasa Indonesia *
- tiếng Việt (Vietnamese) *
- čeština (Czech) *

Factory setting

The language selected in feature 500 of the product structure.

If no language has been selected: English

Additional information

Format display

Navigation

Setup → Advanced setup → Display → Format display

Description

Select how measured values are shown on the display.

Selection

- 1 value, max. size
- 1 bargraph + 1 value
- 2 values
- 1 value large + 2 values
- 4 values

* Visibility depends on order options or device settings
Additional information

48 "Format display" = "1 value, max. size"

49 "Format display" = "1 bargraph + 1 value"

50 "Format display" = "2 values"

51 "Format display" = "1 value large + 2 values"

52 "Format display" = "4 values"

- The **Value 1 to 4 display** → 187 parameters specify which measured values are shown on the display and in which order.
- If more measured values are specified than the current display mode permits, the values alternate on the device display. The display time until the next change is configured in the **Display interval** parameter (→ 188).
Value 1 to 4 display

Navigation

Setup → Advanced setup → Display → Value 1 display

Description

Select the measured value that is shown on the local display.

Selection

- Level linearized
- Distance
- Interface linearized *
- Interface distance *
- Thickness upper layer *
- Terminal voltage
- Electronic temperature
- Measured capacitance *
- Analog output 1
- Analog output 2
- Analog output 3
- Analog output 4
- Analog output adv. diagnostics 1
- Analog output adv. diagnostics 2

Factory setting

For level measurements
- Value 1 display: Level linearized
- Value 2 display: Distance
- Value 3 display: Current output 1
- Value 4 display: None

For interface measurements and one current output
- Value 1 display: Interface linearized
- Value 2 display: Level linearized
- Value 3 display: Thickness upper layer
- Value 4 display: Current output 1

For interface measurements and two current outputs
- Value 1 display: Interface linearized
- Value 2 display: Level linearized
- Value 3 display: Current output 1
- Value 4 display: Current output 2

Decimal places 1 to 4

Navigation

Setup → Advanced setup → Display → Decimal places 1

Description

Select the number of decimal places for the display value.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Additional information

The setting does not affect the measuring or computational accuracy of the device.

* Visibility depends on order options or device settings
Display interval

Navigation
Setup → Advanced setup → Display → Display interval

Description
Set time measured values are shown on display if display alternates between values.

User entry
1 to 10 s

Additional information
This parameter is only relevant if the number of selected measuring values exceeds the number of values the selected display format can display simultaneously.

Display damping

Navigation
Setup → Advanced setup → Display → Display damping

Description
Set display reaction time to fluctuations in the measured value.

User entry
0.0 to 999.9 s

Header

Navigation
Setup → Advanced setup → Display → Header

Description
Select header contents on local display.

Selection
- Device tag
- Free text

Additional information

1 Position of the header text on the display

Meaning of the options

- **Device tag**
 Is defined in the Device tag parameter.

- **Free text**
 Is defined in the Header text parameter (→ 189).
Header text

Navigation
Setup → Advanced setup → Display → Header text

Prerequisite
Header (→ 188) = Free text

Description
Enter display header text.

User entry
Character string comprising numbers, letters and special characters (12)

Additional information
The number of characters which can be displayed depends on the characters used.

Separator

Navigation
Setup → Advanced setup → Display → Separator

Description
Select decimal separator for displaying numerical values.

Selection
• .
• ,

Number format

Navigation
Setup → Advanced setup → Display → Number format

Description
Choose number format for the display.

Selection
• Decimal
• ft-in-1/16''

Additional information
The ft-in-1/16'' option is only valid for distance units.

Decimal places menu

Navigation
Setup → Advanced setup → Display → Dec. places menu

Description
Select number of decimal places for the representation of numbers within the operating menu.

Selection
• x
• x.x
• x.xx
• x.xxx
• x.xxxx
Operating menu

Levelflex FMP51, FMP52, FMP54 PROFIBUS PA

Additional information
- Is only valid for numbers in the operating menu (e.g. **Empty calibration**, **Full calibration**), but not for the measured value display. The number of decimal places for the measured value display is defined in the **Decimal places 1 to 4 → 187** parameters.
- The setting does not affect the accuracy of the measurement or the calculations.

Backlight

Navigation

Setup → Advanced setup → Display → Backlight

Prerequisite
The device has the SD03 local display (with optical keys).

Description
Switch the local display backlight on and off.

Selection

- **Disable**
- **Enable**

Additional information

Meaning of the options

- **Disable**
 - Switches the backlight off.
- **Enable**
 - Switches the backlight on.

Regardless of the setting in this parameter the backlight may be automatically switched off by the device if the supply voltage is too low.

Contrast display

Navigation

Setup → Advanced setup → Display → Contrast display

Description
Adjust local display contrast setting to ambient conditions (e.g. lighting or reading angle).

User entry

20 to 80 %

Factory setting
Dependent on the display.

Additional information

Setting the contrast via push-buttons:

- **Darker**: press the **E** buttons simultaneously.
- **Brighter**: press the **E** buttons simultaneously.
"Configuration backup display" submenu

This submenu is only visible if a display module is connected to the device.

The configuration of the device can be saved to the display module at a certain point of time (backup). The saved configuration can be restored to the device if required, e.g. in order to bring the device back into a defined state. The configuration can also be transferred to a different device of the same type using the display module.

Configurations can only be exchanged between devices which are in the same
operating mode (see the Operating mode parameter (→ 131)).

Navigation Setup → Advanced setup → Conf.backup disp

Operating time

Navigation Setup → Advanced setup → Conf.backup disp → Operating time
Description Indicates how long the device has been in operation.
Additional information
Maximum time
9999 d (≈ 27 years)

Last backup

Navigation Setup → Advanced setup → Conf.backup disp → Last backup
Description Indicates when the last data backup was saved to the display module.

Configuration management

Navigation Setup → Advanced setup → Conf.backup disp → Config. managem.
Description Select action for managing the device data in the display module.
Selection

• Cancel
• Execute backup
• Restore
• Duplicate
• Compare
• Clear backup data
Additional information

Meaning of the options

- **Cancel**
 No action is executed and the user exits the parameter.

- **Execute backup**
 A backup copy of the current device configuration in the HistoROM (built-in in the device) is saved to the display module of the device.

- **Restore**
 The last backup copy of the device configuration is copied from the display module to the HistoROM of the device.

- **Duplicate**
 The transmitter configuration is duplicated to another device using the transmitter display module. The following parameters, which characterize the individual measuring point are **not** included in the transmitted configuration:
 - Medium type

- **Compare**
 The device configuration saved in the display module is compared to the current device configuration of the HistoROM. The result of this comparison is displayed in the **Comparison result** parameter (→ 192).

- **Clear backup data**
 The backup copy of the device configuration is deleted from the display module of the device.

 - While this action is in progress, the configuration cannot be edited via the local display and a message on the processing status appears on the display.

 - If an existing backup is restored to a different device using the **Restore** option, it may occur that some device functionalities are no longer available. In some cases even a device reset will not restore the original status.

 In order to transmit a configuration to a different device, the **Duplicate** option should always be used.

<table>
<thead>
<tr>
<th>Backup state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparison result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>
Additional information

<table>
<thead>
<tr>
<th>Meaning of the display options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settings identical</td>
</tr>
<tr>
<td>The current device configuration of the HistoROM is identical to the backup copy in the display module.</td>
</tr>
<tr>
<td>Settings not identical</td>
</tr>
<tr>
<td>The current device configuration of the HistoROM is not identical to the backup copy in the display module.</td>
</tr>
<tr>
<td>No backup available</td>
</tr>
<tr>
<td>There is no backup copy of the device configuration of the HistoROM in the display module.</td>
</tr>
<tr>
<td>Backup settings corrupt</td>
</tr>
<tr>
<td>The current device configuration of the HistoROM is corrupt or not compatible with the backup copy in the display module.</td>
</tr>
<tr>
<td>Check not done</td>
</tr>
<tr>
<td>The device configuration of the HistoROM has not yet been compared to the backup copy in the display module.</td>
</tr>
<tr>
<td>Dataset incompatible</td>
</tr>
<tr>
<td>The data sets are incompatible and can not be compared.</td>
</tr>
</tbody>
</table>

To start the comparison, set Configuration management (→ 191) = Compare.

If the transmitter configuration has been duplicated from a different device by Configuration management (→ 191) = Duplicate, the new device configuration in the HistoROM is only partially identical to the configuration stored in the display module: Sensor specific properties (e.g. the mapping curve) are not duplicated. Thus, the result of the comparison will be Settings not identical.
"Administration" submenu

Navigation

Setup → Advanced setup → Administration

Description

Define release code for write access to parameters.

User entry

0 to 9999

Additional information

- If the factory setting is not changed or if '0' is entered, the parameters are not write-protected and the device configuration data can therefore always be modified. The user is logged on in the "Maintenance" role.

- The write protection affects all parameters marked with the symbol in the document. On the local display, the symbol in front of a parameter indicates that the parameter is write-protected.

- Once the access code has been defined, write-protected parameters can only be modified if the access code is entered in the Enter access code parameter (→ 148).

- Please contact your Endress+Hauser Sales Center if you lose the access code.

- If operating via the local display: the new access code is only valid once it has been confirmed in the Confirm access code parameter (→ 196).

Device reset

Navigation

Setup → Advanced setup → Administration → Device reset

Description

Reset the device configuration - either entirely or in part - to a defined state.

Selection

- Cancel
- To factory defaults
- To delivery settings
- Of customer settings
- To transducer defaults
- Restart device

Additional information

Meaning of the options

- **Cancel**
 No action

- **To factory defaults**
 All parameters are reset to the order-code specific factory setting.

- **To delivery settings**
 All parameters are reset to the delivery setting. The delivery setting may differ from the factory default if customer specific settings have been ordered. This option is only visible if customer specific settings have been ordered.
- **Of customer settings**
 All customer parameters are reset to their factory setting. Service parameters, however, remain unchanged.

- **To transducer defaults**
 Every measurement-related parameter is reset to its factory setting. Service parameters and communication-related parameters, however, remain unchanged.

- **Restart device**
 The restart resets every parameter which is stored in the volatile memory (RAM) to the factory setting (e.g. measured value data). The device configuration remains unchanged.
"Define access code" wizard

The **Define access code** wizard is only available when operating via the local display. When operating via an operating tool, the **Define access code** parameter is located directly in the **Administration** submenu. The **Confirm access code** parameter is not available for operation via operating tool.

Navigation

Setup → Advanced setup → Administration → Def. access code

Define access code

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Setup → Advanced setup → Administration → Def. access code → Def. access code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>194</td>
</tr>
</tbody>
</table>

Confirm access code

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Setup → Advanced setup → Administration → Def. access code → Confirm code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Confirm the entered access code.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 9999</td>
</tr>
</tbody>
</table>
16.4 "Diagnostics" menu

Navigation ➽ ➽ Diagnostics → Actual diagnos.

Description Displays current diagnostic message.

Additional information The display consists of:
- Symbol for event behavior
- Code for diagnostic behavior
- Operating time of occurrence
- Event text

If several messages are active at the same time, the messages with the highest priority is displayed.

Information on what is causing the message, and remedy measures, can be viewed via the symbol on the display.

Timestamp

Navigation ➽ Diagnostics → Timestamp

Previous diagnostics

Navigation ➽ ➽ Diagnostics → Prev.diagnostics

Description Displays the last diagnostic message which has been active before the current message.

Additional information The display consists of:
- Symbol for event behavior
- Code for diagnostic behavior
- Operating time of occurrence
- Event text

The condition displayed may still apply. Information on what is causing the message, and remedy measures, can be viewed via the symbol on the display.
Operating menu

Levelflex FMP51, FMP52, FMP54 PROFIBUS PA

Timestamp

Navigation

Diagnostics → Timestamp

Operating time from restart

Navigation

Diagnostics → Time fr. restart

Description

Displays the time the device has been in operation since the last device restart.

Operating time

Navigation

Diagnostics → Operating time

Description

Indicates how long the device has been in operation.

Additional information

Maximum time

9999 d (≈ 27 years)
16.4.1 "Diagnostic list" submenu

Navigation

Diagnoses → Diagnostic list

Diagnostics 1 to 5

Navigation

Diagnoses → Diagnostic list → Diagnostics 1

Description

Display the current diagnostics messages with the highest to fifth-highest priority.

Additional information

The display consists of:
- Symbol for event behavior
- Code for diagnostic behavior
- Operating time of occurrence
- Event text

Timestamp 1 to 5

Navigation

Diagnoses → Diagnostic list → Timestamp 1 to 5
"Event logbook" submenu

The Event logbook submenu is only available when operating via the local display. When operating via FieldCare, the event list can be displayed in the FieldCare function 'Event List / HistoROM'.

Navigation
Diagnostics → Event logbook

Filter options

Navigation
Diagnostics → Event logbook → Filter options

Selection

- All
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- Information (I)

Additional information

- This parameter is only used for operation via the local display.
- The status signals are categorized according to NAMUR NE 107.

"Event list" submenu

The Event list submenu displays the history of past events of the category selected in the Filter options parameter (→ 200). A maximum of 100 events are displayed in chronological order.

The following symbols indicate whether an event has occurred or has ended:

- : Event has occurred
- : Event has ended

Information on what is causing the message, and remedy instructions, can be viewed via the button.

Display format

- For event messages in category I: information event, event text, "recording event" symbol and time the event occurred
- For event messages in category F, M, C, S (status signal): diagnostics event, event text, "recording event" symbol and time the event occurred

Navigation
Diagnostics → Event logbook → Event list
16.4.3 "Device information" submenu

Navigation ➔ Diagnostics → Device info

Device tag

Navigation ➔ Diagnostics → Device info → Device tag

Description Enter the name for the measuring point.

User interface Character string comprising numbers, letters and special characters

Serial number

Navigation ➔ Diagnostics → Device info → Serial number

Description Shows the serial number of the measuring device.

Additional information

- **Uses of the serial number**
 - To identify the device quickly, e.g. when contacting Endress+Hauser.
 - To obtain specific information on the device using the Device Viewer: www.endress.com/deviceviewer
 - The serial number is also indicated on the nameplate.

Firmware version

Navigation ➔ Diagnostics → Device info → Firmware version

Description Shows the device firmware version installed.

User interface xx.yy.zz

Additional information
For firmware versions differing only in the last two digits ("zz") there is no difference concerning functionality or operation.

Device name

Navigation ➔ Diagnostics → Device info → Device name

Description Shows the name of the transmitter.
Order code

Navigation
- Diagnostics → Device info → Order code

Description
Shows the device order code.

User interface
Character string comprising numbers, letters and special characters

Additional information
The order code is generated from the extended order code, which defines all device features of the product structure. In contrast, the device features cannot be read directly from the order code.

Extended order code 1 to 3

Navigation
- Diagnostics → Device info → Ext. order cd. 1

Description
Display the three parts of the extended order code.

User interface
Character string comprising numbers, letters and special characters

Additional information
The extended order code indicates the version of all the features of the product structure and thus uniquely identifies the device.

Status PROFIBUS Master Config

Navigation
- Diagnostics → Device info → Stat Master Conf

Description
Indicates whether the cyclic data exchange with the master is currently active.

User interface
- Active
- Not active

PROFIBUS ident number

Navigation
- Diagnostics → Device info → Ident number

Description
Indicates the ident number of the device.

Additional information
The **Ident number selector** parameter can be used to define which ident number is used.
16.4.4 "Measured values" submenu

Navigation

่ม Diagnostics → Measured val.

Description

Displays the measured distance \(D_L \) between the reference point (lower edge of the flange or threaded connection) and the level.

Additional information

- The unit is defined in the **Distance unit** parameter (→ 132).

\[D_L \]

- 53 Distance for liquid measurements

- 54 Distance for interface measurements

![Diagram showing distance measurement](image.png)
Level linearized

Navigation
Diagnoses → Measured val. → Level linearized

Description
Displays linearized level.

Additional information
- The unit is defined by the Unit after linearization parameter → 164.
- For interface measurements, this parameter always refers to the total level.

Interface distance

Navigation
Diagnoses → Measured val. → Interface dist.

Prerequisite
Operating mode (→ 131) = Interface or Interface with capacitance

Description
Displays the measured distance D_I between the reference point (lower edge of flange or threaded connection) and the interface.

Additional information
- The unit is defined in the Distance unit parameter (→ 132).

Interface linearized

Navigation
Diagnoses → Measured val. → Interf. lineariz

Prerequisite
Operating mode (→ 131) = Interface or Interface with capacitance

Description
Displays the linearized interface height.

Additional information
- The unit is defined in the Unit after linearization parameter → 164.
Thickness upper layer

Navigation

Diagnostics → Measured val. → Thickn.upp.layer

Prerequisite

Operating mode (→ 131) = Interface or Interface with capacitance

Description

Displays the upper interface thickness (UP).

Additional information

The unit is defined by the Unit after linearization parameter → 164.

Terminal voltage 1

Navigation

Diagnostics → Measured val. → Terminal volt. 1

Switch status

Navigation

Diagnostics → Measured val. → Switch status

Description

Shows the current switch output status.
16.4.5 "Analog input 1 to 6" submenu

There is an Analog input submenu for each Analog Input Block of the device. Only the most important parameters of the respective block are available at this position of the operating menu. For a complete list of the block parameters refer to: Diagnostics → Analog inputs → Analog input 1 to 6

Navigation ➔ Diagnostics → Analog inputs → Analog input 1 to 6

<table>
<thead>
<tr>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation ➔ Diagnostics → Analog inputs → Analog input 1 to 6 → Channel</td>
</tr>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>
| **Selection** | Level linearized
Distance
Interface linearized *
Interface distance *
Thickness upper layer *
Terminal voltage
Electronic temperature
Measured capacitance *
Absolute echo amplitude
Relative echo amplitude
Absolute interface amplitude *
Relative interface amplitude *
Absolute EOP amplitude
Noise of signal
EOP shift
Calculated DC value *
Sensor debug
Analog output adv. diagnostics 1
Analog output adv. diagnostics 2 |
| **Additional information** | Allocates a measured value to the AI block. |

<table>
<thead>
<tr>
<th>Out value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation ➔ Diagnostics → Analog inputs → Analog input 1 to 6 → Out value</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User entry</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
Additional information

- For **Mode block actual = Man**:
 Enter the output value of the Analog Input Block.
- Else:
 Displays the output value of the Analog Input Block.

Out status

Navigation

Diagram → Analog inputs → Analog input 1 to 6 → Out status

Description

Element **Status** of the standard parameter **OUT** in the Analog Input Block according to the PROFIBUS Profile.

User interface

- Good
- Uncertain
- Bad

Additional information

Only the two quality bits are evaluated in this parameter.

Out status HEX

Navigation

Diagram → Analog inputs → Analog input 1 to 6 → Out status HEX

Description

Element **Status** of the standard parameter **OUT** in the Analog Input Block according to the PROFIBUS Profile.

User entry

0 to 255

Additional information

The complete status byte is displayed in the form of a two-digit hexadecimal number in this parameter.
16.4.6 "Data logging" submenu

Navigation
- Diagnostics → Data logging

Selection
- Off
- Level linearized
- Distance
- Unfiltered distance
- Interface linearized
- Interface distance
- Unfiltered interface distance
- Thickness upper layer
- Terminal voltage
- Electronic temperature
- Measured capacitance
- Absolute echo amplitude
- Relative echo amplitude
- Absolute interface amplitude
- Relative interface amplitude
- Absolute EOP amplitude
- EOP shift
- Noise of signal
- Calculated DC value
- Analog output adv. diagnostics 1
- Analog output adv. diagnostics 2

Additional information
A total of 1000 measured values can be logged. This means:
- 1000 data points if 1 logging channel is used
- 500 data points if 2 logging channels are used
- 333 data points if 3 logging channels are used
- 250 data points if 4 logging channels are used

If the maximum number of data points is reached, the oldest data points in the data log are cyclically overwritten in such a way that the last 1000, 500, 333 or 250 measured values are always in the log (ring memory principle).

The logged data are deleted if a new option is selected in this parameter.

Logging interval

Navigation
- Diagnostics → Data logging → Logging interval
- Diagnostics → Data logging → Logging interval

User entry
1.0 to 3600.0 s

* Visibility depends on order options or device settings
Additional information

This parameter defines the interval between the individual data points in the data log, and thus the maximum loggable process time T_{log}:

- If 1 logging channel is used: $T_{\text{log}} = 1000 \cdot t_{\text{log}}$
- If 2 logging channels are used: $T_{\text{log}} = 500 \cdot t_{\text{log}}$
- If 3 logging channels are used: $T_{\text{log}} = 333 \cdot t_{\text{log}}$
- If 4 logging channels are used: $T_{\text{log}} = 250 \cdot t_{\text{log}}$

Once this time elapses, the oldest data points in the data log are cyclically overwritten such that a time of T_{log} always remains in the memory (ring memory principle).

The logged data are deleted if this parameter is changed.

Example

When using 1 logging channel

- $T_{\text{log}} = 1000 \cdot 1 \text{ s} = 1000 \text{ s} \approx 16.5 \text{ min}$
- $T_{\text{log}} = 1000 \cdot 10 \text{ s} = 10000 \text{ s} \approx 2.75 \text{ h}$
- $T_{\text{log}} = 1000 \cdot 80 \text{ s} = 80000 \text{ s} \approx 22 \text{ h}$
- $T_{\text{log}} = 1000 \cdot 3600 \text{ s} = 3600000 \text{ s} \approx 41 \text{ d}$

Clear logging data

Navigation

- Diagnostics → Data logging → Clear logging
- Diagnostics → Data logging → Clear logging

Selection

- Cancel
- Clear data
"Display channel 1 to 4" submenu

The **Display channel 1 to 4** submenus are only available for operation via the local display. When operating via FieldCare, the logging diagram can be displayed in the FieldCare function 'Event List / HistoROM'.

The **Display channel 1 to 4** submenus invoke a diagram of the logging history of the respective channel.

- **x-axis**: depending on the number of selected channels, 250 to 1000 measured values of a process variable are displayed.
- **y-axis**: covers the approximate measured value span and constantly adapts this to the measurement.

To return to the operating menu, press 和 simultaneously.

Navigation
.Diagnostics → Data logging → Displ.channel 1 to 4
16.4.7 "Simulation" submenu

The Simulation submenu is used to simulate specific measuring values or other conditions. This helps to check the correct configuration of the device and connected control units.

Conditions which can be simulated

<table>
<thead>
<tr>
<th>Condition to be simulated</th>
<th>Associated parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific value of a process variable</td>
<td>• Assign measurement variable (→ 213)</td>
</tr>
<tr>
<td></td>
<td>• Value process variable (→ 213)</td>
</tr>
<tr>
<td>Specific state of the switch output</td>
<td>• Switch output simulation (→ 213)</td>
</tr>
<tr>
<td></td>
<td>• Switch status (→ 214)</td>
</tr>
<tr>
<td>Existence of an alarm</td>
<td>Simulation device alarm (→ 214)</td>
</tr>
<tr>
<td>Existence of a specific diagnostic message</td>
<td>Simulation diagnostic event (→ 214)</td>
</tr>
</tbody>
</table>
Structure of the submenu

Navigation
Expert → Diagnostics → Simulation

<table>
<thead>
<tr>
<th>Simulation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign measurement variable</td>
<td>➔ 213</td>
</tr>
<tr>
<td>Value process variable</td>
<td>➔ 213</td>
</tr>
<tr>
<td>Switch output simulation</td>
<td>➔ 213</td>
</tr>
<tr>
<td>Switch status</td>
<td>➔ 214</td>
</tr>
<tr>
<td>Simulation device alarm</td>
<td>➔ 214</td>
</tr>
<tr>
<td>Simulation diagnostic event</td>
<td>➔ 214</td>
</tr>
</tbody>
</table>
Description of parameters

Navigation

Assign measurement variable

Navigation

Selection
- Off
- Level
- Interface *
- Level linearized
- Interface linearized
- Thickness linearized

Additional information
- The value of the variable to be simulated is defined in the Value process variable parameter (→ 213).
- If Assign measurement variable = Off, a simulation is active. This is indicated by a diagnostic message of the Function check (C) category.

Value process variable

Navigation

Prerequisite
Assign measurement variable (→ 213) ≠ Off

User entry
Signed floating-point number

Additional information
Downstream measured value processing and the signal output use this simulation value. In this way, users can verify whether the measuring device has been configured correctly.

Switch output simulation

Navigation

Description
Switch the simulation of the switch output on and off.

Selection
- Off
- On

* Visibility depends on order options or device settings
Switch status

Navigation

(android) Expert → Diagnostics → Simulation → Switch status

Prerequisite

Switch output simulation (→ 213) = On

Description

Select the status of the status output for the simulation.

Selection

- Open
- Closed

Additional information

The switch status assumes the value defined in this parameter. This helps to check correct operation of connected control units.

Simulation device alarm

Navigation

(android) Expert → Diagnostics → Simulation → Sim. alarm

Description

Switch the device alarm on and off.

Selection

- Off
- On

Additional information

When selecting the On option, the device generates an alarm. This helps to check the correct output behavior of the device in the case of an alarm. An active simulation is indicated by the C484 Simulation failure mode diagnostic message.

Simulation diagnostic event

Navigation

(android) Expert → Diagnostics → Simulation → Sim. diag. event

Description

Select a diagnostic event for the simulation process that is activated.

Additional information

When operated via the local display, the selection list can be filtered according to the event categories (Diagnostic event category parameter).
16.4.8 "Device check" submenu

Navigation Diagnostics → Device check

Start device check

Navigation Diagnostics → Device check → Start dev. check
Description Start a device check.
Selection
- No
- Yes
Additional information In the case of a lost echo a device check can not be performed.

Result device check

Navigation Diagnostics → Device check → Result dev.check
Description Displays the result of the device check.
Additional information Meaning of the display options
- Installation ok
 Measurement possible without restrictions.
- Accuracy reduced
 A measurement is possible. However, the measuring accuracy may be reduced due to the signal amplitudes.
- Measurement capability reduced
 A measurement is currently possible. However, there is the risk of an echo loss. Check the mounting position of the device and the dielectric constant of the medium.
- Check not done
 No device check has been performed.

Last check time

Navigation Diagnostics → Device check → Last check time
Description Displays the operating time at which the last device check has been performed.
User interface Character string comprising numbers, letters and special characters
Level signal

Navigation

Diagnostics → Device check → Level signal

Prerequisite

Device check has been performed.

Description

Displays result of the device check for the level signal.

User interface

• Check not done
• Check not OK
• Check OK

Additional information

For **Level signal = Check not OK**: Check the mounting position of the device and the dielectric constant of the medium.

Launch signal

Navigation

Diagnostics → Device check → Launch signal

Prerequisite

Device check has been performed.

Description

Displays result of the display check for the launch signal.

User interface

• Check not done
• Check not OK
• Check OK

Additional information

For **Launch signal = Check not OK**: Check the mounting position of the device. In non-metallic vessels use a metal plate or a metal flange.

Interface signal

Navigation

Diagnostics → Device check → Interface signal

Prerequisite

• Operating mode (→ 131) = Interface or Interface with capacitance
• Device check has been performed.

Description

Displays result of the device check for the interface signal.

User interface

• Check not done
• Check not OK
• Check OK
16.4.9 "Heartbeat" submenu

The Heartbeat submenu is only available via FieldCare or DeviceCare. It contains the wizards which are part of the Heartbeat Verification and Heartbeat Monitoring application packages.

Detailed description
SD01872F

Navigation ➔ Diagnostics → Heartbeat
Index

A
Access authorization to parameters
 Read access .. 64
 Write access 64
Access code .. 64
 Incorrect input 64
Access status display (Parameter) 148
Access status tooling (Parameter) 147
Accessories
 Communication-specific 116
 Device-specific 105
 Service-specific 116
 System components 116
Activate table (Parameter) 169
Actual diagnostics (Parameter) 197
Administration (Submenu) 194
Advanced process conditions (Parameter) 151
Advanced setup (Submenu) 147
Analog input 1 to 6 (Submenu) 145, 206
Application .. 9
Assign channel 1 to 4 (Parameter) 208
Assign diagnostic behavior (Parameter) 180
Assign limit (Parameter) 180
Assign measurement variable (Parameter) 213
Assign status (Parameter) 179
Automatic DC calculation (Wizard) 159

B
Backlight (Parameter) 190
Backup state (Parameter) 192
Blocking distance (Parameter) 152, 155, 172
Bypass ... 30

C
Calculated DC value (Parameter) 157
Channel (Parameter) 145, 206
Cleaning .. 102
Clear logging data (Parameter) 209
Coax probe
 Design .. 12
 Lateral loading capacity 22
 Shortening .. 44
Code incorrect (Parameter) 175
Comparison result (Parameter) 192
Configuration backup display (Submenu) 191
Configuration management (Parameter) 191
Configuration of a level measurement 81
Configuration of an interface measurement 83
Configuring interface measurement 83
Configuring level measurement 81
Confirm access code (Parameter) 196
Confirm distance (Parameter) 141, 144
Confirm probe length (Parameter) 177, 178
Context menu .. 74
Contrast display (Parameter) 190

Customer value (Parameter) 169

D
Data logging (Submenu) 208
DC value (Parameter) 139, 157, 159
DC value lower medium (Parameter) 154
Deactivate WHG (Wizard) 175
Decimal places 1 (Parameter) 187
Decimal places menu (Parameter) 189
Define access code (Parameter) 194, 196
Define access code (Wizard) 196
Define the access code 64
Device address (Parameter) 131
Device check (Submenu) 215
Device information (Submenu) 201
Device name (Parameter) 201
Device replacement 103
Device reset (Parameter) 194
Device tag (Parameter) 131, 201
Diagnostic event 93
 In the operating tool 95
Diagnostic events 92
Diagnostic list 96
Diagnostic list (Submenu) 199
Diagnostic message 92
Diagnostics
 Symbols ... 92
Diagnostics (Menu) 197
Diagnostics 1 (Parameter) 199
Diameter (Parameter) 166
DIP switch
 see Write protection switch
Display (Submenu) 185
Display and operating module FHX50 61
Display channel 1 to 4 (Submenu) 210
Display damping (Parameter) 188
Display interval (Parameter) 188
Display module 69
Display symbols 70
Disposal .. 104
Distance (Parameter) 136, 144, 203
Distance to upper connection (Parameter) 139
Distance unit (Parameter) 132
Document
 Purpose .. 5

E
Electronics housing
 Design .. 13
Empty calibration (Parameter) 133
Enter access code (Parameter) 148
Envelope curve display 76
Event history 98
Event level
 Explanation .. 92
 Symbols ... 92
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event list (Submenu)</td>
<td>200</td>
</tr>
<tr>
<td>Event logbook (Submenu)</td>
<td>200</td>
</tr>
<tr>
<td>Event text</td>
<td>93</td>
</tr>
<tr>
<td>Events list</td>
<td>98</td>
</tr>
<tr>
<td>Extended order code 1 (Parameter)</td>
<td>202</td>
</tr>
<tr>
<td>Exterior cleaning</td>
<td>102</td>
</tr>
<tr>
<td>Field of application</td>
<td>9</td>
</tr>
<tr>
<td>Fail safe type (Parameter)</td>
<td>146</td>
</tr>
<tr>
<td>Fail safe value (Parameter)</td>
<td>146</td>
</tr>
<tr>
<td>Failure mode (Parameter)</td>
<td>183</td>
</tr>
<tr>
<td>FH50</td>
<td>61</td>
</tr>
<tr>
<td>Filtering the event logbook</td>
<td>99</td>
</tr>
<tr>
<td>Firmware version (Parameter)</td>
<td>201</td>
</tr>
<tr>
<td>Flange</td>
<td>47</td>
</tr>
<tr>
<td>Format display (Parameter)</td>
<td>185</td>
</tr>
<tr>
<td>Free text (Parameter)</td>
<td>165</td>
</tr>
<tr>
<td>Full calibration (Parameter)</td>
<td>134</td>
</tr>
<tr>
<td>Functional Safety Manual (FY)</td>
<td>7</td>
</tr>
<tr>
<td>Gas phase compensation</td>
<td>46</td>
</tr>
<tr>
<td>Housing</td>
<td>13</td>
</tr>
<tr>
<td>Input mask</td>
<td>73</td>
</tr>
<tr>
<td>Intended use</td>
<td>9</td>
</tr>
<tr>
<td>Interface (Parameter)</td>
<td>140</td>
</tr>
<tr>
<td>Interface (Submenu)</td>
<td>154</td>
</tr>
<tr>
<td>Interface distance (Parameter)</td>
<td>141, 204</td>
</tr>
<tr>
<td>Interface linearized (Parameter)</td>
<td>166, 204</td>
</tr>
<tr>
<td>Interface signal (Parameter)</td>
<td>216</td>
</tr>
<tr>
<td>Intermediate height (Parameter)</td>
<td>167</td>
</tr>
<tr>
<td>Invert output signal (Parameter)</td>
<td>183</td>
</tr>
<tr>
<td>Keypad lock</td>
<td>68</td>
</tr>
<tr>
<td>Language (Parameter)</td>
<td>185</td>
</tr>
<tr>
<td>Last backup (Parameter)</td>
<td>191</td>
</tr>
<tr>
<td>Last check time (Parameter)</td>
<td>215</td>
</tr>
<tr>
<td>Launch signal (Parameter)</td>
<td>216</td>
</tr>
<tr>
<td>Level (Parameter)</td>
<td>135, 169</td>
</tr>
<tr>
<td>Level (Submenu)</td>
<td>149</td>
</tr>
<tr>
<td>Level correction (Parameter)</td>
<td>153, 156</td>
</tr>
<tr>
<td>Level linearized (Parameter)</td>
<td>166, 204</td>
</tr>
<tr>
<td>Level signal (Parameter)</td>
<td>216</td>
</tr>
<tr>
<td>Level unit (Parameter)</td>
<td>152, 155</td>
</tr>
<tr>
<td>Linearization (Submenu)</td>
<td>161, 162, 163</td>
</tr>
<tr>
<td>Linearization type (Parameter)</td>
<td>163</td>
</tr>
<tr>
<td>Local display</td>
<td>60</td>
</tr>
<tr>
<td>Maintenance</td>
<td>102</td>
</tr>
<tr>
<td>Mapping (Wizard)</td>
<td>144</td>
</tr>
<tr>
<td>Mapping end point (Parameter)</td>
<td>143, 144</td>
</tr>
<tr>
<td>Maximum value (Parameter)</td>
<td>166</td>
</tr>
<tr>
<td>Measured thickness upper layer (Parameter)</td>
<td>157</td>
</tr>
<tr>
<td>Measured value symbols</td>
<td>71</td>
</tr>
<tr>
<td>Measured values (Submenu)</td>
<td>203</td>
</tr>
<tr>
<td>Measured values (Parameter)</td>
<td>149</td>
</tr>
<tr>
<td>Media</td>
<td>9</td>
</tr>
<tr>
<td>Medium group (Parameter)</td>
<td>133</td>
</tr>
<tr>
<td>Medium property (Parameter)</td>
<td>149</td>
</tr>
<tr>
<td>Medium type (Parameter)</td>
<td>149</td>
</tr>
<tr>
<td>Menu</td>
<td>197</td>
</tr>
<tr>
<td>Operating elements</td>
<td>93</td>
</tr>
<tr>
<td>Diagnostic message</td>
<td>93</td>
</tr>
<tr>
<td>Operating mode (Parameter)</td>
<td>131</td>
</tr>
<tr>
<td>Operating module</td>
<td>69</td>
</tr>
<tr>
<td>Operating time (Parameter)</td>
<td>191, 198</td>
</tr>
<tr>
<td>Operational safety</td>
<td>10</td>
</tr>
<tr>
<td>Order code (Parameter)</td>
<td>202</td>
</tr>
<tr>
<td>Out status (Parameter)</td>
<td>207</td>
</tr>
<tr>
<td>Out status HEX (Parameter)</td>
<td>207</td>
</tr>
<tr>
<td>Out value (Parameter)</td>
<td>206</td>
</tr>
<tr>
<td>Output echo lost (Parameter)</td>
<td>171</td>
</tr>
<tr>
<td>Overvoltage protection</td>
<td>56</td>
</tr>
<tr>
<td>General information</td>
<td></td>
</tr>
<tr>
<td>Non-metal vessels</td>
<td>36</td>
</tr>
<tr>
<td>Number format (Parameter)</td>
<td>189</td>
</tr>
<tr>
<td>Present mapping (Parameter)</td>
<td>142</td>
</tr>
<tr>
<td>Present probe length (Parameter)</td>
<td>176, 178</td>
</tr>
<tr>
<td>Previous diagnostics (Parameter)</td>
<td>197</td>
</tr>
<tr>
<td>Probe grounded (Parameter)</td>
<td>176</td>
</tr>
<tr>
<td>Probe length correction (Wizard)</td>
<td>178</td>
</tr>
<tr>
<td>Probe settings (Submenu)</td>
<td>176</td>
</tr>
</tbody>
</table>
U
Underground tanks 34
Unit after linearization (Parameter) 164
Use calculated DC value (Parameter) 158, 159
Use of the measuring device
 see Intended use
Use of the measuring devices
 Borderline cases 9
 Incorrect use 9

V
Value 1 display (Parameter) 187
Value echo lost (Parameter) 171
Value process variable (Parameter) 213

W
WHG confirmation (Wizard) 174
Wizard
 Automatic DC calculation 159
 Deactivate WHG 175
 Define access code 196
 Mapping 144
 Probe length correction 178
 WHG confirmation 174
Workplace safety 10
Write access 64
Write protection
 Via access code 64
 Via write protection switch 65
Write protection switch 65