Technical Information
Silopilot FMM50
Electromechanical level system

The simple and easy-to-understand level meter for all bulk solids and fluids

Application
- Measuring principle independent of physical properties like mass density
- Measuring of level in bunkers and silos with powdered, fine or coarse grain bulk solids or in vessels containing liquids
- Level measurements up to 90 m
- Process temperature of up to +230 °C (+446 °F)
- Process pressure up to 3 bar (43.5 psi) absolute
- Use in aggressive atmospheres, for example acidic or caustic vapours possible
- Separation layer detection in fluids possible with suitable sensing weights

Your benefits
- Suitable for process conditions where typical ultrasonic or radar level meter fail to work dependably
- Precise detection of the level (accuracy of ±5 cm or ±1 pulse)
- Compact transmitter with 0/4 - 20 mA current output as well as further free programmable signal outputs (for example counter pulse)
- Quick menu-guided local operation using a 4-line text display
- Fully electronic digital minimum fail-safe control, therefore no running down of the sensor weight into the silo outlet and no risk to the conveying systems
Table of contents

About this document
- Symbols ... 3

Function and system design
- Measuring principle 3
- Measuring system 4
- Safety .. 5

Input
- Measured variable 5
- Measuring range 6
- Block distance 6
- Input signal ... 6
- Operating frequency 6

Output
- Output signal 7
- Signal on alarm 8
- Load (Current output) 8

Power supply
- Supply voltage 10
- Power consumption 10
- Power supply failure 10
- Potential equalization 10
- Terminals .. 10
- Cable entries 11
- Cable specification 11

Performance characteristics
- Measured value resolution 11
- Maximum measured error 11
- Influence ambient temperature 11

Mounting
- Mounting location 12
- Installation instructions 13
- Selection sensing weights 13
- Special installation 14

Environment
- Ambient temperature 15
- Storage temperature 15
- Degree of protection 15
- Electromagnetic compatibility 15

Process
- Process temperature 15
- Process pressure 16
- Heating .. 16
- Vibration ... 16

Mechanical construction
- Dimensions 16
- Weight .. 18
- Materials ... 18
- Process connection 18

Operability
- Operation concept 19
- On-site operation 19
- Languages .. 20

Certificates and approvals
- CE mark .. 20
- Ex approval 20
- RoHS ... 20

Ordering information
- TAG ... 21
- Scope of delivery 21
- User-specific settings 21

Accessories
- Device specific accessories 21
- Device-specific tool 28

Supplementary documentation
- Device-dependent supplementary documentation 29
Symbols

Safety symbols

⚠️ DANGER
This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

⚠️ WARNING
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

⚠️ CAUTION
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

⚠️ NOTICE
This symbol contains information on procedures and other facts which do not result in personal injury.

Electrical symbols

Ground connection
Grounded clamp, which is grounded via a grounding system.

Symbols for certain types of information

✔️ Permitted
Procedures, processes or actions that are permitted.

❌ Forbidden
Procedures, processes or actions that are forbidden.

ℹ️ Tip
Indicates additional information

ℹ️ Reference to documentation
Reference to another section

倞 Reference to graphic
Series of steps

Symbols in graphics

A, B, C ... View
1, 2, 3 ... Item numbers

Function and system design

Measuring principle

The FMM50 works according to a simple measuring principle:

1. When a measurement starts (manually or automatically), a sensing weight is lowered by a motor and spring action causes the wiper to be moved slightly out of its end position. As the weight is lowered, the measuring tape passes over a counting wheel which sends a pulse to the electronics every 5 cm.

2. When it hits the medium, the freely oscillating motor tilts from its working position, in which it is held by the weight of the sensing weight, to its rest position. This is detected by the electronics and the motor is switched off.

3. The sensing weight is pulled up again and counter pulses are detected once more.

4. As soon as the sensing weight reaches the measuring device, it causes the wiper to move to its top position which is detected by the electronics.
The motor is switched off, the measuring cycle is ended and the measured value, which depends on the configuration, is output:
- Display value on the LC display
- Current value at the 4-20 mA current output
- Relay switching (e.g. for the 'top position' or 'measuring' function)

![Diagram showing measuring principle of the FMM50](image)

1 Measuring principle of the FMM50

A Sensing weight in the top position
B Sensing weight when lowered (run-down) or raised (run-up)
C Sensing weight on reaching the surface of the medium

During the entire measuring process (lowering and hoisting of the sensing weight) the device can also transmit pulses (relay output) corresponding to the length of the measuring tape, which can be recorded by a control unit or by an electromechanical counter.

Both individual measurements and periodic measurement sequences can be performed. The measurement can then be initiated manually (for example external start button) or periodically (for example programmed function of the device).

The unit is delivered with default values for the maximum measuring range according to the unit configuration (see ordering information). The menu-guided programming using the 4-line text display assures easy and fast adjustment to the bunker or silo geometry.

Measuring system
The measuring device is a compact transmitter with integrated microprocessor-controlled electronics, various in- and outputs are provided. The device can be adapted to different applications by choosing one of the suitable sensing weights.
- Type of housing and materials:
 - Compact, Aluminium, optional coated
- Sensing weights and materials:
 - Steel, optional with umbrella made of Polyester
 - Stainless steel 316TI, optional with umbrella made of Polyester
 - Oval float made of plastic (PVC) or stainless steel
 - Variants for separation layer detection as accessories
- Configuration: Operation via 4-line local display with plain and help texts

Safety

The device is equipped with security mechanisms to protect it against any inadvertent changes to the device settings.

Security measures in line with operators’ security standards and designed to provide additional protection for the device and device data transfer must be implemented by the operators themselves.

Input

Measured variable

<table>
<thead>
<tr>
<th>Measured variable</th>
<th>Parameters of the basic setup</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (001)</td>
<td>Empty calibration</td>
</tr>
<tr>
<td>B (002)</td>
<td>Block distance</td>
</tr>
<tr>
<td>C (003)</td>
<td>Full calibration</td>
</tr>
<tr>
<td>D (004)</td>
<td>Distance</td>
</tr>
<tr>
<td>E (005)</td>
<td>Ullage</td>
</tr>
<tr>
<td>F (006)</td>
<td>Level/volume</td>
</tr>
<tr>
<td>G (007)</td>
<td>Security distance</td>
</tr>
<tr>
<td>H (008)</td>
<td>Safety distance</td>
</tr>
</tbody>
</table>
Measured process value (D)
The measured value is the distance between the flange of the Silopilot minus a blocking distance (B) and the surface of the product.

Calculated process values
- The filling level (F) is computed taking into account the fixed given calibration values, for example the height of the silo (A).
- Furthermore, the residual volume (E) can be calculated as the difference between the level and the selected full calibration (C).
- The filling level can be converted to other values as desired, for example volume or mass, by the application of linearization.

Safety variables
The following calculated safety variables can be used as a warning if the measured value moves into these ranges.
- Security distance (G)
 Configurable range below the maximum measuring range (full calibration)
- Safety distance (H)
 Configurable range above the minimum measuring range (empty calibration)

Measuring range
Max. 90 m
The highest measurable point is given by the blocking distance plus a minimum descent length of 20 cm, this maximum length must be considered on input of the maximum measuring range (full calibration).

Block distance
The block distance (B) depends on the wiper length and the selected sensing weight.

<table>
<thead>
<tr>
<th>Sensing weight</th>
<th>230 mm</th>
<th>500 mm</th>
<th>1000 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>B, C, D, E, L</td>
<td>0.80 m (31.50 in)</td>
<td>1.10 m (43.31 in)</td>
<td>1.60 m (63.00 in)</td>
</tr>
<tr>
<td>G</td>
<td>1.20 m (47.24 in)</td>
<td>1.50 m (59.06 in)</td>
<td>2.00 m (78.74 in)</td>
</tr>
<tr>
<td>J</td>
<td>0.86 m (33.86 in)</td>
<td>1.16 m (45.67 in)</td>
<td>1.66 m (65.35 in)</td>
</tr>
<tr>
<td>M, N</td>
<td>0.63 m (24.80 in)</td>
<td>0.95 m (37.40 in)</td>
<td>1.45 m (57.09 in)</td>
</tr>
</tbody>
</table>

The individual value for the blocking distance is preset on delivery and only needs to be adjusted when changing the sensing weight for example, the relevant input option can be found in the menu.

Input signal
Remote operation possible via two inputs, each input can be assigned as either active or passive and is therefore usable.

The device is available with an optional external start button, which is connected to the passive signal input 1. → 19

Inputs, active
- Connection of an external voltage
- Input voltage range: 12 to 24 V DC
- Input polarity: Normally open or normally closed
- Start pulse length: min. 200 ms

Inputs, passive
- Connection of an external command device, for example switch/button, relay contact
- Contact load: max. 0.3 W / 30 V DC
- Input polarity: Normally open or normally closed
- Start pulse length: min. 200 ms

Operating frequency
Measurement cycle
Min. 1 minute
When operating the measuring device, the minimum time for one measuring cycle depending on the ambient temperature and the measuring range must be observed, this time must be taken into account in all measuring modes. → 11

Even with smaller measuring ranges, it is recommended not to go below a minimum time of 5 minutes for one measuring cycle.

Tape running speed
0.21 to 0.35 m/s

Output

<table>
<thead>
<tr>
<th>Output signal</th>
<th>Current output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0/4 to 20 mA (active, 0 to 20 mA / 4 to 20 mA programmable)</td>
</tr>
<tr>
<td></td>
<td>Max. 22 mA</td>
</tr>
</tbody>
</table>

Relay outputs

- Quantity: 2 (optional 6)
- Contact load: max. 250 V AC / 6 A

Programmable relay output functions

Measurement cycle (a)

1. A measurement starts (time-controlled or event-controlled)
2. The sensing weight is lowered
3. The surface of the medium is detected (measured value generation)
4. The sensing weight is raised
5. The measurement ends
Programmable relay output functions

- **Counter pulse (b)**
 Output pulses that correspond to the length of unwound tape
- **Reset pulse (c)**
 Pulse before every new measurement
- **Band return (d)**
 Displays the lower reversal in direction of the tape (from tape run-down to tape run-up)
- **Running up (e)**
 Displayed when the tape runs back up
- **Top position (f)**
 Indicated when the upper end position is reached (end of measurement)
- **Measuring (g)**
 Indicates an active measuring cycle, for example to lock a filling system to protect the sensing weight from being buried
- **Alarm**
 Relay switches in a fault condition
- **Service interval**
 Relay switches when the set number of measuring cycles is reached
- **Threshold**
 Relay switches when a set threshold is exceeded or not reached

A selected threshold with associated hysteresis applies for all relays, individual settings for each relay are not possible.

Signal on alarm
Malfunction signal can be called up via the following interfaces.

Local display
Error symbol, error code and description in plain text on the on-site display

Current output
- Minimum: minimum current value <= 3.6 mA (4-20 mA) or 0 mA (0-20 mA)
- Maximum: maximum current value + 10 % (22 mA)
- Programmable: current value 0 to 22 mA
- Hold: Last valid current value is held

Relay output
Alarm function

Load (Current output)
Max. 600 Ω

Linearization
The linearisation function of the device facilitates conversion of the measured value into engineering units such as cubic metres or hectolitres. If the filling level is not uniformly proportional to the volume within the set measuring range, then a linearization curve can be entered using a maximum of 32 reference values.
Power supply

Terminal assignment

Manual linearization

- **a**: Level marks
- **b**: Volume
Signal input

<table>
<thead>
<tr>
<th>Order code</th>
<th>Terminal assignment</th>
<th>Input 1 (active)</th>
<th>Input 2 (active)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.1</td>
<td>3.3</td>
<td>(+)</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>3.4</td>
<td>(‒)</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>3.8</td>
<td></td>
</tr>
</tbody>
</table>

Relay output

<table>
<thead>
<tr>
<th>Order code</th>
<th>Terminal assignment</th>
<th>Relay 1</th>
<th>Relay 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output option A, B</td>
<td></td>
<td>2.1</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.3</td>
<td>2.6</td>
</tr>
<tr>
<td>Output option B</td>
<td>Relay 3</td>
<td>Relay 4</td>
<td>Relay 5</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.10</td>
<td>2.13</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>2.11</td>
<td>2.14</td>
</tr>
<tr>
<td></td>
<td>2.9</td>
<td>2.12</td>
<td>2.15</td>
</tr>
</tbody>
</table>

The rest position matches with the position of the relays without power supply, this represents the alarm condition if the function 'alarm' is selected.

Supply voltage
- 180 to 253 V AC, 50/60 Hz (Ordering code "power supply", option 1)
- 90 to 127 V AC, 50/60 Hz (Ordering code "power supply", option 2)
- Ieff = 8 A (115 V) for 40 ms / 4.4 A (230 V) for 20 ms
- Terminal assignment: 1.1 (L1) / 1.2 (N) / 1.3 (PE)

- In accordance with IEC/EN61010 a suitable circuit breaker must be provided for the measuring device.
- Provide overcurrent protection device (max. 16 A) for the supply voltage.

Power consumption
- Max. 230 VA (Ordering code "ambient temperature", option A or C)
- Max. 250 VA (Ordering code "ambient temperature", option B or D)

Power supply failure
- Configuration remains in the device memory
- The current error is moved to the "previous error" function.

Potential equalization
- The potential equalization must be connected to the external ground terminal on the device.
- For optimum electromagnetic compatibility, keep the potential equalization line as short as possible.
- The recommended cable cross-section is 2.5 mm².
- The potential equalization of the FMM50 must be included in the local potential equalization.

- For a device for the hazardous area:
 Observe the instructions in the Ex documentation (XA).

Terminals
- Max. 2.5 mm² (Supply voltage)
- Max. 1.5 mm² (Signal inputs, relay outputs and current output)
Cable entries
- M25x1.5
- Clamping range: 10 to 17 mm (0.39 to 0.67 in)
- Material: Plastic
- Color:
 - grey (Ex-free area)
 - black (Ex approval)
- Quantity:
 - 4 piece (Ordering code *additional equipment*, option 1)
 - 3 piece (Ordering code *additional equipment*, option 2)

Cable specification
- Minimum requirement: cable temperature range ≥ ambient temperature
- Standard installation cable is sufficient for signal inputs, relay outputs and current output.

Performance characteristics

Measured value resolution
± 5 cm or ± 1 pulse (irrespective of the selected measuring range)

Maximum measured error
→ Measured value resolution

Influence ambient temperature
The minimum time for a measuring cycle depending on the ambient temperature and the measuring range must be observed.

<table>
<thead>
<tr>
<th>Ambient temperature</th>
<th>Minimum time for one measurement cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °C (158 °F)</td>
<td>A</td>
</tr>
<tr>
<td>60 °C (140 °F)</td>
<td>B</td>
</tr>
<tr>
<td>50 °C (122 °F)</td>
<td>C</td>
</tr>
<tr>
<td>40 °C (104 °F)</td>
<td>D</td>
</tr>
<tr>
<td>30 °C (86 °F)</td>
<td>E</td>
</tr>
<tr>
<td>20 °C (68 °F)</td>
<td>F</td>
</tr>
</tbody>
</table>

Tm Minimum time for one measurement cycle
Mr Measuring range
Mounting

Mounting location

- Select the installation location on the bunker or silo ceiling such that product falling inside during filling or cornices (product accumulating on container wall) collapsing inward are prevented from covering the sensing weight or damaging the measuring tape.
- Take due account of the shape and location of the product inflow cone and the outflow funnel within the container. Do not run the measuring path too close to fixtures and struts so that the measuring tape does not brush against them when the sensing weight swings around.
- Select the length of the wiper so that the sensing weight can move freely during downward or upward running and does not, for example, come into contact with the edges of a connection pipe. The sensing weight should be located in the middle between the container wall and filling curtain when it is run up and down.

![Diagram](image)

Installation position

- **A** Distance

Take due account of the shape and location of the product inflow cone and the outflow funnel within the vessel.

Mounting position

Normally, the measuring device is mounted on a counter flange DN100 PN16 (bore dimensions as per EN 1092-1) or a flange of the same connection dimensions. The counter flange must be mounted in such a way that it is perfectly horizontal so that the device can also be mounted horizontally onto it (maximum angle of inclination 2°). A suitable mounting aid (bubble level) can be found inside versions with a powder-coated housing. When the electronics cover is opened, this can be used for alignment.
Installation instructions

- In case of higher process temperatures in the area of the installation site, create a suitable structural measure for compliance with this temperature condition.
- Use an extension of the process connection nozzle to keep the meter away from high process temperatures. The length of the connection nozzle is based on the specific process and ambient conditions.
- When mounting outdoors, use weather protection cover or attach weather protection roof.
- Normal weights, umbrella weights and bag weights can be passed through the DN100 mounting flange into the bunker/silo. When using larger sensing weights, such as cage weights, bell weights, floats and some bag-type weights, access provision must be present in the construction of the bunker/silo for installation of these weights.
- When installing in bunkers/silos with heavy dust loadings, a slight positive pressure can be generated at the device by connecting a compressed air line to its mounting flange (airflow quantity as required). There is a G1/4 female connection provided for this purpose at the device flange.

Selection sensing weights

When selecting the sensing weight the following points should be considered:
- During the measuring process, the sensing weight must not sink into the product, nor must it be allowed to slide off the cone.
- The sensing weight must be suitable for the chemical properties of the filling material and the temperatures prevailing in the bunker or silo.
- Special types for your individual applications are available on request.

![Sensing weight diagram](image-url)
Normal weight (1)
Ordering code 'sensing weight', option B or C
- Application for coarse bulk materials, for example coal, ore or stones, and for granulates.
- Material: Steel or stainless steel 316Ti (1.4571)
- Weight: 3.5 kg
- The spike can be taken off.

Umbrella weight (2)
Ordering code 'sensing weight', option D or E
- Application for very light and loose bulk solids, for example flour or coal-dust.
- Material: Steel or stainless steel 316Ti (1.4571), Polyester
- Weight: 3.9 kg (option D) / 3.8 kg (option E)
- Maximum permissible temperature: +150 °C (+302 °F)
- When folded closed, the weight can be passed through the DN100 mounting flange into the bunker.
- The umbrella weight has a large square surface area which prevents it from sinking deeply into the product.

Medium bag (3)
Ordering code 'sensing weight', option G
- Application in bunkers to which for example mills are connected down-stream. The bag contains whichever product is contained within the bunker.
- Material: Bag made of polyester, all metal parts made from stainless steel
- Weight: 0.25 kg (empty) / 3.5 kg (filled)
- Maximum permissible temperature: +150 °C (+302 °F)
- The bag shall be closed at the top to prevent the contents from falling out if the bag tips over when it hits the slope of a dump cone.

Cage weight (4)
Ordering code 'sensing weight', option J
- For fine bulk solids in silos with relatively small outlet openings that must not be blocked by a sensing weight which has broken free. Also suitable for high temperatures for which a bag may not be used.
- Material: Stainless steel 316Ti (1.4571)
- Weight: 3.5 kg
- The weight could become lodged over the product outlet, but would allow the bulk solid to pass through. Since the cage weight cannot enter a conveyor system (for example cellar wheel feeder or screw conveyor), no damage can result.

Oval float (5+6)
- Application for liquids, for example fuel oil, also for granulates.
- The float must be filled with product to a total weight of 3.5 kg.
- If the bunker/silo has a downstream crushing or milling system, we recommend using the electrical signal function "tape breakage" or the use of a cage weight to avoid damaging the system in the event of the sensing weight breaking free.
Ordering code 'sensing weight', option N (5)
- Material: Stainless steel 316Ti (1.4571)
Ordering code 'sensing weight', option M (6)
- Material: Hard PVC (maximum permissible temperature: 0 to +60 °C (+32 to +140 °F))
- Use of the oval float made of hard PVC in the 'Dust ignition-proof' version is not permitted!

Bell weight (7)
Ordering code 'sensing weight', option L
- For light and loose bulk solids; especially where higher temperatures and particular characteristics preclude the use of an umbrella weight.
- Material: Stainless steel 316Ti (1.4571)
- Weight: 4.3 kg

<table>
<thead>
<tr>
<th>Special installation</th>
<th>Weather protection cover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When using the protectin hood available as an accessory, a free height of at least 400 mm (15.75 in) is required above the measuring device for mounting.</td>
</tr>
</tbody>
</table>

Weather protection cover → 21
Environment

Ambient temperature
- -20 to +70 °C (-4 to +158 °F) (The readability of the display may be impaired at temperatures outside the temperature range.)
- -40 to +70 °C (-40 to +158 °F) using the self-regulating device heater

Storage temperature
- -40 to +80 °C (-40 to +176 °F)

Degree of protection
- With closed housing: IP67
- With closed housing and with the use of the external start button: IP65
- With open housing: IP20

Electromagnetic compatibility
- Interference emission to EN 61326, Electrical Equipment Class B
- Interference immunity to EN 61326, Appendix A (Industrial)

Process

Process temperature
- -20 to +70 °C (-4 to +158 °F), Ordering code 'process temperature', option 1
- -20 to +150 °C (-4 to +302 °F), Ordering code 'process temperature', option 2
- -20 to +230 °C (-4 to +446 °F), Ordering code 'process temperature', option 3
- Observe deviating temperature ranges for the accessories offered!

The maximum process temperature at the unit from the bottom of the adaptor flange upwards is +70 °C (+158 °F). In the presence of higher process temperatures in the vicinity of the mounting location, suitable installation provisions must be utilized to assure these temperature guidelines.

 ![Diagram of permissible ambient temperatures at FMM50](image.png)

Diagram
- Permissible ambient temperatures at the FMM50
- T_a -20 to +70 °C (-4 to +158 °F)
- -40 to +70 °C (-40 to +158 °F) using the self-regulating device heater
- T_p -20 to +230 °C (-4 to +446 °F)
An extension for the process connection can be used to separate the device from the higher process temperatures. The maximum allowed temperature of +70 °C (+158 °F) can be met through this. The required length of the connection nozzle is dependant on the actual process and ambient conditions.

- We recommend the following minimum length of the process connection nozzle:
 - 500 mm at process temperatures up to 150 °C (+302 °F)
 - 1000 mm at process temperatures up to 230 °C (+446 °F)
- Suitable process adapter extensions with a length of 790 mm for use with 1000 mm wiper are available as accessory.

- When using process nozzles with longer lengths than 230 mm (length of the standard wiper), longer wipers can be ordered as a device option. Alternatively, the length of the chain between tape border and sensing weight can be increased, corresponding parts are available as an accessory.

Process pressure
- 0.8 to 1.1 bar (12 to 16 psi) absolute, Ordering code 'process pressure', option 1
- 0.8 to 3.0 bar (12 to 43 psi) absolute, Ordering code 'process pressure', option 2

Heating
It is recommended that at ambient temperatures below 0 °C (+32 °F) a device with integrated heater is choosen (ordering code 'ambient temperature', option B and D).

Vibration
Due to the layout, the device should not be exposed to vibration. The pendular motion of the motor combined with vibrations can lead to erratic triggering of the tape switch and therefore to faulty measurements.

Mechanical construction

Dimensions

![Housing dimensions. Unit of measurement mm (in)](image)
The wiper length \((L)\) depends on the selected maximum nozzle height:
- 225 mm (8.86 in), Ordering code ‘maximum connection height; wiper’, option A or B
- 515 mm (20.28 in), Ordering code ‘maximum connection height; wiper’, option C or D
- 1015 mm (39.96 in), Ordering code ‘maximum connection height; wiper’, option E or F

The housing depth \((D)\) depends on the selected process pressure:
- 196 mm (7.72 in), Ordering code ‘process pressure’, option 1
- 211 mm (8.31 in), Ordering code ‘process pressure’, option 2

![Dimensions of the process connection. Unit of measurement mm (in)](image)

Minimum process connection diameter of 95 mm (3.74 in) for installation of wiper mechanism and sensing weights

![Dimensions of sensing weights - Standard (with umbrella) and medium bag. Unit of measurement mm (in)](image)

A Normal weight
B Umbrella weight
C Medium bag
Weight
- 22 to 28 kg (depends on the selected type of device, without sensing weight)
- Sensing weight → 13

Materials
- Housing: Aluminum (optional coated, RAL 5012 and RAL 7035)
- Wiper: Aluminum/steel or stainless steel
- Measuring tape: Stainless steel or plastic
- Sensing weight → 13

Process connection
- Flange
- Hole dimensions DN100 PN16 according to EN 1092-1
Operability

Operation concept
- **Operator-oriented menu structure for user-specific tasks**
 - Commissioning
 - Operation
 - Diagnostics
 - Expert level

Quick and safe commissioning
- Menu guidance with brief explanations of the individual parameter functions

Reliable operation
- Operation in the following languages: English, German, French, Japanese
- Other operating languages can be ordered optionally (product configurator)
- Help texts in the selected language

Efficient diagnostics increase measurement availability
- Display of the current and the previous error
- Help texts for every occurring error
- Various simulation options

The parameterization is stored internally and is retained even after the supply voltage is removed. No operation is required while the device is working. Adaptation to the application must only be carried out during initial installation. However, subsequent changes can be made and saved at any time.

On-site operation
- **Operating elements**
 - Local operation (parameterization) with 3 push buttons (1): S, O, F
 - Local operation (start measuring) with one push button (2), optional with external start button (3), ordering code “additional equipment”, option 2

![Diagram](image-url)
Display elements

- 4-line display
- 20 characters per line
- Display contrast adjustable by using a key combination
- Display of measurand numeric and graphic

Permitted ambient temperature for the display: -20 to +60 °C (-4 to +140 °F), the readability of the display may be impaired at temperatures outside the temperature range.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>measured value 0000</td>
<td>group selection 00+</td>
<td>empty calibr. 001</td>
<td>input 010</td>
<td>present error simulation activated</td>
</tr>
<tr>
<td>68.42 %</td>
<td>basic setup</td>
<td>85 m</td>
<td>not used</td>
<td>W621</td>
</tr>
<tr>
<td></td>
<td>inputs and outputs</td>
<td>distance flange to min. filling</td>
<td>bolting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>measurement param.</td>
<td></td>
<td>start measurement</td>
<td></td>
</tr>
</tbody>
</table>

Display options

A Operational display (measured value display)
B Navigation view
C Entering a value
D Selecting a value
E Diagnostic messages

Languages

- Deutsch
- English
- Francais
- Katakana, Japanese
- Other operating languages can be ordered optionally (product configurator)

Certificates and approvals

CE mark

The level meter Silopilot FMM50 is in conformity with the statutory requirements of the applicable EU Directives. These are listed in the corresponding EU Declaration of Conformity along with the standards applied.

By applying the CE mark, Endress+Hauser confirms that the device has passed the necessary tests.

Ex approval

All explosion protection data is listed in separate documentation which is available from the download area. The Ex documentation is supplied as standard with all Ex-systems.

RoHS

Ordering information

Detailed ordering information is available from the following sources:

- In the Product Configurator on the Endress+Hauser website: www.endress.com → Click "Corporate" → Select your country → Click "Products" → Select the product using the filters and search field → Open product page → The "Configure" button to the right of the product image opens the Product Configurator.
- Endress+Hauser sales center: www.addresses.endress.com

Product Configurator – the tool for individual product configuration

- Up-to-the-minute configuration data
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format

<table>
<thead>
<tr>
<th>TAG</th>
<th>Measuring point (tag) (TAG)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The device can be ordered with a tag name.</td>
</tr>
</tbody>
</table>

Position of the tag name

In the additional specification, select:

- Tag plate, stainless steel
- Plastic film
- Supplied plate

Definition of the tag name

In the additional specification, specify:

- 3 lines, each containing up to maximum 18 characters
- The specified tag name appears on the selected label.

<table>
<thead>
<tr>
<th>Scope of delivery</th>
<th>The scope of delivery includes a minimum of the FMM50 in one cardboard box. Depending on the ordering code the following additional parts are supplied:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Sensing weight (option J, L and M in one separate cardboard box)</td>
</tr>
<tr>
<td></td>
<td>- Wiper extension 500/1000 mm in one separate cardboard box</td>
</tr>
<tr>
<td></td>
<td>- Accessories (usually packed separately)</td>
</tr>
</tbody>
</table>

User-specific settings

As a service, the measuring device can be preset according to customer-specific requirements during production; a corresponding order can be placed using the extended order code.

Accessories

Various accessories are available for the device, and can be ordered with the device or at a later stage from Endress+Hauser. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

Device specific accessories

Weather protection cover

The weather protection cover is simply fitted over the device once the device is installed and fastened on the device with four screws. You will need a free height of at least 400 mm (15.75 in) above the measuring device for installing and/or dismantling.

- Material: Stainless steel 304 (1.4301)
- Weight: 7.5 kg (16.5 lb)
- Order number: 52027964
Process adapter extension

If process temperatures are between +150 ... +230 °C (+302 ... +446 °F), the following process adapter extensions can be used to reduce the temperature when using the 1000 mm wiper extension:

- Material: Stainless steel 316Ti (1.4571)
- Weight: 16 kg (35.3 lb)
- The delivery contains suitable screws and nuts to secure the measuring device to the process adapter extension.
- Order number: 52028083
Adapter flange for lower pressure ratings

The following adapter flanges can be used to adapt to existing process connections. The adapter flange is mounted between the process connection of the device and the application. As the flange is not very high, the clearance needed for the device is only marginally increased.

- Order number:
 71301820 (DN150, PN16, EN1092-1, stainless steel 316Ti, 9 kg (19.8 lb))
 71301821 (DN150, PN16, EN1092-1, steel, 9 kg (19.8 lb))
 71301822 (DN200, PN16, EN1092-1, stainless steel 316Ti, 15 kg (33.1 lb))
 71301824 (DN200, PN16, EN1092-1, steel, 15 kg (33.1 lb))
 71301811 (6", 150lbs, ASME B16.5, stainless steel 316Ti, 10 kg (22 lb))
 71301815 (6", 150lbs, ASME B16.5, steel, 10 kg (22 lb))
 71301816 (8", 150lbs, ASME B16.5, stainless steel 316Ti, 18 kg (39.7 lb))
 71301817 (8", 150lbs, ASME B16.5, steel, 18 kg (39.7 lb))

- Dimension (mm (in)):

<table>
<thead>
<tr>
<th>Order number</th>
<th>Holes</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>71301820</td>
<td>8</td>
<td>22 (0.87)</td>
<td>M16</td>
<td>22 (0.87)</td>
<td>285 (11.22)</td>
</tr>
<tr>
<td>71301821</td>
<td>12</td>
<td>22 (0.87)</td>
<td></td>
<td>24 (0.94)</td>
<td>340 (13.39)</td>
</tr>
<tr>
<td>71301822</td>
<td>8</td>
<td>22.4 (0.88)</td>
<td>UNC 5/8"</td>
<td>25.4 (1)</td>
<td>279.4 (11)</td>
</tr>
<tr>
<td>71301811</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71301815</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71301816</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71301817</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The delivery contains suitable nuts to secure the measuring device to the adapter flange.
Adapter flange with studs for higher pressure ratings

The following adapter flanges can be used to adapt to existing process connections.

Order number:
- 71301826 (DN100, PN25/40, EN1092-1, stainless steel 316Ti, 7 kg (15.4 lb))
- 71301829 (DN100, PN25/40, EN1092-1, steel, 7 kg (15.4 lb))
- 71301831 (4", 300lbs, ASME B16.5, stainless steel 316Ti, 11 kg (24.3 lb))
- 71301833 (4", 300lbs, ASME B16.5, steel, 11 kg (24.3 lb))
- 71301834 (4", 600lbs, ASME B16.5, stainless steel 316Ti, 16 kg (35.3 lb))
- 71301835 (4", 600lbs, ASME B16.5, steel, 16 kg (35.3 lb))

Dimension (mm (in)):

<table>
<thead>
<tr>
<th>Order number</th>
<th>Stud bolts</th>
<th>A</th>
<th>B</th>
<th>C (mm)</th>
<th>D (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>71301826</td>
<td>8</td>
<td>M22</td>
<td>M16</td>
<td>25 (0.98)</td>
<td>235 (9.25)</td>
</tr>
<tr>
<td>71301829</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71301831</td>
<td>UNC 3/4"</td>
<td></td>
<td>UNC 5/8"</td>
<td>31.8 (1.25)</td>
<td>254 (10)</td>
</tr>
<tr>
<td>71301833</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71301834</td>
<td>38.1 (1.5)</td>
<td></td>
<td></td>
<td></td>
<td>273.1 (10.75)</td>
</tr>
<tr>
<td>71301835</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The delivery suitable screws to secure the measuring device to the adapter flange.
Process adapters for smaller nominal diameters

The following process adapters can be used to adapt to existing process connections with smaller nominal diameters (< DN100).

- Order number:
 71301837 (DN50, PN16, EN1092-1, stainless steel 316Ti, 10.5 kg (23.1 lb))
 71301839 (DN50, PN16, EN1092-1, steel, 10.5 kg (23.1 lb))
 71301841 (DN65, PN16, EN1092-1, stainless steel 316Ti, 11 kg (24.3 lb))
 71301843 (DN65, PN16, EN1092-1, steel, 11 kg (24.3 lb))
 71301844 (DN80, PN16, EN1092-1, stainless steel 316Ti, 10 kg (22 lb))
 71301857 (DN80, PN16, EN1092-1, steel, 10 kg (22 lb))
 71301858 (2", 150lbs, ASME B16.5, stainless steel 316Ti, 11 kg (24.3 lb))
 71301859 (2", 150lbs, ASME B16.5, steel, 11 kg (24.3 lb))
 71301861 (3", 150lbs, ASME B16.5, stainless steel 316Ti, 11.5 kg (25.3 lb))
 71301864 (3", 150lbs, ASME B16.5, steel, 11.5 kg (25.3 lb))
 71301867 (4", 150lbs, ASME B16.5, stainless steel 316Ti, 12.5 kg (27.6 lb))
 71301868 (4", 150lbs, ASME B16.5, steel, 12.5 kg (27.6 lb))

- Dimension (mm (in)):

<table>
<thead>
<tr>
<th>Order number</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>71301837</td>
<td>400 (15.75)</td>
<td>54.5 (2.15)</td>
<td>125 (4.92)</td>
<td>165 (6.50)</td>
<td>18 (0.71)</td>
</tr>
<tr>
<td>71301839</td>
<td>70.3 (2.77)</td>
<td>145 (5.71)</td>
<td>185 (7.28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71301841</td>
<td>200 (7.87)</td>
<td>82.5 (3.25)</td>
<td>160 (6.30)</td>
<td>200 (7.87)</td>
<td>200 (7.87)</td>
</tr>
<tr>
<td>71301843</td>
<td>420 (16.54)</td>
<td>52.6 (2.07)</td>
<td>120.7 (4.75)</td>
<td>152.4 (6.00)</td>
<td>19.1 (0.75)</td>
</tr>
<tr>
<td>71301857</td>
<td>720 (28.23)</td>
<td>102.4 (4.03)</td>
<td>190.5 (7.50)</td>
<td>228.6 (9.00)</td>
<td></td>
</tr>
<tr>
<td>71301867</td>
<td>128 (5.04)</td>
<td>102.4 (4.03)</td>
<td>190.5 (7.50)</td>
<td>228.6 (9.00)</td>
<td></td>
</tr>
</tbody>
</table>

- The delivery contains suitable screws and nuts to secure the measuring device to the process adapter extension.
Process adapter as replacement for the standard adapter
The standard process adapter can be replaced by one of the following adapters to adapt to existing process connections.

![Diagram showing the dimensions of the process adapter]

- Order number:
 71301870 (150 lbs, ASME, RF 4", aluminum)
 71301872 (150 lbs, ASME, RF 4", aluminum, coated)

Process adapter with spray water cleaning
The following process adapter can be used with spray water cleaning to prevent any damage from chemical substances that can enter the measuring device via the measuring tape. The process adapter is mounted between the process connection of the measuring device and the application.

- Filtered water should only be used for spray water cleaning as otherwise the nozzles could clog.
- The amount of water needed is between 1 l/min (1 bar) and 3 l/min (6 bar).
- Use the adapter only for pressureless processes.
Process adapter with spray water cleaning. Unit of measurement mm (in)

- DN100 PN16 (Connection dimensions according to DIN EN 1092-1)
- Material: 316Ti (1.4571)
- Weight: 15 kg (33.1 lb)
- Order number: 71301886
- Mounting screws enclosed
- For pressureless processes only!
Sensing weights for interface measurement

Sensing weight for interface measurement in liquids with a significant difference in density (A)
- Order number: 71301873 (316Ti (1.4571))
 71301875 (316Ti (1.4571), coated)
- Weight: 4 kg (8.82 lb)

Sensing weight for interface measurement in liquids with a minor difference in density (B)
- Order number: 71301876 (316Ti (1.4571))
 71301877 (316Ti (1.4571), coated)
- Weight: 4 kg (8.82 lb)

Chain to increase the block distance
The following chain can increase the block distance by a maximum distance of 2 m in the event of longer connections which the sensing weight should not enter into:

If the sensing weights sway significantly, we recommend the use of the extended wiper.

- Order number: 71301880
- Material: Stainless steel 316
- Length: 2 m (78.74 in)
- Weight: 0.3 kg (0.66 lb)

Device-specific tool

Removal tool
For a change of the measuring tape and the gear motor, the following removal tool is available, the operation is carried out with an Allen key 5 mm AF.
- Order number: 71001353
- Material: Steel
The following measuring tape stopper is available for a change of the gear motor in the application, the operation is done with an Allen key 6 mm AF.

- Order number: 71001352
- Material: Steel and brass

Supplementary documentation

The certificates and approvals currently available can be accessed via the
- Product Configurator

<table>
<thead>
<tr>
<th>Device-dependent supplementary documentation</th>
<th>Document type: Operating Instructions (BA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document type: Brief Operating Instructions (KA)</td>
<td>Installation and initial commissioning – contains all functions in the operating menu that are required for a typical measuring task. Functions beyond this scope are not included. BA00286F</td>
</tr>
<tr>
<td>Document type: Safety Instructions, certificates</td>
<td>Quick guide to the first measured value – includes all essential information from the incoming acceptance to the electrical connection. KA01648F</td>
</tr>
<tr>
<td>Document type: Safety Instructions, certificates</td>
<td>Depending on the approval, Safety Instructions are also supplied with the device, e.g. XA. This documentation is an integral part of the Operating Instructions. The nameplate indicates the Safety Instructions (XA) that are relevant to the device.</td>
</tr>
</tbody>
</table>