<u>PROFI</u>

Betriebsanleitung Smartec CLD132/134

Messsysteme mit induktivem Sensor für Leitfähigkeitsund Konzentrationsmessung im Lebensmittelbereich PROFIBUS PA/DP

Inhaltsverzeichnis

1	Hinweise zum Dokument	4
1.1	Warnhinweise	4
1.2 1.3	Symbole am Gerät	4 4
1.4	Dokumentation	4
2	Grundlegende Sicherheitshinweise	5
2.1	Anforderungen an das Personal	5
2.2 2.3	Arbeitssicherheit	5 5
2.4	Betriebssicherheit	5
2.5	Produktsicherneit	б
3	Warenannahme und Produktidenti-	
	fizierung	7
3.1 3.2	Warenannahme	7
3.3	Lieferumfang	8
4	Montage	9
4.1	Systemarchitektur	9
4.2 4.3	Messgerät montieren	0
112		Ū
5	Elektrischer Anschluss 12	1
5.1 5.2	Messgerät anschließen	1
5.3	Anschlusskontrolle 1	3
6	Bedienung 14	4
6.1	Anzeige- und Bedienelemente 14	4
0.2	Bedienung über FleidCare oder DeviceCare 14	4
7	Systemintegration 1	5
7.1 7.2	Blockmodell von PROFIBUS PA/DP 1 Zyklischer Datenaustausch	5 1
7.3	Azyklischer Datenaustausch 24	4
8	Inbetriebnahme 32	2
8.1	Installations- und Funktionskontrolle 3	2
8.2 8.3	Einstellen der Geräteadresse	2 4
•		_
9	Diagnose und Storungsbehebung 3	7
9.1 9.2	Prozess- und gerätebedingte Fehler 3	7 8
10	Kommunikationsspezifisches Zube-	
	hör 39	9

11	Protokollspezifische Daten	40
11.1	PROFIBUS-PA	40
11.2	PROFIBUS-DP	40
11.3	Anzeige- und Bedienoberfläche	40
11.4	Normen und Richtlinien	41

Suchwortverzeichnis 42

1 Hinweise zum Dokument

1.1 Warnhinweise

Struktur des Hinweises	Bedeutung
GEFAHR Ursache (/Folgen) Ggf. Folgen der Missachtung Maßnahme zur Abwehr	Dieser Hinweis macht Sie auf eine gefährliche Situation aufmerksam. Wenn Sie die gefährliche Situation nicht vermeiden, wird dies zum Tod oder zu schweren Verletzungen führen.
₩ARNUNG Ursache (/Folgen) Ggf. Folgen der Missachtung ► Maßnahme zur Abwehr	Dieser Hinweis macht Sie auf eine gefährliche Situation aufmerksam. Wenn Sie die gefährliche Situation nicht vermeiden, kann dies zum Tod oder zu schweren Verletzungen führen.
▲ VORSICHT Ursache (/Folgen) Ggf. Folgen der Missachtung ► Maßnahme zur Abwehr	Dieser Hinweis macht Sie auf eine gefährliche Situation aufmerksam. Wenn Sie die gefährliche Situation nicht vermeiden, kann dies zu mittelschweren oder leichten Verletzungen führen.
HINWEIS Ursache/Situation Ggf. Folgen der Missachtung Maßnahme/Hinweis	Dieser Hinweis macht Sie auf Situationen aufmerksam, die zu Sachschäden führen können.

1.2 Verwendete Symbole

- Zusatzinformationen, Tipp
- erlaubt
- empfohlen
- verboten oder nicht empfohlen
- 🗈 Verweis auf Dokumentation zum Gerät
- Verweis auf Seite
- Verweis auf Abbildung
- └• Ergebnis eines Handlungsschritts

1.3 Symbole am Gerät

⚠— Verweis auf Dokumentation zum Gerät

1.4 Dokumentation

- Betriebsanleitung Smartec CLD132, BA00207C
- Betriebsanleitung Smartec CLD134, BA00401C
- Leitfaden zur Projektierung und Inbetriebnahme PROFIBUS DP/PA, BA00034S

2

Grundlegende Sicherheitshinweise

2.1 Anforderungen an das Personal

- Montage, Inbetriebnahme, Bedienung und Wartung der Messeinrichtung dürfen nur durch dafür ausgebildetes Fachpersonal erfolgen.
- Das Fachpersonal muss vom Anlagenbetreiber für die genannten Tätigkeiten autorisiert sein.
- Der elektrische Anschluss darf nur durch eine Elektrofachkraft erfolgen.
- Das Fachpersonal muss diese Betriebsanleitung gelesen und verstanden haben und die Anweisungen dieser Betriebsanleitung befolgen.
- Störungen an der Messstelle dürfen nur von autorisiertem und dafür ausgebildetem Personal behoben werden.

Reparaturen, die nicht in der mitgelieferten Betriebsanleitung beschrieben sind, dürfen nur direkt beim Hersteller oder durch die Serviceorganisation durchgeführt werden.

2.2 Bestimmungsgemäße Verwendung

Smartec CLD132 und CLD134 sind Messsysteme zur Messung der Leitfähigkeit. Die PROFIBUS-Schnittstelle erlaubt die Bedienung des Gerätes mittels einem Anlagen-Asset-Management-Tool, z. B. FieldCare, oder einem Inbetriebnahme-Tool, z. B. DeviceCare, am PC.

PROFIBUS ist ein offener Feldbusstandard nach IEC 61158 / IEC 61784. Er ist speziell für die Belange der Verfahrenstechnik konzipiert worden und erlaubt die Anbindung mehrerer Messgeräte an eine Busleitung. Mit der Übertragungstechnik nach IEC 1158-2 wird eine sichere Signalübertragung gewährleistet.

Eine andere als die beschriebene Verwendung stellt die Sicherheit von Personen und der gesamten Messeinrichtung in Frage und ist daher nicht zulässig.

Der Hersteller haftet nicht für Schäden, die aus unsachgemäßer oder nicht bestimmungsgemäßer Verwendung entstehen.

2.3 Arbeitssicherheit

Als Anwender sind Sie für die Einhaltung folgender Sicherheitsbestimmungen verantwortlich:

- Installationsvorschriften
- Lokale Normen und Vorschriften
- Vorschriften zum Explosionsschutz

Störsicherheit

- Das Produkt ist gemäß den gültigen internationalen Normen für den Industriebereich auf elektromagnetische Verträglichkeit geprüft.
- Die angegebene Störsicherheit gilt nur für ein Produkt, das gemäß den Anweisungen in dieser Betriebsanleitung angeschlossen ist.

2.4 Betriebssicherheit

Vor der Inbetriebnahme der Gesamtmessstelle:

- 1. Alle Anschlüsse auf ihre Richtigkeit prüfen.
- 2. Sicherstellen, dass elektrische Kabel und Schlauchverbindungen nicht beschädigt sind.

- **3.** Beschädigte Produkte nicht in Betrieb nehmen und vor versehentlicher Inbetriebnahme schützen.
- 4. Beschädigte Produkte als defekt kennzeichnen.

Im Betrieb:

Können Störungen nicht behoben werden:
 Produkte außer Betrieb setzen und vor versehentlicher Inbetriebnahme schützen.

2.5 Produktsicherheit

Das Produkt ist nach dem Stand der Technik betriebssicher gebaut, geprüft und hat das Werk in sicherheitstechnisch einwandfreiem Zustand verlassen. Die einschlägigen Vorschriften und internationalen Normen sind berücksichtigt.

Eine Gewährleistung unsererseits ist nur gegeben, wenn das Gerät gemäß der Betriebsanleitung installiert und eingesetzt wird. Das Gerät verfügt über Sicherheitsmechanismen, um es gegen versehentliche Veränderung der Einstellungen zu schützen.

IT-Sicherheitsmaßnahmen gemäß dem Sicherheitsstandard des Betreibers, die das Gerät und dessen Datentransfer zusätzlich schützen, sind vom Betreiber selbst zu implementieren. 3

Warenannahme und Produktidentifizierung

3.1 Warenannahme

1. Auf unbeschädigte Verpackung achten.

- └ Beschädigungen an der Verpackung dem Lieferanten mitteilen. Beschädigte Verpackung bis zur Klärung aufbewahren.
- 2. Auf unbeschädigten Inhalt achten.
 - Beschädigungen am Lieferinhalt dem Lieferanten mitteilen.
 Beschädigte Ware bis zur Klärung aufbewahren.
- 3. Lieferung auf Vollständigkeit prüfen.
 - └ Lieferpapiere und Bestellung vergleichen.
- 4. Für Lagerung und Transport: Produkt stoßsicher und gegen Feuchtigkeit geschützt verpacken.
 - Optimalen Schutz bietet die Originalverpackung.
 Zulässige Umgebungsbedingungen unbedingt einhalten.

Bei Rückfragen: An Lieferanten oder Vertriebszentrale wenden.

3.2 Produktidentifizierung

3.2.1 Typenschild

Folgende Informationen zu Ihrem Gerät können Sie dem Typenschild entnehmen:

- Herstelleridentifikation
- Bestellcode
- Seriennummer
- Umgebungs- und Prozessbedingungen
- Ein- und Ausgangskenngrößen
- Sicherheits- und Warnhinweise
- Schutzklasse
- Angaben auf dem Typenschild mit Bestellung vergleichen.

3.2.2 Produkt identifizieren

Produktseite

www.endress.com/CLD132 www.endress.com/CLD134

Bestellcode interpretieren

Sie finden Bestellcode und Seriennummer Ihres Produkts:

- Auf dem Typenschild
- In den Lieferpapieren

Einzelheiten zur Ausführung des Produkts erfahren

1. www.endress.com aufrufen.

2. Seitensuche (Lupensymbol): Gültige Seriennummer eingeben.

3. Suchen (Lupe).

└ Die Produktübersicht wird in einem Popup-Fenster angezeigt.

4. Produktübersicht anklicken.

← Ein neues Fenster öffnet sich. Hier finden Sie die zu Ihrem Gerät gehörenden Informationen einschließlich der Produktdokumentation.

3.3 Lieferumfang

CLD132

Im Lieferumfang der "Kompaktausführung" mit PROFIBUS sind enthalten:

- Kompaktes Messsytem Smartec mit integriertem Sensor
- Klemmleistenset
- Faltenbalg (bei Geräteausführung -*GE1*****)
- Betriebsanleitung BA00207C
- Betriebsanleitung Feldnahe Kommunikation mit PROFIBUS BA00213C
- M12-Stecker (bei Geräteausführung -*****PF*)

Im Lieferumfang der "Getrenntausführung" mit PROFIBUS sind enthalten:

- Messumformer Smartec
- Induktiver Sensor CLS52 mit Festkabel
- Klemmleistenset
- Faltenbalg (bei Geräteausführung -*GE1*****)
- Betriebsanleitung BA00207C
- Betriebsanleitung Feldnahe Kommunikation mit PROFIBUS BA00213C
- M12-Stecker (bei Geräteausführung -*****PF*)

CLD134

Im Lieferumfang der "Kompaktausführung" mit PROFIBUS sind enthalten:

- Kompaktes Messsytem Smartec mit integriertem Sensor
- Klemmleistenset
- Betriebsanleitung BA00401C
- Betriebsanleitung Feldnahe Kommunikation mit PROFIBUS BA00213C
- M12-Stecker (bei Geräteausführung -*****PF*)

Im Lieferumfang der "Getrenntausführung" sind enthalten:

- Messumformer Smartec
- Induktiver Sensor CLS54 mit Festkabel
- Klemmleistenset
- Betriebsanleitung BA00401C
- Betriebsanleitung Feldnahe Kommunikation mit PROFIBUS BA00213C
- M12-Stecker (bei Geräteausführung -*****PF*)

Im Lieferumfang der Ausführung "Messumformer ohne Sensor" sind enthalten:

- Messumformer Smartec CLD134
- Klemmleistenset
- Betriebsanleitung BA00401C/07/DE
- Betriebsanleitung Feldnahe Kommunikation mit PROFIBUS BA00213C
- M12-Stecker (bei Geräteausführung -*****PF*)

4 Montage

4.1 Systemarchitektur

Eine komplette Messeinrichtung besteht aus

- Messumformer CLD132 oder CLD134 mit PROFIBUS PA oder DP
- Segmentkoppler (nur bei PA)
- PROFIBUS Busabschluss
- Verkabelung inkl. Busverteiler
- Speicherprogrammierbare Steuerung (SPS) oder PC mit FieldCare oder DeviceCare

- Messeinrichtungen mit PROFIBUS-Schnittstelle
- 1 PC mit PROFIBUS-Schnittstelle und Bedienprogramm
- 2 SPS
- 3 Segmentkoppler
- 4 CLD132 oder CLD134 PROFIBUS-PA Getrenntausführung mit CLS52 oder CLS54
- 5 CLD132 oder CLD134 PROFIBUS-PA Kompaktausführung
- 6 Terminierungswiderstand
- 7 CLD132 oder CLD134 PROFIBUS-PA Kompaktausführung

Die maximale Anzahl der Messumformer an einem Bussegment ist durch deren Stromaufnahme, die Leistung des Buskopplers und die erforderliche Buslänge bestimmt.

Leitfaden zur Projektierung und Inbetriebnahme PROFIBUS DP/PA, BA00034S

4.2 Messgerät montieren

- Montage nach Betriebsanleitung durchführen.
- Betriebsanleitung Smartec CLD132, BA00207C

Betriebsanleitung Smartec CLD134, BA00401C

4.3 Montagekontrolle

- 1. Nach dem Einbau das Messsystem auf Beschädigungen prüfen.
- 2. Prüfen, dass der Sensor zur Strömungsrichtung des Mediums ausgerichtet ist.
- 3. Prüfen, dass der Spulenkörper des Sensors vollständig vom Medium benetzt ist.

5 Elektrischer Anschluss

WARNUNG

Gerät unter Spannung!

- Unsachgemäßer Anschluss kann zu Verletzungen oder Tod führen!
- Der elektrische Anschluss darf nur von einer Elektrofachkraft durchgeführt werden.
- Die Elektrofachkraft muss diese Betriebsanleitung gelesen und verstanden haben und muss die Anweisungen dieser Anleitung befolgen.
- Vor Beginn der Anschlussarbeiten sicherstellen, dass an keinem Kabel Spannung anliegt.

5.1 Messgerät anschließen

• Anschluss nach Betriebsanleitung durchführen.

Betriebsanleitung Smartec CLD132, BA00207C

🕞 Betriebsanleitung Smartec CLD134, BA00401C

5.2 Buskabel anschließen

Kabel ins Gehäuse führen

Image: Buskabelanschluss (rechts = Entfernen des Abdeckrahmens, links = Ansicht ohne Abdeckrahmen)

- 1 Ausbruch für DIL-Schalter
- 2 Abdeckrahmen
- 3 Sicherung
- 4 Herausnehmbare Elektronikbox
- 5 Anschlussklemmen
- 6 Gehäuseerdung

1. Die vier Kreuzschlitzschrauben lösen und den Gehäusedeckel abnehmen.

- 2. Den Abdeckrahmen über den Klemmenblöcken abnehmen. Dazu den Schraubendreher in die Ausstanzung führen und die Lasche nach unten drücken ().
- 3. Das Kabel durch die geöffnete Kabeleinführung in den Anschlussraum führen.

Kabelanschluss PA-Gerät

1. Buskabel über die PG-Verschraubung oder einen M12-Stecker montieren.

Die Kabeladern des Buskabels an den Klemmenblock anschließen. Ein Vertauschen der Polarität der Anschlüsse PA+ und PA- hat keinen Einfluss auf den Betrieb.

- 3. Die Kabelverschraubung festdrehen.
- 4. Den Gehäusedeckel schließen.

Kabelanschluss DP-Gerät

1. Buskabel über die PG-Verschraubung montieren.

1 GND

- 2 Spannungsversorgung +5 V für Busabschluss
- 3 B (RxD / TxD-P)
- 4 A (RxD / TxD-N)
- Y Nächstes PROFIBUS-Gerät (durchgeschleift)
- Z Busabschluss

Die Kabeladern des Buskabels an den Klemmenblock anschließen.

- 3. Die Kabelverschraubung festdrehen.
- 4. Den Gehäusedeckel schließen.

Busabschluss

Die Busabschlüsse für PROFIBUS PA und DP unterscheiden sich.

- Jedes PROFIBUS PA Bussegment muss am Anfang und am Ende mit einem passiven Busabschluss terminiert werden.
- Jedes PROFIBUS-DP Bussegment muss am Anfang und am Ende mit einem **aktiven** Busabschluss terminiert werden.

5.3 Anschlusskontrolle

▶ Nach dem elektrischen Anschluss folgende Prüfungen durchführen:

Gerätezustand und -spezifikationen	Hinweise
Sind die Geräte und Kabel äußerlich unbeschädigt?	Sichtkontrolle

Elektrischer Anschluss	Hinweise
Stimmen Versorgungsspannung und Typenschildangabe überein?	230 V AC 115 V AC 100 V AC 24 V AC/DC
Erfüllen die verwendeten Kabel die erforderlichen Spezifikationen?	Für Elektroden-/Sensoranschluss ein Original-E+H-Kabel verwenden, siehe Kapitel Zubehör
Sind die angeschlossenen Kabel mit Zugentlastungen versehen?	
Ist die Kabeltypenführung einwandfrei getrennt?	Führen Sie Versorgungs- und Signallei- tungen auf dem gesamten Kabelweg getrennt, damit keine Beeinflussung stattfinden kann. Optimal sind getrennte Kabelkanäle.
Ist die Kabelführung korrekt, ohne Schleifen und Überkreuzungen ausgeführt?	
Sind die Netzleitung und die Signalleitungen korrekt und gemäß Anschlussplan angeschlossen?	
Sind alle Schraubklemmen festgezogen?	
Sind alle Kabeleinführungen angebracht, festgezogen und lecksicher?	
Sind alle Gehäusedeckel montiert und fest angezogen?	Dichtungen auf Beschädigung prüfen.

6 Bedienung

6.1 Anzeige- und Bedienelemente

☑ 3 Bedienoberfläche

1 Display-Symbol für aktive Kommunikation über PROFIBUS-Schnittstelle

Erklärung der Tastenbelegung und der Symbole:

• Betriebsanleitung verwenden.

Betriebsanleitung Smartec CLD132, BA00207C

Betriebsanleitung Smartec CLD134, BA00401C

6.2 Bedienung über FieldCare oder DeviceCare

Fieldcare ist das von Endress+Hauser auf FDT basierende Anlagen-Asset-Management-Tool. Es kann alle intelligenten Feldgeräte in Ihrer Anlage konfigurieren und unterstützt Sie bei deren Management. Durch die Nutzung von Zustandsinformationen verfügen Sie zusätzlich über ein einfaches aber effektives Tool zur Überwachung der Geräte.

- Unterstützt PROFIBUS
- Unterstützt eine Vielzahl der Endress+Hauser Geräte
- Unterstützt alle Fremdgeräte, die den FDT-Standard unterstützen, z. B. Antriebe, I/OSysteme, Sensoren
- Stellt die volle Funktionalität aller Geräte mit DTMs sicher
- Bietet allgemeine Profilbedienung für fremde Feldbusgeräte ohne Lieferanten-DTM

DeviceCare ist das von Endress+Hauser entwickelte Tool zur Konfiguration von Endress +Hauser Geräten. Alle intelligenten Geräte in einer Anlage können über eine Punkt-zu-Punkt- oder eine Punkt-zu-Bus-Verbindung konfiguriert werden.

Eine Installationsbeschreibung finden Sie in der Betriebsanleitung

FieldCare/DeviceCare, BA00027S

7 Systemintegration

7.1 Blockmodell von PROFIBUS PA/DP

Bei PROFIBUS werden die gesamten Geräteparameter in Abhängigkeit ihrer funktionalen Eigenschaft und Aufgabe kategorisiert und im wesentlichen drei unterschiedlichen Blöcken zugeordnet. Ein Block kann als Container betrachtet werden, in dem Parameter und die damit verbundenen Funktionalitäten enthalten sind (siehe).

Ein PROFIBUS Gerät hat folgende Blocktypen:

- Einen Physical Block (Geräteblock)
 Der Physical Block beinhaltet alle gerätespezifischen Merkmale des Gerätes.
- Ein oder mehrere Transducer Blocks
- Der Transducer Block beinhaltet alle messtechnischen und gerätespezifischen Parameter des Gerätes. In den Transducer Blöcken sind die Messprinzipien (Leitfähigkeit, Temperatur) gemäß der PROFIBUS Profile 3.0 Spezifikation abgebildet.
- Ein oder mehrere Function Blocks (Funktionsblocks)
 Ein Function Block beinhaltet die Automatisierungfunktionen des Gerätes. Im Messumformer sind Analog Input Blöcke enthalten, über die die Messwerte skaliert und auf Grenzwertüberschreitung untersucht werden können.

Mit diesen Blöcken lassen sich verschiedene Automatisierungsaufgaben realisieren. Neben diesen Blöcken kann ein Messumformer noch beliebig viele weitere Blöcke beinhalten. Z. B. mehrere Analog Input Funktionsblöcke, wenn vom Messumformer mehr als eine Prozessgröße zur Verfügung gestellt wird.

E 4 Blockmodell (grau = Profilblöcke)

7.1.1 Physical Block (Geräteblock)

Ein Physical Block beinhaltet alle Daten, die der Messumformer eindeutig identifizieren und charakterisieren. Er entspricht einem elektronischen Typenschild des Messumformers. Parameter des Physical Blocks sind z. B. Gerätetyp, Gerätename, Herstelleridentifizierung, Seriennummer.

Eine weitere Aufgabe des Physical Blocks ist die Verwaltung von übergreifenden Parametern und Funktionen, die Einfluss auf die Ausführung der restlichen Blöcke im Messumformer haben. Somit ist der Physical Block die zentrale Einheit, die auch den Gerätezustand überprüft und dadurch die Betriebsfähigkeit der anderen Blöcke und somit des Gerätes beeinflusst bzw. steuert.

7.1.2 Schreibschutz

Hardware-Schreibschutz Vor-Ort

Sie können das Gerät vor Ort für Parametriervorgänge sperren, indem Sie die Tasten **Plus** und **ENTER** gleichzeitig drücken.

Das Entriegeln erfolgt mit den Tasten CAL und Minus.

- Hardware-Schreibschutz über PROFIBUS
 Der Parameter HW_WRITE_PROTECTION zeigt den Statuszustand des Hardware Schreibschutzes an. Folgende Statuszustände sind möglich:
 1: Hardwareschreibschutz aktiv, Gerätedaten können nicht verändert werden
 - 0: Hardwareschreibschutz inaktiv, Gerätedaten können verändert werden

Software-Schreibschutz

Zusätzlich können Sie mittels eines Software-Schreibschutzes das azyklische Schreiben aller Parameter verhindern. Dies geschieht durch die Eingabe im Parameter **WRITE LOCKING**.

Folgende Eingaben sind zulässig:

2457: Gerätedaten können verändert werden (Werkseinstellung) **0**: Gerätedaten können nicht verändert werden

Betriebsanleitung Smartec CLD132, BA00207C

7.1.3 Parameter LOCAL_OP_ENABLE

Über diesen Parameter können Sie die Vorort-Bedienung am Gerät zulassen oder auch sperren.

Folgende Werte sind möglich:

• 0: deaktiviert.

Die Vorort-Bedienung ist gesperrt. Eine Änderung dieses Zustandes ist nur über den Bus möglich. In der Vorort-Bedienung wird der Code 9998 angezeigt. Das Verhalten des Messumformers ist genauso wie bei dem Hardware-Schreibschutz über die Tastatur.

• 1: aktiviert.

Die Vorort-Bedienung ist aktiv. Befehle vom Master haben jedoch eine höhere Priorität als die Befehle vor Ort.

Wenn die Kommunikation für mehr als 30 Sekunden ausfällt, wird automatisch die Vorort-Bedienung aktiviert.

Fällt bei gesperrter Vorort-Bedienung die Kommunikation aus, wird das Gerät sofort wieder in den gesperrten Zustand gehen, sobald die Kommunikation wieder arbeitet.

7.1.4 Parameter PB_TAG_DESC

Die kundenspezifische Gerätenummer (TAG-Nummer) können Sie einstellen über:

- Vor-Ort-Bedienung im Menü-Feld I2 (Funktionsgruppe INTERFACE) oder über
- PROFIBUS-Parameter **TAG_DESC** des Physical Block.

Wenn Sie die TAG-Nummer über eine der beiden Möglichkeiten verändern, ist die Änderung an der anderen Stelle ebenfalls sofort sichtbar.

7.1.5 Parameter FACTORY_RESET

Über den Parameter **FACTORY_RESET** können Sie folgende Daten zurücksetzen:

- 1 Alle Daten auf PNO Default-Werte
- 2506 Warmstart des Messumformers
- 2712 Busadresse
- 32768 Kalibrierdaten
- 32769 Einstelldaten

Über die Vorort-Bedienung können Sie im Menü-Feld **S10** (Funktionsgruppe SERVICE) entweder alle Daten auf Werkseinstellung zurücksetzen oder die Sensordaten löschen.

7.1.6 Parameter IDENT_NUMBER_SELECTOR

Mit diesem Parameter können Sie den Messumformer in drei Betriebsarten umschalten, die jeweils eine andere Funktionalität bezüglich der zyklischen Daten haben:

IDENT_NUMBER_SELECTOR	Funktionalität
0	Zyklische Kommunikation nur mit Profile-GSD möglich. Nur Standard Diagnose in den zyklischen Daten.
1 (Default)	Volle Funktionalität mit Profile 3.0 und erweiterter Diagnose in den zyklischen Daten. Es ist die herstellerspezifische GSD erforderlich.
2	Abwärtskompatible Profile 2.0 Funktionalität ohne Diagnose in den zyklischen Daten. Es ist die herstellerspezifische Profile 2.0 GSD erforderlich.

(Siehe auch Tabelle zu den Gerätestammdateien).

7.1.7 Analog Input Block (Funktionsblock)

Im Analog Input Funktionsblock werden die Prozessgrößen (Leitfähigkeit und Temperatur) vom Transducer Block leittechnisch für die anschließenden Automatisierungsfunktionen aufbereitet (z. B. Skalierung, Grenzwertverarbeitung). Dem Messumformer mit PROFIBUS stehen zwei Analog Input Funktionsblöcke zur Verfügung.

7.1.8 Signalverarbeitung

Die Abbildung zeigt schematisch den internen Aufbau eines Analog Input Funktionsblocks:

Schematischer innerer Aufbau eines Analog Input Funktionsblocks

Der Analog Input Funktionsblock erhält seinen Eingangswert vom Analyser Transducer Block. Die Eingangswerte sind dem Analog Input Funktionsblock jeweils fest zugeordnet:

- Hauptmesswert (Main Process Value) Analog Input Funktionsblock 1 (AI 1)
- Temperaturmesswert (Temperature) Analog Input Funktionsblock 2 (AI 2)

7.1.9 SIMULATE

In der Parametergruppe **SIMULATE** können Sie den Eingangswert durch einen Simulationswert ersetzen und die Simulation aktivieren. Durch Vorgabe des Status und des Simulationswertes können Sie eine Reaktion des Automatisierungssystems testen.

7.1.10 PV_FTIME

Im Parameter **PV_FTIME** können Sie durch eine Filterzeitvorgabe den gewandelten Eingangswert (primary value = PV) dämpfen. Wird eine Zeit von 0 Sekunden vorgegeben, erfolgt keine Dämpfung des Eingangswertes.

7.1.11 MODE_BLK

Über die Parametergruppe **MODE_BLK** erfolgt die Auswahl der Betriebsart des Analog Input Funktionsblocks. Wählen Sie die Betriebsart **MAN** (manuell), können Sie den Ausgangswert **OUT** und den OUT-Status direkt vorgeben.

Nachfolgend sind die wichtigsten Funktionen und Parameter des Analog Input Blocks aufgeführt.

Tabellarische Zusammenstellung der Funktionen des Analog Input Blocks: .

7.1.12 Auswahl der Betriebsart

Die Einstellung der Betriebsart erfolgt über die Parametergruppe **MODE_BLK**. Der Analog Input Funktionsblock unterstützt folgende Betriebsarten:

- AUTO (Automatikbetrieb)
- MAN (Manueller Betrieb)
- O/S (Out of Service)

7.1.13 Auswahl der Einheiten

Eine Änderung der Systemeinheit für einen der Messwerte können Sie über Fieldcare im Analog Input Block einstellen.

Eine Änderung der Einheit im Analog Input Block hat zunächst keinen Einfluss auf den Messwert, der zur SPS übertragen wird. Dies sichert, dass eine sprunghafte Änderung keinen Einfluss auf die nachfolgende Regelung nehmen kann. Soll die Einheitenänderung Einfluss auf den Messwert nehmen, müssen Sie mittels Fieldcare die Funktion **SET_UNIT_TO_BUS** aktivieren.

Eine weitere Möglichkeit die Einheit zu ändern haben Sie mit den Parametern $\ensuremath{\text{PV}}\xspace_{\ensuremath{\text{SCALE}}\xspace}$ und $\ensuremath{\text{OUT}}\xspace_{\ensuremath{\text{SCALE}}\xspace}$.

7.1.14 OUT

Der Ausgangswert **OUT** wird mit Vorwarnalarm- und Alarmgrenzen (z. B. **HI_LIM**, **LO_LIM**), die über diverse Parameter eingegeben werden können, verglichen. Bei Verletzung einer dieser Grenzwerte wird ein Grenzwert-Prozessalarm (z. B. **HI_ALM**, **LO_ALM**) ausgelöst.

7.1.15 OUT Status

Über den Status der Parametergruppe **OUT** wird den nachfolgenden Funktionsblöcken der Zustand des Analog Input Funktionsblocks und die Gültigkeit des Ausgangswertes mitgeteilt.

Folgende Statuswerte können angezeigt werden:

- GOOD_NON_CASCADE
- Der Ausgangswert **OUT** ist gültig und kann zur Weiterverarbeitung verwendet werden. **UNCERTAIN**
- Der Ausgangswert **OUT** kann nur begrenzt zur Weiterverarbeitung verwendet werden.

BAD

Der Ausgangswert **OUT** ist ungültig. Tritt bei Umschaltung des Analog Input Funktionsblocks in die Betriebsart **O/S** oder bei schwerwiegenden Fehlern auf (und System- bzw. Prozessfehlermeldungen in der Betriebsanleitung).

Zusätzlich zu den geräteinternen Fehlermeldungen haben weitere Gerätefunktionen Einfluss auf den Status des OUT-Wertes:

- Automatischer Hold
- Ist Hold eingeschaltet, wird der OUT-Status auf BAD nicht spezifisch (0x00) gesetzt.
- Kalibrierung

Während der Kalibrierung wird der OUT-Status auf den Wert **UNCERTAIN** Sensorkalibrierung (0x64) gesetzt (auch bei eingeschaltetem Hold).

7.1.16 Simulation des Ein-/Ausgangs

Über verschiedene Parameter des Analog Input Funktionsblocks können Sie den Ein- und Ausgang des Funktionsblocks simulieren:

Eingang des Analog Input Funktionsblock simulieren

- ► Über die Parametergruppe **SIMULATION** kann der Eingangswert (Messwert und Status) vorgegeben werden.
 - Da der Simulationswert den kompletten Funktionsblock durchläuft, können alle Parametereinstellungen des Blocks überprüft werden.

Ausgang des Analog Input Funktionsblock simulieren

• Die Betriebsart in der Parametergruppe **MODE_BLK** auf **MAN** setzen und den gewünschten Ausgangswert im Parameter **OUT** direkt vorgeben.

7.1.17 Messwertsimulation in der Vor-Ort-Bedienung

Bei Messwertsimulation in der Vorort-Bedienung wird an die Funktionsblöcke der Status **UNCERTAIN** – simulated value übergeben. Dies führt in den AI-Blöcken zum Ansprechen des Failsafe-Mechanismus.

7.1.18 Fehlerverhalten (FSAFE_TYPE)

Bei einem Eingangs- bzw. Simulationswert mit schlechtem Status (**BAD**) arbeitet der Analog Input-Funktionsblock mit dem im Parameter **FSAFE_TYPE** definierten Fehlerverhalten weiter. Im Parameter **FSAFE_TYPE** stehen folgende Fehlerverhalten zur Auswahl:

- FSAFE_VALUE
 Der im Parameter FSAFE_VALUE vorgegebene Wert wird zur Weiterverarbeitung verwendet.
- LAST_GOOD_VALUE

Der letzte gültige Wert wird zur Weiterverarbeitung verwendet.

WRONG_VALUE

Der aktuelle Wert wird, ungeachtet des Status **BAD**, zur Weiterverarbeitung verwendet. Die Werkseinstellung ist der Vorgabewert (**FSAFE_VALUE**) mit dem Wert **0**.

Das Fehlerverhalten wird ebenfalls aktiviert, wenn der Analog Input Funktionsblock in die Betriebsart **O/S** gesetzt wird.

7.1.19 Umskalierung des Eingangswertes

Im Analog Input Funktionsblock kann der Eingangswert bzw. Eingangsbereich gemäß den Automatisierungsanforderungen skaliert werden.

Beispiel:

- Die Systemeinheit im Transducer Block ist °C.
- Der Messbereich des Messgerätes beträgt –10 … 150 °C.
- Der Ausgangsbereich zum Automatisierungssystem soll 14 °F ... 302 °F betragen.
- Der Messwert vom Transducer Block (Eingangswert) wird linear über die Eingangsskalierung **PV_SCALE** auf den gewünschten Ausgangsbereich OUT_SCALE umskaliert.
- Parametergruppe PV_SCALE PV_SCALE_MIN (V1H0) -10 PV SCALE MAX (V1H1) 150
- Parametergruppe OUT_SCALE OUT_SCALE_MIN (V1H3) 14 OUT_SCALE_MAX (V1H4) 302 OUT_UNIT (V1H5) ['F]

Daraus ergibt sich, dass z. B. bei einem Eingangswert von 25 °C über den Parameter **OUT** ein Wert von 77 °F ausgegeben wird.

6 Skalierung des Eingangswertes beim Analog Input Funktionsblock

7.1.20 Grenzwerte

Sie können zur Überwachung Ihres Prozesses zwei Vorwarn- und zwei Alarmgrenzen einstellen. Der Status des Messwertes und die Parameter der Grenzwertalarme geben einen Hinweis auf die Lage des Messwertes. Zusätzlich können Sie eine Alarmhysterese definieren, damit ein häufiges Wechseln der Grenzwertflags bzw. ein häufiges Aktivieren/Deaktivieren von Alarmen vermieden wird. Die Grenzwerte basieren auf dem Ausgangswert **OUT**. Über- bzw. unterschreitet der Ausgangswert **OUT** die definierten Grenzwerte, so erfolgt die Alarmierung des Automatisierungssystems über die Grenzwert-Prozessalarme (siehe unten).

Folgende Grenzwerte sind definierbar:

- HI_LIM, HI_HI_LIM
- LO_LIM, LO_LO_LIM

7.1.21 Alarmerkennung und -behandlung

Vom Analog Input Funktionsblock werden Grenzwert-Prozessalarme generiert. Der Zustand der Grenzwert-Prozessalarme wird dem Automatisierungssystem über die folgenden Parameter mitgeteilt:

- HI_ALM, HI_HI_ALM
- LO_ALM, LO_LO_ALM

7.2 Zyklischer Datenaustausch

Der zyklische Datenaustausch dient der Übertragung der Messwerte im laufenden Betrieb.

7.2.1 Module für das zyklische Datentelegramm

Für das zyklische Datentelegramm stellt der Messumformer folgende Module als Input-Daten (Daten vom Messumformer an SPS) zur Verfügung (s. auch Blockmodell):

Main Process Value

Mit diesem Byte wird der Hauptmesswert übertragen.

- Temperature
 - Mit diesem Byte wird die Temperatur übertragen.
- MRS (Measuring Range Switch = Messbereichsumschaltung) Mit diesem Byte werden der externe Hold und die Parametersatzumschaltung von der SPS an den Messumformer übertragen werden.

Struktur der Input-Daten (Messumformer \rightarrow SPS)

Die Input-Daten werden vom Messumformer in folgender Struktur übertragen:

Index Input- Daten	Daten	Zugriff	Datenformat / Bemerkungen	Konfigurationsdaten		
04	0 4 Analog Input Block 1 Main Pro- cess Value		Messwert (32-Bit-Gleitpunktzahl; IEEE-754) Status Byte (0x80) = Ok	0x42, 0x84, 0x08, 0x05 oder 0x42, 0x84, 0x81, 0x81 oder 0x94		
5 9	5 9 Analog Input Block 2 Tempera- ture		Messwert (32-Bit-Gleitpunktzahl; IEEE-754) Status Byte (0x80) = Ok	0x42, 0x84, 0x08, 0x05 oder 0x42, 0x84, 0x81, 0x81 oder 0x94		

Struktur der Output-Daten (SPS → Messumformer)

Die Output-Daten der SPS für die Gerätesteuerung haben folgende Struktur:

Index Input- Daten	Daten	Zugriff	Datenformat / Bemerkungen	Konfigurationsdaten				
0	MRS	write	Byte Status Byte (0x80) = Ok	0x42, 0x84, 0x08, 0x05 oder 0x42, 0x84, 0x81, 0x81 oder 0x94				

IEEE-754-Fließkommazahl

PROFIBUS verarbeitet Daten im Hexadezimalcode und setzt diese in 4 Byte (je 8 Bit, 4x8=32 Bit) um.

Eine Zahl hat nach IEEE 754 drei Bestandteile:

Sign (Vorzeichen, S)

Das Vorzeichen benötigt genau 1 Bit und hat die Werte 0 (+) oder 1(-). Bit 7 des 1. Bytes einer 32-Bit-Gleitkommazahl legt das Vorzeichen fest.

Exponent

Der Exponent setzt sich aus den Bits 6 bis 0 des 1. Bytes plus Bit 7 des 2. Bytes zusammen (= 8 Bit).

Mantisse

Für die Mantisse werden die verbleibenden 23 Bits benutzt.

Byte 1 Byt							te 2				Byte 3						Byte 4														
Bit Bi						Bit	t						Bit						Bit												
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
+/ -	27	26	25	24	2 ³	2 ²	21	20	2- 1	2- 2	2- 3	2- 4	2- 5	2- 6	2- 7	2- 8	2- 9	2- 10	2- 11	2- 12	2- 13	2- 14	2- 15	2- 16	2- 17	2- 18	2- 19	2- 20	2- 21	2- 22	2- 23
S	Exponent Mantisse								1				I		1		1														

Formel (IEEE 754):	Wert	$= (-1)^{VZ} * 2^{(Ex)}$	ponent - 127) * (1 -	+ Mantisse)	
Beispiel:	40 F0 00 00	= 0 1000000	1110000	00000000	00000000
	(hexadezimal)	Byte 1	Byte 2	Byte 3	Byte 4
	Wert	$= -1^{0} \ge 2^{129-12}$	7 x (1 + 2 ⁻¹ + 2 ⁻¹	⁻² + 2 ⁻³)	
		$= 1 \ge 2^2 \ge (1 + 1)^2$	0,5 + 0,25 + 0	,125)	
		= 1 x 4 x 1,87	5		
		= 7,5			

Erklärung Messbereichsumschaltung (MRS)

MRS		Funktion													
reserved	reserved	reserved	reserved		reserved	E2	E1	Dezimal	Hexadez- mal						
Anzahl B	Anzahl Binäreingänge = 2; E1 und E2 aktiv														
-	-	-	-		-	0	0	0	0x00	MRS 1					
-	-	-	-		-	0	1	1	0x01	MRS 2					
-	-	-	-		-	1	0	2	0x02	MRS 3					
-	-	-	-		-	1	1	3	0x03	MRS 4					
Anzahl B	inäreingän	ige = 1; E1	und E2 ak	tiv	v										
-	-	-	-		-	0	0	0	0x00	MRS 1					
-	-	-	-		-	-	1	1	0x01	Hold an					
-	-	-	-		-	1	0	2	0x02	MRS 2					
Anzahl B	inäreingän	ige = 0; E1	aktiv												
-	-	-	-		-	-	0	0	0x00	Hold aus					
-	-	-	-			-	1	1	0x01	Hold an					

Anpassung zyklisches Datentelegramm

Sie können das zyklische Telegramm anpassen, um den Anforderungen eines Prozesses besser gerecht zu werden. Die obigen Tabellen stellen den maximalen Inhalt des zyklischen Datentelegramms dar.

Falls Sie nicht alle Ausgangsgrößen des Messumformers verwenden möchten, können Sie mit Hilfe der Gerätekonfiguration (CHK_CFG) über die SPS-Software einzelne Datenblöcke

aus dem zyklischen Telegramm eliminieren. Durch die Kürzung des Telegramms wird der Datendurchsatz eines PROFIBUS-Systems verbessert. Sie sollten nur die Blöcke aktiv lassen, welche Sie auch weiter im System verarbeiten. Dies können Sie durch eine **negative** Auswahl im Konfigurationstool erreichen.

Um den korrekten Aufbau des zyklischen Datentelegramms zu erreichen, muss der PROFI-BUS-Master die Kennung FREE_PLACE (00h) für die nicht aktiven Blöcke senden.

Statuscodes für den Parameter OUT des Analog Input Blocks

Statuscode	Gerätezustand	Bedeutung	Limits
0x00 0x01 0x02 0x03	BAD	nicht spezifisch	OK LOW_LIM HIGH_LIM CONST
0x04 0x05 0x06 0x07	BAD	Konfigurationsfehler	OK LOW_LIM HIGH_LIM CONST
0x0C 0x0D 0x0E 0x0F	BAD	Gerätefehler	OK LOW_LIM HIGH_LIM CONST
0x10 0x11 0x12 0x13	BAD	Sensorfehler	OK LOW_LIM HIGH_LIM CONST
0x1F	BAD	Außer Betrieb	CONST
0x40 0x41 0x42 0x43	UNCERTAIN	nicht spezifisch	OK LOW_LIM HIGH_LIM CONST
0x47	UNCERTAIN	letzter brauchbarer Wert	CONST
0x4B	UNCERTAIN	Ersatzwert des Failsafe- Zustandes	CONST
0x4F	UNCERTAIN	Initialwert des Failsafe- Zustandes	CONST
0x50 0x51 0x52 0x53	UNCERTAIN	Messwert des Sensors zu ungenau	OK LOW_LIM HIGH_LIM CONST
0x5C 0x5D 0x5E 0x5F	UNCERTAIN	Konfigurationsfehler	OK LOW_LIM HIGH_LIM CONST
0x60 0x61 0x62 0x63	UNCERTAIN	Simulationswert	OK LOW_LIM HIGH_LIM CONST
0x64 0x65 0x66 0x67	UNCERTAIN	Sensor Kalibrierung	OK LOW_LIM HIGH_LIM CONST
0x80 0x83	UNCERTAIN	Messsystem o.k.	OK CONST
0x84 0x85 0x86 0x87	GOOD	Änderung von Parametern	OK LOW_LIM HIGH_LIM CONST

Statuscode	Gerätezustand	Bedeutung	Limits
0x89 0x8A	GOOD	Warnung: Vorwarngrenze überschritten	LOW_LIM HIGH_LIM
0x8D 0x8E	GOOD	Kiritscher Alarm: Alarmgrenze überschritten	LOW_LIM HIGH_LIM

7.3 Azyklischer Datenaustausch

Der azyklische Datenaustausch dient der Übertragung von Parametern während der Inbetriebnahme, der Wartung oder zur Anzeige weiterer Messgrössen, die nicht im zyklischen Nutzdatenverkehr enthalten sind.

Generell wird zwischen Klasse 1 und Klasse 2 Master-Verbindungen unterschieden. Je nach Implementierung des Messumformers können mehrere Klasse 2-Verbindungen gleichzeitig eingerichtet werden.

- Beim Smartec sind zwei Klasse 2 Master zugelassen. Dies bedeutet, es können zwei Klasse 2 Master zur gleichen Zeit auf den Messumformer zugreifen. Allerdings muss darauf geachtet werden, dass nicht auf die gleichen Daten **schreibend** zugegriffen wird. Sonst ist die Datenkonsistenz nicht mehr gewährleistet.
- Beim Lesen von Parametern durch einen Klasse 2 Master wird unter der Angabe der Geräteadresse, Slot/Index und der erwarteten Datensatzlänge ein Anforderungstelegramm vom Klasse 2 Master zum Messumformer geschickt. Der Messumformer antwortet mit dem angefordertem Datensatz, falls der Datensatz existiert und die richtige Länge (Byte) hat.
- Beim Schreiben von Parametern durch einen Klasse 2 Master werden neben der Adresse des Messumformers, Slot und Index, Längenangaben (Byte) und der Datensatz übertragen. Der Messumformer quittiert diesen Schreibauftrag nach Beendigung. Mit einem Klasse 2 Master können auf die Blöcke zugegriffen werden, welche in der Abbildung dargestellt sind.

7.3.1 Slot-/Index-Tabellen

Die Geräteparameter sind in den nachfolgenden Tabellen aufgeführt. Sie können über die Slot- und Index-Nummer auf diese Parameter zugreifen. Die einzelnen Blöcke beinhalten jeweils Standardparameter, Blockparameter und teilweise herstellerspezifische Parameter. Zusätzlich sind die Matrixpositionen zur Bedienung über Fieldcare angegeben.

Parameter	Matrix FC ¹⁾	Slot	Index	Size (bytes)	Туре	Acc.	Store
DIR_OBJECT HEADER		1	0	12	Array of unsig- ned16	r	Cst.
COMP_LIST_DIR_ENTRIES		1	1	32	Array of unsig- ned16	r	Cst.
COMP_DIR_ENTRIES_CONTINUES		1	2	12	Array of unsig- ned16	r	Cst.

7.3.2 Gerätemanagement

1) FC=Fieldcare

Parameter	Matrix FC	Slot	Index	Size (bytes)	Туре	Acc.	Store
Standardparameter					1		
BLOCK_OBJECT		1	160	20	DS-32*	r	С
ST_REV		1	161	2	Unsigned16	r	N
TAG_DESC	VAHO	1	162	32	Octetstring	r, w	S
STRATEGY		1	163	2	Unsigned16	r, w	S
ALERT_KEY		1	164	1	Unsigned8	r, w	S
TARGET_MODE		1	165	1	Unsigned8	r, w	S
MODE_BLK Actual Permitted Normal		1	166	3	DS-37* Unsigned8 Unsigned8 Unsigned8	r	S
ALARM_SUM		1	167	8	DS-42*	r	D
Blockparameter							
SOFTWARE_REVISION		1	168	16	Visible string	r	Cst
HARDWARE_REVISION		1	169	16	Visible string	r	Cst
DEVICE_MAN_ID		1	170	2	Unsigned16	r	Cst
DEVICE_ID		1	171	16	Visible string	r	Cst
DEVICE_SER_NUM		1	172	16	Visible string	r	Cst
DIAGNOSIS		1	173	4	Octetstring	r	D
DIAGNOSIS_EXTENSION		1	174	6	Octetstring	r	D
DIAGNOSIS_MASK		1	175	4	Octetstring	r	Cst
DIAGNOSIS_MASK_EXTENSION		1	176	6	Octetstring	r	Cst
DEVICE_CERTIFICATION		1	177	32	Visible string	r	Ν
WRITE_LOCKING		1	178	2	Unsigned16 0: acyclic refused 2457: writeable	r, w	N
FACTORY_RESET		1	179	2	Unsigned16 Ox8000: Reset Kalibrierdaten Ox8001: Reset Einstelldaten Ox0001: PNO defaults alle Daten 2506: Warmstart 2712: Reset Busadr.	r, w	S
DESCRIPTOR		1	180	32	Octetstring	r, w	S
DEVICE_MESSAGE		1	181	32	Octetstring	r, w	S
DEVICE_INSTALL_DATE		1	182	16	Octetstring	r, w	S
LOCAL_OP_ENABLE		1	183	1	Unsigned8 0: disabled 1: enabled	r, w	N
IDENT_NUMBER_SELECTOR		1	184	1	Unsigned8 0: profile specific 1: manufacturer specific P 3.0 2: manufacturer specific P2.0	r, w	S

7.3.3 Physical Block

Parameter	Matrix FC	Slot	Index	Size (bytes)	Туре	Acc.	Store
HW_WRITE_PROTECTION		1	185	1	Unsigned8 0: unprotected 1: protected	r	D
DEVICE_CONFIGURATION		1	196	32	Visible string	r	N
INIT_STATE		1	197	1	Unsigned8 1: status before reset 2: run 5: maintenance	r, w	S
DEVICE_STATE		1	198	1	Unsigned8 2: run 5: maintenance	r, w	D
GLOBAL_STATUS		1	199	2	Unsigned16	r	D
Gap		1	200 - 207				
E+H-Parameter					·		
ACTUAL_ERROR	VAH2	1	208	2	Unsigned16	r	D
LAST_ERROR	VAH3	1	209	2	Unsigned16	r	D
UPDOWN_FEATURES_SUPP		1	210	1	Octetstring	r	С
DEVICE_BUS_ADRESS	VAH1	1	213	1	Signed8	r	N
SET_UNIT_TO_BUS	VAH9	1	214	1	Unsigned8 0: off 1: confirm	r, w	D
CLEAR_LAST_ERROR	VAH4	1	215	1	Unsigned8 0: off 1: confirm	r, w	D

7.3.4 Analyser Transducer Block

Der Analyser Transducer Block zweimal vorhanden. Diese sind in folgender Reihenfolge auf die Slots 1 und 2 verteilt:

- 1. Hauptmesswert (Main Process Value)
- 2. Temperaturmesswert (Temperature)

Parameter	Matrix FC	Slot	Index	Size (bytes)	Туре	Acc.	Store			
Standardparameter										
BLOCK_OBJECT		1 - 2	100	20	DS-32*	r	С			
ST_REV		1 - 2	101	2	Unsigned16	r	N			
TAG_DESC		1 - 2	102	32	Octetstring	r, w	S			
STRATEGY		1 - 2	103	2	Unsigned16	r, w	S			
ALERT_KEY		1 - 2	104	1	Unsigned8	r, w	S			
TARGET_MODE		1 - 2	105	1	Unsigned8	r, w	S			
MODE_BLK Actual Permitted Normal		1 - 2	106	3	DS-37* Unsigned8 Unsigned8 Unsigned8	r	N Cst Cst			
ALARM_SUM		1 - 2	107	8	DS-42*	r	D			
Blockparameter						•				
COMPONENT_NAME		1 - 2	108	32	Octetstring	r, w	S			

Parameter	Matrix FC	Slot	Index	Size (bytes)	Туре	Acc.	Store
PV		1 - 2	109	12	DS-60*	r	D
PV_UNIT		1 - 2	110	2	Unsigned16	r, w	S
PV_UNIT_TEXT		1 - 2	111	8	Visible string	r, w	S
ACTIVE_RANGE		1 - 2	112	1	Unsigned8 1: Range 1	r, w	S
AUTORANGE_ON		1 - 2	113	1	Boolean	r, w	S
SAMPLING_RATE		1 - 2	114	4	Time_difference	r, w	S
Gap reserved PNO		1 - 2	115 - 124				
NUMBER_OF_RANGES		1 - 2	125	1	Unsigned8	r	N
RANGE_1		1 - 2	126	8	DS-61*	r, w	N

7.3.5 Analog Input Block

Der Analog Input Block ist zweimal vorhanden. Diese sind in folgender Reihenfolge auf die Slots 1 und 2 verteilt:

- 1. Hauptmesswert (Main Process Value)
- 2. Temperaturmesswert (Temperature)

Parameter	Matrix FC	Slot	Index	Size (bytes)	Туре	Acc.	Store
Standardparameter							
BLOCK_OBJECT		1 - 2	16	20	DS-32*	r	С
ST_REV		1 - 2	17	2	Unsigned16	r	Ν
TAG_DESC		1 - 2	18	32	Octetstring	r, w	S
STRATEGY		1 - 2	19	2	Unsigned16	r, w	S
ALERT_KEY		1 - 2	20	1	Unsigned8	r, w	S
TARGET_MODE		1 - 2	21	1	Unsigned8	r, w	S
MODE_BLK Actual Permitted Normal		1 - 2	22	3	DS-37* Unsigned8 Unsigned8 Unsigned8	r	N Cst Cst
ALARM_SUM		1 - 2	23	8	DS-42*	r	D
ВАТСН		1 - 2	24	10	DS-67*	r, w	S
Gap		1 - 2	25				
Blockparameter							
OUT		1 - 2	26	5	DS-33*	r	D
PV_SCALE		1 - 2	27	8	Float	r, w	S
OUT_SCALE		1 - 2	28	11	DS-36*	r, w	S
LIN_TYPE		1 - 2	29	1	Unsigned8	r, w	S
CHANNEL		1 - 2	30	2	Unsigned16	r, w	S
PV_FTIME		1 - 2	32	4	Float	r, w	S
FSAFE_TYPE		1 - 2	33	1	Unsigned8	r, w	S
FSAFE_VALUE		1 - 2	34	4	Float	r, w	S
ALARM_HYS		1 - 2	35	4	Float	r, w	S
HI_HI_LIM		1 - 2	37	4	Float	r, w	S

Parameter	Matrix FC	Slot	Index	Size (bytes)	Туре	Acc.	Store
HI_LIM		1 - 2	39	4	Float	r, w	S
LO_LIM		1 - 2	41	4	Float	r, w	S
LO_LO_LIM		1 - 2	43	4	Float	r, w	S
HI_HI_ALM		1 - 2	46	16	DS-39*	r	D
HI_ALM		1 - 2	47	16	DS-39*	r	D
LO_ALM		1 - 2	48	16	DS-39*	r	D
LO_LO_ALM		1 - 2	49	16	DS-39*	r	D
SIMULATE		1 - 2	50	6	DS-50*	r, w	S
VIEW_1		1 - 2	61	18	Unsigned8	r	D

7.3.6 Herstellerspezifische Parameter

Parameter	Matrix FC	Slot	Index	Size (bytes)	Туре	Acc.	Store
Messwert	V0H0	3	100	4	Float	r	D
Temperatur	V0H1	3	101	4	Float	r	D
Betriebsart	V0H2	3	102	1	Unsigned8 0: Leitfähigkeit 1: Konzentration	r	D
Maßeinheit (Konzentration)	V0H3	3	103	1	Unsigned8 57: % 139: ppm 245: mg/l 106: tds 251: ohne	r, w	N
Anzahl Dezimalstellen	V0H4	3	104	1	Unsigned8 O: X.xxx 1: XX.xx 2: XXX.x 3: XXXX	r, w	N
Maßeinheit (Leitfähigkeit)	VOH5	3	105	1	Unsigned8 66: mS/cm 67: μm/cm 240: S/m	r, w	N
Signaldämpfung	V0H6	3	106	1	Unsigned8	r, w	N
Rohwert	V0H7	3	107	4	Float	r	D
Aktueller Messbereich	V0H9	3	108	1	Unsigned8	r, w	N
Temperaturmessung	V1H0	3	109	1	Unsigned8 0: fest 1: Pt 100 2: Pt1000 3: NTC	r, w	N
Prozesstemperatur	V1H3	3	110	4	Float	r, w	N
Zellkonstante	V1H4	3	111	4	Float	r, w	N
Einbaufaktor	V1H6	3	112	4	Float	r, w	N
Kalibriertemperatur	V1H8	3	113	4	Float	r, w	N
Temperaturkorrektur	V1H9	3	114	4	Float	r, w	N

Parameter	Matrix FC	Slot	Index	Size (bytes)	Туре	Acc.	Store
Kontaktfunktion	V3H0	3	115	1	Unsigned8 0: Alarm function 1: Limit function 2: Limit + alarm fct.	r, w	N
Einschaltverzögerung	V3H3	3	116	2	Unsigned16	r, w	N
Ausschaltverzögerung	V3H4	3	117	2	Unsigned16	r, w	N
Anzahl Binäreingänge	V4H0	3	118	1	Unsigned8	r, w	N
Quelle Binäreingänge	V4H1	3	119	1	Unsigned8 0: Binärkontakte 1: Zyklische Daten	r, w	N
Bearbeiteter Messbereich	V4H2	3	120	1	Unsigned8	r, w	N
Betriebsart bearbeiteter Messbe- reich	V4h3	3	121	1	Unsigned8 0: Leitfähigkeit 1: Konzentration	r, w	Ν
Stoffauswahl bearbeiteter Messbe- reich	V4H4	3	122	4	Unsigned8 0: NaOH 1: H2SO4 2: H3PO4 3: HNO3 4: User 1	r, w	Ν
Temperaturkompensation bearbei- teter Messbereich	V4H5	3	123	4	Unsigned8 O: ohne 1: linear 2: NaCl 3: User 1	r, w	N
Alphawert bearbeiteter Messbe- reich	V4H6	3	124	4	Float	r, w	Ν
Einschaltpunkt bearbeiteter Mess- bereich	V4H8	3	125	4	Float	r, w	Ν
Ausschaltpunkt bearbeiteter Mess- bereich	V4H9	3	126	4	Float	r, w	Ν
Korrekturfaktor	V5H0	3	127	4	Float	r, w	N
Stoffauswahl	V5H1	3	128	1	Unsigned8 0: NaOH 1: H2SO4 2: H3PO4 3: HNO3 4: User 1	r	D
Aktuelle Konzentrationstabelle	V5H2	3	129	1	Unsigned8	r, w	D
Konzentrationstabelle lesen / edi- tieren	V5H3	3	130	1	Unsigned8 0: lesen 1: editieren	r, w	D
Anzahl Elemente Konzentrations- tabelle	V5H4	3	131	1	Unsigned8	r, w	Ν
Auswahl Elemente Konzentrations- tabelle	V5H5	3	132	1	Unsigned8	r, w	D
Leitfähigkeit Konzentrationstabelle	V5H6	3	133	4	Float	r, w	Ν
Konzentration Konzentrationsta- belle	V5H7	3	134	4	Float	r, w	Ν
Temperatur Konzentrationstabelle	V5H8	3	135	4	Float	r, w	Ν

Parameter	Matrix FC	Slot	Index	Size (bytes)	Туре	Acc.	Store
Status Konzentrationstabelle	V5H9	3	136	1	Unsigned8 0: Ok 1: Warten 2: in Bearbeitung 3: Ungültig	r	D
Aktuelle Alphatabelle	V6H0	3	137	1	Unsigned8 1: User	r, w	D
Alphatabelle lesen / editieren	V6H1	3	138	1	Unsigned8 0: lesen 1: editieren	r, w	D
Anzahl Elemente Alphatabelle	V6H2	3	139	1	Unsigned8	r, w	N
Auswahl Elemente Alphatabelle	V6H3	3	140	4	Unsigned8	r, w	D
Temperatur Alphatabelle	V6H4	3	141	4	Float	r, w	N
Alphawert Alphatabelle	V6H5	3	142	1	Float	r, w	N
Status Alphatabelle	V6H6	3	143	1	Unsigned8 0: Ok 1: Warten 2: in Bearbeitung 3: Ungültig	r	D
PCS Alarm	V7H0	3	144	1	Unsigned8 0: kein PCS 1: 1 Stunde 2: 2 Stunden 3: 4 Stunden	r, w	N
Kontakttyp Relais	V8H1	3	145	1	Unsigned8 0: Dauerkontakt 1: Wischkontat	r, w	N
Zeiteinheit Relais	V8H2	3	146	1	Unsigned8 0: Sekunden 1: Minuten	r, w	N
Alarmverzögerung	V8H3	3	147	1	Unsigned16	r, w	N
Diagnose Code Auswahl	V8H4	3	148	1	Unsigned8	r, w	D
Alarm Status	V8H53	3	149	1	Unsigned8 0: nein 1: ja	r	D
Alarmrelais	V8H6	3	150	1	Unsigned8 0: nein 1: ja	r, w	N
Verriegelung	V8H9	3	151	2	Unsigned16 22: not protected 9998: loc. op. disabl. 9999: hardware prot.	r, w	N
Hold-Funktion	V9H0	3	152	1	Unsigned8	r, w	N
Hold-Nachwirkzeit	V9H1	3	153	2	Unsigned16	r, w	N
MBU-Ausführung	V9H2	3	154	1	Unsigned8	r	Cst
Werkswerte	V9H4	3	155	1	Unsigned8 1: Device data 2: Sensor data 3: User data 4: Adress data	r, w	D
SW-Version	VAH5	3	156	2	Unsigned16	r	Cst
HW-Version	VAH6	3	157	2	Unsigned16	r	Cst

7.3.7 Datenstrings

In der Slot/Index-Tabelle sind einige Datentypen (z. B. DS-33) mit einem Stern (*) markiert. Diese Datentypen sind Datenstrings, die nach der PROFIBUS-SpezifikationTeil 1, Version 3.0 aufgebaut sind. Sie bestehen aus mehreren Elementen, die zusätzlich über einen Subindex adressiert werden, wie das folgende Beispiel zeigt.

Parametertyp	Subindex	Тур	Größe (byte)
DS-33	1	Float	4
	5	Unsigned8	1

8 Inbetriebnahme

8.1 Installations- und Funktionskontrolle

Vergewissern Sie sich, dass alle Abschlusskontrollen durchgeführt wurden, bevor Sie Ihre Messstelle in Betrieb nehmen:

- Checkliste "Montagekontrolle"
- Checkliste "Anschlusskontrolle"

8.2 Einstellen der Geräteadresse

Die Adresse muss bei einem PROFIBUS-Gerät immer eingestellt werden. Bei nicht korrekt eingestellter Adresse wird der Messumformer vom Leitsystem nicht erkannt.

Ab Werk werden alle Geräte mit der Adresse 126 ausgeliefert. Diese Adresse können Sie zur Funktionsüberprüfung des Gerätes und zum Anschluss an ein PROFIBUS-PA-Netzwerk verwenden. Anschließend müssen Sie diese Adresse ändern, um weitere Geräte einbinden zu können.

Die Einstellung der Geräteadresse können Sie vornehmen über:

- die Vor-Ort-Bedienung,
- den PROFIBUS-Dienst Set_Slave_Add oder
- den DIL-Schalter im Gerät.

Gültige Geräteadressen liegen im Bereich 0 ... 125.

Über die Adresse 126 findet kein zyklischer Datenaustausch statt!

Jede Adresse darf in einem PROFIBUS-Netz nur einmal vergeben werden.

Der Doppelpfeil im Display zeigt Ihnen die aktive Kommunikation mit PROFIBUS an.

☑ 7 Position des DIL-Schalters im Messumformer (zugänglich nur bei geöffnetem Gehäusedeckel)

8.2.1 Einstellen der Geräteadresse über das Bedienmenü

Sie können die Adresse nur über die Software einstellen, wenn der DIL-Schalter 8 auf Software-Stellung steht. Werksseitig ist der Schalter 8 schon auf Software eingestellt.

B DIL-Schalter 8 muss auf ON stehen, damit Bedienung über Software möglich

Stellen Sie die Geräteadresse über die Funktionsgruppe INTERFACE im Menü-Feld I1 ein.

CODE	ANZEIGE	AUSWAHL (Werkseinstel- lung = fett)	INFO
Ι	SETUP HOLD		
	INTERFACE		
I1	SETUP HOLD 126 II	126 0 126	Eingabe der Busadresse Jede Adresse darf in einem Netzwerk nur einmal vergeben werden.
	Address		
I2	SETUP HOLD		Messstellenbezeichnung Hier nur Anzeige nicht editierbar
	Tag 12		
	@@@@@@@@		
	A0051425		

8.2.2 Einstellung der Geräteadresse über PROFIBUS-Kommunikation

Die Einstellung der Adresse erfolgt über den Dienst Set_Slave_Add.

8.2.3 Einstellung der Geräteadresse über DIL-Schalter (Hardware-Einstellung)

- 1. Die vier Kreuzschlitzschrauben lösen und den Gehäusedeckel abnehmen. Der DIL-Schalter befindet sich am Elektronik-Modul oberhalb des Displays.
- Die Geräteadresse (von 0 ... 126) an den Schaltern 1 bis 7 einstellen (Beispiel: 18 = 2 + 16).

9 Beispiel für Geräteadresse über DIL-Schalter

Den Schalter 8 auf OFF stellen.

4. Gehäusedeckel danach wieder schließen.

8.3 Gerätestammdateien

Die Gerätestammdatei (GSD) wird zur Projektierung eines PROFIBUS-DP-Netzwerkes benötigt. In der GSD (einfache Textdatei) steht z. B. beschrieben, welche Datenübertragungsgeschwindigkeit das Gerät unterstützt oder welche digitalen Informationen in welchem Format die SPS vom Gerät empfängt.

Von der PROFIBUS-Nutzerorganisation (PNO) erhält jedes Gerät eine Identifikationsnummer (ID-Nr.). Aus dieser leitet sich der Name der Gerätestammdatei ab. Für Endress+Hauser beginnt diese ID-Nr. mit der Herstellerkennung 15xx. Damit Sie eine bessere Zuordnung und Eindeutigkeit zur jeweiligen GSD haben, lauten die GSD-Namen bei Endress+Hauser wie folgt:

EH3x15xx

EH = Endress+Hauser

3 = Profile

x = Erweiterte Kennung

15xx = ID-Nr.

8.3.1 Typen von Gerätestammdateien

- ► Vor der Projektierung entscheiden, mit welcher GSD Sie die Anlage betreiben wollen.
 - Über einen Klasse 2 Master können Sie die Einstellung verändern (unter Physical Block - Parameter Ident_Number_Selector).

Generell stehen Ihnen folgende Gerätestammdateien mit unterschiedlicher Funktionalität zur Verfügung:

• Herstellerspezifische GSD mit Profile 3.0 Funktionalität:

Mit dieser GSD wird die uneingeschränkte Funktionalität des Feldgerätes gewährleistet. Gerätespezifische Prozessparameter und Funktionen sind somit verfügbar.

Herstellerspezifische GSD mit Profile 2.0 Funktionalität:

Mit dieser GSD sind die zyklischen Daten abwärtskompatibel zum Messumformer Smartec mit Profile 2.0 Funktionalität. Damit kann in Anlagen, in denen der Messumformer Smartec mit Profile 2.0 Funktionalität eingesetzt wird, auch der Messumformer Smartec mit Profile 3.0 Funktionalität verwendet werden.

Profile-GSD:

Sofern eine Anlage mit den Profile-GSD projektiert ist, kann ein Austausch der Geräte verschiedener Hersteller stattfinden. Wichtig ist dabei allerdings, dass die zyklischen Prozesswerte in ihrer Reihenfolge übereinstimmen.

Beispiel:

Der Messumformer Smartec unterstützt die Profile-GSD **PA139750.gsd** (IEC 61158-2). Diese GSD beinhaltet AI-Blöcke. Die AI-Blöcke sind immer folgenden Messgrößen zugeordnet:

AI 1 = Main Process Value

AI 2 = Temperature

Somit ist gewährleistet, dass die erste Messgröße mit den Feldgeräten der Fremdhersteller übereinstimmt.

Gerätename	Ident_ num- ber_ Selector	ID-Nummer	GSD	Bitmaps
Nur Profile 3.0-Funktionalität:		•	•	
Smartec PA	0	9750 Hex	PA139750.gsd	PA_9750n.bmp
	0	9750 Hex	PA039750.gsd	PA_9750n.bmp
Herstellerspezifische Funktioner	n mit Profile 3.0-	Funktionalität:	•	·
Smartec PA zusätzliche zykl. Daten für Digital I/O (Parame- tersatzumschaltung)	1	153E Hex	EH3x153E.gsd	EH153E_d.bmp EH153E_n.bmp EH153E_s.bmp
Smartec DP zusätzliche zykl. Daten für Digital I/O (Parame- tersatzumschaltung)	1	153D Hex	EH3x153D.gsd	EH153D_d.bmp EH153D_n.bmp EH153D_s.bmp
Herstellerspezifische Funktioner	n mit Profile 2.0-	Funktionalität:	·	
Smartec PA	2	151B Hex	EH151B.gsd	EH151B_d.bmp EH151B_n.bmp EH151B_s.bmp
Smartec DP	2	151A Hex	EH151A.gsd	EH151A_d.bmp EH151A_n.bmp EH151A_s.bmp

8.3.2 Gerätestammdateien für Smartec

Die GSD aller Endress+Hauser-Geräte können Sie anfordern über:

- www.endress.com
- www.profibus.com

8.3.3 Inhaltsstruktur der GSD-Dateien von Endress+Hauser

Für die Endress+HauserMessumformer mit PROFIBUS-Schnittstelle bekommen Sie mit einer exe-Datei alle zur Projektierung notwendigen Daten. Diese Datei erzeugt beim selbstständigen Entpacken folgende Struktur:

Übergeordnet sind die verfügbaren Messparameter des Messumformers. Darunter finden Sie:

Ordner Revision x.xx:

Diese Kennzeichnung steht für eine spezielle Geräteversion. In den dazu gehörigen Unterverzeichnissen **BMP** und **DIB** finden Sie jeweils gerätespezifische Bitmaps.

- Ordner GSD
- Ordner Info:

Informationen zum Messumformer sowie etwaige Abhängigkeiten in der Gerätesoftware.

► Die Informationen im Ordner **Info** vor der Projektierung sorgfältig durchlesen.

8.3.4 Arbeiten mit den GSD-Dateien

Die GSD müssen in das Automatisierungssystem eingebunden werden. Die GSD-Dateien können, abhängig von der verwendeten Software, entweder in das programmspezifische Verzeichnis kopiert werden bzw. durch eine Import-Funktion innerhalb der Projektierungssoftware in die Datenbank eingelesen werden.

Beispiel:

SPS Siemens S7-300 / 400 mit Projektierungssoftware Siemens STEP 7

1. Die Dateien in das Unterverzeichnis: ...\ siemens \ step7 \ s7data \ gsd kopieren.

- 2. Die Bitmap-Dateien in das Verzeichnis: ...\ siemens \ step7 \ s7data \ nsbmp laden.
 - └ Die Bitmap-Dateien gehören auch zu den GSD-Dateien. Mit Hilfe dieser Bitmap-Dateien werden die Messstellen bildlich dargestellt.

Fragen Sie zu einer anderen Projektierungssoftware den Hersteller Ihrer SPS nach dem korrekten Verzeichnis.

9 Diagnose und Störungsbehebung

9.1 Systemfehlermeldungen

Die Parameter DIAGNOSIS und DIAGNOSIS_EXTENSION werden aus den gerätespezifischen Fehlern erzeugt.

NAMUR	Fehler-	Beschreibung	DIAGNOSIS	DIAGNOSIS_EXTEN-	Messwer	t-Status	
-Klasse	Nr.			SIO	Quality	Sub-Status	Hex ¹⁾
Ausfall	E001	Speicher fehlerhaft	01 00 00 80 - DIA_HW_ELECTR	01 00 00 00 00 00	BAD	device failure	OC
Ausfall	E002	Datenfehler im EEPROM	10 00 00 80 - DIA_MEM_CHKSUM	02 00 00 00 00 00 00	BAD	device failure	0C
Ausfall	E003	Ungültige Konfigura- tion	00 04 00 80 - DIA_CONF_INVAL	04 00 00 00 00 00	BAD	device failure	0C
Ausfall	E007	Messumformer fehler- haft	20 00 00 80 - DIA_MEASUREMENT	08 00 00 00 00 00	BAD	device failure	OC
Ausfall	E008	Sensor oder Sensoran- schluss fehlerhaft	20 00 00 80 - DIA_MEASUREMENT	10 00 00 00 00 00	BAD	sensor failure	10
Ausfall	E010	Temperaturfühler defekt	20 00 00 80 - DIA_MEASUREMENT	20 00 00 00 00 00	BAD	sensor failure	10
Ausfall	E025	Grenzwert für Airset- Offset überschritten	20 00 00 80 - DIA_MEASUREMENT	40 00 00 00 00 00	BAD	configuration error	04
Ausfall	E036	Kalibrierbereich Sensor überschritten	20 00 00 80 - DIA_MEASUREMENT	80 00 00 00 00 00	BAD	configuration error	04
Ausfall	E037	Kalibrierbereich Sensor unterschritten	20 00 00 80 - DIA_MEASUREMENT	00 01 00 00 00 00	BAD	configuration error	04
Ausfall	E045	Kalibrierung abgebro- chen	20 00 00 80 - DIA_MEASUREMENT	00 02 00 00 00 00	BAD	configuration error	04
Ausfall	E049	Einbaufaktor über- schritten	20 00 00 80 - DIA_MEASUREMENT	00 04 00 00 00 00	BAD	configuration error	04
Ausfall	E050	Einbaufaktor unter- schritten	00 20 00 80 - DIA_MAINTENANCE	00 00 00 00 00 00	BAD	configuration error	5C
Ausfall	E055	Messbereich des Hauptparameters unterschritten	20 00 00 80 - DIA_MEASUREMENT	00 10 00 00 00 00	UNCER- TAIN	sensor conver- sion not accu- rate	50
Ausfall	E057	Messbereich des Hauptparameters überschritten	20 00 00 80 - DIA_MEASUREMENT	00 20 00 00 00 00	UNCER- TAIN	sensor conver- sion not accu- rate	50
Ausfall	E059	Temperaturbereich unterschritten	20 00 00 80 - DIA_MEASUREMENT	00 40 00 00 00 00	UNCER- TAIN	sensor conver- sion not accu- rate	50
Ausfall	E061	Temperaturbereich überschritten	20 00 00 80 - DIA_MEASUREMENT	00 80 00 00 00 00	UNCER- TAIN	sensor conver- sion not accu- rate	50
Ausfall	E067	Sollwert Grenzwertge- ber überschritten	00 20 00 80 - DIA_MAINTENANCE	00 00 00 04 00 00	UNCER- TAIN	non-specific	40
Ausfall	E077	Temperatur außerhalb der α-Wert-Tabelle	00 04 00 80 - DIA_CONF_INVAL	00 00 01 00 00 00	BAD	configuration error	04
Ausfall	E078	Temperatur außerhalb der Konzentrations- Tabelle	00 04 00 80 - DIA_CONF_INVAL	00 00 02 00 00 00	BAD	configuration error	04
Ausfall	E079	Leitfähigkeit außer- halb der Konzentrati- ons- Tabelle	0 04 00 80 - DIA_CONF_INVAL	00 00 04 00 00 00	BAD	configuration error	04

NAMUR	Fehler-	Beschreibung	DIAGNOSIS	DIAGNOSIS_EXTEN-	Messwert	-Status	
-Klasse	Nr.			SIO	Quality	Sub-Status	Hex ¹⁾
Funkt kon- trolle	E101	Servicefunktion aktiv			-	-	
Funkt kon- trolle	E102	Handbetrieb aktiv -			-	-	
Funkt kon- trolle	E106	Download aktiv	00 00 00 80 - EXTENSION_AVAI- LABLE	00 00 00 00 00 80	-	-	
Ausfall	E116	Download-Fehler	00 04 00 80 - DIA_CONF_INVAL	00 00 08 00 00 00	BAD	configuration error	04
Wartung	E150	Abstand der Temperaturwerte oder α -Wert-Tabelle zu klein	00 20 00 80 - DIA_MAINTENANCE	00 00 00 01 00 00	UNCER- TAIN	configuration error	50
Ausfall	E152	Live-Check-Alarm (PCS)	20 00 00 80 - DIA_MEASUREMENT	00 00 00 02 00 00	BAD	sensor failure	50

1) Je nach Zustand der Limit-Bits wird 00 bis 03 hinzuaddiert

9.2 Prozess- und gerätebedingte Fehler

Betriebsanleitung Smartec CLD132, BA00207C

Betriebsanleitung Smartec CLD134, BA00401C

10 Kommunikationsspezifisches Zubehör

Gerätesteckerset M12 Feldbus

- Vierpoliger Metallstecker zur Montage am Messumformer
- Zur Anbindung an die Anschlussbox oder Kabelbuchse
- Kabellänge 150 mm (5,91 in)
- Best.-Nr. 51502184

FieldCare SFE500

- Universelles Tool für die Feldgeräte-Konfiguration und -Verwaltung
- Mit kompletter Bibliothek zertifizierter DTMs (Device Type Manager) zum Betrieb von Endress+Hauser Feldgeräten
- Bestellung nach Bestellstruktur
- www.endress.com/sfe500

11 Protokollspezifische Daten

11.1 PROFIBUS-PA

Ausgangssignal	PROFIBUS-PA: EN 50170 vol. 2, Profile-Version 3.0
PA-Funktion	Slave
Übertragungsrate	31,25 kBit/s
Signalcodierung	Manchester II
Antwortzeit Slave	ca. 20 ms
Ausfallsignal	Status- und Alarmmeldungen gemäß PROFIBUS- PA, Profile-Version 3.0 Display: Fehlercode
Physikalische Schicht	IEC 61158-2, MBP (Manchester bus coded)
Busspannung	9 32 V
Stromaufnahme Bus	10 mA ± 1 mA
Fehlerstromaufnahme I _{FDE}	0 mA

11.2 PROFIBUS-DP

Ausgangssignal	PROFIBUS-DP gemäß EN 50170 vol. 2, Profile-Version 3.0
PA-Funktion	Slave
Übertragungsrate	9,6 kBits/s, 19,2 kBits/s, 45,45 kBits/s, 93,75 kBits/s, 187,5 kBits/s, 500 kBits/s, 1,5 MBits/s
Signalcodierung	NRZ-Code
Antwortzeit Slave	ca. 20 ms
Ausfallsignal	Status- und Alarmmeldungen gemäß PROFIBUS- DP, Profile-Version 3.0 Display: Fehlercode
Physikalische Schicht	RS 485

11.3 Anzeige- und Bedienoberfläche

Vor-Ort-Bedienung	über Tastatur
Busadresse	Einstellung über
	 DIL-Schalter oder über Bedienmenü oder über den Dienst Set_Slave_Adr
Kommunikationsschnittstelle	PROFIBUS-PA/-DP

11.4 Normen und Richtlinien

PROFIBUS	EN 50170, vol. 2
PROFIBUS-DP	EN 50170, vol. 2 RS 485 PNO-Richtlinien zu PROFIBUS-DP
PROFIBUS-PA	EN 50170, vol. 2 IEC 61158-2 PNO-Richtlinien zu PROFIBUS-PA

Stichwortverzeichnis

Anschlusskontrolle
B Bestellcode interpretieren
D Dokumentation
E Elektrischer Anschluss
G Geräteadresse
I IT-Sicherheitsmaßnahmen 6
L Lieferumfang
M Montage
Р
Produktidentifizierung
Produktidentifizierung7Produktseite7Produktsicherheit6Protokollspezifische Daten40SSicherheitshinweise5Störungsbehebung37Symbole4Systemarchitektur9Systemfehlermeldungen37
Produktidentifizierung7Produktseite7Produktsicherheit6Protokollspezifische Daten40SSicherheitshinweise5Störungsbehebung37Symbole4Systemarchitektur9Systemfehlermeldungen37T7Typenschild7
Produktidentifizierung 7 Produktseite 7 Produktsicherheit 6 Protokollspezifische Daten 40 S 5 Störungsbehebung 37 Symbole 4 Systemarchitektur 9 Systemfehlermeldungen 37 T 7 V Verdrahtung 11

www.addresses.endress.com

