Operating Instructions Proline t-mass I 300

Thermal mass flowmeter HART

- Make sure the document is stored in a safe place such that it is always available when working on or with the device.
- To avoid danger to individuals or the facility, read the "Basic safety instructions" section carefully, as well as all other safety instructions in the document that are specific to working procedures.
- The manufacturer reserves the right to modify technical data without prior notice. Your Endress+Hauser Sales Center will supply you with current information and updates to these instructions.

Table of contents

1 About this document 6
1.1 Document function 6
1.2 Symbols 6
1.2.1 Safety symbols 6
1.2.2 Electrical symbols 6
1.2.3 Communication-specific symbols 6
1.2.4 Tool symbols 7
1.2.5 Symbols for certain types of information 7
1.2.6 Symbols in graphics 7
1.3 Documentation 8
1.3.1 Document function 8
1.4 Registered trademarks 8
2 Safety instructions 9
2.1 Requirements for the personnel 9
2.2 Intended use 9
2.3 Workplace safety 10
2.4 Operational safety 10
2.5 Product safety 10
2.6 IT security 11
2.7 Device-specific IT security 11
2.7.1 Protecting access via hardware write protection 11
2.7.2 Protecting access via a password 11
2.7.3 Access via web server 12
2.7.4 Access via service interface (CDI- RJ45) 13
3 Product description 14
3.1 Product design 14
4 Incoming acceptance and product identification 15
4.1 Incoming acceptance 15
4.2 Product identification 15
4.2.1 Transmitter nameplate 16
4.2.2 Sensor nameplate 17
4.2.3 Symbols on the device 17
4.3 Storage and transport 18
4.3.1 Storage conditions 18
4.3.2 Transporting the product 18
4.3.3 Packaging disposal 18
5 Mounting 19
5.1 Mounting requirements 19
5.1.1 Installation position 19
5.1.2 Environment and process requirements 25
5.1.3 Special mounting instructions 27
5.2 Mounting the measuring device 28
5.2.1 Required tool 28
5.2.2 Preparing the measuring device 28
5.2.3 Mounting the measuring device 28
5.2.4 Turning the transmitter housing 30
5.2.5 Turning the display module 31
5.3 Post-installation check 32
6 Electrical connection 33
6.1 Electrical safety 33
6.2 Connecting requirements 33
6.2.1 Required tools 33
6.2.2 Requirements for connecting cable 33
6.2.3 Terminal assignment 36
6.2.4 Preparing the measuring device 36
6.3 Connecting the measuring device 36
6.3.1 Connecting the transmitter 36
6.3.2 Connecting the remote display and operating module DKX001 39
6.4 Potential equalization 39
6.4.1 Requirements 39
6.5 Special connection instructions 40
6.5.1 Connection examples 40
6.6 Ensuring the degree of protection 43
6.7 Post-connection check 44
7 Operation options 45
7.1 Overview of operation options 45
7.2 Structure and function of the operating menu 46
7.2.1 Structure of the operating menu 46
7.2.2 Operating philosophy 47
7.3 Access to operating menu via local display 48
7.3.1 Operational display 48
7.3.2 Navigation view 50
7.3.3 Editing view 52
7.3.4 Operating elements 54
7.3.5 Opening the context menu 54
7.3.6 Navigating and selecting from list 56
7.3.7 Calling the parameter directly 56
7.3.8 Calling up help text 57
7.3.9 Changing the parameters 57
7.3.10 User roles and related access authorization 58
7.3.11 Disabling write protection via access code 58
7.3.12 Enabling and disabling the keypad lock 59
7.4 Access to operating menu via web browser 59
7.4.1 Function range 59
7.4.2 Requirements 60
7.4.3 Establishing a connection 61
7.4.4 Logging on 63
7.4.5 User interface 64
7.4.6 Disabling the Web server 65
7.4.7 Logging out 65
7.5 Access to the operating menu via theoperating tool66
7.5.1 Connecting the operating tool 66
7.5.2 Field Xpert SFX350, SFX370 69
7.5.3 FieldCare 69
7.5.4 DeviceCare 71
7.5.5 AMS Device Manager 71
7.5.6 Field Communicator 475 72
7.5.7 SIMATIC PDM 72
8 System integration 73
8.1 Overview of device description files 73
8.1.1 Current version data for the device 73
8.1.2 Operating tools 73
8.2 Measured variables via HART protocol 73
8.2.1 Device variables 74
8.3 Other settings 75
9 Commissioning 78
9.1 Post-mounting and post-connection check 78
9.2 Switching on the measuring device 78
9.3 Setting the operating language 78
9.4 Configuring the measuring device 79
9.4.1 Defining the tag name 80
9.4.2 Configuring the measurement mode 80
9.4.3 Configuring reference conditions 84
9.4.4 Sensor adjustment 85
9.4.5 Setting the system units 86
9.4.6 Displaying the I/O configuration 88
9.4.7 Configuring the current input 89
9.4.8 Configuring the status input 90
9.4.9 Configuring the current output 91
9.4.10 Configuring the pulse/frequency/ switch output 94
9.4.11 Configuring the relay output 100
9.4.12 Configuring the local display 101
9.4.13 Configuring the low flow cut off 104
9.5 Advanced settings 105
9.5.1 Using the parameter to enter the access code 105
9.5.2 Configuring the totalizer 105
9.5.3 Carrying out additional display configurations 107
9.5.4 WLAN configuration 110
9.5.5 Configuration management 112
9.5.6 Using parameters for device administration 113
9.5.7 In-situ adjustment 115
9.6 Configuration management 121
9.6.1 Function scope of the "Configuration management" parameter 121
9.7 Simulation 122
9.8 Protecting settings from unauthorized access 124
9.8.1 Write protection via access code 124
9.8.2 Write protection via write protection switch 126
10 Operation 128
10.1 Reading off the device locking status 128
10.2 Adjusting the operating language 128
10.3 Configuring the display 128
10.4 Reading off measured values 128
10.4.1 Process variables 129
10.4.2 System values 130
10.4.3 "Totalizer" submenu 130
10.4.4 "Input values" submenu 131
10.4.5 Output values 132
10.5 Adapting the measuring device to the process conditions 134
10.6 Performing a totalizer reset 134
10.6.1 Function scope of "Control Totalizer" parameter 135
10.6.2 Function range of "Reset all totalizers" parameter 135
10.7 Displaying data logging 135
11 Diagnostics and troubleshooting 138
11.1 General troubleshooting 138
11.2 Diagnostic information via light emitting diodes 141
11.2.1 Transmitter 141
11.3 Diagnostic information on local display 142
11.3.1 Diagnostic message 142
11.3.2 Calling up remedial measures 144
11.4 Diagnostic information in the web browser 145
11.4.1 Diagnostic options 145
11.4.2 Calling up remedy information 146
11.5 Diagnostic information in FieldCare or DeviceCare 147
11.5.1 Diagnostic options 147
11.5.2 Calling up remedy information 148
11.6 Adapting the diagnostic information 149
11.6.1 Adapting the diagnostic behavior 149
11.6.2 Adapting the status signal 149
11.7 Overview of diagnostic information 151
11.8 Pending diagnostic events 155
11.9 Diagnostic list 155
11.10 Event logbook 157
11.10.1 Reading out the event logbook 157
11.10.2 Filtering the event logbook 157
11.10.3 Overview of information events 158
11.11 Resetting the measuring device 160
11.11.1 Function range of "Device reset" parameter 160
11.12 Device information 161
11.13 Firmware history 163
12 Maintenance 164
12.1 Maintenance tasks 164
12.1.1 Exterior cleaning 164
12.1.2 Sensing element cleaning 164
12.1.3 Recalibration 165
12.2 Measuring and test equipment 165
12.3 Endress+Hauser services 165
13 Repair 166
13.1 General information 166
13.1.1 Repair and conversion concept 166
13.1.2 Notes for repair and conversion 166
13.2 Spare parts 166
13.3 Endress+Hauser services 166
13.4 Return 166
13.5 Disposal 167
13.5.1 Removing the measuring device 167
13.5.2 Disposing of the measuring device 167
14 Accessories 168
14.1 Device-specific accessories 168
14.1.1 For the transmitter 168
14.1.2 For the sensor 169
14.2 Communication-specific accessories 170
14.3 Service-specific accessories 171
14.4 System components 171
15 Technical data 172
15.1 Application 172
15.2 Function and system design 172
15.3 Input 173
15.4 Output 178
15.5 Power supply 183
15.6 Performance characteristics 185
15.7 Mounting 186
15.8 Environment 187
15.9 Process 189
15.10 Mechanical construction 191
15.11 Display and user interface 194
15.12 Certificates and approvals 199
15.13 Application packages 202
15.14 Accessories 203
15.15 Documentation 203
Index 205

1 About this document

1.1 Document function

These Operating Instructions contain all the information required in the various life cycle phases of the device: from product identification, incoming acceptance and storage, to installation, connection, operation and commissioning, through to troubleshooting, maintenance and disposal.

1.2 Symbols

1.2.1 Safety symbols

! DANGER
This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

A WARNING

This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

A CAUTION

This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

NOTICE

This symbol contains information on procedures and other facts which do not result in personal injury.

1.2.2 Electrical symbols

Symbol	Meaning
=-	Direct current
\sim	Alternating current
\checkmark	Direct current and alternating current
$\frac{1}{\underline{I}}$	Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.
$\xlongequal{\perp}$	Potential equalization connection (PE: protective earth) Ground terminals that must be connected to ground prior to establishing any other connections. The ground terminals are located on the interior and exterior of the device: - Interior ground terminal: potential equalization is connected to the supply network. - Exterior ground terminal: device is connected to the plant grounding system.

1.2.3 Communication-specific symbols

Symbol	Meaning
	Wireless Local Area Network (WLAN) Communication via a wireless, local network.
	LED Light emitting diode is off.

Symbol	Meaning
2	LED
Light emitting diode is on.	
Light emitting diode is flashing.	

1.2.4 Tool symbols

Symbol	Meaning
	Flat-blade screwdriver
	Allen key

1.2.5 Symbols for certain types of information

Symbol	Meaning
\checkmark	Permitted Procedures, processes or actions that are permitted.
	Preferred Procedures, processes or actions that are preferred.
B	Forbidden Procedures, processes or actions that are forbidden.
1	Tip Indicates additional information.
(1)	Reference to documentation
${ }^{\text {A }}$	Reference to page
$\boxed{\infty}$	Reference to graphic
	Notice or individual step to be observed
1., 2., 3....	Series of steps
\longrightarrow	Result of a step
$?$	Help in the event of a problem
(0)	Visual inspection

1.2.6 Symbols in graphics

Symbol	Meaning
$1,2,3, \ldots$	Item numbers
$1 ., 2 ., 3 ., \ldots$	Series of steps
A, B, C. ...	Views
A-A, B-B, C-C, ...	Sections
Ex	Hazardous area

Symbol	Meaning
知	Safe area (non-hazardous area)
\approx	Flow direction

1.3 Documentation

For an overview of the scope of the associated Technical Documentation, refer to the following:

- Device Viewer (www.endress.com/deviceviewer): Enter the serial number from the nameplate
- Endress+Hauser Operations app: Enter serial number from nameplate or scan matrix code on nameplate.

1.3.1 Document function

The following documentation may be available depending on the version ordered:

Document type	Purpose and content of the document
Technical Information (TI)	Planning aid for your device The document contains all the technical data on the device and provides an overview of the accessories and other products that can be ordered for the device.
Brief Operating Instructions (KA)	Guide that takes you quickly to the 1st measured value The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning.
Operating Instructions (BA)	Your reference document The Operating Instructions contain all the information that is required in the various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.
Description of Device Parameters (GP)	Reference for your parameters The document provides a detailed explanation of each individual parameter. The description is aimed at those who work with the device over the entire life cycle and perform specific configurations.
Safety Instructions (XA)	Depending on the approval, safety instructions for electrical equipment in hazardous areas are also supplied with the device. The Safety Instructions are an integral part of the Operating Instructions.
\mathbf{l} Information on the Safety Instructions (XA) relevant to the device is	
provided on the nameplate.	

1.4 Registered trademarks

HART ${ }^{\circledR}$
Registered trademark of the FieldComm Group, Austin, Texas, USA

2 Safety instructions

2.1 Requirements for the personnel

The personnel for installation, commissioning, diagnostics and maintenance must fulfill the following requirements:

- Trained, qualified specialists must have a relevant qualification for this specific function and task.
- Are authorized by the plant owner/operator.
- Are familiar with federal/national regulations.
- Before starting work, read and understand the instructions in the manual and supplementary documentation as well as the certificates (depending on the application).
- Follow instructions and comply with basic conditions.

The operating personnel must fulfill the following requirements:

- Are instructed and authorized according to the requirements of the task by the facility's owner-operator.
- Follow the instructions in this manual.

2.2 Intended use

Application and media

The measuring device described in this manual is intended only for the flow measurement of gases.

Depending on the version ordered, the measuring device can also measure potentially explosive, flammable, poisonous and oxidizing media.

Measuring devices for use in hazardous areas or where the process pressures pose an increased risk, are marked specifically on the nameplate.
To ensure that the measuring device remains in proper condition for the operation time:

- Use the measuring device only for media to which the process-wetted materials are sufficiently resistant.
- Keep within the specified pressure and temperature range.
- Only use the measuring device in full compliance with the data on the nameplate and the general conditions listed in the Operating Instructions and supplementary documentation.
- Check the nameplate to verify if the device ordered can be put to its intended use in the hazardous area (e.g. explosion protection, pressure equipment safety).
- If the ambient temperature of the measuring device is outside the atmospheric range, it is absolutely essential to comply with the relevant basic conditions as specified \rightarrow 置 8 in the device documentation.
- Protect the measuring device permanently against corrosion from environmental influences.

Incorrect use

Non-designated use can compromise safety. The manufacturer is not liable for damage caused by improper or non-designated use.

4. WARNING

Danger of breakage due to corrosive or abrasive fluids and ambient conditions!

- Verify the compatibility of the process fluid with the sensor material.
- Ensure the resistance of all fluid-wetted materials in the process.
- Keep within the specified pressure and temperature range.

NOTICE

Verification for borderline cases:

- For special fluids and fluids for cleaning, Endress+Hauser is glad to provide assistance in verifying the corrosion resistance of fluid-wetted materials, but does not accept any warranty or liability as minute changes in the temperature, concentration or level of contamination in the process can alter the corrosion resistance properties.

\triangle WARNING

Injury from sensor being ejected!

- The sensor gland should be opened only when in an unpressurized state.

NOTICE

Penetration of dust and moisture when the transmitter housing is opened.

- Only open the transmitter housing briefly, ensuring that no dust or moisture enters the housing.

Residual risks

\triangle CAUTION

The electronics and the medium may cause the surfaces to heat up or freeze. Risk of burns or frostbite!

- Mount suitable touch protection.

2.3 Workplace safety

When working on and with the device:

- Wear the required personal protective equipment as per national regulations.

2.4 Operational safety

Damage to the device!

- Operate the device in proper technical condition and fail-safe condition only.
- The operator is responsible for the interference-free operation of the device.

Modifications to the device

Unauthorized modifications to the device are not permitted and can lead to unforeseeable dangers!

- If modifications are nevertheless required, consult with the manufacturer.

Repair

To ensure continued operational safety and reliability:

- Carry out repairs on the device only if they are expressly permitted.
- Observe federal/national regulations pertaining to the repair of an electrical device.
- Use only original spare parts and accessories.

2.5 Product safety

This measuring device is designed in accordance with good engineering practice to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate.

It meets general safety standards and legal requirements. It also complies with the EU directives listed in the device-specific EU Declaration of Conformity. The manufacturer confirms this by affixing the CE mark to the device..

2．6 IT security

Our warranty is valid only if the product is installed and used as described in the Operating Instructions．The product is equipped with security mechanisms to protect it against any inadvertent changes to the settings．
IT security measures，which provide additional protection for the product and associated data transfer，must be implemented by the operators themselves in line with their security standards．

2．7 Device－specific IT security

The device offers a range of specific functions to support protective measures on the operator＇s side．These functions can be configured by the user and guarantee greater in－ operation safety if used correctly．The following list provides an overview of the most important functions：

Function／interface	Factory setting	Recommendation
Write protection via hardware write protection switch \rightarrow 图 11	Not enabled	On an individual basis following risk assessment
Access code （also applies to web server login or FieldCare connection）\rightarrow 罝 12	Not enabled （0000）	Assign a customized access code during commissioning
WLAN （order option in display module）	Enabled	On an individual basis following risk assessment
WLAN security mode	Enabled（WPA2－ PSK）	Do not change
WLAN passphrase （Password）\rightarrow 署 12	Serial number	Assign an individual WLAN passphrase during commissioning
WLAN mode	Access point	On an individual basis following risk assessment
Web server \rightarrow 娄 12	Enabled	On an individual basis following risk assessment
CDI－RJ45 service interface \rightarrow 柬 13	－	On an individual basis following risk assessment

2．7．1 Protecting access via hardware write protection

Write access to the parameters of the device via the local display，web browser or operating tool（e．g．FieldCare，DeviceCare）can be disabled via a write protection switch （DIP switch on the main electronics module）．When hardware write protection is enabled， only read access to the parameters is possible．
Hardware write protection is disabled when the device is delivered \rightarrow 酋 126 ．

2．7．2 Protecting access via a password

Different passwords are available to protect write access to the device parameters or access to the device via the WLAN interface．
－User－specific access code
Protect write access to the device parameters via the local display，web browser or operating tool（e．g．FieldCare，DeviceCare）．Access authorization is clearly regulated through the use of a user－specific access code．
－WLAN passphrase
The network key protects a connection between an operating unit（e．g．notebook or tablet）and the device via the WLAN interface which can be ordered as an option．
－Infrastructure mode
When the device is operated in infrastructure mode，the WLAN passphrase corresponds to the WLAN passphrase configured on the operator side．

User－specific access code

Write access to the device parameters via the local display，web browser or operating tool （e．g．FieldCare，DeviceCare）can be protected by the modifiable，user－specific access code $(\rightarrow$ 㞔 124）。

When the device is delivered，the device does not have an access code and is equivalent to 0000 （open）．

WLAN passphrase：Operation as WLAN access point

A connection between an operating unit（e．g．notebook or tablet）and the device via the WLAN interface（ \rightarrow 圊 68），which can be ordered as an optional extra，is protected by the network key．The WLAN authentication of the network key complies with the IEEE 802.11 standard．

When the device is delivered，the network key is pre－defined depending on the device．It can be changed via the WLAN settings submenu in the WLAN passphrase parameter （ \rightarrow 圈 111）。

Infrastructure mode

A connection between the device and WLAN access point is protected by means of an SSID and passphrase on the system side．Please contact the relevant system administrator for access．

General notes on the use of passwords

－The access code and network key supplied with the device should be changed during commissioning for safety reasons．
－Follow the general rules for generating a secure password when defining and managing the access code and network key．
－The user is responsible for the management and careful handling of the access code and network key．
－For information on configuring the access code or on what to do if you lose the password，for example，see＂Write protection via access code＂\rightarrow 層 124.

2．7．3 Access via web server

The integrated web server can be used to operate and configure the device via a web browser \rightarrow 壊 59．The connection is established via the service interface（CDI－RJ45）or the WLAN interface．
The web server is enabled when the device is delivered．The web server can be disabled via the Web server functionality parameter if necessary（e．g．after commissioning）．
The device and status information can be hidden on the login page．This prevents unauthorized access to the information．
（0）For detailed information on device parameters，see：
＂Description of Device Parameters＂document \rightarrow 屋 203.

2.7.4 Access via service interface (CDI-RJ45)

The device can be connected to a network via the service interface (CDI-RJ45). Devicespecific functions guarantee the secure operation of the device in a network.

The use of relevant industrial standards and guidelines that have been defined by national and international safety committees, such as IEC/ISA62443 or the IEEE, is recommended. This includes organizational security measures such as the assignment of access authorization as well as technical measures such as network segmentation.
1 Transmitters with an Ex de approval may not be connected via the service interface (CDI-RJ45)!
Order code for "Approval", options (Ex de): BB, C2, GB, MB, NB

3 Product description

The device consists of a transmitter and a sensor.
The device is available as a compact version:
The transmitter and sensor form a mechanical unit.

3.1 Product design

[^0]
4 Incoming acceptance and product identification

4.1 Incoming acceptance

Are the order codes on the delivery note (1) and the product sticker (2) identical?

Are the goods undamaged?

Does the data on the nameplate match the order specifications on the delivery note?

Is the envelope present with accompanying documents?

- If one of the conditions is not satisfied, contact your Endress+Hauser Sales Center.
- The Technical Documentation is available via the Internet or via the Endress + Hauser Operations app: Product identification \rightarrow 署 16.

4.2 Product identification

The following options are available for identification of the device:

- Nameplate
- Order code with details of the device features on the delivery note
- Enter the serial numbers from the nameplates in the Device Viewer (www.endress.com/deviceviewer): all the information about the device is displayed.
- Enter the serial numbers from the nameplates into the Endress+Hauser Operations app or scan the DataMatrix code on the nameplate with the Endress+Hauser Operations app: all the information about the device is displayed.

For an overview of the scope of the associated Technical Documentation, refer to the
following:

- The "Additional standard documentation on the device" and "Supplementary devicedependent documentation" sections
- The Device Viewer: Enter the serial number from the nameplate (www.endress.com/deviceviewer)
- The Endress+Hauser Operations app: Enter the serial number from the nameplate or scan the DataMatrix code on the nameplate.

4.2.1 Transmitter nameplate

- 1 Example of a transmitter nameplate

1 Manufacturer address/certificate holder
2 Name of the transmitter
3 Order code
4 Serial number
5 Extended order code
6 Degree of protection
7 Space for approvals: use in hazardous areas
8 Electrical connection data: available inputs and outputs
9 2-D matrix code
10 Date of manufacture: year-month
11 Document number of safety-related supplementary documentation
12 Space for approvals and certificates: e.g. CE mark, RCM tick
13 Space for degree of protection of connection and electronics compartment when used in hazardous areas
14 Firmware version (FW) and device revision (Dev. rev.) from the factory
15 Space for additional information in the case of special products
16 Permitted temperature range for cable
17 Permitted ambient temperature (T_{a})
18 Information on cable gland
19 Available inputs and outputs, supply voltage
20 Electrical connection data: supply voltage

4.2.2 Sensor nameplate

- 2 Example of sensor nameplate

1 Name of sensor
2 Order code
3 Serial number
4 Extended order code
5 Flow; length of sensor; pressure rating; nominal pressure; system pressure; medium temperature range; permitted ambient temperature range $\left(T_{a}\right)$; explosion protection approval information, Pressure Equipment Directive and degree of protection
6 Date of manufacture: year-month

1 Order code

The measuring device is reordered using the order code.

Extended order code

- The device type (product root) and basic specifications (mandatory features) are always listed.
- Of the optional specifications (optional features), only the safety and approvalrelated specifications are listed (e.g. LA). If other optional specifications are also ordered, these are indicated collectively using the \# placeholder symbol (e.g. \#LA\#).
- If the ordered optional specifications do not include any safety and approval-related specifications, they are indicated by the + placeholder symbol (e.g. XXXXXX-ABCDE +).

4.2.3 Symbols on the device

Symbol	Meaning
$!$	WARNING! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury. Please consult the documentation for the measuring device to discover the type of potential danger and measures to avoid it.
\perp	Reference to documentation Refers to the corresponding device documentation.
\perp	Protective ground connection A terminal that must be connected to the ground prior to establishing any other connections.

4.3 Storage and transport

4.3.1 Storage conditions

Observe the following notes for storage:

- Store in the original packaging to ensure protection from shock.
- Do not remove protective covers or protective caps installed on process connections. They prevent mechanical damage to the sealing surfaces and contamination in the measuring tube.
- Protect from direct sunlight. Avoid unacceptably high surface temperatures.
- Select a storage location that excludes the possibility of condensation forming on the measuring device. Fungi and bacteria can damage the liner.
- Store in a dry and dust-free place.
- Do not store outdoors.

Storage temperature \rightarrow 酋 187

4.3.2 Transporting the product

Transport the measuring device to the measuring point in the original packaging.

1. Do not remove protection caps. They prevent mechanical damage.

4.3.3 Packaging disposal

All packaging materials are environmentally friendly and 100\% recyclable:

- Outer packaging of device

Stretch wrap made of polymer in accordance with EU Directive 2002/95/EC (RoHS)

- Packaging
- Wood crate treated in accordance with ISPM 15 standard, confirmed by IPPC logo
- Cardboard box in accordance with European packaging guideline 94/62/EC, recyclability confirmed by Resy symbol
- Transport material and fastening fixtures
- Disposable plastic pallet
- Plastic straps
- Plastic adhesive strips
- Filler material

Paper pads

5 Mounting

5.1 Mounting requirements

- The recommended inlet and outlet specifications must be observed.
- The piping system and the device must be installed according to good engineering practice.
- Ensure the correct alignment and orientation of the sensor.
- Take measures to avoid or prevent condensation (e.g. condensation trap, thermal insulation etc.).
- Observe the maximum permissible ambient temperatures and medium temperature range.
- Install the measuring device in a shady location or use a weather protection cover.
- For mechanical reasons and to protect the pipe, support is recommended for heavy sensors (e.g. with a hot-tap retractable assembly).

5.1.1 Installation position

Orientation

The direction of flow must match the direction of the arrow on the sensor. In the case of the bidirectional sensor, the arrow points in the positive direction. When performing bidirectional measurement, the sensing element must be installed with an accuracy of 3°.

Orientation		Recommendation
Vertical orientation	A0015591	$\nabla^{1)}$
Horizontal orientation, transmitter head up	A0015589	$\nabla \nabla$
Horizontal orientation, transmitter head down	A0015590	$\nabla^{2)}$
Horizontal orientation, transmitter head at side		\checkmark
Inclined orientation, transmitter head down	A0015773	$\nabla^{2)}$

1) In the case of saturated or impure gases, vertical orientation is preferred in order to minimize condensation or contamination. For bidirectional sensors, select horizontal orientation.
2) Select inclined orientation ($\alpha=$ approx. 135°) for very wet or water-saturated gas (e.g. digester gas, undried compressed air), or if deposits or condensate are constantly present.

Pipes

The measuring device must be professionally installed, and the following points must be observed:

- Weld pipes professionally.
- Use seals of the correct size.
- Align flanges and seals correctly.
- Remove protection cap from sensing element.
- Following installation, the pipe must be free from dirt and particles in order to avoid damage to the sensors.
- For further information \rightarrow ISO standard 14511.

Sensor selection and arrangement

The minimum length of the sensor can be determined using the Endress+Hauser Applicator program (version 10.00 or higher) or with the calculation formula below.

The minimum length of the sensor is determined by the necessary insertion depth. The calculated necessary insertion depth must be within the adjusting range of the selected insertion version.

Insertion depth

The minimum length of the insertion version can be determined using the Endress+Hauser Applicator program or with the calculation formula below. The calculated necessary insertion depth must be within the adjusting range of the selected insertion version.

NOTICE

Metal ferrules undergo plastic deformation during the initial installation.
As a result the insertion depth is fixed after initial installation and the ferrules can no longer be replaced.

- Pay attention to information on preconditions and on determining the insertion depth.
- Check the insertion depth closely before tightening the ferrules.

- 3 Determine the dimensions $A, B, C 1$ and $C 2$

A In the case of a circular pipe: the pipe internal diameter (DN); in the case of a duct: the inner dimension
B Thickness of pipe wall or of duct wall
C1 Mounting kit
C2 Sensor's compression fitting

Calculating the insertion depth
Insertion depth $=(0.3 \cdot A)+B+(C 1+C 2)$

1. The insertion depth must be at least 100 mm .

Determining dimensions C1 and C2

If only Endress+Hauser mounting bosses are used

Mounting boss 1" NPT	$\mathrm{C} 1+\mathrm{C} 2=112 \mathrm{~mm}(4.409 \mathrm{in})$
Mounting boss G1"	$\mathrm{C} 1+\mathrm{C} 2=106 \mathrm{~mm}(4.173 \mathrm{in})$
Mounting boss $3 / 4$ " NPT	$\mathrm{C} 1+\mathrm{C} 2=108 \mathrm{~mm}(4.252 \mathrm{in})$
Mounting boss G3/4"	$\mathrm{C} 1+\mathrm{C} 2=105 \mathrm{~mm}(4.134 \mathrm{in})$

1
If a cold/hot tap is used, use dimension "L" \rightarrow 类 191 instead of "C1".

1
Use Applicator to determine dimensions C1 and C2 if using other E+H mounting kits (e.g. cold/hot taps).

If not exclusively using Endress+Hauser mounting bosses

C1	Length of pipe connection used
C2 (compression fitting with 1" NPT thread)	$52 \mathrm{~mm}(2.047 \mathrm{in})$
C2 (compression fitting with G1" thread)	$46 \mathrm{~mm}(1.811 \mathrm{in})$
C2 (compression fitting with $3 / 4 " ~ N P T ~ t h r e a d) ~$	48 mm (1.889 in)
C2 (compression fitting with G3/4" thread)	$45 \mathrm{~mm}(1.772 \mathrm{in})$

Selecting the length of the insertion version

Select the length of the insertion version using the calculated insertion depth and the following table. The insertion depth must be within the adjusting range of the insertion version.

Length of insertion tube		Adjusting range (insertion depth)	
$[\mathrm{mm}]$	$[\mathrm{in}]$	$[\mathrm{mm}]$	[in]
235	9	100 to 235	3.9 to 9.3
335	13	100 to 335	3.9 to 13.2
435	17	100 to 435	3.9 to 17.1
608	24	100 to 608	3.9 to 23.9

Inlet and outlet runs

A fully developed flow profile is a requirement for optimal thermal flow measurement.
To achieve the best possible measuring performance, observe the following inlet and outlet runs at the very minimum.

- In the case of bidirectional sensors, also observe the recommended inlet run in the opposite direction.
- If several flow disturbances are present, use flow conditioners.
- Use flow conditioners if it is not possible to observe the required inlet runs.
- In the case of control valves, the amount of disturbance depends on the valve type and opening degree. The recommended inlet run for control valves is $50 \times \mathrm{DN}$.
- In the case of very light gases (helium, hydrogen), the recommended inlet run must be doubled.

[^1]
Flow conditioner

Use flow conditioners if it is not possible to observe the required inlet runs. Flow conditioners improve the flow profile and therefore reduce the necessary inlet runs.

Mount the flow conditioner in flow direction in front of the measuring device.
Available in the following flange standards:

- ASME B16.5 Cl. 150/Cl. 300
- EN 1092-1 PN10/PN16/PN25/PN40
- JIS B2220 10K/20K

Available in the following line sizes:

- DN 80 (3")
- DN 100 (4")
- DN 150 (6")
- DN 200 (8")
- DN 250 (10")
- DN 300 (12")

$\begin{array}{ll}1 & \text { Flow conditioner } \\ 2 & \text { Seal }\end{array}$

- 11 Recommended inlet and outlet runs when using a flow conditioner

1 Flow conditioner

1. In the case of bidirectional sensors, also observe the inlet run in the opposite direction.

12 The additional measured error to be expected with flow conditioners depending on the disturbance type and inlet run

A Additional measured error (\%)
Inlet runs upstream of the flow conditioner (DN)
$2 \times 90^{\circ}$ elbow, 3 -dimensional
Expansion
$2 \times 90^{\circ}$ elbow
Reduction or 90° elbow

The pressure loss for flow conditioners is calculated as follows: $\Delta \mathrm{p}[\mathrm{mbar}]=0.0085 \cdot \rho$
$\left[\mathrm{kg} / \mathrm{m}^{3}\right] \cdot \mathrm{v}^{2}[\mathrm{~m} / \mathrm{s}]$

Example of air
$\mathrm{p}=10$ bar abs.
$\mathrm{t}=25^{\circ} \mathrm{C} \rightarrow \rho=11.71 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{v}=10 \mathrm{~m} / \mathrm{s}$
$\Delta \mathrm{p}=0.0085 \cdot 11.71 \cdot 10^{2}=9.95 \mathrm{mbar}$
ρ : density of the process medium
v: average flow velocity
abs. = absolute

Outlet runs with pressure measuring points
Install the pressure measuring point downstream of the measuring system. This prevents the pressure transmitter from potentially affecting the flow in the measuring point.

- 13 Installation of a pressure measuring point ($P=$ pressure transmitter)

Installation conditions for nipples

1.

Suitable support brackets must be used if installing in rectangular air ducts (or pipes with thin walls).

$D \quad \varnothing 31.0 \pm 0.5 \mathrm{~mm}(1.22 \pm 0.019 \mathrm{in})$

5.1.2 Environment and process requirements

Ambient temperature range

Measuring device	- -40 to $+60^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$ - Order code for "Test, certificate", option JP: -50 to $+60^{\circ} \mathrm{C}\left(-58\right.$ to $\left.+140{ }^{\circ} \mathrm{F}\right)$
Readability of the local display	-20 to $+60^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$ The readability of the display may be impaired at temperatures outside the temperature range.

NOTICE

Danger of overheating

- Ensure that the temperature at the lower end of the transmitter housing does not exceed $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$.
- Ensure that sufficient convection takes place at the transmitter neck.
- When using in potentially explosive atmospheres, observe the information in the device-specific Ex documentation. For detailed information on the temperature tables, see the separate document entitled "Safety Instructions" (XA) for the device.
- Ensure that a sufficiently large area of the transmitter neck remains exposed. The uncovered part serves as a radiator and protects the electronics from overheating and excessive cooling.
- If operating outdoors:

Avoid direct sunlight, particularly in warm climatic regions.

1. You can order a weather protection cover from Endress+Hauser \rightarrow 娄 168.

System pressure

Pressure-reducing valves and some compressor systems can generate significant process pressure variations that can distort the flow profile. This can produce an additional measured error. Suitable measures must be taken to reduce these pressure pulses, such as:

- The use of expansion tanks
- The use of inlet diffusers
- Positioning the measuring device further downstream

To avoid pulsating flow and contamination from oil/dirt in compressed air applications, it is recommended to install the measuring device downstream of filter, drying and storage devices. Do not install the measuring device directly after the compressor.

Thermal insulation

In the case of some fluids, it is important to keep the heat radiated from the sensor to the transmitter to a low level. A wide range of materials can be used for the required insulation.
If the gas is very wet or saturated with water (e.g. digester gas), the pipe and the sensor housing should be insulated, and heated where necessary, to prevent water droplets condensing on the sensing element.

NOTICE

Electronics overheating on account of thermal insulation!

- Recommended orientation: horizontal orientation, transmitter housing pointing downwards.
- Do not insulate the transmitter housing .
- Maximum permissible temperature at the lower end of the transmitter housing: $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$
- Thermal insulation with not isolated extended neck: We recommend that you do not insulate the extended neck in order to ensure optimum dissipation of heat.

. 14 Thermal insulation with not isolated extended neck

Heating

NOTICE

Electronics can overheat due to elevated ambient temperature!

- Observe maximum permitted ambient temperature for the transmitter.
- Depending on the medium temperature, take the device orientation requirements into account.

NOTICE

Electronics overheating on account of thermal insulation!

- Recommended orientation: horizontal orientation, transmitter housing pointing downwards.
- Do not insulate the transmitter housing .
- Maximum permissible temperature at the lower end of the transmitter housing: $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$
- Thermal insulation with extended neck free: We recommend that you do not insulate the extended neck in order to ensure optimum dissipation of heat.

NOTICE

Danger of overheating when heating

- Ensure that the temperature at the lower end of the transmitter housing does not exceed $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$.
- Ensure that sufficient convection takes place at the transmitter neck.
- When using in potentially explosive atmospheres, observe the information in the device-specific Ex documentation. For detailed information on the temperature tables, see the separate document entitled "Safety Instructions" (XA) for the device.
- Ensure that a sufficiently large area of the transmitter neck remains exposed. The uncovered part serves as a radiator and protects the electronics from overheating and excessive cooling.

Heating options

If a fluid requires that no heat loss should occur at the sensor, users can avail of the following heating options:

- Electrical heating, e.g. with electric band heaters
- Via pipes carrying hot water or steam

Vibrations

NOTICE

Strong vibrations can damage the measuring device.
Can result in damage to the measuring device or the fastening units.

- Pay attention to information on the vibration and shock resistance \rightarrow 酋 187

5.1.3 Special mounting instructions

Zero adjust

All measuring devices are calibrated in accordance with state-of-the-art technology. Calibration takes place under reference conditions. Therefore, a zero adjustment in the field is generally not required.

Experience shows that zero adjustment is advisable only in special cases:

- If strict measuring accuracy requirements apply.
- Under extreme process or operating conditions, e.g., very high process temperatures or light gases (helium, hydrogen).

Weather protection cover

- 15 Engineering unit mm (in)

5.2 Mounting the measuring device

5.2.1 Required tool

For sensor

Sensor's compression fitting: appropriate mounting tool.

5.2.2 Preparing the measuring device

1. Remove all remaining transport packaging.
2. Remove any protective covers or protective caps present from the sensor.
3. Remove stick-on label on the electronics compartment cover.

5.2.3 Mounting the measuring device

A. WARNING

Danger due to improper process sealing!

- Ensure that the seals are clean and undamaged.
- Ensure that the correct sealing material is used (e.g. Teflon tape for NPT compression fitting).
- Secure the seals correctly

Install the measuring device or turn the transmitter housing so that the cable entries do not point upwards.

1. Weld in the mounting boss in accordance with the requirements.
2. Loosen the union nut (1) and push down the compression fitting (2).

3. NOTICE

Damage to the sensing element!

- Make sure the sensing elements do not hit against anything.

Using a wrench ($27 \mathrm{~mm} / 35 \mathrm{~mm} / 41 \mathrm{~mm}$), tighten the bottom nut of the compression fitting to the end stop.

4. Now read off the previously calculated insertion depth from the scale and insert the sensor until this value is at the same height as the upper end of the compression fitting.
5. Tighten the union nut by hand. It should still be possible to move the sensor slightly.

6. Align the sensor with the flow direction.
\rightarrow Pay attention to the direction of the arrow on the neck section of the sensor for the flow direction.
The maximum permitted deviation from the flow direction is 3°.

7. Depending on the process connection:

Tighten union nut with x turns:
\rightarrow For PEEK ferrules continue with Step 8 . For metal ferrules continue with Step 9.

8．For PEEK ferrules：

Mounting for the first time：tighten union nut with $1 \frac{1}{4}$ turns．Repeat mounting： tighten union nut with 1 turn．
\longrightarrow Tip If strong vibrations can be expected，tighten the union nut with $1 \frac{1}{2}$ turns when mounting for the first time．

9．For metal ferrules：
Mounting for the first time：tighten union nut with $11 / 4$ turns．Repeat mounting： tighten union nut with $1 / 4$ turn．

10．Tighten both fixing screws again with a $3 \mathrm{~mm}(1 / 8$ in）Allen screw with 4 Nm （2．95 lbf ft）．
\llcorner It is now no longer possible to move the sensor．
11．Check the measuring point for leaks（max．process pressure）．

5．2．4 Turning the transmitter housing

To provide easier access to the connection compartment or display module，the transmitter housing can be turned．

（⿴囗大 17 Non－Ex housing
1．Depending on the device version：Loosen the securing clamp of the connection compartment cover．

2．Unscrew the connection compartment cover．
3．Loosen the securing screw．
4．Turn the housing to the desired position．
5．Tighten the securing screw．
6．Screw on the connection compartment cover．
7．Depending on the device version：Attach the securing clamp of the connection compartment cover．

- 18 Ex housing

1. Loosen the fixing screws.
2. Turn the housing to the desired position.
3. Tighten the securing screws.

5.2.5 Turning the display module

The display module can be turned to optimize display readability and operability.

1. Depending on the device version: Loosen the securing clamp of the connection compartment cover.
2. Unscrew the connection compartment cover.
3. Turn the display module to the desired position: max. $8 \times 45^{\circ}$ in each direction.
4. Screw on the connection compartment cover.
5. Depending on the device version: Attach the securing clamp of the connection compartment cover.

5．3 Post－installation check

Is the device undamaged（visual inspection）？	\square
Does the measuring device conform to the measuring point specifications？ For example： －Process temperature \rightarrow 層 189 －Process pressure（refer to the＂Pressure－temperature ratings＂section of the＂Technical Information＂document） - Ambient temperature \rightarrow 酋 25 - Measuring range \rightarrow 首 173	\square
Has the correct orientation been selected for the sensor \rightarrow 圈 19 ？ －According to sensor type －According to medium properties －According to medium temperature －According to process pressure	\square
Does the arrow on the sensor match the actual direction of flow of the medium through the piping？	\square
Have sufficient inlet and outlet runs been provided upstream and downstream of the measuring point \rightarrow 曊 21？	\square
Correct sensor insertion depth？	\square
Is the device adequately protected from precipitation and direct sunlight？	\square
Is the device protected against overheating？	\square
Is the device protected against excessive vibrations？	\square
Gas property checked（e．g．purity，dryness，cleanness）？	\square
Are the measuring point identification and labeling correct（visual inspection）？	\square
Are the securing screw and securing clamp tightened securely？	\square

6 Electrical connection

A. WARNING

Live parts! Incorrect work performed on the electrical connections can result in an electric shock.

- Set up a disconnecting device (switch or power-circuit breaker) to easily disconnect the device from the supply voltage.
- In addition to the device fuse, include an overcurrent protection unit with max. 10 A in the plant installation.

6.1 Electrical safety

In accordance with applicable national regulations.

6.2 Connecting requirements

6.2.1 Required tools

- For cable entries: Use corresponding tools
- For securing clamp: Allen key 3 mm
- Wire stripper
- When using stranded cables: Crimper for wire end ferrule
- For removing cables from terminal: Flat blade screwdriver $\leq 3 \mathrm{~mm}$ (0.12 in)

6.2.2 Requirements for connecting cable

The connecting cables provided by the customer must fulfill the following requirements.

Protective grounding cable for the outer ground terminal

Conductor cross-section $<2.1 \mathrm{~mm}^{2}$ (14 AWG)
The use of a cable lug enables the connection of larger cross-sections.
The grounding impedance must be less than 2Ω.

Permitted temperature range

- The installation guidelines that apply in the country of installation must be observed.
- The cables must be suitable for the minimum and maximum temperatures to be expected.

Power supply cable (incl. conductor for the inner ground terminal)
Standard installation cable is sufficient.

Signal cable

Current output 4 to 20 mA HART
A shielded cable is recommended. Observe grounding concept of the plant.
Current output 0/4 to 20 mA
Standard installation cable is sufficient
Pulse /frequency /switch output
Standard installation cable is sufficient

Relay output

Standard installation cable is sufficient.
Current input 0/4 to 20 mA
Standard installation cable is sufficient
Status input
Standard installation cable is sufficient

Cable diameter

- Cable glands supplied:

M20 $\times 1.5$ with cable $\varnothing 6$ to 12 mm (0.24 to 0.47 in)

- Spring-loaded terminals: Suitable for strands and strands with ferrules.

Conductor cross-section 0.2 to $2.5 \mathrm{~mm}^{2}$ (24 to 12 AWG).

Requirements for connecting cable - remote display and operating module DKX001

Optionally available connecting cable
A cable is supplied depending on the order option

- Order code for measuring device: order code $\mathbf{0 3 0}$ for "Display; operation", option \mathbf{O} or
- Order code for measuring device: order code $\mathbf{0 3 0}$ for "Display; operation", option \mathbf{M} and
- Order code for DKX001: order code 040 for "Cable", option A, B, D, E

Standard cable	$2 \times 2 \times 0.34 \mathrm{~mm}^{2}(22 \mathrm{AWG})$ PVC cable with common shield (2 pairs, pair- stranded)
Flame resistance	According to DIN EN $60332-1-2$
Oil resistance	According to DIN EN $60811-2-1$
Shield	Tin-plated copper braid, optical cover $\geq 85 \%$
Capacitance: core/shield	$\leq 200 \mathrm{pF} / \mathrm{m}$
L/R	$\leq 24 \mu \mathrm{H} / \Omega$
Available cable length	$5 \mathrm{~m}(15 \mathrm{ft}) / 10 \mathrm{~m}(35 \mathrm{ft}) / 20 \mathrm{~m}(65 \mathrm{ft}) / 30 \mathrm{~m}(100 \mathrm{ft})$
Operating temperature	When mounted in a fixed position: $-50 \mathrm{to}+105^{\circ} \mathrm{C}\left(-58 \mathrm{to}+221^{\circ} \mathrm{F}\right) ;$ when cable can move freely: $-25 \mathrm{to}+105^{\circ} \mathrm{C}\left(-13 \mathrm{to}+221^{\circ} \mathrm{F}\right)$

Standard cable - customer-specific cable

With the following order option, no cable is supplied with the device and must be provided by the customer: Order code for DKX001: Order code 040 for "Cable", option 1 "None, provided by customer, $\max 300 \mathrm{~m}^{\prime \prime}$

A standard cable with the following minimum requirements can be used as the connecting cable, even in the hazardous area (Zone 2, Class I, Division 2 and Zone 1, Class I, Division 1):

Standard cable	4 wires (2 pairs); pair-stranded with common shield, minimum wire cross-section $0.34 \mathrm{~mm}^{2}(22 \mathrm{AWG})$
Shield	Tin-plated copper braid, optical cover $\geq 85 \%$
Cable impedance (pair)	Minimum 80Ω
Cable length	Maximum $300 \mathrm{~m}(1000 \mathrm{ft})$, maximum loop impedance 20Ω

Capacitance: core/shield	Maximum 1000 nF for Zone 1, Class I, Division 1
L/R	Maximum $24 \mu \mathrm{H} / \Omega$ for Zone 1, Class I, Division 1

6.2.3 Terminal assignment

Transmitter: supply voltage, input/outputs

The terminal assignment of the inputs and outputs depends on the individual order version of the device. The device-specific terminal assignment is documented on an adhesive label in the terminal cover.

Supply voltage		Input/output 1		Input/output 2		Input/output 3	
$1(+)$	$2(-)$	$26(+)$	$27(-)$	$24(+)$	$25(-)$	$22(+)$	$23(-)$
	Device-specific terminal assignment: adhesive label in terminal cover.						

Terminal assignment of the remote display and operating module \rightarrow

6.2.4 Preparing the measuring device

NOTICE

Insufficient sealing of the housing!
Operational reliability of the measuring device could be compromised.

- Use suitable cable glands corresponding to the degree of protection.

1. Remove dummy plug if present.
2. If the measuring device is supplied without cable glands:

Provide suitable cable gland for corresponding connecting cable.
3. If the measuring device is supplied with cable glands:

Observe requirements for connecting cables \rightarrow 原 33 .

6.3 Connecting the measuring device

NOTICE

An incorrect connection compromises electrical safety!

- Have electrical connection work carried out by appropriately trained specialists only.
- Observe applicable federal/national installation codes and regulations.
- Comply with local workplace safety regulations.
- Always connect the protective ground cable Θ before connecting additional cables.
- When using in potentially explosive atmospheres, observe the information in the device-specific Ex documentation.

6.3.1 Connecting the transmitter

[^2]

1. Loosen the securing clamp of the connection compartment cover.
2. Unscrew the connection compartment cover.
3. Squeeze the tabs of the display module holder together.
4. Remove the display module holder.

5. Attach the holder to the edge of the electronics compartment.
6. Open the terminal cover.

7. Push the cable through the cable entry. To ensure tight sealing, do not remove the sealing ring from the cable entry.
8. Strip the cable and cable ends. In the case of stranded cables, also fit ferrules.
9. Connect the protective ground.

10. Connect the cable according to the terminal assignment.
\llcorner Signal cable terminal assignment: The device-specific terminal assignment is documented on an adhesive label in the terminal cover.
Supply voltage terminal assignment: Adhesive label in the terminal cover or \rightarrow 酋 36 .
11. Firmly tighten the cable glands.
$\longrightarrow \quad$ This concludes the cable connection process.
12. Close the terminal cover.
13. Fit the display module holder in the electronics compartment.
14. Screw on the connection compartment cover.
15. Secure the securing clamp of the connection compartment cover.

Removing a cable

To remove a cable from the terminal:

- 19 Engineering unit mm (in)

1. Use a flat-blade screwdriver to press down on the slot between the two terminal holes.
2. Remove the cable end from the terminal.

6.3.2 Connecting the remote display and operating module DKX001

9 The remote display and operating module DKXOO1 is available as an optional extra \rightarrow 蔝 168.

- The measuring device is always supplied with a dummy cover when the remote display and operating module DKXOO1 is ordered directly with the measuring device. Display or operation at the transmitter is not possible in this case.
- If ordered subsequently, the remote display and operating module DKX001 may not be connected at the same time as the existing measuring device display module. Only one display or operation unit may be connected to the transmitter at any one time.

[^3]
6.4 Potential equalization

6.4.1 Requirements

For potential equalization:

- Pay attention to in-house grounding concepts
- Take account of operating conditions like the pipe material and grounding
- Connect the medium, sensor and transmitter to the same electrical potential
- Use a ground cable with a minimum cross-section of $6 \mathrm{~mm}^{2}\left(0.0093 \mathrm{in}^{2}\right)$ and a cable lug for potential equalization connections

6．5 Special connection instructions

6．5．1 Connection examples

Current output 4 to 20 mA HART

－ 20 Connection example for 4 to 20 mA HART current output（active）
1 Automation system with current input（e．g．PLC）
2 Ground cable shield at one end．The cable shield must be grounded at both ends to comply with EMC requirements；observe cable specifications \rightarrow 圈 184
3 Connection for HART operating devices \rightarrow 圈 66
4 Resistor for HART communication（ $\geq 250 \Omega$ ）：observe maximum load \rightarrow 曽 178
5 Analog display unit：observe maximum load \rightarrow 首 178
6 Transmitter

－ 21 Connection example for 4 to 20 mA HART current output（passive）
1 Automation system with current input（e．g．PLC）
2 Power supply
3 Ground cable shield at one end．The cable shield must be grounded at both ends to comply with EMC requirements；observe cable specifications
4 Analog display unit：observe maximum load \rightarrow 屋 178
5 Transmitter

HART input

－ 22 Connection example for HART input with a common negative（passive）
1 Automation system with HART output（e．g．PLC）
2 Active barrier for power supply（e．g．RN221N）
3 Ground cable shield at one end．The cable shield must be grounded at both ends to comply with EMC requirements；observe cable specifications
4 Analog display unit：observe maximum load \rightarrow 圈 178
5 Pressure measuring device（e．g．Cerabar M，Cerabar S）：observe requirements
6 Transmitter

Current output 4－20 mA

－ 23 Connection example for 4－20 mA current output（active）
1 Automation system with current input（e．g．PLC）
2 Analog display unit：observe maximum load \rightarrow 图 178
3 Transmitter

－24 Connection example for 4－20 mA current output（passive）

[^4]
Pulse／frequency output

－ 25 Connection example for pulse／frequency output（passive）
1 Automation system with pulse／frequency input（e．g．PLC with $10 \mathrm{k} \Omega$ pull－up or pull－down resistor）
2 Power supply
3 Transmitter：observe input values \rightarrow 馗 179

Switch output

－ 26 Connection example for switch output（passive）
1 Automation system with switch input（e．g．PLC with a $10 \mathrm{k} \Omega$ pull－up or pull－down resistor）
2 Power supply
3 Transmitter：observe input values \rightarrow 首 179

Relay output

－ 27 Connection example for relay output（passive）
1 Automation system with relay input（e．g．PLC）
2 Power supply
3 Transmitter：observe input values \rightarrow 圈 181

Current input

图 28 Connection example for 4 to 20 mA current input

1 Power supply

2 Terminal box
3 External measuring device (to read in pressure or temperature, for instance)
4 Transmitter

Status input

- 29 Connection example for status input

1 Automation system with status output (e.g. PLC)
2 Power supply
3 Transmitter

6.6 Ensuring the degree of protection

The measuring device fulfills all the requirements for the degree of protection IP66/67, Type 4X enclosure.

To guarantee the degree of protection IP66/67, Type 4X enclosure, carry out the following steps after electrical connection:

1. Check that the housing seals are clean and fitted correctly.
2. Dry, clean or replace the seals if necessary.
3. Tighten all housing screws and screw covers.
4. Firmly tighten the cable glands.
5. To ensure that moisture does not enter the cable entry: Route the cable so that it loops down before the cable entry ("water trap").

6. The cable glands supplied do not ensure housing protection when not in use. They must therefore be replaced by dummy plus corresponding to the housing protection.

6.7 Post-connection check

Are cables or the device undamaged (visual inspection)?	\square
Is the protective earthing established correctly?	\square
Do the cables used comply with the requirements ?	\square
Do the mounted cables have adequate strain relief?	\square
Are all cable glands installed, securely tightened and leak-tight? Cable run with "water trap" \rightarrow 婸 43?	\square
Is the terminal assignment correct ?	\square
If supply voltage is present, do values appear on the display module?	\square
Are dummy plugs inserted in unused cable entries and have transportation plugs been replaced with dummy plugs?	

7 Operation options

7.1 Overview of operation options

[^5]
7.2 Structure and function of the operating menu

7.2. \quad Structure of the operating menu

For an overview of the operating menu for experts: see the "Description of Device Parameters" document supplied with the device

- 30 Schematic structure of the operating menu

7.2.2 Operating philosophy

The individual parts of the operating menu are assigned to certain user roles (e.g. operator, maintenance etc.). Each user role contains typical tasks within the device life cycle.

Menu/parameter		User role and tasks	Content/meaning
Language	Taskoriented	Role "Operator", "Maintenance" Tasks during operation: - Configuration of the operational display - Read measured values	- Define the operating language - Define the web server operating language - Reset and control totalizers
Operation			- Configuration of the operational display (e.g. display format, display contrast) - Reset and control totalizers
Setup		"Maintenance" role Commissioning: - Configuration of the measurement - Configuration of the inputs and outputs - Configuration of the communication interface	Wizards for fast commissioning: - Configure the system units - Display the I/O configuration - Configure the inputs - Configure the outputs - Configuration of the operational display - Configure the low flow cut off Advanced setup - For more customized configuration of the measurement (adaptation to special measuring conditions) - Configuration of totalizers - Configuration of WLAN settings - Administration (define access code, reset measuring device)
Diagnostics		"Maintenance" role Troubleshooting: - Diagnostics and elimination of process and device errors - Measured value simulation	Contains all parameters for error detection and analyzing process and device errors: - Diagnostic list Contains up to 5 currently pending diagnostic messages. - Event logbook Contains event messages that have occurred. - Device information Contains information for identifying the device. - Measured values Contains all current measured values. - Data logging submenu with the "Extended HistoROM" order option Storage and visualization of measured values - Heartbeat Technology The functionality of the device is checked on demand and the verification results are documented. - Simulation Is used to simulate measured values or output values.
Expert	Functionoriented	Tasks that require detailed knowledge of the operating principle of the device: - Commissioning measurements under difficult conditions - Optimal adaptation of the measurement to difficult conditions - Detailed configuration of the communication interface - Error diagnostics in difficult cases	Contains all the parameters of the device and makes it possible to access these parameters directly using an access code. The structure of this menu is based on the function blocks of the device: - System Contains all higher-level device parameters that do not pertain either to the measurement or to measured value communication. - Sensor Configuration of the measurement. - Input Configuration of the status input. - Output Configuration of the analog current outputs as well as the pulse/frequency and switch output. - Communication Configuration of the digital communication interface and the web server. - Application Configuration of the functions that go beyond the actual measurement (e.g. totalizer). - Diagnostics Error detection and analysis of process and device errors and for device simulation and Heartbeat Technology.

7．3 Access to operating menu via local display

7．3．1 Operational display

[^6]
Status area

The following symbols appear in the status area of the operational display at the top right：
－Status signals \rightarrow 首 142
－F：Failure
－C：Function check
－S：Out of specification
－M：Maintenance required
－Diagnostic behavior \rightarrow 酋 143
－ \mathbf{Q} ：Alarm
－\triangle ：Warning
－白：Locking（the device is locked via the hardware ）
－\leftrightarrow ：Communication（communication via remote operation is active）

Display area

In the display area，each measured value is prefaced by certain symbol types for further description：

Appears only if a diagnostics event is present for this measured variable．

Measured variables

Symbol	Meaning
	Mass flow
	－Volume flow －Corrected volume flow －FAD volume flow

$\dot{\mathrm{Q}}$	Heat flow
$\boldsymbol{0}$	• Density • Reference density
$\boldsymbol{\square}$	Energy flow
$\boldsymbol{\vec { ~ }}$	Flow velocity
$\boldsymbol{4}$	Calorific value
$\boldsymbol{8}$	Temperature

1 The number and display format of the measured variables can be configured via the Format display parameter (\rightarrow 首 102) 。

Totalizer

Symbol	Meaning
$\mathbf{2}$	Totalizer $\mathbf{1}$ The measurement channel number indicates which of the three totalizers is displayed.

Output

Symbol	Meaning
	Output
	$\mathbf{1}$ The measurement channel number indicates which of the outputs is displayed.

Input

Symbol	Meaning
$\underset{\sim}{\sim}$	Status input

Measurement channel numbers

Symbol	Meaning
$1 . . .4$	Measurement channel 1 to 4 $\mathbf{1}$ The measurement channel number is only displayed if more than one channel is present for the same measured variable type (e.g. Totalizer 1 to 3).

Diagnostic behavior

Symbol	Meaning
	Alarm - Measurement is interrupted. - Signal outputs and totalizers assume the defined alarm condition. - A diagnostic message is generated.
	Warning - Measurement is resumed. - The signal outputs and totalizers are not affected. - A diagnostic message is generated.

1 The diagnostic behavior pertains to a diagnostic event that is relevant to the displayed measured variable.

7．3．2 Navigation view

In the submenu	In the wizard
1 Navigation view 2 Navigation path to current position 3 Status area 4 Display area for navigation 5 Operating elements \rightarrow 酋 54	

Navigation path

The navigation path to the current position is displayed at the top left in the navigation view and consists of the following elements：
－The display symbol for the menu／submenu（ ${ }^{\text {a }}$ ）or the wizard（ m ）．
－An omission symbol（／．．／）for operating menu levels in between．
－Name of the current submenu，wizard or parameter

	Display symbol	Omission symbol	Parameter
	\downarrow	\downarrow	\downarrow
Example	，	／．．／	Display

For more information about the icons in the menu，refer to the＂Display area＂section \rightarrow 畨 50

Status area

The following appears in the status area of the navigation view in the top right corner：
－In the submenu
－The direct access code to the parameter（e．g．，0022－1）
－If a diagnostic event is present，the diagnostic behavior and status signal
－In the wizard
If a diagnostic event is present，the diagnostic behavior and status signal
1.

- For information on the diagnostic behavior and status signal \rightarrow 原 142
- For information on the function and entry of the direct access code \rightarrow 首 56

Display area

Menus

Symbol	Meaning
	Operation
Appears：	
－In the menu next to the＂Operation＂selection	
－At the left in the navigation path in the Operation menu	

	Setup Appears: - In the menu next to the "Setup" selection - At the left in the navigation path in the Setup menu
	Diagnostics Appears: - In the menu next to the "Diagnostics" selection - At the left in the navigation path in the Diagnostics menu
	Expert Appears: - In the menu next to the "Expert" selection - At the left in the navigation path in the Expert menu

Submenus, wizards, parameters

Symbol	Meaning
	Submenu
\%.	Wizard
\%	Parameters within a wizard
	$\mathbf{1}$ No display symbol exists for parameters in submenus.

Locking

Symbol	Meaning
	Parameter locked
When displayed in front of a parameter name, indicates that the parameter is locked.	
\square	- By a user-specific access code
	- By the hardware write protection switch

Wizard operation

Symbol	Meaning
\mathbf{E}	Switches to the previous parameter.
\mathbf{E}	Confirms the parameter value and switches to the next parameter.
	Opens the editing view of the parameter.

7.3.3 Editing view

Numeric editor

๑ 31 For entering values in parameters (e.g. limit values)
1 Entry display area
2 Input screen
3 Confirm, delete or reject entry
4 Operating elements

Text editor

[^7]Using the operating elements in the editing view

Operating key	Meaning
Θ	Minus key Move the entry position to the left.
\oplus	Plus key Move the entry position to the right.

Operating key	Meaning
\oplus	Enter key - Pressing the key briefly confirms your selection. - Pressing the key for 2 s confirms your entry.
$\Theta+\oplus$	Escape key combination (press keys simultaneously) Close the editing view without accepting a change.
\square	

Input screens

Symbol	Meaning
1	Upper case
	Lower case
	Numbers
+	
	Umlauts and accents

Controlling data entries

Symbol	Meaning
	Reject entry
	Confirm entry

7.3.4 Operating elements

Operating key	Meaning
\bigcirc	Minus key In menu, submenu Moves the selection bar upwards in a picklist. With a wizard Confirms the parameter value and goes to the previous parameter. In the text and numeric editor Move the entry position to the left.
\oplus	Plus key In menu, submenu Moves the selection bar downwards in a picklist. With a wizard Confirms the parameter value and goes to the next parameter. In the text and numeric editor Move the entry position to the right.
(E)	Enter key With an operational display Pressing the key briefly opens the operating menu. In menu, submenu - Pressing the key briefly: - Opens the selected menu, submenu or parameter. - Starts the wizard. - If help text is open, closes the help text of the parameter. - Pressing the key for 2 s for parameter: If present, opens the help text for the function of the parameter. With a Wizard Opens the editing view of the parameter. In the text and numeric editor - Pressing the key briefly confirms your selection. - Pressing the key for 2 s confirms your entry.
$\Theta+$ $+\oplus$	Escape key combination (press keys simultaneously) In menu, submenu - Pressing the key briefly: - Exits the current menu level and takes you to the next higher level. - If help text is open, closes the help text of the parameter. - Pressing the key for 2 s returns you to the operational display ("home position"). With a wizard Exits the wizard and takes you to the next higher level. In the text and numeric editor Exits the Editing view without applying the changes.
$\bigcirc+$ -	Minus/Enter key combination (press and hold down the keys simultaneously) - If keypad lock is active: Pressing the key for 3 s deactivates the keypad lock. - If keypad lock is not active: Pressing the key for 3 s opens the context menu including the option for activating the keypad lock.

7.3.5 Opening the context menu

Using the context menu, the user can call up the following menus quickly and directly from the operational display:

- Setup
- Data backup
- Simulation

Calling up and closing the context menu

The user is in the operational display.

1. Press the \square and \square keys for longer than 3 seconds.
\longrightarrow The context menu opens.

2. Press $\square+\boxplus$ simultaneously.
\rightarrow The context menu is closed and the operational display appears.
Calling up the menu via the context menu
3. Open the context menu.
4. Press \boxplus to navigate to the desired menu.
5. Press to confirm the selection.
\llcorner The selected menu opens.

7.3.6 Navigating and selecting from list

Different operating elements are used to navigate through the operating menu. The navigation path is displayed on the left in the header. Icons are displayed in front of the individual menus. These icons are also shown in the header during navigation.

1. For an explanation of the navigation view with symbols and operating elements \rightarrow 層 50

Example: Setting the number of displayed measured values to " 2 values"

7.3.7 Calling the parameter directly

A parameter number is assigned to every parameter to be able to access a parameter directly via the onsite display. Entering this access code in the Direct access parameter calls up the desired parameter directly.
Navigation path
Expert \rightarrow Direct access

The direct access code consists of a 5-digit number (at maximum) and the channel number, which identifies the channel of a process variable: e.g. 00914-2. In the navigation view, this appears on the right-hand side in the header of the selected parameter.

1 Direct access code

Note the following when entering the direct access code:

- The leading zeros in the direct access code do not have to be entered. Example: Enter "914" instead of "00914"
- If no channel number is entered, channel 1 is opened automatically. Example: Enter $00914 \rightarrow$ Assign process variable parameter
- If a different channel is opened: Enter the direct access code with the corresponding channel number.
Example: Enter 00914-2 \rightarrow Assign process variable parameter
For the direct access codes of the individual parameters, see the "Description of Device Parameters" document for the device

7.3.8 Calling up help text

Help text is available for some parameters and can be called up from the navigation view. The help text provides a brief explanation of the parameter function and thereby supports swift and safe commissioning.

Calling up and closing the help text

The user is in the navigation view and the selection bar is on a parameter.

1. Press 国 for 2 s .
$\longrightarrow \quad$ The help text for the selected parameter opens.

33 Example: Help text for parameter "Enter access code"
2. Press $\square+\square$ simultaneously.
\llcorner The help text is closed.

7.3.9 Changing the parameters

Parameters can be changed via the numeric editor or text editor.

- Numeric editor: Change values in a parameter, e.g. specifications for limit values.
- Text editor: Enter text in a parameter, e.g. tag name.

A message is displayed if the value entered is outside the permitted value range.

For a description of the editing view－consisting of the text editor and numeric editor －with symbols \rightarrow 52，for a description of the operating elements \rightarrow 包 54

7．3．10 User roles and related access authorization

The two user roles＂Operator＂and＂Maintenance＂have different write access to the parameters if the customer defines a user－specific access code．This protects the device configuration via the local display from unauthorized access \rightarrow 酋 124.

Defining access authorization for user roles

An access code is not yet defined when the device is delivered from the factory．Access authorization（read and write access）to the device is not restricted and corresponds to the ＂Maintenance＂user role．
－Define the access code．
\llcorner The＂Operator＂user role is redefined in addition to the＂Maintenance＂user role． Access authorization differs for the two user roles．

Access authorization to parameters：＂Maintenance＂user role

Access code status	Read access	Write access
An access code has not yet been defined （factory setting）．	\boldsymbol{v}	$\boldsymbol{\nu}$
After an access code has been defined．	\boldsymbol{v}	$\boldsymbol{v}^{1)}$

1）The user only has write access after entering the access code．

Access authorization to parameters：＂Operator＂user role

Access code status	Read access	Write access
After an access code has been defined．	\boldsymbol{v}	$-{ }^{1)}$

1）Despite the defined access code，certain parameters can always be modified and thus are excluded from the write protection as they do not affect the measurement：write protection via access code \rightarrow 首 124

1．The user role with which the user is currently logged on is indicated by the Access status parameter．Navigation path：Operation \rightarrow Access status

7．3．11 Disabling write protection via access code

If the 图－symbol appears on the local display in front of a parameter，the parameter is write－protected by a user－specific access code and its value cannot be changed at the moment using local operation \rightarrow 㞔 124.

Parameter write protection via local operation can be disabled by entering the user－specific access code in the Enter access code parameter（ \rightarrow 曾 105）via the respective access option．
1．After you press 国，the input prompt for the access code appears．

2．Enter the access code．
\longrightarrow The 图－symbol in front of the parameters disappears；all previously write－ protected parameters are now re－enabled．

7．3．12 Enabling and disabling the keypad lock

The keypad lock makes it possible to block access to the entire operating menu via local operation．As a result，it is no longer possible to navigate through the operating menu or change the values of individual parameters．Users can only read the measured values on the operational display．

The keypad lock is switched on and off via the context menu．

Switching on the keypad lock

1 The keypad lock is switched on automatically：
－If the device has not been operated via the display for >1 minute．
－Each time the device is restarted．

To activate the keylock manually：

1．The device is in the measured value display．
Press the \square and \boxminus keys for 3 seconds．
\longrightarrow A context menu appears．
2．In the context menu select the Keylock on option．
\longrightarrow The keypad lock is switched on．
1．If the user attempts to access the operating menu while the keypad lock is active，the Keylock on message appears．

Switching off the keypad lock

－The keypad lock is switched on．
Press the \square and $巨$ keys for 3 seconds．
$\llcorner\quad$ The keypad lock is switched off．

7．4 Access to operating menu via web browser

7．4．1 Function range

With the integrated web server，the device can be operated and configured via a web browser service interface（CDI－RJ45）or WLAN interface．The structure of the operating menu is the same as for the local display．In addition to the measured values，status information on the device is displayed and can be used to monitor device health． Furthermore the device data can be managed and the network parameters can be configured．

A device that has a WLAN interface（can be ordered as an option）is required for the WLAN connection：order code for＂Display；operation＂，option G＂4－line，illuminated；touch control＋WLAN＂．The device acts as an Access Point and enables communication by computer or a mobile handheld terminal．

For additional information on the web server，refer to the Special Documentation for the device \rightarrow 圈 203（Verweisziel existiert nicht，aber＠y．link．required＝＇true＇）

7.4.2 Requirements

Computer hardware

Hardware	Interface	WLAN
	CDI-RJ45	The operating unit must have a WLAN interface.
Interface	The computer must have a RJ45 interface. ${ }^{1)}$	Connection via Wireless LAN.
Connection	Standard Ethernet cable	Recommended size: $\geq 12^{\prime \prime}$ (depends on the screen resolution)
Screen		

1) Recommended cable: CAT5e, CAT6 or CAT7, with shielded plug (e.g. YAMAICHI product; part no. YConProfixPlug63/Prod. ID: 82-006660)

Computer software

Computer settings

Settings	Interface	
	CDI-RJ45	WLAN
User rights	Appropriate user rights (e.g. administrator rights) for TCP/IP and proxy server settings are necessary (e.g. for adjusting the IP address, subnet mask etc.). web browser	The web browser's Use a Proxy Server for Your LAN setting must be deselected .
JavaScript	JavaScript must be enabled. If JavaScript cannot be enabled: Enter http://192.168.1.212/servlet/basic.html in the address bar of the web browser. A fully functional but simplified version of the operating menu structure starts in the web browser.	
	When installing a new firmware version: To enable correct data display, clear the temporary memory (cache) under Internet options in the web browser.	
Network connections	Use only the active network connections for the measuring device.	
	Switch off all other network connections such as WLAN for example.	Switch off all other network connections.

Measuring device：Via CDI－RJ45 service interface

Device	CDI－RJ45 service interface
Measuring device	The measuring device has an RJ45 interface．
Web server	Web server must be enabled；factory setting：ON
	\mathbf{i} For information on enabling the Web server \rightarrow 䍚 65

Measuring device：via WLAN interface

Device	WLAN interface
Measuring device	The measuring device has a WLAN antenna： －Transmitter with integrated WLAN antenna －Transmitter with external WLAN antenna
Web server	Web server and WLAN must be enabled；factory setting：ON \mathbf{i} For information on enabling the Web server \rightarrow 图 65

7．4．3 Establishing a connection

Via service interface（CDI－RJ45）

Preparing the measuring device
1．Depending on the housing version：
Loosen the securing clamp or fixing screw of the housing cover．
2．Depending on the housing version：
Unscrew or open the housing cover．
3．Connect the computer to the RJ45 plug via the standard Ethernet cable ．
Configuring the Internet protocol of the computer
The following information refers to the default Ethernet settings of the device．
IP address of the device：192．168．1．212（factory setting）
1．Switch on the measuring device．
2．Connect the computer to the RJ45 plug via the standard Ethernet cable \rightarrow 目 67 ．
3．If a 2 nd network card is not used，close all the applications on the notebook．
\longrightarrow Applications requiring Internet or a network，such as e－mail，SAP applications， Internet or Windows Explorer．

4．Close any open Internet browsers．
5．Configure the properties of the Internet protocol（TCP／IP）as defined in the table：

IP address	$192.168 .1 . X X X ; ~ f o r ~ X X X ~ a l l ~ n u m e r i c a l ~ s e q u e n c e s ~ e x c e p t: ~ 0, ~$ 192.168 .1 .213
Subnet mask $255 \rightarrow$ e．g．	
Default gateway	255.255 .255 .0

Via WLAN interface

Configuring the Internet protocol of the mobile terminal

NOTICE

If the WLAN connection is lost during the configuration，settings made may be lost．
－Make sure that the WLAN connection is not disconnected while configuring the device．

NOTICE

Note the following to avoid a network conflict:

- Avoid accessing the measuring device simultaneously from the same mobile terminal via the service interface (CDI-RJ45) and the WLAN interface.
- Only activate one service interface (CDI-RJ45 or WLAN interface).
- If simultaneous communication is necessary: configure different IP address ranges, e.g. 192.168.0.1 (WLAN interface) and 192.168.1.212 (CDI-RJ45 service interface).

Preparing the mobile terminal

- Enable WLAN on the mobile terminal.

Establishing a WLAN connection from the mobile terminal to the measuring device

1. In the WLAN settings of the mobile terminal:

Select the measuring device using the SSID (e.g. EH_t-mass_300_A802000).
2. If necessary, select the WPA2 encryption method.
3. Enter the password:

Serial number of the measuring device ex-works (e.g. L100A802000).
\rightarrow The LED on the display module flashes. It is now possible to operate the measuring device with the web browser, FieldCare or DeviceCare.

1 The serial number can be found on the nameplate.
1 To ensure the safe and swift assignment of the WLAN network to the measuring point, it is advisable to change the SSID name. It should be possible to clearly assign the new SSID name to the measuring point (e.g. tag name) because it is displayed as the WLAN network.

Terminating the WLAN connection

- After configuring the device:

Terminate the WLAN connection between the mobile terminal and measuring device.

Starting the Web browser

1. Start the Web browser on the computer.

2．Enter the IP address of the web server in the address line of the web browser： 192．168．1．212
\llcorner The login page appears．

[^8]1 If a login page does not appear，or if the page is incomplete \rightarrow 娄 139

7．4．4 Logging on

1．Select the preferred operating language for the Web browser．
2．Enter the user－specific access code．
3．Press OK to confirm your entry．

Access code	0000 （factory setting）；can be changed by customer

1
If no action is performed for 10 minutes，the Web browser automatically returns to the login page．

7.4.5 User interface

[^9]
Header

The following information appears in the header:

- Device name
- Device tag
- Device status with status signal \rightarrow 图 145
- Current measured values

Function row

Functions	Meaning
Measured values	Displays the measured values of the device
Menu	- Access to the operating menu from the measuring device - The structure of the operating menu is the same as for the local display Detailed information on the structure of the operating menu: see the Description of Device Parameters
Device status	Displays the diagnostic messages currently pending, listed in order of priority
Data management	Data exchange between computer and measuring device: - Device configuration: - Load settings from the device (XML format, save configuration) - Save settings to the device (XML format, restore configuration) - Logbook - Export Event logbook (.csv file) - Documents - Export documents: - Export backup data record (.csv file, create documentation of the measuring point configuration) - Verification report (PDF file, only available with the "Heartbeat Verification" application package) - Firmware update - Flashing a firmware version
Network	Configuration and checking of all the parameters required for establishing the connection to the measuring device: - Network settings (e.g. IP address, MAC address) - Device information (e.g. serial number, firmware version)
Logout	End the operation and call up the login page

Navigation area

The menus, the associated submenus and parameters can be selected in the navigation area.

Working area

Depending on the selected function and the related submenus, various actions can be performed in this area:

- Configuring parameters
- Reading measured values
- Calling up help text
- Starting an upload/download

7.4.6 Disabling the Web server

The Web server of the measuring device can be switched on and off as required using the Web server functionality parameter.

Navigation

"Expert" menu \rightarrow Communication \rightarrow Web server

Parameter overview with brief description

Parameter	Description	Selection
Web server functionality	Switch the Web server on and off.	- Off - HTML Off - On

Function scope of the "Web server functionality" parameter

Option	Description
Off	- The Web server is completely disabled. - Port 80 is locked.
On	- The complete Web server functionality is available. - JavaScript is used. - The password is transferred in an encrypted state. - Any change to the password is also transferred in an encrypted state.

Enabling the Web server

If the Web server is disabled it can only be re-enabled with the Web server functionality parameter via the following operating options:

- Via local display
- Via Bedientool "FieldCare"
- Via "DeviceCare" operating tool

7.4.7 Logging out

1. Before logging out, perform a data backup via the Data management function (upload configuration from device) if necessary.
2. Select the Logout entry in the function row.
\rightarrow The home page with the Login box appears.
3. Close the Web browser.
4. If no longer needed:

Reset the modified properties of the Internet protocol (TCP/IP) \rightarrow 痖 61 .

7.5 Access to the operating menu via the operating tool

The structure of the operating menu in the operating tools is the same as for operation via the local display.

7.5.1 Connecting the operating tool

Via HART protocol

This communication interface is available in device versions with a HART output.

- 34 Options for remote operation via HART protocol (active)

1 Control system (e.g. PLC)
2 Field Communicator 475
3 Computer with web browser (e.g. Microsoft Edge) to access the integrated device web server or computer with operating tool (e.g. FieldCare, DeviceCare, AMS Device Manager, SIMATIC PDM) with COM DTM "CDI Communication TCP/IP"
4 Commubox FXA195 (USB)
5 Field Xpert SFX350 or SFX370
6 Field Xpert SMT70
7 VIATOR Bluetooth modem with connecting cable
8 Transmitter

- 35 Options for remote operation via HART protocol (passive)

1 Control system (e.g. PLC)
2 Transmitter power supply unit, e.g. RN221N (with communication resistor)
3 Connection for Commubox FXA195 and Field Communicator 475
4 Field Communicator 475
5 Computer with web browser (e.g. Microsoft Edge) to access the integrated device web server or computer with operating tool (e.g. FieldCare, DeviceCare, AMS Device Manager, SIMATIC PDM) with COM DTM "CDI Communication TCP/IP"
6 Commubox FXA 195 (USB)
7 Field Xpert SFX350 or SFX370
8 Field Xpert SMT70
9 VIATOR Bluetooth modem with connecting cable
10 Transmitter

Service interface

Via service interface (CDI-RJ45)
A point-to-point connection can be established to configure the device on site. With the housing open, the connection is established directly via the service interface (CDI-RJ45) of the device.
1 1. An adapter for the RJ45 to the M12 plug is optionally available for the non-hazardous area:
Order code for "Accessories", option NB: "Adapter RJ45 M12 (service interface)"
The adapter connects the service interface (CDI-RJ45) to an M12 plug mounted in the cable entry. The connection to the service interface can be established via an M12 plug without opening the device.

图 36 Connection via service interface (CDI-RJ45)
1 Computer with web browser (e.g. Microsoft Internet Explorer, Microsoft Edge) to access the integrated web server or with an operating tool "FieldCare", "DeviceCare" with COM DTM "CDI Communication TCP/IP"
2 Standard Ethernet connecting cable with RJ45 plug
3 Service interface (CDI-RJ45) of the measuring device with access to the integrated web server

Via WLAN interface

The optional WLAN interface is available on the following device version:
Order code for "Display; operation", option G "4-line, illuminated; touch control + WLAN"

1 Transmitter with integrated WLAN antenna
2 Transmitter with external WLAN antenna
3 LED lit constantly: WLAN reception is enabled on measuring device
4 LED flashing: WLAN connection established between operating unit and measuring device
5 Computer with WLAN interface and web browser (e.g. Microsoft Internet Explorer, Microsoft Edge) for accessing the integrated device web server or with operating tool (e.g. FieldCare, DeviceCare)
6 Mobile handheld terminal with WLAN interface and web browser (e.g. Microsoft Internet Explorer, Microsoft Edge) for accessing the integrated device web server or operating tool (e.g. FieldCare, DeviceCare)
7 Smart phone or tablet (e.g. Field Xpert SMT70)

Function	WLAN: IEEE $802.11 \mathrm{~b} / \mathrm{g}(2.4 \mathrm{GHz})$
Encryption	WPA2-PSK AES-128 (in accordance with IEEE 802.11i)
Configurable WLAN channels	1 to 11
Degree of protection	IP67
Available antennas	- Internal antenna - External antenna (optional) installation.
Range	- Internal antenna: typically 10 m (32 ft) - External antenna: typically $50 \mathrm{~m}(164 \mathrm{ft})$
Materials (external antenna)	- Antenna: ASA plastic (acrylonitrile styrene acrylate) and nickel-plated brass - Adapter: Stainless steel and nickel-plated brass - Cable: Polyethylene - Plug: Nickel-plated brass - Angle bracket: Stainless steel

Configuring the Internet protocol of the mobile terminal

NOTICE

If the WLAN connection is lost during the configuration, settings made may be lost.

- Make sure that the WLAN connection is not disconnected while configuring the device.

NOTICE

Note the following to avoid a network conflict:

- Avoid accessing the measuring device simultaneously from the same mobile terminal via the service interface (CDI-RJ45) and the WLAN interface.
- Only activate one service interface (CDI-RJ45 or WLAN interface).
- If simultaneous communication is necessary: configure different IP address ranges, e.g. 192.168.0.1 (WLAN interface) and 192.168.1.212 (CDI-RJ45 service interface).

Preparing the mobile terminal

- Enable WLAN on the mobile terminal.

Establishing a WLAN connection from the mobile terminal to the measuring device

1. In the WLAN settings of the mobile terminal:

Select the measuring device using the SSID (e.g. EH_t-mass_300_A802000).
2. If necessary, select the WPA2 encryption method.
3. Enter the password:

Serial number of the measuring device ex-works (e.g. L100A802000).
\llcorner The LED on the display module flashes. It is now possible to operate the measuring device with the web browser, FieldCare or DeviceCare.

1 The serial number can be found on the nameplate.

1. To ensure the safe and swift assignment of the WLAN network to the measuring point, it is advisable to change the SSID name. It should be possible to clearly assign the new SSID name to the measuring point (e.g. tag name) because it is displayed as the WLAN network.

Terminating the WLAN connection

- After configuring the device: Terminate the WLAN connection between the mobile terminal and measuring device.

7.5.2 Field Xpert SFX350, SFX370

Function scope

Field Xpert SFX350 and Field Xpert SFX370 are mobile computers for commissioning and maintenance. They enable efficient device configuration and diagnostics for HART and FOUNDATION Fieldbus devices in the non-hazardous area (SFX350, SFX370) and hazardous area (SFX370).

For details, see Operating Instructions BA01202S

Source for device description files

See information \rightarrow 首 73

7.5.3 FieldCare

Function range

FDT-based (Field Device Technology) plant asset management tool from Endress+Hauser. It can configure all smart field units in a system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.

Access is via：

- HART protocol \rightarrow 圈 66
- CDI－RJ45 service interface \rightarrow 首 67
- WLAN interface \rightarrow 酋 68

Typical functions：
－Transmitter parameter configuration
－Loading and saving of device data（upload／download）
－Documentation of the measuring point
－Visualization of the measured value memory（line recorder）and event logbook
（ \mathbf{i}－Operating Instructions BA00027S
－Operating Instructions BA00059S
1 Source for device description files \rightarrow 73

Establishing a connection

1．Start FieldCare and launch the project．
2．In the network：Add a device．
$\llcorner\quad$ The Add device window opens．
3．Select the CDI Communication TCP／IP option from the list and press $\mathbf{O K}$ to confirm．
4．Right－click CDI Communication TCP／IP and select the Add device option in the context menu that opens．
5．Select the desired device from the list and press OK to confirm．
\rightarrow The CDI Communication TCP／IP（Configuration）window opens．
6．Enter the device address in the IP address field：192．168．1．212 and press Enter to confirm．

7．Establish the online connection to the device．
－Operating Instructions BA00027S
－Operating Instructions BA00059S

User interface

[^10]
7．5．4 DeviceCare

Function range

Tool for connecting and configuring Endress＋Hauser field devices．
The fastest way to configure Endress＋Hauser field devices is with the dedicated ＂DeviceCare＂tool．Together with the device type managers（DTMs）it presents a convenient， comprehensive solution．

Innovation brochure IN01047S

1
Source for device description files \rightarrow 圈 73

7．5．5 AMS Device Manager

Function range

Program from Emerson Process Management for operating and configuring measuring devices via the HART protocol．

Source for device description files \rightarrow 層 73

7.5.6 Field Communicator 475

Function scope

Industrial handheld terminal from Emerson Process Management for remote configuration and measured value display via HART protocol.

Source for device description files

See information \rightarrow 首 73

7.5.7 SIMATIC PDM

Function range

SIMATIC PDM is a standardized, manufacturer-independent program from Siemens for the operation, configuration, maintenance and diagnosis of intelligent field devices via HART protocol.
1 Source for device description files \rightarrow 娄 73

8 System integration

8.1 Overview of device description files

8.1.1 Current version data for the device

Firmware version	01.00.zz	- On the title page of the Operating Instructions - On the transmitter nameplate \rightarrow 輏 15 - Firmware version parameter Diagnostics \rightarrow Device information \rightarrow Firmware version
Release date of firmware version	07.2020	---
Manufacturer ID	0x11	Manufacturer ID parameter Expert \rightarrow Communication \rightarrow HART output \rightarrow Information \rightarrow Manufacturer ID
Device type ID	0x1166	Device type parameter Expert \rightarrow Communication \rightarrow HART output \rightarrow Information \rightarrow Device type
HART protocol revision	7.0	---
Device revision	0x1	- On the transmitter nameplate - Device revision parameter Expert \rightarrow Communication \rightarrow HART output \rightarrow Information \rightarrow Device revision

i
For an overview of the various firmware versions for the device \rightarrow 酋 163

8.1.2 Operating tools

The suitable device description file for the individual operating tools is listed in the table below, along with information on where the file can be acquired.

Operating tool via HART protocol	Sources for obtaining device descriptions
FieldCare	- www.endress.com \rightarrow Downloads area - USB stick (contact Endress+Hauser) - DVD (contact Endress+Hauser)
DeviceCare	- www.endress.com \rightarrow Downloads area - CD-ROM (contact Endress+Hauser) - DVD (contact Endress+Hauser)
- Field Xpert SMT70 - Field Xpert SMT77	Use update function of handheld terminal
AMS Device Manager (Emerson Process Management)	www.endress.com \rightarrow Downloads area
SIMATIC PDM (Siemens)	www.endress.com \rightarrow Downloads area
Field Communicator 475 (Emerson Process Management)	Use update function of handheld terminal

8.2 Measured variables via HART protocol

The following measured variables (HART device variables) are assigned to the dynamic variables at the factory:

Dynamic variables	Measured variables (HART device variables)
Primary dynamic variable (PV)	Mass flow
Secondary dynamic variable (SV)	Totalizer
Tertiary dynamic variable (TV)	Volume flow
Quaternary dynamic variable (QV)	Corrected volume flow

The assignment of the measured variables to the dynamic variables can be modified and assigned as desired via local operation and the operating tool using the following parameters:

- Expert \rightarrow Communication \rightarrow HART output \rightarrow Output \rightarrow Assign PV
- Expert \rightarrow Communication \rightarrow HART output \rightarrow Output \rightarrow Assign SV
- Expert \rightarrow Communication \rightarrow HART output \rightarrow Output \rightarrow Assign TV
- Expert \rightarrow Communication \rightarrow HART output \rightarrow Output \rightarrow Assign QV

The following measured variables can be assigned to the dynamic variables:

Measured variables for PV (primary dynamic variable)

- Temperature
- Mass flow
- Corrected volume flow
- Energy flow
- Heat flow
- Density
- Flow velocity
- Pressure
- 2nd temperature delta heat
- Electronic temperature

Measured variables for SV, TV, QV (secondary, tertiary and quaternary dynamic variable)

- Mass flow
- Corrected volume flow
- Volume flow
- Temperature
- Density
- Flow velocity
- Pressure
- Energy flow
- Heat flow
- 2nd temperature delta heat
- Electronic temperature
- Totalizer
- HART input

8.2.1 Device variables

Device variables are permanently assigned. A maximum of eight device variables can be transmitted.

Allocation	Device variables
0	Mass flow
1	Volume flow
2	Corrected volume flow
3	Density
4	Reference density

Allocation	Device variables
5	Temperature
6	Totalizer 1
7	Totalizer 2
8	Totalizer 3

8．3 Other settings

Burst mode functionality in accordance with HART 7 Specification：

Navigation

＂Expert＂menu \rightarrow Communication \rightarrow HART output \rightarrow Burst configuration \rightarrow Burst configuration 1 to n

－Burst configuration 1 to n	
Burst mode 1 to n	\rightarrow 娄 76
Burst command 1 to n	\rightarrow 娄 76
Burst variable 0	\rightarrow 娄 76
Burst variable 1	\rightarrow 图 76
Burst variable 2	\rightarrow 图 76
Burst variable 3	\rightarrow 甸 76
Burst variable 4	\rightarrow 娄 76
Burst variable 5	\rightarrow 图 76
Burst variable 6	\rightarrow 图 76
Burst variable 7	\rightarrow 㭵 76
Burst trigger mode	\rightarrow 图 76
Burst trigger level	\rightarrow 娄 76
Min．update period	\rightarrow 图 77
Max．update period	\rightarrow 娄 77

Parameter overview with brief description

Parameter	Description	Selection / User entry
Burst mode 1 to n	Activate the HART burst mode for burst message X.	- Off - On
Burst command 1 to n	Select the HART command that is sent to the HART master.	- Command 1 - Command 2 - Command 3 - Command 9 - Command 33 - Command 48
Burst variable 0	For HART command 9 and 33: select the HART device variable or the process variable.	- Mass flow - Corrected volume flow - FAD volume flow * - Volume flow - Temperature - Density - Flow velocity - Pressure - Energy flow * - Heat flow ${ }^{*}$ - 2nd temperature delta heat * - Electronic temperature - Totalizer 1 - Totalizer 2 - Totalizer 3 - Percent of range - Measured current - Current input 1^{*} - Current input 2 * - Current input 3^{*} - Primary variable (PV) - Secondary variable (SV) - Tertiary variable (TV) - Quaternary variable (QV) - HART input - Not used
Burst variable 1	For HART command 9 and 33: select the HART device variable or the process variable.	See the Burst variable 0 parameter.
Burst variable 2	For HART command 9 and 33: select the HART device variable or the process variable.	See the Burst variable 0 parameter.
Burst variable 3	For HART command 9 and 33: select the HART device variable or the process variable.	See the Burst variable 0 parameter.
Burst variable 4	For HART command 9: select the HART device variable or the process variable.	See the Burst variable 0 parameter.
Burst variable 5	For HART command 9: select the HART device variable or the process variable.	See the Burst variable 0 parameter.
Burst variable 6	For HART command 9: select the HART device variable or the process variable.	See the Burst variable 0 parameter.
Burst variable 7	For HART command 9: select the HART device variable or the process variable.	See the Burst variable $\mathbf{0}$ parameter.
Burst trigger mode	Select the event that triggers burst message X.	- Continuous - Window ${ }^{*}$ - Rising ${ }^{*}$ - Falling ${ }^{*}$ - On change
Burst trigger level	Enter the burst trigger value. Together with the option selected in the Burst trigger mode parameter the burst trigger value determines the time of burst message X .	Signed floating-point number

Parameter	Description	Selection / User entry
Min. update period	Enter the minimum time span between two burst commands of burst message X.	Positive integer
Max. update period	Enter the maximum time span between two burst commands of burst message X.	Positive integer

* Visibility depends on order options or device settings

9 Commissioning

9．1 Post－mounting and post－connection check

Before commissioning the device：
－Make sure that the post－installation and post－connection checks have been performed successfully．

- Checklist for＂Post－mounting＂check \rightarrow 置 32
- Checklist for＂Post－connection check＂\rightarrow 圈 44

9．2 Switching on the measuring device

－Switch on the device upon successful completion of the post－mounting and post－ connection check．
\longrightarrow After a successful startup，the local display switches automatically from the startup display to the operational display．
1.

If nothing appears on the local display or if a diagnostic message is displayed，refer to the section on＂Diagnostics and troubleshooting＂\rightarrow 圈 138.

9．3 Setting the operating language

Factory setting：English or ordered local language

图 37 Taking the example of the local display

9.4 Configuring the measuring device

The Setup menu with its guided wizards contains all the parameters needed for standard operation.

圆 38 Navigation to "Setup" menu using the example of the local display

1. The number of submenus and parameters can vary depending on the device version. Certain submenus and parameters in these submenus are not described in the Operating Instructions. Instead a description is provided in the Special Documentation for the device ("Supplementary documentation").

9.4.1 Defining the tag name

To enable fast identification of the measuring point within the system, you can enter a unique designation using the Device tag parameter and thus change the factory setting.

- 39 Header of the operational display with tag name

1 Tag name

1 Enter the tag name in the "FieldCare" operating tool \rightarrow 層 71

Navigation

"Setup" menu \rightarrow Device tag

Parameter overview with brief description

Parameter	Description	User entry
Device tag	Enter the name for the measuring point.	Max. 32 characters, such as letters, numbers or special characters (e.g. @, \%, /).

9.4.2 Configuring the measurement mode

Properties of the medium can be configured in the Measurement mode submenu.

Navigation

"Setup" menu \rightarrow Measurement mode

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection / User entry / User interface	Factory setting
Measurement application	-	Select measurement application.	- Air or compressed air - Gas or gas mixture - Energy	-
Select gas type	-	Select measured gas type.	- Single gas - Gas mixture - Special gas *	-
Gas	The Single gas option is selected in the Select gas type parameter parameter.	Select measured gas.	- Air - Ammonia NH3 - Argon Ar - Butane C4H10 - Carbon dioxide CO2 - Carbon monoxide CO - Chlorine Cl2 - Ethane C2H6 - Ethylene C2H4 - Helium He - Hydrogen H2 - Hydrogen chloride HCl - Hydrogen sulfide H2S - Krypton Kr - Methane CH4 - Neon Ne - Nitrogen N2 - Oxygen O2 - Ozone 03 - Propane C3H8 - Xenon Xe	-
Gas composition	The Gas mixture option is selected in the Select gas type parameter parameter.	Select measured gas mixture.	- Air - Hydrogen H2 - Helium He - Neon Ne - Argon Ar - Krypton Kr - Xenon Xe - Nitrogen N2 - Oxygen O2 - Chlorine Cl2 - Ammonia NH3 - Carbon monoxide CO - Carbon dioxide CO2 - Hydrogen sulfide H2S - Hydrogen chloride HCl - Methane CH4 - Propane C3H8 - Ethane C2H6 - Butane C4H10 - Ethylene C2H4 - Water - Ozone O3	-
Mol\% Air	-	Enter amount of substance for the gas mixture. Air	0 to 100%	-

Parameter	Prerequisite	Description	Selection / User entry / User interface	Factory setting
$\mathrm{Mol} \% \mathrm{Ar}$	-	Enter amount of substance for the gas mixture. $\mathrm{Ar}=\mathrm{Argon}$	0 to 100%	-
Mol\% C2H4	-	Enter amount of substance for the gas mixture. $\mathrm{C}_{2} \mathrm{H}_{4}=\text { ethylene }$	0 to 100%	-
Mol\% C2H6	-	Enter amount of substance for the gas mixture. $\mathrm{C}_{2} \mathrm{H}_{6}=\text { ethane }$	0 to 100%	-
Mol\% C3H8	-	Enter amount of substance for the gas mixture. $\mathrm{C}_{3} \mathrm{H}_{8}=\text { propane }$	0 to 100%	-
Mol\% CH4	-	Enter amount of substance for the gas mixture. $\mathrm{CH}_{4}=\text { methane }$	0 to 100%	-
Mol\% Cl2	-	Enter amount of substance for the gas mixture. $\mathrm{Cl}_{2}=\text { chlorine }$	0 to 100%	-
Mol\% CO	-	Enter amount of substance for the gas mixture. $\mathrm{CO}=\text { carbon monoxide }$	0 to 100%	-
Mol\% CO2	-	Enter amount of substance for the gas mixture. $\mathrm{CO}_{2}=\text { carbon dioxide }$	0 to 100%	-
Mol\% H2	-	Enter amount of substance for the gas mixture. $\mathrm{H}_{2}=\text { hydrogen }$	0 to 100%	-
Mol\% H2O	-	Enter amount of substance for the gas mixture. $\mathrm{H}_{2} \mathrm{O}=\text { water }$	0 to 20%	-
Mol\% H2S	-	Enter amount of substance for the gas mixture. $\mathrm{H}_{2} \mathrm{~S}=\text { hydrogen sulfide }$	0 to 100%	-
$\mathrm{Mol} \% \mathrm{HCl}$	-	Enter amount of substance for the gas mixture. $\mathrm{HCl}=\text { hydrogen chloride }$	0 to 100%	-
$\mathrm{Mol} \% \mathrm{He}$	-	Enter amount of substance for the gas mixture. $\mathrm{He}=\text { helium }$	0 to 100%	-
Mol\% Kr	-	Enter amount of substance for the gas mixture. $\mathrm{Kr}=\text { krypton }$	0 to 100%	-
Mol\% N2	-	Enter amount of substance for the gas mixture. $\mathrm{N}_{2}=\text { nitrogen }$	0 to 100%	-
Mol\% n-C4H10	-	Enter amount of substance for the gas mixture. $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}=\mathrm{n} \text {-butane }$	0 to 100%	-

Parameter	Prerequisite	Description	Selection／User entry／User interface	Factory setting
$\mathrm{Mol} \% \mathrm{Ne}$	－	Enter amount of substance for the gas mixture． $\mathrm{Ne}=\text { neon }$	0 to 100%	－
Mol\％NH3	－	Enter amount of substance for the gas mixture． $\mathrm{NH}_{3}=\text { ammonia }$	0 to 100%	－
Mol\％O2	－	Enter amount of substance for the gas mixture． $\mathrm{O}_{2}=\text { oxygen }$	0 to 100%	－
$\mathrm{Mol} \% \mathrm{O} 3$	As a mixture，only possible with O ： －03： 0 to 35% －O2： 65 to 100% 03 as single gas： 100%	Enter amount of substance for the gas mixture．	0 to 100%	－
Mol \％Xe	－	Enter amount of substance for the gas mixture． $\mathrm{Xe}=\mathrm{xenon}$	0 to 100%	－
Special gas name	Special gas option application package is available．	Shows the description of the gas ordered by the customer， e．g．gas name or gas composition．	－	－

＊Visibility depends on order options or device settings

9．4．3 Configuring reference conditions

Reference properties can be configured in the Reference conditions submenu．

Navigation

＂Setup＂menu \rightarrow Reference conditions

Reference conditions

Reference conditions	\rightarrow 筧 85
Reference pressure	\rightarrow 圈 85
Reference temperature	\rightarrow 畨 85
FAD conditions	\rightarrow 層 85
FAD pressure	\rightarrow 畨 85
FAD temperature	\rightarrow 葛 85
Reference combustion temperature	\rightarrow 圈 85
Reference combustion temperature	\rightarrow 屏 85

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection / User entry
Reference conditions	-	Select reference conditions for calculation of the corrected volume flow.	- 1013.25 mbara, $0^{\circ} \mathrm{C}$ - 1013.25 mbara, $15^{\circ} \mathrm{C}$ - 1013.25 mbara, $20^{\circ} \mathrm{C}$ - 1013.25 mbara, $25^{\circ} \mathrm{C}$ - 1000 mbara, $0^{\circ} \mathrm{C}$ - 1000 mbara, $15^{\circ} \mathrm{C}$ - 1000 mbara, $20^{\circ} \mathrm{C}$ - 1000 mbara, $25^{\circ} \mathrm{C}$ - 14.696 psia, $59^{\circ} \mathrm{F}$ - 14.696 psia, $60^{\circ} \mathrm{F}$ - User-defined
Reference pressure	The Others option is selected in the Reference conditions parameter.	Select reference conditions for the corrected volume flow.	0 to 250 bar a
Reference temperature	-	Enter reference temperature for calculating the reference density.	-200 to $450^{\circ} \mathrm{C}$
FAD conditions	The Air or compressed air option is selected in the Measurement application parameter parameter.	Select reference conditions for the calculation of the FAD density (FAD $=$ free air delivery).	- 1000 mbara, $20^{\circ} \mathrm{C}$ - 14.504 psia, $68^{\circ} \mathrm{F}$ - User-defined
FAD pressure	- The Air or compressed air option is selected in the Measurement application parameter parameter. - The User-defined option is selected in the FAD conditions parameter parameter.	Enter reference pressure for the calulation of the FAD density (FAD = free air delivery).	0 to 250 bar a
FAD temperature	- The Air or compressed air option is selected in the Measurement application parameter parameter. - The User-defined option is selected in the FAD conditions parameter parameter.	Enter reference temperature for the calulation of the FAD density (FAD = free air delivery).	-200 to $450^{\circ} \mathrm{C}$
Reference combustion temperature	The Energy option is selected in the Measurement application parameter parameter.	Enter reference combustion temperature to calculate the natural gas energy value.	-200 to $450^{\circ} \mathrm{C}$
Reference combustion temperature	-	Select ref. temp. (reference combustion temperature) for calculating the gas energy value.	- $0^{\circ} \mathrm{C}$ - $15^{\circ} \mathrm{C}$ - $20^{\circ} \mathrm{C}$ - $25^{\circ} \mathrm{C}$ - $60^{\circ} \mathrm{F}$ - User-defined

9.4.4 Sensor adjustment

Parameters pertaining to the pipe shape of the insertion version can be configured in the Sensor adjustment submenu.
1.

The number of submenus and parameters can vary depending on the device version. Certain submenus and parameters in these submenus are not described in the Operating Instructions. Instead a description is provided in the Special Documentation for the device ("Supplementary documentation").

Pipe shape	\rightarrow 屏 86
Pipe inner diameter	\rightarrow 屏 86
Duct height	\rightarrow 曾 86
Duct width	\rightarrow 曾 86

Parameter overview with brief description

| Parameter | Prerequisite | Description | Selection／User entry |
| :--- | :--- | :--- | :--- | :--- |
| Installation direction | - | Set sign of flow direction to match the
 direction of the arrow on the sensor． | －Flow in arrow direction
 Flow against arrow
 direction |
| Installation factor | Only available with t－mass I． | Enter factor to compensate the
 mounting－related measurement error． | 0.01 to 100.0 |
| Pipe shape | Only available with t－mass I． | Enter the internal diameter of a circular
 pipe． | 0.050 to 5 m |
| Pipe inner diameter | Only available with t－mass I． | Enter inner duct height．Duct height
 and sensor shaft are parallel． | 0.050 to 5 m |
| Duct height | Only available with t－mass I． | Enter inner duct width．The duct width
 is vertical to the sensor shaft． | 0.050 to 5 m |
| Duct width | | | |

9．4．5 Setting the system units

In the System units submenu the units of all the measured values can be set．
1．The number of submenus and parameters can vary depending on the device version． Certain submenus and parameters in these submenus are not described in the Operating Instructions．Instead a description is provided in the Special Documentation for the device（＂Supplementary documentation＂）．

Navigation

＂Setup＂menu \rightarrow System units

Parameter overview with brief description

Parameter	Description	Selection	Factory setting
Mass flow unit	Select mass flow unit.	Unit choose list	Depends on country: - kg/h - lb/h
Mass unit	Select mass unit.	Unit choose list	Country-specific: - kg - lb
Corrected volume flow unit	Select corrected volume flow unit.	Unit choose list	Country-specific: - $\mathrm{Nm}^{3} / \mathrm{h}$ - $\mathrm{Sft}^{3} / \mathrm{h}$
Corrected volume unit	Select corrected volume unit.	Unit choose list	Country-specific: - Nm^{3} - Sft^{3}
Volume flow unit	Select volume flow unit.	Unit choose list	Depends on country: - 1/h - $\mathrm{ft}^{3} / \mathrm{h}$
Volume unit	Select volume unit.	Unit choose list	Country-specific: - ft^{3} - m^{3}
FAD volume flow unit	Select FAD volumen flow unit (FAD = free air delivery).	Unit choose list	Country-specific: - m^{3} FAD/h - cf FAD/min
FAD volume unit	Select FAD volumen unit (FAD = free air delivery).	Unit choose list	Country-specific: - m^{3} FAD - cf FAD
Energy flow unit	Select energy flow unit.	Unit choose list	Country-specific: - kW - Btu/h

Parameter	Description	Selection	Factory setting
Energy unit	Select energy unit．	Unit choose list	Country－specific： －kWh －Btu
Calorific value unit	Select calorific value unit．	Unit choose list	Country－specific： － $\mathrm{kWh} / \mathrm{Nm}^{3}$ － $\mathrm{Btu} / \mathrm{Sft}^{3}$
Density unit	Select density unit．	Unit choose list	Country－specific： － $\mathrm{kg} / \mathrm{m}^{3}$ － $\mathrm{lb} / \mathrm{ft}^{3}$
Temperature unit	Select temperature unit．	Unit choose list	Country－specific： －${ }^{\circ} \mathrm{C}$ －${ }^{\circ} \mathrm{F}$
Pressure unit	Select process pressure unit．	Unit choose list	Country－specific： －bar a －psia
Velocity unit	Select velocity unit．	Unit choose list	Country－specific： －m／s －ft／s
Length unit	Select length unit for nominal diameter．	Unit choose list	Country－specific： －mm －in
Date／time format	Select date and time format．	－dd．mm．yy hh：mm －dd．mm．yy hh：mm am／pm －mm／dd／yy hh：mm －mm／dd／yy hh：mm am／pm	－

9．4．6 Displaying the I／O configuration

The I／O configuration submenu guides the user systematically through all the parameters in which the configuration of the I／O modules is displayed．

Navigation

＂Setup＂menu \rightarrow I／O configuration

I／O configuration

I／O module 1 to n terminal numbers	\rightarrow 筍 89
I／O module 1 to n information	\rightarrow 匋 89
I／O module 1 to n type	\rightarrow 葛 89
Apply I／O configuration	\rightarrow 椈 89
I／O alteration code	\rightarrow 柬 89

Parameter overview with brief description

Parameter	Description	User interface / Selection / User entry
I/O module 1 to n terminal numbers	Shows the terminal numbers used by the I/O module.	- Not used - 26-27 (I/O 1) - 24-25 (I/O 2) - 22-23 (I/O 3)
I / O module 1 to n information	Shows information of the plugged I/O module.	- Not plugged - Invalid - Not configurable - Configurable - HART
I/O module 1 to n type	Shows the I/O module type.	- Off - Current output - Current input - Status input ${ }^{*}$ - Pulse/frequency/switch output * - Relay output*
Apply I/O configuration	Apply parameterization of the freely configurable I/O module.	- No - Yes
I/O alteration code	Enter the code in order to change the I/O configuration.	Positive integer

* Visibility depends on order options or device settings

9.4.7 Configuring the current input

The "Current input" wizard guides the user systematically through all the parameters that have to be set for configuring the current input.

Navigation

"Setup" menu \rightarrow Current input

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection／User interface／User entry	Factory setting
Current span	－	Select current range for process value output and upper／lower level for alarm signal．	－ $4 \ldots . .20 \mathrm{~mA}(4 \ldots$ 20.5 mA ） － $4 . . .20 \mathrm{~mA}$ NAMUR （3．8．．． 20.5 mA ） － $4 . . .20 \mathrm{~mA}$ US （3．9．．．20．8 mA） － $0 . . .20 \mathrm{~mA}(0 . .$. 20.5 mA ）	Country－specific： 4．．． 20 mA NAMUR （3．8．．．20．5 mA） － $4 . . .20 \mathrm{~mA}$ US （3．9．．．20．8 mA）
Terminal number	－	Shows the terminal numbers used by the current input module．	－Not used －24－25（I／O 2） －22－23（I／O 3）	－
Signal mode	The measuring device is not approved for use in the hazardous area with type of protection Ex－i．	Select the signal mode for the current input．	－Passive －Active＊	Active
0／4 mA value	－	Enter 4 mA value．	Signed floating－point number	－
20 mA value	－	Enter 20 mA value．	Signed floating－point number	Depends on country and nominal diameter
Failure mode	－	Define input behavior in alarm condition．	－Alarm －Last valid value －Defined value	－
Failure value	In the Failure mode parameter，the Defined value option is selected．	Enter value to be used by the device if input value from external device is missing．	Signed floating－point number	－

＊Visibility depends on order options or device settings

9．4．8 Configuring the status input

The Status input submenu guides the user systematically through all the parameters that have to be set for configuring the status input．

Navigation

＂Setup＂menu \rightarrow Status input 1 to n

```
Status input 1 to n
```

Assign status input	\rightarrow 娄 91
Terminal number	\rightarrow 娄 91
Active level	\rightarrow 娄 91
Terminal number	\rightarrow 磻 91
Response time status input	\rightarrow 曷 91
Terminal number	\rightarrow 瘛 91

Parameter overview with brief description

Parameter	Description	Selection / User interface / User entry
Assign status input	Select function for the status input.	- Off - Reset totalizer 1 - Reset totalizer 2 - Reset totalizer 3 - Reset all totalizers - Flow override - Gas group* - Zero point adjustment
Terminal number	Shows the terminal numbers used by the status input module.	- Not used - 24-25 (I/O 2) - 22-23 (I/O 3)
Active level	Define input signal level at which the assigned function is triggered.	- High - Low
Response time status input	Define the minimum amount of time the input signal level must be present before the selected function is triggered.	5 to 200 ms

* Visibility depends on order options or device settings

9.4.9 Configuring the current output

The Current output wizard guides you systematically through all the parameters that have to be set for configuring the current output.

Navigation
 "Setup" menu \rightarrow Current output

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection / User interface / User entry	Factory setting
Assign current output 1 to n	-	Select process variable for current output.	- Off ${ }^{*}$ - Temperature - Mass flow - Corrected volume flow - FAD volume flow * - Volume flow - Energy flow * - Heat flow ${ }^{*}$ - Density - Flow velocity - Pressure - 2nd temperature delta heat ${ }^{*}$ - Electronic temperature	-
Terminal number	-	Shows the terminal numbers used by the current output module.	- Not used - 26-27 (I/O 1) - 24-25 (I/O 2) - 22-23 (I/O 3)	-
Current span	-	Select current range for process value output and upper/lower level for alarm signal.	- $4 . . .20 \mathrm{~mA}$ NAMUR (3.8...20.5 mA) - $4 . . .20 \mathrm{~mA}$ US (3.9... 20.8 mA) - $4 \ldots . .20 \mathrm{~mA}(4 \ldots$ 20.5 mA) - $0 . . .20 \mathrm{~mA}(0 .$. 20.5 mA) - Fixed current	Depends on country: - $4 . . .20 \mathrm{~mA}$ NAMUR (3.8... 20.5 mA) - $4 . . .20 \mathrm{~mA}$ US (3.9...20.8 mA)
Signal mode	-	Select the signal mode for the current output.	- Active - Passive	Active
0/4 mA value	One of the following options is selected in the Current span parameter (\rightarrow 署 92) : - $4 . . .20 \mathrm{~mA}$ NAMUR (3.8...20.5 mA) - $4 . . .20 \mathrm{~mA}$ US (3.9... 20.8 mA) - $4 . . .20 \mathrm{~mA}(4 \ldots 20.5 \mathrm{~mA})$ - $0 . . .20 \mathrm{~mA}(0 . . .20 .5 \mathrm{~mA})$	Enter 4 mA value.	Signed floating-point number	-

Parameter	Prerequisite	Description	Selection／User interface／User entry	Factory setting
20 mA value	One of the following options is selected in the Current span parameter（ \rightarrow 署 92）： － $4 . . .20 \mathrm{~mA}$ NAMUR （3．8．．． 20.5 mA ） － $4 . . .20 \mathrm{~mA}$ US（3．9．．．20．8 $\mathrm{mA})$ － $4 \ldots .20 \mathrm{~mA}(4 \ldots 20.5 \mathrm{~mA})$ － $0 . . .20 \mathrm{~mA}(0 \ldots 20.5 \mathrm{~mA})$	Enter 20 mA value．	Signed floating－point number	Depends on country and nominal diameter
Fixed current	The Fixed current option is selected in the Current span parameter（ \rightarrow 署 92） ．	Defines the fixed output current．	0 to 22.5 mA	22.5 mA
Damping output 1 to n	A process variable is selected in the Assign current output parameter（ \rightarrow 圈 92）and one of the following options is selected in the Current span parameter（ \rightarrow 㞔 92）： － $4 . . .20 \mathrm{~mA}$ NAMUR （3．8．．． 20.5 mA ） － $4 . . .20 \mathrm{~mA}$ US（3．9．．． 20.8 $\mathrm{mA})$ － $4 \ldots . .20 \mathrm{~mA}(4 \ldots 20.5 \mathrm{~mA})$ － $0 . . .20 \mathrm{~mA}(0 . . .20 .5 \mathrm{~mA})$	Set reaction time for output signal to fluctuations in the measured value．	0.0 to 999.9 s	－
Failure mode	A process variable is selected in the Assign current output parameter（ \rightarrow 圈 92）and one of the following options is selected in the Current span parameter（ \rightarrow 署 92）： － $4 . . .20 \mathrm{~mA}$ NAMUR （3．8．．． 20.5 mA ） － $4 . . .20 \mathrm{~mA}$ US（3．9．．． 20.8 $\mathrm{mA})$ － $4 \ldots . .20 \mathrm{~mA}(4 \ldots . .20 .5 \mathrm{~mA})$ － $0 . . .20 \mathrm{~mA}(0 . . .20 .5 \mathrm{~mA})$	Define output behavior in alarm condition．	－Min． －Max． －Last valid value －Actual value －Defined value	－
Failure current	The Defined value option is selected in the Failure mode parameter．	Enter current output value in alarm condition．	0 to 22.5 mA	22.5 mA

＊Visibility depends on order options or device settings

9．4．10 Configuring the pulse／frequency／switch output

The Pulse／frequency／switch output wizard guides you systematically through all the parameters that can be set for configuring the selected output type．

Navigation

＂Setup＂menu \rightarrow Advanced setup \rightarrow Pulse／frequency／switch output

```
- Pulse/frequency/switch output
    1 to n
```

 Operating mode \(\rightarrow\) 酋 94
 Parameter overview with brief description

Parameter	Description	Selection
Operating mode	Define the output as a pulse，frequency or switch output．	－Pulse －Frequency －Switch

Configuring the pulse output

Navigation

＂Setup＂menu \rightarrow Pulse／frequency／switch output

Pulse／frequency／switch output

1 to n

Operating mode	\rightarrow 娄 95
Terminal number	\rightarrow 痹 95
Signal mode	\rightarrow 管 95
Assign pulse output	\rightarrow 同 95
Pulse scaling	\rightarrow 娄 95
Pulse width	\rightarrow 畨 95
Failure mode	\rightarrow 陶 95

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection／User interface／User entry	Factory setting
Operating mode	－	Define the output as a pulse， frequency or switch output．	－Pulse －Frequency －Switch	－
Terminal number	－	Shows the terminal numbers used by the PFS output module．	－Not used －24－25（I／O 2） －22－23（I／O 3）	－
Signal mode	－	Select the signal mode for the PFS output．	－Passive －Active＊ －Passive NAMUR	－
Assign pulse output 1 to n	The Pulse option is selected in the Operating mode parameter．	Select process variable for pulse output．	－Off －Mass flow －Corrected volume flow －FAD volume flow＊ －Volume flow －Energy flow＊ －Heat flow ${ }^{*}$	－
Pulse scaling	The Pulse option is selected in the Operating mode parameter（ \rightarrow 圈 94）and a process variable is selected in the Assign pulse output parameter（ \rightarrow 署 95）．	Enter quantity for measured value at which a pulse is output．	Positive floating point number	Depends on country and nominal diameter
Pulse width	The Pulse option is selected in the Operating mode parameter（ \rightarrow 圈 94）and a process variable is selected in the Assign pulse output parameter（ \rightarrow 署 95）．	Define time width of the output pulse．	0.05 to 2000 ms	－
Failure mode	The Pulse option is selected in the Operating mode parameter（ \rightarrow 圈 94）and a process variable is selected in the Assign pulse output parameter（ \rightarrow 㞔 95）．	Define output behavior in alarm condition．	－Actual value －No pulses	－

＊Visibility depends on order options or device settings

Configuring the frequency output

Navigation

＂Setup＂menu \rightarrow Pulse／frequency／switch output

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection／User interface／User entry	Factory setting
Operating mode	－	Define the output as a pulse， frequency or switch output．	－Pulse －Frequency －Switch	－
Terminal number	－	Shows the terminal numbers used by the PFS output module．	－Not used －24－25（I／O 2） －22－23（I／O 3）	－
Signal mode	－	Select the signal mode for the PFS output．	－Passive －Active＊ －Passive NAMUR	－
Assign frequency output	In the Operating mode parameter（ \rightarrow 署 94），the Frequency option is selected．	Select process variable for frequency output．	－Off －Temperature －Mass flow －Corrected volume flow －FAD volume flow＊ －Volume flow －Energy flow＊ －Heat flow＊ －Density －Flow velocity －Pressure －2nd temperature delta heat ${ }^{*}$ －Electronic temperature	－
Minimum frequency value	The Frequency option is selected in the Operating mode parameter（ \rightarrow 曾 94） and a process variable is selected in the Assign frequency output parameter （ \rightarrow 屏 96）。	Enter minimum frequency．	0.0 to 10000.0 Hz	－

Parameter	Prerequisite	Description	Selection／User interface／User entry	Factory setting
Maximum frequency value	The Frequency option is selected in the Operating mode parameter（ \rightarrow 葛 94） and a process variable is selected in the Assign frequency output parameter （ \rightarrow 曾 96）。	Enter maximum frequency．	0.0 to 10000.0 Hz	－
Measuring value at minimum frequency	The Frequency option is selected in the Operating mode parameter（ \rightarrow 圈 94） and a process variable is selected in the Assign frequency output parameter （ \rightarrow 曾 96）。	Enter measured value for minmum frequency．	Signed floating－point number	Depends on country and nominal diameter
Measuring value at maximum frequency	The Frequency option is selected in the Operating mode parameter（ \rightarrow 曾 94） and a process variable is selected in the Assign frequency output parameter （ \rightarrow 曾 96）。	Enter measured value for maximum frequency．	Signed floating－point number	Depends on country and nominal diameter
Failure mode	The Frequency option is selected in the Operating mode parameter（ \rightarrow 圈 94） and a process variable is selected in the Assign frequency output parameter （ \rightarrow 曾 96）。	Define output behavior in alarm condition．	－Actual value －Defined value － 0 Hz	－
Failure frequency	In the Operating mode parameter（ \rightarrow 曾 94），the Frequency option is selected， in the Assign frequency output parameter（ \rightarrow 曾 96）a process variable is selected， and in the Failure mode parameter，the Defined value option is selected．	Enter frequency output value in alarm condition．	0.0 to 12500.0 Hz	－
Invert output signal	－	Invert the output signal．	－No －Yes	－

＊Visibility depends on order options or device settings

Configuring the switch output

Navigation

＂Setup＂menu \rightarrow Pulse／frequency／switch output

Pulse／frequency／switch output

1 to n

Operating mode	\rightarrow 娄 98
Terminal number	\rightarrow 娄 98
Signal mode	\rightarrow 娄 98
Switch output function	\rightarrow 管 99
Assign diagnostic behavior	\rightarrow 畨 99
Assign limit	\rightarrow 柬 99
Assign status	\rightarrow 粮 99
Switch－on value	\rightarrow 管 99
Switch－off value	\rightarrow 粮 99
Switch－on delay	\rightarrow 粮 99
Switch－off delay	\rightarrow 娄 100
Failure mode	\rightarrow 娄 100

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection／User interface／User entry	Factory setting
Operating mode	－	Define the output as a pulse， frequency or switch output．	－Pulse －Frequency －Switch	－
Terminal number	－	Shows the terminal numbers used by the PFS output module．	－Not used －24－25（I／O 2） －22－23（I／O 3）	－
Signal mode	－	Select the signal mode for the PFS output．	－Passive －Active＊ －Passive NAMUR	－

Parameter	Prerequisite	Description	Selection / User interface / User entry	Factory setting
Switch output function	The Switch option is selected in the Operating mode parameter.	Select function for switch output.	- Off - On - Diagnostic behavior - Limit - Flow direction check ${ }^{*}$ - Status	-
Assign diagnostic behavior	- In the Operating mode parameter, the Switch option is selected. - In the Switch output function parameter, the Diagnostic behavior option is selected.	Select diagnostic behavior for switch output.	- Alarm - Alarm or warning - Warning	-
Assign limit	- The Switch option is selected in the Operating mode parameter. - The Limit option is selected in the Switch output function parameter.	Select process variable for limit function.	- Temperature - Mass flow - Corrected volume flow - FAD volume flow * - Volume flow - Energy flow * - Heat flow ${ }^{*}$ - Density - Flow velocity - 2nd temperature delta heat ${ }^{*}$ - Electronic temperature - Totalizer 1 - Totalizer 2 - Totalizer 3	-
Assign status	- The Switch option is selected in the Operating mode parameter. - The Status option is selected in the Switch output function parameter.	Select device status for switch output.	- Off - Low flow cut off	-
Switch-on value	- The Switch option is selected in the Operating mode parameter. - The Limit option is selected in the Switch output function parameter.	Enter measured value for the switch-on point.	Signed floating-point number	Depends on country and nominal diameter
Switch-off value	- The Switch option is selected in the Operating mode parameter. - The Limit option is selected in the Switch output function parameter.	Enter measured value for the switch-off point.	Signed floating-point number	-
Switch-on delay	- The Switch option is selected in the Operating mode parameter. - The Limit option is selected in the Switch output function parameter.	Define delay for the switch-on of status output.	0.0 to 100.0 s	-

Parameter	Prerequisite	Description Switch-off delay interface / User entry	Factory setting - The Switch option is selected in the Operating mode parameter. - The Limit option is selected in the Switch output function parameter.	Define delay for the switch-off of status output.
Failure mode	-	Define output behavior in alarm condition.	- Actual status - Open - Closed	-

* Visibility depends on order options or device settings

9.4.11 Configuring the relay output

The Relay output wizard guides the user systematically through all the parameters that have to be set for configuring the relay output.

Navigation

"Setup" menu \rightarrow Relay output 1 to n

Relay output 1 to n

Parameter overview with brief description

Parameter	Prerequisite	Description	User interface / Selection / User entry	Factory setting
Terminal number	-	Shows the terminal numbers used by the relay output module.	- Not used - 24-25 (I/O 2) - 22-23 (I/O 3)	-
Relay output function	-	Select the function for the relay output.	- Closed - Open - Diagnostic behavior - Limit - Flow direction check - Digital Output	-
Assign limit	The Limit option is selected in the Relay output function parameter.	Select process variable for limit function.	- Temperature - Mass flow - Corrected volume flow - FAD volume flow * - Volume flow - Energy flow * - Heat flow ${ }^{*}$ - Density - Flow velocity - 2nd temperature delta heat ${ }^{*}$ - Electronic temperature - Totalizer 1 - Totalizer 2 - Totalizer 3	-
Assign diagnostic behavior	In the Relay output function parameter, the Diagnostic behavior option is selected.	Select diagnostic behavior for switch output.	- Alarm - Alarm or warning - Warning	-
Assign status	In the Relay output function parameter, the Digital Output option is selected.	Select device status for switch output.	- Off - Low flow cut off	-
Switch-off value	In the Relay output function parameter, the Limit option is selected.	Enter measured value for the switch-off point.	Signed floating-point number	-
Switch-off delay	In the Relay output function parameter, the Limit option is selected.	Define delay for the switch-off of status output.	0.0 to 100.0 s	-
Switch-on value	The Limit option is selected in the Relay output function parameter.	Enter measured value for the switch-on point.	Signed floating-point number	Depends on country and nominal diameter
Switch-on delay	In the Relay output function parameter, the Limit option is selected.	Define delay for the switch-on of status output.	0.0 to 100.0 s	-
Failure mode	-	Define output behavior in alarm condition.	- Actual status - Open - Closed	-

* Visibility depends on order options or device settings

9.4.12 Configuring the local display

The Display wizard guides you systematically through all the parameters that can configured for configuring the local display.

Navigation

"Setup" menu \rightarrow Display

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection / User entry	Factory setting
Format display	A local display is provided.	Select how measured values are shown on the display.	- 1 value, max. size - 1 bargraph + 1 value - 2 values - 1 value large +2 values - 4 values	-
Value 1 display	A local display is provided.	Select the measured value that is shown on the local display.	- Temperature - Mass flow - Corrected volume flow - FAD volume flow * - Volume flow * - Energy flow * - Heat flow * - Density - Flow velocity - Pressure - 2nd temperature delta heat ${ }^{*}$ - Electronic temperature - Totalizer 1 - Totalizer 2 - Totalizer 3 - Current output 1^{*} * - Current output 2 * - Current output 3^{*}	-

Parameter	Prerequisite	Description	Selection／User entry	Factory setting
0\％bargraph value 1	A local display is provided．	Enter 0\％value for bar graph display．	Signed floating－point number	－
100\％bargraph value 1	A local display is provided．	Enter 100\％value for bar graph display．	Signed floating－point number	Depends on country and nominal diameter
Value 2 display	A local display is provided．	Select the measured value that is shown on the local display．	For the picklist，see the Value 1 display parameter （ \rightarrow 曾 102）	－
Value 3 display	A local display is provided．	Select the measured value that is shown on the local display．	For the picklist，see the Value 1 display parameter （ \rightarrow 署 102）	－
0\％bargraph value 3	A selection was made in the Value 3 display parameter．	Enter 0\％value for bar graph display．	Signed floating－point number	－
100\％bargraph value 3	A selection was made in the Value 3 display parameter．	Enter 100\％value for bar graph display．	Signed floating－point number	－
Value 4 display	A local display is provided．	Select the measured value that is shown on the local display．	For the picklist，see the Value 1 display parameter （ \rightarrow 酋 102）	－
Value 5 display	A local display is provided．	Select the measured value that is shown on the local display．	For the picklist，see the Value 1 display parameter （ \rightarrow 署 102）	－
Value 6 display	A local display is provided．	Select the measured value that is shown on the local display．	For the picklist，see the Value 1 display parameter （ \rightarrow 曾 102）	－
Value 7 display	A local display is provided．	Select the measured value that is shown on the local display．	For the picklist，see the Value 1 display parameter （ \rightarrow 曾 102）	－
Value 8 display	A local display is provided．	Select the measured value that is shown on the local display．	For the picklist，see the Value 1 display parameter （ \rightarrow 曾 102）	－

＊Visibility depends on order options or device settings

9.4.13 Configuring the low flow cut off

The Low flow cut off wizard systematically guides the user through all the parameters that must be set to configure low flow cut off.

Navigation

"Setup" menu \rightarrow Low flow cut off

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection / User entry	Factory setting
Assign process variable	-	Select process variable for low flow cut off.	- Off - Mass flow - Volume flow - Corrected volume flow - FAD volume flow *	-
On value low flow cutoff	A process variable is selected in the Assign process variable parameter (\rightarrow 署 104) .	Enter on value for low flow cut off.	Positive floatingpoint number	Depends on country and nominal diameter
Off value low flow cutoff	A process variable is selected in the Assign process variable parameter (\rightarrow 署 104) .	Enter off value for low flow cut off.	0 to 100.0 \%	-

[^11]
9.5 Advanced settings

The Advanced setup submenu with its submenus contains parameters for specific settings.
Navigation to the "Advanced setup" submenu
1.

The number of submenus and parameters can vary depending on the device version. Certain submenus and parameters in these submenus are not described in the Operating Instructions. Instead a description is provided in the Special Documentation for the device ("Supplementary documentation").

Navigation

"Setup" menu \rightarrow Advanced setup

9.5.1 Using the parameter to enter the access code

Navigation

"Setup" menu \rightarrow Advanced setup

Parameter overview with brief description

Parameter	Description	User entry
Enter access code	Enter access code to disable write protection of parameters.	Max. 16-digit character string comprising numbers, letters and special characters

9.5.2 Configuring the totalizer

In the "Totalizer 1 to \mathbf{n} " submenu the individual totalizer can be configured.
Navigation
"Setup" menu \rightarrow Advanced setup \rightarrow Totalizer 1 to n

- Totalizer 1 to n

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection	Factory setting
Assign process variable	－	Select process variable for totalizer．	－Off －Mass flow －Corrected volume flow －FAD volume flow＊ －Volume flow －Energy flow＊ －Heat flow ${ }^{*}$	－
Unit totalizer 1 to n	A process variable is selected in the Assign process variable parameter（ \rightarrow 圈 106）of the Totalizer 1 to n submenu．	Select process variable totalizer unit．	Unit choose list	－
Totalizer operation mode	A process variable is selected in the Assign process variable parameter（ \rightarrow 曾 106）of the Totalizer 1 to n submenu．	Select totalizer calculation mode．	－Net flow total －Forward flow total －Reverse flow total	－
Failure mode	A process variable is selected in the Assign process variable parameter（ \rightarrow 圈 106）of the Totalizer 1 to n submenu．	Define totalizer behavior in alarm condition．	－Stop －Actual value －Last valid value	－
Assign gas（Only with order code for ＂Application package＂，option EV ＂Second gas group＂）	－	Select the gas that the totalizer uses．This gas is only totalized when it is currently active （＇Active gas＇parameter）．	－Both gases －Gas －Second gas	－Both gases option （only with order code for ＂Application package＂，option EV＂Second gas group＂） －Gas

[^12]
9.5.3 Carrying out additional display configurations

In the Display submenu you can set all the parameters associated with the configuration of the local display.

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Display

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection / User entry	Factory setting
Format display	A local display is provided.	Select how measured values are shown on the display.	- 1 value, max. size - 1 bargraph + 1 value - 2 values - 1 value large +2 values - 4 values	-
Value 1 display	A local display is provided.	Select the measured value that is shown on the local display.	- Temperature - Mass flow - Corrected volume flow - FAD volume flow * - Volume flow - Energy flow * - Heat flow ${ }^{*}$ - Density - Flow velocity - Pressure - 2nd temperature delta heat ${ }^{*}$ - Electronic temperature - Totalizer 1 - Totalizer 2 - Totalizer 3 - Current output 1 * - Current output 2 * - Current output 3^{*}	-
0\% bargraph value 1	A local display is provided.	Enter 0\% value for bar graph display.	Signed floating-point number	-
100\% bargraph value 1	A local display is provided.	Enter 100\% value for bar graph display.	Signed floating-point number	Depends on country and nominal diameter
Decimal places 1	A measured value is specified in the Value 1 display parameter.	Select the number of decimal places for the display value.	- x - $\mathrm{X} . \mathrm{X}$ - $\mathrm{x} . \mathrm{xx}$ - $\mathrm{x} . \mathrm{xxx}$ - x.xxxx	-
Value 2 display	A local display is provided.	Select the measured value that is shown on the local display.	For the picklist, see the Value 1 display parameter (\rightarrow 曾 102)	-
Decimal places 2	A measured value is specified in the Value 2 display parameter.	Select the number of decimal places for the display value.	- x - $\mathrm{x} . \mathrm{X}$ - $\mathrm{x} . \mathrm{xx}$ - x.xxx - x.xxxx	-
Value 3 display	A local display is provided.	Select the measured value that is shown on the local display.	For the picklist, see the Value 1 display parameter (\rightarrow 曾 102)	-
0\% bargraph value 3	A selection was made in the Value 3 display parameter.	Enter 0\% value for bar graph display.	Signed floating-point number	-
100\% bargraph value 3	A selection was made in the Value 3 display parameter.	Enter 100\% value for bar graph display.	Signed floating-point number	-

Parameter	Prerequisite	Description	Selection／User entry	Factory setting
Decimal places 3	A measured value is specified in the Value 3 display parameter．	Select the number of decimal places for the display value．	－ x － $\mathrm{x} . \mathrm{X}$ －$x . x x$ －$x . x x x$ － $\mathrm{x} . \mathrm{xxxx}$	－
Value 4 display	A local display is provided．	Select the measured value that is shown on the local display．	For the picklist，see the Value 1 display parameter （ \rightarrow 署 102）	－
Decimal places 4	A measured value is specified in the Value 4 display parameter．	Select the number of decimal places for the display value．	－ x －X．X － $\mathrm{x} . \mathrm{xx}$ － $\mathrm{x} . \mathrm{xxx}$ －x．xxxx	－
Display language	A local display is provided．	Set display language．	－English －Deutsch －Français －Español －Italiano －Nederlands －Portuguesa －Polski －русский язык （Russian） －Svenska －Türkçe - 中文（Chinese） - 日本語（Japanese） －한국어（Korean） －tiếng Việt （Vietnamese） －čeština（Czech）	English （alternatively，the ordered language is preset in the device）
Display interval	A local display is provided．	Set time measured values are shown on display if display alternates between values．	1 to 10 s	－
Display damping	A local display is provided．	Set display reaction time to fluctuations in the measured value．	0.0 to 999.9 s	－
Header	A local display is provided．	Select header contents on local display．	－Device tag －Free text	－
Header text	The Free text option is selected in the Header parameter．	Enter display header text．	Max． 12 characters， such as letters， numbers or special characters（e．g．＠， \％，／）	－

Parameter	Prerequisite	Description	Selection / User entry	Factory setting
Separator	A local display is provided.	Select decimal separator for displaying numerical values.	- . (point) - , (comma)	. (point)
Backlight	One of the following conditions is met: - Order code for "Display; operation", option F "4-line, illum.; touch control" - Order code for "Display; operation", option G "4-line, illum.; touch control +WLAN" - Order code for "Display; operation", option \mathbf{O} "Remote display 4-line illuminated; $10 \mathrm{~m} / 30 \mathrm{ft}$ cable; touch control"	Switch the local display backlight on and off.	- Disable - Enable	-

* Visibility depends on order options or device settings

9.5.4 WLAN configuration

The WLAN Settings submenu guides the user systematically through all the parameters that have to be set for the WLAN configuration.

Navigation
 "Setup" menu \rightarrow Advanced setup \rightarrow WLAN settings

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection / User entry / User interface	Factory setting
WLAN	-	Switch WLAN on and off.	- Disable - Enable	-
WLAN mode	-	Select WLAN mode.	- WLAN access point - WLAN Client	-
SSID name	The client is activated.	Enter the user-defined SSID name (max. 32 characters).	-	-
Network security	-	Select the security type of the WLAN network.	- Unsecured - WPA2-PSK - EAP-PEAP with MSCHAPv2 * - EAP-PEAP MSCHAPv2 no server authentic. * - EAP-TLS*	-
Security identification	-	Select security settings and download these settings via menu Data management > Security > WLAN.	- Trusted issuer certificate - Device certificate - Device private key	-
User name	-	Enter user name.	-	-
WLAN password	-	Enter WLAN password.	-	-
WLAN IP address	-	Enter IP address of the WLAN interface of the device.	4 octet: 0 to 255 (in the particular octet)	-
WLAN MAC address	-	Enter MAC address of the WLAN interface of the device.	Unique 12-digit character string comprising letters and numbers	Each measuring device is given an individual address.
WLAN passphrase	The WPA2-PSK option is selected in the Security type parameter.	Enter the network key (8 to 32 characters). 1 The network key supplied with the device should be changed during commissioning for security reasons.	8 to 32-digit character string comprising numbers, letters and special characters (without spaces)	Serial number of the measuring device (e.g. L100A802000)
Assign SSID name	-	Select which name will be used for SSID: device tag or userdefined name.	- Device tag - User-defined	-
SSID name	- The User-defined option is selected in the Assign SSID name parameter. - The WLAN access point option is selected in the WLAN mode parameter.	Enter the user-defined SSID name (max. 32 characters). $\mathbf{1}$ The user-defined SSID name may only be assigned once. If the SSID name is assigned more than once, the devices can interfere with one another.	Max. 32-digit character string comprising numbers, letters and special characters	-

Parameter	Prerequisite	Description Selection / User entry / User interface	Factory setting	
Connection state	-	Displays the connection status.	- Connected - Not connected	-
Received signal strength	-	Shows the received signal strength.	- Low - Medium - High	-

* Visibility depends on order options or device settings

9.5.5 Configuration management

After commissioning, you can save the current device configurationor restore the previous device configuration. The device configuration is managed via the Configuration management parameter.

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Configuration backup

Configuration backup

Parameter overview with brief description

Parameter	Description	User interface / Selection
Operating time	Indicates how long the device has been in operation.	Days (d), hours (h), minutes (m) and seconds (s)
Last backup	Shows when the last data backup was saved to HistoROM backup.	Days (d), hours (h), minutes (m) and seconds (s)
Configuration management	Select action for managing the device data in the HistoROM backup.	- Cancel - Execute backup - Restore * * - Compare - Clear backup data

Parameter	Description	User interface / Selection
Backup state	Shows the current status of data saving or restoring.	- None - Backup in progress - Restoring in progress - Delete in progress - Compare in progress - Restoring failed - Backup failed
Comparison result	Comparison of current device data with HistoROM backup.	- Settings identical - Settings not identical - No backup available - Backup settings corrupt - Check not done - Dataset incompatible

* Visibility depends on order options or device settings

Function scope of the "Configuration management" parameter

Options	Description
Cancel	No action is executed and the user exits the parameter.
Execute backup	A backup copy of the current device configuration is saved from the HistoROM backup to the memory of the device. The backup copy includes the transmitter data of the device.
Restore	The last backup copy of the device configuration is restored from the device memory to the device's HistoROM backup. The backup copy includes the transmitter data of the device.
Compare	The device configuration saved in the device memory is compared with the current device configuration of the HistoROM backup.
Clear backup data	The backup copy of the device configuration is deleted from the memory of the device.

HistoROM backup
A HistoROM is a "non-volatile" device memory in the form of an EEPROM.
1 While this action is in progress, the configuration cannot be edited via the local display and a message on the processing status appears on the display.

9.5.6 Using parameters for device administration

The Administration submenu systematically guides the user through all the parameters that can be used for device administration purposes.

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Administration

Using the parameter to define the access code

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Administration \rightarrow Define access code

Parameter overview with brief description

Parameter	Description	User entry
Define access code	Restrict write-access to parameters to protect the configuration of the device against unintentional changes.	Max. 16-digit character string comprising numbers, letters and special characters
Confirm access code	Confirm the entered access code.	Max. 16-digit character string comprising numbers, letters and special characters

Using the parameter to reset the access code

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Administration \rightarrow Reset access code

Parameter overview with brief description

Parameter	Description	User interface / User entry
Operating time	Indicates how long the device has been in operation.	Days (d), hours (h), minutes (m) and seconds (s)
Reset access code	Reset access code to factory settings. $\mathbf{1} \quad$For a reset code, contact your Endress+Hauser service organization. The reset code can only be entered via: - Web browser - DeviceCare, FieldCare (via CDI-RJ45 service interface) - Fieldbus	Character string comprising numbers, letters and special characters

Using the parameter to reset the device

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Administration

Parameter overview with brief description

Parameter	Description	Selection
Device reset	Reset the device configuration - either entirely or in part - to a defined state.	- Cancel - To delivery settings - Restart device - Restore S-DAT backup*

* Visibility depends on order options or device settings

9.5.7 In-situ adjustment

In-situ adjustment is used to adjust the flow output by the measuring device to the real flow of the facility. Flow profiles can be distorted by facility parts such as pipe elbows, extensions, reductions or valves. A distorted flow profile can, in turn, negatively impact the accuracy of the measuring device. By taking into consideration the actual process-specific conditions at the facility, including any effects from installation, in-situ adjustment provides flow display that is adapted to the local conditions.
In-situ adjustment can lead to better measurement results in the following cases:

- Process-specific facility conditions / installation effects
- If the flow profile is distorted
- For unfavorable inlet and outlet conditions
- If the gas is unknown
- If it is not possible to use a flow conditioner to rectify the distorted flow profile
- If process conditions deviate significantly from reference conditions (pressure and temperature conditions of factory calibration)
- Third-party adjustments with the process gas actually used

In-situ adjustment has the following specific features:

- Can be used for both unidirectional and bidirectional sensors
- Can be defined for up to 16 flow points (for the entire operating range)
- At least one flow point is required for the adjustment but the general principle is that the more flow points that are defined, the better the measuring performance
- Measuring device can be configured without interrupting the process
- The measuring device takes account of the choice of process gas and the actual process conditions during the measurement
- The flow value can be entered manually via a display or an operating interface, or a flow value from a reference device can be read into the measuring device via a current input or bus communication

Prerequisites for optimum in-situ adjustment

- The accuracy of the flow reference used determines the performance of the measuring device adjusted in-situ. For this reason, the use of a reference device with a traceable calibration is recommended
- Calibration points all at the same temperature and pressure conditions
- Compositions of gases or gas mixtures are made available to the measuring device as these compositions are used for pressure and temperature compensation
- Precise pressure specifications are important if a volume flowmeter is used as the reference device
- If the flow values are indicated in corrected volume flow, it is important that the standard reference conditions in the reference device and in the device are identical
- For optimum results, it is advisable to use a reference device with traceable calibration for the adjustment.
- If a reference device is not available, a fan characteristic curve, for example, can act as the

Performing in-situ adjustment

1. Select the gas: Expert \rightarrow Sensor \rightarrow Measurement mode \rightarrow Gas \rightarrow Gas
\hookrightarrow This entry is important for measuring device pressure and temperature compensation.
2. Activate in-situ adjustment: Expert \rightarrow Sensor \rightarrow In-situ adjustment \rightarrow Activate in-situ adjustment
3. Confirm selection: Yes
\longrightarrow If an in-situ adjustment already exists, these adjustment points are loaded. An existing adjustment (an entire series of flow points) can be deleted from the measuring device using the "Clear values" function.
4. Select the reference value: Expert \rightarrow Sensor \rightarrow In-situ adjustment \rightarrow Select flow reference
\longrightarrow If volume flow is selected, it is important that the process pressure entered in the measuring device is as accurate as possible. In the case of corrected volume flow or FAD volume flow, the defined reference operating conditions must match those of the reference measuring device.
5. Select the entry method for the reference value: Expert \rightarrow Sensor \rightarrow In-situ adjustment \rightarrow Input type reference value
\llcorner If "Manual" is selected, the operator must enter the flow value manually via the display (or other operating interface). However, if "Current input" or "External value" (via bus communication) is selected, the current flow values are displayed as read only reference values. The available entry modes depend on the I/O modules available.

The user can first approach the flow points with the facility. As soon as a desired flow value is reached, the value can either be saved by confirming the value or be entered as a fixed value by hand.
1 The entry method depends on the selected entry mode.
The measured flow value is checked to determine its validity on the basis of the following criteria:

- Average absolute deviation of the flow value
- Standard deviation of the flow value

If a criterion is not met, the value is rejected and the message "Invalid" is displayed. If both criterion are met, the message "Passed" is displayed. If the flow value fluctuates too much, "Unstable" is displayed. If an existing adjustment is "readjusted", and with a maximum of 16 defined flow values, the flow value that is closest to the new adjusted value is replaced. Here, "Replaced" is displayed as the status.

1. The user can also add a description to the adjustment. Three different text fields, with 16 alphanumeric characters per field, are available for this purpose. It is advisable to use the text fields to identify the adjustment using the name of the gas/gas mixture and the process conditions of the adjustment. If the in-situ adjustment is adjusted by a calibration laboratory with the gas that is actually used by the operator, it is advisable to also include the name of the laboratory, the date of the adjustment and the name of the operator in the description.

Special cases

Individual flow point
A maximum of 16 flow points can be defined. However, in certain situations it may not always be possible to adjust multiple flow points. In such cases, the measuring device can be adjusted with just a few operating points. The minimum number of flow points that are required is one. If only one operating point is adjusted, the measuring device uses default values to replace the missing adjustment values. Therefore, the operator should be aware
that the accuracy of the in-situ adjustment can suffer when just one flow point is defined if the measured flow is not close to the adjustment value.

Bidirectional flow

Measuring devices that are equipped with the bidirectional option can be adjusted in situ in both flow directions or in just one flow direction, as required. If the measuring device is only adjusted in one direction, it is important that the adjustment is in the positive direction (forward flow) as these adjustment points are automatically replicated to the negative direction (reverse flow).

Unknown gas composition

If the gas or gas mixture is unknown, or if the gas composition cannot be defined by the standard gas selection, the user can define the process gas as "Air". This method has the disadvantage that compensation in the event of variations in the pressure and temperature cannot be guaranteed. If the operator is not sure of the exact composition of the gas but can make an approximate guess, it is recommended to use this approximate gas composition instead of air.
"In-situ adjustment" submenu
Navigation
"Expert" menu \rightarrow Sensor \rightarrow In-situ adjustment

Parameter overview with brief description

Parameter	Description	Selection / User interface / User entry	Factory setting
Activate in-situ adjustment	Activate the in-situ adjustment. The points stored by the user are used for the in-situ adjustment.	- No - Yes	-
Input type reference value	Select input type for the reference value.	- Off - Manual - Current input 1^{*} - Current input 2 * - Current input 3^{*} - External value *	-
Delete values	Delete previous adjustment values and descriptions.	- No - Yes	-
Confirm	Confirm deletion.	- No - Yes	-
Select flow reference	Select process variable. This process variable is used as reference value for the in situ adjustment.	- Mass flow - Corrected volume flow - FAD volume flow * - Volume flow	-
Stability check	Activate stability check. New adjustment value is only accepted when the measurement is stable.	- No - Yes	-
Actual flow value	Shows the actual flow in relation to the maximum, factory-measured value that is adapted to the actual process conditions.	-2 000 to 2000 \%	-
External reference value	Shows the external reference value for the in situ adjustment.	Signed floating-point number	-
Reference value	Enter fixed value as reference value used for the in situ adjustment.	Signed floating-point number	-
Apply value	Apply the actual value.	- No - Yes	-
Status	Shows the validity of the actual reference value.	- Passed - Replaced - Unstable - Invalid	-
Description 1	Description for in-situ adjustment: e.g. facility, operator, date.	-	-
Description 2	Description for in-situ adjustment: e.g. facility, operator, date.	-	-
Description 3	Description for in-situ adjustment: e.g. facility, operator, date.	-	-
Description 4	Description for in-situ adjustment: e.g. facility, operator, date.	-	-

* Visibility depends on order options or device settings
"Adjustment values in use" submenu

Navigation

"Expert" menu \rightarrow Sensor \rightarrow In-situ adjustment \rightarrow Adjustment values in use

Parameter overview with brief description

Parameter	Description	User interface	Factory setting
Gas description 1/2	Shows the 1st part of the description of the set gas used in the in-situ adjustment.	-	-
Gas description 2/2	Shows the 2nd part of the description of the set gas used in the in-situ adjustment.	-	-
Flow value 1	Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.	-2000 to 2000%	-
Flow value 2	Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.	-2000 to 2000%	-
Flow value 3	Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.	-2000 to 2000 \%	-
Flow value 4	Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.	-2 000 to 2000 \%	-
Flow value 5	Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.	-2000 to 2000%	-
Flow value 6	Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.	-2000 to 2000%	-
Flow value 7	Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.	-2 000 to 2000 \%	-
Flow value 8	Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.	-2 000 to 2000 \%	-
Flow value 9	Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.	-2000 to 2000%	-
Flow value 10	Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.	-2000 to 2000%	-
Flow value 11	Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.	-2000 to 2000%	-
Flow value 12	Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.	-2 000 to 2000 \%	-
Flow value 13	Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.	-2000 to 2000%	-
Flow value 14	Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.	-2000 to 2000 \%	-
Flow value 15	Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.	-2000 to 2000%	-
Flow value 16	Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.	-2000 to 2000%	-

9.6 Configuration management

After commissioning, you can save the current device configurationor restore the previous device configuration. The device configuration is managed via the Configuration management parameter.

Navigation
"Setup" menu \rightarrow Advanced setup \rightarrow Configuration backup

Parameter overview with brief description

Parameter	Description	User interface / Selection
Operating time	Indicates how long the device has been in operation.	Days (d), hours (h), minutes (m) and seconds (s)
Last backup	Shows when the last data backup was saved to HistoROM backup.	Days (d), hours (h), minutes (m) and seconds (s)
Configuration management	Select action for managing the device data in the HistoROM backup.	- Cancel - Execute backup - Restore - Compare - Clear backup data
Backup state	Shows the current status of data saving or restoring.	- None - Backup in progress - Restoring in progress - Delete in progress - Compare in progress - Restoring failed - Backup failed
Comparison result	Comparison of current device data with HistoROM backup.	- Settings identical - Settings not identical - No backup available - Backup settings corrupt - Check not done - Dataset incompatible

9.6.1 Function scope of the "Configuration management" parameter

Options	Description
Cancel	No action is executed and the user exits the parameter.
Execute backup	A backup copy of the current device configuration is saved from the HistoROM backup to the memory of the device. The backup copy includes the transmitter data of the device.

Options	Description
Restore	The last backup copy of the device configuration is restored from the device memory to the device's HistoROM backup. The backup copy includes the transmitter data of the device.
Compare	The device configuration saved in the device memory is compared with the current device configuration of the HistoROM backup.
Clear backup data	The backup copy of the device configuration is deleted from the memory of the device.

1 HistoROM backup

A HistoROM is a "non-volatile" device memory in the form of an EEPROM.
1 While this action is in progress, the configuration cannot be edited via the local display and a message on the processing status appears on the display.

9.7 Simulation

Via the Simulation submenu, it is possible to simulate various process variables in the process and the device alarm mode and verify downstream signal chains (switching valves or closed-control loops). The simulation can be performed without a real measurement (no flow of medium through the device).

Navigation

"Diagnostics" menu \rightarrow Simulation

Simulation

Switch output simulation 1 to n	\rightarrow 娄 123
Switch status 1 to n	\rightarrow 娄 123
Relay output 1 to n simulation	\rightarrow 娄 123
Switch status 1 to n	\rightarrow 娄 124
Device alarm simulation	\rightarrow 娄 124
Diagnostic event category	\rightarrow 娄 124
Diagnostic event simulation	\rightarrow 娄 124

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection／User entry
Assign simulation process variable	－	Select a process variable for the simulation process that is activated．	－Off －Temperature －Mass flow －Corrected volume flow －FAD volume flow＊ －Volume flow －Energy flow＊ －Heat flow ${ }^{*}$ －Density －Flow velocity
Process variable value	A process variable is selected in the Assign simulation process variable parameter（ \rightarrow 曾 123）．	Enter the simulation value for the selected process variable．	Depends on the process variable selected
Current output 1 to n simulation	－	Switch the simulation of the current output on and off．	－Off －On
Value current output 1 to n	In the Current output 1 to n simulation parameter，the On option is selected．	Enter the current value for simulation．	3.59 to 22.5 mA
Frequency output simulation 1 to n	In the Operating mode parameter，the Frequency option is selected．	Switch the simulation of the frequency output on and off．	－Off －On
Frequency value 1 to n	In the Frequency output simulation 1 to n parameter，the On option is selected．	Enter the frequency value for the simulation．	0.0 to 12500.0 Hz
Pulse output simulation 1 to n	In the Operating mode parameter，the Pulse option is selected．	Set and switch off the pulse output simulation． 1 For Fixed value option：Pulse width parameter（ \rightarrow 曾 95） defines the pulse width of the pulses output．	－Off －Fixed value －Down－counting value
Pulse value 1 to n	In the Pulse output simulation 1 to n parameter，the Down－counting value option is selected．	Enter the number of pulses for simulation．	0 to 65535
Switch output simulation 1 to n	In the Operating mode parameter，the Switch option is selected．	Switch the simulation of the switch output on and off．	－Off －On
Switch status 1 to n	－	Select the status of the status output for the simulation．	－Open －Closed
Relay output 1 to n simulation	－	Switch simulation of the relay output on and off．	－Off －On

Parameter	Prerequisite	Description	Selection／User entry
Switch status 1 to n	The On option is selected in the Switch output simulation 1 to n parameter parameter．	Select status of the relay output for the simulation．	－Open －Closed
Device alarm simulation	－	Switch the device alarm on and off．	－Off －On
Diagnostic event category	－	Select a diagnostic event category．	－Sensor －Electronics －Configuration －Process
Diagnostic event simulation	－	Select a diagnostic event to simulate this event．	－Off －Diagnostic event picklist （depends on the category selected）
Current input 1 to n simulation	－	Switch simulation of the current input on and off．	－Off －On
Value current input 1 to n	In the Current input 1 to n simulation parameter，the On option is selected．	Enter the current value for simulation．	0 to 22.5 mA
Status input simulation 1 to n	－	Switch simulation of the status input on and off．	－Off －On
Input signal level 1 to n	In the Status input simulation parameter，the On option is selected．	Select the signal level for the simulation of the status input．	－High －Low

＊Visibility depends on order options or device settings

9．8 Protecting settings from unauthorized access

The following write protection options exist in order to protect the configuration of the measuring device from unintentional modification：

- Protect access to parameters via access code \rightarrow 首 124
- Protect access to local operation via key locking \rightarrow 首 59
－Protect access to measuring device via write protection switch \rightarrow 126

9．8．1 Write protection via access code

The effects of the user－specific access code are as follows：
－Via local operation，the parameters for the measuring device configuration are write－ protected and their values can no longer be changed．
－Device access is protected via the Web browser，as are the parameters for the measuring device configuration．
－Device access is protected via FieldCare or DeviceCare（via CDI－RJ45 service interface），as are the parameters for the measuring device configuration．

Defining the access code via the local display

1．Navigate to the Define access code parameter（ \rightarrow 苞 114）．
2．Maximum of 16 －digit character string comprising numbers，letters and special characters as the access code．

3．Enter the access code again in the Confirm access code parameter（ \rightarrow 圈 114）to confirm．
\longrightarrow The 图 symbol appears in front of all write－protected parameters．
1．Disabling parameter write protection via access code \rightarrow 圈 58 ．
－If the access code is lost：Resetting the access code $\rightarrow 125$.
－The user role with which the user is currently logged in is displayed in Access status parameter．
－Navigation path：Operation \rightarrow Access status
－User roles and their access rights \rightarrow 圈 58
－The device automatically locks the write－protected parameters again if a key is not pressed for 10 minutes in the navigation and editing view．
－The device locks the write－protected parameters automatically after 60 s if the user skips back to the operational display mode from the navigation and editing view．

Parameters which can always be modified via the local display

Certain parameters that do not affect the measurement are excepted from parameter write protection via the local display．Despite the user－specific access code，they can always be modified，even if the other parameters are locked．

Defining the access code via the web browser

1．Navigate to the Define access code parameter（ \rightarrow 酋 114）。
2．Define a 16－digit（max．）numeric code as the access code．
3．Enter the access code again in the Confirm access code parameter（ \rightarrow R 114）to confirm．
$\llcorner\quad$ The web browser switches to the login page．
1 －Disabling parameter write protection via access code \rightarrow 共 58 ．
－If the access code is lost：Resetting the access code \rightarrow 圈 125.
－The user role with which the user is currently logged in is displayed in the Access status parameter．
－Navigation path：Operation \rightarrow Access status
－User roles and their access rights \rightarrow 眊 58
If no action is performed for 10 minutes，the web browser automatically returns to the login page．

Resetting the access code

If you misplace the user－specific access code，it is possible to reset the code to the factory setting．A reset code must be entered for this purpose．The user－specific access code can then be defined again afterwards．

Via Web browser，FieldCare，DeviceCare（via CDI－RJ45 service interface），fieldbus
1 You can only obtain a reset code from your local Endress＋Hauser service organization． The code must be calculated explicitly for every device．

1．Note down the serial number of the device．
2．Read off the Operating time parameter．
3．Contact the local Endress＋Hauser service organization and tell them the serial number and the operating time．
\rightarrow Get the calculated reset code．
4．Enter the reset code in the Reset access code parameter（ \rightarrow 114）。
\llcorner The access code has been reset to the factory setting 0000．It can be redefined \rightarrow 圈 124 ．

1 For IT security reasons，the calculated reset code is only valid for 96 hours from the specified operating time and for the specific serial number．If you cannot return to the device within 96 hours，you should either increase the operating time you read out by a few days or switch off the device．

9．8．2 Write protection via write protection switch

Unlike parameter write protection via a user－specific access code，this allows the user to lock write access to the entire operating menu－apart from the＂Contrast display＂ parameter．

The parameter values are now read only and cannot be edited any more（exception ＂Contrast display＂parameter）：
－Via local display
－Via HART protocol
1.

Setting the write protection（WP）switch on the main electronics module to the ON position enables hardware write protection．
\longrightarrow In the Locking status parameter，the Hardware locked option is displayed \rightarrow 128．In addition，on the local display the 图 symbol appears in front of the parameters in the header of the operational display and in the navigation view．

2. Setting the write protection (WP) switch on the main electronics module to the OFF position (factory setting) disables hardware write protection.
\longrightarrow No option is displayed in the Locking status parameter \rightarrow 圈 128. On the local display, the 图 symbol disappears from in front of the parameters in the header of the operational display and in the navigation view.

10 Operation

10．1 Reading off the device locking status

Device active write protection：Locking status parameter
Operation \rightarrow Locking status
Function scope of the＂Locking status＂parameter

Options	Description
None	The access authorization displayed in the Access status parameter applies \rightarrow 58．Only appears on local display．
Hardware locked	The DIP switch for hardware locking is activated on the PCB board．This locks write access to the parameters（e．g．via local display or operating tool）\rightarrow 图 126.
SIL locked	The SIL mode is enabled．This locks write access to the parameters（e．g．via local display or operating tool）．
Temporarily locked	Write access to the parameters is temporarily locked on account of internal processes running in the device（e．g．data upload／download，reset，etc．）．Once the internal processing has been completed，the parameters can be changed once again．

10．2 Adjusting the operating language

1
Detailed information：
－To configure the operating language \rightarrow 酋 78
－For information on the operating languages supported by the measuring device \rightarrow 首 194

10．3 Configuring the display

Detailed information：
－On the basic settings for the local display \rightarrow 酋 101
－On the advanced settings for the local display \rightarrow 107

10．4 Reading off measured values

With the Measured values submenu，it is possible to read all the measured values．

Navigation

＂Diagnostics＂menu \rightarrow Measured values

10．4．1 Process variables

The Process variables submenu contains all the parameters needed to display the current measured values for each process variable．

Navigation

＂Diagnostics＂menu \rightarrow Measured values \rightarrow Process variables

Process variables

Energy flow

Density

Flow velocity

Heat flow

Parameter overview with brief description

Parameter	Prerequisite	Description	User interface
Mass flow	－	Displays the mass flow that is currently measured． Dependency The unit is taken from：Mass flow unit parameter（ \rightarrow 葛 87）	Signed floating－point number
Corrected volume flow	－	Displays the corrected volume flow that is currently calculated． Dependency The unit is taken from the Corrected volume flow unit parameter （ \rightarrow 酋 87）。	Signed floating－point number
Volume flow	－	Displays the volume flow that is currently measured． Dependency The unit is taken from the Volume flow unit parameter（ \rightarrow 譄 87）．	Signed floating－point number

Parameter	Prerequisite	Description	User interface
FAD volume flow	The Air or compressed air option is selected in the Measurement application parameter．	Displays the FAD volume flow that is currently calculated． Dependency The unit is taken from：FAD volume flow unit parameter（ \rightarrow 曾 87）	Signed floating－point number
Energy flow	The Energy option is selected in the Measurement application parameter．	Shows the energy flow currently calculated．	Signed floating－point number
Temperature	－	Displays the temperature that is currently measured． Dependency The unit is taken from：Temperature unit parameter（ \rightarrow 曾 88）	Signed floating－point number
Density	－	Shows the density currently calculated．	Signed floating－point number
Flow velocity	－	Shows the flow velocity currently calculated．	Signed floating－point number
Heat flow	The Energy option is selected in the Measurement application parameter．	Shows the heat flow currently calculated．	Signed floating－point number

10．4．2 System values

The System values submenu contains all the parameters needed to display the current measured values for every system value．

Navigation

＂Diagnostics＂menu \rightarrow Measured values \rightarrow System values

```
System values
```

```
Electronic temperature
```

Electronic temperature
娄 130

```
娄 130
```

Parameter overview with brief description

Parameter	Description	User interface
Electronic temperature	Indication of the current temperature of the electronics．	Signed floating－point number

10．4．3＂Totalizer＂submenu

The Totalizer submenu contains all the parameters needed to display the current measured values for every totalizer．

Navigation

＂Diagnostics＂menu \rightarrow Measured values \rightarrow Totalizer

Totalizer

Totalizer value 1 to n	\rightarrow 首 131
Totalizer overflow 1 to n	\rightarrow 厚 131

Parameter overview with brief description

Parameter	Description	User interface
Totalizer value 1 to n	Displays the current totalizer counter value.	Signed floating-point number
Totalizer overflow 1 to n	Displays the current totalizer overflow.	Integer with sign

10.4.4 "Input values" submenu

The Input values submenu guides you systematically to the individual input values.

Navigation

"Diagnostics" menu \rightarrow Measured values \rightarrow Input values

Input values of current input

The Current input 1 to n submenu contains all the parameters needed to display the current measured values for every current input.

Navigation

"Diagnostics" menu \rightarrow Measured values \rightarrow Input values \rightarrow Current input 1 to n

Parameter overview with brief description

Parameter	Description	User interface
Measured values 1 to n	Displays the current input value.	Signed floating-point number
Measured current 1 to n	Displays the current value of the current input.	0 to 22.5 mA

Input values of status input

The Status input 1 to \mathbf{n} submenu contains all the parameters needed to display the current measured values for every status input.

Navigation

"Diagnostics" menu \rightarrow Measured values \rightarrow Input values \rightarrow Status input 1 to n

- Status input 1 to n

```
Value status input
```


Parameter overview with brief description

Parameter	Description	User interface
Value status input	Shows the current input signal level.	- High - Low

10.4.5 Output values

The Output values submenu contains all the parameters needed to display the current measured values for every output.

Navigation

"Diagnostics" menu \rightarrow Measured values \rightarrow Output values

Output values of current output

The Value current output submenu contains all the parameters needed to display the current measured values for every current output.

Navigation

"Diagnostics" menu \rightarrow Measured values \rightarrow Output values \rightarrow Value current output 1 to n

Parameter overview with brief description

Parameter	Description	User interface
Output current 1	Displays the current value currently calculated for the current output.	3.59 to 22.5 mA
Measured current	Displays the current value currently measured for the current output.	0 to 30 mA

Output values for pulse/frequency/switch output

The Pulse/frequency/switch output 1 to \mathbf{n} submenu contains all the parameters needed to display the current measured values for every pulse/frequency/switch output.

Navigation

"Diagnostics" menu \rightarrow Measured values \rightarrow Output values \rightarrow Pulse/frequency/switch output 1 to n

Parameter overview with brief description

Parameter	Prerequisite	Description	User interface
Output frequency 1 to n	In the Operating mode parameter, the Frequency option is selected.	Displays the value currently measured for the frequency output.	0.0 to 12500.0 Hz
Pulse output 1 to n	The Pulse option is selected in the Operating mode parameter parameter.	Displays the pulse frequency currently output.	Positive floating-point number
Switch status 1 to n	The Switch option is selected in the Operating mode parameter.	Displays the current switch output status.	- Open - Closed

Output values for relay output

The Relay output 1 to n submenu contains all the parameters needed to display the current measured values for every relay output.

Navigation

"Diagnostics" menu \rightarrow Measured values \rightarrow Output values \rightarrow Relay output 1 to n

Parameter overview with brief description

Parameter	Description	User interface
Switch status	Shows the current relay switch status．	－Open －Closed
Switch cycles	Shows number of all performed switch cycles．	Positive integer
Max．switch cycles number	Shows the maximal number of guaranteed switch cycles．	Positive integer

10．5 Adapting the measuring device to the process conditions

The following are available for this purpose：

- Basic settings using theSetup menu（ \rightarrow 酋 79）
- Advanced settings using theAdvanced setup submenu（ \rightarrow 圈 105）

10．6 Performing a totalizer reset

The totalizers are reset in the Operation submenu：
－Control Totalizer
－Reset all totalizers

Navigation

＂Operation＂menu \rightarrow Totalizer handling

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection／User entry／ User interface
Control Totalizer 1 to n	A process variable is selected in the Assign process variable parameter $(\rightarrow$ 層 106）of the Totalizer 1 to n submenu．	Control totalizer value．	－Totalize －Reset＋hold －Preset＋hold －Reset＋totalize －Preset＋totalize －Hold
Preset value 1 to n	A process variable is selected in the Assign process variable parameter $(\rightarrow$ 層 106）of the Totalizer 1 to n submenu．	Specify start value for totalizer． Dependency $\mathbf{1}$ The unit of the selected process variable is defined in the Unit totalizer parameter（ \rightarrow 曾 106） for the totalizer．	Signed floating－point number

Parameter	Prerequisite	Description	Selection / User entry / User interface
Totalizer value	-	Displays the current totalizer counter value.	Signed floating-point number
Reset all totalizers	-	Reset all totalizers to 0 and start.	- Cancel
- Reset + totalize			

10.6.1 Function scope of "Control Totalizer" parameter

Options	Description
Totalize	The totalizer is started or continues running.
Reset + hold	The totaling process is stopped and the totalizer is reset to 0.
Preset + hold ${ }^{1)}$	The totaling process is stopped and the totalizer is set to its defined start value from the Preset value parameter.
Reset + totalize	The totalizer is reset to 0 and the totaling process is restarted.
Preset + totalize ${ }^{1)}$	The totalizer is set to the defined start value in the Preset value parameter and the totaling process is restarted.
Hold	Totalizing is stopped.

1) Visible depending on the order options or device settings

10.6.2 Function range of "Reset all totalizers" parameter

Options	Description
Cancel	No action is executed and the user exits the parameter.
Reset + totalize	Resets all totalizers to 0 and restarts the totaling process. This deletes all the previously aggregated flow values.

10.7 Displaying data logging

The Extended HistoROM application package must be enabled in the device (order option) for the Data logging submenu to appear. This contains all the parameters for the measured value history.

1 Data logging is also available via:

- Plant Asset Management Tool FieldCare \rightarrow 葛 69 .
- Web browser

Function range

- A total of 1000 measured values can be stored
- 4 logging channels
- Adjustable logging interval for data logging
- Display of the measured value trend for each logging channel in the form of a chart

- x-axis: depending on the number of channels selected displays 250 to 1000 measured values of a process variable.
- y-axis: displays the approximate measured value span and constantly adapts this to the ongoing measurement.

1. If the length of the logging interval or the assignment of the process variables to the channels is changed, the content of the data logging is deleted.

Navigation
 "Diagnostics" menu \rightarrow Data logging

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection／User entry／ User interface
Assign channel 1	The Extended HistoROM application package is available．	Assign process variable to logging channel．	－Off －Temperature －Mass flow －Corrected volume flow －FAD volume flow＊ －Volume flow －Energy flow －Heat flow＊ －Density －Flow velocity －Pressure －2nd temperature delta heat＊ －Electronic temperature －Current output 1 ＊ －Current output 2 ＊ －Current output 3^{*} －Current output 4 ＊
Assign channel 2	The Extended HistoROM application package is available． i． The software options currently enabled are displayed in the Software option overview parameter．	Assign a process variable to logging channel．	For the picklist，see the Assign channel 1 parameter（ \rightarrow 酋 137）
Assign channel 3	The Extended HistoROM application package is available． $\mathbf{1}$ The software options currently enabled are displayed in the Software option overview parameter．	Assign a process variable to logging channel．	For the picklist，see the Assign channel 1 parameter（ \rightarrow 酋 137）
Assign channel 4	The Extended HistoROM application package is available． $\mathbf{1}$ The software options currently enabled are displayed in the Software option overview parameter．	Assign a process variable to logging channel．	For the picklist，see the Assign channel 1 parameter（ \rightarrow 郋 137）
Logging interval	The Extended HistoROM application package is available．	Define the logging interval for data logging．This value defines the time interval between the individual data points in the memory．	0.1 to 3600.0 s
Clear logging data	The Extended HistoROM application package is available．	Clear the entire logging data．	－Cancel －Clear data
Data logging	－	Select the type of data logging．	－Overwriting －Not overwriting
Logging delay	In the Data logging parameter，the Not overwriting option is selected．	Enter the time delay for measured value logging．	0 to 999 h
Data logging control	In the Data logging parameter，the Not overwriting option is selected．	Start and stop measured value logging．	－None －Delete＋start －Stop
Data logging status	In the Data logging parameter，the Not overwriting option is selected．	Displays the measured value logging status．	－Done －Delay active －Active －Stopped
Entire logging duration	In the Data logging parameter，the Not overwriting option is selected．	Displays the total logging duration．	Positive floating－point number

＊Visibility depends on order options or device settings

11 Diagnostics and troubleshooting

11．1 General troubleshooting

For local display

Error	Possible causes	Remedial action
Local display is dark，but signal output is within the valid range	The cable of the display module is not plugged in correctly．	Insert the plug correctly into the main electronics module and display module．
Local display dark and no output signals	Supply voltage does not match the voltage specified on the nameplate．	Apply the correct supply voltage \rightarrow 娄 36.
Local display dark and no output signals	Supply voltage has incorrect polarity．	Reverse polarity of supply voltage．
Local display dark and no output signals	No contact between connecting cables and terminals．	Ensure electrical contact between the cable and the terminal．
Local display dark and no output signals	－Terminals are not plugged into the I／O electronics module correctly． －Terminals are not plugged into the main electronics module correctly．	Check terminals．
Local display dark and no output signals	－I／O electronics module is defective． －Main electronics module is defective．	Order spare part \rightarrow 䓪 166.
Local display cannot be read，but signal output is within the valid range	Display is set too bright or too dark．	－Set the display brighter by simultaneously pressing ${ }^{+}+$国． －Set the display darker by simultaneously pressing $\square+$ 回．
Local display is dark，but signal output is within the valid range	Display module is defective．	Order spare part \rightarrow 包 166.
Backlighting of local display is red	Diagnostic event with＂Alarm＂diagnostic behavior has occurred．	Take remedial measures \rightarrow 类 151
Text on local display appears in a language that cannot be understood．	The selected operating language cannot be understood．	1．Press $\square+$ \qquad for 2 s （＂home position＂）． 2．Press 国． 3．Configure the required language in the Display language parameter（ \rightarrow 圈 109）．
Message on local display： ＂Communication Error＂ ＂Check Electronics＂	Communication between the display module and the electronics is interrupted．	－Check the cable and the connector between the main electronics module and display module． －Order spare part \rightarrow 圈 166.

For output signals

Error	Possible causes	Remedial action
Signal output outside the valid range	Main electronics module is defective．	Order spare part \rightarrow 庴 166.
Signal output outside the valid current range $(<3.6 \mathrm{~mA}$ or $>22 \mathrm{~mA})$	Main electronics module is defective． I／O electronics module is defective．	Order spare part \rightarrow 酋 166.
Device shows correct value on local display，but signal output is incorrect，though in the valid range．	Parameter configuration error	Check and adjust parameter configuration．
Device measures incorrectly．	Configuration error or device is operated outside the application．	1．Check and correct parameter configuration． 2．Observe limit values specified in the ＂Technical Data＂．

For access

Error	Possible causes	Remedial action
No write access to parameters．	Hardware write protection is enabled．	Set the write protection switch on the main electronics module to the OFF position \rightarrow 署 126.
No write access to parameters．	Current user role has limited access authorization．	1．Check user role \rightarrow 曾 58. 2．Enter correct customer－specific access code \rightarrow 曾 58 ．
Connection via HART protocol is not possible．	Missing or incorrectly installed communication resistor．	Install the communication resistor（ 250Ω ） correctly．Observe the maximum load \rightarrow 曾 178.
Connection via HART protocol is not possible．	Commubox －Connected incorrectly． －Configured incorrectly． －Driver is not installed correctly． －The USB port on the PC is incorrectly configured．	Observe the Commubox FXA195 HART documentation： ［i］Technical Information TI00404F
Connection to the web server is not possible．	Web server is disabled．	Use the＂FieldCare＂or＂DeviceCare＂operating tool to check if the web server of the device is enabled and enable if necessary \rightarrow 曾 65 ．
	The Ethernet interface is incorrectly configured on the PC．	Check the properties of the Internet protocol （TCP／IP）\rightarrow 首 61. Check the network settings with the IT manager．
Connection to the web server is not possible．	The IP address is incorrectly configured on the PC．	Check the IP address：192．168．1．212 \rightarrow 屏 61
Connection to the web server is not possible．	WLAN access data are incorrect．	－Check WLAN network status． －Log on to the device again using WLAN access data． －Check that WLAN is enabled for the device and operating device \rightarrow 目 61.
	WLAN communication is disabled．	－
It is not possible to connect to the web server， FieldCare or DeviceCare．	WLAN network is not available．	－Check whether WLAN reception is available： LED on the display module lights up in blue． －Check if the WLAN connection is enabled： LED on display module flashes blue． －Switch on instrument function．
No network connection or unstable network connection．	WLAN network is weak．	－Operating device outside of receiving range： Check the network status on the operating device． －To improve network performance，use an external WLAN antenna．
	Parallel WLAN and Ethernet communication．	－Check network settings． －Temporarily enable only the WLAN as an interface．
Web browser is frozen and no further operation possible．	Data transfer is active．	Wait until data transfer or current action is finished．
	Connection lost	Check cable connection and power supply． Refresh web browser and restart if necessary．
The web browser contents are difficult to read or incomplete．	The web browser version used is not the best option．	－Use correct web browser version \rightarrow 圈 60 ． －Empty the web browser cache． －Restart the web browser．
	Unsuitable view settings．	Change the font size／display ratio of the web browser．
No contents displayed in the web browser or contents incomplete．	－JavaScript is not enabled． －JavaScript cannot be enabled．	－Enable JavaScript． －Enter http：／／XXX．XXX．X．X．XX／servlet／ basic．html as the IP address．

Error	Possible causes	Remedial action
Operation with FieldCare or DeviceCare not possible via CDI-RJ45 service interface (port 8000).	Firewall of the PC or network prevents communication.	Depending on the settings of the firewall used on the PC or in the network, the firewall must be disabled or adjusted for FieldCare/DeviceCare access.
Flashing of firmware with FieldCare or DeviceCare not possible via CDI-RJ45 service interface (port 8000 or TFTP ports).	Firewall of the PC or network prevents communication.	Depending on the settings of the firewall used on the PC or in the network, the firewall must be disabled or adjusted for FieldCare/DeviceCare access.

11.2 Diagnostic information via light emitting diodes

11.2.1 Transmitter

Different LEDs in the transmitter provide information on the device status.

1	Supply voltage
2	Device status
3	Not used
4	Communication
5	Service interface (CDI) active

LED		Color	Meaning
1	Supply voltage	Off	Supply voltage is off or too low.
		Green	Supply voltage is ok.
2	Device status (normal operation)	Off	Firmware error
		Green	Device status is ok.
		Flashing green	Device is not configured.
		Red	A diagnostic event with "Alarm" diagnostic behavior has occurred.
		Flashing red	A diagnostic event with "Warning" diagnostic behavior has occurred.
		Flashing red/green	The device restarts.
2	Device status (during start-up)	Flashes red slowly	If > 30 seconds: problem with the boot loader.
		Flashes red quickly	If >30 seconds: compatibility problem when reading the firmware.
3	Not used	-	-
4	Communication	Off	Communication not active.
		White	Communication active.
5	Service interface (CDI)	Off	Not connected or no connection established.
		Yellow	Connected and connection established.
		Flashing yellow	Service interface active.

11.3 Diagnostic information on local display

11.3.1 Diagnostic message

Faults detected by the self-monitoring system of the measuring device are displayed as a diagnostic message in alternation with the operational display.

If two or more diagnostic events are pending simultaneously, only the message of the diagnostic event with the highest priority is shown.
1 Other diagnostic events that have occurred can be displayed in the Diagnostics menu:

- Via parameter \rightarrow 葛 155- Via submenus \rightarrow 葛 155

Status signals

The status signals provide information on the state and reliability of the device by categorizing the cause of the diagnostic information (diagnostic event).

1 The status signals are categorized according to VDI/VDE 2650 and NAMUR Recommendation NE 107: F = Failure, C = Function Check, S = Out of Specification, M = Maintenance Required

Symbol	Meaning
	Failure A device error has occurred. The measured value is no longer valid.
	Function check The device is in service mode (e.g. during a simulation). The device is being operated: ant Outside its technical specification limits (e.g. outside the process temperature range) Outside of the configuration carried out by the user (e.g. maximum flow in parameter 20 mA value)

Diagnostic behavior

Symbol	Meaning
	Alarm - - - Signal outputs and totalizers assume the defined alarm condition. - A diagnostic message is generated.
	Warning - Measurement is resumed. - The signal outputs and totalizers are not affected. - A diagnostic message is generated.

Diagnostic information

The fault can be identified using the diagnostic information. The short text helps you by providing information about the fault. In addition, the corresponding symbol for the diagnostic behavior is displayed in front of the diagnostic information on the local display.

Operating elements

Operating key	Meaning
\oplus	Plus key In menu, submenu Opens the message about the remedial measures.
$(\mathrm{E}$	Enter key In menu, submenu Opens the operating menu.

11.3.2 Calling up remedial measures

40 Message for remedial measures
1 Diagnostic information
2 Short text
3 Service ID
4 Diagnostic behavior with diagnostic code
5 Operation time when error occurred
6 Remedial measures

1. The user is in the diagnostic message.

Press \boxplus ((i) symbol).
\rightarrow The Diagnostic list submenu opens.
2. Select the desired diagnostic event with \boxplus or \square and press $\square_{\text {. }}$.
\longrightarrow The message about the remedial measures opens.
3. Press $\square+\square$ simultaneously.
$\llcorner\quad$ The message about the remedial measures closes.
The user is in the Diagnostics menu at an entry for a diagnostics event, e.g. in the Diagnostic list submenu or Previous diagnostics parameter.

1. Press 国.
$\llcorner\quad$ The message for the remedial measures for the selected diagnostic event opens.
2. Press $\square+\boxplus$ simultaneously.
$\llcorner\quad$ The message for the remedial measures closes.

11.4 Diagnostic information in the web browser

11.4.1 Diagnostic options

Any faults detected by the measuring device are displayed in the Web browser on the home page once the user has logged on.

Instrument health status
\triangle Out of specification (S)

[^13]In addition, diagnostic events which have occurred can be shown in the Diagnostics menu:

- Via parameter \rightarrow 屋 155- Via submenu \rightarrow 痖 155

Status signals

The status signals provide information on the state and reliability of the device by categorizing the cause of the diagnostic information (diagnostic event).

Symbol	Meaning
Failure	
A device error has occurred. The measured value is no longer valid.	

1
The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107.

11.4.2 Calling up remedy information

Remedy information is provided for every diagnostic event to ensure that problems can be rectified quickly. These measures are displayed in red along with the diagnostic event and the related diagnostic information.

11．5 Diagnostic information in FieldCare or DeviceCare

11．5．1 Diagnostic options

Any faults detected by the measuring device are displayed on the home page of the operating tool once the connection has been established．

[^14]In addition，diagnostic events which have occurred can be shown in the Diagnostics menu：

- Via parameter \rightarrow 㞔 155
- Via submenu \rightarrow 首 155

Diagnostic information

The fault can be identified using the diagnostic information．The short text helps you by providing information about the fault．In addition，the corresponding symbol for the diagnostic behavior is displayed in front of the diagnostic information on the local display．

11.5.2 Calling up remedy information

Remedy information is provided for every diagnostic event to ensure that problems can be rectified quickly:

- On the home page

Remedy information is displayed in a separate field below the diagnostics information.

- In the Diagnostics menu

Remedy information can be called up in the working area of the user interface.
The user is in the Diagnostics menu.

1. Call up the desired parameter.
2. On the right in the working area, mouse over the parameter.
\longrightarrow A tool tip with remedy information for the diagnostic event appears.

11.6 Adapting the diagnostic information

11.6.1 Adapting the diagnostic behavior

Each item of diagnostic information is assigned a specific diagnostic behavior at the factory. The user can change this assignment for specific diagnostic information in the Diagnostic behavior submenu.
Expert \rightarrow System \rightarrow Diagnostic handling \rightarrow Diagnostic behavior

- 41 Taking the example of the local display

You can assign the following options to the diagnostic number as the diagnostic behavior:

Options	Description
Alarm	The device stops measurement. The signal outputs and totalizers assume the defined alarm condition. A diagnostic message is generated. The background lighting changes to red.
Warning	The device continues to measure. The signal outputs and totalizers are not affected. A diagnostic message is generated.
Logbook entry only	The device continues to measure. The diagnostic message is only displayed in the Event logbook submenu (Event list submenu) and is not displayed in alternating sequence with the operational display.
Off	The diagnostic event is ignored, and no diagnostic message is generated or entered.

11.6.2 Adapting the status signal

Each item of diagnostic information is assigned a specific status signal at the factory. The user can change this assignment for specific diagnostic information in the Diagnostic event category submenu.

Expert \rightarrow Communication \rightarrow Diagnostic event category

Available status signals

Configuration as per HART 7 Specification (Condensed Status), in accordance with NAMUR NE107.

| Symbol | Meaning |
| :--- | :--- | :--- |
| | Failure
 A device error has occurred. The measured value is no longer valid. |
| | Function check
 The device is in service mode (e.g. during a simulation). |
| | Out of specification
 The device is being operated:
 andside its technical specification limits (e.g. outside the process temperature range)
 O Outside of the configuration carried out by the user (e.g. maximum flow in parameter
 20 mA value) |

Symbol	Meaning
\mathbf{M} A0013957	Maintenance required Maintenance is required. The measured value remains valid.
A0023076	Has no effect on the condensed status.

11.7 Overview of diagnostic information

1. The amount of diagnostic information and the number of measured variables affected increase if the measuring device has one or more application packages.
1 In the case of some items of diagnostic information, the status signal and the diagnostic behavior can be changed. Change the diagnostic information \rightarrow

Diagnostic number	Short text	Remedy instructions	Status signal [from the factory]	Diagnostic behavior [from the factory]
Diagnostic of sensor				
004	Sensor error	Change sensor	F	Alarm
082	Data storage	1. Check module connections 2. Change electronic modules	F	Alarm
083	Memory content	1. Restart device 2. Restore HistoROM S-DAT backup ('Device reset' parameter) 3. Replace HistoROM S-DAT	F	Alarm
144	Sensor drift	1. Check sensor 2. Replace sensor	F	Alarm ${ }^{1)}$
Diagnostic of electronic				
201	Device failure	Restart device	F	Alarm
242	Software incompatible	1. Check software 2. Flash or change main electronics module	F	Alarm
252	Modules incompatible	1. Check electronic modules 2. Check if correct modules are available (e.g. NEx, Ex) 3. Replace electronic modules	F	Alarm
252	Modules incompatible	1. Check if correct electronic modul is plugged 2. Replace electronic module	F	Alarm
262	Sensor electronic connection faulty	1. Check or replace connection cable between sensor electronic module (ISEM) and main electronics 2. Check or replace ISEM or main electronics	F	Alarm
270	Main electronic failure	Change main electronic module	F	Alarm
271	Main electronic failure	1. Restart device 2. Change main electronic module	F	Alarm
272	Main electronic failure	Restart device	F	Alarm
273	Main electronic failure	Change electronic	F	Alarm
275	I/O module 1 to n defective	Change I/O module	F	Alarm
276	I/O module 1 to n faulty	1. Restart device 2. Change I/O module	F	Alarm
281	Electronic initialization	Firmware update active, please wait!	F	Alarm
283	Memory content	Reset device	F	Alarm
283	Memory content	Restart device	F	Alarm
302	Device verification in progress	Device verification active, please wait.	C	Warning

Diagnostic number	Short text	Remedy instructions	Status signal [from the factory]	Diagnostic behavior [from the factory]
303	I/O 1 to n configuration changed	1. Apply I/O module configuration (parameter 'Apply I/O configuration') 2. Afterwards reload device description and check wiring	M	Warning
311	Electronic failure	1. Do not reset device 2. Contact service	M	Warning
332	Writing in HistoROM backup failed	Replace user interface board Ex d/XP: replace transmitter	F	Alarm
361	I/O module 1 to n faulty	1. Restart device 2. Check electronic modules 3. Change I/O Modul or main electronics	F	Alarm
372	Sensor electronic (ISEM) faulty	1. Restart device 2. Check if failure recurs 3. Replace sensor electronic module (ISEM)	F	Alarm
373	Sensor electronic (ISEM) faulty	Transfer data or reset device	F	Alarm
375	I/O- 1 to n communication failed	1. Restart device 2. Check if failure recurs 3. Replace module rack inclusive electronic modules	F	Alarm
378	Supply voltage ISEM faulty	Check supply voltage to the ISEM	F	Alarm
382	Data storage	1. Insert T-DAT 2. Replace T-DAT	F	Alarm
383	Memory content	1. Restart device 2. Delete T-DAT via 'Reset device' parameter 3. Replace T-DAT	F	Alarm
387	HistoROM data faulty	Contact service organization	F	Alarm
Diagnostic of configuration				
330	Flash file invalid	1. Update firmware of device 2. Restart device	M	Warning
331	Firmware update failed	1. Update firmware of device 2. Restart device	F	Warning
410	Data transfer	1. Check connection 2. Retry data transfer	F	Alarm
412	Processing download	Download active, please wait	C	Warning
431	Trim 1 to n	Carry out trim	C	Warning
437	Configuration incompatible	Restart device	F	Alarm
438	Dataset	1. Check data set file 2. Check device configuration 3. Up- and download new configuration	M	Warning
441	Current output 1 to n	1. Check process 2. Check current output settings	S	Warning ${ }^{1)}$
442	Frequency output 1 to n	1. Check process 2. Check frequency output settings	S	Warning ${ }^{1)}$
443	Pulse output 1 to n	1. Check process 2. Check pulse output settings	S	Warning ${ }^{1)}$

Diagnostic number	Short text	Remedy instructions	Status signal [from the factory]	Diagnostic behavior [from the factory]
444	Current input 1 to n	1. Check process 2. Check current input settings	S	Warning ${ }^{1)}$
453	Flow override	Deactivate flow override	C	Warning
484	Failure mode simulation	Deactivate simulation	C	Alarm
485	Measured variable simulation	Deactivate simulation	C	Warning
486	Current input 1 to n simulation	Deactivate simulation	C	Warning
491	Current output 1 to n simulation	Deactivate simulation	C	Warning
492	Simulation frequency output 1 to n	Deactivate simulation frequency output	C	Warning
493	Simulation pulse output 1 to n	Deactivate simulation pulse output	C	Warning
494	Switch output simulation 1 to n	Deactivate simulation switch output	C	Warning
495	Diagnostic event simulation	Deactivate simulation	C	Warning
496	Status input simulation	Deactivate simulation status input	C	Warning
520	I/O 1 to n hardware configuration invalid	1. Check I/O hardware configuration 2. Replace wrong I/O module 3. Plug the module of double pulse output on correct slot	F	Alarm
537	Configuration	1. Check IP addresses in network 2. Change IP address	F	Warning
539	Flow computer configuration incorrect	1. Check input value (pressure, temperature) 2. Check allowed values of the medium properties	S	Alarm
594	Relay output simulation	Deactivate simulation switch output	C	Warning
Diagnostic of process				
803	Current loop	1. Check wiring 2. Change I/O module	F	Alarm
832	Electronic temperature too high	Reduce ambient temperature	S	Warning ${ }^{1)}$
833	Electronic temperature too low	Increase ambient temperature	S	Warning ${ }^{1)}$
834	Process temperature too high	Reduce process temperature	S	Warning ${ }^{1)}$
835	Process temperature too low	Increase process temperature	S	Warning ${ }^{1)}$
842	Process limit	Low flow cut off active! 1. Check low flow cut off configuration	S	Warning ${ }^{1)}$
882	Input signal	1. Check input configuration 2. Check external device or process conditions	F	Alarm
941	Flow velocity too high	1. Check process cond. 2. Increase system pressure	S	Alarm
961	Delta temperature	Check flow rate	S	Alarm

Diagnostic number	Short text	Remedy instructions	Status signal [from the factory]	Diagnostic behavior [from the factory]
976	Mass flow out of calibrated range	1. Check process cond. 2. Increase system pressure	S	Warning ${ }^{11}$
977	Reverse flow detected	Check flow direction	S	Warning ${ }^{11}$
979	Unstable process conditions	1. Check process cond. 2. Increase system pressure	S	Warning ${ }^{11}$

1) Diagnostic behavior can be changed.

11．8 Pending diagnostic events

The Diagnostics menu allows the user to view the current diagnostic event and the previous diagnostic event separately．
1 To call up the measures to rectify a diagnostic event：

- Via local display \rightarrow 图 144
- Via web browser \rightarrow 圈 146
- Via＂FieldCare＂operating tool \rightarrow 图 148
- Via＂DeviceCare＂operating tool \rightarrow 酋 148

1 Other pending diagnostic events can be displayed in the Diagnostic list submenu \rightarrow 酋 155

Navigation

＂Diagnostics＂menu

Parameter overview with brief description

Parameter	Prerequisite	Description	User interface
Actual diagnostics	A diagnostic event has occurred．	Shows the current occured diagnostic event along with its diagnostic information．	Symbol for diagnostic behavior，diagnostic code and short message．
Previous diagnostics	Two diagnostic events have already simultaneously，the message with the highest priority is shown on the display．	Shows the diagnostic event that occurred． event along with its diagnostic information．	Symbol for diagnostic behavior，diagnostic code and short message．
Operating time from restart	-	Shows the time the device has been in operation since the last device restart．	Days（d），hours（h）， minutes（m）and seconds （s）
Operating time		Indicates how long the device has been in operation．	Days（d），hours（h）， minutes（m）and seconds （s）

11．9 Diagnostic list

Up to 5 currently pending diagnostic events can be displayed in the Diagnostic list submenu along with the associated diagnostic information．If more than 5 diagnostic events are pending，the events with the highest priority are shown on the display．

Navigation path

Diagnostics \rightarrow Diagnostic list

.$/ / D i a g n o s e ~ l i s t ~$
Diagnostics
\＆F273 Main electronic
Diagnostics 2
Diagnostics 3

－ 42 Taking the example of the local display

1 To call up the measures to rectify a diagnostic event：

- Via local display \rightarrow 睤 144
- Via web browser \rightarrow 莫 146
- Via＂FieldCare＂operating tool \rightarrow 膡 148
- Via＂DeviceCare＂operating tool \rightarrow 酋 148

11．10 Event logbook

11．10．1 Reading out the event logbook

A chronological overview of the event messages that have occurred is provided in the Events list submenu．

Navigation path
Diagnostics menu \rightarrow Event logbook submenu \rightarrow Event list

图 43 Taking the example of the local display
－A maximum of 20 event messages can be displayed in chronological order．
－If the Extended HistoROM application package（order option）is enabled in the device， the event list can contain up to 100 entries ．

The event history includes entries for：

- Diagnostic events \rightarrow 圈 151
- Information events \rightarrow 酋 158

In addition to the operation time of its occurrence，each event is also assigned a symbol that indicates whether the event has occurred or is ended：
－Diagnostic event
－\rightarrow ：Occurrence of the event
－G：End of the event
－Information event
\rightarrow ：Occurrence of the event
1 To call up the measures to rectify a diagnostic event：

- Via local display \rightarrow 圈 144
- Via web browser \rightarrow 苗 146
- Via＂FieldCare＂operating tool \rightarrow 图 148
- Via＂DeviceCare＂operating tool \rightarrow 酋 148

1．For filtering the displayed event messages \rightarrow

11．10．2 Filtering the event logbook

Using the Filter options parameter you can define which category of event message is displayed in the Events list submenu．

Navigation path

Diagnostics \rightarrow Event logbook \rightarrow Filter options

Filter categories

－All
－Failure（F）
－Function check（C）
－Out of specification（S）
－Maintenance required（M）
－Information（I）

11.10.3 Overview of information events

Unlike a diagnostic event, an information event is displayed in the event logbook only and not in the diagnostic list.

Info number	Info name
I1000	--------(Device ok)
I1079	Sensor changed
I1089	Power on
I1090	Configuration reset
I1091	Configuration changed
I1092	HistoROM backup deleted
I1137	Electronic changed
I1151	History reset
I1155	Reset electronic temperature
I1156	Memory error trend
I1157	Memory error event list
I1221	Zero point adjust failure
I1222	Zero point adjustment ok
I1256	Display: access status changed
I1264	Safety sequence aborted
I1278	I/O module restarted
I1335	Firmware changed
I1361	Web server: login failed
I1397	Fieldbus: access status changed
I1398	CDI: access status changed
I1444	Device verification passed
I1445	Device verification failed
I1457	Measurement error verification failed
I1459	I/O module verification failed
I1461	Sensor verification failed
I1462	Sensor electronic module verific. failed
I1512	Download started
I1513	Download finished
I1514	Upload started
I1515	Upload finished
I1554	Safety sequence started
I1555	Safety sequence confirmed
I1556	Safety mode off
I1618	I/O module 2 replaced
I1619	I/O module 3 replaced
I1621	I/O module 4 replaced
I1622	Calibration changed
I1624	Reset all totalizers
I1625	Write protection activated

Info number	Info name
I1626	Write protection deactivated
I1627	Web server: login successful
I1628	Display: login successful
I1629	CDI: login successful
I1631	Web server access changed
I1632	Display: login failed
I1633	CDI: login failed
I1634	Reset to factory settings
I1635	Reset to delivery settings
I1639	Max. switch cycles number reached
I1649	Hardware write protection activated
I1650	Hardware write protection deactivated
I1712	New flash file received
I1725	Sensor electronic module (ISEM) changed
I1726	Configuration backup failed

11.11 Resetting the measuring device

The entire device configuration or some of the configuration can be reset to a defined state with the Device reset parameter (\rightarrow 圈 115) .

11.11.1 Function range of "Device reset" parameter

Options	Description
Cancel	No action is executed and the user exits the parameter.
To delivery settings	Every parameter for which a customer-specific default setting was ordered is reset to the customer-specific value. All other parameters are reset to the factory setting.
Restart device	The restart resets every parameter with data stored in volatile memory (RAM) to the factory setting (e.g. measured value data). The device configuration remains unchanged.
Restore S-DAT backup	Restores the data that is saved on the S-DAT. Additional information: This function can be used to resolve the memory issue "083 Memory content inconsistent" or to restore the S-DAT data when a new S-DAT has been installed. (i. This option is displayed only in an alarm condition.

11.12 Device information

The Device information submenu contains all parameters that display different information for device identification.

Navigation

"Diagnostics" menu \rightarrow Device information

Parameter overview with brief description

Parameter	Description	User interface	Factory setting
Device tag	Shows name of measuring point.	Max. 32 characters, such as letters, numbers or special characters (e.g. @, \%, /).	-
Serial number	Shows the serial number of the measuring device.	Max. 11-digit character string comprising letters and numbers.	-
Firmware version	Shows the device firmware version installed.	Character string in the format xx.yy.zz	-
Device name	Shows the name of the transmitter. The name can be found on the	Character string comprising numbers, letters and special characters	-

Parameter	Description	User interface	Factory setting
Manufacturer	Displays the manufacturer.	Character string comprising numbers, letters and special characters	-
Order code	Shows the device order code.	Character string composed of letters, numbers and certain punctuation marks (e.g. /).	-
Extended order code 1	Shows the 1st part of the extended order code.	Character string	-
Extended order code 2	Shows the 2nd part of the extended order code. i The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field.	Character string	-
Extended order code 3	Shows the 3rd part of the extended order code. 1 The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field.	Character string	-
ENP version	Shows the version of the electronic nameplate (ENP).	Character string	-
Device revision	Shows the device revision with which the device is registered with the HART Communication Foundation.	2-digit hexadecimal number	0x1
Device ID	Shows the device ID for identifying the device in a HART network.	6-digit hexadecimal number	-
Device type	Shows the device type with which the measuring device is registered with the HART Communication Foundation.	2-digit hexadecimal number	0x1160 (for t-mass 300/500)
Manufacturer ID	Shows the manufacturer ID device is registered with the HART Communication Foundation.	2-digit hexadecimal number	0x11 (for Endress+Hauser)

11.13 Firmware history

1 It is possible to flash the firmware to the current version or the previous version using the service interface.
[囯 For the compatibility of the firmware version with the previous version, the installed device description files and operating tools, observe the information about the device in the "Manufacturer's information" document.

1 The manufacturer's information is available:

- In the Download Area of the Endress+Hauser web site: www.endress.com \rightarrow Downloads
- Specify the following details:
- Text search: Manufacturer's information
- Media type: Documentation - Technical Documentation

12 Maintenance

12.1 Maintenance tasks

No special maintenance work is required.

12.1.1 Exterior cleaning

When cleaning the exterior of measuring devices, always use cleaning agents that do not attack the surface of the housing or the seals.

12.1.2 Sensing element cleaning

Cleaning the sensing element

The measuring device can be removed for cleaning.
Use key size 36 mm (1.42 in) to remove the sensor.

A WARNING

Injury from measuring device being ejected!

- Ensure the system is depressurized before commencing the cleaning work.

NOTICE

Damage to the sensing element!

- Make sure the sensing elements do not hit against anything.

NOTICE

The use of unsuitable equipment or cleaning liquids can damage the measuring device.

- Do not use pigs to clean the pipe.
- Use an oil-free cleaning agent that does not form a film to clean the sensor.

NOTICE

Damage to the sealing surfaces!

- Make sure the sealing surfaces do not hit against anything.

1. Ensure the system is unpressurized.
2. Release the compression fitting of the measuring device.
3. Carefully remove the measuring device from the process pipe.
4. NOTICE

The protective guard protects the sensing element from damage!

- Do not remove the protective guard.

Gently clean the sensing elements using a soft brush.
5. Carefully insert the measuring device into the process pipe.
\longrightarrow Make sure the measuring device is aligned correctly \rightarrow 16, 图 29 .
6. For PEEK ferrules:

Tighten compression fitting with 1 turn.
7. For metal ferrules:

Tighten compression fitting with a $1 / 4$ turn.
1 Increase the pressure in the piping system and check for leaks once the desired pressure is reached.

12.1.3 Recalibration

The long-term stability of a measuring device depends on the integrity of the sensor, among other things. Impurities can also cause a coating to form on the sensor, which can cause a change in the measuring signal. Therefore, if the sensor is used in applications in which impurities (such as oil residue or dust) can occur, it is advisable to check the sensor for contamination at regular intervals and clean it if necessary (see \rightarrow 164). The intervals depend on the type, condition and extent of the contamination.
Process conditions such as thermal shocks or constant variations in temperatures can create the conditions in which the measuring signal drifts over time. A recalibration can rectify these undesired changes in the measuring signal and restore the original measuring state.

Determining the recalibration intervals:

- In the event of critical measurements and in order to determine the recalibration intervals, a calibration check should be performed once a year.
The next recalibration can then be scheduled earlier or later depending on the results of these checks.
- A recalibration every three years is recommended for non-critical applications or for use in clean and dry gases.
- Heartbeat Verification can be used to help determine when a recalibration should be performed. By performing verifications regularly, it is possible to compare the verification results with the initial values determined at the factory. If these values deviate from one another, this can indicate that the device needs to be recalibrated.

12.2 Measuring and test equipment

Endress+Hauser offers a wide variety of measuring and test equipment, such as W@M or device tests.

1. Your Endress+Hauser Sales Center can provide detailed information on the services.

List of some of the measuring and testing equipment: \rightarrow 图 171

12.3 Endress + Hauser services

Endress+Hauser offers a wide variety of services for maintenance such as recalibration, maintenance service or device tests.

1 Your Endress+Hauser Sales Center can provide detailed information on the services.

13 Repair

13.1 General information

13.1.1 Repair and conversion concept

The Endress+Hauser repair and conversion concept provides for the following:

- The measuring devices have a modular design.
- Spare parts are grouped into logical kits with the associated Installation Instructions.
- Repairs are carried out by Endress+Hauser Service or by appropriately trained customers.
- Certified devices can only be converted to other certified devices by Endress+Hauser Service or at the factory.

13.1.2 Notes for repair and conversion

For repair and modification of a measuring device, observe the following notes:

- Use only original Endress+Hauser spare parts.
- Carry out the repair according to the Installation Instructions.
- Observe the applicable standards, federal/national regulations, Ex documentation (XA) and certificates.
- Document every repair and each conversion and enter them into the $W @ M$ life cycle management database and Netilion Analytics.

13.2 Spare parts

Device Viewer (www.endress.com/deviceviewer):
All the spare parts for the measuring device, along with the order code, are listed here and can be ordered. If available, users can also download the associated Installation Instructions.

1 Measuring device serial number:

- Is located on the nameplate of the device.
- Can be read out via the Serial number parameter (\rightarrow 酋 161) in the Device information submenu.

13.3 Endress+Hauser services

Endress+Hauser offers a wide range of services.
1 Your Endress+Hauser Sales Center can provide detailed information on the services.

13.4 Return

The requirements for safe device return can vary depending on the device type and national legislation.

1. Refer to the web page for information:
http://www.endress.com/support/return-material
\llcorner Select the region.
2. Return the device if repairs or a factory calibration are required, or if the wrong device was ordered or delivered.

13.5 Disposal

8

If required by the Directive 2012/19/EU on waste electrical and electronic equipment (WEEE), the product is marked with the depicted symbol in order to minimize the disposal of WEEE as unsorted municipal waste. Do not dispose of products bearing this marking as unsorted municipal waste. Instead, return them to the manufacturer for disposal under the applicable conditions.

13.5.1 Removing the measuring device

1. Switch off the device.

A. WARNING

Danger to persons from process conditions!

- Beware of hazardous process conditions such as pressure in the measuring device, high temperatures or aggressive media.

2. Carry out the mounting and connection steps from the "Mounting the measuring device" and "Connecting the measuring device" sections in reverse order. Observe the safety instructions.

13.5.2 Disposing of the measuring device

A. WARNING

Danger to personnel and environment from fluids that are hazardous to health.

- Ensure that the measuring device and all cavities are free of fluid residues that are hazardous to health or the environment, e.g. substances that have permeated into crevices or diffused through plastic.

Observe the following notes during disposal:

- Observe valid federal/national regulations.
- Ensure proper separation and reuse of the device components.

14 Accessories

Various accessories, which can be ordered with the device or subsequently from Endress +Hauser, are available for the device. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

14.1 Device-specific accessories

14.1.1 For the transmitter

Accessories	Description
Proline 300 transmitter	Transmitter for replacement or storage. Use the order code to define the following specifications: - Approvals - Output - Input - Display/operation - Housing - Software 1 Order code: 6X3BXX Installation Instructions EA01286D
Remote display and operating module DKX001	- If ordered directly with the measuring device: Order code for "Display; operation", option O "Remote display 4-line, illuminated; $10 \mathrm{~m}(30 \mathrm{ft})$ cable; touch control" - If ordered separately: - Measuring device: order code for "Display; operation", option M "W/o, prepared for remote display" - DKX001: Via the separate product structure DKX001 - If ordered subsequently: DKX001: Via the separate product structure DKX001 Mounting bracket for DKX001 - If ordered directly: order code for "Accessory enclosed", option RA "Mounting bracket, pipe 1/2"' - If ordered subsequently: order number: 71340960 Connecting cable (replacement cable) Via the separate product structure: DKX002 $\underset{\mathbf{1}}{ } \mathbf{~ F u r t h e r ~ i n f o r m a t i o n ~ o n ~ d i s p l a y ~ a n d ~ o p e r a t i n g ~ m o d u l e ~ D K X O O 1 ~} \rightarrow$ 圊 194. (-i) Special Documentation SD01763D
External WLAN antenna	External WLAN antenna with 1.5 m (59.1 in) connecting cable and two angle brackets. Order code for "Accessory enclosed", option P8 "Wireless antenna wide area". $\mathbf{1}$ - The external WLAN antenna is not suitable for use in hygienic applications. - Additional information regarding the WLAN interface \rightarrow 圈 68. Order number: 71351317 Installation Instructions EA01238D
Weather protection cover	Is used to protect the measuring device from the effects of the weather: e.g. rainwater, excess heating from direct sunlight. $\mathbf{1}$ Order number: 71343505 (i) Installation Instructions EA01160D

14.1.2 For the sensor

Accessories	Description
Mounting boss	Order code for "Accessory enclosed" - Option PC "Mounting boss, G1"' - Option PD "Mounting boss, 1" NPT" - Option PE "Mounting boss, G334" - Option PF "Mounting boss, 3/4" NPT" 1 Can be ordered separately: order code DK6MB
Cold tap (ambient pressure)	Order code for "Accessory enclosed" - Option PR "Cold tap G1", ambient pressure" - Option PS "Cold tap 1" NPT, ambient pressure" - Option PT "Cold tap G33", ambient pressure" - Option PU "Cold tap 3/4" NPT, ambient pressure" $\mathbf{1}$ Can be ordered separately: order code DK6ML
Hot tap (low pressure)	Order code for "Accessory enclosed" - Option PG "Hot tap G1", low pressure max. 4.5 bar/65 psig" - Option PH "Hot tap 1" NPT, low pressure max. 4.5 bar/65 psig" - Option PK "Hot tap G3²", low pressure max. $4.5 \mathrm{bar} / 65 \mathrm{psig} "$ - Option PL "Hot tap 3/4" NPT, low pressure max. 4.5 bar/65 psig" Mounting set contains mounting boss (process connection), sensor connection with safety chain and ball valve. To insert or remove the sensor at process pressures up to max. 4.5 barg (65 psi). If the accessory is ordered separately, individual combinations can be selected. Order code DK6003
Hot tap (medium pressure)	Order code for "Accessory enclosed" - Option PI "Hot tap G1", medium pressure max. 16 bar/230 psig" - Option PJ "Hot tap 1" NPT, medium pressure max. $16 \mathrm{bar} / 230$ psig" - Option PM "Hot tap G³⁄4", medium pressure max. 16 bar/230 psig" - Option PN "Hot tap 3/4" NPT, medium pressure max. 16 bar/230 psig" Mounting set contains mounting boss (process connection), sensor connection, ball valve and extractor assembly. To insert or remove the sensor at process pressures up to max. 16 barg (230 psi). If the accessory is ordered separately, individual combinations can be selected. Order code DK6003
Flow conditioner	$\mathbf{1}$ Can be ordered separately: order code DK6004 Available for the following pipe diameters: - DN 80 ($3^{\prime \prime}$) - DN 100 (4") - DN 150 (6") - DN 200 (8") - DN 250 (10") - DN 300 (12") Available for the following process connections: - PN10, EN1092-1 - PN16, EN1092-1 - PN25, EN1092-1 - PN40, EN1092-1 - Cl.150, ASME B16.5 - Cl.300, ASME B16.5 - 10K, JIS B2220 - 20K, JIS B2220 $\mathbf{1}$ Screws and seals are not included in the delivery.

14.2 Communication-specific accessories

Accessories	Description
Commubox FXA195 HART	For intrinsically safe HART communication with FieldCare via the USB port. Technical Information TI00404F
HART Loop Converter HMX50	Is used to evaluate and convert dynamic HART process variables to analog current signals or limit values. - Technical Information TI00429F - Operating Instructions BA00371F
Fieldgate FXA42	Transmission of the measured values of connected 4 to 20 mA analog measuring devices, as well as digital measuring devices - Technical Information TIO1297S - Operating Instructions BA01778S - Product page: www.endress.com/fxa42
Field Xpert SMT50	The Field Xpert SMT70 tablet PC for device configuration enables mobile plant asset management in non-hazardous areas. It is suitable for commissioning and maintenance staff to manage field instruments with a digital communication interface and to record progress. This tablet PC is designed as an all-in-one solution with a preinstalled driver library and is an easy-to-use, touch-sensitive tool which can be used to manage field instruments throughout their entire life cycle. - Technical Information TI01342S - Operating Instructions BA01709S - Product page: www.endress.com/smt50
Field Xpert SMT70	The Field Xpert SMT70 tablet PC for device configuration enables mobile plant asset management in hazardous and non-hazardous areas. It is suitable for commissioning and maintenance staff to manage field instruments with a digital communication interface and to record progress. This tablet PC is designed as an all-in-one solution with a preinstalled driver library and is an easy-to-use, touch-sensitive tool which can be used to manage field instruments throughout their entire life cycle. - Technical Information TIO1342S - Operating Instructions BA01709S - Product page: www.endress.com/smt70
Field Xpert SMT77	The Field Xpert SMT77 tablet PC for device configuration enables mobile plant asset management in areas categorized as Ex Zone 1. - Technical Information TI01418S - Operating Instructions BA01923S - Product page: www.endress.com/smt77

14.3 Service-specific accessories

Accessories	Description
Applicator	Software for selecting and sizing Endress+Hauser measuring devices: - Choice of measuring devices for industrial requirements - Calculation of all the necessary data for identifying the optimum flowmeter: e.g. nominal diameter, pressure loss, flow velocity and accuracy. - Graphic illustration of the calculation results - Determination of the partial order code, administration, documentation and access to all project-related data and parameters over the entire life cycle of a project. Applicator is available: - Via the Internet: https://portal.endress.com/webapp/applicator - As a downloadable DVD for local PC installation.
W@M	W@M Life Cycle Management Improved productivity with information at your fingertips. Data relevant to a plant and its components is generated from the first stages of planning and during the asset's complete life cycle. W@M Life Cycle Management is an open and flexible information platform with online and on-site tools. Instant access for your staff to current, in-depth data shortens your plant's engineering time, speeds up procurement processes and increases plant uptime. Combined with the right services, W@M Life Cycle Management boosts productivity in every phase. For more information, see: www.endress.com/lifecyclemanagement
FieldCare	FDT-based plant asset management tool from Endress+Hauser. It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition. Operating Instructions BA00027S and BA00059S
DeviceCare	Tool to connect and configure Endress+Hauser field devices. \square Innovation brochure INO1047S

14.4 System components

Accessories	Description
Memograph M graphic data manager	The Memograph M graphic data manager provides information on all the relevant measured variables. Measured values are recorded correctly, limit values are monitored and measuring points analyzed. The data are stored in the 256 MB internal memory and also on a SD card or USB stick.
Ceraphant PTC31B	The pressure transmitter for measuring the absolute and gauge pressure in gases, steam, liquids and dusts. It can be used to read in the operating pressure value.
Cerabar PMC21	The pressure transmitter for measuring the absolute and gauge pressure in gases, steam, liquids and dusts. It can be used to read in the operating pressure value. - Technical Information TIO1130P
Cerabar S PMC71	The pressure transmitter for measuring the absolute and gauge pressure of gases, steam and liquids. It can be used to read in the operating pressure value.

15 Technical data

15.1 Application

The measuring device is intended only for the flow measurement of gases.
To ensure that the device remains in proper operating condition for its service life, use the measuring device only for media against which the process-wetted materials are sufficiently resistant.

15.2 Function and system design

Measuring principle Mass flow measurement based on thermal measuring principle.

Measuring system
The device consists of a transmitter and a sensor.
The device is available as a compact version:
The transmitter and sensor form a mechanical unit.
Information on the structure of the device \rightarrow 酋 14

15.3 Input

Measured process variables

- Mass flow
- Temperature

Calculated process variables

- Corrected volume flow
- Volume flow
- FAD volume flow
- Flow velocity
- Calorific value
- 2nd temperature heat difference
- Heat flow
- Energy flow
- Density

Process variables available for order

Order code for "Sensor version":

- Option SB "Bidirectional" measures the flow in both directions (»positive" and »negative« flow) and totalizes the flow in both directions. The device is calibrated in both directions.
- Option SC "Reverse flow detection" only measures the flow in the positive direction. The reverse flow is detected by the device but is not totalized. The device is only calibrated in the positive forward flow direction.
Order code for "Application package":
Option EV "Second gas group" enables the configuration of two different standard gases/gas mixtures in the device and allows the user to switch from one gas group to another using the status input or (if available) via bus communication.

The available measuring range depends on the choice of gas and size of the pipe. Each measuring device is calibrated individually with air under reference operating conditions. No recalibration is required in the case of customer-specific gases, as the device's Gas Engine functionality converts from air to these gases.
The measuring ranges calibrated for air are indicated in the following section. For information on other gases and process conditions, contact your sales organization or use the Applicator selection software.

SI units

- Order code for "Sensor version; sensor; insertion tube", option SA "Unidirectional; stainless steel; stainless steel"
- Order code for "Sensor version; sensor; insertion tube", option HA "Unidirectional; Alloy; stainless steel"

$\begin{gathered} \mathrm{DN} \\ {[\mathrm{~mm}]} \end{gathered}$	Full scale value [kg/h] (Air, 20 ${ }^{\circ} \mathrm{C}, 1.013$ bar a)		Full scale value [$\mathrm{Nm} 3 / \mathrm{h}$] (Air, $0^{\circ} \mathrm{C}, 1.013 \mathrm{bar} \mathrm{a}$)	
	Minimum	Maximum	Minimum	Maximum
80	21	2086	16	1613
100	33	3260	25	2521
150	73	7335	57	5672
200	130	13040	101	10084
250	204	20375	158	15757

$\begin{gathered} \mathrm{DN} \\ {[\mathrm{~mm}]} \end{gathered}$	Full scale value [kg / h] (Air, $20^{\circ} \mathrm{C}, 1.013$ bar a)		$\begin{aligned} & \text { Full scale value }[\mathrm{Nm} 3 / \mathrm{h}] \\ & \left(\mathrm{Air}, 0^{\circ} \mathrm{C}, 1.013 \mathrm{bar} \mathrm{a}\right) \end{aligned}$	
	Minimum	Maximum	Minimum	Maximum
300	293	29340	227	22689
400	522	52160	403	40337
500	815	81500	630	63026
600	1174	117360	908	90758
700	1597	159740	1235	123531
1000	3260	326000	2521	252105
1500	7335	733501	5672	567236

- Order code for "Sensor version; sensor; insertion tube:", option SB "Bidirectional; stainless steel; stainless steel"
- Order code for "Sensor version; sensor; insertion tube:", option SC "Reverse flow detection; stainless steel; stainless steel"

$\begin{gathered} \mathrm{DN} \\ {[\mathrm{~mm}]} \end{gathered}$	Full scale value [kg / h] (Air, $20^{\circ} \mathrm{C}, 1.013$ bar a)		Full scale value [$\mathrm{Nm} 3 / \mathrm{h}$] (Air, $0^{\circ} \mathrm{C}, 1.013$ bar a)	
	Minimum	Maximum	Minimum	Maximum
80	13	1310	10	1012
100	23	2310	17	1786
150	47	4750	36	3673
200	84	8475	65	6553
250	132	13250	102	10246
300	190	19000	146	14692
400	337	33750	260	26099
500	530	53000	409	40986
600	762	76250	589	58966
700	1038	103820	802	80286
1000	2119	211900	1638	163868
1500	4767	476750	3686	368683

US units

- Order code for "Sensor version; sensor; insertion tube", option SA "Unidirectional; stainless steel; stainless steel"
- Order code for "Sensor version; sensor; insertion tube", option HA "Unidirectional; Alloy; stainless steel"

$\begin{aligned} & \text { DN } \\ & \text { [in] } \end{aligned}$	Full scale value [lb/h] (Air, $68^{\circ} \mathrm{F}, 14.7 \mathrm{psi}$ a)		Full scale value [SCFM] (Air, $59^{\circ} \mathrm{F}, 14.7 \mathrm{psi}$ a)	
	Minimum	Maximum	Minimum	Maximum
3	42	4173	9	909
4	74	7419	16	1616
6	167	16693	36	3636
8	297	29677	65	6464
10	464	46371	101	10100
12	668	66774	145	14544

$\begin{gathered} \text { DN } \\ \text { [in] } \end{gathered}$	Full scale value [lb/h] (Air, $68^{\circ} \mathrm{F}, 14.7 \mathrm{psi} \mathrm{a}$)		Full scale value [SCFM] (Air, $59^{\circ} \mathrm{F}, 14.7 \mathrm{psi}$ a)	
	Minimum	Maximum	Minimum	Maximum
16	1187	118709	259	25856
20	1855	185482	404	40400
24	2671	267094	582	58176
28	3635	363545	792	79184
40	7419	741929	1616	161600
60	16693	1669340	3636	363600

- Order code for "Sensor version; sensor; insertion tube:", option SB "Bidirectional; stainless steel; stainless steel"
- Order code for "Sensor version; sensor; insertion tube:", option SC "Reverse flow detection; stainless steel; stainless steel"

$\begin{aligned} & \mathrm{DN} \\ & \text { [in] } \end{aligned}$	Full scale value [lb/h] (Air, $68^{\circ} \mathrm{F}, 14.7 \mathrm{psi}$ a)		Full scale value [SCFM] (Air, $59^{\circ} \mathrm{F}, 14.7 \mathrm{psi}$ a)	
	Minimum	Maximum	Minimum	Maximum
3	29	2981	6	648
4	52	5257	11	1144
6	108	10810	23	2354
8	192	19287	42	4200
10	301	30155	65	6567
12	432	43241	94	9417
16	768	76810	167	16729
20	1206	120620	262	26272
24	1735	173533	377	37797
28	2362	236279	514	51463
40	4822	482253	1050	105039
60	10850	1085012	2363	236326

The flow rates listed are only representative for the calibrated conditions and do not necessarily reflect the measuring capacity of the measuring device under operating conditions and the actual pipe internal diameters present on site. To make sure that the correct device version and sizing is selected to suit the application, contact the sales organization or use the Applicator selection software.

Special applications

High gas flow velocities ($>70 \mathrm{~m} / \mathrm{s}$)

In the case of high gas flow velocities, it is advisable to read in the process pressure dynamically or to enter the pressure as accurately as possible, as a velocity-dependent correction is performed.

Light gases（hydrogen，helium）

－The reliable measurement of light gases can be difficult due to their very high thermal conductivity．Depending on the application，the flow rates of light gases are often particularly slow and the flow profiles are not sufficiently developed．The flows are frequently in the laminar flow range，while turbulent flow would actually be needed for optimum measurement．
－Despite loss of accuracy and linearity in applications with light gases and low flow rates， the device measures with a good degree of repeatability and is therefore suitable for monitoring flow conditions（e．g．leak detection）．
－The recommended inlet runs must be doubled for light gases．\rightarrow 酋 21

Operable flow range－200：1 with factory calibration
－Up to 1000：1 with application－specific adjustment

Input signal

External values

The measuring device provides interfaces which allow values measured externally
\rightarrow 㞔 176 to be transmitted to the measuring device：
－Analog inputs 4－20 mA
－Digital inputs
Pressure values can be transmitted as absolute or gauge pressure．For gauge pressure，the atmospheric pressure must be known or specified by the customer．

HART protocol

The measured values are written from the automation system to the measuring device via the HART protocol．The pressure transmitter must support the following protocol－specific functions：
－HART protocol
－Burst mode
Current input
The measured values are written from the automation system to the measuring device via the current input \rightarrow 㞔 176.

Current input 0／4 to 20 mA

Current input	$0 / 4$ to 20 mA （active／passive）				
Current span	－ 4 to 20 mA （active）				
－ $0 / 4$ to 20 mA （passive）		$	$	Resolution	$1 \mu \mathrm{~A}$
:---	:---				
Voltage drop	Typically： 0.6 to 2 V for 3.6 to 22 mA （passive）				
Maximum input voltage	$\leq 30 \mathrm{~V}$（passive）				
Open－circuit voltage	$\leq 28.8 \mathrm{~V}$（active）				
Possible input variables	－Pressure －Temperature －Mol－$/$（gas analyzer） －External reference flow rate（in－situ adjustment）				

Status input

Maximum input values	－ $\mathrm{DC}-3$ to 30 V －If status input is active（ON）： $\mathrm{R}_{\mathrm{i}}>3 \mathrm{k} \Omega$
Response time	Configurable： 5 to 200 ms

Input signal level	- Low signal: DC -3 to +5 V
	- High signal: $D C 12$ to 30 V
Assignable functions	- Off
	- Reset the individual totalizers separately
	- Reset all totalizers
	- Flow override
	- Second gas group
	- Zero point adjustment

15.4 Output

Current output 4 to 20 mA HART

Order code	"Output; input 1" (20): Option BA: current output 4 to 20 mA HART
Signal mode	Can be set to: - Active - Passive
Current range	Can be set to: - 4 to 20 mA NAMUR - 4 to 20 mA US - 4 to 20 mA - 0 to 20 mA (only if the signal mode is active) - Fixed current
Open-circuit voltage	DC 28.8 V (active)
Maximum input voltage	DC 30 V (passive)
Load	250 to 700Ω
Resolution	$0.38 \mu \mathrm{~A}$
Damping	Configurable: 0 to 999.9 s
Assignable measured variables	- Mass flow - Volume flow - Corrected volume flow - FAD volume flow - Flow velocity - Temperature - Energy flow - Pressure - Density - Heat flow - Electronics temperature - 2nd temperature heat difference For SIL (application package), only mass flow

Current output 4 to 20 mA HART Ex i

Order code	"Output; input 1" (20) choose from: - Option CA: current output 4 to 20 mA HART Ex i passive - Option CC: current output 4 to 20 mA HART Ex i active
Signal mode	Depends on the selected order version. Current range
- 4 to 20 mA NAMUR 20 mA US - 4 to 20 mA - 0 to 20 mA (only if the signal mode is active) - Fixed current	
Open-circuit voltage	DC 21.8 V (active)
Maximum input voltage	DC 30 V (passive)
Load	- 250 to 400Ω (active)
- 250 to 700Ω (passive)	

Damping	Configurable: 0 to 999.9 s
Assignable measured	- Mass flow
variables	- Volume flow
	- Corrected volume flow
	- FAD volume flow
	- Flow velocity
	- Temperature
	- Energy flow
	- Pressure
	- Density
	- Heat flow
	- Electronics temperature
	- 2nd temperature heat difference
	For SIL (application package), only mass flow

Current output 4 to 20 mA

Order code	"Output; input 2" (21), "Output; input 3" (022): Option B: current output 4 to 20 mA
Signal mode	Can be set to: - Active - Passive
Current span	Can be set to: - 4 to 20 mA NAMUR - 4 to 20 mA US - 4 to 20 mA - 0 to 20 mA (only if the signal mode is active) - Fixed current
Maximum output values	22.5 mA
Open-circuit voltage	DC 28.8 V (active)
Maximum input voltage	DC 30 V (passive)
Load	0 to 700Ω
Resolution	$0.38 \mu \mathrm{~A}$
Damping	Configurable: 0 to 999.9 s
Assignable measured variables	- Mass flow - Volume flow - Corrected volume flow - FAD volume flow - Flow velocity - Temperature - Energy flow - Pressure - Density - Heat flow - Electronics temperature - 2nd temperature heat difference For SIL (application package), only mass flow

Pulse/frequency/switch output

Function	Can be configured as pulse, frequency or switch output
Version	Open collector Can be set to: - Active - Passive - Passive NAMUR
Maximum input values	DC 30 V, 250 mA (passive)

Open-circuit voltage	DC 28.8 V (active)
Voltage drop	For 22.5 mA : \leq DC 2 V
Pulse output	
Maximum input values	DC $30 \mathrm{~V}, 250 \mathrm{~mA}$ (passive)
Maximum output current	22.5 mA (active)
Open-circuit voltage	DC 28.8 V (active)
Pulse width	Configurable: 0.05 to 2000 ms
Maximum pulse rate	10000 Impulse/s
Pulse value	Configurable
Assignable measured variables	- Mass flow - Volume flow - Corrected volume flow - FAD volume flow - Energy flow - Heat flow For SIL (application package), only mass flow
Frequency output	
Maximum input values	DC $30 \mathrm{~V}, 250 \mathrm{~mA}$ (passive)
Maximum output current	22.5 mA (active)
Open-circuit voltage	DC 28.8 V (active)
Output frequency	Configurable: end value frequency 2 to $10000 \mathrm{~Hz}\left(\mathrm{f}_{\max }=12500 \mathrm{~Hz}\right.$)
Damping	Configurable: 0 to 999.9 s
Pulse/pause ratio	1:1
Assignable measured variables	- Mass flow - Volume flow - Corrected volume flow - FAD volume flow - Flow velocity - Temperature - Energy flow - Pressure - Density - Heat flow - Electronic temperature - 2nd temperature heat difference For SIL (application package), only mass flow
Switch output	
Maximum input values	DC $30 \mathrm{~V}, 250 \mathrm{~mA}$ (passive)
Open-circuit voltage	DC 28.8 V (active)
Switching behavior	Binary, conductive or non-conductive
Switching delay	Configurable: 0 to 100 s

Number of switching cycles	Unlimited
Assignable functions	- Off - On - Diagnostic behavior - Limit value - Off - Mass flow - Volume flow - Corrected volume flow - FAD volume flow - Heat flow - Energy flow - Flow velocity - Density - Calorific value - Temperature - 2nd temperature heat difference - Totalizer 1-3 - Electronic temperature - Flow direction monitoring - Status Low flow cut off

Relay output

Function	Switch output
Version	Relay output, galvanically isolated
Switching behavior	Can be set to: - NO (normally open), factory setting - NC (normally closed)
Maximum switching capacity (passive)	- DC $30 \mathrm{~V}, 0.1 \mathrm{~A}$ - AC $30 \mathrm{~V}, 0.5 \mathrm{~A}$
Assignable functions	- Off - On - Diagnostic behavior - Limit value - Off - Mass flow - Volume flow - Corrected volume flow - FAD volume flow - Heat flow - Energy flow - Flow velocity - Density - Temperature - 2nd temperature heat difference - Totalizer 1-3 - Electronics temperature - Flow direction monitoring - Status Low flow cut off

User-configurable input/output

One specific input or output is assigned to a user-configurable input/output (configurable I/O) during device commissioning.

The following inputs and outputs are available for assignment:

- Choice of current output: 4 to 20 mA (active), $0 / 4$ to 20 mA (passive)
- Pulse/frequency/switch output
- Choice of current input: 4 to 20 mA (active), $0 / 4$ to 20 mA (passive)
- Status input

Depending on the interface, failure information is displayed as follows:

Current output 0/4 to 20 mA

4 to 20 mA

Failure mode	Choose from:
	- 4 to 20 mA in accordance with NAMUR recommendation NE 43
	- 4 to 20 mA in accordance with US
-	Min. value: 3.59 mA
-	Max. value: 22.5 mA
	-Definable value between: 3.59 to 22.5 mA - $A c t u a l$ value - Last valid value

0 to 20 mA

Failure mode	Choose from: - Maximum alarm: 22 mA -

Pulse/frequency/switch output

Pulse output	
Fault mode	Choose from: - Actual value - No pulses
Frequency output	Choose from: - Actual value - Fault mode - Definable value between: 2 to 12500 Hz
Switch output	Choose from: - Current status - Open - Closed
Fault mode	

Relay output

Failure mode	Choose from: - - - - Closen

Local display

Plain text display	With information on cause and remedial measures
Backlight	Red lighting indicates a device error.

Status signal as per NAMUR recommendation NE 107

Interface／protocol

－Via digital communication：
HART protocol
－Via service interface
－CDI－RJ45 service interface
－WLAN interface

Plain text display	With information on cause and remedial measures

Web browser

Plain text display	With information on cause and remedial measures

Light emitting diodes（LED）

Status information	Status indicated by various light emitting diodes The following information is displayed depending on the device version： －Supply voltage active －Data transmission active －Device alarm／error has occurred $\mathbf{1}$ Diagnostic information via light emitting diodes \rightarrow 图 141

Low flow cut off The switch points for low flow cut off are user－selectable．

Galvanic isolation	The outputs are galvanically isolated： －from the power supply －from one another －from the potential equalization（PE）terminal	
Protocol－specific data	Manufacturer ID	0x11
	Device type ID	0x1160
	HART protocol revision	7
	Device description files （DTM，DD）	Information and files under： www．endress．com
	HART load	Min． 250Ω
	System integration	Information on system integration \rightarrow 圈 73. －Measured variables via HART protocol －Burst Mode functionality

15．5 Power supply

Terminal assignment $\quad \rightarrow$ 曾 36

Supply voltage	Order code ＂Power supply＂	Terminal voltage		Frequency range
Option D	DC 24 V	$\pm 20 \%$	-	
Option E	AC 100 to 240 V	$-15 \ldots+10 \%$	$50 / 60 \mathrm{~Hz}, \pm 4 \mathrm{~Hz}$	

Order code ＂Power supply＂	Terminal voltage		Frequency range
Option I	DC 24 V	$\pm 20 \%$	-
	AC 100 to 240 V	$-15 \ldots+10 \%$	$50 / 60 \mathrm{~Hz}, \pm 4 \mathrm{~Hz}$

Power consumption	Transmitter
	Max． 10 W （active power）
	switch－on current

Current consumption	Transmitter
	－Max． $400 \mathrm{~mA}(24 \mathrm{~V})$
	－Max． $200 \mathrm{~mA}(110 \mathrm{~V}, 50 / 60 \mathrm{~Hz} ; 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz})$

Power supply failure	Totalizers stop at the last value measured．
－Depending on the device version，the configuration is retained in the device memory or	
in the pluggable data memory（HistoROM DAT）．	
－Error messages（incl．total operated hours）are stored．	

Overcurrent protection	The device must be operated with a dedicated circuit breaker，as it does not have an
element	ON／OFF switch of its own．
	－The circuit breaker must be easy to reach and labeled accordingly．
	－Permitted nominal current of the circuit breaker： 2 A up to maximum 10 A.

Electrical connection	\rightarrow 屏 36

Terminals Spring－loaded terminals：Suitable for strands and strands with ferrules． Conductor cross－section 0.2 to $2.5 \mathrm{~mm}^{2}$（24 to 12 AWG）．

Cable entries	－Cable gland： $\mathrm{M} 20 \times 1.5$ with cable $\varnothing 6$ to $12 \mathrm{~mm}(0.24$ to 0.47 in$)$
	－Thread for cable entry：
	－NPT $1 / 2^{\prime \prime}$
	－ $\mathrm{G}^{1 / 22^{\prime \prime}}$
	－M20
Cable specification	\rightarrow 䍚 33

Overvoltage protection	Mains voltage fluctuations	\rightarrow 圈 183
	Overvoltage category	Overvoltage category II
	Short－term，temporary overvoltage	Up to 1200 V between cable and ground，for max． 5 s
	Long－term，temporary overvoltage	Up to 500 V between cable and ground

15.6 Performance characteristics

Reference operating conditions

- Error limits based on ISO 11631
- Dry air with +20 to $+30^{\circ} \mathrm{C}\left(+68\right.$ to $+86^{\circ} \mathrm{F}$) at 0.8 to 1.5 bar (12 to 22 psi)
- Specifications as per calibration protocol
- Accuracy based on accredited calibration rigs that are traced to ISO 17025.

1. To obtain measured errors, use the Applicator sizing tool \rightarrow 圈 171

Calibrated measuring range

The measuring accuracy is specified in relation to the mass flow and divided into two ranges:

- $\pm 1.0 \%$ of the current measured value for 100% to 10% of the calibrated measuring range (under reference operating conditions)
- $\pm 0.10 \%$ of the calibrated full scale value for 10% to 1% of the calibrated measuring range (under reference operating conditions)
The measuring device is calibrated and adjusted on an accredited and traceable calibration rig and its accuracy is certified in a calibration report ${ }^{1)}$ (5 control points).
Order code for "Calibration flow":
- Option G "Factory calibration": calibration report (5 control points)
- Option K "Traceable ISO/IEC17025": Swiss Calibration Services (SCS) calibration report (5 control points) which confirms traceability to the national calibration standard
i
For information on calibrated measuring ranges and maximum full scale values \rightarrow 層 173

Extended measuring range

The device has an extended measuring range that goes beyond the maximum calibrated value (100%). Here, the last measured values in the calibrated range are taken and then extrapolated. The end of the extrapolated range is only reached once the productive energy of the sensor is exceeded and/or the Mach number is greater than listed below.

Mach number	Order code
0.2	- Order code for "Sensor version; sensor; insertion tube:", option SB "Bidirectional; stainless steel; stainless steel" - Order code for "Sensor version; sensor; insertion tube:", option SC "Reverse flow detection; stainless steel; stainless steel"
0.4	- Order code for "Sensor version; sensor; insertion tube:", option SA "Unidirectional; stainless steel; stainless steel" - Order code for "Sensor version; sensor; insertion tube:", option HA "Unidirectional; Alloy; stainless steel"

[^15]The accuracy is specified in relation to the mass flow.
$\pm 1.0 \% \pm$ (current measured value in $\%-100 \%$) $\times 0.07$ for 100% to 200% of the calibrated measuring range (under reference operating conditions)

Accuracy of outputs

The outputs have the following base accuracy specifications.
Current output

Accuracy	$\pm 5 \mu \mathrm{~A}$

Pulse/frequency output
o.r. = of reading

Accuracy	Max. ± 50 ppm o.r. (over the entire ambient temperature range)

Repeatability $\quad \pm 0.25 \%$ of the display value for velocities above $1.0 \mathrm{~m} / \mathrm{s}(3.3 \mathrm{ft} / \mathrm{s})$
Response time Typically <3 s for 63% of a step change (in both directions)

Influence of ambient temperature

Current output

Temperature coefficient \quad Max. $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$

Pulse/frequency output

Temperature coefficient	No additional effect. Included in accuracy.

Air: 0.02% per ${ }^{\circ} \mathrm{C}\left(0.036 \%\right.$ per $\left.{ }^{\circ} \mathrm{F}\right)$ of the process temperature change in relation to the reference temperature

Influence of medium temperature

Influence of medium Air: 0.3 \% per bar (0.02% per psi) of the process pressure change (from the set process pressure pressure)

15.7 Mounting

Mounting requirements
\rightarrow 酋 19

15.8 Environment

| Ambient temperature
 range | Measuring device -40 to $+60^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+140{ }^{\circ} \mathrm{F}\right)$
 - Order code for "Test, certificate", option JP:
 -50 to $+60^{\circ} \mathrm{C}\left(-58\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$
 Readability of the local
 display -20 to $+60^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$
 The readability of the display may be impaired at temperatures outside the
 temperature range. |
| :--- | :--- | :--- |

NOTICE

Danger of overheating

- Ensure that the temperature at the lower end of the transmitter housing does not exceed $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$.
- Ensure that sufficient convection takes place at the transmitter neck.
- When using in potentially explosive atmospheres, observe the information in the device-specific Ex documentation. For detailed information on the temperature tables, see the separate document entitled "Safety Instructions" (XA) for the device.
- Ensure that a sufficiently large area of the transmitter neck remains exposed. The uncovered part serves as a radiator and protects the electronics from overheating and excessive cooling.
- If operating outdoors:

Avoid direct sunlight, particularly in warm climatic regions.
1 You can order a weather protection cover from Endress+Hauser \rightarrow 圈 168.
Storage temperature $\quad-50$ to $+80^{\circ} \mathrm{C}\left(-58\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$, preferably at $+20^{\circ} \mathrm{C}\left(+68^{\circ} \mathrm{F}\right)$

Atmosphere

If a plastic transmitter housing is permanently exposed to certain steam and air mixtures, this can damage the housing.

1 In cases of doubt, please contact the Sales Center.

Transmitter

- IP66/67, Type 4X enclosure, suitable for pollution degree 4
- When the housing is open: IP20, Type 1 enclosure, suitable for pollution degree 2
- Display module: IP20, Type 1 enclosure, suitable for pollution degree 2

Optional

Order code for "Sensor options", option CC "IP68, Type 6P, Cust-potted"

External WLAN antenna

IP67

Vibration- and shock- resistance	Vibration sinusoidal, in accordance with IEC 60068-2-6
	- 2 to $8.4 \mathrm{~Hz}, 3.5 \mathrm{~mm}$ peak
	- 8.4 to $2000 \mathrm{~Hz}, 1 \mathrm{~g}$ peak
	Vibration broad-band random, according to IEC 60068-2-64

- 10 to $200 \mathrm{~Hz}, 0.003 \mathrm{~g}^{2} / \mathrm{Hz}$
- 200 to $2000 \mathrm{~Hz}, 0.001 \mathrm{~g}^{2} / \mathrm{Hz}$
- Total: 1.54 g rms

Shock half-sine, according to IEC 60068-2-27

6 ms 30 g

Rough handling shocks according to IEC 60068-2-31

Interior cleaning	Suitable for cleaning-in-place (CIP) and sterilization-in-place (SIP).
Manufacturer options for delivery of parts	
- Oil- and grease-free wetted parts, no declaration. Order code for "Service", option HA.	
- Oil- and grease-free wetted parts as per IEC/TR 60877-2.0 and BOC 50000810-4, with	
	declaration. Order code for "Service", option HB. The plant operator must ensure that the
	measuring device meets the requirements of the operator's oxygen application.

Electromagnetic compatibility (EMC)

As per IEC/EN 61326 and NAMUR Recommendation 21 (NE 21)
Details are provided in the Declaration of Conformity.
1 This unit is not intended for use in residential environments and cannot guarantee adequate protection of the radio reception in such environments.

15.9 Process

```
Medium temperature range Sensor
    -40 to \(+180^{\circ} \mathrm{C}\left(-40\right.\) to \(\left.+356^{\circ} \mathrm{F}\right)\)
    Seals
    - Sealing rings:
    - EPDM -40 to \(+140^{\circ} \mathrm{C}\left(-40\right.\) to \(\left.+284^{\circ} \mathrm{F}\right)\)
    - FKM -40 to \(+180^{\circ} \mathrm{C}\left(-40\right.\) to \(\left.+356^{\circ} \mathrm{F}\right)\)
- Ferrule:
    - PEEK -40 to \(+140^{\circ} \mathrm{C}\left(-40\right.\) to \(\left.+284^{\circ} \mathrm{F}\right)\)
    - PVDF -20 to \(+110^{\circ} \mathrm{C}\left(-4\right.\) to \(\left.+230^{\circ} \mathrm{F}\right)\)
    - \(1.4404-40\) to \(+180^{\circ} \mathrm{C}\left(-40\right.\) to \(\left.+356^{\circ} \mathrm{F}\right)\)
1 Ferrule in 1.4404: ferrule has a fixed position on the shaft. Restriction for repeat
        calibrations (observe minimum insertion depth \(\rightarrow\) 20)
```

Medium pressure range Minimum 0.5 bar absolute. Maximum permitted medium pressure \rightarrow 苞 189

Pressure/temperature ratings

The following pressure/temperature diagrams apply to all pressure-bearing parts of the device and not just the process connection. The diagrams show the maximum permissible medium pressure depending on the specific medium temperature.

Ferrule

- 44 With compression fitting material 1.4404/F316L/F316
- 45 With compression fitting material 1.4404/F316L/F316

Flow limit

1. Measuring range \rightarrow 曾 173

The maximum flow depends on the gas type and the pipe nominal diameter used. The end of the measuring range is reached when the Mach number listed below is reached.

Mach number	Order code
0.2	- Order code for "Sensor version; sensor; insertion tube:", option SB "Bidirectional; stainless steel; stainless steel" - Order code for "Sensor version; sensor; insertion tube:", option SC "Reverse flow detection; stainless steel; stainless steel"
0.4	- Order code for "Sensor version; sensor; insertion tube:", option SA "Unidirectional; stainless steel; stainless steel" - Order code for "Sensor version; sensor; insertion tube:", option HA "Unidirectional; Alloy; stainless steel"

1. Use the Applicator to size the device.
Pressure loss 1 Use the Applicator for precise calculations.

System pressure	\rightarrow 圈 26
Hot tap, process pressure	Only use the hot tap for mounting and removal at process pressure for non-toxic, innocuous gases.
	Medium pressure version
	- Max. process pressure: 20 bar $(290 \mathrm{psi})$
	- Max. extraction pressure: $16 \mathrm{bar}(230 \mathrm{psi})$
	- Max. extraction temperature: $+50^{\circ} \mathrm{C}\left(+122^{\circ} \mathrm{F}\right)$
	- Min. insertion sensor length: $435 \mathrm{~mm}\left(17{ }^{\circ}\right)$
	Low pressure version
	- Max. process pressure: 20 bar $(290 \mathrm{psi})$
	- Max. extraction pressure: $4.5 \mathrm{bar}(65 \mathrm{psi})$
	- Max. extraction temperature: $+50^{\circ} \mathrm{C}\left(+122^{\circ} \mathrm{F}\right)$
	- Min. insertion sensor length: $335 \mathrm{~mm}\left(13^{\prime \prime}\right)$

Cold tap, ambient pressure Cold tap for mounting and removal at ambient pressure.

- Max. process pressure: 20 bar (290 psi)
- Max. extraction pressure: 1 bar (14.5 psi)
- Max. extraction temperature: $+50^{\circ} \mathrm{C}\left(+122^{\circ} \mathrm{F}\right)$
- Min. insertion sensor length: 335 mm (13")
Mounting boss To mount the device directly on the process pipe.

Max. process pressure: 40 bar (580 psi)

15.10 Mechanical construction

Design, dimensions
For the dimensions and installation lengths of the device, see the "Technical Information" document, "Mechanical construction" section .

Weight All values (weight exclusive of packaging material) refer to devices with EN/DIN
PN 40 flanges. Weight specifications including transmitter as per order code for "Housing", option A "Aluminum, coated".
Different values due to different transmitter versions:
Transmitter version for the hazardous area
(Order code for "Housing", option A "Aluminum, coated"; Ex d): +2 kg (+4.4 lbs)

Weight in SI units

Installed length [mm]	Weight [kg]
235	4.8
335	4.9
435	5
608	5.1

Weight in US units

Installed length [in]	Weight [lbs]
9	10.6
13	10.8
17	11
24	11.2

Materials

Transmitter housing

Order code for "Housing":
Option A "Aluminum, coated": aluminum, AlSi10Mg, coated

Window material

Order code for "Housing":
Option A "Aluminum, coated": glass

Cable entries/cable glands

Q 46 Possible cable entries/cable glands
1 Female thread M20 $\times 1.5$
2 Cable gland M2O $\times 1.5$
3 Adapter for cable entry with female thread $G 1 / 2^{\prime \prime}$ or NPT $1 / 2^{\prime \prime}$

Order code for "Housing", option A "Aluminum, coated"
The various cable entries are suitable for hazardous and non-hazardous areas.

Cable entry/cable gland	Material
Compression fitting M20 $\times 1.5$	Non-Ex: plastic
	Z2, D2, Ex d/de: brass with plastic
Adapter for cable entry with female thread G $1 / 2^{\prime \prime}$	Nickel-plated brass
Adapter for cable entry with female thread NPT $1 / 2^{\prime \prime}$	

Materials for insertion tube

Stainless steel, 1.4404 (316/316L)

Process connections, process coupling

Stainless steel, 1.4404 (316/316L)

Sensing element

Unidirectional

- Stainless steel, 1.4404 (316/316L)
- Alloy C22, 2.4602 (UNS N06022);

Bidirectional

Stainless steel, 1.4404 (316/316L)

Reverse flow detection

Stainless steel, 1.4404 (316/316L)

Ferrules

- PEEK
- PVDF
- 1.4404 (316/316L)

Flat ring seal

- EPDM
- FKM

1 For aggressive media (e.g. chlorine or ozone), we recommend special materials (Alloy for sensing element, PVDF or 1.4404 for ferrules and FKM for flat seal). For any requests, please contact the Endress+Hauser sales organization responsible for your area.

Sensor guard

Stainless steel, 1.4404 (316/316L)

Accessories

Protective cover
Stainless steel, 1.4404 (316L)
External WLAN antenna

- Antenna: ASA plastic (acrylonitrile styrene acrylate) and nickel-plated brass
- Adapter: Stainless steel and nickel-plated brass
- Cable: Polyethylene
- Plug: Nickel-plated brass
- Angle bracket: Stainless steel

Mounting boss (DK6MB)
Stainless steel, 1.4404 (316/316L)
Cold/hot tap, low pressure and medium pressure
Welding socket
Stainless steel 1.4404 (316L)
Ball valve

- Stainless cast steel CF3M or CF8M
- Seal: PTFE

Sensor connection
Stainless steel, 1.4404 (316/316L)
Cold tap, atmospheric pressure

- Stainless steel, 1.4404 (316/316L)
- Stainless cast steel CF3M or CF8M
- Seal: PTFE

Process connections - G3/4", ISO 228/1 compression fitting

- G1", ISO 228/1, compression fitting
- 3/4" NPT, compression fitting
- 1" NPT, compression fitting

1 For information on the different materials used in the process connections \rightarrow 图 192

15．11 Display and user interface

Languages

Can be operated in the following languages：
－Via local operation
English，German，French，Spanish，Italian，Dutch，Portuguese，Polish，Russian，Turkish， Chinese，Japanese，Korean，Vietnamese，Czech，Swedish
－Via Web browser
English，German，French，Spanish，Italian，Dutch，Portuguese，Polish，Russian，Turkish， Chinese，Japanese，Vietnamese，Czech，Swedish
－Via＂FieldCare＂，＂DeviceCare＂operating tool：English，German，French，Spanish，Italian， Chinese，Japanese

Via display module

Equipment：
－Order code for＂Display；operation＂，option F＂4－line，illuminated，graphic display； touch control＂＇
－Order code for＂Display；operation＂，option G＂4－line，illuminated，graphic display； touch control＋WLAN＂
1．Information about WLAN interface \rightarrow 圈 68

－ 47 Operation with touch control

Display elements

－4－line，illuminated，graphic display
－White background lighting；switches to red in event of device errors
－Format for displaying measured variables and status variables can be individually configured

Operating elements

－External operation via touch control（3 optical keys）without opening the housing：\ddagger ， ■，回
－Operating elements also accessible in the various zones of the hazardous area

Via remote display and operating module DKX001

9 The remote display and operating module DKXOO1 is available as an optional extra \rightarrow 蔂 168.
－The measuring device is always supplied with a dummy cover when the remote display and operating module DKXOO1 is ordered directly with the measuring device．Display or operation at the transmitter is not possible in this case．
－If ordered subsequently，the remote display and operating module DKX001 may not be connected at the same time as the existing measuring device display module． Only one display or operation unit may be connected to the transmitter at any one time．
－ 48 Operation via remote display and operating module DKXOO1

Display and operating elements

The display and operating elements correspond to those of the display module $\rightarrow 194$.
Housing material

Transmitter housing Order code for＂Housing＂	Material	Remote display and operating module Material
Option A＂Aluminum，coated＂	AlSi10Mg，coated	AlSi10Mg，coated

Cable entry

Corresponds to the choice of transmitter housing，order code for＂Electrical connection＂．
Connecting cable
\rightarrow 曾 34
Dimensions
Information about dimensions：
＂Mechanical construction＂section of the＂Technical Information＂document．
Remote operation \rightarrow 窇 66
Service interface $\quad \rightarrow$ 酋 67

Supported operating tools Different operating tools can be used for local or remote access to the measuring device． Depending on the operating tool used，access is possible with different operating units and via a variety of interfaces．

Supported operating tools	Operating unit	Interface	Additional information
Web browser	Notebook，PC or tablet with web browser	－CDI－RJ45 service interface －WLAN interface	Special Documentation for device
DeviceCare SFE100	Notebook，PC or tablet with Microsoft Windows system	－CDI－RJ45 service interface －WLAN interface －Fieldbus protocol	\rightarrow 图 171

Supported operating tools	Operating unit	Interface	Additional information
FieldCare SFE500	Notebook，PC or tablet with Microsoft Windows system	－CDI－RJ45 service interface －WLAN interface －Fieldbus protocol	\rightarrow 图 171
Field Xpert	SMT70／77／50	－All Fieldbus protocols －WLAN interface －Bluetooth －CDI－RJ45 service interface	Operating Instructions BA01202S Device description files： Use update function of handheld terminal
SmartBlue app	Smart phone or tablet with iOs or Android	WLAN	\rightarrow 曾 171

1
Other operating tools based on FDT technology with a device driver such as DTM／ iDTM or DD／EDD can be used for device operation．These operating tools are available from the individual manufacturers．Integration into the following operating tools， among others，is supported：
－FactoryTalk AssetCentre（FTAC）from Rockwell Automation \rightarrow www．rockwellautomation．com
－Process Device Manager（PDM）from Siemens \rightarrow www．siemens．com
－Asset Management Solutions（AMS）from Emerson \rightarrow www．emersonprocess．com
－FieldCommunicator 375／475 from Emerson \rightarrow www．emersonprocess．com
－Field Device Manager（FDM）from Honeywell \rightarrow www．process．honeywell．com
－FieldMate from Yokogawa \rightarrow www．yokogawa．com
－PACTWare \rightarrow www．pactware．com
The related device description files are available：www．endress．com \rightarrow Download Area

Web server

With the integrated web server，the device can be operated and configured via a web browser service interface（CDI－RJ45）or WLAN interface．The structure of the operating menu is the same as for the local display．In addition to the measured values，status information on the device is displayed and can be used to monitor device health． Furthermore the device data can be managed and the network parameters can be configured．

A device that has a WLAN interface（can be ordered as an option）is required for the WLAN connection：order code for＂Display；operation＂，option G＂4－line，illuminated；touch control＋WLAN＂．The device acts as an Access Point and enables communication by computer or a mobile handheld terminal．

Supported functions
Data exchange between the operating unit（such as a notebook，for example，）and measuring device：
－Upload the configuration from the measuring device（XML format，configuration backup）
－Save the configuration to the measuring device（XML format，restore configuration）
－Export event list（．csv file）
－Export parameter settings（．csv file or PDF file，document the measuring point configuration）
－Export the Heartbeat verification log（PDF file，only available with the Heartbeat Verification \rightarrow 圈 202 application package）
－Flash firmware version for device firmware upgrade，for example
－Download driver for system integration
－Visualize up to 1000 saved measured values（only available with the Extended HistoROM application package \rightarrow 圈 202）

Special Documentation for web server

HistoROM
data management

The measuring device features HistoROM data management. HistoROM data management comprises both the storage and import/export of key device and process data, making operation and servicing far more reliable, secure and efficient.
1 When the device is delivered, the factory settings of the configuration data are stored as a backup in the device memory. This memory can be overwritten with an updated data record, for example after commissioning.

Additional information on the data storage concept
There are different types of data storage units in which device data are stored and used by the device:

	HistoROM backup	T-DAT	S-DAT
Available data	- Event logbook, e.g. diagnostic events - Parameter data record backup - Device firmware package	- Measured value logging ("Extended HistoROM" order option) - Current parameter data record (used by firmware at run time) - Indicator (minimum/maximum values) - Totalizer value	- Sensor data: e.g. nominal diameter - Serial number - Calibration data - Device configuration (e.g. SW options, fixed I/O or multi I/O)
Storage location	Fixed on the user interface PC board in the connection compartment	Can be plugged into the user interface PC board in the connection compartment	In the sensor plug in the transmitter neck part

Data backup

Automatic

- The most important device data (sensor and transmitter) are automatically saved in the DAT modules
- If the transmitter or measuring device is replaced: once the T-DAT containing the previous device data has been exchanged, the new measuring device is ready for operation again immediately without any errors
- If exchanging the electronics module (e.g. I/O electronics module): Once the electronics module has been replaced, the software of the module is compared against the current device firmware. The module software is upgraded or downgraded where necessary. The electronics module is available for use immediately afterwards and no compatibility problems occur.

Manual

Additional parameter data record (complete parameter settings) in the integrated device memory HistoROM backup for:

- Data backup function

Backup and subsequent restoration of a device configuration in the device memory HistoROM backup

- Data comparison function

Comparison of the current device configuration with the device configuration saved in the device memory HistoROM backup

Data transmission

Manual

Transfer of a device configuration to another device using the export function of the specific operating tool, e.g. with FieldCare, DeviceCare or Web server: to duplicate the configuration or to store in an archive (e.g. for backup purposes)

Event list

Automatic

- Chronological display of up to 20 event messages in the events list
- If the Extended HistoROM application package (order option) is enabled: up to 100 event messages are displayed in the events list along with a time stamp, plain text description and remedial measures
- The events list can be exported and displayed via a variety of interfaces and operating tools e.g. DeviceCare, FieldCare or Web server

Data logging

Manual

If the Extended HistoROM application package (order option) is enabled:

- Recording of 1 to 4 channels of up to 1000 measured values (up to 250 measured values per channel)
- User configurable recording interval
- Export the measured value log via a variety of interfaces and operating tools e.g. FieldCare, DeviceCare or web server

15.12 Certificates and approvals

Current certificates and approvals for the product are available at www.endress.com on the relevant product page:

1. Select the product using the filters and search field.
2. Open the product page.
3. Select Downloads.

CE mark
The device meets the legal requirements of the applicable EU Directives. These are listed in the corresponding EU Declaration of Conformity along with the standards applied.
Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.

UKCA marking	The device meets the legal requirements of the applicable UK regulations (Statutory
Instruments). These are listed in the UKCA Declaration of Conformity along with the	
designated standards. By selecting the order option for UKCA marking, Endress+Hauser	
confirms a successful evaluation and testing of the device by affixing the UKCA mark.	
Contact address Endress+Hauser UK:	
Endress+Hauser Ltd.	
Floats Road	
Manchester M23 9NF	
United Kingdom	
www.uk.endress.com	

RCM marking The measuring system meets the EMC requirements of the "Australian Communications and Media Authority (ACMA)".

Ex approval
The measuring device is certified for use in hazardous areas and the relevant safety instructions are provided in the separate "Safety Instructions" (XA) document. Reference is made to this document on the nameplate.
Devices with the order code for "Approval", option BB or BD have equipment protection level (EPL) Ga/Gb (Zone 0 in the measuring tube).

1 The separate Ex documentation (XA) containing all the relevant explosion protection data is available from your Endress+Hauser sales center.

ATEX, IECEx

Currently, the following versions for use in hazardous areas are available:
Ex db eb

Category	Type of protection
II1/2G	Ex db eb ia IIC T4...T1 $\mathrm{Ga} / \mathrm{Gb}$
II2G	Ex db eb ia IIC T4...T1 Gb

$E x d b$

Category	Type of protection
II1/2G	Ex db ia IIC T4...T1 $\mathrm{Ga} / \mathrm{Gb}$
II2G	Ex db ia IIC T4...T1 Gb

Ex ec

Category	Type of protection
II3G	Ex ec IIC T4...T1 Gc

Ex tb

Category	Type of protection
II2D	Ex tb IIIC T** ${ }^{\circ} \mathrm{C} \mathrm{Db}$

${ }_{c} \mathrm{CSA}_{\text {US }}$
Currently, the following versions for use in hazardous areas are available:

XP (Ex d)

Class I, II, III Division 1 Groups A-G

NI (Ex ec)

Class I Division 2 Groups A - D

Ex de

- Class I, Zone 1 AEx/ Ex de ia IIC T4...T1 Ga/Gb
- Class I, Zone 1 AEx/ Ex de ia IIC T4...T1 Gb

Ex db

- Class I, Zone 1 AEx/ Ex db ia IIC T4...T1 Ga/Gb
- Class I, Zone 1 AEx/ Ex db ia IIC T4...T1 Gb

Ex ec
Class I, Zone 2 AEx/ Ex ec IIC T4...T1 Gc
Ex tb
Zone 21 AEx/ Ex tb IIIC T** ${ }^{\circ} \mathrm{C}$ Db

Functional safety The measuring device can be used for flow monitoring systems (min., max., range) up to SIL 2 (single-channel architecture; order code for "Additional approval", option LA) and SIL 3 (multi-channel architecture with homogeneous redundancy) and is independently evaluated and certified in accordance with IEC 61508.

The following types of monitoring in safety equipment are possible:
Mass flow

1. Functional safety manual with information and restrictions for the SIL device
\rightarrow 署 203

HART interface

The measuring device is certified and registered by the FieldComm Group. The measuring system meets all the requirements of the following specifications:

- Certified according to HART 7
- The device can also be operated with certified devices of other manufacturers (interoperability)
The measuring device has radio approval.

\[\)	For detailed information on the radio approval, see the Special Documentation
$\rightarrow \text { 国 } 203$	

\]

CRN approval

Some device versions have CRN approval. A CRN-approved process connection with a CSA approval must be ordered for a CRN-approved device.

External standards and guidelines

- EN 60529

Degrees of protection provided by enclosure (IP code)

- EN 61010-1

Safety requirements for electrical equipment for measurement, control and laboratory use - general requirements

- IEC/EN 61326-2-3

Emission in accordance with Class A requirements. Electromagnetic compatibility (EMC requirements).

- NAMUR NE 21

Electromagnetic compatibility (EMC) of industrial process and laboratory control equipment

- NAMUR NE 32

Data retention in the event of a power failure in field and control instruments with microprocessors

- NAMUR NE 43

Standardization of the signal level for the breakdown information of digital transmitters with analog output signal.

- NAMUR NE 53

Software of field devices and signal-processing devices with digital electronics

- NAMUR NE 105

Specifications for integrating fieldbus devices in engineering tools for field devices

- NAMUR NE 107

Self-monitoring and diagnosis of field devices

- NAMUR NE 131

Requirements for field devices for standard applications

- ETSI EN 300328

Guidelines for 2.4 GHz radio components.

- EN 301489

Electromagnetic compatibility and radio spectrum matters (ERM).

Classification of process sealing between electrical systems and (flammable or combustible) process fluids in accordance with ANSI/ISA 12.27.01

Endress+Hauser devices are designed in accordance with ANSI/ISA 12.27.01. allowing the user to waive the use and save the cost of installing external secondary process seals in the conduit as required by the process sealing sections of ANSI/NFPA 70 (NEC) and CSA 22.1 (CEC). These devices comply with the North American installation practice and provide a very safe and cost-saving installation for pressurized applications with hazardous fluids. Further information can be found in the control drawings of the relevant devices.

15.13 Application packages

Many different application packages are available to enhance the functionality of the device. Such packages might be needed to address safety aspects or specific application requirements.
The application packages can be ordered with the device or subsequently from Endress+Hauser. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

Detailed information on the application packages:
Special Documentation \rightarrow 酋 203

Diagnostic functionality	Order code for "Application package", option EA "Extended HistoROM"
	Comprises extended functions concerning the event log and the activation of the measured
value memory.	
Event log:	
Memory volume is extended from 20 message entries (standard version) to up to 100	
entries.	
Data logging (line recorder):	
- Memory capacity for up to 1000 measured values is activated.	
- 250 measured values can be output via each of the 4 memory channels. The recording	
interval can be defined and configured by the user.	
- Measured value logs can be accessed via the local display or operating tool e.g. FieldCare,	
DeviceCare or Web server.	
(ain For detailed information, see the Operating Instructions for the device.	

Heartbeat Technology

Order code for "Application package", option EB "Heartbeat Verification + Monitoring"

Heartbeat Verification

Meets the requirement for traceable verification to DIN ISO 9001:2008 Chapter 7.6 a)
"Control of monitoring and measuring equipment".

- Functional testing in the installed state without interrupting the process.
- Traceable verification results on request, including a report.
- Simple testing process via local operation or other operating interfaces.
- Clear measuring point assessment (pass/fail) with high test coverage within the framework of manufacturer specifications.
- Extension of calibration intervals according to operator's risk assessment.

Heartbeat Monitoring

Continuously supplies data, which are characteristic of the measuring principle, to an external condition monitoring system for the purpose of preventive maintenance or process analysis. These data enable the operator to:

- Draw conclusions - using these data and other information - about the impact on the measuring performance over time.
- Schedule servicing in time.
- Monitor the process or product quality , e.g. process stability.
[国 Special Documentation SD02712D

Second gas group

Package	Description
Second gas group	This application package enables the configuration of two different standard gases/gas mixtures in the device and allows the user to switch from one gas group to another using the status input or (if available) via bus communication.

15.14 Accessories

Overview of accessories available for order \rightarrow 圈 168

15.15 Documentation

1
For an overview of the scope of the associated Technical Documentation, refer to the following:

- Device Viewer (www.endress.com/deviceviewer): Enter the serial number from the nameplate
- Endress+Hauser Operations app: Enter serial number from nameplate or scan matrix code on nameplate.

Standard documentation Brief Operating Instructions
Brief Operating Instructions for the sensor

Measuring device	Documentation code
Proline t-mass I	KA01443D

Brief Operating Instructions for transmitter

Measuring device	Documentation code
Proline 300	KA01444D

Technical Information

Measuring device	Documentation code
t-mass I 300	TIO1501D

Description of Device Parameters

Measuring device	Documentation code
t-mass 300	GP01143D

Supplementary device-
dependent documentation

Safety instructions

Safety instructions for electrical equipment for hazardous areas.

Contents	Documentation code
ATEX/IECEx Ex d/Ex de	XA01965D
ATEX/IECEx Ex ec	XA01966D
cCSAus XP	XA01969D
cCSAus Ex d/ Ex de	XA01967D
cCSAus Ex nA	XA01968D

Remote display and operating module DKX001

Contents	Documentation code
ATEX/IECEx Ex i	XA01494D
ATEX/IECEx Ex ec	XA01498D
cCSAus IS	XA01499D
cCSAus Ex nA	XA01513D
INMETRO Ex i	XA01500D
INMETRO Ex ec	XA01501D
NEPSI Ex i	XA01502D
NEPSI Ex nA	XA01503D

Functional safety manual

Contents	Documentation code
Proline t-mass 300	SD02483D

Special documentation

Contents	Documentation code
Information on the Pressure Equipment Directive	SD01614D
Remote display and operating module DKX001	SD01763D
Radio approvals for WLAN interface for A309/A310 display module	SD01793D
Web server	SD02485D
Heartbeat Technology	SD02477D

Installation Instructions

Contents	Comment
Installation instructions for spare part sets and accessories	- Access the overview of all the available spare part sets via Device Viewer \rightarrow 罣 166 - Accessories available for order with Installation Instructions

Index

AAccess authorization to parameters
Read access 58
Write access 58
Access code 58
Incorrect input 58
Adapting the diagnostic behavior 149
Adapting the status signal 149
Additional certification 201
Ambient temperature
Influence 186
AMS Device Manager 71
Function 71
Application 172
Approvals 199
B
Burst mode 75
CCable entries
Technical data 184
Cable entry Degree of protection 43
CE mark 10, 199
Certificates 199
Check
Connection 44
Checklist
Post-connection check 44
Post-installation check 32
Cleaning
Cleaning the sensing element 164
Exterior cleaning 164
Sensing element 164
Cold tap, ambient pressure 190
Commissioning 78
Advanced settings 105
Configuring the measuring device 79
Communication-specific data 73
Connecting cable 33, 34
Connecting the measuring device 36
Connecting the signal cables 36
Connecting the supply voltage cables 36
Connection
see Electrical connection
Connection preparations 36
Connection tools 33
Context menu
Calling up 54
Closing 54
Explanation 54
Current consumption 184
D
Date of manufacture 16, 17
Declaration of Conformity 10
Defining the access code 124, 125
Degree of protection 43, 187
Device components 14
Device description files 73
Device locking, status 128
Device name
Sensor 17
Transmitter 16
Device repair 166
Device revision 73
Device type ID 73
Device Viewer 166
DeviceCare 71
Device description file 73
Diagnosis Symbols 142
Diagnostic behavior
Explanation 143
Symbols 143
Diagnostic information
Design, description 143, 147
DeviceCare 147
FieldCare 147
Light emitting diodes 141
Local display 142
Overview 151
Remedial measures 151
Web browser 145
Diagnostic list 155
Diagnostic message 142
DIP switch
see Write protection switch
Direct access 56
Direct access code 50
Disabling write protection 124
Display
see Local display
Display and operating module DKX001 194
Display area
For operational display 48
In the navigation view 50
Display values
For locking status 128
Displaying data logging 135
Disposal 167
Document
Function 6
Symbols 6
Document function 6
E
Editing view 52
Input screen 53
Using operating elements 52, 53
Electrical connection
Commubox FXA195 (USB) 66
Computer with web browser (e.g. Microsoft Edge) 66
Degree of protection 43
Field Communicator 475 66
Field Xpert SFX350/SFX370 66
Field Xpert SMT70 66
Measuring device 33
Operating tool (e.g. FieldCare, AMS Device Manager, SIMATIC PDM) 66
Operating tools
Via HART protocol 66
Via service interface (CDI-RJ45) 67
Via WLAN interface 68
VIATOR Bluetooth modem 66
Web server 67
WLAN interface 68
Electromagnetic compatibility 188
Electronics module 14
Enabling write protection 124
Enabling/disabling the keypad lock 59
Endress+Hauser services Maintenance 165
Repair 166
Environment
Storage temperature 187
Vibration- and shock-resistance 187
Error messages
see Diagnostic messages
Event list 157
Event logbook 157
Ex approval 199
Extended order code
Sensor 17
Transmitter 16
Exterior cleaning 164
FField Communicator
Function 72
Field Communicator 475 72
Field of application
Residual risks 10
Field Xpert
Function 69
Field Xpert SFX350 69
FieldCare 69
Device description file 73
Establishing a connection 70
Function 69
User interface 71
Filtering the event logbook 157
Firmware
Release date 73
Version 73
Firmware history 163
Flow conditioner 22
Flow limit 189
Function range
AMS Device Manager 71
SIMATIC PDM 72
Function scope
Field Communicator 72
Field Communicator 475 72
Field Xpert 69
Functional Safety (SIL) 200
Functions
see Parameters
G
Galvanic isolation 183
H
Hardware write protection 126
HART certification 200
HART protocol
Device variables 73
Measured variables 73
Revision 73
Help text
Calling up 57
Closing 57
Explanation 57
HistoROM 112, 121
Hot tap, process pressure 190
I
Identifying the measuring device 15
Incoming acceptance 15
Influence
Ambient temperature 186
Medium pressure 186
Information about this document 6
Input 173
Inspection
Installation 32
Received goods 15
Installation conditions
Sensor heating 26
System pressure 26
Intended use 9
L
Languages, operation options 194
Line recorder 135
Local display 194
Navigation view 50
see Diagnostic message
see In alarm condition
see Operational displayText editor52
Low flow cut off 183
M
Main electronics module 14
Maintenance 164
Maintenance tasks 164
Recalibration 165
Managing the device configuration 112, 121
Manufacturer ID 73
Materials 191
Measured variables
see Process variables
Measuring and test equipment 165
Measuring device
Configuring 79
Conversion 166
Disposal 167
Integrating via HART protocol 73
Preparing for electrical connection 36
Preparing for mounting 28
Removing 167
Repairs 166
Structure 14
Switching on 78
Measuring principle 172
Measuring system 172
Medium pressure Influence 186
Menu
Diagnostics 155
Setup 80
Menus
For measuring device configuration 79
For specific settings 105
Mounting 19
Mounting preparations 28
Mounting tool 28
N
Nameplate
Sensor 17
Transmitter 16
Navigation path (navigation view) 50
Navigation view
In the submenu 50
In the wizard 50
Numeric editor 52
0Onsite display
Numeric editor 52
Operable flow range 176
Operating elements 54, 143
Operating keys see Operating elements
Operating menu
Menus, submenus 46
Structure 46
Submenus and user roles 47
Operating philosophy 47
Operation 128
Operation options 45
Operational display 48
Operational safety 10
Order code 16, 17
Output signal 178
Output variables 178
P
Packaging disposal 18
Parameter
Changing 57
Entering values or text 57
Parameter settings
Adjustment values in use (Submenu) 119
Administration (Submenu) 114
Advanced setup (Submenu) 105
Burst configuration 1 to n (Submenu) 75
Configuration backup (Submenu) 112, 121
Current input 89
Current input (Wizard) 89
Current input 1 to n (Submenu) 131
Current output 91
Current output (Wizard) 91
Data logging (Submenu) 135
Define access code (Wizard) 114
Device information (Submenu) 161
Diagnostics (Menu) 155
Display (Submenu) 107
Display (Wizard) 101
I/O configuration 88
I/O configuration (Submenu) 88
In-situ adjustment (Submenu) 117
Low flow cut off (Wizard) 104
Measurement mode (Wizard) 80
Process variables (Submenu) 129
Pulse/frequency/switch output 94
Pulse/frequency/switch output (Wizard) . . 94, 95, 98
Pulse/frequency/switch output 1 to n (Submenu) 133
Reference conditions (Submenu) 84
Relay output 100
Relay output 1 to n (Submenu) 133
Relay output 1 to n (Wizard) 100
Reset access code (Submenu) 114
Setup (Menu) 80
Simulation (Submenu) 122
Status input 90
Status input 1 to n (Submenu) 90, 131
System units (Submenu) 86
System values (Submenu) 130
Totalizer (Submenu) 130
Totalizer 1 to n (Submenu) 105
Totalizer handling (Submenu) 134
Value current output 1 to n (Submenu) 132
Web server (Submenu) 65
WLAN settings (Wizard) 110
Post-connection check 78
Post-connection check (checklist) 44
Post-installation check (checklist) 32
Post-mounting check 78
Potential equalization 39
Power consumption 184
Power supply failure 184
Process
Cold tap, ambient pressure 190
Hot tap, process pressure 190
Process connections 193
Product safety 10
Protecting parameter settings 124
R
Radio approval 200
RCM marking 199
Read access 58
Reading off measured values 128
Recalibration 165
Registered trademarks 8
Remedial measures
Calling up 144
Closing 144
Remote operation 195
Repair 166
Notes 166
Repair of a device 166
Replacement
Device components 166
Requirements for personnel 9
Response time 186
Return 166
S
Safety 9
Sensor adjustment 85
Sensor heating 26
Serial number 16, 17
Setting the operating language 78
Settings
Adapting the measuring device to the processconditions134
Administration 113
Advanced display configurations 107
Current input 89
Current output 91
I/O configuration 88
In-situ adjustment 115
Local display 101
Low flow cut off 104
Managing the device configuration 112, 121
Measurement mode 80
Operating language 78
Pulse output 94
Pulse/frequency/switch output 94, 95
Reference conditions 84
Relay output 100
Resetting the device 160
Resetting the totalizer 134
Simulation 122
Status input 90
Switch output 98
System units 86
Tag name 80
Totalizer 105
Totalizer reset 134
WLAN 110
Signal on alarm 182
SIL (functional safety) 200
SIMATIC PDM 72
Function 72
Software release 73
Spare part 166
Spare parts 166
Special
Installation instructions 27
Special connection instructions 40
Standards and guidelines 201
Status area
For operational display 48
In the navigation view 50
Status signals 142, 145
Storage concept 197
Storage conditions 18
Storage temperature 18
Storage temperature range 187
Structure
Measuring device 14
Operating menu 46
Submenu
Adjustment values in use 119
Administration 113, 114
Advanced setup 105
Burst configuration 1 to n 75
Configuration backup 112, 121
Current input 1 to n 131
Data logging 135
Device information 161
Display 107
Event list 157
I/O configuration 88
In-situ adjustment 117
Input values 131
Measured values 128
Output values 132
Overview 47
Process variables 129
Pulse/frequency/switch output 1 to n 133
Reference conditions 84
Relay output 1 to n 133
Reset access code 114
Simulation 122
Status input 1 to n 90, 131
System units 86
System values 130
Totalizer 130
Totalizer 1 to n 105
Totalizer handling 134
Value current output 1 to n 132
Web server 65
Supply voltage 183
Switch output 181
Symbols
Controlling data entries 53
For communication 48
For diagnostic behavior 48
For locking 48
For measured variable 48
For measurement channel number 48
For menus 50
For parameters 50
For status signal 48
For submenu 50
For wizard 50
In the status area of the local display 48
Input screen 53
Operating elements 52
System design
Measuring system 172
see Measuring device design
System integration 73
System pressure 26
T
Technical data, overview 172
Temperature range
Ambient temperature range for display 194
Storage temperature 18
Terminal assignment 36
Terminals 184
Text editor 52
Tool
For mounting 28
Transport 18
Tool tipsee Help text
Tools
Electrical connection 33
Totalizer
Configuring 105
Transmitter
Turning the display module 31
Turning the housing 30
Transporting the measuring device 18
Troubleshooting General 138
Turning the display module 31
Turning the electronics housing see Turning the transmitter housing
Turning the transmitter housing 30
U
UKCA marking 199
Use of measuring device
Borderline cases 9
Incorrect use 9
see Intended use
User interface
Current diagnostic event 155
Previous diagnostic event 155
User roles 47
V
Version data for the device 73
Vibration- and shock-resistance 187
W
W@M 165, 166
W@M Device Viewer 15
Weight
SI units 191
Transport (notes) 18
US units 191
Wizard
Current input 89
Current output 91
Define access code 114
Display 101
Low flow cut off 104
Measurement mode 80
Pulse/frequency/switch output 94, 95, 98
Relay output 1 to n 100
WLAN settings 110
WLAN settings 110
Workplace safety 10
Write access 58
Write protection
Via access code 124
Via write protection switch 126
Write protection switch 126

www.addresses.endress.com

Endress+Hauser
People for Process Automation

[^0]: 1 Connection compartment cover
 Display module
 Transmitter housing
 Electronics compartment cover
 Sensor

[^1]: 10 The additional measured error to be expected without flow conditioners depending on the disturbance type and inlet run
 A Additional measured error (\%)
 $B \quad$ Inlet run (DN)
 $12 \times 90^{\circ}$ elbow, 3-dimensional
 2 Expansion
 $32 \times 90^{\circ}$ elbow
 4 Reduction or 90° elbow

[^2]: 1 Terminal connection for supply voltage
 2 Terminal connection for signal transmission, input/output
 3 Terminal connection for signal transmission, input/output or terminal connection for network connection via service interface (CDI-RJ45); optional: connection for external WLAN antenna or remote display and operating module DKX001
 4 Protective earth (PE)

[^3]: 1 Remote display and operating module DKXOO1
 2 Terminal connection for potential equalization (PE)
 3 Connecting cable
 4 Measuring device
 5 Terminal connection for potential equalization (PE)

[^4]: 1 Automation system with current input（e．g．PLC）
 2 Active barrier for power supply（e．g．RN221N）
 3 Analog display unit：observe maximum load \rightarrow 圈 178
 4 Transmitter

[^5]: 1 Local operation via display module
 2 Computer with Web browser (e.g. Internet Explorer) or with operating tool (e.g. FieldCare, DeviceCare, AMS Device Manager, SIMATIC PDM)
 3 Field Xpert SFX350 or SFX370
 Field Xpert SMT70
 Mobile handheld terminal
 6 Control system (e.g. PLC)

[^6]: 1 Operational display
 2 Device tag
 3 Status area
 4 Display area for measured values（up to 4 lines）
 5 Operating elements \rightarrow 圊 54

[^7]: - 32 For entering text in parameters (e.g. device tag)

 1 Entry display area
 Current input screen
 Change input screen
 Operating elements
 Move entry position
 Delete entry
 Reject or confirm entry

[^8]: Picture of device
 Device name
 Device tag $(\rightarrow$ 酋 80）
 Status signal
 Current measured values
 Operating language
 User role
 Access code
 Login
 10 Reset access code（ \rightarrow 首 114）

[^9]: 1 Function row
 2 Local display language
 3 Navigation area

[^10]: 1 Header
 Picture of device
 Device name
 Device tag
 Status area with status signal \rightarrow 圈 145
 Display area for current measured values
 Editing toolbar with additional functions such as save／load，event list and create documentation
 Navigation area with operating menu structure
 Work area
 Action area
 Status area

[^11]: * Visibility depends on order options or device settings

[^12]: ＊Visibility depends on order options or device settings

[^13]: Status area with status signal
 2 Diagnostic information
 3 Remedial measures with service ID

[^14]: Status area with status signal \rightarrow 㞔 142
 Diagnostic information \rightarrow 圈 143
 Remedial measures with service ID

[^15]: 1) Two calibration reports for the order code for "Sensor version; sensor; insertion tube:", option SB "Bidirectional; stainless steel; stainless steel"
