Technical Information
RIA14
Loop-powered field indicator

Application
- Oil & gas
- Petrochemicals
- Plant and apparatus engineering
- Free-space applications
- Laboratory equipment
- Process recording and monitoring
- Optional: Stainless steel housing

Your benefits
- Loop-powered indicator in single-compartment housing
- 5-digit LC display, digit height 20.5 mm (0.8 in)
- Backlit display, pluggable in 90° steps
- Trend bar graph in increments of 10%.
- Measuring range display from –19,999 to 99,999
- Digital limit switch
- Freely programmable units
- 3-key operation
- International approvals
 ATEX, IECEx, FM, CSA, TIIIS, UK CA, UL listed, BV and marine approvals
- 3 cable entries
- Configuration via interface with FieldCare PC software
- Configuration without power supply using setup box
Function and system design

Measuring principle

<table>
<thead>
<tr>
<th>Hazardous area</th>
<th>Non-hazardous area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1, 2</td>
<td></td>
</tr>
<tr>
<td>Zone 21, 22</td>
<td></td>
</tr>
</tbody>
</table>

Transmitter 4...20 mA

Power supply

![Diagram](image)

1. Example of an application of the field indicator

The indicator captures an analog measuring signal and presents it on the display. The LC display shows the current measured value in digital form and as a bar graph indicating a limit value violation. The indicator is looped into the 4 to 20 mA circuit and gets the required energy from there.

Measuring system

Microcontroller-controlled indicator in single-compartment field housing with backlit LC display. Configuration of the measuring range, decimal point and offset of the display can be conveniently performed via three keys in the device with the housing open or via a PC with the FieldCare PC software.

Input

<table>
<thead>
<tr>
<th>Measured variable</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range</td>
<td>4 to 20 mA Reverse polarity protection</td>
</tr>
<tr>
<td>Input signal</td>
<td>Voltage drop < 4 V at 3 to 22 mA</td>
</tr>
<tr>
<td></td>
<td>Max. voltage drop < 6 V at max. short-circuit current 200 mA</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Output signal</th>
<th>Digital limit switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive, open collector:</td>
<td></td>
</tr>
<tr>
<td>I_{max}</td>
<td>200 mA</td>
</tr>
<tr>
<td>U_{max}</td>
<td>35 V</td>
</tr>
<tr>
<td>$U_{\text{low/max}}$</td>
<td>< 2 V at 200 mA</td>
</tr>
</tbody>
</table>
Max. reaction time to limit value

<table>
<thead>
<tr>
<th></th>
<th>250 ms</th>
</tr>
</thead>
</table>

Temperature range

<table>
<thead>
<tr>
<th></th>
<th>–20 to +80 °C (–4 to +176 °F)</th>
</tr>
</thead>
</table>

Signal on alarm

- No measured value visible in the LC display, no background illumination.
- Open collector inactive.

Transmission behavior

The indicator allows the HART® transmission protocol to pass unimpeded.

Power supply

Terminal assignment

- **Open Collector**
 - **active**
 - **passive**

Terminal assignment of the field indicator

![Terminal assignment diagram](image)

Terminal assignment table

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Terminal assignment</th>
<th>Input and output</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Measuring signal (+) 4 to 20 mA</td>
<td>Signal input</td>
</tr>
<tr>
<td>-</td>
<td>Measuring signal (–) 4 to 20 mA</td>
<td>Signal input</td>
</tr>
<tr>
<td>1a, 1b</td>
<td>Terminal for further instruments</td>
<td>Support terminal</td>
</tr>
<tr>
<td>2</td>
<td>Digital limit switch (collector)</td>
<td>Switch output</td>
</tr>
<tr>
<td>3</td>
<td>Digital limit switch (emitter)</td>
<td>Switch output</td>
</tr>
</tbody>
</table>

Supply voltage

Power is supplied via the 4 to 20 mA current loop.

The device may only be powered by a power unit with an energy-limited circuit in accordance with UL/EN/IEC 61010-1, Section 9.4 and the requirements of Table 18.

Voltage drop

- **Voltage drop**
 - < 3.6 V at 3 to 22 mA
- **Max. voltage drop**
 - < 6 V at max. short-circuit current 200 mA

Terminals

Cables up to 2.5 mm² (14 AWG) max. plus ferrule
Cable entries
The following cable entries are available:
- NPT 1/2 thread
- M20 thread
- G1/2 thread
- 2x NPT1/2 gland + 1x dummy plug
- 2x M20 gland + 1x dummy plug

Performance characteristics

<table>
<thead>
<tr>
<th>Reference conditions</th>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>25</td>
<td>77</td>
</tr>
</tbody>
</table>

Maximum measured error
< 0.1 % of scaled display range

Influence of ambient temperature
Impact on accuracy when ambient temperature changes by 1 K (1.8 °F): 0.01 %

Mounting

Mounting location
Wall or pipe mounting (see "Accessories")

Orientation
No restrictions.
The orientation is determined by the legibility of the display.

Altitude
Up to 2 000 m (6 561.7 ft) above sea level

Environment

Ambient temperature range
-40 to +80 °C (−40 to +176 °F)
-20 to +80 °C (−4 to +176 °F) when using the open collector output
The display may react slowly at temperatures < −20 °C (−4 °F).
At temperatures < −30 °C (−22 °F) the readability of the display can no longer be guaranteed.

Storage temperature
−40 to 80 °C (−40 to 176 °F)

Electrical safety
As per IEC 61010-1,
UL 61010-1,
CSA C22.2 No. 1010.1-92

Climate class
As per IEC 60654-1, Class C

Degree of protection
IP 66/IP67, Type 4X (not assessed by UL)

Vibration resistance
3g at 2 to 150 Hz as per IEC 60068-2-6

Condensation
Permitted

Installation category
1 as per IEC 61010
Pollution degree 2

Overvoltage category II

Electromagnetic compatibility (EMC)

CE conformity
Electromagnetic compatibility in accordance with all the relevant requirements of the IEC/EN 61326 series and NAMUR Recommendation EMC (NE21). For details, refer to the Declaration of Conformity.

Maximum measured error <1% of measuring range.

Interference immunity as per IEC/EN 61326 series, industrial requirements

Interference emission as per IEC/EN 61326 series, Class B equipment

Connection of the functional grounding may be needed for functional purposes. Compliance with the electrical codes of individual countries is mandatory.

Mechanical construction

Design, dimensions
Die-cast aluminum housing for general applications, or optional stainless steel housing

![Dimensions in mm (in)](image)

- Aluminum housing for general applications or, optional stainless steel housing
- Electronics compartment and connection compartment in single-chamber housing
- Display can be fitted in steps of 90°

Weight

<table>
<thead>
<tr>
<th>Material</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum housing</td>
<td>Approx. 1.6 kg (3.5 lb)</td>
</tr>
<tr>
<td>Stainless steel housing</td>
<td>Approx. 4.2 kg (3.5 lb)</td>
</tr>
</tbody>
</table>

Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Nameplate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing</td>
<td></td>
</tr>
<tr>
<td>Die-cast aluminum AISi10Mg/ALSi12Mg with powder coating on polyester base</td>
<td>Aluminum AIMgl, anodized in black</td>
</tr>
<tr>
<td>Stainless steel CF3M (316L)</td>
<td>Stainless steel 1.4404 (AlSi 316L)</td>
</tr>
</tbody>
</table>

Terminals

Cables up to 2.5 mm² (14 AWG) max. plus ferrule

Human interface

Operation concept
3-key operation {−/+\(\)E} integrated in the device, access when housing is open
Local operation

- Display area
 -19,999 to +99,999
- Offset
 -19,999 to +99,999
- Signalization
 Overranging/underranging
- Limit value over/under cut
 Limit value overranging/underranging

Remote operation

Configuration

The device can be configured with the FieldCare PC software. FieldCare Device Setup is included in the scope of delivery of the Commubox FXA291 and TXU10-AC (see ‘Accessories’) or can be downloaded free of charge via www.endress.com.

Interface

Configuration interface at device; connection to PC via interface cable (see ‘Accessories’).

Configurable device parameters (selection)

Measuring dimension, measuring ranges (linear/quadratic), setup lock via operator code, failsafe mode, digital filter (damping), offset, limit value (min/max/alarm), alarm limit values can be configured by the user.
Certificates and approvals

Current certificates and approvals for the product are available at www.endress.com on the relevant product page:

1. Select the product using the filters and search field.
2. Open the product page.
3. Select Downloads.

UL approval

More information under UL Product iQ™, search for keyword ‘E225237’

Ordering information

Detailed ordering information is available from your nearest sales organization www.addresses.endress.com or in the Product Configurator at www.endress.com:

1. Select the product using the filters and search field.
2. Open the product page.
3. Select Configuration.

Product Configurator - the tool for individual product configuration

- Up-to-the-minute configuration data
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop

Accessories

Accessories currently available for the product can be selected via the Product Configurator at www.endress.com:

1. Select the product using the filters and search field.
2. Open the product page.
3. Select **Spare parts & Accessories**.

<table>
<thead>
<tr>
<th>Communication-specific accessories</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interface cable Commubox TXU10 incl. FieldCare Device Setup and DTM Library</td>
</tr>
<tr>
<td></td>
<td>Commubox FXA291 incl. FieldCare Device Setup and DTM Library</td>
</tr>
</tbody>
</table>

Supplementary documentation

The following types of documentation are available on the product pages and in the Download Area of the Endress+Hauser website (www.endress.com/downloads) (depending on the selected device version):

<table>
<thead>
<tr>
<th>Document</th>
<th>Purpose and content of the document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Information (TI)</td>
<td>Planning aid for your device
The document contains all the technical data on the device and provides an overview of the accessories and other products that can be ordered for the device.</td>
</tr>
<tr>
<td>Brief Operating Instructions (KA)</td>
<td>Guide that takes you quickly to the 1st measured value
The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning.</td>
</tr>
<tr>
<td>Operating Instructions (BA)</td>
<td>Your reference document
The Operating Instructions contain all the information that is required in various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.</td>
</tr>
<tr>
<td>Description of Device Parameters (GP)</td>
<td>Reference for your parameters
The document provides a detailed explanation of each individual parameter. The description is aimed at those who work with the device over the entire life cycle and perform specific configurations.</td>
</tr>
<tr>
<td>Safety Instructions (XA)</td>
<td>Depending on the approval, Safety Instructions (XA) are supplied with the device. The Safety Instructions are an integral part of the Operating Instructions.
Information on the Safety Instructions (XA) that are relevant for the device is provided on the nameplate.</td>
</tr>
<tr>
<td>Supplementary device-dependent documentation (SD/FY)</td>
<td>Always comply strictly with the instructions in the relevant supplementary documentation.
The supplementary documentation is an integral part of the device documentation.</td>
</tr>
</tbody>
</table>