Technical Information

Ceraphant PTC31B, PTP31B

Process pressure measurement

Pressure switch for safe measurement and monitoring of absolute and gauge pressure

Application

The Ceraphant is a pressure switch for the measurement of absolute and gauge pressure in gases, vapors, liquids and dust. The Ceraphant can be used internationally thanks to a wide range of approvals and process connections.

Your benefits

- High reproducibility and long-term stability
- Reference accuracy: up to 0.3%
- Customized measuring ranges
- Turn down up to 5:1
- Sensor for measuring ranges up to 400 bar (6,000 psi)
- Housing and process isolating diaphragm made of 316L
- Optionally available with IO-Link

Operation and electrical connection in accordance with VDMA 24574-1:2008
# Table of contents

## Ceraphant PTC31B, PTP31B

### About this document
- Document function ........................................... 4
- Symbols used ................................................ 4
- Documentation ................................................ 4
- Terms and abbreviations .................................... 6
- Turn down calculation ...................................... 6

### Function and system design
- Measuring principle - process pressure measurement ..... 7
- Measuring system ............................................. 7
- Device features .............................................. 8
- Product design ............................................... 9
- System integration ......................................... 10

### Input
- Measured variable .......................................... 11
- Measuring range ............................................ 11

### Output
- Output signal ................................................ 13
- Range of adjustment ....................................... 13
- Relay switching capacity .................................. 13
- Signal range 4 to 20 mA .................................... 13
- Load (for devices with analog output) ...................... 13
- Signal on alarm 4 to 20 mA ................................ 14
- Dead time, time constant .................................. 14
- Dynamic behavior .......................................... 14
- Dynamic behavior of switch output ....................... 15
- Damping ........................................................ 15

### Energy supply
- Terminal assignment ....................................... 16
- Supply voltage ............................................... 17
- Current consumption and alarm signal .................... 17
- Power supply fault ......................................... 17
- Electrical connection ....................................... 17
- Cable specification (analog) ................................ 18
- Residual ripple .............................................. 18
- Influence of power supply .................................. 18
- Overvoltage protection ..................................... 18

### Performance characteristics of the ceramic process membrane
- Reference conditions ........................................ 19
- Uncertainty of measurement for small absolute pressure ranges ............................................. 21
- Influence of orientation ..................................... 21
- Resolution ..................................................... 21
- Reference accuracy ........................................ 21
- Thermal change of the zero output and the output span .................................................. 21
- Long-term stability ......................................... 21
- Switch-on time .............................................. 21

### Mounting
- Installation conditions ...................................... 22
- Influence of orientation ..................................... 22
- Mounting location .......................................... 22
- Mounting instructions for oxygen applications ........ 24

### Environment
- Ambient temperature range ................................ 25
- Storage temperature range ................................ 25
- Climate class .................................................. 25
- Degree of protection ....................................... 25
- Vibration resistance ........................................ 25
- Electromagnetic compatibility ............................. 25

### Process
- Process temperature range for devices with ceramic process membrane ............................. 26
- Process temperature range for devices with metallic process membrane ............................ 26
- Pressure specifications ...................................... 26

### Mechanical construction
- Design, dimensions .......................................... 27
- Electrical connection ....................................... 27
- Housing ......................................................... 28
- Process connections with internal, ceramic process membrane ........................................... 29
- Process connections with internal, ceramic process membrane ........................................... 30
- Process connections with internal, ceramic process membrane ........................................... 31
- Process connections with internal, ceramic process membrane ........................................... 31
- Process connections with internal, metal process membrane ............................................. 32
- Process connections with internal, metal process membrane ............................................. 33
- Process connections with internal, metal process membrane ............................................. 34
- Process connections with flush mount, metal process membrane ....................................... 35
- Materials in contact with process ........................ 36
- Materials not in contact with process ...................... 37
- Cleaning ......................................................... 38

### Operability
- IO-Link .......................................................... 39
Operation with local display .......................... 39
Device Search (IO-Link) .............................. 40

Certificates and approvals ............................ 41
  CE mark ........................................ 41
  RoHS ........................................... 41
  RCM marking .................................... 41
  Pressure Equipment Directive 2014/68/EU (PED) 41
  Other standards and guidelines ..................... 42
  CRN approval .................................... 42
  Calibration unit .................................. 42
  Calibration ...................................... 43
  Inspection certificates ............................ 43

Ordering information ................................ 43
  Scope of delivery ................................ 43

Accessories ........................................... 44
  Weld-in adapter .................................. 44
  M12 plug-in jack ................................. 44

Documentation ....................................... 45
  Field of activities .............................. 45
  Technical Information ............................ 45

Registered trademarks ................................ 45
About this document

Document function

The document contains all the technical data on the device and provides an overview of the accessories and other products that can be ordered for the device.

Symbols used

Safety symbols

⚠️ DANGER
This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

⚠️ WARNING
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

⚠️ CAUTION
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

⚠️ NOTICE
This symbol contains information on procedures and other facts which do not result in personal injury.

Electrical symbols

接地
Protective earth (PE)
Ground terminals, which must be grounded prior to establishing any other connections. The ground terminals are located on the inside and outside of the device.

-ground
Grounded clamp, which is grounded via a grounding system.

Symbols for certain types of information

✓ Permitted
Procedures, processes or actions that are permitted.

✗ Forbidden
Procedures, processes or actions that are forbidden.

💡 Tip
Indicates additional information

📖 Reference to documentation

1, 2, 3 ... Series of steps

Reference to page: 📖

Result of an individual step: →

Symbols in graphics

A, B, C ... View

1, 2, 3 ... Item numbers

1, 2, 3 Series of steps

Documentation

The following document types are available in the Downloads area of the Endress+Hauser website (www.endress.com/downloads):

- For an overview of the scope of the associated Technical Documentation, refer to the following:
  - Device Viewer (www.endress.com/deviceviewer): Enter the serial number from the nameplate
  - Endress+Hauser Operations app: Enter serial number from nameplate or scan matrix code on nameplate.
Brief Operating Instructions (KA)

Guide that takes you quickly to the 1st measured value
The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning.

Operating Instructions (BA)

Your reference guide
These Operating Instructions contain all the information that is required in various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.
Terms and abbreviations

1. **OPL**: The OPL (over pressure limit = sensor overload limit) for the measuring device depends on the lowest-rated element, with regard to pressure, of the selected components, i.e. the process connection has to be taken into consideration in addition to the measuring cell. Observe pressure-temperature dependency. The OPL may only be applied for a short period of time.

2. **MWP**: The MWP (maximum working pressure) for the sensors depends on the lowest-rated element, with regard to pressure, of the selected components, i.e. the process connection has to be taken into consideration in addition to the measuring cell. Observe pressure-temperature dependency. The maximum working pressure may be applied at the device for an unlimited period. The MWP can be found on the nameplate.

3. The maximum sensor measuring range corresponds to the span between the LRL and URL. This sensor measuring range is equivalent to the maximum calibratable/adjustable span.

4. The calibrated/adjusted span corresponds to the span between the LRV and URV. Factory setting: 0 to URL. Other calibrated spans can be ordered as customized spans.

- **p**: Pressure
- **LRL**: Lower range limit
- **URL**: Upper range limit
- **LRV**: Lower range value
- **URV**: Upper range value
- **TD**: Turn down. Example - see the following section.

Turn down calculation

1. **Calibrated/adjusted span**
2. **Zero point-based span**
3. **Upper range limit**

**Example:**
- Measuring cell: 10 bar (150 psi)
- Upper range limit (URL) = 10 bar (150 psi)
- Calibrated/adjusted span: 0 to 5 bar (0 to 75 psi)
- Lower range value (LRV) = 0 bar (0 psi)
- Upper range value (URV) = 5 bar (75 psi)

\[
TD = \frac{URL}{|URV - LRV|}
\]

In this example, the TD is 2:1. This span is based on the zero point.
Function and system design

Measuring principle - process pressure measurement

Devices with ceramic process isolating diaphragm (Ceraphire®)

The ceramic sensor is an oil-free sensor, i.e. the process pressure acts directly on the robust ceramic process isolating diaphragm and causes it to deflect. A pressure-dependent change in capacitance is measured at the electrodes of the ceramic substrate and the process isolating diaphragm. The measuring range is determined by the thickness of the ceramic process isolating diaphragm.

Advantages:
- Guaranteed overload resistance up to 40 times the nominal pressure
- The ultrapure 99.9% ceramic (Ceraphire®, see also 'www.endress.com/ceraphire') ensures:
  - Extremely high chemical durability
  - High mechanical durability
- Can be used in absolute vacuum
- Small measuring ranges

![Diagram of ceramic process pressure measurement](image1)

1 Air pressure (gauge pressure sensors)
2 Ceramic substrate
3 Electrodes
4 Ceramic process isolating diaphragm

Devices with metallic process isolating diaphragm

The process pressure deflects the metal process isolating diaphragm of the sensor and a fill fluid transfers the pressure to a Wheatstone bridge (semiconductor technology). The pressure-dependent change in the bridge output voltage is measured and evaluated.

Advantages:
- Can be used for high process pressures
- Fully welded sensor
- Slim, flush-mounted process connections available

![Diagram of metallic process pressure measurement](image2)

1 Silicon measuring element, substrate
2 Wheatstone bridge
3 Channel with fill fluid
4 Metal process isolating diaphragm

Measuring system

A complete measuring system comprises:
Ceraphant PTC31B, PTP31B

Device features
Field of application
Gauge pressure and absolute pressure

Process connections
PTC31B:
- Thread
- Thread ANSI
- Thread M24 x 1.5
- Thread JIS

PTP31B:
- Thread ISO 228, also flush mount
- Thread ASME
- Thread DIN 13
- Thread ASME
- Thread JIS

Measuring ranges
PTC31B: from 0 to +100 mbar (0 to +1.5 psi) to 0 to +40 bar (0 to +600 psi).
PTP31B: from 0 to +400 mbar (0 to +6 psi) to 0 to +400 bar (0 to +5800 psi).

OPL (depends on the measuring range)
PTC31B: max. 0 to +60 bar (0 to +900 psi)
PTP31B: max. –1 to +600 bar (–15 to +9000 psi)

MWP
Max. 1 to +400 bar (15 to +6000 psi)

Process temperature range (temperature at process connection)
PTC31B: –25 to +100 °C (–13 to +212 °F)
PTP31B: –40 to +100 °C (–40 to +212 °F)

Ambient temperature range
–20 to +70 °C (–4 to +158 °F) (in the range of the temperature limits with restrictions in optical properties, such as display speed and contrast)

Reference accuracy
- Standard: up to 0.5 %
- Platinum: up to 0.3 %

Supply voltage
- Analog: 10 to 30 V_{DC}
- IO-Link: 10 to 30 V_{DC} on a direct current power unit
IO-Link communication is guaranteed only if the supply voltage is at least 18 V.

Output
Devices with IO-Link:
C/Q output for communication (SIO mode (switch output))

1 PLC (programmable logic controller)
2 E.g., RMA42/RIA45 (if required)
3 Device
Ceraphant PTC31B, PTP31B

- 1 x PNP switch output (three-wire) (not with IO-Link)
- 2 x PNP switch output (four-wire), IO-Link
- 1 x PNP switch output + 4 to 20 mA output (four-wire), IO-Link

Material

PTC31B:
- Housing made of 316L (1.4404)
- Process connections made of 316L
- Process membrane made of Al₂O₃ aluminum-oxide ceramic, (Ceraphire®), ultrapure 99.9 %

PTP31B:
- Housing made of 316L (1.4404)
- Process connections made of 316L (1.4404)
- Process membrane made of 316L (1.4435)

Options

PTC31B:
- Calibration certificate
- Cleaned of oil and grease
- Min. alarm current setting
- 3.1 Material certificates
- Cleaned for O₂ applications
- IO-Link

PTP31B:
- Calibration certificate
- Cleaned of oil and grease
- Min. alarm current setting
- 3.1 Material certificates
- IO-Link

<table>
<thead>
<tr>
<th>Overview of product design for analog communication version</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Product Design Diagram" /></td>
<td>A</td>
<td>Valve plug</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Cable</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>M12 plug</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Housing cap made of plastic</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Housing</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>Process connection (sample illustration)</td>
</tr>
</tbody>
</table>
### Overview of product design for IO-Link communication version

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>M12 plug&lt;br&gt;Housing cap made of plastic</td>
</tr>
<tr>
<td>D</td>
<td>Housing&lt;br&gt;Process connection (sample illustration)</td>
</tr>
</tbody>
</table>

### System integration

The device can be given a tag name (max. 32 alphanumeric characters).

<table>
<thead>
<tr>
<th>Name</th>
<th>Option 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring point (TAG), see additional specifications</td>
<td>Z1</td>
</tr>
</tbody>
</table>

1) Product Configurator, order code for 'Marking'

For devices with IO-Link, an IO-DD is available in the Downloads area of the Endress+Hauser website → 39.
**Input**

**Measured variable**
- Measured process variable
  - Gauge pressure and absolute pressure

**Calculated process variable**
- Pressure

**Measuring range**

**Ceramic process membrane**

**Devices for gauge pressure measurement**

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Device</th>
<th>Maximum sensor measuring range</th>
<th>Smallest calibratable span (^1)</th>
<th>MWP</th>
<th>OPL</th>
<th>Factory settings (^2)</th>
<th>Option (^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mbar (1.5 psi) (^4)</td>
<td>PTC31B</td>
<td>-0.1 to -1.5</td>
<td>+0.1 (+1.5)</td>
<td>0.02 (0.3)</td>
<td>2.7 (40.5)</td>
<td>4 (60)</td>
<td>1C</td>
</tr>
<tr>
<td>250 mbar (4 psi) (^5)</td>
<td>PTC31B</td>
<td>-0.25 (-4)</td>
<td>+0.25 (+4)</td>
<td>0.05 (1)</td>
<td>3.3 (49.5)</td>
<td>5 (75)</td>
<td>1E</td>
</tr>
<tr>
<td>400 mbar (6 psi) (^6)</td>
<td>PTC31B</td>
<td>-0.4 (-6)</td>
<td>+0.4 (+6)</td>
<td>0.08 (1.2)</td>
<td>5.3 (79.5)</td>
<td>8 (120)</td>
<td>1F</td>
</tr>
<tr>
<td>1 bar (15 psi) (^6)</td>
<td>PTC31B</td>
<td>-1 (-15)</td>
<td>+1 (+15)</td>
<td>0.2 (3)</td>
<td>6.7 (100.5)</td>
<td>10 (150)</td>
<td>1H</td>
</tr>
<tr>
<td>2 bar (30 psi) (^6)</td>
<td>PTC31B</td>
<td>-1 (-15)</td>
<td>+2 (+30)</td>
<td>0.4 (6)</td>
<td>12 (180)</td>
<td>18 (270)</td>
<td>1K</td>
</tr>
<tr>
<td>4 bar (60 psi) (^6)</td>
<td>PTC31B</td>
<td>-1 (-15)</td>
<td>+4 (+60)</td>
<td>0.8 (12)</td>
<td>16.7 (250.5)</td>
<td>25 (375)</td>
<td>1M</td>
</tr>
<tr>
<td>10 bar (150 psi) (^6)</td>
<td>PTC31B</td>
<td>-1 (-15)</td>
<td>+10 (+150)</td>
<td>2 (30)</td>
<td>26.7 (400.5)</td>
<td>40 (600)</td>
<td>1P</td>
</tr>
<tr>
<td>40 bar (600 psi) (^6)</td>
<td>PTC31B</td>
<td>-1 (-15)</td>
<td>+40 (+600)</td>
<td>8 (120)</td>
<td>40 (600)</td>
<td>60 (900)</td>
<td>1S</td>
</tr>
</tbody>
</table>

1) Highest turn down that can be set at the factory: 5:1. The turn down is preset and cannot be changed.
2) Other measuring ranges (e.g. -1 to +5 bar (-15 to 75 psi)) can be ordered with customer-specific settings (see the Product Configurator, order code for "Calibration; Unit" option "U"). It is possible to invert the output signal (LRV = 20 mA; URV = 4 mA). Prerequisite: URV < LRV
3) Product Configurator, order code for "Sensor range"

**Vacuum resistance**
- 0.7 bar (10.5 psi) abs.
- 0.5 bar (7.5 psi) abs.
- 0 bar (0 psi) abs.

**Devices for absolute pressure measurement**

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Device</th>
<th>Maximum sensor measuring range</th>
<th>Smallest calibratable span (^3)</th>
<th>MWP</th>
<th>OPL</th>
<th>Factory settings (^2)</th>
<th>Option (^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mbar (1.5 psi)</td>
<td>PTC31B</td>
<td>0</td>
<td>+0.1 (+1.5)</td>
<td>0.1 (1.5)</td>
<td>2.7 (40.5)</td>
<td>4 (60)</td>
<td>2C</td>
</tr>
<tr>
<td>250 mbar (4 psi)</td>
<td>PTC31B</td>
<td>0</td>
<td>+0.25 (+4)</td>
<td>0.25 (4)</td>
<td>3.3 (49.5)</td>
<td>5 (75)</td>
<td>2E</td>
</tr>
<tr>
<td>400 mbar (6 psi)</td>
<td>PTC31B</td>
<td>0</td>
<td>+0.4 (+6)</td>
<td>0.4 (6)</td>
<td>5.3 (79.5)</td>
<td>8 (120)</td>
<td>2F</td>
</tr>
<tr>
<td>1 bar (15 psi)</td>
<td>PTC31B</td>
<td>0</td>
<td>+1 (+15)</td>
<td>0.4 (6)</td>
<td>6.7 (100.5)</td>
<td>10 (150)</td>
<td>2H</td>
</tr>
<tr>
<td>2 bar (30 psi)</td>
<td>PTC31B</td>
<td>0</td>
<td>+2 (+30)</td>
<td>0.4 (6)</td>
<td>12 (180)</td>
<td>18 (270)</td>
<td>2K</td>
</tr>
<tr>
<td>4 bar (60 psi)</td>
<td>PTC31B</td>
<td>0</td>
<td>+4 (+60)</td>
<td>0.8 (12)</td>
<td>16.7 (250.5)</td>
<td>25 (375)</td>
<td>2M</td>
</tr>
<tr>
<td>10 bar (150 psi)</td>
<td>PTC31B</td>
<td>0</td>
<td>+10 (+150)</td>
<td>2 (30)</td>
<td>26.7 (400.5)</td>
<td>40 (600)</td>
<td>2P</td>
</tr>
<tr>
<td>40 bar (600 psi)</td>
<td>PTC31B</td>
<td>0</td>
<td>+40 (+600)</td>
<td>8 (120)</td>
<td>40 (600)</td>
<td>60 (900)</td>
<td>2S</td>
</tr>
</tbody>
</table>

1) Highest turn down that can be set at the factory: 5:1. The turn down is preset and cannot be changed.
2) Other measuring ranges (e.g. -1 to +5 bar (-15 to 75 psi)) can be ordered with customer-specific settings (see the Product Configurator, order code for "Calibration; Unit" option "U"). It is possible to invert the output signal (LRV = 20 mA; URV = 4 mA). Prerequisite: URV < LRV
3) Product Configurator, order code for "Sensor range"
### Maximum turn down which can be ordered for absolute pressure and gauge pressure sensors

### Devices for gauge pressure measurement
- 6 bar (90 psi), 16 bar (240 psi), 25 bar (375 psi): TD 1:1 to TD 2.5:1
- All other measuring ranges: TD 1:1 to TD 5:1

### Devices for absolute pressure measurement
- 100 mbar (1.5 psi), 250 mbar (4 psi), 400 mbar (6 psi): TD 1:1
- 1 bar (15 psi): TD 1:1 to TD 2.5:1
- All other measuring ranges: TD 1:1 to TD 5:1

### Metallic process membrane

#### Devices with gauge pressure measurement

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Device</th>
<th>Maximum sensor measuring range</th>
<th>Smallest calibratable span</th>
<th>MWP</th>
<th>OPL</th>
<th>Factory settings</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 mbar (6 psi)</td>
<td>PTP31B</td>
<td>-0.4 to +0.4</td>
<td>0.4</td>
<td>1 to 1.6</td>
<td>4 to 6</td>
<td>0 to 400 mbar</td>
<td>1F</td>
</tr>
<tr>
<td>1 bar (15 psi)</td>
<td>PTP31B</td>
<td>-1 to +1</td>
<td>0.4</td>
<td>2.7 to 6.7</td>
<td>4 to 6</td>
<td>0 to 1 bar</td>
<td>1H</td>
</tr>
<tr>
<td>2 bar (30 psi)</td>
<td>PTP31B</td>
<td>-1 to +2</td>
<td>0.4</td>
<td>6.7 to 10</td>
<td>10 to 15</td>
<td>0 to 2 bar</td>
<td>1K</td>
</tr>
<tr>
<td>4 bar (60 psi)</td>
<td>PTP31B</td>
<td>-1 to +4</td>
<td>0.8</td>
<td>10.7 to 16</td>
<td>16 to 24</td>
<td>0 to 4 bar</td>
<td>1M</td>
</tr>
<tr>
<td>10 bar (150 psi)</td>
<td>PTP31B</td>
<td>-1 to +10</td>
<td>2</td>
<td>25 to 40</td>
<td>40 to 60</td>
<td>0 to 10 bar</td>
<td>1P</td>
</tr>
<tr>
<td>60 bar (900 psi)</td>
<td>PTP31B</td>
<td>-1 to +40</td>
<td>8</td>
<td>100 to 160</td>
<td>160 to 240</td>
<td>0 to 40 bar</td>
<td>1S</td>
</tr>
<tr>
<td>100 bar (1500 psi)</td>
<td>PTP31B</td>
<td>-1 to +100</td>
<td>20</td>
<td>100 to 160</td>
<td>160 to 240</td>
<td>0 to 100 bar</td>
<td>1U</td>
</tr>
<tr>
<td>400 bar (6000 psi)</td>
<td>PTP31B</td>
<td>-1 to +400</td>
<td>80</td>
<td>400 to 600</td>
<td>600 to 900</td>
<td>0 to 400 bar</td>
<td>1W</td>
</tr>
</tbody>
</table>

1) Highest turn down that can be set at the factory: 5:1. The turn down is preset and cannot be changed.
2) Other measuring ranges (e.g. -1 to +5 bar (–15 to 75 psi)) can be ordered with customer-specific settings (see the Product Configurator, order code for "Calibration; Unit" option "U"). It is possible to invert the output signal (LRV = 20 mA; URV = 4 mA). Prerequisite: URV < LRV
3) Product Configurator, order code for "Sensor range"
4) Vacuum resistance: 0.01 bar (0.145 psi) abs.

#### Devices with absolute pressure measurement

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Device</th>
<th>Maximum sensor measuring range</th>
<th>Smallest calibratable span</th>
<th>MWP</th>
<th>OPL</th>
<th>Factory settings</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 mbar (6 psi)</td>
<td>PTP31B</td>
<td>0 (0) to 0.4</td>
<td>0.4</td>
<td>1.5 to 1.6</td>
<td>4 to 6</td>
<td>0 to 400 mbar</td>
<td>2F</td>
</tr>
<tr>
<td>1 bar (15 psi)</td>
<td>PTP31B</td>
<td>0 (0) to 1</td>
<td>0.4</td>
<td>2.7 to 4</td>
<td>4 to 6</td>
<td>0 to 1 bar</td>
<td>2H</td>
</tr>
<tr>
<td>2 bar (30 psi)</td>
<td>PTP31B</td>
<td>0 (0) to 2</td>
<td>0.4</td>
<td>6.7 to 10</td>
<td>10 to 15</td>
<td>0 to 2 bar</td>
<td>2K</td>
</tr>
<tr>
<td>4 bar (60 psi)</td>
<td>PTP31B</td>
<td>0 (0) to 4</td>
<td>0.8</td>
<td>10.7 to 16</td>
<td>16 to 24</td>
<td>0 to 4 bar</td>
<td>2M</td>
</tr>
<tr>
<td>10 bar (150 psi)</td>
<td>PTP31B</td>
<td>0 (0) to 10</td>
<td>2</td>
<td>25 to 40</td>
<td>40 to 60</td>
<td>0 to 10 bar</td>
<td>2P</td>
</tr>
<tr>
<td>40 bar (600 psi)</td>
<td>PTP31B</td>
<td>0 (0) to 40</td>
<td>8</td>
<td>100 to 160</td>
<td>160 to 240</td>
<td>0 to 40 bar</td>
<td>2S</td>
</tr>
<tr>
<td>100 bar (1500 psi)</td>
<td>PTP31B</td>
<td>0 (0) to 100</td>
<td>20</td>
<td>100 to 160</td>
<td>160 to 240</td>
<td>0 to 100 bar</td>
<td>2U</td>
</tr>
<tr>
<td>400 bar (6000 psi)</td>
<td>PTP31B</td>
<td>0 (0) to 400</td>
<td>80</td>
<td>400 to 600</td>
<td>600 to 900</td>
<td>0 to 400 bar</td>
<td>2W</td>
</tr>
</tbody>
</table>

1) Highest turn down that can be set at the factory: 5:1. The turn down is preset and cannot be changed.
2) Other measuring ranges (e.g. -1 to +5 bar (–15 to 75 psi)) can be ordered with customer-specific settings (see the Product Configurator, order code for "Calibration; Unit" option "U"). It is possible to invert the output signal (LRV = 20 mA; URV = 4 mA). Prerequisite: URV < LRV
3) Product Configurator, order code for "Sensor range"

---

### Maximum turn down which can be ordered for absolute pressure and gauge pressure sensors

Ranges 0.5%/0.3%: TD 1:1 to TD 5:1
### Output

#### Output signal

<table>
<thead>
<tr>
<th>Name</th>
<th>Option 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNP switch output + 4 to 20 mA output (4-wire) IO-Link (SSP Ed.2 V1.1)</td>
<td>A</td>
</tr>
<tr>
<td>2 x PNP switch output + 4 to 20 mA output (4-wire) IO-Link (SSP Ed.2 V1.1)</td>
<td>B</td>
</tr>
<tr>
<td>PNP switch output (3-wire)</td>
<td>4</td>
</tr>
<tr>
<td>PNP switch output + 4 to 20 mA output (4-wire), IO-Link</td>
<td>7</td>
</tr>
<tr>
<td>2 x PNP switch output (4-wire), IO-Link</td>
<td>8</td>
</tr>
</tbody>
</table>

1) Product Configurator, order code for 'Output'

#### Range of adjustment

- **Switch output**
  - Switch point (SP): 0.5 to 100 % in increments of 0.1% (min. 1 mbar * (0.015 psi)) of the upper range limit (URL)
  - Switchback point (RSP): 0 to 99.5% in increments of 0.1% (min. 1 mbar * (0.015 psi)) of the upper range limit (URL)
  - Minimum distance between SP and RSP: 0.5 % URL

- **Analog output** (if available)
  - Lower range value (LRV) and upper range value (URV) can be set anywhere within the sensor range (LRL - URL). Turn down for analog output up to 5:1 of upper sensor limit (URL).

- **Factory setting (if no customer-specific setting is ordered):**
  - Switch point SP1: 90 %; switchback point RP1: 10 %
  - Switch point SP2: 95 %; switchback point RP2: 15 %
  - Analog output: LRV 0 %; URV 100 %

* For measuring ranges with a negative gauge pressure up to 4 bar (60 psi), the increment when setting the switch point is min. 10 mbar (0.15 psi)

- **Relay switching capacity**
  - Switch state ON: I<sub>s</sub> ≤ 250 mA; switch state OFF: I<sub>s</sub> ≤ 1 mA
  - Devices with IO-Link: Switch state ON: I<sub>s</sub> ≤ 200 mA; Switch state OFF: I<sub>s</sub> ≤ 100 μA
  - Switch cycles: >10,000,000
  - Voltage drop PNP: ≤ 2 V
  - Overload protection: Automatic load testing of switching current;
  - Max. capacitance load: 14 μF at max. supply voltage (without resistive load)
  - Devices with IO-Link: Max. capacitance load: 1 μF at max. supply voltage (without resistive load)
  - Max. cycle duration: 0.5 s; min. t<sub>on</sub>: 4 ms
  - Max. cycle duration: 0.5 s; min. t<sub>off</sub>: 40 μs
  - Periodic disconnection from protective circuit in the event of overcurrent (f = 2 Hz) and "F804" displayed

#### Signal range 4 to 20 mA

3.8 to 20.5 mA

#### Load (for devices with analog output)

In order to guarantee sufficient terminal voltage, a maximum load resistance R<sub>L</sub> (including line resistance) must not be exceeded depending on the supply voltage U<sub>B</sub> of the supply unit.

The maximum load resistance depends on the terminal voltage and is calculated according to the following formula:

---

1) For switch outputs "2 x PNP" and "1 x PNP + 4 to 20 mA output", 100 mA can be guaranteed over the entire temperature range. For lower ambient temperatures, higher currents are possible but cannot be guaranteed. Typical value at 20 °C (68 °F) approx. 200 mA. For switch output "1 x PNP", 200 mA can be guaranteed over the entire temperature range.

2) Deviating from the IO-Link standard, larger currents are supported.
1. Power supply 10 to 30 V DC
2. $R_{\text{max}}$, maximum load resistance
3. $U_b$, Supply voltage

If load is too great:
- failure current is output and 'S803' displayed (output: MIN alarm current)
- Periodic checking to establish if it is possible to quit fault state
- In order to guarantee sufficient terminal voltage, a maximum load resistance $R_L$ (including line resistance) must not be exceeded depending on the supply voltage $U_b$ of the supply unit.

**Signal on alarm 4 to 20 mA**
The response of the output to error is regulated in accordance with NAMUR NE 43.

The behavior of the current output in the event of errors is defined in the following parameters:
- Alarm Current FCU 'MIN': Lower alarm current ($\leq 3.6$ mA) (optional, see the following table)
- Alarm Current FCU 'MAX' (factory setting): Upper alarm current ($\geq 21$ mA)
- Alarm Current FCU 'HLD' (HOLD) (optional, see the following table): Last measured current value is held. When the device starts, the current output is set to 'Lower alarm current' ($\leq 3.6$ mA).

**Alarm current**

<table>
<thead>
<tr>
<th>Name</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. alarm current set</td>
<td>IA 1)</td>
</tr>
<tr>
<td>1 low $\leq 3.6$ mA</td>
<td>U 2)</td>
</tr>
<tr>
<td>2 high $\geq 21$ mA</td>
<td></td>
</tr>
<tr>
<td>3 last current value</td>
<td></td>
</tr>
</tbody>
</table>

1) Product Configurator, order code for 'Service'
2) Product Configurator order code for 'Calibration/unit'

**Dead time, time constant**
Presentation of the dead time and the time constant:
Analog electronics

<table>
<thead>
<tr>
<th>Dead time ($t_1$) [ms]</th>
<th>Time constant (T63), $t_2$ [ms]</th>
<th>Time constant (T90), $t_3$ [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 ms</td>
<td>11 ms</td>
<td>16 ms</td>
</tr>
</tbody>
</table>

Dynamic behavior of switch output

PNP switch output and 2 x PNP switch output: response time ≤20 ms

Damping

Once the supply voltage has been applied, damping for the first measured value is at 0, i.e. the first measured value present always corresponds to the actual measured value (regardless of damping).

A damping affects all outputs (output signal, display):
- Via local display infinitely variable 0 to 999.9 s
- Factory setting: 2.0 s
Energy supply

**WARNING**
An incorrect connection compromises electrical safety!
- A suitable circuit breaker must be provided for the device in accordance with IEC/EN 61010.
- Protective circuits against reverse polarity, HF influences and overvoltage peaks are installed.
- The device must be operated with a 630 mA fine-wire fuse (slow-blow).

### Terminal assignment

1 x PNP switch output R1 (not with IO-Link functionality)

<table>
<thead>
<tr>
<th>M12 plug</th>
<th>Valve plug</th>
<th>Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Diagram" /></td>
<td><img src="image2" alt="Diagram" /></td>
<td><img src="image3" alt="Diagram" /></td>
</tr>
<tr>
<td>1</td>
<td>U.63A</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>L+</td>
<td>2a</td>
</tr>
<tr>
<td>3</td>
<td>R1</td>
<td>R1</td>
</tr>
<tr>
<td>4</td>
<td>L-</td>
<td>L-</td>
</tr>
</tbody>
</table>

- brown = L+
- black = switch output 1
- white = not used
- blue = L-
- green/yellow = ground
- reference air hose (a)

2 x PNP switch output R1 and R2

<table>
<thead>
<tr>
<th>M12 plug</th>
<th>Valve plug</th>
<th>Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image4" alt="Diagram" /></td>
<td><img src="image5" alt="Diagram" /></td>
<td><img src="image6" alt="Diagram" /></td>
</tr>
<tr>
<td>1</td>
<td>U.63A</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>L+</td>
<td>2a</td>
</tr>
<tr>
<td>3</td>
<td>R1</td>
<td>R1</td>
</tr>
<tr>
<td>4</td>
<td>L-</td>
<td>L-</td>
</tr>
</tbody>
</table>

- brown = L+
- black = switch output 1
- white = switch output 2
- blue = L-
- green/yellow = ground
- reference air hose (a)

IO-Link: 2 x PNP switch output R1 and R2

<table>
<thead>
<tr>
<th>M12 plug</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image7" alt="Diagram" /></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>R1</td>
</tr>
</tbody>
</table>

- brown = L+
- black = switch output 1
- white = switch output 2
- blue = L-
- green/yellow = ground
- reference air hose (a)
1 x PNP switch output R1 with additional analog output 4 to 20 mA (active)

<table>
<thead>
<tr>
<th>M12 plug</th>
<th>Valve plug</th>
<th>Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Diagram" /></td>
<td><img src="image2.png" alt="Diagram" /></td>
<td><img src="image3.png" alt="Diagram" /></td>
</tr>
</tbody>
</table>

1 brown = L+
2a black = switch output 1
2b white = analog output 4 to 20 mA
3 blue = L-
4 green/yellow = ground
(a) reference air hose

IO-Link: 1 x PNP switch output R1 with additional analog output 4 to 20 mA (active)

<table>
<thead>
<tr>
<th>M12 plug</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image4.png" alt="Diagram" /></td>
</tr>
</tbody>
</table>

Supply voltage
Supply voltage: 10 to 30 V DC at a DC power unit
Supply voltage IO-Link: 10 to 30 V DC at a DC power unit
IO-Link communication is guaranteed only if the supply voltage is at least 18 V.

Current consumption and alarm signal

<table>
<thead>
<tr>
<th>Intrinsic power consumption</th>
<th>Alarm current (for devices with analog output) 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 60 mA</td>
<td>≥21 mA (factory setting)</td>
</tr>
</tbody>
</table>

Devices with IO-Link: Maximum current consumption: ≤ 300 mA

1) Setting min. alarm current ≤ 3.6 mA can be ordered via the product order structure. Min. alarm current ≤ 3.6 mA can be configured at the device or via IO-Link.

Power supply fault
- Behavior in the event of overvoltage (>30 V):
The device works continuously up to 34 V DC without damage. If the supply voltage is exceeded, the specified characteristics are no longer guaranteed.
- Behavior in the event of undervoltage:
If the supply voltage falls below the minimum value, the device switches off in a defined manner.

Electrical connection

<table>
<thead>
<tr>
<th>Communication version</th>
<th>Connection</th>
<th>Degree of protection</th>
<th>Option 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog</td>
<td>Cable 5 m (16 ft)</td>
<td>IP66/67 NEMA Type 4X enclosure</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Cable 10 m (33 ft)</td>
<td>IP66/67 NEMA Type 4X enclosure</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>Cable 25 m (82 ft)</td>
<td>IP66/67 NEMA Type 4X enclosure</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Valve plug ISO4400 M16</td>
<td>IP65 NEMA Type 4X enclosure</td>
<td>U</td>
</tr>
</tbody>
</table>

Endress+Hauser
<table>
<thead>
<tr>
<th>Communication version</th>
<th>Connection</th>
<th>Degree of protection</th>
<th>Option 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Valve plug ISO4400 NPT ½</td>
<td>IP65 NEMA Type 4X enclosure</td>
<td>V</td>
</tr>
<tr>
<td>Analog, IO-Link</td>
<td>M12 plug</td>
<td>IP65/67 NEMA Type 4X enclosure</td>
<td>M</td>
</tr>
</tbody>
</table>

1) Product Configurator, order code for “Electrical connection”

**Cable specification (analog)**

For valve plug: < 1.5 mm² (16 AWG) and Ø 4.5 to 10 mm (0.18 to 0.39 in)

**Residual ripple**

The device operates within the reference accuracy up to ±5 % of the residual ripple of the supply voltage, within the permitted voltage range.

**Influence of power supply**

≤0.005 % of URV/1 V

**Overvoltage protection**

The device does not contain any special elements to protect against overvoltage ("wire to ground"). Nevertheless the requirements of the applicable EMC standard EN 61000-4-5 (testing voltage 1kV EMC wire/ground) are met.
Performance characteristics of the ceramic process membrane

Reference conditions

- As per IEC 60770
- Ambient temperature $T_A = \text{constant, in the range of: +21 to +33 °C (} +70 \text{ to } +91 °F\text{)}$
- Humidity $\varphi = \text{constant, in the range of 5 to 80 % rH}$
- Atmospheric pressure $p_A = \text{constant, in the range of: 860 to 1060 mbar (12.47 to 15.37 psi)}$
- Position of the measuring cell = constant, in the range of: horizontal ±1° (see also "Influence of orientation" section)
- Zero based span
- Material of process membrane: $\text{Al}_2\text{O}_3$ (aluminum-oxide ceramic, Ceraphire®)
- Supply voltage: 24 V DC ±3 V DC
- Load: 320 $\Omega$ (at 4 to 20 mA output)

Uncertainty of measurement for small absolute pressure ranges

The smallest extended uncertainty of measurement that can be delivered by our standards is
- in the range of 1 to 30 mbar (0.0145 to 0.435 psi): 0.4 % of reading
- in the range of < 1 mbar (0.0145 psi): 1 % of reading.

Influence of orientation

→ 22

Resolution

Current output: min. 1.6 μA
Display: can be set (factory setting: presentation of the maximum accuracy of the transmitter)

Reference accuracy

The reference accuracy includes the non-linearity [DIN EN 61298-2 3.11] including the pressure hysteresis [DIN EN 61298-23.13] and non-repeatability [DIN EN 61298-2 3.11] in accordance with the limit point method as per [DIN EN 60770].

<table>
<thead>
<tr>
<th>Device</th>
<th>% of the calibrated span to the maximum turn down</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reference accuracy</td>
</tr>
<tr>
<td>PTC31B - standard</td>
<td>±0.5</td>
</tr>
<tr>
<td>PTC31B - platinum</td>
<td>±0.3</td>
</tr>
</tbody>
</table>

1) The non-linearity for the 40 bar (600 psi) sensor can be up to ±0.15% of the calibrated span up to the maximum turn down.

Overview of the turn down ranges → 12

Ordering information

<table>
<thead>
<tr>
<th>Name</th>
<th>Option 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum (on request)</td>
<td>D</td>
</tr>
<tr>
<td>Standard</td>
<td>G</td>
</tr>
</tbody>
</table>

1) Product Configurator, order code for "Reference accuracy"

Thermal change of the zero output and the output span

<table>
<thead>
<tr>
<th>Measuring cell</th>
<th>−20 to +85 °C (−4 to +185 °F)</th>
<th>−40 to −20 °C (−40 to −4 °F)</th>
<th>+85 to +100 °C (+185 to +212 °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of the URL for TD 1:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;1 bar (15 psi)</td>
<td>&lt;1</td>
<td>&lt;1.2</td>
<td></td>
</tr>
<tr>
<td>≥1 bar (15 psi)</td>
<td>&lt;0.8</td>
<td>&lt;1</td>
<td></td>
</tr>
</tbody>
</table>

Long-term stability

<table>
<thead>
<tr>
<th>Name</th>
<th>1 year</th>
<th>5 years</th>
<th>8 years</th>
<th>% of the URL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>±0.2</td>
<td>±0.4</td>
<td>Under development</td>
<td></td>
</tr>
<tr>
<td><strong>Switch-on time</strong></td>
<td>≤2 s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For small measuring ranges, pay attention to the thermal compensation effects.
Performance characteristics of metallic process membrane

Reference conditions

- As per IEC 60770
- Ambient temperature $T_A$ = constant, in the range of: +21 to +33 °C (+70 to +91 °F)
- Humidity $\varphi$ = constant, in the range of: 5 to 80 % rH
- Atmospheric pressure $p_A$ = constant, in the range of: 860 to 1060 mbar (12.47 to 15.37 psi)
- Position of the measuring cell = constant, in the range of: horizontal ±1° (see also "Influence of orientation" section)
- Zero based span
- Process membrane material: AISI 316L (1.4435)
- Filling oil: synthetic oil polyalphaolefin FDA 21 CFR 178.3620, NSF H1
- Supply voltage: 24 V DC ±3 V DC
- Load: 320 Ω (at 4 to 20 mA output)

Uncertainty of measurement for small absolute pressure ranges

The smallest extended uncertainty of measurement that can be delivered by our standards is

- in the range of 1 to 30 mbar (0.0145 to 0.435 psi): 0.4 % of reading
- in the range of < 1 mbar (0.0145 psi): 1 % of reading.

Influence of orientation

→ 22

Resolution

Current output: min. 1.6 μA

Display: can be set (factory setting: presentation of the maximum accuracy of the transmitter)

Reference accuracy

The reference accuracy includes the non-linearity [DIN EN 61298-2 3.11] including the pressure hysteresis [DIN EN 61298-23.13] and non-repeatability [DIN EN 61298-2 3.11] in accordance with the limit point method as per [DIN EN 60770].

<table>
<thead>
<tr>
<th>Device</th>
<th>% of the calibrated span to the maximum turn down</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reference accuracy</td>
</tr>
<tr>
<td>PTP31B - standard</td>
<td>±0.5</td>
</tr>
<tr>
<td>PTP31B - platinum</td>
<td>±0.3</td>
</tr>
</tbody>
</table>

Overview of the turn down ranges → 12

Ordering information

<table>
<thead>
<tr>
<th>Name</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum (on request)</td>
<td>D</td>
</tr>
<tr>
<td>Standard</td>
<td>G</td>
</tr>
</tbody>
</table>

1) Product Configurator, order code for 'Reference accuracy'

Thermal change of the zero output and the output span

<table>
<thead>
<tr>
<th>Measuring cell</th>
<th>~20 to +85 °C (~4 to +185 °F)</th>
<th>~40 to ~20 °C (~40 to ~4 °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of the calibrated span for TD 1:1</td>
<td>&gt;85 to +100 °C (+185 to +212 °F)</td>
</tr>
<tr>
<td>&lt;1 bar (15 psi)</td>
<td>&lt;1</td>
<td>&lt;1.2</td>
</tr>
<tr>
<td>≥1 bar (15 psi)</td>
<td>&lt;0.8</td>
<td>&lt;1</td>
</tr>
</tbody>
</table>

Long-term stability

<table>
<thead>
<tr>
<th></th>
<th>1 year</th>
<th>5 years</th>
<th>8 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of the URL</td>
<td>±0.2</td>
<td>±0.4</td>
<td>Under development</td>
</tr>
</tbody>
</table>

Switch-on time

≤2 s
The following applies to IO-Link: For small measuring ranges, pay attention to the thermal compensation effects.

**Mounting**

**Installation conditions**
- Moisture must not penetrate the housing when mounting the device, establishing the electrical connection and during operation.
- Point the cable and connector downwards where possible to prevent moisture from entering (e.g. rain or condensation water).

**Influence of orientation**
Any orientation is possible. However, the orientation may cause a zero point shift, i.e. the measured value does not show zero when the vessel is empty or partially full.

![Diagram of orientation options](image)

**PTP31B**

<table>
<thead>
<tr>
<th>Process membrane axis is horizontal (A)</th>
<th>Process membrane pointing upwards (B)</th>
<th>Process membrane pointing downwards (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration position, no effect</td>
<td>Up to +4 mbar (+0.058 psi)</td>
<td>Up to −4 mbar (−0.058 psi)</td>
</tr>
</tbody>
</table>

**PTC31B**

<table>
<thead>
<tr>
<th>Type</th>
<th>Process membrane axis is horizontal (A)</th>
<th>Process membrane pointing upwards (B)</th>
<th>Process membrane pointing downwards (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; 1 bar (15 psi)</td>
<td>Calibration position, no effect</td>
<td>Up to +0.3 mbar (+0.0044 psi)</td>
<td>Up to −0.3 mbar (−0.0044 psi)</td>
</tr>
<tr>
<td>≥ 1 bar (15 psi)</td>
<td>Calibration position, no effect</td>
<td>Up to +3 mbar (+0.0435 psi)</td>
<td>Up to −3 mbar (−0.0435 psi)</td>
</tr>
</tbody>
</table>

A position-dependent zero point shift can be corrected on the device.

**Mounting location**

**Pressure measurement**

*Pressure measurement in gases*
Mount the device with shutoff device above the tapping point so that any condensate can flow into the process.

![Diagram of pressure measurement in gases](image)

1 Device
2 Shutoff device
Pressure measurement in vapors

For pressure measurement in vapors, use a siphon. The siphon reduces the temperature to almost ambient temperature. Preferably mount the device with the shutoff device and siphon below the tapping point.

Advantage:
- defined water column causes only minor/negligible measuring errors and
- only minor/negligible heat effects on the device.

Mounting above the tapping point is also permitted.

Note the max. permitted ambient temperature of the transmitter!
Take the influence of the hydrostatic water column into consideration.

Pressure measurement in liquids

Mount the device with a shutoff device and siphon below or at the same height as the tapping point.

Advantage:
- defined water column causes only minor/negligible measuring errors and
- air bubbles can be released to the process.

Take the influence of the hydrostatic water column into consideration.

Level measurement
Always install the device below the lowest measuring point.
Do not install the device at the following positions:
- in the filling curtain
- in the tank outlet
- in the suction area of a pump
- at a point in the tank which could be affected by pressure pulses from the agitator.
A functional test can be carried out more easily if you mount the device downstream from a shutoff device.

Mounting instructions for oxygen applications

Oxygen and other gases can react explosively to oils, grease and plastics, such that, among other things, the following precautions must be taken:
- All components of the system, such as measuring devices, must be cleaned in accordance with the BAM requirements.
- Depending on the materials used, a certain maximum temperature and a maximum pressure must not be exceeded for oxygen applications.
- The following table lists devices (devices only, not accessories or enclosed accessories), which are suitable for gaseous oxygen applications.

<table>
<thead>
<tr>
<th>PTC31B</th>
<th>p_{\text{max}} \text{ for oxygen applications}</th>
<th>T_{\text{max}} \text{ for oxygen applications}</th>
<th>Option 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40 bar (600 psi)</td>
<td>-10 to +60 °C (+14 to +140 °F)</td>
<td>HB</td>
</tr>
</tbody>
</table>

1)  Product Configurator, order code for 'Service'
## Environment

### Ambient temperature range

- **Ambient temperature range**
  - –20 to +70 °C (–4 to +158 °F)
  - IO-Link: –20 to +70 °C (–4 to +158 °F)
  - (in the range of the temperature limits with restrictions in optical properties, such as display speed and contrast)

### Storage temperature range

- –40 to +85 °C (–40 to +185 °F)

### Climate class

<table>
<thead>
<tr>
<th>Climate class</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 3K5</td>
<td>Air temperature: –5 to +65 °C (+23 to +113 °F), relative humidity: 4 to 95 % satisfied according to IEC 721-3-3 (condensation not possible)</td>
</tr>
</tbody>
</table>

### Degree of protection

<table>
<thead>
<tr>
<th>Communication version</th>
<th>Connection</th>
<th>Degree of protection</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog</td>
<td>Cable 5 m (16 ft)</td>
<td>IP66/67 NEMA Type 4X enclosure</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Cable 10 m (33 ft)</td>
<td>IP66/67 NEMA Type 4X enclosure</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>Cable 25 m (82 ft)</td>
<td>IP66/67 NEMA Type 4X enclosure</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Valve plug ISO4400 M16</td>
<td>IP65 NEMA Type 4X enclosure</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>Valve plug ISO4400 NPT ½</td>
<td>IP65 NEMA Type 4X enclosure</td>
<td>V</td>
</tr>
<tr>
<td>Analog, IO-Link</td>
<td>M12 plug</td>
<td>IP65/67 NEMA Type 4X enclosure</td>
<td>M</td>
</tr>
</tbody>
</table>

1) Product Configurator, order code for "Electrical connection"

### Vibration resistance

<table>
<thead>
<tr>
<th>Test standard</th>
<th>Vibration resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60068-2-64:2008</td>
<td>Guaranteed for 5 to 2000Hz: 0.05g²/Hz</td>
</tr>
</tbody>
</table>

### Electromagnetic compatibility

- Interference emission as per EN 61326-1 equipment B
- Interference immunity as per EN 61326-1 (industrial environment)
- Devices with IO-Link: For intended use, the switch output can switch to the communication mode for 0.2 s in the event of transient faults.
- NAMUR recommendation EMC (NE 21) (not for devices with IO-Link)
- Maximum deviation: 1.5% with TD 1:1

For more details, please refer to the Declaration of Conformity.

---

3) Exception: the following cable is designed for an ambient temperature range of –25 to +70 °C (–13 to +158 °F): Product Configurator, order code for "Accessory enclosed" option ‘RZ’.
Process

Process temperature range for devices with ceramic process membrane

-25 to +100 °C (–13 to +212 °F)

- For saturated steam applications, use a device with a metallic process membrane, or provide a siphon for temperature isolation when installing.
- Observe the process temperature range of the seal. See also the following table.

<table>
<thead>
<tr>
<th>Seal</th>
<th>Notes</th>
<th>Process temperature range</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>FKM</td>
<td></td>
<td>–20 to +100 °C (–4 to +212 °F)</td>
<td>A 1)</td>
</tr>
<tr>
<td>FKM</td>
<td>Cleaned for O₂ application</td>
<td>–10 to +60 °C (+14 to +140 °F)</td>
<td>A 1)   and HB 2)</td>
</tr>
<tr>
<td>EPDM 70</td>
<td></td>
<td>–25 to +100 °C (–13 to +212 °F)</td>
<td>J 1)</td>
</tr>
</tbody>
</table>

1) Product Configurator, order code for "Seal"
2) Product Configurator, order code for "Service"

Applications with jumps in temperature

Frequent extreme changes in temperatures can temporarily cause measuring errors. Temperature compensation occurs after a few minutes. Internal temperature compensation occurs more quickly the smaller the change in temperature and the longer the time interval involved.

For further information please contact your local Endress+Hauser Sales Center.

Process temperature range for devices with metallic process membrane

-40 to +100 °C (–40 to +212 °F)

Applications with jumps in temperature

Frequent extreme changes in temperatures can temporarily cause measuring errors. Internal temperature compensation occurs more quickly the smaller the change in temperature and the longer the time interval involved.

For further information please contact your local Endress+Hauser Sales Center.

Pressure specifications

⚠️ WARNING

The maximum pressure for the measuring device depends on the lowest-rated element with regard to pressure.
- For pressure specifications, see the "Measuring range" section and the "Mechanical construction" section.
- The Pressure Equipment Directive (2014/68/EU) uses the abbreviation "PS". The abbreviation "PS" corresponds to the MWP (maximum working pressure) of the measuring device.
- MWP (maximum working pressure): The MWP (maximum working pressure) is specified on the nameplate. This value is based on a reference temperature of +20 °C (+68 °F) and may be applied to the device for an unlimited period of time. Observe the temperature dependency of the MWP.
- OPL (over pressure limit): The test pressure corresponds to the over pressure limit of the sensor and may only be applied temporarily to ensure that the measurement is within the specifications and no permanent damage develops. In the case of sensor range and process connections where the over pressure limit (OPL) of the process connection is smaller than the nominal value of the sensor, the device is set at the factory, at the very maximum, to the OPL value of the process connection. If you want to use the entire sensor range, select a process connection with a higher OPL value.
- Devices with ceramic process isolating diaphragm: avoid steam hammering! Steam hammering can cause zero point drifts. Recommendation: Residue (water droplets or condensation) may remain on the process isolating diaphragm following CIP cleaning and can result in local steam hammering the next time steam cleaning takes place. In practice, drying the process isolating diaphragm (e.g. by blowing) has proved to prevent steam hammering.
Mechanical construction

For the dimensions, see the Product Configurator: [www.endress.com](http://www.endress.com).

Search for product → click 'Configuration' to the right of the product image → after configuration click 'CAD'.

The following dimensions are rounded values. For this reason, they may deviate slightly from the dimensions given on [www.endress.com](http://www.endress.com).

---

Design, dimensions

Device height

The device height is calculated from

- the height of the electrical connection
- the height of the housing and
- the height of the individual process connection.

The individual heights of the components are listed in the following sections. To calculate the device height simply add up the individual heights of the components. Where applicable also take into consideration the installation distance (space that is used to install the device). You can use the following table for this purpose:

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>Height</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical connection</td>
<td>27</td>
<td>(A)</td>
<td></td>
</tr>
<tr>
<td>Housing height</td>
<td>28</td>
<td>(B)</td>
<td></td>
</tr>
<tr>
<td>Process connection height</td>
<td>29</td>
<td>(C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation distance</td>
<td></td>
<td>(D)</td>
<td></td>
</tr>
</tbody>
</table>

---

Electrical connection

Engineering unit mm (in)

<table>
<thead>
<tr>
<th>Item</th>
<th>Designation</th>
<th>Material</th>
<th>Weight kg (lbs)</th>
<th>Option 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>M12 plug IP65/67</td>
<td>Housing cap made of plastic</td>
<td>0.012 (0.03)</td>
<td>M Plug connector with cable can be ordered as an accessory → 44</td>
</tr>
<tr>
<td></td>
<td>(Additional dimensions → 44)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Cable 5 m (16 ft)</td>
<td>PUR (UL94V0)</td>
<td>0.280 (0.62)</td>
<td>D</td>
</tr>
<tr>
<td>B</td>
<td>Cable 10 m (33 ft)</td>
<td>PUR (UL94V0)</td>
<td>0.570 (1.26)</td>
<td>E</td>
</tr>
<tr>
<td>B</td>
<td>Cable 25 m (82 ft)</td>
<td>PUR (UL94V0)</td>
<td>1.400 (3.09)</td>
<td>F</td>
</tr>
</tbody>
</table>
Ceraphant PTC31B, PTP31B

<table>
<thead>
<tr>
<th>Item</th>
<th>Designation</th>
<th>Material</th>
<th>Weight kg (lbs)</th>
<th>Option 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>M16 valve plug</td>
<td>Plastic PPSU</td>
<td>0.060 (0.14)</td>
<td>U</td>
</tr>
<tr>
<td>C</td>
<td>NPT ½ valve plug</td>
<td>Plastic PPSU</td>
<td>0.060 (0.14)</td>
<td>V</td>
</tr>
</tbody>
</table>

1)  Product Configurator, order code for 'Electrical connection'

### Housing

![Image of Housing](image-url)

Engineering unit mm (in)

### Position

<table>
<thead>
<tr>
<th>Position</th>
<th>Device</th>
<th>Material</th>
<th>Weight kg (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PTC31B</td>
<td>Stainless steel 316L</td>
<td>0.150 (0.33)</td>
</tr>
<tr>
<td>B (up to 100 bar (1500 psi))</td>
<td>PTP31B</td>
<td>Stainless steel 316L</td>
<td>0.090 (0.20)</td>
</tr>
</tbody>
</table>
Process connections with internal, ceramic process membrane

Thread ISO 228 G

<table>
<thead>
<tr>
<th>Device</th>
<th>Position</th>
<th>Designation</th>
<th>Material</th>
<th>Weight (kg)</th>
<th>Option 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTC31B</td>
<td>A</td>
<td>Thread ISO 228 G ¼&quot; A, EN 837</td>
<td>316L</td>
<td>0.160 (0.35)</td>
<td>WTJ</td>
</tr>
<tr>
<td>PTC31B</td>
<td>B</td>
<td>Thread ISO 228 G ¼&quot; (female)</td>
<td>316L</td>
<td>0.180 (0.40)</td>
<td>WAJ</td>
</tr>
<tr>
<td>PTC31B</td>
<td>C</td>
<td>Thread ISO 228 G ½&quot; A, EN 837</td>
<td>316L</td>
<td>0.180 (0.40)</td>
<td>WBJ</td>
</tr>
<tr>
<td>PTC31B</td>
<td>D</td>
<td>Thread ISO 228 G ½&quot; A, bore 11.4 mm (0.45 in)</td>
<td>316L</td>
<td>0.180 (0.40)</td>
<td>WWJ</td>
</tr>
</tbody>
</table>

1) Product Configurator, order code for "Process connection"
Ceraphant PTC31B, PTP31B

**Process connections with internal, ceramic process membrane**

**Thread ASME**

![Diagram A](image1)

- ø3 (0.12) NPT ¼"
- 13 (0.51)

![Diagram B](image2)

- ø21.4 (0.84) NPT ¼" NPT ½"
- 55.5 (2.19)

![Diagram C](image3)

- ø11.4 (0.45) ø17.3 (0.68) NPT ½"
- 25 (0.98) 55.5 (2.19)

**Engineering unit mm (in)**

<table>
<thead>
<tr>
<th>Device</th>
<th>Item</th>
<th>Designation</th>
<th>Material</th>
<th>Weight (kg (lbs))</th>
<th>Approval</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTC31B</td>
<td>A</td>
<td>ASME ¼&quot; MNPT, bore 3 mm (0.12 in)</td>
<td>316L</td>
<td>0.160 (0.35)</td>
<td>CRN</td>
<td>VUJ</td>
</tr>
<tr>
<td>PTC31B</td>
<td>B</td>
<td>ASME ½&quot; MNPT, ¼&quot; FNPT (female)</td>
<td>316L</td>
<td>0.190 (0.42)</td>
<td>CRN</td>
<td>VXJ</td>
</tr>
<tr>
<td>PTC31B</td>
<td>C</td>
<td>ASME ½&quot; MNPT, bore 11.4 mm (0.45 in)</td>
<td>316L</td>
<td>0.190 (0.42)</td>
<td>CRN</td>
<td>VWJ</td>
</tr>
</tbody>
</table>

1) Product Configurator, order code for 'Process connection'
**Process connections with internal, ceramic process membrane**

**Thread DIN13**

![Diagram of Thread DIN13 connection](image)

Engineering unit mm (in)

<table>
<thead>
<tr>
<th>Device</th>
<th>Designation</th>
<th>Material</th>
<th>Weight kg (lbs)</th>
<th>Option 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTC31B</td>
<td>DIN 13 M20 x 1.5, EN 837, bore 3 mm (0.12 in)</td>
<td>316L</td>
<td>0.180 (0.40)</td>
<td>X4J</td>
</tr>
</tbody>
</table>

1) Product Configurator, order code for 'Process connection'

---

**Process connections with internal, ceramic process membrane**

**Thread JIS B0203**

![Diagram of Thread JIS B0203 connection](image)

Engineering unit mm (in)

<table>
<thead>
<tr>
<th>Device</th>
<th>Designation</th>
<th>Material</th>
<th>Weight kg (lbs)</th>
<th>Option 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTC31B</td>
<td>JIS B0203 R 1/2 (male)</td>
<td>316L</td>
<td>0.180 (0.40)</td>
<td>ZJ</td>
</tr>
</tbody>
</table>

1) Product Configurator, order code for 'Process connection'
### Thread ISO 228 G

#### Process connections with internal, metal process membrane

<table>
<thead>
<tr>
<th>Position</th>
<th>Device</th>
<th>Description</th>
<th>Material</th>
<th>Nominal value to 100 bar (1500 psi)</th>
<th>Nominal value 400 bar (6000 psi)</th>
<th>Option 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weight (kg/lbs)</td>
<td>Height C (mm/in)</td>
<td>SW/AF</td>
</tr>
<tr>
<td>A</td>
<td>PTP31B</td>
<td>Thread ISO 228 G ¼&quot; A, EN 837</td>
<td>316L</td>
<td>0.200 (0.44)</td>
<td>57 (2.24)</td>
<td>32</td>
</tr>
<tr>
<td>B</td>
<td>PTP31B</td>
<td>Thread ISO 228 G ¼&quot; (female)</td>
<td>316L</td>
<td>0.220 (0.49)</td>
<td>57 (2.24)</td>
<td>32</td>
</tr>
<tr>
<td>C</td>
<td>PTP31B</td>
<td>Thread ISO 228 G ½&quot; A, EN 837</td>
<td>316L</td>
<td>0.220 (0.49)</td>
<td>65 (2.56)</td>
<td>32</td>
</tr>
<tr>
<td>D</td>
<td>PTP31B</td>
<td>Thread ISO 228 G ½&quot; A, bore 11.4 mm (0.45 in)</td>
<td>316L</td>
<td>0.220 (0.49)</td>
<td>62 (2.44)</td>
<td>32</td>
</tr>
</tbody>
</table>

1) Product Configurator, order code for 'Process connection'
Process connections with internal, metal process membrane

<table>
<thead>
<tr>
<th>Item</th>
<th>Device</th>
<th>Designation</th>
<th>Material</th>
<th>Nominal value Up to 100 bar (1500 psi)</th>
<th>Nominal value 400 bar (6000 psi)</th>
<th>Approval</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PTP31B</td>
<td>ASME ¼” MNPT, bore 3 mm (0.12 in)</td>
<td>316L</td>
<td>0.200 (0.44) 55 (2.17) 32</td>
<td>0.240 (0.53) 67 (2.64) 27</td>
<td>CRN</td>
<td>VUJ</td>
</tr>
<tr>
<td>B</td>
<td>PTP31B</td>
<td>ASME ½” MNPT, ¼” FNPT (female)</td>
<td>316L</td>
<td>0.230 (0.51) 67 (2.64) 32</td>
<td>0.260 (0.57) 79 (3.11) 27</td>
<td>CRN</td>
<td>VXJ</td>
</tr>
<tr>
<td>C</td>
<td>PTP31B</td>
<td>ASME ½” MNPT, bore 11.4 mm (0.45 in)</td>
<td>316L</td>
<td>0.230 (0.51) 67 (2.67) 32</td>
<td>0.270 (0.60) 79 (3.11) 27</td>
<td>CRN</td>
<td>VWJ</td>
</tr>
</tbody>
</table>

1) Product Configurator, order code for 'Process connection'
### Process connections with internal, metal process membrane

#### Thread DIN13

<table>
<thead>
<tr>
<th>Description</th>
<th>Device</th>
<th>Material</th>
<th>Nominal value to 100 bar (1500 psi)</th>
<th>Nominal value 400 bar (6000 psi)</th>
<th>Option 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN 13 M20 x 1.5, EN 837, bore 3 mm (0.12 in)</td>
<td>PTP31B</td>
<td>316L</td>
<td>0.220 (0.49)</td>
<td>0.260 (0.57)</td>
<td>X4J</td>
</tr>
</tbody>
</table>

1) Product Configurator, order code for 'Process connection'

---

### Process connections with internal, metal process membrane

#### Thread JIS B0203

<table>
<thead>
<tr>
<th>Description</th>
<th>Device</th>
<th>Material</th>
<th>Nominal value to 100 bar (1500 psi)</th>
<th>Nominal value 400 bar (6000 psi)</th>
<th>Option 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JIS B0203 R ½&quot; (male)</td>
<td>PTP31B</td>
<td>316L</td>
<td>0.230 (0.51)</td>
<td>0.260 (0.57)</td>
<td>ZJJ</td>
</tr>
</tbody>
</table>

1) Product Configurator, order code for 'Process connection'
Process connections with flush mount, metal process membrane

**Thread ISO 228 G**

![Diagram of thread ISO 228 G connection](image_url)

1. FKM form seal, pre-mounted

Engineering unit mm (in). Diameter of process isolating diaphragm: 17.2 mm (0.68 in)

<table>
<thead>
<tr>
<th>Device</th>
<th>Designation</th>
<th>Material</th>
<th>Nominal value to 100 bar (1500 psi)</th>
<th>Nominal value 400 bar (6000 psi)</th>
<th>Option 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Weight</td>
<td>Height C</td>
<td>SW/AF</td>
</tr>
<tr>
<td>kg (lbs)</td>
<td></td>
<td></td>
<td>kg (lbs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTP31B</td>
<td>Thread ISO 228 G ½&quot; A</td>
<td>316L</td>
<td>0.140 (0.31)</td>
<td>41 (1.61)</td>
<td>32</td>
</tr>
</tbody>
</table>

1) Product Configurator, order code for "Process connection"

---

**Device 2) **

<table>
<thead>
<tr>
<th>Device 1)</th>
<th>Designation</th>
<th>Material</th>
<th>Weight</th>
<th>Option 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTP31B</td>
<td>Thread ISO 228 G ½&quot; A O-ring seal, flush-mounted</td>
<td>316L</td>
<td>0.150 (0.33)</td>
<td>WUJ</td>
</tr>
</tbody>
</table>

1) Suitable for weld-in adapter 52002643 and 52010172

2) Product Configurator, order code for "Process connection"
NOTICE

Device components in contact with the process are listed in the 'Mechanical construction' and 'Ordering information' sections.

TSE Certificate of Suitability

The following applies to all device components in contact with the process:

- They do not contain any materials derived from animals.
- No additives or operating materials derived from animals are used in production or processing.

Process connections

Endress+Hauser supplies a threaded connection made of stainless steel in accordance with AISI 316L (DIN/EN material number 1.4404 or 1.4435). With regard to their stability-temperature property, the materials 1.4404 and 1.4435 are grouped together under 13E0 in EN 1092-1:2001 Tab. 18. The chemical composition of the two materials can be identical.

Process isolating diaphragm

<table>
<thead>
<tr>
<th>Description</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic process isolating diaphragm</td>
<td>Al_2O_3 aluminum-oxide ceramic, Ceraphire® FDA, ultrapure 99.9 % (see also <a href="http://www.endress.com/ceraphire">www.endress.com/ceraphire</a>) The US Food &amp; Drug Administration (FDA) has no objections to the use of ceramics made from aluminum oxide as a surface material in contact with foodstuffs. This declaration is based on the FDA certificates of our ceramic suppliers.</td>
</tr>
<tr>
<td>Metal process isolating diaphragm</td>
<td>AISI 316L (DIN/EN material number 1.4435)</td>
</tr>
</tbody>
</table>

Seals

See the specific process connection.
## Materials not in contact with process

### Housing

<table>
<thead>
<tr>
<th>Item number</th>
<th>Component</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Housing with valve plug connection</td>
<td>• Seal: NBR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Plug: PA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Screw: V2A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adapter plate: PBT/PC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Housing: PBT/PC</td>
</tr>
<tr>
<td>2</td>
<td>Housing prepared for M12 plug connection</td>
<td>• Adapter plate: PBT/PC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For other materials, see the 'Accessories' section</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Housing: PBT/PC</td>
</tr>
<tr>
<td>3</td>
<td>Housing with cable connection</td>
<td>• Pressure screw: PVDF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Seal: TPE-V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cable: PUR (UL 94 V0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adapter plate: PBT/PC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Housing: PBT/PC</td>
</tr>
<tr>
<td>4</td>
<td>Design element</td>
<td>PBT/PC</td>
</tr>
<tr>
<td>5</td>
<td>Nameplates</td>
<td>Plastic foil (attached to housing) or directly lasered onto the housing</td>
</tr>
<tr>
<td>6</td>
<td>Housing</td>
<td>316L (1.4404)</td>
</tr>
<tr>
<td>7</td>
<td>Pressure compensation element</td>
<td>PBT/PC</td>
</tr>
</tbody>
</table>

### Filling oil

<table>
<thead>
<tr>
<th>Device</th>
<th>Filling oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTP31B</td>
<td>Synthetic polyalphaolefin FDA 21 CFR 178.3620, NSF H1</td>
</tr>
<tr>
<td>Device</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>PTC31B</td>
<td>Cleaned from oil+grease</td>
</tr>
<tr>
<td>PTP31B</td>
<td>Cleaned for oxygen service</td>
</tr>
</tbody>
</table>

1) Product Configurator, order code for “Service”
Operability

IO-Link

Operating concept for devices with IO-Link

Operator-oriented menu structure for user-specific tasks

Reliable operation

Operation in the following languages:
Via IO-Link: English

Efficient diagnostics increase measurement reliability

- Remedial measures
- Simulation options

IO-Link information

IO-Link is a point-to-point connection for communication between the measuring device and an IO-Link master. The measuring device features an IO-Link communication interface type 2 with a second IO function on pin 4. This requires an IO-Link-compatible assembly (IO-Link master) for operation. The IO-Link communication interface enables direct access to the process and diagnostic data. It also provides the option of configuring the measuring device while in operation.

Physical layer, the measuring device supports the following features:
- IO-Link specification: Version 1.1
- IO-Link Smart Sensor Profile 2nd Edition
- SIO mode: Yes
- Speed: COM2; 38.4 kBaud
- Minimum cycle time: 2.5 msec.
- Process data width:
  - Without Smart Sensor Profile: 32 bit
  - With Smart Sensor Profile: 48 bit (float32 + 14-bit vendor spec. + 2 bits SSC)
- IO-Link data storage: Yes
- Block configuration: Yes

IO-Link download

http://www.endress.com/download

- Select 'Software' as the media type.
- Select 'Device Driver' as the software type.
- Select IO-Link (IODD).
- In the 'Text Search' field enter the device name.

https://ioddfinder.io-link.com/

Search by
- Manufacturer
- Article number
- Product type

Operation with local display

Overview

A 1-line liquid crystal display (LCD) is used for display and operation. The local display shows measured values, fault messages and information messages and therefore supports the user through each operating step.

During measuring operation, the display shows measured values, fault messages and notice messages. In addition, it is possible to switch to menu mode via the operating keys.
The second switch output is not used for the device version with current output.

Functions:
- 4-digit measured value display and decimal point
- Simple and complete menu guidance due to breakdown of parameters into several levels and groups
- Possibility to configure the display in accordance with individual wishes and requirements
- Comprehensive diagnostic functions (fault and warning message, peak-hold indicators, etc.)
- Quick and safe commissioning
- The device also signals the status via LEDs.

Information on the operational states

<table>
<thead>
<tr>
<th>Operational states</th>
<th>Function of status-LED and onsite display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>Status LED is lit green</td>
</tr>
<tr>
<td></td>
<td>LEDs of switch output 1 and switch output 2 signal the status of each switch output</td>
</tr>
<tr>
<td></td>
<td>No activity of LED for switch output 2 if current output is active</td>
</tr>
<tr>
<td></td>
<td>White background lighting</td>
</tr>
<tr>
<td>Problem</td>
<td>Status LED lit steady red</td>
</tr>
<tr>
<td></td>
<td>Red display background</td>
</tr>
<tr>
<td></td>
<td>LED of switch output 1 and switch output 2 off (switch output is deactivated)</td>
</tr>
<tr>
<td>Warning</td>
<td>Status LED flashing red</td>
</tr>
<tr>
<td></td>
<td>White display background</td>
</tr>
<tr>
<td></td>
<td>LEDs of switch output 1 and switch output 2 signal the status of each switch output</td>
</tr>
<tr>
<td>For Device Search</td>
<td>The green LED is lit (= operational) on the device and starts to flash with increased luminosity. Flash frequency</td>
</tr>
<tr>
<td></td>
<td>LEDs of switch output 1 and switch output 2 signal the status of each switch output</td>
</tr>
<tr>
<td></td>
<td>Display background depending on the device status</td>
</tr>
<tr>
<td>IO-Link communication</td>
<td>Status LED flashes green as per IO-Link specification (regardless of measuring operation, error or warning). Flash frequency</td>
</tr>
<tr>
<td></td>
<td>Display background depending on the device status</td>
</tr>
<tr>
<td></td>
<td>The state of switch output 1 is also indicated via the LED of switch output 1 at the same time as the process data are displayed</td>
</tr>
</tbody>
</table>

Device Search (IO-Link)

The Device Search parameter is used to uniquely identify the device during installation.
Certificates and approvals

**CE mark**
The device meets the legal requirements of the relevant EC directives. Endress+Hauser confirms that the device has been successfully tested by applying the CE mark.

**RoHS**
The measuring system complies with the substance restrictions of the Restriction on Hazardous Substances Directive 2011/65/EU (RoHS 2).

**RCM marking**
The supplied product or measuring system meets the ACMA (Australian Communications and Media Authority) requirements for network integrity, interoperability, performance characteristics as well as health and safety regulations. Here, especially the regulatory arrangements for electromagnetic compatibility are met. The products bear the RCM marking on the nameplate.

**Pressure Equipment Directive 2014/68/EU (PED)**
Pressure equipment with permitted pressure \( \leq 200 \text{ bar (2,900 psi)} \)
Pressure equipment (maximum allowable pressure \( PS \leq 200 \text{ bar (2,900 psi)} \)) can be classified as pressure accessories in accordance with the Pressure Equipment Directive 2014/68/EU. If the maximum allowable pressure is \( \leq 200 \text{ bar (2,900 psi)} \) and the pressurized volume of the pressure equipment is \( \leq 0.1 \text{ l} \), the pressure equipment is subject to the Pressure Equipment Directive (see Pressure Equipment Directive 2014/68/EU, Article 4, point 3). The Pressure Equipment Directive only requires that the pressure equipment shall be designed and manufactured in accordance with the 'sound engineering practice of a Member State'.

**Reasons:**
- Pressure Equipment Directive (PED) 2014/68/EU Article 4, point 3
- Pressure equipment directive 2014/68/EU, Commission's Working Group 'Pressure', Guideline A-05 + A-06

**Note:**
A partial examination shall be performed for pressure instruments that are part of safety equipment for the protection of a pipe or vessel from exceeding allowable limits (safety accessory in accordance with Pressure Equipment Directive 2014/68/EU, Article 2, point 4).

Pressure equipment with allowable pressure \( > 200 \text{ bar (2,900 psi)} \)
Pressure equipment designated for application in every process fluid having a pressurized volume of \(<0.1 \text{ l} \) and a max. allowable pressure \( PS > 200 \text{ bar (2,900 psi)} \) must satisfy the essential safety requirements set out in Annex I of the Pressure Equipment Directive 2014/68/EU. According to Article 13 pressure equipment shall be classified by category in accordance with Annex II. Taking into account the low volume specified above, the pressure instruments can be categorized as category I pressure equipment. They must then bear a CE mark.

**Reasons:**
- Pressure Equipment Directive 2014/68/EU, Article 13, Annex II
- Pressure equipment directive 2014/68/EU, Commission's Working Group 'Pressure', Guideline A-05

**Note:**
A partial examination shall be performed for pressure instruments that are part of safety equipment for the protection of a pipe or vessel from exceeding allowable limits (safety accessory in accordance with Pressure Equipment Directive 2014/68/EU, Article 2, point 4).

The following also applies:
PTP31B with threaded connection and internal process membrane \( PN > 200 \):
Suitable for stable gases in group 1, category I, module A
Other standards and guidelines

The applicable European guidelines and standards can be found in the relevant EU Declarations of Conformity. The following were also applied:

**DIN EN 60770 (IEC 60770):**
Transmitters for use in industrial process control systems Part 1: Methods for performance evaluation
Methods for evaluating the performance of transmitters for control and regulation in industrial process control systems.

**DIN 16086:**
Electrical pressure measuring instruments, pressure sensors, pressure transmitters, pressure measuring instruments, concepts, specifications on data sheets
Procedure for writing specifications in data sheets for electrical pressure measuring instruments, pressure sensors and pressure transmitters.

**EN 61326-X:**
EMC product family standard for electrical equipment for measurement, control and laboratory use.

**EN 60529:**
Degrees of protection provided by enclosures (IP code)

**NAMUR - User association of automation technology in process industries.**
NE21 - Electromagnetic Compatibility (EMC) of Industrial Process and Laboratory Control Equipment.
NE43 - Standardization of the Signal Level for the Failure Information of Digital Transmitters.
NE44 - Standardization of Status Indicators on PCT Instruments with the Help of Light Emitting Diodes
NE53 - Software of Field Devices and Signal-processing Devices with Digital Electronics
NE107 - Self-monitoring and Diagnosis of Field Devices

**VDMA 24574-1:2008-04**
Fluid technology terms, menu navigation and electrical connection for fluid sensors, Part 1: Pressure switches

CRN approval

A CRN approval is available for some device versions. A CRN-approved process connection with a CSA approval must be ordered for a CRN-approved device. The CRN-approved devices are assigned the registration number 0F18141.5C.

Ordering information: Product Configurator, order code for 'Process connection' (the CRN process connections are indicated in the "Mechanical construction" section.)

Calibration unit

<table>
<thead>
<tr>
<th>Designation</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor range; %</td>
<td>A</td>
</tr>
<tr>
<td>Sensor range; mbar/bar</td>
<td>B</td>
</tr>
<tr>
<td>Sensor range; kPa/MPa</td>
<td>C</td>
</tr>
<tr>
<td>Sensor range; psi</td>
<td>F</td>
</tr>
<tr>
<td>Switch 1; see additional spec.</td>
<td>S</td>
</tr>
<tr>
<td>Switch 1 + 2; see additional spec.</td>
<td>T</td>
</tr>
<tr>
<td>Switch, analog output; see additional spec.</td>
<td>U</td>
</tr>
</tbody>
</table>

1) Product Configurator, order code for "Calibration; unit"
### Calibration

<table>
<thead>
<tr>
<th>Designation</th>
<th>Option¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-point certificate of calibration²</td>
<td>F3</td>
</tr>
</tbody>
</table>

1)  Product Configurator, order code for "Calibration"
2)  No final test report for PNP outputs.

### Inspection certificates

<table>
<thead>
<tr>
<th>Device</th>
<th>Designation</th>
<th>Option¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTC31B</td>
<td>3.1 Material documentation, wetted metal parts, EN10204-3.1 inspection certificate</td>
<td>JA</td>
</tr>
<tr>
<td>PTP31B</td>
<td>3.1 Material documentation, wetted metal parts, EN10204-3.1 inspection certificate</td>
<td>JA</td>
</tr>
</tbody>
</table>

1)  Product Configurator, order code for "Test, certificate"

Documentation currently available on the Endress+Hauser website: [www.endress.com](http://www.endress.com) → Downloads or with the serial number of the device under Online Tools in the Device Viewer.

### Service

*Printed product documentation*

A printed (hard copy) version of test reports, declarations and inspection certificates can optionally be ordered via order code 570 "Service", option I7 "Printed product documentation". The documents are then provided with the device upon delivery.

### Ordering information

Detailed ordering information is available from the following sources:
- In the Product Configurator on the Endress+Hauser website: [www.endress.com](http://www.endress.com) -> Click "Corporate" -> Select your country -> Click "Products" -> Select the product using the filters and search field -> Open product page -> The "Configure" button to the right of the product image opens the Product Configurator.
- From your Endress+Hauser Sales Center: [www.addresses.endress.com](http://www.addresses.endress.com)

**Product Configurator - the tool for individual product configuration**

- Up-to-the-minute configuration data
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop

### Scope of delivery

- Measuring device
- Optional accessories
- Brief Operating Instructions
- Certificates
Accessories

Weld-in adapter

Various weld-in adapters are available for installation in vessels or pipes.

<table>
<thead>
<tr>
<th>Device</th>
<th>Description</th>
<th>Option</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTP31B</td>
<td>Weld-in adapter G½, 316L</td>
<td>QA</td>
<td>52002643</td>
</tr>
<tr>
<td>PTP31B</td>
<td>Weld-in adapter G½, 316L 3.1 EN10204-3.1 material, inspection certificate</td>
<td>QB</td>
<td>52010172</td>
</tr>
<tr>
<td>PTP31B</td>
<td>Weld-in tool adapter G½, brass</td>
<td>QC</td>
<td>52005082</td>
</tr>
</tbody>
</table>

1) Product Configurator, order code for "Accessory enclosed"

If installed horizontally and weld-in adapters with a leakage hole are used, ensure that the leakage hole is pointing down. This allows leaks to be detected as quickly as possible.

M12 plug-in jack

<table>
<thead>
<tr>
<th>Plug</th>
<th>Degree of protection</th>
<th>Material</th>
<th>Option</th>
<th>Order number</th>
</tr>
</thead>
</table>
| M12 (self-terminated connection at M12 plug) | IP67 | - Union nut: Cu Sn/Ni  
- Body: PBT  
- Seal: NBR | R1 | 52006263 |
| M12 90 degrees with 5m (16 ft) cable | IP67 | - Union nut: GD Zn/Ni  
- Body: PUR  
- Cable: PVC  
Cable colors 1 = BN = brown 2 = WT = white 3 = BU = blue 4 = BK = black | RZ | 52010285 |
| M12 90 degrees (self-terminated connection at M12 plug) | IP67 | - Union nut: GD Zn/Ni  
- Body: PBT  
- Seal: NBR | RM | 71114212 |

1) Product Configurator, order code for "Accessory enclosed"
Documentation

Field of activities
Pressure measurement, powerful instruments for process pressure, differential pressure, level and flow:
FA00004P

Technical Information
- TI00241F: EMC Test Procedures
- TI00426F: Weld-in adapters, process adapters and flanges (overview)

Registered trademarks

.IO-Link

is a registered trademark of the IO-Link company group.