Technical Information Rxn-40 Raman spectroscopic probe

Table of Contents

Function and system design	3
Fields of application	3
Laser safety interlock	3
Rxn-40 probe, non-flanged configuration	3
Laser emission indicator	4
Rxn-40 probe, flanged configuration	4
Rxn-40 probe, mini configuration	5
Process and probe compatibility	5
Installation	6
Data collection zone: short vs. long	6
Specifications	7

Temperature and pressure
General specifications
Maximum permissible exposure (MPE): ocular exposure $\ensuremath{^{\circ}}$
MPE: skin exposure
Nominal hazard zone
Materials of construction
Certificates and approvals 13
Hazardous area approvals1
Certifications and markings
Hazardous area drawing1

Function and system design

Fields of application

The Rxn-40 Raman spectroscopic probe is intended for liquid immersion sample analysis in a laboratory or process plant setting.

Recommended applications include:

- Chemical: reaction monitoring, blending, catalyst monitoring, feed and final product monitoring
- Polymer: polymerization reaction monitoring, extrusion monitoring, polymer blending
- Pharmaceutical: active pharmaceutical ingredient (API) reaction monitoring, crystallization, polymorph, blending
- Oil and gas: any hydrocarbon analysis

Use of the device for any purpose other than that described poses a threat to the safety of people and of the entire measuring system and invalidates any warranty.

Laser safety interlock

The Rxn-40 probe, as installed, forms part of the interlock circuit. If the fiber cable is severed, the laser will turn off within milliseconds of the breakage.

NOTICE

Handle probes and cables with care.

Fiber cables should NOT be kinked and should be routed to ensure a minimum bend radius of 152.4 mm (6 in).

Permanent damage may result if cables are not routed appropriately.

The interlock circuit is a low-current electrical loop. If the Rxn-40 probe is used in a classified area, the interlock circuit must be run through an intrinsically safe (IS) barrier.

Rxn-40 probe, non-flanged configuration

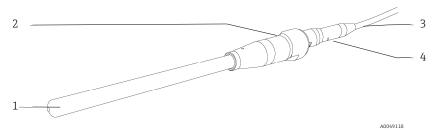


Figure 1. Non-flanged configuration with fiber channel cable

#	Name	Description
1	Tip	316L stainless steel, C276 alloy or Grade 2 titanium Immersible length of 152, 305, or 457 mm (6, 12, or 18 in)
2	Optic body	Materials matched to probe tip, but not wetted by process fluids
3	Fiber cable	Cable: PVC jacketed, proprietary construction Connections: proprietary electro-optic Connector body: 300-series stainless steel
4	LED laser indicator	Illuminated when the laser is energized

Laser emission indicator

The location of the laser emission indicator depends on the assembly type.

- Non-flanged configuration (Figure 1): The indicator is located on the assembly. When there is potential for the laser to be energized, the indicator light is illuminated.
- Integrated stainless steel fiber connection shell option (Figures 2, 3 and 4 below): The indicator is located on the fiber connection shell. When there is potential for the laser to be energized, the indicator light is illuminated.

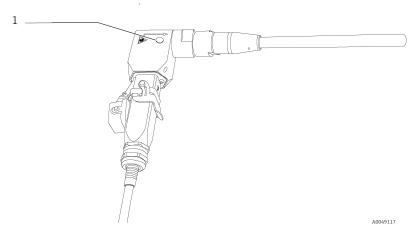


Figure 2. LED laser indicator on right-angle EO fiber connector (1)

Rxn-40 probe, flanged configuration

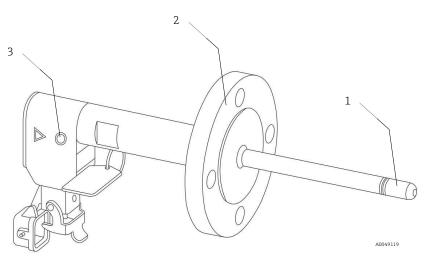


Figure 3. Flanged configuration of the Rxn-40 probe

#	Name	Description
1	Tip	316L stainless steel, C276 alloy or Grade 2 titanium Immersible length of 36 mm (1.42 in)
2	Flange	Flange for process connection (e.g. 316L, C276, Grade 2 titanium)
3	LED laser indicator	Illuminated when the laser is energized

Rxn-40 probe, mini configuration

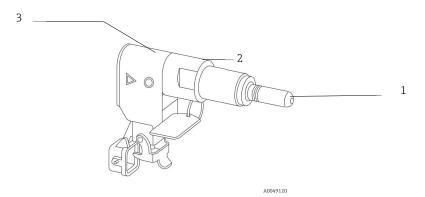


Figure 4. Mini configuration of the Rxn-40 probe

#	Name	Description
1	Tip	316L stainless steel, C276 alloy or Grade 2 titanium Immersible length of 36 mm (1.42 in)
2	Optic body	Materials matched to probe tip, but not wetted by process fluids
3	LED laser indicator	Illuminated when the laser is energized

Process and probe compatibility

Prior to installation, the user must check that the probe pressure and temperature ratings, as well as the materials from which the probe is made, are compatible with the process into which it is being inserted.

The probes should be installed using sealing techniques (e.g., flanges, compression fittings) appropriate and typical for the vessel or piping.

WARNING

If the probe will be installed in a high temperature or pressure process, additional safety precautions must be taken to avoid equipment damage or safety hazards.

- A blow-out protection device is highly recommended in accordance with local safety standards.
- ► It is the responsibility of the user to determine if any blow-out protection devices are required and ensure they are attached to the probes during installation.

WARNING

If the probe being installed is constructed of titanium, the user should be aware that impacts or excessive process friction could cause a spark or otherwise cause ignition.

The user must ensure that precautions are taken when installing and using a titanium probe to avoid such an occurrence.

Installation

Prior to installation in the process, the maximum amount of laser power output should be verified to ensure it is no more than the amount specified in the Hazardous Area Equipment Assessment (4002266) or equivalent.

Standard eye and skin safety precautions for Class 3B laser products (per EN 60825/IEC 60825-14) should be observed during installation. Additionally, observe the following:

WARNING Probes are designed with specific sealing boundaries. The probe pressure specifications are only valid if sealing is accomplished on the intended sealing feature (shaft, flange, etc.). Service ratings may include limitations for fittings, flanges, bolts, and seals. The installer must understand these limitations and use appropriate hardware and assembly procedures for a pressuretight and safe joint. Standard precautions for laser products should be observed. Probes should always be capped or pointed away from people toward a diffuse target if not installed in a sample chamber. **A** CAUTION If stray light enters an unused probe, it will interfere with data collected from a probe in-use and may cause calibration failure or measurement errors. Unused probes should ALWAYS be capped to prevent stray light from entering the probe. **NOTICE** Excessive twisting of the cable within the connector may break a fiber connection, rendering the Rxn-40 probe inoperable. Take care to install the probe so that it measures the flowing sample or sample region of interest.

Data collection zone: short vs. long

The Rxn-40 probe comes with either a short (S) or a long (L) data collection zone depending on the version selected.

A short data collection zone is generally used for opaque samples such as gels, slurries, and paint. A long data collection zone is better for transparent samples, such as hydrocarbons and solvents, because it maximizes the signal intensity by using the entire effective focal cylinder.

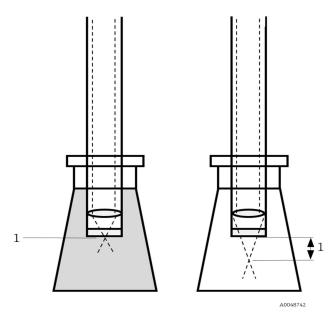


Figure 5. Short (left) vs. long (right) data collection zone (1)

6

Specifications

Temperature and pressure

The temperature and pressure specifications for the Rxn-40 probe vary depending on the materials of construction. In addition:

- Max pressure is calculated per ASME B31.3 2020 edition for material and probe geometry at the maximum rated temperature.
- Max service pressure ratings do not include the ratings of any fittings or flanges used to mount the probe into the process system. These items need to be independently evaluated and may lower the maximum service pressure of the probe.
- Minimum pressure rating: All probes have a minimum pressure rating of 0 bara (full vacuum). However, unless specified, they are not rated for low outgassing at high vacuum service.
- The temperature ramp is ≤ 30 °C/min (≤ 54 °F/min).

Component	Materials of construction	Min temp	Max temp	Max service pressure
Rxn-40 probe, ½ inch diameter	316L stainless steel	−30 °C (−22 °F)	120 °C (248 °F)	142.4 barg (2066 psig)
	C276 alloy	−30 °C (−22 °F)	280 ℃ (536 °F)	158.1 barg (2293 psig)
	Grade 2 titanium	−30 °C (−22 °F)	315 ℃ (599 ℉)	65.2 barg (946 psig)
Rxn-40 probe, ¾ inch diameter	316L stainless steel	−30 °C (−22 °F)	120 ℃ (248 °F)	169.5 barg (2458 psig)
	C276 alloy	−30 °C (−22 °F)	280 ℃ (536 ℉)	182.8 barg (2651 psig)
	Grade 2 Titanium	−30 °C (−22 °F)	315 ℃ (599 ℉)	72.2 barg (1047 psig)
Rxn-40 probe, 1 inch diameter	316L stainless steel	−30 °C (−22 °F)	120 ℃ (248 ℉)	169.5 barg (2458 psig)
	C276 alloy	−30 °C (−22 °F)	280 ℃ (536 ℉)	182.8 barg (2651 psig)
	Grade 2 titanium	−30 °C (−22 °F)	315 ℃ (599 ℉)	72.2 barg (1047 psig)
Rxn-40 probe, mini configuration	316L stainless steel	−30 °C (−22 °F)	120 ℃ (248 °F)	157.1 barg (2279 psig)
	C276 alloy	−30 °C (−22 °F)	150 ℃ (302 °F)	199.3 barg (2890 psig)
	Grade 2 titanium	−30 °C (−22 °F)	150 ℃ (302 ℉)	153.6 barg (2228 psig)
Cable and connector	Cable: PVC jacketed, proprietary construction Connections: proprietary electro-optic	-40 °C (-40 °F)	70 °C (158 °F)	Not applicable

 $Table\ 1.\ Temperature\ and\ pressure\ specifications$

General specifications

General specifications for the Rxn-40 probe are listed below.

Item		Description		
Laser wavelength		532 nm, 785 nm, or 993 nm		
Spectral coverage		probe spectral coverage is limited by the coverage of the analyzer being used		
Maximum laser p	ower into probe	< 499 mW		
Operating humidi	ty	up to 95 % relative humidity, non-condensing		
Probe body purge		helium		
Probe body herme	eticity	purge helium leak rate $< 1 \times 10^{-7}$ mbar·L/s		
Chemical resistan	ce	limited by materials of construction		
Window material		high-purity sapphire		
Working distance	from probe exit	short: 0 mm (0 in) long: 3 mm (0.12 in)		
Probe immersible length	Rxn-40 non- flanged configuration	Standard lengths: 152, 305, or 457 mm (6, 12, or 18 in) Grade 2 titanium: 150 to 350 mm (5.9 to 13.8 in)		
	Rxn-40 flanged configuration	150 to 380 mm (5.9 to 15.0 in)		
Rxn-40 mini configuration		36 mm (1.42 in)		
Immersion shaft outer diameter flanged configuration		12.7 mm (0.5 in) standard; custom diameters may be available		
	Rxn-40 flanged configuration	12.7, 19.05, or 25.4 mm (0.5, 0.75, or 1 in) standard; custom diameters may be available		
	Rxn-40 mini configuration	12.7 mm (0.5 in) standard; custom diameters may be available		
Fiber optic cable (cable sold separately; lengths limited by application)		EO cable available from 5 m to 200 m in 5 m increments (16.4 ft to 656.2 ft in 16.4 ft increments) EO male to EO female extensions available from 5 m to 200 m in 5 m increments (16.4 ft to 656.2 ft in 16.4 ft increments) FC cable available from 5 m to 50 m in 5 m increments (16.4 ft to 164.0 ft in 16.4 ft increments)		
	design	PVC jacketed, proprietary construction		
	pull strength	204 kg (450 lbs)		
	minimum bend radius	152.4 mm (6 in)		
Fiber optic cable flame resistance		certified: CSA-C/US AWM I/II, A/B, 80C, 30V, FT1, FT2, VW-1, FT4 rated: AWM I/II A/B 80C 30V FT4		

Table 2. General specifications

(MPE): ocular exposure

Maximum permissible exposure The ANSI Z136.1 standard provides means to perform MPE for ocular exposure. Please refer to the standard to calculate the relevant MPE levels for the case of laser exposure from the Rxn 40 probe and from the unlikely occurrence of laser exposure from a broken optical fiber.

MPE for point source ocular exposure to a laser beam				
Wavelength	Exposure duration	on MPE calculation		
λ (nm)	t (s)	(J·cm ⁻²)	(W·cm ⁻²)	
532	10 ⁻¹³ to 10 ⁻¹¹	1.0 × 10 ⁻⁷	-	
	10 ⁻¹¹ to 5 × 10 ⁻⁶	2.0 × 10 ⁻⁷	-	
	5 × 10 ⁻⁶ to 10	$1.8 t^{0.75} \times 10^{-3}$	-	
	10 to 30,000	-	1 × 10 ⁻³	

Table 3. MPE for ocular exposure with 532 nm laser emission

MPE for point source ocular exposure to a laser beam				
Wavelength	Exposure	MPE calculation		
λ (nm)	duration t (s)	(J·cm ⁻²)	(W·cm ⁻²)	$ extstyle{C_{ m A}}$
	10 ⁻¹³ to 10 ⁻¹¹	$1.5 C_{\rm A} \times 10^{-8}$	-	
	10 ⁻¹¹ to 10 ⁻⁹	2.7 C _A t ^{0.75}	-	
785 and 993	10 ⁻⁹ to 18 × 10 ⁻⁶	$5.0 C_{\rm A} \times 10^{-7}$	-	532: C _A = 1.000 785: C _A = 1.479
	18 x 10 ⁻⁶ to 10	$1.8 C_A t^{0.75} \times 10^{-3}$	-	993: C _A = 3.855
	10 to 3 × 10 ⁴	-	$C_{\rm A} \times 10^{-3}$	

Table 4. MPE for ocular exposure with 785 nm or 993 nm laser emission

MPE: skin exposure

Refer to the table below from the ANSI Z136.1 standard to calculate the MPE for skin exposure to a laser beam.

MPE for skin exposure to a laser beam					
Wavelength Exposure MPE Calculation Duration		2			
λ (nm)	t (s)	(J·cm⁻²)	(W·cm⁻²)	C _A	
	10 ⁻⁹ to 10 ⁻⁷	$2 C_{\rm A} \times 10^{-2}$	-	532: C _A = 1.000	
532, 785 and 993	10 ⁻⁷ to 10	1.1 C _A t ^{0.25}	-	785: C _A = 1.479	
	10 to 3 x 10 ⁴	-	0.2 C _A	993: C _A = 3.855	

Table 5. MPE for skin exposure with 532 nm, 785 nm or 993 nm laser emission

Nominal hazard zone

Use the information below to calculate the nominal hazard zone at the tip of the probe. Refer to the applicable Raman Rxn2 or Raman Rxn4 analyzer operating instructions for analyzer-specific information regarding nominal hazard zone calculations.

Beam diameter (b_0)	Focal length (f ₀)	Nominal ocular hazard distance (NOHD) equation
5 mm (0.20 in)	9 mm (0.35 in)	$r_{\text{NOHD}} = (f_0/b_0)(4\Phi/\pi\text{MPE})^{1/2}$
		Φ = Laser power output in Watts

Table 6. Nominal hazard zone calculation

Materials of construction

Materials of construction for the Rxn-40 probe are listed below.

Material	Version			
	C276 alloy [UNS N10276]	316L [UNS S31603]	Titanium [UNS R50400]	
Wetted	C276 alloy	316L stainless steel	Grade 2 titanium	
	high-purity sapphire	high-purity sapphire	high-purity sapphire	
Non-wetted	-wetted C276 alloy		Grade 2 titanium	
	316/316L stainless steel	316/316L stainless steel	316/316L stainless steel	
	303/304 stainless steel 303/304 stainless steel	303/304 stainless steel	303/304 stainless steel	
	oxygen-free copper	oxygen-free copper	oxygen-free copper	
	high temperature epoxy	high temperature epoxy	high temperature epoxy	

Table 7. Materials of construction

Certificates and approvals

Hazardous area approvals

The hazardous area approvals are listed below.

Туре	Description
Hazardous area approvals	ATEX The Rxn-40 probe has been third-party approved for use in hazardous areas in accordance with Article 17 of Directive 2014/34/EU of the European Parliament and of the Council dated 26 February 2014. The Rxn-40 probe has been certified to the ATEX Directive for use in Europe, as well as in other countries accepting ATEX-certified equipment.
	IECEx The Rxn-40 probe can also be marked for International Electrotechnical Commission (IEC) Certification Systems for Explosive Atmospheres when installed in accordance with the Hazardous Area Installation Drawing.
	North American The Rxn-40 probe has also been approved for use in hazardous areas in the United States (US) and Canada by the Canadian Standards Association when installed in accordance with the Hazardous Area Installation Drawing. The products are eligible to bear the CSA Mark with adjacent indicators 'C' and 'US' for Canada and US or with adjacent indicator 'US' for US only or without either indicator for Canada only.

Table 8. Hazardous area approvals

Certifications and markings

 $\label{lem:endress} Endress + Hauser\ offers\ certifications\ for\ the\ Rxn-40\ probe\ to\ the\ standards\ below.\ Select\ the\ desired\ certification(s)\ and\ the\ probe\ or\ probe\ tag\ is\ marked\ accordingly.$

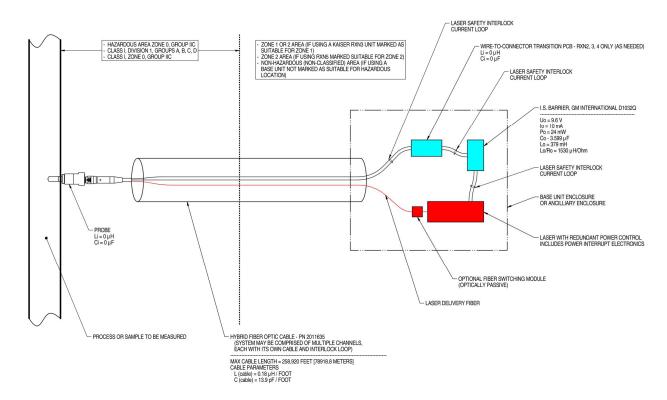

Туре	Description
ATEX marking and installations	ATEX marking is available as an option during the quoting process. Available markings: II 1 G Ex ia op is IIA or IIB or IIB+H2 or IIC T3 or T4 or T6 Ga
	Prior to the order, the marking for the particular probe/application must be
	determined. The customer must do one of the following:
	 Work with purchasing to identify the required marking OR Provide Endress+Hauser with a completed copy of the Hazardous Area Equipment Assessment (4002266).
	Endress+Hauser will mark the Rxn-40 probes according to the customer's provided information. Endress+Hauser is not responsible for the customer's inaccuracies.
	▲ WARNING
	In an ATEX-governed environment, only ATEX-marked probes may be used.
North American hazardous area marking and installations	CSA marking is available as an option during the quoting process. Available markings:
	Ex ia op is IIA or IIB or IIB + H2 or IIC T3 or T4 or T6 Ga
	Class I, Division 1, Groups A, B, C, D T3/T4/T6
	Class I, Zone O AEx ia op is IIA or IIB or IIB + H2 or IIC T3 or T4 or T6 Ga Class I, Division 1, Groups A, B, C, D T3/T4/T6
	class 1, Division 1, Groups A, D, C, D 157 147 10
	Prior to the order, the marking for the particular probe/application must be determined. The customer must do one of the following:
	Work with purchasing to identify the required marking OR
	 Provide Endress+Hauser with a completed copy of the Hazardous Area Equipment Assessment (4002266).
	Endress+Hauser will mark the Rxn-40 probes according to the customer's provided information. Endress+Hauser is not responsible for the customer's inaccuracies.
	For North American applications into classified environments, the probe set will have the CSA mark and can be considered intrinsically safe when installed according to the Hazardous Area Installation Drawing (4002396).
	A WARNING
	In a CSA-governed environment, only CSA-marked probes may be used.
IECEx hazardous area marking and installations	IECEx marking is available as an option during the quoting process. Available markings:
	Ex ia op is IIA or IIB or IIB + H2 or IIC T3 or T4 or T6 Ga
	Prior to the order, the marking for the particular probe/application must be determined. The customer must do one of the following:
	Work with purchasing to identify the required marking OR
	 Provide Endress+Hauser with a completed copy of the Hazardous Area Equipment Assessment (4002266).
	Endress+Hauser will mark the Rxn-40 probes according to the customer's provided information. Endress+Hauser is not responsible for the customer's inaccuracies.
	For IECEx applications into classified environments, the probe set will have the IECEx mark and can be considered intrinsically safe when installed according to the Hazardous Area Installation Drawing (4002396).
	▲ WARNING
	In an IECEx-governed environment, only IECEx-marked probes may be used.

Table 9. Certifications and markings

12

Hazardous area drawing

The Hazardous Area Installation Drawing (4002396) is shown below.

NOTES:

- 1. CONTROL EQUIPMENT CONNECTED TO THE ASSOCIATED APPARATUS MUST NOT USE OR GENERATE MORE THAN 250 VRMS OR VDC.
- 2. INSTALLATION IN THE U.S. SHOULD BE IN ACCORDANCE WITH ANSI/ISA RP12.6 "INSTALLATION OF INTRINSICALLY SAFE SYSTEMS FOR HAZARDOUS (CLASSIFIED) LOCATIONS" AND THE NATIONAL ELECTRICAL CODE® (ANSI/NFPA 70) SECTIONS 504 AND 505.
- 3. INSTALLATION IN CANADA SHOULD BE IN ACCORDANCE WITH THE CANADIAN ELECTRICAL CODE, CSA C22.1, PART 18, APPENDIX J18.
- 4. ASSOCIATED APPARATUS MANUFACTURER'S INSTALLATION DRAWING MUST BE FOLLOWED WHEN INSTALLING THIS EQUIPMENT.
- 5. FOR U.S. INSTALLATIONS, THE PROBE MODELS RXN-30 (AIRHEAD), RXN-40 (WETHEAD) AND RXN-41 (PILOT) ARE APPROVED FOR CLASS I, ZONE 0 APPLICATIONS.
- 6. NO REVISION TO DRAWING WITHOUT PRIOR CSA APPROVAL.
- 7. WARNING: SUBSTITUTION OF COMPONENTS MAY IMPAIR INTRINSIC SAFETY.

Figure 6. Hazardous Area Installation Drawing (4002396 version X6)

www. addresses. endress. com

