Valid as of version 01.00.zz (Device firmware) Products Solutions

Services

Special Documentation **Proline Promass I 500**

Viscosity Measurement application package PROFINET with Ethernet-APL

Table of contents

1	About this document	. 4
1.1 1.2 1.3 1.4 1.5	Document function	. 4 . 4 . 5
2	Product features and availability	. 6
2.1 2.2	Product features	
3	System integration	7
4	Commissioning	8
4.1 4.2	Advanced settings	
5	Operation	11
5.1	Reading measured values	11
6	Technical data	12
6.1 6.2	Input	12 12
7	Viscosity fundamentals	14
7.1 7.2 7.3	Definitions of viscosity (general) Differentiating viscous behavior Principle of viscosity measurement with	14 16
7.4 7.5	Promass I	19 20 21
R	Comparison tables for viscosities	22

1 About this document

1.1 Document function

This manual is Special Documentation; it does not replace the Operating Instructions pertaining to the device. It serves as a reference for using the Viscosity Measurement function integrated in the measuring device.

1.2 Content and scope

This documentation contains a description of the additional parameters and technical data that are provided with the **Viscosity** application package.

It provides detailed information on:

- Application-specific parameters
- Advanced technical specifications

1.3 Symbols

1.3.1 Safety symbols

⚠ DANGER

This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

WARNING

This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

A CAUTION

This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

NOTICE

This symbol contains information on procedures and other facts which do not result in personal injury.

1.3.2 Symbols for certain types of information

Symbol	Meaning
✓	Permitted Procedures, processes or actions that are permitted.
X	Forbidden Procedures, processes or actions that are forbidden.
i	Tip Indicates additional information.
(A)	Reference to documentation
A ³	Reference to page
	Reference to graphic
>	Notice or individual step to be observed

Sy	mbol	Meaning
1.,	2., 3	Series of steps
1	L.	Result of a step

1.3.3 Symbols in graphics

Symbol	Meaning
1, 2, 3	Item numbers
A, B, C,	Views
A-A, B-B, C-C,	Sections

1.4 Documentation

- For an overview of the scope of the associated Technical Documentation, refer to the following:
 - *Device Viewer* (www.endress.com/deviceviewer): Enter the serial number from the nameplate
 - *Endress+Hauser Operations app*: Enter serial number from nameplate or scan matrix code on nameplate.
- This Special Documentation and other documentation is available: In the Download Area of the Endress+Hauser website: www.endress.com → Downloads

This documentation is an integral part of the following Operating Instructions:

Measuring device	Documentation code
Promass I 500	BA02126D

The following certification is available for this documentation:

Certification	Documentation code
Manufacturer declaration Promass 300/500	HE_01640

1.5 Registered trademarks

Ethernet-APL™

Registered trademark of the PROFIBUS Nutzerorganisation e.V. (PROFIBUS User Organization), Karlsruhe, Germany

TRI-CLAMP®

Registered trademark of Ladish & Co., Inc., Kenosha, USA

2 Product features and availability

2.1 Product features

Additional parameters, options and measured variables are available in the device with the "Viscosity" application package.

The following viscosity measurements are performed on liquids:

- Dynamic viscosity
- Kinematic viscosity
- Temperature-compensated viscosity (kinematic and dynamic) in relation to the reference temperature

Viscosity measurement can be used for Newtonian and non-Newtonian applications and supplies accurate measured data irrespective of the flow, even under difficult conditions.

2.2 Availability

The **Viscosity** application package can be ordered directly with the device.

Detailed information on the relevant order code is available from your local Endress+Hauser sales organization or on the product page of the Endress+Hauser website: www.endress.com.

It is possible to check the availability of the **Viscosity** application package with the **EG** option as follows:

- Order code with breakdown of the device features on the delivery note
- In the W@M Device Viewer (www.endress.com/deviceviewer)
 Enter the serial number from the nameplate and in the device information check whether the option EG "Viscosity" appears under the order code for "Application packages".
- In the operating menu:

The software options currently enabled are displayed in the **Software option overview** parameter.

Expert \rightarrow System \rightarrow Administration

2.2.1 Order code

If ordered directly with the device:

Order code for "Application packages", option EG "Viscosity"

2.2.2 Activation

If the viscosity option is retrofitted during the flowmeter's life cycle, viscosity calibration must be performed. The device must be returned to the factory for this.

2.2.3 Access

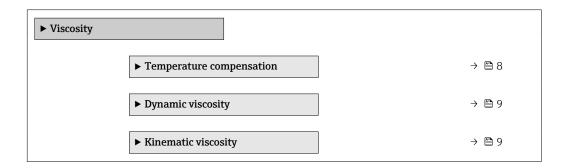
The application package is compatible with all the system integration options. Interfaces with digital communication are required to access the data saved in the device. The speed of data transmission depends on the type of communication interface used.

System integration 3

Extended choice of measured variables if the **Viscosity application package is used**:

- Dynamic viscosity
- Kinematic viscosity
- Temp. compensated dynamic viscosity
- Temp. compensated kinematic viscosity

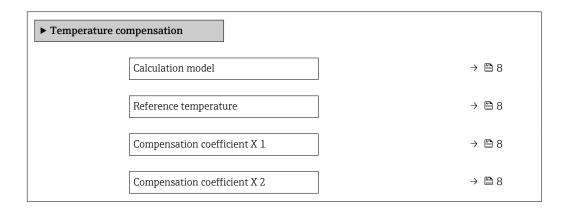
For detailed information on system integration, see:


Operating Instructions for the device $\rightarrow \stackrel{\triangle}{=} 5$

4 Commissioning

4.1 Advanced settings

Navigation


"Setup" menu \rightarrow Advanced setup \rightarrow Viscosity

4.1.1 Temperature compensation ¹⁾

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Viscosity \rightarrow Temperature compensation

Parameter overview with brief description

Parameter	Description	Selection / User entry	Factory setting
Calculation model	Select a formula for the temperature compensation of viscosity.	Power lawExponentialPolynomial	Polynomial
Reference temperature	Enter reference temperature used to calculate the temperature compensated viscosity.	-273.15 to 99 999 ℃	0°C
Compensation coefficient X 1	Enter compensation coefficient used to calculate the temperature compensated viscosity.	Signed floating-point number	0
Compensation coefficient X 2	Enter compensation coefficient used to calculate the temperature compensated viscosity.	Signed floating-point number	0

4.1.2 Dynamic viscosity

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Viscosity \rightarrow Dynamic viscosity

Parameter overview with brief description

Parameter	Description	Selection	Factory setting
Dynamic viscosity unit	Select dynamic viscosity unit.	Unit choose list	Pa s
	Result		
	The selected unit applies for: Dynamic viscosity parameter (gases) Dynamic viscosity parameter (liquids)		

4.1.3 Kinematic viscosity

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Viscosity \rightarrow Kinematic viscosity

Parameter overview with brief description

Parameter	Description	Selection	Factory setting
Kinematic viscosity unit	Select kinematic viscosity unit.	Unit choose list	cSt

4.2 Simulation

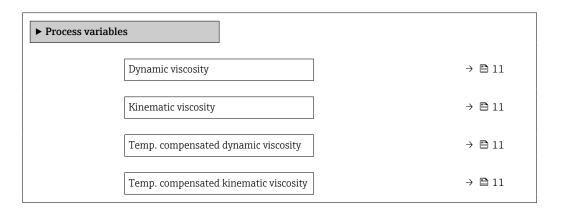
Select a process variable for the simulation, thereby activating it.

Navigation

"Diagnostics" menu o Simulation o Assign simulation process variable

Parameter overview with brief description

Parameter	Description	Selection	Factory setting
Assign simulation process variable	Select a process variable for the simulation process that is activated.	Off Mass flow Volume flow Corrected volume flow Density Reference density Temperature Dynamic viscosity Kinematic viscosity Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Time period signal frequency (TPS)*	Off


 $^{^{\}star}$ Visibility depends on order options or device settings

5 Operation

5.1 Reading measured values

Navigation

"Diagnostics" menu \rightarrow Measured values \rightarrow Process variables

Parameter overview with brief description

Parameter	Prerequisite	Description	User interface
Dynamic viscosity	For the following order code: "Application package", option EG "Viscosity" The software options currently enabled are displayed in the Software option overview parameter.	Displays the dynamic viscosity that is currently calculated. Dependency The unit is taken from the Dynamic viscosity unit parameter (> 9).	Signed floating-point number
Kinematic viscosity	For the following order code: "Application package", option EG "Viscosity" The software options currently enabled are displayed in the Software option overview parameter.	Displays the kinematic viscosity that is currently calculated. Dependency The unit is taken from the Kinematic viscosity unit parameter (→ 🗎 9).	Signed floating-point number
Temp. compensated dynamic viscosity	For the following order code: "Application package", option EG "Viscosity" The software options currently enabled are displayed in the Software option overview parameter.	Displays the temperature compensation that is currently calculated for the viscosity. Dependency The unit is taken from the Dynamic viscosity unit parameter (> 9).	Signed floating-point number
Temp. compensated kinematic viscosity	For the following order code: "Application package", option EG "Viscosity" The software options currently enabled are displayed in the Software option overview parameter.	Displays the temperature compensation that is currently calculated for the kinetic viscosity. Dependency The unit is taken from the Kinematic viscosity unit parameter (0578) (→ 9).	Signed floating-point number

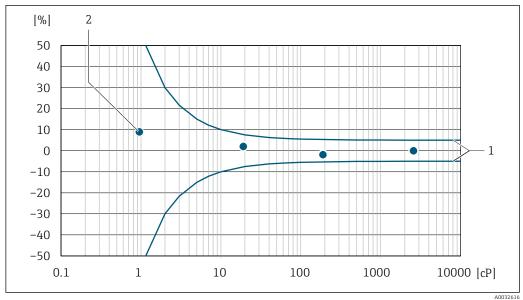
6 Technical data

6.1 Input

6.1.1 Measuring range

Measuring range for viscosity

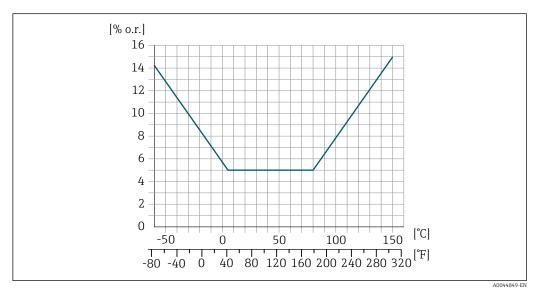
DN		Viscosity measurement in the	Viscosity measurement in the Ex-Bereich		
[mm]	[in]	non-hazardous area [mPa∙s]	[mPa·s]		
8	3/8	5500	5500		
15	1/2	10300	10300		
15 FB	½ FB	20000	20000		
25	1	20000	20000		
25 FB	1 FB	20000	5500 (12000 ¹⁾)		
40	1½	20000	5500 (12000 ¹⁾)		
40 FB	1½ FB	20000	8000 (20000 ¹⁾)		
50	2	20000	8000 (20000 ¹⁾)		
50 FB	2 FB	20000	2700 (8000 ¹⁾)		
80	3	20000	2700 (8000 ¹⁾)		
FB = Ft	ull bore				


The maximum specified viscosity can be achieved if 66% (assumed value) of the entire exciter current can be used for viscosity measurement. This is done using the electronic exciter current management and cannot be influenced by the customer or the Service Department.

The energy available for the measuring system is divided into energy for the measurement of mass flow and energy for the measurement of viscosity. Flow measurement always has priority. The values indicated are minimum values, which must also be observed even under challenging process conditions (e.g. gas pockets).

6.2 Performance characteristics

6.2.1 Maximum measured error


Accuracy for Newtonian	\pm 5% \pm 0.5 mPa·s (cP) of reading
liquids	

 \blacksquare 1 Error curve indicating the relative error as a % for dynamic viscosity in cP

- 1 Maximum measured error
- 2 Typical measuring points of viscosity calibration

If the process temperature is outside the valid range+5 to +80 °C (+41 to +176 °F) the additional measurement error is ± 0.14 % o.r./°C (± 0.07 %o.r./°F)

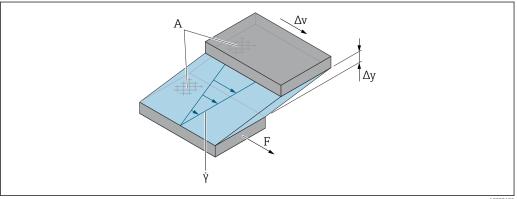
 \blacksquare 2 Measurement error if process temperature is not within the valid range

6.2.2 Repeatability

 $\pm 0.5\%$ of reading

7 Viscosity fundamentals

Viscosity describes the flow properties of fluids (liquid and gas). This property depends on forces acting between the molecules. The more viscous a fluid, the stronger these intermolecular forces. As a result, a larger internal resistance has to be overcome to move through the fluid or apply a force to it.


7.1 Definitions of viscosity (general)

Consider a liquid between two parallel plates. If you slide one of the plates parallel against the other in a horizontal direction, $\rightarrow \blacksquare 3$, $\triangleq 14$ a certain force F (shear force) is needed as the liquid acts against the flow movement in the form of an internal resistance.

The relationship between the moving surface A and the shear force F is known as shear stress $\boldsymbol{\tau}.$

$$\tau \; = \; \frac{F}{A} \hspace{1cm} \text{Pa} \; = \; \frac{N}{m^2}$$

Δ0019949

■ 3 Shear rate

A Friction surface

F Shear force

ÿ Shear rate

Δv Change in velocity

 Δy Distance between plates or layer thickness

The relationship between the change in velocity Δv and layer thickness Δy (distance between the plates) is known as the shear rate $\dot{\gamma}$.

$$\dot{\gamma} = \frac{\Delta y}{\Delta y}$$
 $\frac{m}{m.s} = \frac{1}{s}$

A0019948

7.1.1 Dynamic viscosity

The dynamic viscosity (\eta) is calculated from the ratio of the shear stress τ to the shear rate $\dot{\gamma}.$

$$\eta = \frac{\tau}{\dot{\gamma}} = \frac{F/A}{\Delta v/\Delta y} = \frac{F \cdot \Delta y}{A \cdot \Delta v} \qquad \frac{N/m^2}{(m/s)/m} = \frac{N \cdot m}{(m/s) \cdot m^2} = \frac{N \cdot s}{m^2} = Pa \cdot s$$

A001994

The SI unit for dynamic viscosity η is the pascal second (Pa \cdot s). The poise (P) unit is also widely used, where:

 $1 \text{ mPa} \cdot \text{s} = 1 \text{ cP}$

 $1 \text{ Pa} \cdot \text{s} = 10 \text{ P}$

A selection of the most commonly used viscosity units: $\Rightarrow \triangleq 22$.

7.1.2 Kinematic viscosity

The kinematic viscosity v is the quotient from the dynamic viscosity η of the liquid and its density ρ .

$$v = \frac{\eta}{\rho}$$
 $\frac{(\text{N} \cdot \text{s})/\text{m}^2}{\text{kg/m}^3} = \frac{(\text{kg} \cdot \text{m/s}^2 \cdot \text{s})/\text{m}^2}{\text{kg/m}^3} = \frac{\text{m}^2}{\text{s}}$

A00100E0

The SI unit of kinematic viscosity is m^2/s . However, the stokes (St) unit is also widely used, where:

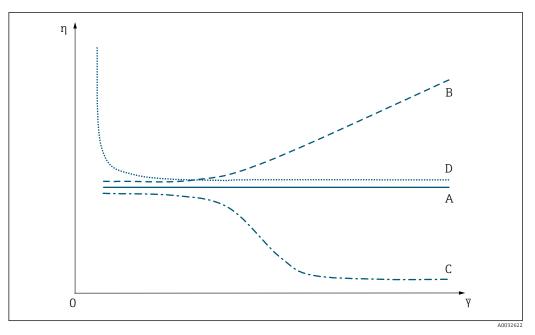
 $1 \text{ m}^2/\text{s} = 1 000 000 \text{ cSt}$

 $1 \text{ mm}^2/\text{s} = 1 \text{ cSt (centistokes)}$

A selection of the most commonly used viscosity units: $\Rightarrow \triangleq 22$.

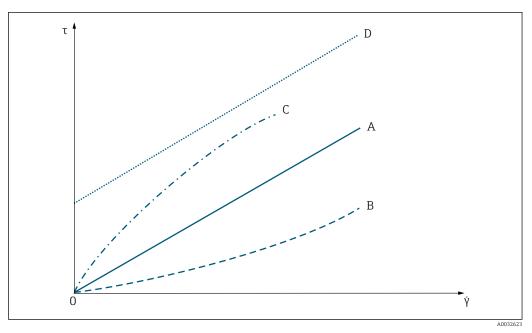
7.2 Differentiating viscous behavior

A distinction is made between Newtonian liquids and non-Newtonian liquids based on their viscosity behavior at different shear rates. In Newtonian liquids, the viscosity behavior remains constant at different shear rates. In non-Newtonian liquids, the viscosity behavior changes at different shear rates.


7.2.1 Newtonian liquid

	Example	Viscosity behavior with increasing shear rate
Feature	WaterLube oils	No effect

7.2.2 Non-Newtonian liquid


		Example	Viscosity behavior with increasing shear rate
Time-independent behavior	Dilatant liquid	 Concentrated solutions of sugar and water Aqueous suspensions of rice starch Wet sand 	Increases
	Pseudoplastic liquid	 Gelatine Clay Milk Cream Fruit juice concentrate Salad dressings 	Decreases
	Bingham liquid	Certain emulsionsOil paint	Decreases but acts like a Newtonian liquid as of a certain shear rate
Time-dependent behavior	Thixotropic liquid	YogurtMayonnaiseMargarineIce creamPaints	Decreases but assumes the original state when in quiescent state
	Rheopectic liquid	Gypsum in waterPrinter ink	Increases but drops again when in quiescent state

7.2.3 Viscosity and flow curves

■ 4 Viscosity curves

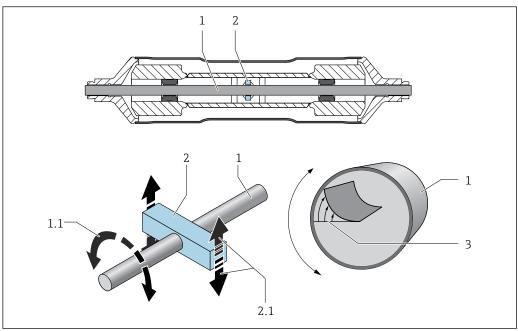
- A Viscosity curve of a Newtonian liquid
- B Viscosity curve of a dilatant liquid
- C Viscosity curve of a pseudoplastic liquid
- D Viscosity curve of a Bingham-plastic liquid
- ÿ Shear rate
- η Dynamic viscosity

■ 5 Flow curves

A Flow curve of a Newtonian liquid

B Flow curve of a dilatant liquid

C Flow curve of a pseudoplastic liquid


D Flow curve of a Bingham-plastic liquid

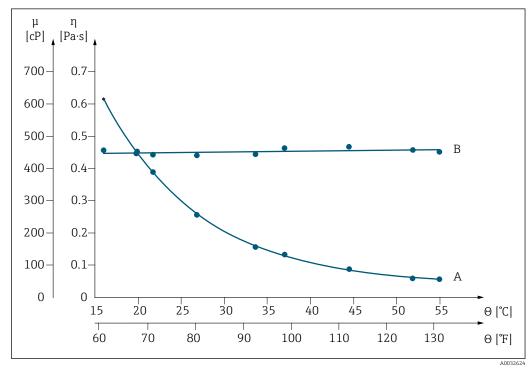
ÿ Shear rate

 $\tau \hspace{1cm} \text{Shear stress} \\$

7.3 Principle of viscosity measurement with Promass I

The patented measuring principle is based on torsional movement of the measuring tube:

- Measuring tube
- 1.1 Rotational movement of the measuring tube
- Torsion bar 2
- 2.1 Rotational movement of the torsion bar
- Velocity profile in the medium


A "torsion bar" (2) fitted to the measuring tube (1) imposes a rotational movement (torsional movement) which is used to measure viscosity. This torsional movement creates a velocity profile in the medium (3) across the pipe cross-section. The velocity profile is thus an expression of the viscosity. The viscosity of the medium dampens the oscillation of the measuring tube. Therefore, if viscosity is high, more excitation power (force, in other words) is needed to sustain the torsional movement. Thus, dynamic viscosity is determined by measuring the required excitation power. Fluid density is measured independently and simultaneously, so the kinematic viscosity can be determined as well.

7.4 Temperature correction of the viscosity value

The viscosity of a liquid depends on the temperature of the medium. Usually, the viscosity decreases with increasing temperatures.

The measuring device calculates the temperature correction of the viscosity value on the basis of the compensation coefficients X1 and X2 \rightarrow \boxtimes 8.

The following example illustrates the correction of the viscosity to 20 $^{\circ}$ C:

 \blacksquare 6 Temperature correction of viscosity of glycerin to 20 $^{\circ}$ C

 μ , η Dynamic viscosity

 θ Temperature

A Measured value under process conditions

B Calculated standard viscosity referenced to 20°C

7.5 Formula models for temperature correction

The measuring device calculates the temperature correction of the viscosity value on the basis of the following formula models:

Models	Dynamic viscosity η
Power law	$\eta_{\rm N} = \eta \cdot x_1 \cdot (\theta/\theta_{\rm ref})^{x_2}$
Exponential	$\eta_N = \eta \cdot x_1 \cdot e^{x_2 \cdot (\theta - \theta ref)}$
Polynomial	$\eta_{N} = \eta \cdot [1 + x_{1} \cdot (\theta - \theta_{ref}) + x_{2} \cdot (\theta - \theta_{ref})]^{2}$

Models	Kinematic viscosity η
General	$v_N = \eta_N / \rho_N$

η_{N}	Dynamic viscosity under standard/laboratory conditions
η	Dynamic viscosity at process temperature
x ₁	Compensation coefficient X_1
x ₂	Compensation coefficient X ₂
θ	Process temperature
θref	Reference temperature
$v_{\rm N}$	Kinematic viscosity under standard/laboratory conditions
ρ_{N}	Reference density

- In the event of large temperature differences between the liquid and the environment, pipe heating or insulation can help avoid cooling effects of the liquid.
 - If more than one liquid should be measured with temperature correction the calculation should take place externally (e.g. in a PLC).

8 Comparison tables for viscosities

Centipoise (cP) (mPa·s) 1)	Poise (P)	DIN cup 4 (s) ²⁾	Pascal second (Pa·s) ³⁾	°Engler	Ford cup 4 (s) ²⁾
10	0.1	10	0.01	1.83	5
15	0.15	11	0.015	2.32	8
20	0.2	12	0.02	2.87	10
25	0.25	13	0.025	3.46	12
30	0.3	14	0.03	4.07	14
40	0.4	15	0.04	5.33	18
50	0.5	16	0.05	6.62	22
60	0.6	18	0.06	7.93	25
70	0.7	21	0.07	9.23	28
80	0.8	23	0.08	10.54	32
90	0.9	25	0.09	11.86	34
100	1	27	0.1	13.17	37
120	1.2	31	0.12	15.8	43
140	1.4	34	0.14	18.43	48
160	1.6	38	0.16	21.06	54
180	1.8	43	0.18	23.69	58
200	2	46	0.2	26.3	64
220	2.2	51	0.22	28.9	70
240	2.4	55	0.24	31.6	75
260	2.6	58	0.26	34.2	80
280	2.8	63	0.28	36.8	86
300	3	68	0.3	39.4	93
320	3.2	72	0.32	42.1	100
340	3.4	76	0.34	44.7	107
360	3.6	82	0.36	47.4	112
380	3.8	86	0.38	50	119
400	4	90	0.4	52	124
420	4.2	95	0.42	55.1	130
440	4.4	100	0.44	57.6	138
460	4.6	104	0.46	60.4	142
480	4.8	109	0.48	63.0	150
500	5.0	112	0.50	65.8	155
550	5.5	124	0.55	72.4	170
600	6.0	135	0.60	79.0	185
700	7.0	160	0.70	92.1	220
800	8.0	172	0.80	105.2	249
900	9.0	195	0.90	117.8	280
1000	10.0	218	1	131.6	310

- 1) Milli Pascal second
- 2) Second
- 3) Pascal second

www.addresses.endress.com