Technische Information **Proservo NMS80**

Tankstandmessung

Anwendungsbereich

Die intelligenten Tankmessgeräte der Serie Proservo NMS8x wurden für die hochpräzise Füllstandsmessung von Flüssigkeiten während der Lagerung und im Prozess konzipiert. Die Geräte sind genau auf die Anforderungen der Tanklagerbestandsverwaltung, der Lagerhaltung, des eichpflichtigen Verkehrs und der Verlustüberwachung abgestimmt und bieten darüber hinaus Kosteneinsparungen und Betriebssicherheit.

Typische Einsatzbereiche

- Genaue Füllstands-, Trennschicht- und Dichtemessung von Öl (Kraftstoffen), Petrochemikalien, Chemikalien und Alkohol
- Der tankseitig montierte NMS8x eignet sich ideal für Einzel- oder Mehrfunktionsinstallationen; er deckt eine breite Palette von Messfunktionen wie Füllstand von Flüssigkeiten, Trennschicht, Punktdichte, Dichteprofil, Tankbodenhöhe und Wasserstand ab und integriert zahlreiche Tanksensor-Messfunktionen wie Wasserstand, Temperatur und Druck.

Ihre Vorteile

- SIL2/3-zertifiziert gemäß IEC 61508 (Min, Max, kontinuierliche Füllstandsmessung)
- SIL2 durch einzelnen Kanal, SIL3 durch zwei Kanäle (homogene oder diversitäre Redundanz)
- Misst den Füllstand von Flüssigkeiten mit einer Genauigkeit von bis zu +/-0,4 mm (0,016 in)
- Messung von bis zu 2 Trennschichten und der Dichte von bis zu 3 Flüssigkeitsphasen
- Messung des Dichteprofils von bis zu 50 Punkten im gesamten Tank oder in der oberen Schicht - konfigurierbar
- Die benetzten Teile sind von der Elektronikplatine vollständig getrennt
- Montage auf der Tankoberseite mit einem 3"-Flansch
- Vielzahl an Ausgangssignalen, inklusive V1, Modbus RS485 und HART-Protokoll
- Werkstoff und Druckstufe der benetzten Teile können ausgewählt werden
- Geeignet für Einsatzbereiche mit atmosphärischem Druck und Hochdruck bis 6 bar/600 kPa/87 psi
- Integration von z. B. Temperatur-, Wasserstand-, Druck-, Überfüllschutzsensor
- Direkter Anschluss von Punkt- und Durchschnittstemperatursensoren

[Fortsetzung von der Titelseite]

- Robustes Gehäuse nach IP66/68, NEMA Type 4x/6P Encl., Edelstahl oder Aluminium
 Zahlreiche Sprachoptionen für Bedienung und Anzeige
 Einfache Inbetriebnahme, Instandhaltung und Diagnose über FieldCare

Inhaltsverzeichnis

Hinweise zum Dokument		Viskosität	
Arbeitsweise und Systemaufbau	. 6	Eichzulassung	49
Integration von Tanksensoren	. 8	Konstruktiver Aufbau	50
Messsystem		Abmessungen	
•		Gewicht	
Fingong/Auggong	10	Werkstoffe	
Eingang/Ausgang			
Füllstandsmessung	18	Teile gemäß NACE-Standard	27
Aktiver HART Ex ia/IS Eingang	19		
I/O-Module	20	Anzeige und Bedienoberfläche	
Energieversorgung	29	Bedienoptionen	53
Klemmenbelegung		Vor-Ort-Bedienung	53
Versorgungsspannung		Fernbedienung	54
Leistungsaufnahme	30		55
Quellen für Messbefehle		3	
Kabeleinführungen	33	741 (21 - 4 1 7 - 1	- -
Kabelspezifikation			56
Überspannungsschutz	33	CE-Kennzeichnung	56
Überspannungskategorie	33	RCM Kennzeichnung	56
Verschmutzungsgrad		Ex-Zulassung	56
v crociminatzangograa	7.	Einzelne Dichtung gemäß ANSI/ISA 12.27.01	56
		Funktionale Sicherheit (SIL)	56
Leistungsmerkmale	35	WHG	
Referenzbedingungen	35	Eichzulassung	
Messwertauflösung	35	CRN-Zulassung	
Maximale Messabweichung	35	Test, Zeugnis	57
Hysterese		Weitere Normen und Richtlinien	
Wiederholpräzision		Kalibrierung	58
Linearität			
Langzeitdrift		Bestellinformationen	59
Einfluss Umgebungstemperatur			59
Einfluss Messstofftemperatur	36	Kalibrierzertifikat	59
Einfluss Messstoffdruck			59
Auswirkung der Gasphase	36	Zustand bei Auslieferung	59
Einbau	37	Anwendungspakete	61
Voraussetzungen	37		
3		Erweiterte Verfahren zur Tankstandmessung	01
Umgebungsbereich			66
Umgebungstemperaturbereich	46	Gerätespezifisches Zubehör	66
Klassifizierung der Umgebungsbedingungen nach DIN EN		Kommunikationsspezifisches Zubehör	71
60721-3-4		Dienstleistungsspezifisches Zubehör	71
Lagertemperatur		Systemkomponenten	71
Feuchte			
Schutzart		Dokumentation	72
Stoßfestigkeit	46	Technische Information (TI)	
Schwingungsfestigkeit	46	Kurzanleitung (KA)	
Elektromagnetische Verträglichkeit (EMV)	46	Betriebsanleitung (BA)	
Maximale Einsatzhöhe	46	Beschreibung Geräteparameter (GP)	
		Sicherheitshinweise (XA)	
Prozess	47		
Prozesstemperaturbereich		Einbauanleitung (EA)	14
Prozessdruckbereich	47		
Messstoffdichte	48	Eingetragene Marken	72
Mittlere Dichtedifferenz für Trennschichtmessung	48		
	I		

Hinweise zum Dokument

Verwendete Symbole

Warnhinweissymbole

▲ GEFAHR

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu Tod oder schwerer Körperverletzung führen wird.

WARNUNG

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu Tod oder schwerer Körperverletzung führen kann.

▲ VORSICHT

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu leichter oder mittelschwerer Körperverletzung führen kann.

HINWEIS

Dieser Hinweis enthält Informationen zu Vorgehensweisen und weiterführenden Sachverhalten, die keine Körperverletzung nach sich ziehen.

Elektrische Symbole

Wechselstrom

Gleich- und Wechselstrom

===

Gleichstrom

Erdanschluss

Eine geerdete Klemme, die vom Gesichtspunkt des Benutzers über ein Erdungssystem geerdet ist.

Schutzerde (PE: Protective earth)

Erdungsklemmen, die geerdet werden müssen, bevor andere Anschlüsse hergestellt werden dürfen.

Die Erdungsklemmen befinden sich innen und außen am Gerät:

- Innere Erdungsklemme: Schutzerde wird mit dem Versorgungsnetz verbunden.
- Äußere Erdungsklemme: Gerät wird mit dem Erdungssystem der Anlage verbunden.

Werkzeugsymbole

Kreuzschlitzschraubendreher

Schlitzschraubendreher

Torxschraubendreher

) ⊌

Innensechskantschlüssel

Gabelschlüssel

Symbole für Informationstypen und Grafiken

Erlaubt

Abläufe, Prozesse oder Handlungen, die erlaubt sind

✓ ✓ Zu bevorzugen

Abläufe, Prozesse oder Handlungen, die zu bevorzugen sind

▼ Verboten

Abläufe, Prozesse oder Handlungen, die verboten sind

🚹 Tipp

Kennzeichnet zusätzliche Informationen

Verweis auf Dokumentation

Verweis auf Abbildung

Zu beachtender Hinweis oder einzelner Handlungsschritt

1., 2., 3.

Handlungs schritte

Ergebnis eines Handlungsschritts

@

Sichtkontrolle

Bedienung via Bedientool

Schreibgeschützter Parameter

1, 2, 3, ...

Positionsnummern

A, B, C, ...

Ansichten

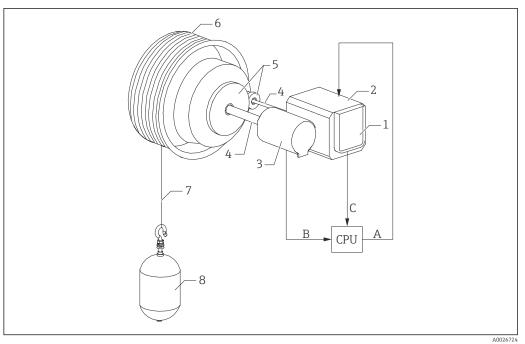
$\triangle \rightarrow \square$ Sicherheitshinweis

Beachten Sie die Sicherheitshinweise in der zugehörigen Betriebsanleitung

$\begin{tabular}{ll} \hline \blacksquare & Temperaturbeständigkeit Anschlusskabel \\ \hline \end{tabular}$

Gibt den Mindestwert für die Temperaturbeständigkeit der Anschlusskabel an

Arbeitsweise und Systemaufbau

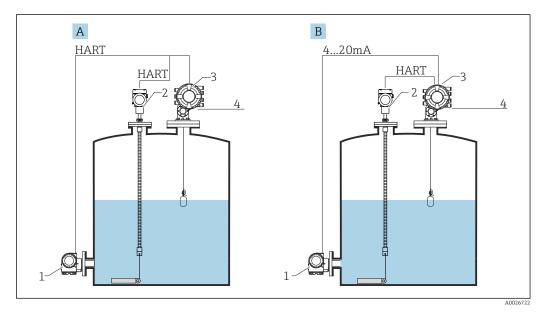

Messprinzip

Der NMS8x ist ein intelligentes Tankmessgerät zur hochgenauen Messung von Füllständen. Das System basiert auf dem Prinzip der Verdrängung.

Ein kleiner Verdränger wird mithilfe eines Schrittmotors präzise in einer Flüssigkeit positioniert. Der Verdränger hängt an einem Messdraht, der auf einer mit feinen Rillen versehenen Messtrommel aufgewickelt ist. Der NMS8x zählt die Umdrehungen der Messtrommel, um zu berechnen, wie viel Messdraht abgewickelt wird, und so die Änderung des Flüssigkeitsstands zu erfassen.

Die Messtrommel wird über Kopplungsmagnete angetrieben, die durch das Trommelgehäuse vollständig voneinander getrennt sind. Die äußeren Magnete sind mit der Messtrommel verbunden, die inneren Magnete mit dem Antriebsmotor. Während sich die inneren Magnete drehen, veranlasst ihre magnetische Anziehungskraft, dass sich die äußeren Magnete mitdrehen, sodass die gesamte Trommelbaugruppe rotiert. Die Änderung des scheinbaren Verdrängergewichts am Draht erzeugt ein Drehmoment auf den äußeren Magneten, wodurch es zu einer Änderung des magnetischen Flusses kommt. Diese zwischen den Komponenten der Messtrommel wirkenden Änderungen werden von einem speziellen elektromagnetischen Messumformer auf den inneren Magneten erfasst. Der Messumformer überträgt das Gewichtssignal nach einem berührungslosen Prinzip (patentiert) an eine CPU. Der Motor wird angesteuert, um das Gewichtssignal konstant auf einem vorgegebenen Wert zu halten, der durch den Messbefehl definiert wurde.

Wenn der Verdränger abgesenkt wird und die Flüssigkeit berührt, wird das Gewicht des Verdrängers durch die Auftriebskraft der Flüssigkeit verringert; dieses scheinbare Verdrängergewicht wird durch einen temperaturkompensierten magnetischen Messumformer gemessen. Dadurch ändert sich das Drehmoment in der Magnetverbindung, was von sechs Hall-Sensoren gemessen wird. An den Steuerkreislauf des Motors wird ein Signal gesendet, das das Gewicht des Verdrängers anzeigt. Sobald die Flüssigkeitsstände steigen oder fallen, wird die Verdrängerposition vom Antriebsmotor nachgeführt. Die Rotation der Messtrommel wird kontinuierlich ausgewertet, um den Füllstandswert mithilfe eines magnetischen Drehgebers zu bestimmen. Neben der Messung des Füllstands kann der NMS8x auch die Trennschichten zwischen bis zu drei Flüssigkeitsphasen, sowie Tankbodenhöhe, Punktdichte und Profildichte messen.



№ 1 Funktionsprinzip

- Α
- Daten Verdrängerposition Gewichtsangaben Daten der Messtrommelrotation Impulsgeber
- Motor
- Drehgeber Wellen
- B C 1 2 3 4 5 6 7
- Getriebe
- Messtrommel
- Messdraht
- Verdränger

Integration von Tanksensoren

Neben der Messung von Füllstand, Trennschichten, Tankbodenhöhe und Dichte kann das Gerät auch dazu eingesetzt werden, Tanksensoren in Bestandsführungssysteme zu integrieren. Alle gemessenen und berechneten Werte lassen sich auf der integrierten Anzeige ausgeben. Zudem können sie über ein Feld-Kommunikationsprotokoll in ein Bestandsmanagementsystem übertragen werden.

■ 2 Messsystem für NMS80/NMS81

- A HART-Multidrop-Modus
- B HART- und Analogmodus
- 1 Drucktransmitter
- 2 Durchschnittstemperatur-Transmitter (NMT81)
- 3 Proservo NMS8x
- 4 Feldprotokoll überträgt Daten an ein Bestandsmanagementsystem

Typische von den Sensoren gemessene Werte sind:

- Füllstand
- Punkttemperatur
- Durchschnittstemperatur
- Wasserstand
- Druck
- Sekundärer Füllstandswert (für kritische Anwendungen)

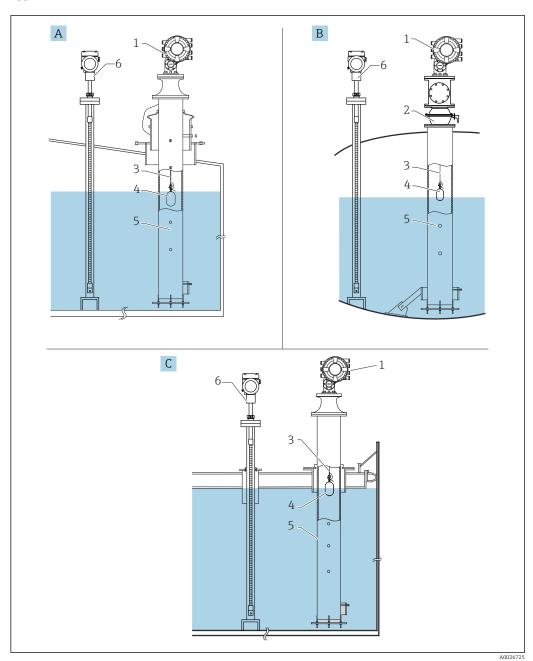
Hauptanwendungsbereiche

Aufgrund der zahlreichen Messfunktionen und Ausgangsoptionen sowie der kompakten Bauform kann der NMS8x in einer Vielzahl von Anwendungen zu minimalen Kosten eingesetzt werden.

Mineralölindustrie

Von der Ölproduktion bis zur Lagerung in einem Öldepot muss eine Vielzahl von Produkten gemessen und verwaltet werden. Die abgesetzte Tankstandmessung mit dem NMS8x in Kombination mit einem Bestandsmanagementsystem stellt eine ideale Methode zur Messung und Verwaltung des Tankinhalts dar.

Chemische Industrie


Für die benetzten Teile steht eine große Auswahl an Werkstoffen zur Verfügung, wodurch chemische Kompatibilität und eine lange Produktlebensdauer gewährleistet werden.

Kraftwerke

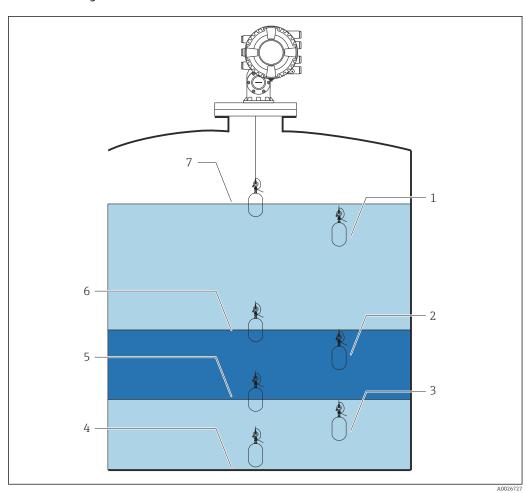
Brennstoff- und Ölfüllstände sind wichtige Anwendungsbereiche, in denen eine präzise Messung erforderlich ist, um einen sicheren Betrieb zu gewährleisten.

8

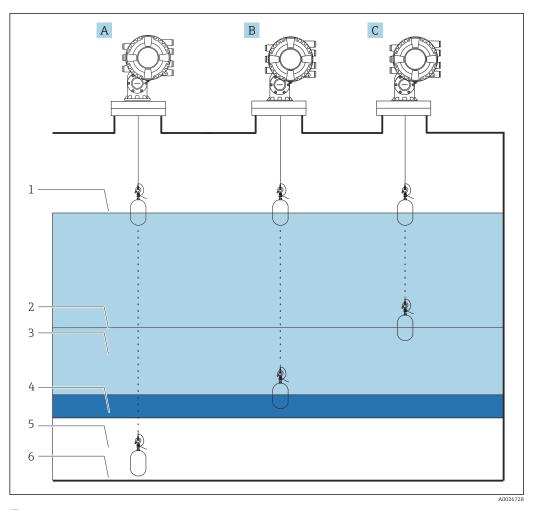
Typische Tankinstallation

■ 3 Typische Tankinstallation

- A Festdachtank
- B Hochdrucktank
- C Schwimmdachtank mit Schwallrohr
- 1 NMS8x
- 2 Kugelhahn
- 3 Messdraht
- 4 Verdränger
- 5 Schwallrohr
- 6 Prothermo NMT81
- Bei Installation des NMS8x auf einem Schwimmdachtank muss zum Schutz des Messdrahts ein Schwallrohr verwendet werden. Andernfalls kann der Draht durch Stöße von außen brechen.


Anwendungsbereich

Der NMS8x ist in erster Linie ein hochgenaues Füllstandsmessgerät, das zusätzlich die Möglichkeit bietet, die Dichte zu messen. Folgende Füllstandsmessungen werden unterstützt: Flüssigkeitsstand (Oberfläche) und Trennschicht(en) zwischen verschiedenen Flüssigkeiten sowie Tankbodenhöhe oder Peilplatte. Folgende Dichtemessungen werden unterstützt: Einzelpunkt (Punktmessungen) und Profilmessungen aller Flüssigkeiten in einem Tank.


Welcher Verdränger sich am besten eignet, hängt von den Bedingungen der jeweiligen Flüssigkeit und den Messfunktionen ab. Diese können wie folgt klassifiziert werden:

- Kontinuierliche Messwertausgabe, z. B. Füllstand, Trennschicht
- Einmaliger Messwert, z. B. Punktdichte, Tankprofil, Trennschichtprofil, manuelles Profil

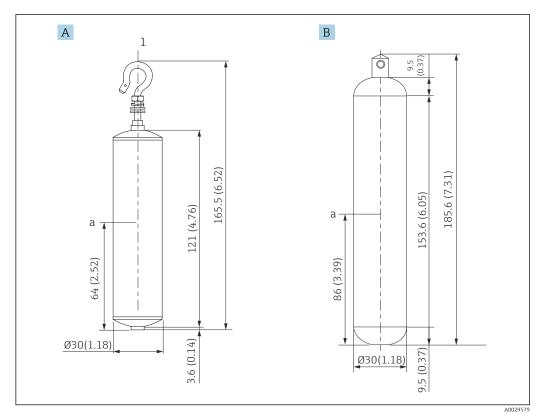
Messterminologie

- NMS8x mit standardmäßiger Füllstands-, Trennschicht- (2x), Tankbodenhöhe- und Punktdichtemessung (3x)
- 1 Obere Dichte
- 2 Mittlere Dichte
- 3 Untere Dichte
- 4 Tankboden
- 5 Untere Trennschicht
- 6 Obere Trennschicht
- 7 Füllstand

₽ 5 Dichteprofil-Messung

- Α Tankprofilmessung: Dichteprofilmessung im gesamten Tank
- Trennschichtprofilmessung: Dichteprofilmessung in der oberen Phase
- Manuelle Profilmessung: Dichteprofilmessung von einer spezifischen Position bis zum Füllstand С
- 1 Füllstand
- Manuelle Profilmessung Füllstand Obere Phase (Öl) Mittlere Phase (Emulsion)
- 2 3
- Untere Phase (Wasser)
- Tankboden

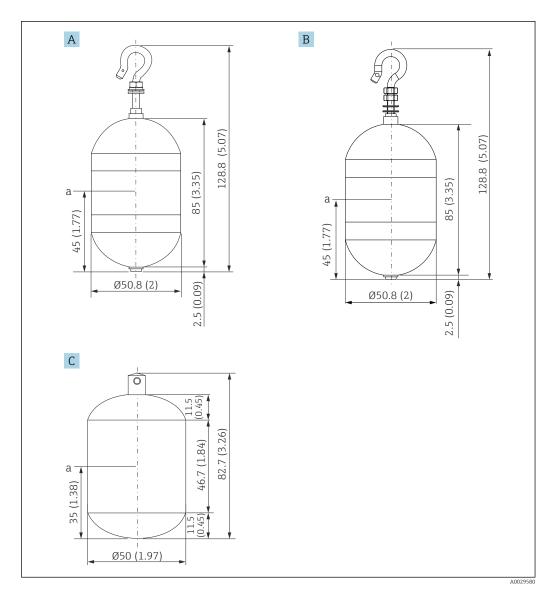
Auswahlhilfe Verdränger


Es steht eine Vielzahl an Verdrängern zur Verfügung, um die unterschiedlichsten Anwendungen abzudecken. Die Auswahl des richtigen Verdrängers gewährleistet optimale Leistung und Langlebigkeit. Folgende Richtlinien helfen bei der Auswahl des für die jeweilige Anwendung am besten geeigneten Verdrängers.

Verdrängertypen

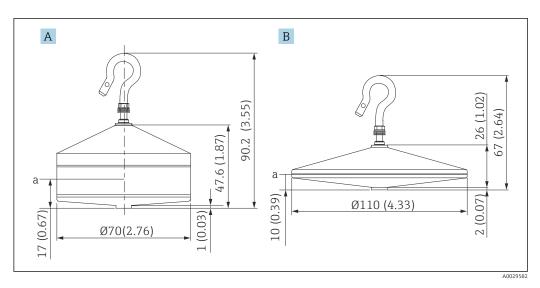
Folgende Verdränger sind für den NMS8x erhältlich:

30 mm (1,18 in)	50 mm (1,97 in)	70 mm (2,76 in)	110 mm (4,33 in)
316L/PTFE	316L/AlloyC276/PTFE	316L	316L


Verdrängermaße

- A Ø30 mm (1,18 in) 316L, zylindrischer Verdränger
- B Ø30 mm (1,18 in) PTFE, zylindrischer Verdränger
- a Eintauchpunkt

Merkmal	Ø30 mm (1,18 in) 316L zylindrischer Verdränger	Ø30 mm (1,18 in) PTFE zylindrischer Verdränger
Gewicht (g)	261	250
Volumen (ml)	84,3	118
Balancevolumen (ml)	41,7	59


Gewicht, Volumen und Balancevolumen werden individuell durch die jeweiligen Verdränger bestimmt und können auch in Abhängigkeit von den oben angegebenen Werten variieren.

- A Ø50 mm (1,97 in) 316L, zylindrischer Verdränger
- B Ø50 mm (1,97 in) AlloyC276, zylindrischer Verdränger
- C Ø50 mm (1,97 in) PTFE, zylindrischer Verdränger
- a Eintauchpunkt

Merkmal	ø50 mm (1,97 in) 316L zylindrischer Verdränger	ø50 mm (1,97 in) AlloyC276 zylindrischer Verdränger	ø50 mm (1,97 in) PTFE zylindrischer Verdränger
Gewicht (g)	253	253	250
Volumen (ml)	143	143	118
Balancevolumen (ml)	70,7	70,7	59

Gewicht, Volumen und Balancevolumen werden individuell durch die jeweiligen Verdränger bestimmt und können auch in Abhängigkeit von den oben angegebenen Werten variieren.

- A Ø70 mm (2,76 in) 316L, konischer Verdränger
- B Ø110 mm (4,33 in) 316L, konischer Verdränger
- a Eintauchpunkt

Merkmal	Ø70 mm (2,76 in) 316L, konischer Verdränger	Ø110 mm (4,33 in) 316L, konischer Verdränger
Gewicht (g)	245	223
Volumen (ml)	124	108
Balancevolumen (ml)	52,8	36,3

Gewicht, Volumen und Balancevolumen werden individuell durch die jeweiligen Verdränger bestimmt und können auch in Abhängigkeit von den oben angegebenen Werten variieren.

Empfohlene Verdränger nach Anwendung

Anwendung	Produktfüllstand	Trennschichthöhe	Dichte	
Viskose Flüssigkeiten	50 mm (1,97 in) PTFE	Nicht empfohlen	Nicht empfohlen	
Rohschmieröl (z. B. 50 mm (1,97 in) 316L Rohöl, Schweröl) 50 mm (1,97 in) PTFE		50 mm (1,97 in) 316L 50 mm (1,97 in) PTFE	50 mm (1,97 in) 316L 50 mm (1,97 in) PTFE	
Weißöl (z. B. Benzin, Diesel, Heizöl)	50 mm (1,97 in) oder 70 mm (2,76 in) 316L	50 mm (1,97 in) oder 70 mm (2,76 in) 316L	50 mm (1,97 in) oder 70 mm (2,76 in) 316L	
Flüssiggas, LPG/LNG	50 mm (1,97 in) oder 70 mm (2,76 in) 316L	50 mm (1,97 in) oder 70 mm (2,76 in) 316L	50 mm (1,97 in) oder 70 mm (2,76 in) 316L	
Korrosive Flüssigkeiten	50 mm (1,97 in) AlloyC276 50 mm (1,97 in) PTFE	50 mm (1,97 in) AlloyC276 50 mm (1,97 in) PTFE	50 mm (1,97 in) AlloyC276 50 mm (1,97 in) PTFE	

Produktfüllstand

Im Allgemeinen bieten Verdränger mit größeren Durchmessern unter ähnlichen Bedingungen eine höhere Genauigkeit.

Trennschicht(en)

Verdränger mit zylindrischer Bauform, abgerundeter Spitze und Boden zeichnen sich durch einen geringeren Widerstand aus, während sie durch die Flüssigkeit(en) fahren. Dies führt zu einer sanfteren Bewegung und schnelleren Trennschichtmessungen im Vergleich zu flachen Verdrängern - insbesondere bei Dichteprofilmessungen, die über die gesamte Tankhöhe vorgenommen werden.

i

Um einen Verdränger nach unten und durch die Flüssigkeiten fahren zu können, muss die Dichte des Verdrängers (Gewicht dividiert durch Volumen) höher sein als die Dichte der Flüssigkeit.

Tankbodenhöhe und Füllstand Peilplatte

70 mm (2,76 in) und 50 mm (1,97 in) Verdränger bieten einen geringeren Widerstand, während sie durch die Flüssigkeiten fahren. Dies gewährleistet eine sanftere Bewegung und schnellere Trennschichtmessungen.

Dichte

Da es sich bei der Dichte um das berechnete Ergebnis von zwei Messungen handelt, wird ein Verdränger mit höherem Volumen in der Regel die genaueste Dichtemessung liefern. In der Mehrzahl der Fälle empfehlen wir für die Dichtemessung unseren Verdränger mit einem Durchmesser von 50 mm (1,97 in).

In Anwendungen mit nicht viskosen Stoffen (z. B. Weißöl, LPG/LNG) arbeitet der 70 mm (2,76 in) Verdränger ebenfalls sehr gut.

Füllstand und Dichte

Wenn in einer Anwendung Füllstand- und Dichtemessung gleichermaßen erforderlich sind, dann bieten die Verdränger mit Durchmessern von 50 mm (1,97 in) und 70 mm (2,76 in) die beste Allround-Leistung.

Eichpflichtiger Verkehr

Der Verdränger mit einer Größe von 50 mm (1,97 in) oder größer ist die beste Wahl für NMi-Anfor-

Der konische 110 mm (4,33 in) Verdränger (316L) ist die notwendige Entscheidung für PTB-Anforderungen.

Werkstoffverträglichkeit

Die Verdränger sind in drei verschiedenen Standardwerkstoffen erhältlich. Die Werkstoffverträglichkeit sollte zunächst bestätigt werden, um einen sicheren Betrieb und eine optimale Leistung des NMS8x zu gewährleisten.

316L

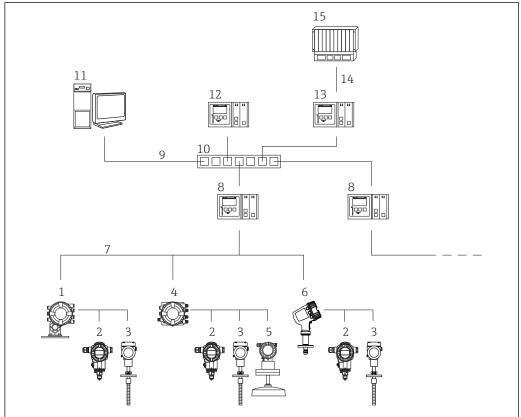
Für den NMS80 und den NMS81: Edelstahl ist ein in hohem Maße vielseitiger industrieller Werkstoff, der sich gegenüber einer Vielzahl von Chemikalien durch eine gute Verträglichkeit auszeichnet, so u. a. auch gegenüber der Mehrzahl der Weißöle und Rohschmieröle.

AlloyC276

Dieser hochleistungsfähige Werkstoff ist härter als 316L und bietet eine exzellente Beständigkeit gegen viele der rauesten Anwendungen mit korrosiven Chemikalien.

PTFE

Dieser hochleistungsfähige Werkstoff gehört zu den bekanntesten und vielseitigsten Polymeren und bietet einen der niedrigsten Reibungskoeffizienten überhaupt. Er zeichnet sich durch exzellente Leistung in viskosen/klebrigen Flüssigkeiten sowie eine hervorragende chemische Beständigkeit gegenüber einer Vielzahl von korrosiven Stoffen aus.


Größe des Prozessanschlusses

Der Prozessanschluss definiert den Tankstuzen und kann einen Einfluss auf die Verdrängergröße haben. Die Standardprozessanschlüsse für den NMS8x beginnen bei 3"/DN80 und eignen sich für die Mehrzahl von Tankstandanwendungen. Dementsprechend lassen sich die meisten Anwendungen auch mit einem der beiden erhältlichen Verdränger (50 mm oder 70 mm) abdecken. Für kleinere Prozessanschlüsse sind zudem Verdränger mit kleineren Durchmessern erhältlich.

Wenn der Verdränger mit einem Durchmesser von 110 mm (4,33 in) für die Eichzulassung (PTB) ausgewählt wird, empfiehlt es sich, eine separate Kalibrier- und Instandhaltungskammer zwischen dem NMS8x und dem Prozessanschluss auf dem Tank einzufügen.

Messsystem

- Gleichgültig, ob es um die Füllstandsmessung in einem einzigen Tank oder hochkomplexe, umfangreiche Anwendungen in großen Tanklagern geht – die Tankstandmessgeräte von Endress +Hauser sind in jedem Fall ein wesentlicher Bestandteil von Lösungen zur Tankanlagenverwaltung. Zur nahtlosen Integration in die Mehrzahl der herkömmlich eingesetzten Systeme steht eine Vielzahl von Datenausgabeprotokollen zur Verfügung.
- Eines der wichtigsten Beispiele hierfür ist Tankvision von Endress+Hauser. Tankvision ist ein skalierbares System, das ein lokales Tankmanagement für mehrere Messkreise über Modbus oder V1-Protokolle ermöglicht. Die erfassten Daten werden Prozessleitsystemen und anderen Anlagenverwaltungssystemen über den Host Link bereitgestellt.

A0027700

 \blacksquare 6 Integration von Tankstandmessgeräten in ein Bestandsmanagementsystem (typisches Beispiel)

- 1 Proservo NMS8x
- 2 Drucktransmitter (z. B. Cerabar)
- 3 Temperaturtransmitter (z. B. Prothermo)
- 4 Tankside Monitor NRF81
- 5 Micropilot S FMR5xx
- 6 Micropilot NMR8x
- 7 Feldprotokoll (z. B. Modbus, V1)
- 8 Tankvision Tank Scanner NXA820
- 9 Ethernet
- 10 EtherNet Switch
- 11 Internet-Browser
- 12 Tankvision Data Concentrator NXA821
- 13 Tankvision Host Link NXA822
- 14 Modbus
- 15 PLS oder SPS

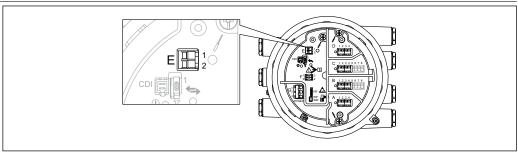
Eingang/Ausgang

Füllstandsmessung

Messgröße

Der Proservo ist in erster Linie ein hochgenaues Füllstandsmessgerät, das zusätzlich die Möglichkeit bietet, Trennschichten und Dichten zu messen. Folgende Füllstandsmessungen werden unterstützt: Flüssigkeitsstand (Oberfläche) und Trennschicht(en) zwischen verschiedenen Flüssigkeiten sowie Tankbodenhöhe oder Peilplatte. Folgende Dichtemessungen werden unterstützt: Einzelpunkt (so genannte "Punktmessungen") und Profilmessungen aller Flüssigkeiten in einem Tank.

Messbereich


- Füllstand und Trennschicht: max. 36 m (118 ft) (größere Bereiche als Sonderausführung möglich)
- Dichte: $0,430 \dots 2,000 \text{ g/cm}^3$

Der Messbereich für Füllstand und Trennschicht hängt vom Messdraht und von der Verträglichkeit des Werkstoffs gegenüber dem gemessenen Medium ab. Die Messdrähte sind in drei verschiedenen Standardwerkstoffen erhältlich. Die Werkstoffverträglichkeit sollte zunächst bestätigt werden, um einen sicheren Betrieb und eine optimale Messleistung zu gewährleisten.

Messbereich	Werkstoff
16 m (52,49 ft)	PFA > 316L
22 m (73,33 ft)	AlloyC276
28 m (93,33 ft), 36 m (118 ft)	316L

- Für Geräte mit Kalibrierung für den Eichbetrieb (10 Punkte) mit Option ITA oder ITC des Bestellmerkmals 150 "Genauigkeit, Eichzulassung": maximaler Messbereich: 40 m (131 ft)
- Wenn die Anwendung die oben aufgeführten Bereiche überschreitet, Kontakt mit Endress +Hauser aufnehmen, um technische Sonderprodukte/-lösungen zu erhalten.

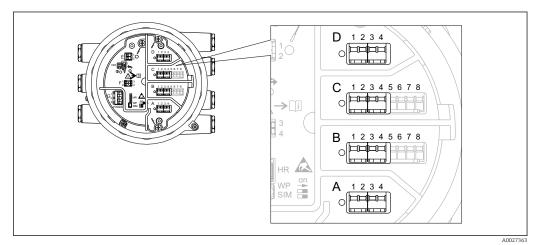
Aktiver HART Ex ia/IS Eingang

A0027364

- 7 Aktiver HART Ex ia/IS Eingang
- E1 HART+
- E2 HART-

Das Gerät verfügt über einen aktiven HART Ex ia/IS Eingang. Zusätzliche Funktionen stehen bereit, wenn folgende Endress+Hauser Geräte angeschlossen werden:

Prothermo NMT


Der gemessene Füllstand wird an den Prothermo übertragen. Der Prothermo nutzt diesen Füllstand, um die Durchschnittstemperatur des Produkts zu berechnen.

Technische Daten

- Messumformerspeisespannung 23,0 V 380 $\Omega \cdot I_{Last}$
- Maximale Last 500 Ω inklusive Signalleitung
- Maximaler Strom aller angeschlossenen Geräte 24 mA

Der aktive HART Ex ia/IS-Eingang steht standardmäßig zur Verfügung. Er braucht daher bei der Bestellung eines Geräts nicht explizit ausgewählt zu werden.

I/O-Module Übersicht

■ 8 Position der I/O-Module im Anschlussklemmenraum

Der Anschlussklemmenraum enthält je nach Bestellcode bis zu vier I/O-Module.

- An jeden dieser Slots können Module mit vier Klemmen angeschlossen werden.
- Module mit acht Klemmen können an die Slots B oder C angeschlossen werden.
- Die genaue Zuordnung der Module zu den Slots hängt von der Geräteausführung ab. Eine detaillierte Beschreibung ist in der Betriebsanleitung des jeweiligen Geräts zu finden.
- Folgende Beschränkungen gelten bei der Auswahl der Module:
 - Das Gerät kann maximal vier I/O-Module enthalten.
 - Es sind maximal zwei I/O-Module mit 8 Klemmen möglich.

Bestellmerkmal 040: "Primär Ausgang"

NMx8x - xxxx XX xx 040	XX				
O 1)	N 2)	T ³⁾	S 4)		
Modbus RS485 5)					
A1	1	4	→ 🖺 23		
V ⁵⁾ 1					
B1	1	4	→ 🖺 24		
4-20 mA HART Ex d/	XP ⁵⁾				
E1	1	8	→ 🖺 26		
4-20 mA HART Ex i/I	S ⁵⁾				
H1	1	8	→ 🖺 26		
WM550 ⁵⁾					
C1	1	4	→ 🖺 25		

- 1) Option
- 2) Anzahl der I/O-Module
- 3) Anzahl der Anschlüsse
- 4) Technische Daten
- 5) Typ des I/O-Moduls

Bestellmerkmal 050: "Sekundär I/O Analog"

NMx8x - xxxx xx <u>XX</u> xx ... 050

Bestellmerkmal 050: "Sekundär I/O Analog"

- Typ des I/O-Moduls:
 - 1 x "Ex d/XP 4-20 mA HART + RTD-Eingang"
 - Option

A1

- Anzahl der I/O-Module
- Anzahl Klemmen
 - 1 x 8
- Technische Daten → 🖺 26
- Typ des I/O-Moduls:
 - 2 x "Ex d/XP 4-20 mA HART + RTD-Eingang"
 - Option

A2

■ Anzahl der I/O-Module

2

Anzahl Klemmen

2 x 8

- Technische Daten → 🗎 26
- Typ des I/O-Moduls:

1 x "Ex i/IS 4-20 mA HART+ RTD-Eingang"

Option

В1

- Anzahl der I/O-Module
- Anzahl Klemmen
 - 1 x 8
- Technische Daten → 🗎 26
- Typ des I/O-Moduls:
 - 2 x "Ex i/IS 4-20 mA HART+ RTD-Eingang"
 - Option B2
 - Anzahl der I/O-Module
 - Anzahl Klemmen
 - 2 x 8
- Technische Daten → 🖺 26
- Typ des I/O-Moduls:
 - 1 x "Ex i/IS 4-20 mA HART + RTD-Eingang"
 - 1 x "Ex d/XP 4-20 mA HART + RTD-Eingang"
 - Option

C2

- Anzahl der I/O-Module
- Anzahl Klemmen
 - 2 x 8
- Technische Daten → 🖺 26
- Typ des I/O-Moduls:

Kein

- Option
 - ΧŌ
- Anzahl der I/O-Module

Anzahl Klemmen

■ Technische Daten -

Bestellmerkmal 060: "Sekundär I/O Digital Ex d/XP"

NMx8x - xxxx xx xx XX... 060

Bestellmerkmal 060: "Sekundär I/O Digital Ex d/XP"

- Typ des I/O-Moduls:
 - 1 x "2x Relais + 2x diskrete I/O"
 - Option
 - A1
 - Anzahl der I/O-Module
 - 1
 - Anzahl Klemmen
 - 1×4
- Typ des I/O-Moduls:
 - $2 \times "2x \text{ Relais} + 2x \text{ diskrete I/O"}$
 - lacktriangle Option
 - A2
 - Anzahl der I/O-Module
 - Anzahl Klemmen
 - 2 x 4 ■ Technische Daten → 🗎 28
- Typ des I/O-Moduls:
 - 3 x "2x Relais + 2x diskrete I/O"
 - Option
 - A3
 - Anzahl der I/O-Module3
 - Anzahl Klemmen
 - 3 x 4
 - Technische Daten → 🗎 28
- Typ des I/O-Moduls:
 - 1x "Modbus RS485"
 - Option
 - ВĪ
 - Anzahl der I/O-Module
 - Τ
 - Anzahl Klemmen
 - 3 x 4
- Technische Daten → 🖺 23
- Typ des I/O-Moduls:
 - 1x "Modbus RS485"
 - 1 x "2x Relais + 2x diskrete I/O"
 - Option
 - ВŽ
 - Anzahl der I/O-Module
 - 2
 - Anzahl Klemmen
 - 2 x 4
 - Technische Daten
 - → 🖺 23
 - → 🖺 28
- Typ des I/O-Moduls:
 - 1x "Modbus RS485"
 - 2 x "2x Relais + 2x diskrete I/O"
 - Option
 - в3
 - Anzahl der I/O-Module
 - 3
 - Anzahl Klemmen 3 x 4
 - Technische Daten
 - → 23→ 28

- Typ des I/O-Moduls:
 - 1 x "WM550"
 - Option

E1

■ Anzahl der I/O-Module

1

- Anzahl Klemmen
 - 1 x 4
- Technische Daten → 🖺 25
- Typ des I/O-Moduls:
 - 1 x "WM550"
 - $1 \times "2x \text{ Relais} + 2x \text{ diskrete I/O"}$
 - OptionF2
 - Anzahl der I/O-Module
 - 2
 - Anzahl Klemmen2 x 4
 - Technische Daten → 🖺 25
- Typ des I/O-Moduls:
 - 1 x "WM550"
 - 2 x "2x Relais + 2x diskrete I/O"
 - Option

E3

- Anzahl der I/O-Module
 - 3
- Anzahl Klemmen
 - 3 x 4
- Typ des I/O-Moduls:

Kein

- Option
 - X0
- Anzahl der I/O-Module

0

Anzahl Klemmen

0

■ Technische Daten -

"Modbus RS485": Technische Daten

Anzahl der Geräte

Max. 15 Geräte pro Messkreis

Baudrate: auswählbar

- 600 bit/s
- 1200 bit/s
- 2400 bit/s
- 4800 bit/s
- 9600 bit/s
- \blacksquare 19200 bit/s

Parität: auswählbar

- Ungerade
- Gerade
- Keine

Kabe!

3-Leiter, mit Abschirmung

Die Abschirmung muss im Gehäuse angeschlossen werden

Abschlusswiderstände

In spezifischen Umgebungen nach Bedarf einzustellen

Topologie

Serieller Bus

Übertragungsdistanz

Maximal 1200 m (3900 ft)

Geräteadresse

Jeder Transmitter besitzt eine eindeutige Busadresse, die in der Software des Transmitters konfiguriert ist

Isolierung

Buseingänge sind von der übrigen Elektronik galvanisch isoliert

Fehleralarm

Nach NAMUR NE 107 klassifizierte Fehlermeldung

"V1": Technische Daten

Anzahl der Geräte

Max. 10 Geräte pro Messkreis

Baudrate: auswählbar

3300 bit/s

Kabel

- 2-Leiter-Kabel (Twisted-Pair), Abschirmung empfohlen
- 2-Leiter, ungeschirmt

Abschlusswiderstände

Nicht erforderlich

Topologie

- Serieller Bus
- Baumstruktur

Übertragungsdistanz

Maximal 6000 m (19700 ft)

Geräteadresse

Jeder Transmitter besitzt eine eindeutige Busadresse, die in der Software des Transmitters konfiguriert ist

Isolierung

Serieller Kommunikationsschaltkreis von den übrigen Schaltkreisen isoliert

Fehleralarm

Nach NAMUR NE 107 klassifizierte Fehlermeldung

WM550: Technische Daten

Anzahl der Geräte

Maximal 15 1) Geräte pro Loop

Baudrate: auswählbar

- 600 bit/s
- 1200 bit/s
- 2400 bit/s
- 4800 bit/s

Kabel

- 2-Leiter-Kabel (Twisted-Pair), ungeschirmt (empfohlen)
- 2-Leiter, geschirmt oder ungeschirmt

Topologie

Stromschleife oder 2 redundante Stromschleifen (erfordert 2 I/O-Module WM550)

Übertragungsdistanz

Maximal 7000 m (22967 ft)

Geräteadresse

Jeder Transmitter besitzt eine eindeutige Busadresse, die in der Software des Transmitters konfiguriert ist

Isolierung

Serieller Kommunikationsschaltkreis von den übrigen Schaltkreisen isoliert

Fehleralarm

Nach NAMUR NE 107 klassifizierte Fehlermeldung

¹⁾ Die maximal zulässige Gerätezahl hängt von der maximalen Ausgangsspannung des Masters und dem Spannungsabfall an den Slaves ab. Für einen NXA820 mit Nxx8x-Geräten ist eine Höchstzahl von 12 Geräten gewährleistet

"4-20 mA HART" I/O-Modul (Ex d/XP oder Ex i/IS): Technische Daten

Allgemeine Daten

Anzahl der Geräte

Max. 6 Geräte pro Messkreis

Baudrate: auswählbar

1200 bit/s

Kabel

- 2-Leiter-Kabel (Twisted Pair), geschirmt
- Aderquerschnitt: 0,2 ... 2,5 mm² (24 ... 13 AWG)

Topologie

- Serieller Bus
- Baumstruktur

Übertragungsdistanz

Maximal 1200 m (3900 ft)

Geräteadresse

Jeder Messumformer in einer Signalschleife besitzt eine eindeutige Busadresse. Diese wird über die Software des Messumformers und/oder eine zusätzliche Konfigurationsumgebung wie ein Host-System oder den Field Communicator 475 festgelegt.

Isolierung

Buseingänge sind von der übrigen Elektronik galvanisch isoliert

Eingangsdaten

Betriebsmodi des Eingangs

- 4..20mA Eingang (1 externes Gerät)
- HART Master+4..20mA Eingang (1 externes Gerät)
- HART Master (bis zu 6 externe Geräte)

Interne Last (zu Masse)

400 Ω

Messbereich

0 ... 26 mA

Genauigkeit

±15 µA (nach Linearisierung und Kalibrierung)

Anschluss eines Prothermo NMT

Der gemessene Füllstand wird an den Prothermo übertragen. Der Prothermo nutzt diesen Füllstand, um die Durchschnittstemperatur des Produkts zu berechnen.

Anschluss einer RTD-Temperatursonde

2-, 3- oder 4-Leiter-Anschluss

Ausgangsdaten

Betriebsmodi des Ausgangs

- 4..20mA Ausgang
- HART Slave+4..20mA Ausgang

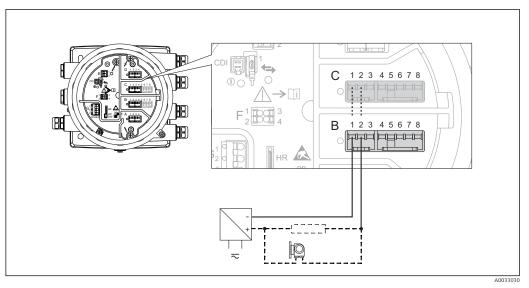
Ausgangsstrom

3 ... 24 mA

Genauigkeit

±15 µA (nach Linearisierung und Kalibrierung)

Fehleralarm


Nach NAMUR NE 107 klassifizierte HART-Fehlermeldung

Daten für passive Nutzung (Eingang oder Ausgang)

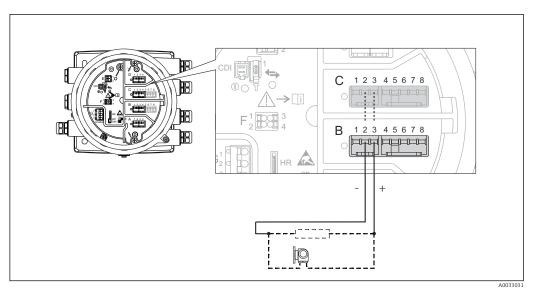
- Minimale Klemmenspannung 10,4 V²⁾
- Maximale Klemmenspannung 29 V²⁾

2)

Die Einhaltung dieser Werte ist zwingend erforderlich, um korrekte Messwerte zu gewährleisten.

■ 9 Passiver Eingang oder Ausgang: Anschlüsse 1 und 2 verwenden

Daten für aktive Nutzung (Eingang oder Ausgang)


Messumformerspeisespannung (Ex d/XP)

18,5 V - 360 $\Omega \cdot I_{Last}$

Messumformerspeisespannung (Ex i/IS)

20,0 V - 360 $\Omega \cdot I_{Last}$

• Ausgangslast max. 500 Ω inklusive Signalleitung 3)

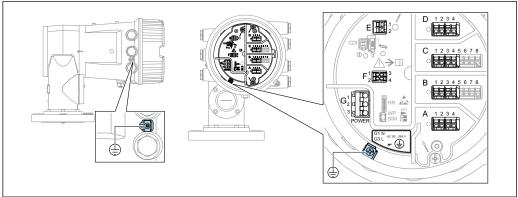
■ 10 Aktiver Eingang oder Ausgang: Anschlüsse 2 und 3 verwenden

³⁾ Die Einhaltung dieses Wertes ist zwingend erforderlich, um korrekte Messwerte zu gewährleisten.

"Digitales I/O-Modul": Technische Daten

Ausgang

- Relais-Schaltleistung für ohmsche Last
 - 30 V_{DC} @ 2 A
 - 250 V_{DC} @ 0,1 A
 - 250 V_{AC} @ 2 A
- Relaistyp
 - Schließer;
 - kann über eine Software-Option auf "Öffner" eingestellt werden 4)


- Max. Ansprechspannung
 - 250 V_{AC}
- 250 V_{DC}
 Min. Ansprechspannung
 - 25 V_{AC}
 - 5 V_{DC}
- Stromaufnahme bei maximaler Spannung
 - ≤ 1 mA (DC)
 - ≤ 2 mA (AC)

28

⁴⁾ Bei einem Netzausfall ist der Schaltzustand immer "offen", unabhängig von der ausgewählten Software-Option.

Energieversorgung

Klemmenbelegung

A0026905

🛮 11 🛮 Anschlussklemmenraum (typisches Beispiel) und Erdungsklemmen

Gehäusegewinde

Die Gewinde des Elektronik- und Anschlussraums können mit einem Gleitlack beschichtet sein. Für alle Gehäusematerialien gilt grundsätzlich:

☑ Die Gehäusegewinde nicht schmieren.

Klemmenbereich A/B/C/D (Slots für I/O-Module)

Module: Je nach Bestellcode bis zu vier I/O-Module

- An jeden dieser Slots können Module mit vier Klemmen angeschlossen werden.
- Module mit acht Klemmen können an die Slots B oder C angeschlossen werden.

Die genaue Zuordnung der Module zu den Slots hängt von der Geräteausführung ab. Eine detaillierte Beschreibung ist in der Betriebsanleitung des jeweiligen Geräts zu finden.

Klemmenbereich E

Module: HART Ex i/IS-Schnittstelle

- E1: H+
- E2: H-

Klemmenbereich F

Abgesetzte Anzeige

- F1: V_{CC} (Anschluss an Klemme 81 der abgesetzten Anzeige)
- F2: Signal B (Anschluss an Klemme 84 der abgesetzten Anzeige)
- F3: Signal A (Anschluss an Klemme 83 der abgesetzten Anzeige)
- F4: Erdung (Anschluss an Klemme 82 der abgesetzten Anzeige)

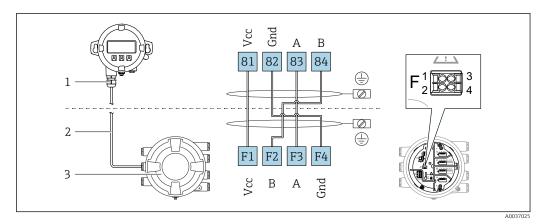
Klemmenbereich G (für AC-Hochspannungsversorgung und AC-Niederspannungsversorgung)

- G1: N
- G2: nicht angeschlossen
- G3: L

Klemmenbereich G (für DC-Niederspannungsversorgung)

- G1: L:
- G2: nicht angeschlossen
- G3: L+

Klemmenbereich: Schutzleiter


Modul: Schutzleiteranschluss (M4-Schraube)

A00193

■ 12 Klemmenbereich: Schutzleiter

Abgesetztes Anzeige- und Bedienmodul DKX001

- 13 Anschluss des abgesetzten Anzeige- und Bedienmoduls DKX001 an das Tankstandmessgerät (NMR8x, NMS8x oder NRF8x)
- 1 Abgesetztes Anzeige- und Bedienmodul
- 2 Anschlussleitung
- 3 Tankstandmessgerät (NMR8x, NMS8x oder NRF8x)
- Das abgesetzte Anzeige- und Bedienmodul DKX001 ist optional als Zubehör bestellbar. Details hierzu siehe SD01763D.
- Der Messwert wird auf dem DKX001 sowie gleichzeitig auf dem Vor-Ort-Anzeige- und Bedienmodul angezeigt.
 - Das Bedienmenü kann nicht auf beiden Modulen gleichzeitig aufgerufen werden. Wenn das Bedienmenü auf einem der beiden Module aufgerufen wird, ist das andere Modul automatisch gesperrt. Diese Sperre bleibt aktiv, bis das Menü auf dem ersten Modul wieder geschlossen wird (Rückkehr zur Messwertanzeige).

Versorgungsspannung

AC-Hochspannungsversorgung:

Betriebswert:

 $100 \dots 240 \ V_{AC}$ (- $15 \ \% + 10 \ \%)$ = $85 \dots 264 \ V_{AC}$, $50/60 \ Hz$

AC-Niederspannungsversorgung:

Betriebswert:

65 V_{AC} (- 20 % + 15 %) = 52 ... 75 V_{AC} , 50/60 Hz

DC-Niederspannungsversorgung:

Betriebswert:

 $24 \dots 55 V_{DC} (-20 \% + 15 \%) = 19 \dots 64 V_{DC}$

Leistungsaufnahme

Die maximale Leistung variiert je nach Konfiguration der Module. Da der Wert eine maximale Scheinleistung angibt, sind die Kabel entsprechend auszuwählen. Die tatsächlich verbrauchte Wirkleistung beträgt 12 W.

AC-Hochspannungsversorgung:

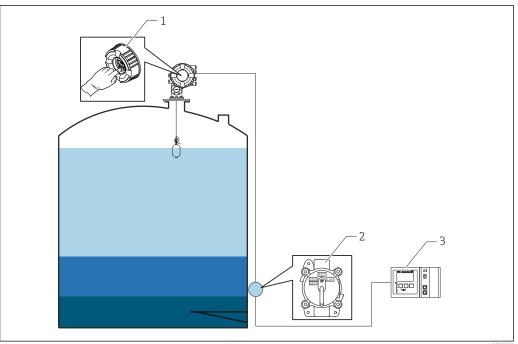
28,8 VA

AC-Niederspannungsversorgung:

21,6 VA

DC-Niederspannungsversorgung:

13,4 W


Quellen für Messbefehle

Messbefehle können über verschiedenen Quellen ausgegeben werden.

- Anzeigen oder CDI (z. B. FieldCare)
- Digitaleingang (z. B. Schalter)
- Feldbus (Modbus, V1, HART)

Der über eine beliebige Quelle zuletzt erhaltene Messbefehl wird wie üblich ausgeführt.

Während der Kalibrierung werden keinerlei Messbefehle angenommen, gleichgültig aus welcher Quelle sie stammen.

- 1 Display-Bedienung
- 2 Digitaleingang (z. B. Schalter)
- 3 Tankvision

Messbefehlsprioritäten

Die Priorität der Messbefehle für den NMS8x ist sehr einfach. Der über eine beliebige Quelle zuletzt erhaltene Messbefehl wird ausgeführt, um den vorherigen Messbefehl abzulösen. Die Priorität variiert allerdings in Abhängigkeit von den Geräten. Wenn das Gerät durch den NMS8x ersetzt wird, sollten die unten aufgeführten Prioritäten beachtet werden.

HINWEIS

Unerwünschter Messbefehl wird ausgeführt.

Wenn die Einstellung nicht geändert wird, wird ein unerwünschtes Gerätekommando ausgeführt (so würde z.B. ein über den Feldbus gesendeter Befehl "Level" einen zu Wartungszwecken ausgegebenen Befehl "Stop" überschreiben).

Wenn das System automatisch oder halbautomatisch für Betrieb, Wartung oder zu anderen Zwecken programmiert wurde, sollte die Einstellung entsprechend dem Verwendungszweck geändert werden.

Proservo NMS8x

Über die Anzeige		Vom Digitaleingang		Vom Feldbus		
Kommando	Priorität	Kommando	Priorität	Kommando	Priorität	
Level	1	Level	1	Level	1	
Trennschicht	1	Trennschicht	1	Trennschicht	1	
Tankboden	1	Tankboden	1	Tankboden	1	
Punktdichte	1	Punktdichte	1	Punktdichte	1	
Profildichte	1	Profildichte	1	Profildichte	1	
Up	1	Up	1	Up	1	
Stop	1	Stop	1	Stop	1	

Proservo NMS5/NMS7

Über die Anzei	Über die Anzeige		Vom NRF560		Vom Digitaleingang		
Kommando	Priorität	Kommando	Priorität	Kommando	Priorität	Kommando	Priorität
Level	4	Level	4	Level	4	Level	4
Trennschicht	2	Trennschicht	3	Trennschicht	1	Trennschicht	4
Tankboden	2	Tankboden	3	N/A	N/A	Tankboden	4
Punktdichte	2	Punktdichte	3	N/A	N/A	Punktdichte	4
Profildichte	2	Profildichte	3	N/A	N/A	Profildichte	4
Up	2	Up	3	Up	1	Up	4
Stop	2	Stop	3	Stop	1	Stop	4

Servo-Füllstandsmessgerät TGM5

Über die An	zeige	Vom NRF560		Vom DRM9700		Vom Digitaleingang		Vom Feldbus	
Kommando	Priori- tät	Kom- mando	Priori- tät	Kom- mando	Priori- tät	Kom- mando	Priorität	Kommando	Priori- tät
Level	4	Level	4	Level	4	Level	4	Level	4
Trenn- schicht	2	Trenn- schicht	3	N/A	N/A	N/A	N/A	Trenn- schicht	4
Tankboden	2	Tankboden	3	N/A	N/A	N/A	N/A	Tankboden	4
Punkt- dichte	2	Punkt- dichte	3	N/A	N/A	N/A	N/A	Punkt- dichte	4
Profil- dichte	2	Profil- dichte	3	N/A	N/A	N/A	N/A	Profil- dichte	4
Up	2	Up	3	Up	1	Up	1	Up	4
Stop	2	Stop	3	N/A	N/A	Stop	1	Stop	4

Servo-Füllstandsmessgerät TGM4000

Über die Anzeige		Vom DRM9700		Vom Digitaleingang		Vom Feldbus	
Kommando	Priorität	Kommando	Priorität	Kommando	Priorität	Kommando	Priorität
Level	4	Level	4	Level	4	Level	4
Trennschicht	2	Trennschicht	1	N/A	N/A	Trennschicht	4
Tankboden	2	N/A	N/A	N/A	N/A	Tankboden	4
Punktdichte	2	N/A	N/A	N/A	N/A	Punktdichte	4
Profildichte	2	N/A	N/A	N/A	N/A	Profildichte	4
Up	2	Up	1	Up	1	Up	4
Stop	2	Stop	N/A	Stop	1	Stop	4

Kabeleinführungen

Bestellmerkmal 090 "Elektrischer Anschluss" 1)	Kabeleingänge (mit Blindstopfen) 2)
A	7 x M20-Gewinde
В	7 x M25-Gewinde
С	7 x G1/2-Gewinde
D	7 x G3/4-Gewinde
Е	7 x NPT1/2-Gewinde
F	7 x NPT3/4-Gewinde

- 1) Position 090 des Bestellcodes, z. B. NMx8x-xxxxxxxxxxxx...
- 2) Kabeleingänge, an die keine I/O-Module angeschlossen sind, werden mit 316L-Blindstopfen ohne Adapter verschlossen. Details zu den Modulpositionen sind in der Betriebsanleitung, im Kapitel "Slots für I/O-Module", zu finden.

Bei folgenden Geräten mit JPN Ex-Zulassung sind Kabelverschraubungen am Gerät angebracht (siehe Position 010 des Bestellcodes). Diese Kabelverschraubungen müssen verwendet werden. Proservo NMS80-JC...

Kabelspezifikation

Klemmen

Aderquerschnitt 0,2 ... 2,5 mm2 (24 ... 13 AWG)

Für Anschlüsse mit folgender Funktion: Signalleitung und Spannungsversorgung

- Federklemmen (NMx8x-xx1...)
- Schraubklemmen (NMx8x-xx2...)

Aderquerschnitt max. 2,5 mm² (13 AWG)

Für Anschlüsse mit folgender Funktion: Erdungsklemme im Anschlussklemmenraum

Aderquerschnitt max. 4 mm² (11 AWG)

Für Anschlüsse mit folgender Funktion: Erdungsklemme am Gehäuse

Versorgungsleitung

Das normale Gerätekabel reicht als Versorgungsleitung aus.

HART-Kommunikationsleitung

- Das normale Gerätekabel reicht aus, wenn nur das Analogsignal verwendet wird.
- Bei Verwendung des HART-Protokolls empfiehlt sich ein geschirmtes Kabel. Das Erdungskonzept der Anlage ist zu beachten.

Modbus-Kommunikationsleitung

- Die in der TIA-485-A der Telecommunications Industry Association aufgeführten Kabelbedingungen sind zu beachten.
- Zusätzliche Bedingungen: Geschirmtes Kabel verwenden.

V1-Kommunikationsleitung

- 2-Leiter-Kabel (Twisted Pair), geschirmtes oder ungeschirmtes Kabel
- Widerstand in einem Kabel: $\leq 120 \Omega$
- Kapazität zwischen Leitungen: ≤ 0,3 μF

WM550-Kommunikationsleitung

- 2-Leiter-Kabel (Twisted-Pair), ungeschirmtes Kabel
- Querschnitt mindestens 0,5 mm² (20 AWG)
- Maximaler Leitungswiderstand insgesamt: $\leq 250 \Omega$
- Kabel mit geringer Kapazität

Überspannungsschutz

Für die Kommunikations- und Netzleitung; gemäß IEC 60060-1/DIN 60079-14:

10 kA, 8/20 μs, 10 Impulse gemäß IEC 60060-1/DIN 60079-14

Überspannungskategorie

Überspannungskategorie II

Verschmutzungsgrad

Verschmutzungssgrad 2

Leistungsmerkmale

Referenzbedingungen	Nach OIML R85	
Messwertauflösung	Füllstand und Trenn- schicht	≤ 0,1 mm (0,004 in)
	Dichte	≤ 0,001 g/cm ³

Maximale Messabweichung Füllstand ± 0.4 mm (± 0.016 in) Referenzbedingung Die Genauigkeit der nach NMi zugelassenen Kalibrieranlage bei Endress+Hauser Yamanashi gemäß der jeweiligen Bestellcode-Kombination ist in der Tabelle unten aufgeführt. Schnittstelle $\pm 2 \text{ mm } (\pm 0.08 \text{ in})$ Referenzbedingung • Standardverdränger 70 mm (2,76 in) • Dichtedifferenz 0,2 g/cm₃ oder mehr (die minimale erkennbare Dichtedifferenz für die Trennschichtmessung beträgt 0.1 g/cm_3) • Maximum Performance in Bestellmerkmal 150 ausgewählt Tankboden ±2 mm (±0,08 in) Referenzbedingung Standardverdränger 70 mm (2,76 in) ■ Flache Peilplatte oder flacher Tankboden • Maximum Performance in Bestellmerkmal 150 ausgewählt Dichte $\pm 0,003 \text{ g/cm}^3$ Referenzbedingung • Standardverdränger 50 mm (1,97 in) oder 70 mm (2,76 in) Dichtekalibrierung (Offset)

Folgende Werte gelten für eine Füllstandsmessdistanz von bis zu 40 m (133,33 ft).

	Eichzulassung	Verdränger (Bestellmerkmal 120)			
Bestell- merkmal 150		1AA, 2AA	1AC, 2AC, 3AC, 4AC, 5AC	1BE, 4AE	1BJ
		Ø30 mm (1,18 in)	ø50 mm (1,97 in)	Ø70 mm (2,76 in)	Ø110 mm (4,33 in)
		Genauigkeit			
ICR	Standard Ausführung, ohne Kalibrierzertifikat	±2,5 mm (±0,1 in)	±1 mm (±0,04 in)	±1 mm (±0,04 in)	±1 mm (±0,04 in)
ICW	Standard Ausführung, 3- Punkt Kalibrierzertifikat	±2,5 mm (±0,1 in)	±1 mm (±0,04 in)	±1 mm (±0,04 in)	±1 mm (±0,04 in)
ICX	Standard Ausführung, 5- Punkt Kalibrierzertifikat	±2,5 mm (±0,1 in)	±1 mm (±0,04 in)	±1 mm (±0,04 in)	±1 mm (±0,04 in)
ITA	Maximum Performance, 10- Punkt Kalibrierzertifikat	N/A	±0,6 mm (±0,024 in)	±0,4 mm (±0,016 in)	±0,4 mm (±0,016 in)
ITC	Standard Ausführung, 10- Punkt Kalibrierzertifikat	N/A	±1 mm (±0,04 in)	±1 mm (±0,04 in)	±1 mm (±0,04 in)
LTA	Maximum Performance, LNE Bauartzulassung nach OIML R85, API 3.1B, ISO4266, Werkskalibrierzertifikat	N/A	±0,6 mm (±0,024 in)	±0,4 mm (±0,016 in)	±0,4 mm (±0,016 in)

• Maximum Performance in Bestellmerkmal 150

ausgewählt

	Eichzulassung	Verdränger (Bestellmerkmal 120)			
Bestell- merkmal 150		1AA, 2AA	1AC, 2AC, 3AC, 4AC, 5AC	1BE, 4AE	1BJ
		Ø30 mm (1,18 in)	Ø50 mm (1,97 in)	Ø70 mm (2,76 in)	Ø110 mm (4,33 in)
		Genauigkeit			
LTC	Eichpflichtiger Verkehr, LNE Bauartzulassung nach OIML R85, API 3.1B, ISO4266, Werkskalibrierzertifikat	N/A	±1 mm (±0,04 in)	±1 mm (±0,04 in)	±1 mm (±0,04 in)
NTA	Maximum Performance, NMi Bauartzulassung nach OIML R85, API 3.1B, ISO 4266, Werkskalibrierzertifikat	N/A	±0,6 mm (±0,024 in)	±0,4 mm (±0,016 in)	±0,4 mm (±0,016 in)
NTC	Eichpflichtiger Verkehr, NMi Bauartzulassung nach OIML R85, API 3.1B, ISO4266, Werkskalibrierzertifikat	N/A	±1 mm (±0,04 in)	±1 mm (±0,04 in)	±1 mm (±0,04 in)
PTA	Maximum Performance, PTB Bauartzulassung Werkskali- brierzertifikat	N/A	N/A	±0,4 mm (±0,016 in)	±0,4 mm (±0,016 in)
PTC	Eichpflichtiger Verkehr, PTB Bauartzulassung, Werkskali- brierzertifikat	N/A	N/A	±1 mm (±0,04 in)	±1 mm (±0,04 in)

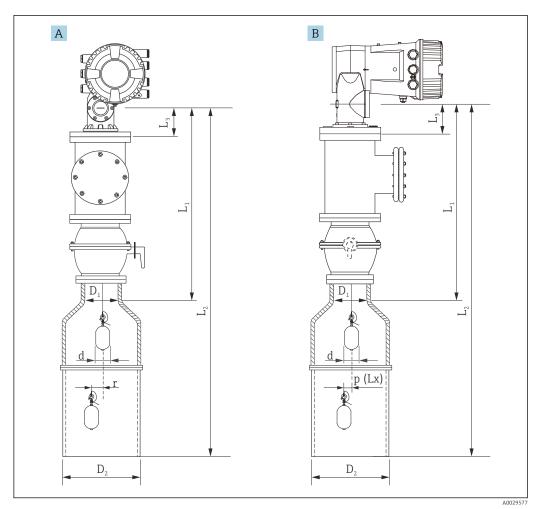
Hysterese	Innerhalb der spezifizierten Genauigkeit (+/- 1 mm (0,039 in)) nach OIML R85 (2008)
	Kann durch den Messmodus "Keine Hysterese" reduziert werden.
Wiederholpräzision	0,1 mm (0,004 in)
Linearität	Innerhalb der max. Messabweichung
Langzeitdrift	Innerhalb der spezifizierten Messabweichung
Einfluss Umgebungstemperatur	Innerhalb der spezifizierten Genauigkeit nach OIML R85 (2008)
Einfluss Messstofftemperatur	Keiner (Verdrängerprinzip wird nicht durch Messstofftemperatur beeinflusst.)
Einfluss Messstoffdruck	Kein Einfluss des Messstoffdrucks auf das Messprinzip.
Auswirkung der Gasphase	Keine Auswirkung der Gasphase auf das Messprinzip.

Einbau

Voraussetzungen

Tanktyp

Je nach Tanktyp und Anwendung werden für den NMS8x unterschiedliche Vorgehensweisen für den Einbau empfohlen.

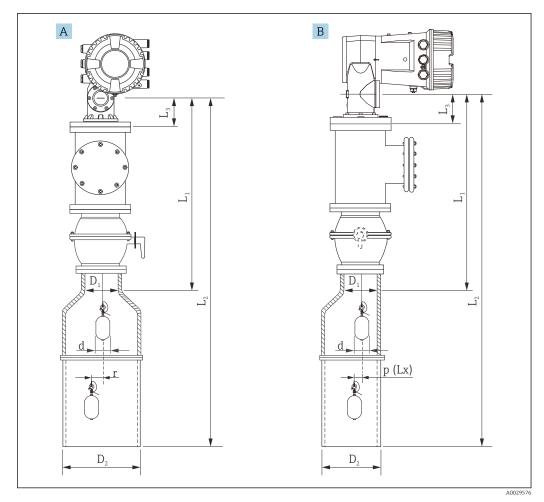

Tanktyp	Ohne Führungssys- tem	Mit Schwallrohr	Mit Führungsdrähten
Festdachtank	V	V	
Schwimmdachtank			
	×		×
Festdachtank mit eingebauter Schwimmdecke		V	
	×		×
Druckbeaufschlagter Tank oder liegender Zylinder		\checkmark	
	×		×
Tank mit Rührwerk oder starken Turbulenzen		V	\checkmark
	×		

- i
- In einem Schwimmdachtank oder Festdachtank mit eingebauter Schwimmdecke ist ein Schwallrohr erforderlich.
- In einem Schwimmdachtank können keine Führungsdrähte installiert werden. Wenn der Messdraht ohne Schutz im freien Raum hängt, kann er durch externe Stoßeinwirkung brechen.

• In druckbeaufschlagten Tanks dürfen keine Führungsdrähte installiert werden, da diese Drähte verhindern, dass das Ventil für einen Austausch des Messdrahts, der Messtrommel oder des Verdrängers geschlossen wird. Die Einbausituation des NMS8x ist in Anwendungen ohne Führungsdrahtsystem entscheidend, um eine Beschädigung des Messdrahts zu verhindern (Details sind in der Betriebsanleitung zu finden).

Montage mit Schwallrohr

Der Durchmesser des Schwallrohrs, das benötigt wird, um den Messdraht zu schützen, ohne dabei seinen Betrieb zu stören, variiert je nach Tankhöhe. Das Schwallrohr kann einen konstanten Durchmesser aufweisen oder oben enger und unten weiter sein. Die folgende Abbildung zeigt zwei Beispiele hierfür: ein konzentrisches und ein asymmetrisches Schwallrohr.



■ 14 Montage mit konzentrischem Schwallrohr

- A Frontansicht
- B Seitenansicht
- L_1 Länge vom Mittelpunkt des Kalibrierfensters bis zum oberen Teil des Schwallrohrs
- Länge vom Mittelpunkt des Kalibrierfensters bis zur Unterkante des Schwallrohrs
- L_3 Länge vom Mittelpunkt des Kalibrierfensters bis zur Unterkante des Flansches
- D₁ Durchmesser des oberen Teils des Schwallrohrs
- D₂ Durchmesser des Schwallrohrs
- d Durchmesser des Verdrängers
- p Drahtposition in Längsrichtung vom Mittelpunkt des Flansches

(Lx)

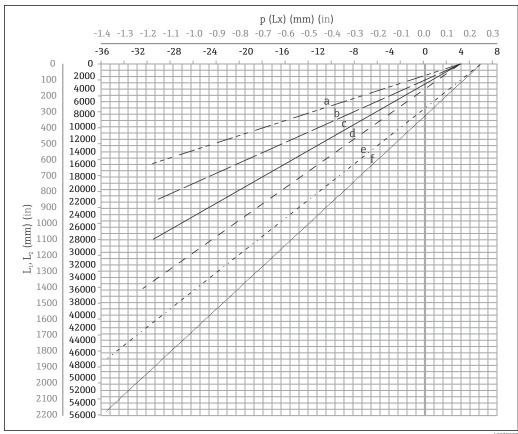
r Offset in radialer Richtung

■ 15 Montage mit asymmetrischem Schwallrohr

- Frontansicht Α
- В Seitenansicht
- Länge vom Mittelpunkt des Kalibrierfensters bis zum oberen Teil des Schwallrohrs L_1
- Länge vom Mittelpunkt des Kalibrierfensters bis zur Unterkante des Schwallrohrs
- Länge vom Mittelpunkt des Kalibrierfensters bis zur Unterkante des Flansches
- Durchmesser des oberen Teils des Schwallrohrs D_1
- Durchmesser des Schwallrohrs D_2
- Durchmesser des Verdrängers d
- р Drahtposition in Längsrichtung vom Mittelpunkt des Flansches

(Lx)

Offset in radialer Richtung


- L₃: Länge vom Mittelpunkt des Kalibrierfensters bis zur Unterkante des in den NMS8x integrierten Flansches (77 mm (3,03 in) + Flanschdicke). Für JIS 10K 150A RF beträgt die Flanschdicke 22 mm (0,87 in).
 - Bei Verwendung eines asymmetrischen Schwallrohrs ist die seitliche Verschiebung des Verdrängers zu berücksichtigen und die Einbaurichtung des NMS8x wie in der Abbildung gezeigt einzuhalten.
 - Zur Berechnung der erforderlichen Schwallrohrdurchmesser sollte die nachfolgende Formel verwendet werden. Die folgenden Tabellen enthalten die notwendigen Parameter zur Berechnung der Schwallrohrmaße. Sicherstellen, dass ein Schwallrohr mit geeigneten Maßen verwendet wird (siehe Maßangaben in der Tabelle).
 - Der Offset in radialer Richtung (r) ist nur für die 47 m (154,20 ft)- und 55 m (180,45 ft)-Messtrommel erforderlich. Für alle anderen Messtrommeln beträgt der Offset 0 mm/in.

Merkmal: 110	Beschreibung (Messbereich; Draht; Durchmes- ser)	NMS80	NMS81	NMS83	r
G1	47 m (154,20 ft); 316L; 0,15 mm (0,00591 in)		✓		6 mm (0,24 in)
H1	55 m (180,45 ft); 316L 0,15 mm (0,00591 in)		✓		6 mm (0,24 in)

Merkmal: 120	Beschreibung (Verdrängerwerkstoff; Typ)	NMS80	NMS81	NMS83	d
1AA	316L; 30 mm (1,18 in) zylindrisch	✓	✓		30 mm (1,18 in)
1AC	316L; 50 mm (1,97 in) zylindrisch	✓	✓		50 mm (1,97 in)
1BE	316L; 70 mm (2,76 in) konisch	✓	✓		70 mm (2,76 in)
1BJ	316L;110 mm (4,33 in) konisch	✓	✓		110 mm (4,33 in)
2AA	PTFE; 30 mm (1,18 in) zylindrisch	✓	✓		30 mm (1,18 in)
2AC	PTFE; 50 mm (1,97 in) zylindrisch	✓	✓		50 mm (1,97 in)
3AC	AlloyC276; 50 mm (1,97 in) zylindrisch	✓	✓		50 mm (1,97 in)
4AC	316L poliert; 50 mm (1,97 in) zylindrisch			✓	50 mm (1,97 in)
4AE	316L poliert; 70 mm (2,76 in) konisch			✓	70 mm (2,76 in)
5AC	PTFE; 50 mm (1,97 in) zylindrisch, hygienisch weiß			\checkmark	50 mm (1,97 in)

Parameter	Beschreibung
d	Durchmesser des Verdrängers
p(Lx)	Drahtposition in Längsrichtung vom Mittelpunkt des Flansches Der Wert kann mithilfe der folgenden Grafik bestimmt werden.
r	Offset in radialer Richtung
S	Empfohlener Sicherheitszuschlag: 5 mm (0,197 in)

Die folgende Grafik zeigt die seitliche Verschiebung des Verdrängers abhängig von der gemessenen Distanz der verschiedenen Messtrommeln.

A002799

■ 16 Seitliche Verschiebung des Verdrängers gemäß Messbereich

- a 16 m (A3) (NMS80/NMS81/NMS83)
- b 22 m (C2) (NMS80/NMS81/NMS83)
- c 28 m (D1) (NMS80/NMS81)
- d 36 m (F1) (NMS80/NMS81)
- e 47 m (G1) (NMS81)
- f 55 m(H1) (NMS81)

Oberer Durchmesser des Schwallrohrs

Der Wert von D_1 muss gemäß der folgenden Formel der größte Wert der Abmessungen D_{1a} , D_{1b} , D_{1c} und D_{1d} sein.

D ₁ Abmessung	D _{1x} Ab	messung	Possbyoihung	Formel	
(Beispiel)	Beispiel	Parameter	Beschreibung	ronnei	
>68,1 mm (2,68 in)	68,1 mm (2,68 in)	D_{1a}	D ₁ : Abmessung, wenn sich der Verdränger im Zentrum des Kalibrierfensters befindet	$= 2 \times (p(0) + d/2 + s)$	
	65,6 mm (2,58 in)	D _{1b}	D ₁ : Abmessung, wenn sich der Verdränger im oberen Teil des Schwallrohrs befindet	$= 2 \times (p(L_1) + d/2 + s)$	

D ₁ Abmessung	D _{1x} Ab	messung	Beschreibung	Formel
(Beispiel)	Beispiel	Parameter	Describering	ronner
	50,9 mm (2,00 in)	D_{1c}	D ₁ : Abmessung, wenn sich der Verdränger am Boden des Schwallrohrs befindet	$= 2 \times (p(L_2) + s)$
		D_{1d}	$\rm D_1$ Abmessung, wenn der Offset in radialer Richtung berücksichtigt wird. Diese Berechnung wird nur mit der Messtrommel von 47 m (154,20 ft) (G1 in Merkmal 110) und 55 m (180,45 ft) (H1 in Merkmal 110) verwendet	$= 2 \times (d/2 + r + s)$

Beispiel: $L_1 = 1000$ mm, $L_2 = 20000$ mm, d = 50 mm, s = 5,0,28 m Messtrommel

Unterer Durchmesser des Schwallrohrs

Der Wert von D_2 muss der größere Wert der Abmessungen D_1 und $\mathrm{D}_{2\mathrm{b}}$ sein.

Siehe Tabelle unten.

Konzentrisches Rohr

D ₂ Abmessung	D _{2x} Abı	nessung	Beschreibung	Formel	
(Beispiel)	Beispiel	Parameter	bescrireibung	ronner	
>100,9 mm (3,97 in)	68,1 mm (2,68 in)	D_1	Berechneter D ₁ Wert		
	100,9 mm (3,97 in)	D _{2b}	${\rm D_2}$ Abmessung, wenn sich der Verdränger am unteren Ende des Schwallrohrs befindet, d. h. in ${\rm L_2}$	$= 2 \times (p(L_2) + d/2 + s)$	

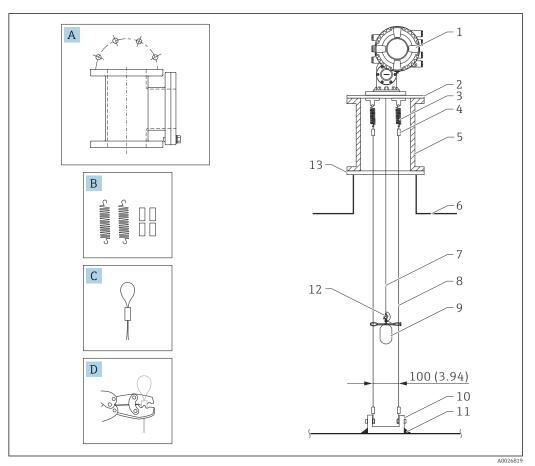
Beispiel: $L_2 = 20\,000$ mm, d = 50 mm, s = 5,0,28 m Messtrommel

Asymmetrisches Rohr

D ₂ Abmessung	D _{2x} Abr	nessung	Beschreibung	Formel	
(Beispiel)	Beispiel	Parameter	Descriteroung	rotmei	
>84,5 mm (3,33 in)	68,1 mm (2,68 in)	D_1	Berechneter D ₁ Wert		
	84,5 mm (3,33 in)	D _{2b}	D ₂ Abmessung, die der Verdränger passieren kann (nteRille)	$= p(L_2) + d/2 + s + D_1/2$	

Beispiel: L_2 = 20 000 mm, d = 50 mm, s = 5,0, 28 m Messtrommel

Empfehlungen für die Montage des NMS8x mit einem Schwallrohr



Die Empfehlungen für die Montage des NMS8x mit einem Schwallrohr einhalten.

- Sicherstellen, dass die Schweißnähte der Rohrverbindungen glatt sind.
- Wenn Löcher in das Rohr gebohrt werden müssen, muss die Innenfläche der Löcher frei von Metallspänen und Graten sein.
- Innenfläche des Rohrs beschichten oder lackieren, um Korrosion zu vermeiden.
- Darauf achten, dass die Position des Rohrs so vertikal wie möglich ist. Vertikale Position mithilfe eines Senklots überprüfen.
- Das asymmetrische Rohr unter dem Ventil installieren und die Mittelpunkte des NMS8x und des Ventils aufeinander ausrichten.
- Den Mittelpunkt des unteren Teils des asymmetrischen Rohrs in Richtung der seitlichen Bewegung ausrichten.
- Die Empfehlungen nach API MPMS Kapitel 3.1B beachten.
- Die Erdung zwischen dem NMS8x und dem Tankstutzen überprüfen.

Montage mit Führungsdrähten

Es besteht auch die Möglichkeit, den Verdränger mit Führungsdrähten zu sichern, um ein Schwingen des Verdrängers zu vermeiden.

🗉 17 🛮 Führungsdraht; Maßangabe mm (in)

Nr.	Beschreibung
A	Instandhaltungskammer
В	Feder und Klemmhülse
С	Führungsdrahtmuffe
D	Crimpzange
1	NMS8x
2	Rohrreduzierplatte (inkl. Fühungsdrahtoption)
3	Feder, 304 (inkl. Fühungsdrahtoption)
4	Klemmhülse, 316 (inkl. Fühungsdrahtoption)
5	Instandhaltungskammer
6	Tank
7	Messdraht
8	Führungsdraht, 316 (inkl. Fühungsdrahtoption)
9	Verdränger mit Ringen (inkl. Fühungsdrahtoption)
10	Montageösenplatte, 304 (inkl. Führungsdrahtoption)
11	Schweißstelle
12	Drahtring, 316L
13	Flansch

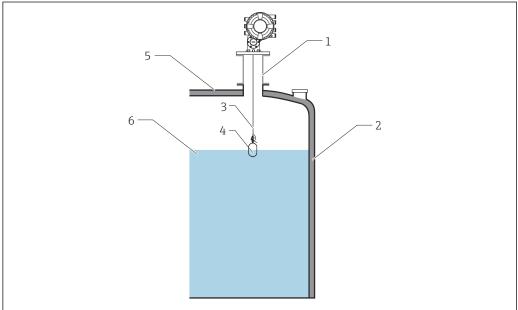
Umgebungsbereich

Umgebungstemperaturbe-	Gerät −40 +60 °C (−40 +140 °F)		
reich	Anzeigemodul -20 +70 °C (-4 +158 °F)		
	Außerhalb dieses Temperaturbereichs kann die Ablesbarkeit der Vor-Ort-Anzeige beeinträchtigt sein.		
Klassifizierung der Umgebungsbedingungen nach DIN EN 60721-3-4	4M4		
Lagertemperatur	−50 +80 °C (−58 +176 °F)		
Feuchte	≤ 95 %		
Schutzart	■ IP66/68 gemäß DIN EN 60529 ■ Type 6P/4X gemäß NEMA 250		
Stoßfestigkeit	■ 10 g (11 ms) gemäß IEC 60721-3-4 (1995) ■ Klassifizierung gemäß IEC 60721-3-4: 4M4 (1995)		
	In der Prüfbedingung ist das Gerät ohne Verdränger dargestellt.		
 Schwingungsfestigkeit	 9 200 Hz, 1g (10m/s2) gemäß IEC 60721-3-4 (1995) Klassifizierung gemäß IEC 60721-3-4: 4M4 (1995) 		
	In der Prüfbedingung ist das Gerät ohne Verdränger dargestellt.		
Elektromagnetische Verträg- lichkeit (EMV)	 Kurzzeitige Emissionen nach DIN EN 61326, Klasse B Störfestigkeit nach DIN EN 61326, Anhang A (Industrieeinsatz) und NAMUR-Empfehlung NE21 		
Maximale Einsatzhöhe	2 000 m (6 561,68 ft) über Normalnull		

Prozess

Prozesstemperaturbereich

-200 ... +200 °C (-328 ... 392 °F)



Wenn die Anwendung die oben aufgeführten Bereiche überschreitet, Kontakt mit Endress +Hauser aufnehmen, um technische Sonderprodukte/-lösungen zu erhalten.

Prozessdichtung

A1	HNBR	−30 150 °C (−22 302 °F)
B1	FKM	−40 200 °C (−40 392 °F)
C1	CR Chloropren	−25 100 °C (−13 212 °F)
D1	PTFE (Messtrommel FKM)	■ PTFE: -100 200 °C (-148 392 °F) ■ Messtrommel FKM: -40 200 °C (-49 392 °F)
E1	VMQ Silikon	−45 200 °C (−49 392 °F)

Zwischen der Flüssigkeit im Tank und dem NMS8x auf dem Tankstutzen besteht eine Temperaturdifferenz, die durch die Distanz zwischen dem NMS8x und der Flüssigkeit entsteht. Zudem gibt die Temperatur für die Prozessdichtung des NMS8x nicht die Temperatur der Flüssigkeit wieder. Die Temperatur für die Prozessdichtung gibt vielmehr die Temperatur des Gases wieder, das in das Gehäuse des NMS8x gelangt. In der Mehrheit der Fälle entspricht die Gastemperatur der Umgebungstemperatur. Sollten Temperaturdifferenzen zwischen der Prozessdichtung und dem Gas bestehen, ist ein Rohr oder eine Kammer zwischen dem NMS8x und dem Tankstutzen zu montieren, um die Temperatur anzupassen. Alternativ kann der Tank auch mit wärmedämmendem Material abgedeckt werden, um die Temperatur zu regeln.

■ 18 Prozessdichtung

- Kammer oder Rohr zur Anpassung der Temperatur
- 2 Wärmedämmstoff
- 3 Messdraht
- Verdränger 4
- Flüssigkeit mit hoher oder niedriger Temperatur

Prozessdruckbereich

Gehäusetyp	Prozessdruckbereich
Aluminium	0 6 bar (600 kPa/87 psi)

Messstoffdichte

0,430 ... 2,000 g/cm3 (27 ... 125 lb/ft3)

- Wenn die Anwendung die oben aufgeführten Bereiche überschreitet, Kontakt mit Endress +Hauser aufnehmen, um technische Sonderprodukte/-lösungen zu erhalten.
- Wird ein Verdränger bis zu dem Punkt in die Flüssigkeit abgelassen, an dem die Trennschicht- oder Dichtemessung vorgenommen wird, siehe Tabelle unten.

Durchmesser [mm]	Werkstoff	Gewicht [g]	Volumen [ml]	Minimaler Dichtebereich [g/cm³]	Maximaler Dichtebereich [g/cm³]
30	316L	261	84,3	0,237	2,266
30	PTFE	250	118	0,169	1,525
50	316L/AlloyC276	253	143	0,140	1,280
50	PTFE	250	118	0,169	1,525
70	316L	245	124	0,161	1,411
110	316L	223	108	0,185	1,417

Mittlere Dichtedifferenz für Trennschichtmessung

0,1 g/cm³ (6,24 lb/ft³)

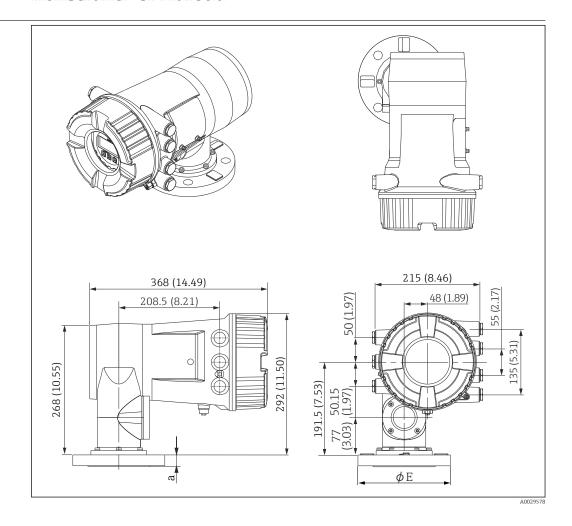
Viskosität

0 ... 5 000 mPa·s

Maximale Bewegungsgeschwindigkeit des Verdrängers Ca. 2200 mm (86,61 in) / min

Die Verdrängergeschwindigkeit wird in einem Bereich von 30 mm vor dem Endpunkt verringert, damit der Verdränger gemäß der Einstellung, die als Einstellung für den unteren Stopp festgelegt wurde, an der korrekten Position stoppt.

Eichzulassung


Voraussetzung für die Eichzulassung ist die Bestellung des Geräts mit Option ITA, ITB, ITC oder ITD unter Bestellmerkmal 150 "Genauigkeit, Eichzulassung".

Optionen des Bestellmerkmals 590 "Weitere Zulassung"

- LK
 - NMi geprüfte Erstabnahme Genauigkeit, Eichzulassung
- LL
 - PTB geprüfte Erstabnahme Genauigkeit, Eichzulassung
- LN
 - LNE geprüfte Erstabnahme Genauigkeit, Eichzulassung
- 10
 - *NMi Bauartzulassung
- · LI
- *PTB Bauartzulassung
- LQ
- *LNE Bauartzulassung
- LT
 - METAS, Eichpflichtiger Verkehr
- LU
- BEV, Eichpflichtiger Verkehr
- i
- Je nach Verdränger (Bestellmerkmal 120) stehen einige dieser Ausführungen nicht zur Verfügung.
- Der für den eichpflichtigen Verkehr zertifizierte Proservo NMS8x wird auf einer zertifizierten Messstrecke kalibriert. Der Referenzstandard der Messstrecke ist ein Laser-Tracker mit einer absoluten Genauigkeit von ±0,010 mm und einer Auflösung von 0,0002 mm. Die Kalibrierung wird über den gesamten Messbereich an 10 gleichmäßig verteilten Messpunkten vorgenommen (bis zu 40 m (131 ft)). Zudem wird die Hysterese an drei Punkten geprüft.
- Der Maximum Permissible Error (MPE) beträgt 0,4 mm (0,016 in) für Maximum Performance-Modelle und ±1 mm (±0,04 in) für Modelle, die im eichpflichtigen Verkehr eingesetzt werden. Das daraus resultierende Werkskalibrierzertifikat ist zusammen mit der entsprechenden Bauartzulassung im Lieferumfang enthalten.
- Zehn-Punkt-Kalibrierung geprüft gemäß ISO/IEC 17025, zertifiziert vom Japan Accreditation Board (JAB) von ILAC MRA gemäß dem internationalen Referenzstandard (étalon)

Konstruktiver Aufbau

Abmessungen

Flansche gemäß ASME B16.5, Druckstufe 150 lbs $^{1)}$

D 2)	E ³⁾			
	3 "	6"	8"	
a	23,9 mm (0,94 in)	25,4 mm (1 in)	28,4 mm (1,12 in)	
ФΕ	Φ190 mm (7,5 in)	Φ279 mm (10,98 in)	Φ343 mm (13,5 in)	

- Bestellmerkmal 140 (Position AFA, AHA und AJA des Bestellcodes)
- Abmessung
- 1) 2) 3) Nennweite

Flansche gemäß EN1092-1, Druckstufe PN10/16 $^{1)}$

D ²⁾	E 3)		
	DN80		
a	20 mm (0,79 in)		
ФΕ	φ200 mm (7,87 in)		

- Bestellmerkmal 140 (Position GSA des Bestellcodes) 1)
- Abmessung
- 2) 3) Nenndurchmesser

50

Flansche gemäß JIS B2220, Druckstufe 10 K 1)

D ²⁾	E ³⁾			
	80A RF	80A FF	150A RF	
a	22 mm (0,87 in)	22 mm (0,87 in)	22 mm (0,87 in)	
ΦE	Φ185 mm (7,28 in)	Φ185 mm (7,28 in)	Φ280 mm (11 in)	

- 1) Bestellmerkmal 140 (Position PFA, PHA und P5A des Bestellcodes)
- 2) Abmessung
- 3) Nenndurchmesser

Flansche gemäß JPI 7S-15, Druckstufe 150 lbs 1)

D 2)	E 3)	
	80A RF	
a	24,3 mm (0,96 in)	
ΦE	Φ190 mm (7,48 in)	

- 1) Bestellmerkmal 140 (Position QFA des Bestellcodes)
- 2) Abmessung
- 3) Nenndurchmesser

Gewicht

- Ca. 15 kg (33,0 lb) mit NPS 3" Cl. 150, DN80PN10/16, 10K 80A-Flansch
- Ca. 20 kg (44,1 lb) mit NPS 6" Cl. 150-Flansch
- Ca. 24 kg (52,9 lb) mit NPS 8" Cl. 150-Flansch
- 🚹 Die Gewichte variieren in Abhängigkeit von den ausgewählten Optionen.

Werkstoffe

Gehäusewerkstoff

Messumformer + Prozess Alu, beschichtet

- Merkmal 070
- Option AB

Werkstoffe für den Messdraht

Bestellmerkmal 110, verschiedene Optionen

(O 1)	$W^{2)}$
I	A 3	16 m (52,49 ft); PFA >316L; 0,4 mm (0,016 in)
	C2	22 m (73,33 ft); AlloyC276; 0,2 mm (0,008 in)
I	01	28 m (93,33 ft); 316L; 0,15 mm (0,006 in)
I	F1	36 m (120 ft); 316L; 0,15 mm (0,006 in)

- 1) Option
- 2) Leiterbeschreibungen
- Der Werkstoff der Messtrommel ist SUS316L.

Werkstoff für den Prozessanschluss (Flansch)

NPS 3" Cl.150 RF, Aluminiumflansch ASME B16.5 Option des Bestellmerkmals 140 ("Prozessanschluss") AFA

NPS 6" Cl.150 RF, Aluminiumflansch ASME B16.5

Option des Bestellmerkmals 140 ("Prozessanschluss") AHA

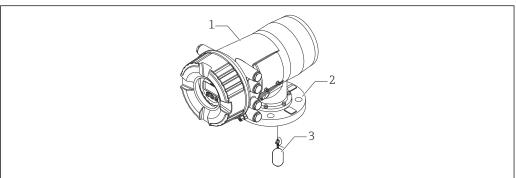
DN80 PN10/16 B1, Aluminiumflansch EN1092-1

Option des Bestellmerkmals 140 ("Prozessanschluss") GSA

10K 80A RF, Aluminiumflansch JIS B2220

Option des Bestellmerkmals 140 ("Prozessanschluss") PFA

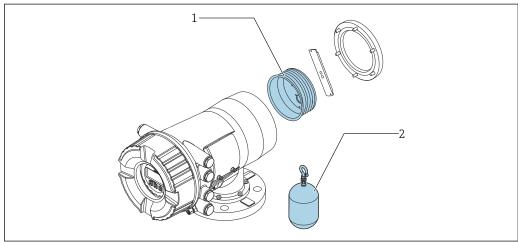
10K 150A RF, Aluminiumflansch JIS B2220


Option des Bestellmerkmals 140 ("Prozessanschluss") PHA

10K 80A FF, Aluminiumflansch JIS B2220

Option des Bestellmerkmals 140 ("Prozessanschluss") P5A

80A 150lbs RF, Aluminiumflansch JPI 7S-15


Option des Bestellmerkmals 140 ("Prozessanschluss") QFA

A0029583

- 1 Gehäuse
- 2 Flansch
- 3 Messdraht

Teile gemäß NACE-Standard

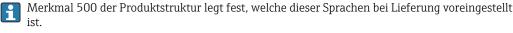
■ 19 Teile gemäß NACE-Standard

- 1 Messtrommel (28 m (91,86 ft))
- 2 Verdränger (50 mm (1,97 in), 70 mm (2,76 in) / 50 mm (1,97 in) mit Führungsring, 70 mm (2,76 in) mit Führungsring)

52 Endress+Hauser

A00507

Anzeige und Bedienoberfläche


Bedienkonzept

Nutzerorientierte Menüstruktur für anwenderspezifische Aufgaben

- Inbetriebnahme
- Bedienung
- Diagnose
- Expertenebene

Bediensprachen

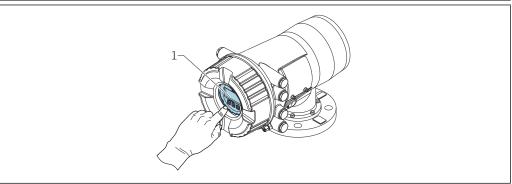
- Englisch
- Chinesisch
- Deutsch
- Japanisch
- Spanisch

Schnelle und sichere Inbetriebnahme

- Geführte Menüs ("Make-it-run"-Wizards) für Anwendungen
- Menüführung mit kurzen Erläuterungen der einzelnen Parameterfunktionen

Sicherheit im Betrieb

Einheitliche Bedienung am Gerät und in den Bedientools


Effizientes Diagnoseverhalten erhöht die Zuverlässigkeit der Messung

- Abhilfemaßnahmen werden in Klartext angezeigt
- Vielfältige Simulationsmöglichkeiten

Bedienoptionen

- Vor-Ort-Anzeige; Bedienung über die Vor-Ort-Anzeige ist ohne Öffnen des Geräts möglich.
- Tankstandmesssystem
- Plant Asset Management Tool (z. B. FieldCare); verbunden über
 - HART
 - Service-Port (CDI)

Vor-Ort-Bedienung

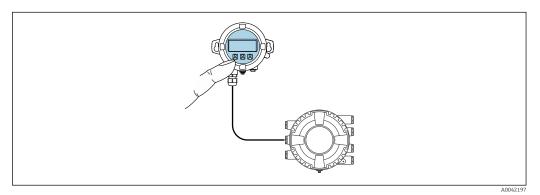
A0029584

■ 20 NMS80-Anzeige

1 Anzeige

Anzeigeelemente

- 4-zeilige Anzeige
- Hintergrundbeleuchtung weiß, bei Gerätefehler rot
- Anzeige für die Darstellung von Messgrößen und Statusgrößen individuell konfigurierbar
- Zulässige Umgebungstemperatur für die Anzeige: -20 ... +70 °C (-4 ... +158 °F)
 Außerhalb des Temperaturbereichs kann die Ablesbarkeit der Anzeige beeinträchtigt sein.


Bedienelemente

- Bedienung von außen via Touch Control; 3 optische Tasten: ⊕, ⊙, ⊚
- Bedienelemente auch in den verschiedenen Ex-Zonen zugänglich

Abgesetztes Anzeige- und Bedienmodul DKX001

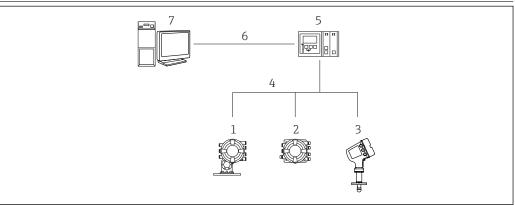
Die Anzeige- und Bedienelemente entsprechen denen des Anzeigemoduls.

Je nach Einbauort bietet das abgesetzte Anzeigemodul DKX001 besseren Zugriff auf die Bedienelemente als die Anzeige auf dem Gerät.

🗷 21 🛮 Bedienung über das abgesetztem Anzeige- und Bedienmodul DKX001

sen wird (Rückkehr zur Messwertanzeige).

Das abgesetzte Anzeige- und Bedienmodul DKX001 ist optional als Zubehör bestellbar. Details hierzu siehe SD01763D.

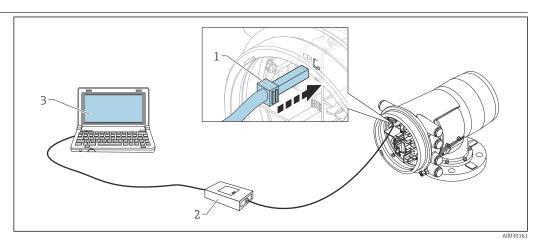

• Der Messwert wird auf dem DKX001 sowie gleichzeitig auf dem Vor-Ort-Anzeige- und

Bedienmodul angezeigt.

Das Bedienmenü kann nicht auf beiden Modulen gleichzeitig aufgerufen werden. Wenn das Bedienmenü auf einem der beiden Module aufgerufen wird, ist das andere Modul automatisch gesperrt. Diese Sperre bleibt aktiv, bis das Menü auf dem ersten Modul wieder geschlos-

Das Gehäusematerial des Anzeige- und Bedienmoduls DKX001 kann über den Bestellcode ausgewählt werden. Es stehen 2 Optionen zur Auswahl: Aluminium und Edelstahl.

Fernbedienung



A002562

■ 22 Fernbedienung von Tankstandmessgeräten

- 1 Proservo NMS8x
- 2 Tankside Monitor NRF81
- 3 Micropilot NMR8x
- 4 Feldprotokoll (z. B. Modbus, V1)
- 5 Tankvision Tank Scanner NXA820
- 6 Ethernet
- 7 Computer mit Bedientool (z.B. FieldCare)

Bedienung über Serviceschnittstelle

 \blacksquare 23 Bedienung über Serviceschnittstelle

- Serviceschnittstelle (CDI: Endress+Hauser Common Data Interface) Commubox FXA291
- Computer mit Bedientool "FieldCare" und "CDI Communication FXA291" COM DTM

Zertifikate und Zulassungen

Aktuelle Zertifikate und Zulassungen zum Produkt stehen unter www.endress.com auf der jeweiligen Produktseite zur Verfügung:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- Produktseite öffnen.
- 3. **Downloads** auswählen.

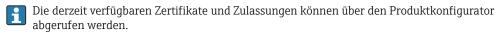
CE-Kennzeichnung

Das Messsystem erfüllt die gesetzlichen Anforderungen der anwendbaren EU-Richtlinien. Diese sind zusammen mit den angewandten Normen in der entsprechenden EU-Konformitätserklärung aufgeführt.

Endress+Hauser bestätigt die erfolgreiche Prüfung des Geräts mit der Anbringung des CE-Zeichens.

RCM Kennzeichnung

Das ausgelieferte Produkt oder Messsystem entspricht den ACMA (Australian Communications and Media Authority) Regelungen für Netzwerkintegrität, Leistungsmerkmale sowie Gesundheits- und Sicherheitsanforderungen. Insbesondere werden die Vorgaben der elektromagnetischen Verträglichkeit eingehalten. Die Produkte sind mit der RCM Kennzeichnung auf dem Typenschild versehen.



A002956

Ex-Zulassung

Für folgende Zulassungen stehen Zertifikate online zur Verfügung.

- AEx
- ATEX
- EAC Ex
- FM C/US
- IEC Ex
- INMETRO Ex
- JPN Ex
- NEPSI

Beim Einsatz in explosionsgefährdeten Bereichen sind zusätzliche Sicherheitshinweise zu beachten. Diese sind dem separaten Dokument "Sicherheitshinweise" (XA) zu entnehmen, das im Lieferumfang enthalten ist. Die jeweils gültige XA ist auf dem Typenschild referenziert.

Die separate Dokumentation "Sicherheitshinweise" (XA) enthält alle relevanten Daten zur Zündschutzart und ist bei Ihrer Endress+Hauser Vertriebszentrale erhältlich.

Einzelne Dichtung gemäß ANSI/ISA 12.27.01

Die Geräte wurden gemäß ANSI/ISA 12.27.01 als Geräte mit einzelner Dichtung ausgelegt. Dadurch kann der Benutzer auf den Einsatz von externen sekundären Prozessdichtungen, wie sie in den Normen ANSI/NFPA 70 (NEC) und CSA 22.1 (CEC) in den jeweiligen Abschnitten zu Prozessdichtungen gefordert werden, verzichten und so die Kosten, die mit der Installation dieser Dichtungen einhergehen, einsparen. Diese Instrumente erfüllen die Nordamerikanische Praxis für die Installation und ermöglichen eine sehr sichere und kostensparende Installation in druckbeaufschlagten Anwendungen mit gefährlichen Messstoffen.

Weitere Informationen finden sich in den Ex-Sicherheitshinweisen (XA) zu den jeweiligen Geräten.

Funktionale Sicherheit (SIL)

Zur Füllstandsüberwachung (MIN, MAX, Bereich) bis SIL 2/3 gemäß IEC 61508:2010.

Weitere Informationen sind im "Handbuch zur Funktionalen Sicherheit" zu finden: FY01099G

WHG

DIBt: Z-65.16-589

Eichzulassung

- OIML R85 (2008)
- NMi
- PTB

- PAC
- LNE
- WELMEC

Das Gerät verfügt über einen plombierbaren Verriegelungsschalter gemäß Anforderungen für den eichpflichtigen Verkehr. Dieser Schalter sperrt ("verriegelt") alle mit der Messung zusammenhängenden Software-Parameter. Der Status des Schalters wird auf der Anzeige und über das Kommunikationsprotokoll ausgegeben.

CRN-Zulassung

Für einige Gerätevarianten gibt es eine CRN-Zulassung. Eine CRN-Zulassung liegt vor, wenn folgende zwei Bedingungen erfüllt sind:

- Die CRN-Zulassung wurde ausgewählt (Produktstruktur: Merkmal 590 "Zusätzliche Zulassung", Option LD "CRN")
- Das Gerät hat einen CRN-zugelassenen Prozessanschluss gemäß folgender Tabelle:

Merkmal 140: Prozessanschluss	Bedeutung
AFA	NPS 3" Cl.150 RF, Aluminiumflansch ASME B16.5
АНА	NPS 6" Cl.150 RF, Aluminiumflansch ASME B16.5
AJA	NPS 8" Cl.150 RF, Aluminiumflansch ASME B16.5

- Prozessanschlüsse ohne CRN-Zulassung sind in dieser Tabelle nicht enthalten.
- Die CRN-zugelassenen Geräte werden auf dem Typenschild mit der Registrierungsnummer OF18152.5C gekennzeichnet.

Test, Zeugnis

Bestellmerkmal 580 "Test, Zeugnis"	Bezeichnung
JA	3.1 Materialnachweis, mediumsberührte metallische Teile, EN10204-3.1 Abnahme-prüfzeugnis
KE	Druckprüfung, internes Verfahren, Abnahmeprüfzeugnis
KF	Luftdichtheitsprüfung, internes Verfahren, Abnahmeprüfzeugnis
КО	Farbeindringprüfung JIS B 8266 (PT), mediumsberührte/drucktragende Nähte, Prüfbericht
KS	Schweissdokumentation, mediumberührte/drucktragende Nähte

Weitere Normen und Richtlinien

Industriestandards

- Richtlinie 2011/65/EC: "Restriction of Hazardous Substances Directive" (RoHS)
- Richtlinie 2014/32/EC: "Messgeräterichtlinie" (MID)
- IEC61508: "Funktionale Sicherheit elektrischer/elektronischer/programmierbarer elektronischer sicherheitsbezogener Systeme" (SIL)
- NACE MR 0175, NACE MR 0103: "Sulfide stress cracking resistant metallic materials for oilfield equipment"
- API-Empfehlung 2350: "Overfill Protection for Storage Tanks in Petroleum Facilities"
- API MPMS: "Manual of Petroleum Measurement Standards"
- EN 1127: "Explosionsfähige Atmosphären Explosionsschutz"
- IEC 60079: "Geräteschutz"
- EN 1092: "Flansche und ihre Verbindungen"
- EN 13463: "Nicht-elektrische Geräte für den Einsatz in explosionsgefährdeten Bereichen"
- TIA-485-A: "Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint Systems"
- IEC61511: "Funktionale Sicherheit Sicherheitstechnische Systeme für die Prozessindustrie"
- IEEE 754: "Standard for Binary Floating-Point Arithmetic for microprocessor systems" (Binäre Gleitkommaarithmetik)
- ISO4266: "Mineralöl- und flüssige Mineralölerzeugnisse Messung der Füllhöhe und der Temperatur in Lagertanks mit automatischen Verfahren"
- ISO6578: "Verflüssigte Kohlenwasserstoffe; Statische Messung; Berechnungsverfahren"
- ISO 11223: "Mineralöle und flüssige Mineralölerzeugnisse Direkte statische Messungen Messung des Inhaltes stehender Lagerbehälter durch hydrostatische Kalibrierung der Behälter"
- ISO15169: "Mineralöle und flüssige Mineralölerzeugnisse Bestimmung des Volumens, der Dichte und Masse des Inhalts vertikaler Zylinder mit Hybridtank-Messsystemen"

- JIS K2250: "Petroleum Measurement Tables"
- JIS B 8273: "Bolted flange for pressure vessels"
- G.I.I.G.N.L.: "LNG Custody transfer handbook"
- NAMUR NE043: "Vereinheitlichung des Signalpegels für die Ausfallinformation von digitalen Messumformern"
- NAMUR NE107: "Selbstüberwachung und Diagnose von Feldgeräten"

Messtechnische Normen

- OIML R85 (2008) "Requirements for ambient temperature low -25 °C (-13 °F) and ambient temperature high +55 °C (+131 °F)
- "Mess- und Eichverordnung" (Eichvorschriften der Bundesrepublik Deutschland)
- Richtlinie 2014/32/EC des Europäischen Parlaments und des Rates vom 26. Februar 2014 über Messgeräte
- PTB-A-5.08: "Automatische Füllstandmessgeräte für stationäre Lagerbehälter"

Kalibrierung

Kalibrierungen mit Zertifikaten sind optional verfügbar.

- 3- oder 5-Punkt-Füllstandskalibrierung im Werk, rückführbar auf ein internationales Bezugsnormal (étalon)
- 10-Punkt-Füllstandskalibrierung im Werk, rückführbar auf ein internationales Bezugsnormal (étalon)
- 10-Punkt-Füllstandskalibrierung im Labor, rückführbar auf ein internationales Bezugsnormal (étalon) gemäß ISO/IEC 17025, akkreditiert durch JAB, Japan Accreditation Board, oder gemäß ILAC MRA

Bestellinformationen

Bestellinformationen

Ausführliche Bestellinformationen sind bei der nächstgelegenen Vertriebsorganisation www.addresses.endress.com oder im Produktkonfigurator unter www.endress.com auswählbar:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- Konfiguration auswählen.

Produktkonfigurator - das Tool für individuelle Produktkonfiguration

- Tagesaktuelle Konfigurationsdaten
- Je nach Gerät: Direkte Eingabe von messstellenspezifischen Angaben wie Messbereich oder Bediensprache
- Automatische Überprüfung von Ausschlusskriterien
- Automatische Erzeugung des Bestellcodes mit seiner Aufschlüsselung im PDF- oder Excel-Ausgabeformat
- Direkte Bestellmöglichkeit im Endress+Hauser Onlineshop

Kalibrierzertifikat

Ein Kalibrierzertifikat ist enthalten, wenn eine der folgenden Optionen in Bestellmerkmal 150 ("Genauigkeit, Eichzulassung") ausgewählt wurde.

Option 1)	Bedeutung	Anzahl Kalibrierpunkte
ICW	Standard Ausführung, 3-Punkt Kalibrierzertifikat	3
ICX	Standard Ausführung, 5-Punkt Kalibrierzertifikat	5
ITA	Maximum Performance, 10-Punkt Kalibrierzertifikat	10
ITB	Maximum performance, 10-Punkt, erweiterter Bereich, nach OIML R85, API 3.1B, ISO4266, Werkskalibrierzerti- fikat	10
ITC	Standard Ausführung, 10-Punkt Kalibrierzertifikat	10
ITD	Standard Ausführung, 10-Punkt, erweiterter Bereich, nach OIML R85, API 3.1B, ISO4266, Werkskalibrierzertifikat	10

- 1) Option des Bestellmerkmals 150 "Genauigkeit, Eichzulassung", Positionen 21 bis 23 des Bestellcodes
- i
 - Die Kalibrierpunkte sind gleichmäßig über den ausgewählten Kalibrierbereich verteilt.
 - ullet Die Kalibrierpunkte werden unter Referenzbedingungen geprüft.

Kennzeichnung

Option des Bestellmerkmals 895 "Kennzeichnung"	Bedeutung
Z1	Messstelle (TAG)
Z2	Busadresse

Optional kann das Gerät mit einer spezifischen Messstelle (TAG) und/oder Busadresse gemäß der Tabelle oben bestellt werden. Wenn die entsprechende Option ausgewählt wurde, muss das Tag oder die Busadresse in einer Zusatzspezifikation definiert werden.

Zustand bei Auslieferung

Um eine sofortige Inbetriebnahme und den entsprechenden Betrieb zu ermöglichen, wird der NMS8x in einem "All-in-One"-Zustand ausgeliefert, mit Ausnahme der folgenden Spezifikationen.

- 47 m (154,20 ft) Messbereich
 55 m (180,45 ft) Messbereich
 110 mm (4,33 in) Verdränger
 NPS 8 in-Flansch

- $\, \blacksquare \,$ Option: Gereinigt von Öl und Fett

Anwendungspakete

Erweiterte Verfahren zur Tankstandmessung

Die Gerätesoftware bietet folgende Verfahren zur Tankstandmessung:

- Direkte Füllstandsmessung → 🖺 61
- Hybrides Tankmesssystem (HTMS) → 🖺 62
- Hydrostatische Tankdeformation (HyTD) → 🗎 63
- Korrektur der Tankwandtemperatur (CTSh) → 🖺 63

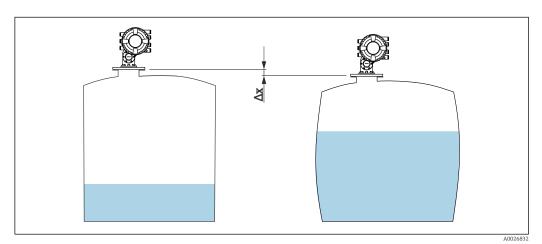
Direkte Füllstandsmessung

Wurde kein erweitertes Verfahren zur Tankstandmessung ausgewählt, werden Füllstand und Temperatur direkt gemessen.

Direkte Füllstandsmessmodi

Betriebsart	Montagebeispiel	Messgrößen	Berechnete Variablen
Nur Füllstand	1	Füllstand	Keine
	1 NMS8x		
	2 Zum Lagerhaltungssystem		
Füllstand + Temperatur	3	 Füllstand Temperatur (Punkt oder Durchschnitt) 	Keine
	1 NMS8x 2 Zum Lagerhaltungssystem 3 Temperatur (Punkt oder Durchschnitt)		

Hybrides Tankmesssystem (HTMS)


Das HTMS (Hybrid Tank Measurement System) nutzt Füllstands- und Druckmessungen, um den Inhalt des Tanks und (optional) die Dichte des Mediums zu berechnen.

HTMS-Messmodi

Betriebsart	Montagebeispiel	Messgrößen	Berechnete Vari- ablen
HTMS + P1 Dieser Modus sollte bei atmosphärischen Tanks (d. h. nicht druckbeaufschlagten Tanks) verwendet werden	1 NMS8x 2 Zum Lagerhaltungssystem 3 Druckmessumformer (unten)	 Füllstand Druck unten (an Position D1) 	Dichte des Mediums
HTMS + P1 + P3 Dieser Modus sollte bei nicht atmosphärischen Tanks (d. h. druckbeaufschlagten Tanks) verwendet werden	1 NMS8x 2 Zum Lagerhaltungssystem 3 Druckmessumformer (unten) 4 Druckmessumformer (oben)	 Füllstand Druck unten (an Position D1) Druck oben (an Position D3) 	Dichte des Medi- ums

Hydrostatische Tankdeformation (HyTD)

Die hydrostatische Tankdeformation (Hydrostatic Tank Deformation, HyTD) kann verwendet werden, um die vertikale Bewegung der Messgerät-Referenzhöhe zu kompensieren, die dadurch verursacht wird, dass sich die Tankwand aufgrund des hydrostatischen Drucks, den die im Tank befindliche Flüssigkeit ausübt, wölbt. Die Kompensation basiert auf einer linearen Annäherung, die ermittelt wurde, indem manuelle Messungen bei verschiedenen Füllständen und über den gesamten Tankbereich verteilt durchgeführt wurden.

■ 24 Bewegung ∆x der Tankreferenzhöhe aufgrund der durch den hydrostatischen Druck verursachten Wölbung der Tankwand

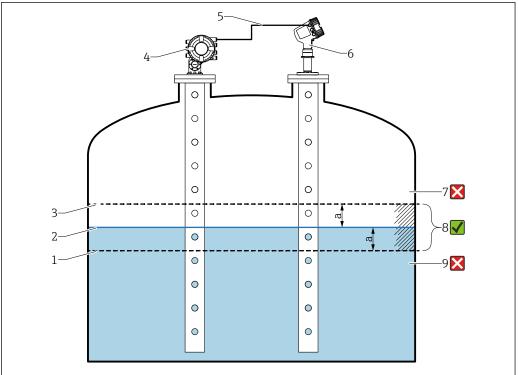
Korrektur der Tankwandtemperatur (CTSh)

Die Korrektur der Tankwandtemperatur (CTSh) kann dazu genutzt werden, die vertikale Bewegung der Messgerät-Referenzhöhe zu kompensieren, die auf Temperatureinflüsse zurückzuführen ist, die auf die Tankwand oder das Schwallrohr einwirken. Die Berechnung basiert auf dem thermischen Volumenausdehnungskoeffizienten von Stahl und Isolationsfaktoren für die "trockene" und die "bedeckte" Tankwand.

- Diese Korrektur empfiehlt sich für jedes Tankmessgerät, das unter Bedingungen arbeitet, die beträchtlich von den Bedingungen während der Kalibrierung abweichen. Ebenso empfiehlt sich sie bei extrem hohen Tanks. Zudem wird diese Korrektur dringend in gekühlten, kryogenen und beheizten Anwendungen empfohlen.
- Die Drahtlänge kann auch mithilfe der Parameter für die Korrektur der Tankwandtemperatur korrigiert werden.

Level Reference Check (LRC)

Bei Tanks, bei denen keine manuelle Messung möglich ist, kann das Füllstandsmessgerät mithilfe der LRC-Funktion verifiziert werden.


Wenn der gemessene Füllstandswert nicht durch die angewendete LRC-Funktion verifiziert wird, gibt das Gerät eine Fehlermeldung hinsichtlich des gemessenen Füllstands aus.

Diese Referenzprüfung empfiehlt sich für Flüssiggasanwendungen.

LRC mit Referenzfüllstand

Das Radarmessgerät vergleicht seinen eigenen Füllstandswert mit dem Füllstandswert eines anderen Füllstandsmessgeräts (z. B. Proservo NMS8x). Basierend auf einem konfigurierbaren Abweichungswert (Parameter **Erlaubte Differenz**) wird eine kontinuierliche Prüfung vorgenommen.

A005387

■ 25 Anwendungsbeispiel mit Proservo NMS8x


- 1 Die untere Grenze des Abweichungswerts "a", wie im Radar-Füllstandsmessgerät konfiguriert
- 2 Referenzwert: gemessener Füllstand, wie vom Füllstandsmessgerät Proservo NMS8x bereitgestellt
- *3 Obere Abweichungsgrenze*
- 4 Proservo NMS8x liefert den Referenzwert
- 5 Füllstandsmessgeräte werden über die HART-Schnittstelle miteinander verbunden
- 6 Radar-Füllstandsmessgerät mit konfiguriertem Abweichungswert "a" für Parameter "Erlaubte Differenz"
- 7 Der gemessene Füllstand ist größer als der Referenzwert plus dem Abweichungswert "a": Füllstandswert wird nicht bestätigt
- 8 Der gemessene Füllstand liegt innerhalb oder ist gleich den Grenzen, die durch den Abweichungswert "a" definiert sind: Füllstandswert wird bestätigt
- 9 Der gemessene Füllstand ist kleiner als der Referenzwert minus dem Abweichungswert "a": Füllstandswert wird nicht bestätigt

Eigenschaften

- Frequenz: Die Referenzprüfung wird kontinuierlich alle 60 Sekunden durchgeführt.
- Toleranz: Wird über Parameter **Prüfungsfehlerschwelle** eingestellt; eine bestimmte Anzahl von Fehlern ist zulässig (Anzahl ist konfigurierbar), bevor der Status auf "fehlgeschlagen" wechselt.
- Anschluss: Das Füllstandsreferenzgerät ist über eine optionale HART-I/O-Platine angeschlossen.
 Siehe Bestellmerkmal 050: "Sekundär I/O Analog ".

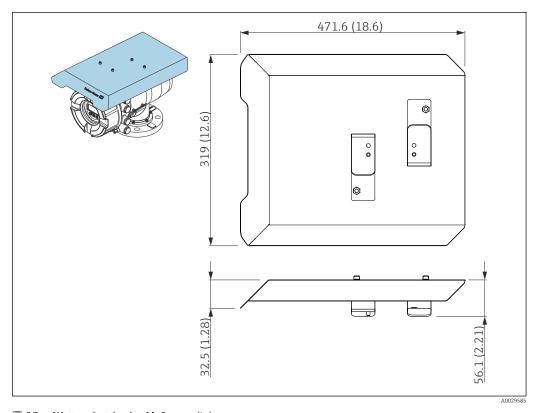
LRC mit Referenzschalter

Im Tank kann ein Füllstandsgrenzschalter montiert werden (z. B. Liquiphant FTLx). Die Prüfung kann kontinuierlich durchgeführt werden, jedes Mal, wenn der Füllstandsgrenzschalter aktiviert oder deaktiviert wird. Der gemessene Füllstand sollte innerhalb einer konfigurierbaren Abweichung liegen.

A005421

■ 26 Anwendungsbeispiel mit Füllstandsgrenzschalter

- Die untere Grenze des Abweichungswerts "a", wie im Radar-Füllstandsmessgerät konfiguriert
- 2 Referenzwert: Der Schaltpunkt eines eingebauten Füllstandsgrenzschalters stellt den Referenzwert für die Verifizierung dar
- 3 Obere Abweichungsgrenze
- 4 Füllstandsgrenzschalter und Füllstandsmessgerät werden über eine digitale I/O-Platine miteinander verbunden
- 5 Radar-Füllstandmessgerät mit konfiguriertem Abweichungswert "a" für Parameter "Erlaubte Differenz"
- 6 Der gemessene Füllstand ist größer als der Referenzwert plus dem Abweichungswert "a": Füllstandswert wird nicht bestätigt
- 7 Der gemessene Füllstand liegt innerhalb oder ist gleich den Grenzen, die durch den Abweichungswert "a" definiert sind: Füllstandswert wird bestätigt
- B Der gemessene Füllstand ist kleiner als der Referenzwert minus dem Abweichungswert "a": Füllstandswert wird nicht bestätigt


Eigenschaften

- Modi: Das Gerät kann dafür eingestellt werden, beim Befüllen oder Entleeren des Tanks den Schaltpunkt zu überwachen.
- Anschluss: Der Füllstandsschalter ist über eine digitale I/O-Platine angeschlossen.
 Siehe Bestellmerkmal 060: "Sekundär I/O Digital Ex d/XP".

Zubehör

Gerätespezifisches Zubehör

Wetterschutzhaube

 \blacksquare 27 Wetterschutzhaube; Maße: mm (in)

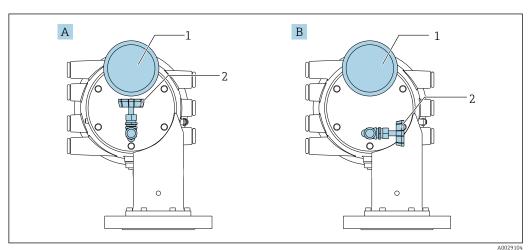
Werkstoffe

- Schutzhaube und Montagebügel Werkstoff 316L (1.4404)
- Schrauben und Unterlegscheiben Werkstoff A4
- i
- Die Wetterschutzhaube kann zusammen mit dem Gerät bestellt werden: Bestellmerkmal 620 "Zubehör beigelegt", Option PA "Wetterschutzhaube"
- Eine Bestellung als Zubehörteil ist ebenfalls möglich: Bestellcode: 71305035 (für NMS8x)

66

Instandhaltungskammer

Beim Einsatz von Tankmessgeräten wird die Verwendung einer Instandhaltungskammer empfohlen, um auch dann eine Instandhaltung (Entfernen des Verdrängers von 70 mm (2,76 in) oder größer) zu ermöglichen, während der Tank in Betrieb ist. Bitte wenden Sie sich bei Bedarf an Ihre Endress+Hauser Vertriebszentrale.


Kugelventil

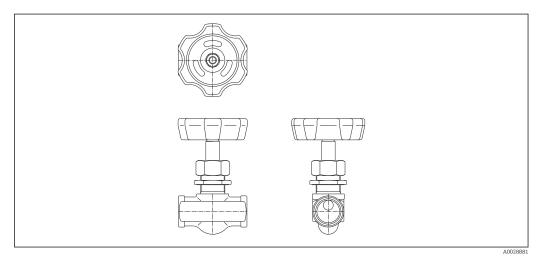
Es empfiehlt sich, Kugelventile zusammen mit Tankmessgeräten einzusetzen, um auch dann eine Instandhaltung (z. B. Entfernen des Verdrängers) zu ermöglichen, während der Tank in Betrieb ist. Bitte wenden Sie sich bei Bedarf an Ihre Endress+Hauser Vertriebszentrale.

Steuerungsschalter

Für im Feld montierte Tankmessgeräte wird ein Steuerungsschalter verwendet. Er ermöglicht ein zusätzliches Schalten der Betriebskontakte des Messgeräts, um den Betrieb des Messgeräts (wie z. B. das Anheben des Verdrängers) zu steuern. Bitte wenden Sie sich bei Bedarf an Ihre Endress+Hauser Vertriebszentrale.

Überdruckventil und Drucktransmitter

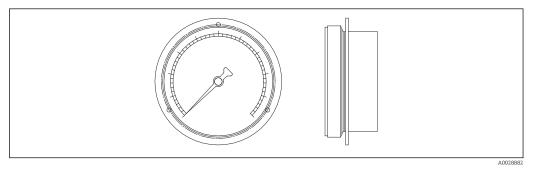
A002910


■ 28 Einbaulage von Überdruckventil und Drucktransmitter

- A Standardausführung
- B 90 °-Grad Drehung (optional)
- 1 Manometer
- 2 Überdruckventil

Überdruckventil

Ein Überdruckventil dient dazu, vor Instandhaltungsmaßnahmen den Druck im Gehäuse des NMS8x abzulassen.

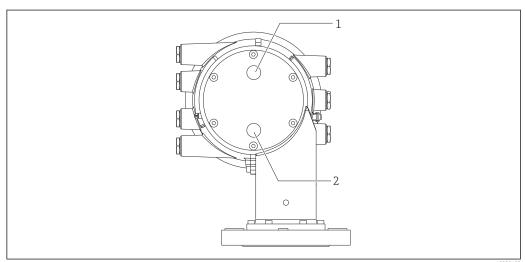

Bitte die Endress+Hauser Vertriebszentrale kontaktieren, wenn in einer Ammoniumatmosphäre eine Druckbeaufschlagung erfolgen soll.

■ 29 Überdruckventil

Manometer

Ein Drucktransmitter dient dazu, den Prozessdruck im Gehäuse zur überprüfen.

■ 30 Manometer

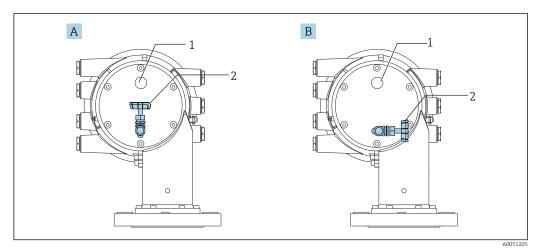

Der Bereich der Skalenanzeige für das Druckmessgerät variiert je nach Druck.

- Niederdruck: 0 ... 1 MPa
- Hochdruck: 0 ... 4 MPa

Reinigungsdüse und Gas-Ausblasstutzen

Eine Reinigungsdüse dient zum Reinigen (Waschen) des Gehäuseinneren und wird inbesondere für Anwendungen im N&G-Bereich oder für Anwendungen mit Alkohol empfohlen.

Ein Gas-Ausblasstutzen dient dazu, das im Gehäuse befindliche Gas auszublasen, und wird insbesondere für Stickstoffdecken in petrochemischen oder chemischen Anwendungen empfohlen.

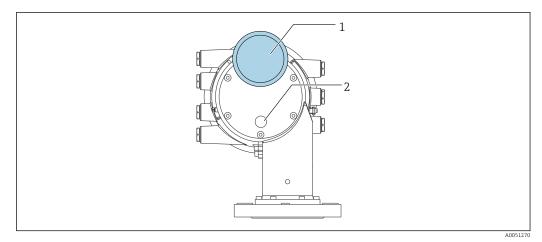


🗷 31 Öffnungen für Reinigungsdüse und Gas-Ausblasstutzen

- 1 Reinigungsdüse
- 2 Gas-Ausblasstutzen

Andere Kombinationen für Überdruckventil, Druckmessgerät, Reinigungsdüse und Gas-Ausblasstutzen

Reinigungsdüse und Überdruckventil


🗷 32 Reinigungsdüse und Überdruckventil

- A Standardausführung
- B 90 °-Grad Drehung (optional)
- 1 Reinigungsdüse
- 2. Überdruckventil

Endress+Hauser 69

A0030103

Druckmessgerät und Gas-Ausblasstutzen

 \blacksquare 33 Druckmessgerät und Gas-Ausblasstutzen

- 1 Manometer
- 2 Gas-Ausblasstutzen

Kommunikationsspezifisches Zubehör

WirelessHART Adapter SWA70

- Dient zur drahtlosen Anbindung von Feldgeräten
- Der WirelessHART Adapter ist leicht auf Feldgeräten und in bestehende Infrastruktur integrierbar, bietet Daten- und Übertragungssicherheit und ist zu anderen Wireless-Netzwerken parallel betreibbar

Zu Einzelheiten: Betriebsanleitung BA00061S

Gauge Emulator, Modbus zu BPM

- Mit Hilfe des Protokollwandlers kann ein Feldgerät in ein Host-System integriert werden, auch wenn das Feldgerät das Kommunikationsprotokoll des Host-Systems nicht beherrscht. Die Festlegung auf einen bestimmten Zulieferer für Feldgeräte entfällt.
- Feld-Kommunikationsprotokoll (Feldgerät): Modbus RS485
- Host-Kommunikationsprotokoll (Host-System): Enraf BPM
- 1 Messgerät pro Gauge Emulator
- ullet Separate Spannungsversorgung: 100 ... 240 V_{AC} , 50 ... 60 Hz, 0,375 A, 15 W
- Mehrere Zulassungen für Ex-Bereich

Gauge Emulator, Modbus zu TRL/2

- Mit Hilfe des Protokollwandlers kann ein Feldgerät in ein Host-System integriert werden, auch wenn das Feldgerät das Kommunikationsprotokoll des Host-Systems nicht beherrscht. Die Festlegung auf einen bestimmten Zulieferer für Feldgeräte entfällt.
- Feld-Kommunikationsprotokoll (Feldgerät): Modbus RS485
- Host-Kommunikationsprotokoll (Host-System): Saab TRL/2
- 1 Messgerät pro Gauge Emulator
- Separate Spannungsversorgung: 100 ... 240 V_{AC}, 50 ... 60 Hz, 0,375 A, 15 W
- Mehrere Zulassungen für Ex-Bereich

Dienstleistungsspezifisches Zubehör

Commubox FXA195 HART

Für die eigensichere HART-Kommunikation mit FieldCare über die USB-Schnittstelle

Für Einzelheiten: Dokument "Technische Information" TI00404F

Commubox FXA291

Verbindet Endress+Hauser Feldgeräte mit CDI-Schnittstelle (= Endress+Hauser Common Data Interface) und der USB-Schnittstelle eines Computers oder Laptops Bestellnummer: 51516983

Für Einzelheiten: Dokument "Technische Information" TI00405C

DeviceCare SFE100

Konfigurationswerkzeug für HART-, PROFIBUS- und FOUNDATION Fieldbus-Feldgeräte DeviceCare steht zum Download bereit unter www.software-products.endress.com. Zum Download ist die Registrierung im Endress+Hauser-Softwareportal erforderlich.

Technische Information TIO1134S

FieldCare SFE500

FDT-basiertes Anlagen-Asset-Management-Tool

Es kann alle intelligenten Feldeinrichtungen in Ihrer Anlage konfigurieren und unterstützt Sie bei deren Verwaltung. Durch Verwendung von Statusinformationen stellt es darüber hinaus ein einfaches, aber wirkungsvolles Mittel dar, deren Zustand zu kontrollieren.

Technische Information TI00028S

Systemkomponenten

RIA15

Kompakter Prozessanzeiger mit sehr geringem Spannungsabfall für den universellen Einsatz, um 4...20~mA-/HART-Signale anzuzeigen.

Technische Information TI01043K

Tankvision Tank Scanner NXA820 / Tankvision Data Concentrator NXA821 / Tankvision Host Link NXA822

Lagerhaltungssystem mit vollständig integrierter Software für die Bedienung über einen standardmäßigen Web-Browser.

Technische Information TI00419G

Dokumentation

Im Download-Bereich der Endress+Hauser Internetseite (www.endress.com/downloads) sind folgende Dokumenttypen verfügbar:

Eine Übersicht zum Umfang der zugehörigen Technischen Dokumentation bieten:

- *Device Viewer* (www.endress.com/deviceviewer): Seriennummer vom Typenschild eingeben
- Endress+Hauser Operations App: Seriennummer vom Typenschild eingeben oder Matrixcode auf dem Typenschild einscannen

Technische Information (TI)

Planungshilfe

Das Dokument liefert alle technischen Daten zum Gerät und gibt einen Überblick, was rund um das Gerät bestellt werden kann.

Kurzanleitung (KA)

Schnell zum 1. Messwert

Die Anleitung liefert alle wesentlichen Informationen von der Warenannahme bis zur Erstinbetriebnahme.

Betriebsanleitung (BA)

Die Betriebsanleitung enthält alle Informationen, die in den verschiedenen Phasen des Gerätelebenszyklus benötigt werden: von der Produktkennzeichnung, Warenannahme und Lagerung über Montage, Anschluss, Bedienung und Inbetriebnahme bis hin zu Störungsbehebung, Instandhaltung und Entsorgung.

Außerdem enthält sie eine detaillierte Erläuterung der einzelnen Parameter im Bedienmenü (hiervon ausgenommen ist das Menü **Experte**). Die Beschreibung richtet sich an Personen, die über den gesamten Lebenszyklus mit dem Gerät arbeiten und dabei spezifische Konfigurationen durchführen.

Beschreibung Geräteparameter (GP)

Die "Beschreibung Geräteparameter" bietet eine detaillierte Erläuterung der einzelnen Parameter im zweiten Teil des Bedienmenüs: dem Menü **Experte**. Sie enthält alle Geräteparameter und ermöglicht über einen spezifischen Code den direkten Zugriff auf die Parameter. Die Beschreibung richtet sich an Personen, die über den gesamten Lebenszyklus mit dem Gerät arbeiten und dabei spezifische Konfigurationen vornehmen.

Sicherheitshinweise (XA)

Abhängig von der Zulassung liegen dem Gerät bei Auslieferung Sicherheitshinweise (XA) bei. Diese sind integraler Bestandteil der Betriebsanleitung.

Auf dem Typenschild ist angegeben, welche Sicherheitshinweise (XA) für das jeweilige Gerät relevant sind.

Einbauanleitung (EA)

Einbauanleitungen unterstützen beim Austausch eines defekten Gerätes gegen ein funktionierendes Gerät desselben Typs.

Eingetragene Marken

Modbus[®]

Eingetragene Marke der SCHNEIDER AUTOMATION, INC.

www.addresses.endress.com