Brief Operating Instructions
Proline 500 – digital

HART transmitter
with ultrasonic time-of-flight sensor

These instructions are Brief Operating Instructions; they are not a substitute for the Operating Instructions pertaining to the device.

Brief Operating Instructions part 2 of 2: Transmitter
Contain information about the transmitter.

Brief Operating Instructions part 1 of 2: Sensor → 3
Proline 500 – digital HART

1. Order code:
 Ext. ord. cd.:
 Ser. no.:

2. www.endress.com/deviceviewer

3. Endress+Hauser Operations App
 Download on the
 App Store
 ANDROID APP ON
 Google Play

Serial number

A0023555
Brief operating instructions Flowmeter

The device consists of a transmitter and a sensor.

The process of commissioning these two components is described in two separate manuals which together form the Brief Operating Instructions for the flowmeter:

- Brief Operating Instructions Part 1: Sensor
- Brief Operating Instructions Part 2: Transmitter

Please refer to both parts of the Brief Operating Instructions when commissioning the device, as the contents of the manuals complement one another:

Brief Operating Instructions Part 1: Sensor
The Sensor Brief Operating Instructions are aimed at specialists with responsibility for installing the measuring device.
- Incoming acceptance and product identification
- Storage and transport
- Mounting procedure

Brief Operating Instructions Part 2: Transmitter
The Transmitter Brief Operating Instructions are aimed at specialists with responsibility for commissioning, configuring and parameterizing the measuring device (until the first measured value).
- Product description
- Mounting procedure
- Electrical connection
- Operation options
- System integration
- Commissioning
- Diagnostic information

Additional device documentation

These Brief Operating Instructions are Brief Operating Instructions Part 2: Transmitter.

The "Brief Operating Instructions Part 1: Sensor" are available via:
- Internet: www.endress.com/deviceviewer
- Smart phone/tablet: Endress+Hauser Operations App

Detailed information about the device can be found in the Operating Instructions and the other documentation:
- Internet: www.endress.com/deviceviewer
- Smart phone/tablet: Endress+Hauser Operations App
Table of contents

1. **About this document** .. 5
 1.1 Symbols used .. 5

2. **Safety instructions** ... 7
 2.1 Requirements for the personnel .. 7
 2.2 Intended use ... 7
 2.3 Workplace safety ... 8
 2.4 Operational safety ... 8
 2.5 Product safety .. 8
 2.6 IT security .. 9
 2.7 Device-specific IT security .. 9

3. **Product description** ... 10

4. **Mounting procedure** .. 11
 4.1 Mounting the sensor .. 11
 4.2 Mounting the transmitter ... 11
 4.3 Transmitter post-installation check .. 14

5. **Electrical connection** .. 15
 5.1 Electrical safety .. 15
 5.2 Connecting requirements ... 15
 5.3 Connecting the measuring device .. 20
 5.4 Ensuring potential equalization ... 25
 5.5 Ensuring the degree of protection .. 25
 5.6 Post-connection check ... 26

6. **Operation options** ... 27
 6.1 Overview of operation options ... 27
 6.2 Structure and function of the operating menu 28
 6.3 Access to operating menu via local display 29
 6.4 Access to the operating menu via the operating tool 32
 6.5 Access to the operating menu via the web server 32

7. **System integration** ... 33

8. **Commissioning** ... 33
 8.1 Installation and function check ... 33
 8.2 Setting the operating language ... 33
 8.3 Configuring the measuring device 34
 8.4 Protecting settings from unauthorized access 35

9. **Diagnostic information** .. 35
1 About this document

1.1 Symbols used

1.1.1 Safety symbols

⚠️ DANGER
This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

⚠️ WARNING
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

⚠️ CAUTION
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

⚠️ NOTICE
This symbol contains information on procedures and other facts which do not result in personal injury.

1.1.2 Symbols for certain types of information

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>Permitted Procedures, processes or actions that are permitted.</td>
<td>✓ ✓</td>
<td>Preferred Procedures, processes or actions that are preferred.</td>
</tr>
<tr>
<td>✗</td>
<td>Forbidden Procedures, processes or actions that are forbidden.</td>
<td>✗</td>
<td>Tip Indicates additional information.</td>
</tr>
<tr>
<td>📚</td>
<td>Reference to documentation</td>
<td>📚</td>
<td>Reference to page</td>
</tr>
<tr>
<td>📸</td>
<td>Reference to graphic</td>
<td>📸</td>
<td>Series of steps</td>
</tr>
<tr>
<td>←</td>
<td>Result of a step</td>
<td>←</td>
<td>Visual inspection</td>
</tr>
</tbody>
</table>

1.1.3 Electrical symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>────</td>
<td>Direct current</td>
<td>────</td>
<td>Alternating current</td>
</tr>
<tr>
<td>─────</td>
<td>Direct current and alternating current</td>
<td>─────</td>
<td>Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.</td>
</tr>
</tbody>
</table>
Potential equalization connection (PE: protective earth)
Ground terminals that must be connected to ground prior to establishing any other connections.

The ground terminals are located on the interior and exterior of the device:
- Interior ground terminal: potential equalization is connected to the supply network.
- Exterior ground terminal: device is connected to the plant grounding system.

1.1.4 Communication-specific symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>![WLAN]</td>
<td>Wireless Local Area Network (WLAN)</td>
<td>![Bluetooth]</td>
<td>Bluetooth</td>
</tr>
<tr>
<td>Wireless data transmission via a wireless, local network.</td>
<td>Wireless data transmission between devices over a short distance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>![LED on]</td>
<td>Light emitting diode is on.</td>
<td>![LED off]</td>
<td>Light emitting diode is off.</td>
</tr>
<tr>
<td>![LED flashing]</td>
<td>Light emitting diode is flashing.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.1.5 Tool symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Torx]</td>
<td>Torx screwdriver</td>
<td>![Flat-blade]</td>
<td>Flat-blade screwdriver</td>
</tr>
<tr>
<td>![Phillips]</td>
<td>Phillips head screwdriver</td>
<td>![Allen key]</td>
<td>Allen key</td>
</tr>
<tr>
<td>![Open-ended]</td>
<td>Open-ended wrench</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.1.6 Symbols in graphics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3,...</td>
<td>Item numbers</td>
<td>1, 2, 3,...</td>
<td>Series of steps</td>
</tr>
<tr>
<td>A, B, C,...</td>
<td>Views</td>
<td>A-A, B-B, C-C,...</td>
<td>Sections</td>
</tr>
<tr>
<td>![Hazardous]</td>
<td>Hazardous area</td>
<td>![Safe area]</td>
<td>Safe area (non-hazardous area)</td>
</tr>
<tr>
<td>![Flow direction]</td>
<td>Flow direction</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 Safety instructions

2.1 Requirements for the personnel
The personnel must fulfill the following requirements for its tasks:
- Trained, qualified specialists must have a relevant qualification for this specific function and task.
- Are authorized by the plant owner/operator.
- Are familiar with federal/national regulations.
- Before starting work, read and understand the instructions in the manual and supplementary documentation as well as the certificates (depending on the application).
- Follow instructions and comply with basic conditions.

2.2 Intended use
Application and media
The measuring device described in this manual is intended only for the flow measurement of gases.

Depending on the version ordered, the measuring device can also measure potentially explosive, flammable, poisonous and oxidizing media.

Measuring devices for use in explosive atmospheres, in hygienic applications or where there is a high risk of pressures, are labeled accordingly on the nameplate.

To ensure that the measuring device is in proper condition during the operation period:
- Only use the measuring device in full compliance with the data on the nameplate and the general conditions listed in the Operating Instructions and supplementary documentation.
- Refer to the nameplate to check whether the ordered device can be operated for the intended application in areas requiring specific approvals (e.g. explosion protection, pressure equipment safety).
- Use the measuring device only for media to which the process-wetted materials are sufficiently resistant.
- Keep within the specified pressure and temperature range.
- Keep within the specified ambient temperature range.
- Protect the measuring device permanently against corrosion from environmental influences.

Incorrect use
Non-designated use can compromise safety. The manufacturer is not liable for damage caused by improper or non-designated use.

⚠️ WARNING
Danger of breakage due to corrosive or abrasive fluids and ambient conditions!
- Verify the compatibility of the process fluid with the sensor material.
- Ensure the resistance of all fluid-wetted materials in the process.
- Keep within the specified pressure and temperature range.
Verification for borderline cases:

- For special fluids and fluids for cleaning, Endress+Hauser is glad to provide assistance in verifying the corrosion resistance of fluid-wetted materials, but does not accept any warranty or liability as minute changes in the temperature, concentration or level of contamination in the process can alter the corrosion resistance properties.

Residual risks

⚠️ CAUTION
Risk of hot or cold burns! The use of media and electronics with high or low temperatures can produce hot or cold surfaces on the device.
- Mount suitable touch protection.
- Use suitable protective equipment.

⚠️ WARNING
Danger from medium escaping!
For device versions with a rupture disk: medium escaping under pressure can cause injury or material damage.
- Take precautions to prevent injury and material damage if the rupture disk is actuated.

2.3 Workplace safety

When working on and with the device:
- Wear the required personal protective equipment as per national regulations.

2.4 Operational safety

Damage to the device!
- Operate the device in proper technical condition and fail-safe condition only.
- The operator is responsible for the interference-free operation of the device.

2.5 Product safety

This measuring device is designed in accordance with good engineering practice to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate.

It meets general safety standards and legal requirements. It also complies with the EU directives listed in the device-specific EU Declaration of Conformity. The manufacturer confirms this by affixing the CE mark to the device.

2.6 IT security

Our warranty is valid only if the product is installed and used as described in the Operating Instructions. The product is equipped with security mechanisms to protect it against any inadvertent changes to the settings.
IT security measures, which provide additional protection for the product and associated data transfer, must be implemented by the operators themselves in line with their security standards.

2.7 Device-specific IT security

The device offers a range of specific functions to support protective measures on the operator's side. These functions can be configured by the user and guarantee greater in-operation safety if used correctly.

For detailed information on device-specific IT security, see the Operating Instructions for the device.

2.7.1 Access via service interface (CDI-RJ45)

The device can be connected to a network via the service interface (CDI-RJ45). Device-specific functions guarantee the secure operation of the device in a network.

The use of relevant industrial standards and guidelines that have been defined by national and international safety committees, such as IEC/ISA62443 or the IEEE, is recommended. This includes organizational security measures such as the assignment of access authorization as well as technical measures such as network segmentation.

Transmitters with an Ex de approval may not be connected via the service interface (CDI-RJ45)!

3 Product description

The measuring system consists of a Proline 500 - digital transmitter and a Proline Prosonic Flow ultrasonic time-of-flight sensor.

The transmitter and sensor are mounted in physically separate locations. They are interconnected by a connecting cable.

1 Transmitter
2 Connecting cable: cable, separate, standard
3 Sensor connection housing with integrated ISEM (intelligent sensor electronics module)

For detailed information on the product description, see the Operating Instructions for the device → 3
4 Mounting procedure

4.1 Mounting the sensor

For detailed information about mounting the sensor, see the Sensor Brief Operating Instructions → 3

4.2 Mounting the transmitter

⚠️ CAUTION
Ambient temperature too high!
Danger of electronics overheating and housing deformation.
▶ Do not exceed the permitted maximum ambient temperature.
▶ If operating outdoors: Avoid direct sunlight and exposure to weathering, particularly in warm climatic regions.

⚠️ CAUTION
Excessive force can damage the housing!
▶ Avoid excessive mechanical stress.

The transmitter can be mounted in the following ways:
- Wall mounting → 11
- Pipe mounting → 13

4.2.1 Wall mounting

Required tools:
Drill with drill bit Ø 6.0 mm
1 Engineering unit mm (in)

Depends on order code for "Transmitter housing"

Order code for "Transmitter housing"
- Option A, aluminum, coated: L = 14 mm (0.55 in)
- Option D, polycarbonate: L = 13 mm (0.51 in)
4.2.2 Pipe mounting

Required tools:
• Open-ended wrench AF 10
• Torx screwdriver TX 25

NOTICE
Excessive tightening torque applied to the fixing screws!
Risk of damaging the plastic transmitter.
▶ Tighten the fixing screws as per the tightening torque: 2.5 Nm (1.8 lbf ft)
4.2.3 Weather protection cover

A weather protection cover is available as an accessory.

4.3 Transmitter post-installation check

The post-installation check must always be performed after the following tasks:
Mounting the transmitter housing:
- Post mounting
- Wall mounting

<table>
<thead>
<tr>
<th>Is the device undamaged (visual inspection)?</th>
<th>☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post mounting: Have the fixing screws been tightened with the correct tightening torque?</td>
<td>☐</td>
</tr>
<tr>
<td>Wall mounting: Are the securing screws tightened securely?</td>
<td>☐</td>
</tr>
</tbody>
</table>
5 Electrical connection

WARNING

Live parts! Incorrect work performed on the electrical connections can result in an electric shock.

- Set up a disconnecting device (switch or power-circuit breaker) to easily disconnect the device from the supply voltage.
- In addition to the device fuse, include an overcurrent protection unit with max. 10 A in the plant installation.

5.1 Electrical safety

In accordance with applicable national regulations.

5.2 Connecting requirements

5.2.1 Required tools

- For cable entries: use appropriate tool
- For securing clamp: Allen key 3 mm
- Wire stripper
- When using stranded cables: crimper for wire end ferrule
- For removing cables from terminal: flat blade screwdriver ≤ 3 mm (0.12 in)

5.2.2 Requirements for connecting cable

The connecting cables provided by the customer must fulfill the following requirements.

Protective grounding cable for the outer ground terminal

Conductor cross-section < 2.1 mm² (14 AWG)

The use of a cable lug enables the connection of larger cross-sections.

The grounding impedance must be less than 2 Ω.

Permitted temperature range

- The installation guidelines that apply in the country of installation must be observed.
- The cables must be suitable for the minimum and maximum temperatures to be expected.

Power supply cable (incl. conductor for the inner ground terminal)

Standard installation cable is sufficient.

Cable diameter

- Cable glands supplied:
 - M20 × 1.5 with cable Ø 6 to 12 mm (0.24 to 0.47 in)
- Spring-loaded terminals: Suitable for strands and strands with ferrules.
 - Conductor cross-section 0.2 to 2.5 mm² (24 to 12 AWG).
Signal cable

Current output 4 to 20 mA HART
A shielded cable is recommended. Observe grounding concept of the plant.

Current output 0/4 to 20 mA
Standard installation cable is sufficient

Pulse/frequency/switch output
Standard installation cable is sufficient

Double pulse output
Standard installation cable is sufficient

Relay output
Standard installation cable is sufficient.

Current input 0/4 to 20 mA
Standard installation cable is sufficient

Status input
Standard installation cable is sufficient
5.2.3 Connecting cable

Non-hazardous area, Ex Zone 2, Class I, Division 2

Standard cable
A standard cable can be used as the connecting cable.

<table>
<thead>
<tr>
<th>Standard cable</th>
<th>4 cores (2 pairs); pair-stranded with common shield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shielding</td>
<td>Tin-plated copper-braid, optical cover ≥ 85 %</td>
</tr>
<tr>
<td>Loop resistance</td>
<td>Power supply line (+, -): maximum 10 Ω</td>
</tr>
<tr>
<td>Cable length</td>
<td>Maximum 300 m (1000 ft), see the following table.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cross-section</th>
<th>Cable length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.34 mm² (AWG 22)</td>
<td>80 m (270 ft)</td>
</tr>
<tr>
<td>0.50 mm² (AWG 20)</td>
<td>120 m (400 ft)</td>
</tr>
<tr>
<td>0.75 mm² (AWG 18)</td>
<td>180 m (600 ft)</td>
</tr>
<tr>
<td>1.00 mm² (AWG 17)</td>
<td>240 m (800 ft)</td>
</tr>
<tr>
<td>1.50 mm² (AWG 15)</td>
<td>300 m (1000 ft)</td>
</tr>
</tbody>
</table>

Hazardous area, Ex Zone 1, Class I, Division 1

Standard cable
A standard cable can be used as the connecting cable.

<table>
<thead>
<tr>
<th>Standard cable</th>
<th>4, 6, 8 cores (2, 3, 4 pairs); pair-stranded with common shield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shield</td>
<td>Tin-plated copper braid, optical cover ≥ 85 %</td>
</tr>
<tr>
<td>Capacitance C</td>
<td>Maximum 760 nF IIC, maximum 4.2 µF IIB</td>
</tr>
<tr>
<td>Inductance L</td>
<td>Maximum 26 µH IIC, maximum 104 µH IIB</td>
</tr>
<tr>
<td>Inductance/resistance ratio (L/R)</td>
<td>Maximum 8.9 µH/Ω IIC, maximum 35.6 µH/Ω IIB (e.g. according to IEC 60079-25)</td>
</tr>
<tr>
<td>Loop resistance</td>
<td>Power supply line (+, -): maximum 5 Ω</td>
</tr>
<tr>
<td>Cable length</td>
<td>Maximum 150 m (500 ft), see the following table.</td>
</tr>
</tbody>
</table>
5.2.4 Terminal assignment

Transmitter: supply voltage, input/outputs

The terminal assignment of the inputs and outputs depends on the individual order version of the device. The device-specific terminal assignment is documented on an adhesive label in the terminal cover.
Transmitter and sensor connection housing: connecting cable

The sensor and transmitter, which are mounted in separate locations, are interconnected by a connecting cable. The cable is connected via the sensor connection housing and the transmitter housing.

Terminal assignment and connection of the connecting cable → 20.

5.2.5 Preparing the measuring device

Carry out the steps in the following order:

1. Mount the sensor and transmitter.
2. Sensor connection housing: Connect connecting cable.
3. Transmitter: Connect connecting cable.
4. Transmitter: Connect signal cable and cable for supply voltage.

NOTICE

Insufficient sealing of the housing!

Operational reliability of the measuring device could be compromised. Use suitable cable glands corresponding to the degree of protection.

1. Remove dummy plug if present.
2. If the measuring device is supplied without cable glands:
 Provide suitable cable gland for corresponding connecting cable.
3. If the measuring device is supplied with cable glands:
 Observe requirements for connecting cables → 15.
5.3 Connecting the measuring device

NOTICE

An incorrect connection compromises electrical safety!
- Only properly trained specialist staff may perform electrical connection work.
- Observe applicable federal/national installation codes and regulations.
- Comply with local workplace safety regulations.
- Always connect the protective ground cable ➊ before connecting additional cables.
- When using in potentially explosive atmospheres, observe the information in the device-specific Ex documentation.

5.3.1 Connecting the connecting cable

WARNING

Risk of damaging electronic components!
- Connect the sensor and transmitter to the same potential equalization.
- Only connect the sensor to a transmitter with the same serial number.

Connecting cable terminal assignment

1. Cable entry for cable on transmitter housing
2. Protective earth (PE)
3. Connecting cable ISEM communication
4. Grounding via ground connection; in the version with a device plug, grounding is ensured through the plug itself
5. Cable entry for cable or connection of device plug on sensor connection housing
6. Protective earth (PE)
Connecting the connecting cable to the sensor connection housing

<table>
<thead>
<tr>
<th>Connection via terminals with order code for "Housing"</th>
<th>Available for sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option A "Aluminum, coated"</td>
<td>→ 22 Prosonic Flow G</td>
</tr>
<tr>
<td>Option L "Cast, stainless"</td>
<td>→ 22 Prosonic Flow G</td>
</tr>
</tbody>
</table>

Connecting the connecting cable to the transmitter

The cable is connected to the transmitter via terminals → 23.
Connecting the sensor connection housing via terminals

1. Loosen the securing clamp of the housing cover.
2. Unscrew the housing cover.
3. Push the cable through the cable entry. To ensure tight sealing, do not remove the sealing ring from the cable entry.
4. Strip the cable and cable ends. In the case of stranded cables, fit ferrules.
5. Connect the protective ground.
6. Connect the cable in accordance with the connecting cable terminal assignment → 20.
7. Firmly tighten the cable glands.
 ➣ This concludes the process for connecting the connecting cable.

WARNING

Housing degree of protection voided due to insufficient sealing of the housing.

- Screw in the thread on the cover without using any lubricant. The thread on the cover is coated with a dry lubricant.

8. Screw on the housing cover.
9. Tighten the securing clamp of the housing cover.
Connecting the connecting cable to the transmitter

1. Loosen the 4 fixing screws on the housing cover.
2. Open the housing cover.
3. Fold open the terminal cover.
4. Push the cable through the cable entry. To ensure tight sealing, do not remove the sealing ring from the cable entry.
5. Strip the cable and cable ends. In the case of stranded cables, fit ferrules.
6. Connect the protective ground.
7. Connect the cable according to the terminal assignment for the connecting cable → TX 20.
8. Firmly tighten the cable glands.
 🔷 The process for connecting the connecting cable is now complete.
9. Close the housing cover.
10. Tighten the securing screw of the housing cover.
11. After connecting the connecting cable:
 Connect the signal cable and the supply voltage cable → TX 24.
5.3.2 Connecting the signal cable and the supply voltage cable

1. Terminal connection for supply voltage
2. Terminal connection for signal transmission, input/output
3. Terminal connection for signal transmission, input/output
4. Terminal connection for connecting cable between sensor and transmitter
5. Terminal connection for signal transmission, input/output; optional: connection for external WLAN antenna
6. Protective earth (PE)

1. Loosen the 4 fixing screws on the housing cover.
2. Open the housing cover.
3. Fold open the terminal cover.
4. Push the cable through the cable entry. To ensure tight sealing, do not remove the sealing ring from the cable entry.
5. Strip the cable and cable ends. In the case of stranded cables, fit ferrules.
6. Connect the protective ground.
7. Connect the cable according to the terminal assignment.
 ↪ **Signal cable terminal assignment:** The device-specific terminal assignment is documented on an adhesive label in the terminal cover.
 Supply voltage terminal assignment: Adhesive label in the terminal cover or .
8. Firmly tighten the cable glands.
 ↪ This concludes the cable connection process.
9. Close the terminal cover.
10. Close the housing cover.

WARNING

Housing degree of protection may be voided due to insufficient sealing of the housing.

▶ Screw in the screw without using any lubricant.

NOTICE

Excessive tightening torque applied to the fixing screws!
Risk of damaging the plastic transmitter.

▶ Tighten the fixing screws as per the tightening torque: 2 Nm (1.5 lbf ft)

11. Tighten the 4 fixing screws on the housing cover.

5.4 Ensuring potential equalization

5.4.1 Requirements

No special measures for potential equalization are required.

For devices intended for use in hazardous locations, please observe the guidelines in the Ex documentation (XA).

5.5 Ensuring the degree of protection

The measuring device fulfills all the requirements for the degree of protection IP66/67, Type 4X enclosure.

To guarantee the degree of protection IP66/67, Type 4X enclosure, carry out the following steps after electrical connection:

1. Check that the housing seals are clean and fitted correctly.
2. Dry, clean or replace the seals if necessary.
3. Tighten all housing screws and screw covers.
4. Firmly tighten the cable glands.
5. To ensure that moisture does not enter the cable entry:
 Route the cable so that it loops down before the cable entry ("water trap").

6. The cable glands supplied do not ensure housing protection when not in use. They must therefore be replaced by dummy plus corresponding to the housing protection.

5.6 Post-connection check

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are cables or the device undamaged (visual inspection)?</td>
<td>☐</td>
</tr>
<tr>
<td>Is the protective earthing established correctly?</td>
<td>☐</td>
</tr>
<tr>
<td>Do the cables used comply with the requirements?</td>
<td>☐</td>
</tr>
<tr>
<td>Are the mounted cables relieved of tension?</td>
<td>☐</td>
</tr>
<tr>
<td>Are all cable glands installed, securely tightened and leak-tight?</td>
<td>☐</td>
</tr>
<tr>
<td>Cable run with ‘water trap’ → ☐ 25?</td>
<td>☐</td>
</tr>
<tr>
<td>Is the terminal assignment correct?</td>
<td>☐</td>
</tr>
<tr>
<td>Are dummy plugs inserted in unused cable entries and have transportation plugs been replaced with dummy plugs?</td>
<td>☐</td>
</tr>
</tbody>
</table>
6 Operation options

6.1 Overview of operation options

1 Local operation via display module
2 Computer with Web browser (e.g. Internet Explorer) or with operating tool (e.g. FieldCare, DeviceCare, AMS Device Manager, SIMATIC PDM)
3 Field Xpert SFX350 or SFX370
4 Field Xpert SMT70
5 Mobile handheld terminal
6 Control system (e.g. PLC)
6.2 Structure and function of the operating menu

6.2.1 Structure of the operating menu

![Schematic structure of the operating menu]

6.2.2 Operating philosophy

The individual parts of the operating menu are assigned to certain user roles (e.g. operator, maintenance etc.). Each user role contains typical tasks within the device life cycle.

For detailed information on the operating philosophy, see the Operating Instructions for the device. → 3
6.3 Access to operating menu via local display

1 Operational display with measured value shown as "1 value, max." (example)
 1.1 Device tag
 1.2 Display area for measured values (4-line)
 1.3 Explanatory symbols for measured value: Measured value type, measuring channel number, symbol for diagnostic behavior
 1.4 Status area
 1.5 Measured value
 1.6 Unit for the measured value
 1.7 Operating elements
2 Operational display with measured value shown as "1 bar graph + 1 value" (example)
 2.1 Bar graph display for measured value 1
 2.2 Measured value 1 with unit
 2.3 Explanatory symbols for measured value 1: measured value type, measuring channel number
 2.4 Measured value 2
 2.5 Unit for measured value 2
 2.6 Explanatory symbols for measured value 2: measured value type, measuring channel number
3 Navigation view: picklist of a parameter
 3.1 Navigation path and status area
 3.2 Display area for navigation: ✔ designates the current parameter value
4 Editing view: text editor with input mask
5 Editing view: numeric editor with input mask
6.3.1 Operational display

<table>
<thead>
<tr>
<th>Explanatory symbols for the measured value</th>
<th>Status area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depends on the device version, e.g.:</td>
<td>The following symbols appear in the status area of the operational display at the top right:</td>
</tr>
<tr>
<td>• Ψ: Volume flow</td>
<td>• Status signals</td>
</tr>
<tr>
<td>• ｍ: Mass flow</td>
<td>• F: Failure</td>
</tr>
<tr>
<td>• П: Density</td>
<td>• C: Function check</td>
</tr>
<tr>
<td>• Г: Conductivity</td>
<td>• S: Out of specification</td>
</tr>
<tr>
<td>• ℃: Temperature</td>
<td>• M: Maintenance required</td>
</tr>
<tr>
<td>• Σ: Totalizer</td>
<td>• Diagnostic behavior</td>
</tr>
<tr>
<td>• Ｇ: Conductivity</td>
<td>• X: Alarm</td>
</tr>
<tr>
<td>• ｏ: Volume flow</td>
<td>• D: Warning</td>
</tr>
<tr>
<td>• ㋀: Measurement channel number ¹)</td>
<td>• ㋀: Locking (locked via hardware))</td>
</tr>
<tr>
<td>• Diagnostic behavior ²)</td>
<td>• ⊤: Communication via remote operation is active.</td>
</tr>
<tr>
<td>• X: Alarm</td>
<td></td>
</tr>
<tr>
<td>• Δ: Warning</td>
<td></td>
</tr>
</tbody>
</table>

1) If there is more than one channel for the same measured variable type (totalizer, output etc.).
2) For a diagnostic event that concerns the displayed measured variable.

6.3.2 Navigation view

<table>
<thead>
<tr>
<th>Status area</th>
<th>Display area</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following appears in the status area of the navigation view in the top right corner:</td>
<td>Icons for menus</td>
</tr>
<tr>
<td>• In the submenu</td>
<td>• ⊕: Operation</td>
</tr>
<tr>
<td>• The direct access code for the parameter you are navigating to (e.g. 0022-1)</td>
<td>• ⊚: Setup</td>
</tr>
<tr>
<td>• If a diagnostic event is present, the diagnostic behavior and status signal</td>
<td>• ⊙: Diagnostics</td>
</tr>
<tr>
<td>• In the wizard</td>
<td>• ⊝: Expert</td>
</tr>
<tr>
<td>• If a diagnostic event is present, the diagnostic behavior and status signal</td>
<td>• ▸: Submenus</td>
</tr>
<tr>
<td></td>
<td>• ⊛: Wizards</td>
</tr>
<tr>
<td></td>
<td>• ⊺: Parameters within a wizard</td>
</tr>
<tr>
<td></td>
<td>• ⊠: Parameter locked</td>
</tr>
</tbody>
</table>

6.3.3 Editing view

<table>
<thead>
<tr>
<th>Text editor</th>
<th>Text correction symbols under ⊗ C ⊘</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑</td>
<td>● Confirms selection.</td>
</tr>
<tr>
<td>✗</td>
<td>● Clears all entered characters.</td>
</tr>
<tr>
<td>¬</td>
<td>● Exits the input without applying the changes.</td>
</tr>
<tr>
<td>⊜</td>
<td>● Moves the input position one position to the right.</td>
</tr>
<tr>
<td>⊌</td>
<td>● Moves the input position one position to the left.</td>
</tr>
<tr>
<td>⊕ C ⊘</td>
<td>● Switches to the selection of the correction tools.</td>
</tr>
<tr>
<td>⊢ A ⊜</td>
<td>● Deletes one character immediately to the left of the input position.</td>
</tr>
</tbody>
</table>

Toggle
- Between upper-case and lower-case letters
- For entering numbers
- For entering special characters
6.3.4 Operating elements

<table>
<thead>
<tr>
<th>Operating key</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minus key</td>
</tr>
</tbody>
</table>
| ![Minus key](image) | *In menu, submenu*
Moves the selection bar upwards in a picklist
In wizards
Goes to previous parameter
In the text and numeric editor
Move the entry position to the left. |
| | **Plus key** |
| ![Plus key](image) | *In menu, submenu*
Moves the selection bar downwards in a picklist
In wizards
Goes to the next parameter
In the text and numeric editor
Move the entry position to the right. |
| | **Enter key** |
| ![Enter key](image) | *In the operational display*
Pressing the key briefly opens the operating menu.
In menu, submenu
- Pressing the key briefly:
 - Opens the selected menu, submenu or parameter.
 - Starts the wizard.
 - If help text is open, closes the help text of the parameter.
 - Pressing the key for 2 s in a parameter:
 - If present, opens the help text for the function of the parameter.
 In wizards
Opens the editing view of the parameter and confirms the parameter value
In the text and numeric editor
- Pressing the key briefly confirms your selection.
- Pressing the key for 2 s confirms your entry. |
6.3.5 Further information

Further information on the following subjects:
- Calling up help text
- User roles and related access authorization
- Disabling write protection via access code
- Enabling and disabling the keypad lock

Operating instructions for the device → 3

6.4 Access to the operating menu via the operating tool

For detailed information on access via FieldCare and DeviceCare, see the Operating Instructions for the device → 3

6.5 Access to the operating menu via the web server

The operating menu can also be accessed via the web server. See the Operating Instructions for the device. → 3
7 System integration

For detailed information on system integration, see the Operating Instructions for the device → 3

- Overview of device description files:
 - Current version data for the device
 - Operating tools
 - Measured variables via HART protocol
 - Burst mode functionality in accordance with HART 7 Specification

8 Commissioning

8.1 Installation and function check

Before commissioning the device:

- Make sure that the post-installation and post-connection checks have been performed successfully.

- "Post-mounting check" checklist → 14
- "Post-connection check" checklist → 26

8.2 Setting the operating language

Factory setting: English or ordered local language
5. **Taking the example of the local display**

8.3 Configuring the measuring device

The **Setup** menu with its submenus and various guided wizards is used for fast commissioning of the measuring device. They contain all the parameters required for configuration, such as for measurement or communication.

The number of submenus and parameters can vary depending on the device version. The selection can vary depending on the order code.

<table>
<thead>
<tr>
<th>Example: Available submenus, wizards</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>System units</td>
<td>Configuration of the units for all measured values</td>
</tr>
<tr>
<td>I/O configuration</td>
<td>User configurable I/O module</td>
</tr>
<tr>
<td>Current input</td>
<td>Configuration of the input/output type</td>
</tr>
<tr>
<td>Status input</td>
<td></td>
</tr>
<tr>
<td>Current output 1 to n</td>
<td></td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n</td>
<td></td>
</tr>
<tr>
<td>Relay output</td>
<td></td>
</tr>
<tr>
<td>Double pulse output</td>
<td></td>
</tr>
</tbody>
</table>
Example: Available submenus, wizards

<table>
<thead>
<tr>
<th>Example: Available submenus, wizards</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>Configuration of the display format on the local display</td>
</tr>
<tr>
<td>Low flow cut off</td>
<td>Configuration of the low flow cut off</td>
</tr>
<tr>
<td>Advanced setup</td>
<td>Additional parameters for configuration:</td>
</tr>
<tr>
<td></td>
<td>• Sensor adjustment</td>
</tr>
<tr>
<td></td>
<td>• Totalizer</td>
</tr>
<tr>
<td></td>
<td>• Display</td>
</tr>
<tr>
<td></td>
<td>• WLAN settings</td>
</tr>
<tr>
<td></td>
<td>• Data backup</td>
</tr>
<tr>
<td></td>
<td>• Administration</td>
</tr>
</tbody>
</table>

8.4 Protecting settings from unauthorized access

The following write protection options exist in order to protect the configuration of the measuring device from unintentional modification:

- Protect access to parameters via access code
- Protect access to local operation via key locking
- Protect access to measuring device via write protection switch

For detailed information on protecting settings against unauthorized access, see the Operating Instructions for the device. → 3

For detailed information on protecting the settings against unauthorized access in custody transfer applications, see the Special Documentation for the device.

9 Diagnostic information

Faults detected by the self-monitoring system of the measuring device are displayed as a diagnostic message in alternation with the operational display. The message about remedial measures can be called up from the diagnostic message, and contains important information on the fault.
6 Message for remedial measures

1 Diagnostic information
2 Short text
3 Service ID
4 Diagnostic behavior with diagnostic code
5 Operation time when error occurred
6 Remedial measures

1. The user is in the diagnostic message.
 Press † († symbol).
 ➔ The Diagnostic list submenu opens.

2. Select the desired diagnostic event with † or ‡ and press ‡ .
 ➔ The message about the remedial measures opens.

3. Press ‡ + † simultaneously.
 ➔ The message about the remedial measures closes.