Technische Information **Proline Prosonic Flow G 500**

Ultraschalllaufzeit-Durchflussmessgerät

Höchst robuster Gasspezialist für wechselhafte Bedingungen als Getrenntausführung mit bis zu 4 I/Os

Anwendungsbereich

- Das Messprinzip wird nicht von der Gaszusammensetzung beeinflusst
- Genaue Messung von Erdgas und Prozessgas in der chemischen sowie Öl- und Gasindustrie

Geräteeigenschaften

- Direkte Messung: Durchfluss, Druck & Temperatur
- Messstoffberührende Teile: Titan / 316L
- Maximale Messgenauigkeit: 0,5 %
- Getrenntausführung mit bis zu 4 Ein-/Ausgängen
- Beleuchtete Anzeige mit Touch Control, WLAN-Zugriff
- Standardkabel zwischen Messaufnehmer und -umformer

Ihre Vorteile

- Flexibles Gerät mit beliebig definierbaren Gasgemischen für anspruchsvolle Messaufgaben
- Maximale Zuverlässigkeit sogar bei feuchtem oder nassem Gas – kondensatunempfindliches Sensordesign
- Leistungsstarke Prozesskontrolle druck- und temperaturkompensierte Werte in Echtzeit
- Effiziente Lösung multivariabel, kein Druckverlust
- Voller Zugriff auf Prozess- und Diagnoseinformationen zahlreiche, frei kombinierbare I/Os
- Reduzierte Komplexität und Varianz frei konfigurierbare I/O-Funktionalität
- Verifikation ohne Ausbau Heartbeat Technology

Inhaltsverzeichnis

Hinweise zum Dokument	4	Relative Luftfeuchte	
Symbole	4	Betriebshöhe	
		Schutzart	44
Arbeitsweise und Systemaufbau	5	Vibrations- und Schockfestigkeit	44
		Elektromagnetische Verträglichkeit (EMV)	44
Messprinzip			
Messeinrichtung		Prozess	45
Gerätearchitektur	9		
Verlässlichkeit	9	Messstofftemperaturbereich	
		Schallgeschwindigkeitsbereich	
Eingang	12	Messstoffdruckbereich	
Messgröße		Druck-Temperatur-Kurven	
Messbereich		Berstscheibe	
Wessdynamik		Durchflussgrenze	47
Eingangssignal		Druckverlust	
zingangssignai	15	Wärmeisolation	47
Ausgang		Konstruktiver Aufbau	48
Aus- und Eingangsvarianten	15	Abmessungen in SI-Einheiten	
Ausgangssignal	17	Abmessungen in US-Einheiten	
Ausfallsignal	21	Gewicht	
Bürde	23		
	23	Werkstoffe	
	23	Prozessanschlüsse	63
3	24		
Protokollspezifische Daten	24	Anzeige und Bedienoberfläche	63
Totokohopezhibene zuten	- 1	Bedienkonzept	
		Sprachen	
Energieversorgung		Vor-Ort-Bedienung	
Klemmenbelegung		Fernbedienung	
Verfügbare Gerätestecker	25	· ·	66
Pinbelegung Gerätestecker	25		67
Versorgungsspannung	26	HistoROM Datenmanagement	
Leistungsaufnahme	26	Thistorom Datelinianagement	U J
· ·	26		
	26	Zertifikate und Zulassungen	70
Überstromschutzeinrichtung	26		70
Elektrischer Anschluss		UKCA-Kennzeichnung	70
Potenzialausgleich		RCM-Kennzeichnung	
Klemmen		Ex-Zulassung	
Kabeleinführungen		Funktionale Sicherheit	
Kabelspezifikation		Zertifizierung HART	
Überspannungsschutz		Druckgerätezulassung	
overspannungsschutz		Funkzulassung	
		Weitere Zertifizierungen	
Leistungsmerkmale	37	Externe Normen und Richtlinien	
Referenzbedingungen	37	Externe Normen una Alchannen	1)
Maximale Messabweichung	37		
Wiederholbarkeit	39	Bestellinformationen	73
Einfluss Umgebungstemperatur	39		
		Anwendungspakete	73
Montage	40	Diagnosefunktionalität	74
3	40	Heartbeat Technology	
Einbaulage		Erweiterte Gasanalyse	
	40		
Montage Gehäuse Messumformer		711	7-
Spezielle Montagehinweise		Zubehör	
special informagement clock	10	Gerätespezifisches Zubehör	
		Kommunikationsspezifisches Zubehör	
	43	Servicespezifisches Zubehör	
Umgebungstemperaturbereich	43	Systemkomponenten	77
Lagerungstemperatur			
	1		

Ergänzende Dokumentation	77
Standarddokumentation	77
Geräteabhängige Zusatzdokumentation	78
Eingetragene Marken	79

Hinweise zum Dokument

Symbole

Elektrische Symbole

Symbol	Bedeutung
===	Gleichstrom
~	Wechselstrom
$\overline{\sim}$	Gleich- und Wechselstrom
=	Erdanschluss Eine geerdete Klemme, die vom Gesichtspunkt des Benutzers über ein Erdungssystem geerdet ist.
	Anschluss Potenzialausgleich (PE: Protective earth) Erdungsklemmen, die geerdet werden müssen, bevor andere Anschlüsse hergestellt werden dürfen.
	Die Erdungsklemmen befinden sich innen und außen am Gerät: Innere Erdungsklemme: Anschluss Potenzialausgleich wird mit dem Versorgungsnetz verbunden. Äußere Erdungsklemme: Gerät wird mit dem Erdungssystem der Anlage verbunden.

Kommunikationsspezifische Symbole

Symbol	Bedeutung
?	Wireless Local Area Network (WLAN) Kommunikation über ein drahtloses, lokales Netzwerk.
•	LED Leuchtdiode ist aus.
-\$-	LED Leuchtdiode ist an.
	LED Leuchtdiode blinkt.

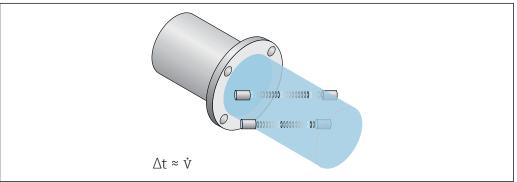
Symbole für Informationstypen

Symbol	Bedeutung
✓	Erlaubt Abläufe, Prozesse oder Handlungen, die erlaubt sind.
✓ ✓	Zu bevorzugen Abläufe, Prozesse oder Handlungen, die zu bevorzugen sind.
X	Verboten Abläufe, Prozesse oder Handlungen, die verboten sind.
i	Tipp Kennzeichnet zusätzliche Informationen.
Ţ <u>i</u>	Verweis auf Dokumentation
	Verweis auf Seite
	Verweis auf Abbildung
•	Sichtkontrolle

Symbole in Grafiken

Symbol	Bedeutung
1, 2, 3,	Positionsnummern
1., 2., 3.,	Handlungsschritte
A, B, C,	Ansichten
A-A, B-B, C-C,	Schnitte
EX	Explosionsgefährdeter Bereich
×	Sicherer Bereich (nicht explosionsgefährdeter Bereich)
≋➡	Durchflussrichtung

Arbeitsweise und Systemaufbau


Messprinzip

Das Messgerät misst die Durchflussgeschwindigkeit im Messrohr mittels einer flussabwärts versetzten Anordnung von Ultraschallsensoren. Die Konstruktion verursacht keinen Druckverlust und verfügt über keine beweglichen Teile.

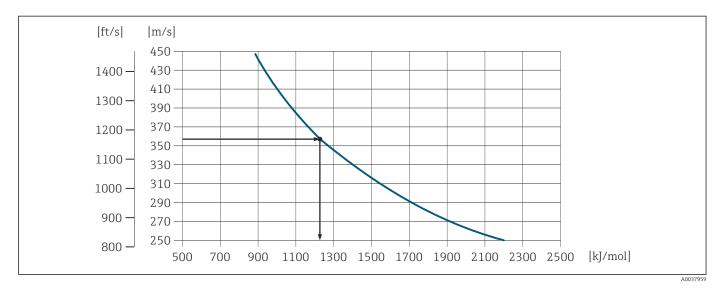
Das Durchflusssignal wird durch abwechselndes Messen der Laufzeit eines akustischen Signals von einem Sensor zum anderen ermittelt. Dabei wird die Tatsache genutzt, dass Schall schneller mit der Durchflussrichtung übertragen wird als gegen die Durchflussrichtung. Diese Differenzzeit (Δt) wird zur Bestimmung der Durchflussgeschwindigkeit zwischen den Sensoren verwendet.

Der Volumenstrom wird durch sequentielles Messen zwischen allen Sensorpaaren in der Anordnung ermittelt. Die Konstruktion der Anordnung gewährleistet, dass nach typischen Durchflussbehinderungen wie Biegungen in einer oder zwei Ebenen nur ein kurzer gerader Rohrverlauf vor dem Messgerät benötigt wird.

Fortschrittliche digitale Signalverarbeitung und innovatives Sensordesign erleichtern die konstante Bewertung der Durchflussmessung. Sie reduzieren die Empfindlichkeit hinsichtlich zweiphasiger Durchflussbedingungen (feuchte und wechselnde Gasbedingungen) und erhöhen die Verlässlichkeit der Messung.

A0015451

Messung der Gasqualität (Advanced Gas Analysis)

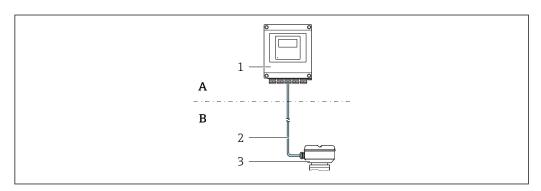

Das Messgerät erfasst hochgenau Schallgeschwindigkeit, Gastemperatur und Gasdruck. Somit können die Eigenschaften des Gasgemisches direkt berechnet und vor Ort angezeigt werden. Z.B.:

- Dichte, Brennwert, Energiefluss (Brennleistung) und Wobbe-Index eines Erdgases, dessen Zusammensetzung unbekannt oder variabel ist
- Dichte, molare Masse und Viskosität eines bekannten Prozessgases oder Gasgemisches

Für Gasgemische, die im Wesentlichen aus Methan, ${\rm CO_2}$ und Sattdampf bestehen (z.B. Biogas und manche Arten von Kohlegas), ermöglicht das Messgerät die direkte Bestimmung des Methananteils und weiterer Gaseigenschaften.

Mit der direkten Erfassung der Gaseigenschaften ist eine Überwachung von Gasdurchfluss und Gasqualität rund um die Uhr möglich. Anlagenbetreiber können so auf Störungen im Prozessverlauf schnell und gezielt reagieren.

Nachfolgend die Berechnung des Brennwerts eines Erdgases anhand der Schallgeschwindigkeit [m/s (ft/s)], bei einer bestimmten konstanten Temperatur T und einem bestimmten konstantem Druck p.


Detaillierte Informationen zum Anwendungspaket "Erweiterte Gasanalyse": Sonderdokumentationen $\rightarrow \stackrel{ ext{le}}{=} 79$

Messeinrichtung

Die Messeinrichtung besteht aus einem Messumformer und einem Messaufnehmer. Messumformer und Messaufnehmer werden räumlich voneinander getrennt montiert. Sie sind über Verbindungskabel miteinander verbunden.

Messumformer Proline 500 - digital

Für den Einsatz in Anwendungen, bei denen keine besonderen Anforderungen aufgrund der Umgebungs- oder Betriebsbedingungen gefordert sind.

- A Nicht explosionsgefährdeter Bereich oder Zone 2; Class I, Division 2
- B Nicht explosionsgefährdeter Bereich oder Zone 2; Class I, Division 2 oder Zone 1; Class I, Division 1
- 1 Messumformer
- 2 Verbindungskabel: Kabel, getrennt, Standard
- 3 Anschlussgehäuse Messaufnehmer mit integrierten ISEM
- Elektronik im Messumformergehäuse, ISEM (Intelligentes Sensor Elektronik Modul) im Anschlussgehäuse des Messaufnehmers
- Signalübertragung: Digital Bestellmerkmal "Integrierte ISEM Elektronik", Option A "Sensor"

Verbindungskabel

- Länge:
 - Zone 2; Class I, Division 2: Max. 300 m (1000 ft)
 - Zone 1; Class I, Division 1: Max. 150 m (500 ft)
- Standardkabel mit gemeinsamem Schirm (paarverseilt)
- Gegen äußere EMV-Einflüsse störungsunempfindlich.

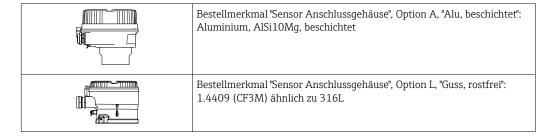
Explosionsgefährdeter Bereich

Einsatz in: Zone 2; Class I, Division 2

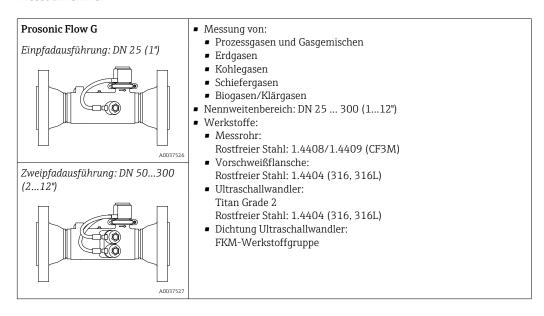
Gemischte Installation möglich:

- Messaufnehmer: Zone 1; Class I, Division 1
- Messumformer: Zone 2; Class I, Division 2

Gehäuseausführungen und Werkstoffe

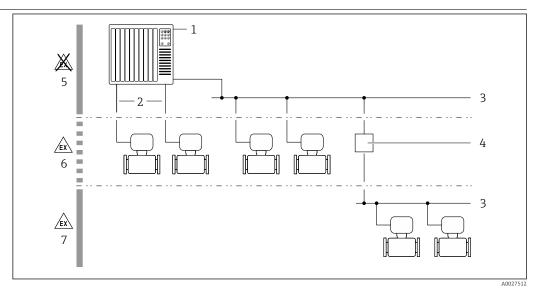

- Messumformergehäuse
 - Alu, beschichtet: Aluminium, AlSi10Mg, beschichtet
 - Kunststoff: Polycarbonat
- Fensterwerkstoff bei Messumformergehäuse
 - Alu, beschichtet: Glas
 - Kunststoff: Polycarbonat

Konfiguration


- Bedienung von außen via 4-zeiliger, beleuchteter, grafischer Vor-Ort-Anzeige (LCD) mit Touch-Control und geführten Menüs ("Make-it-run"-Wizards) für anwendungsspezifische Inbetriebnahme.
- Via Serviceschnittstelle oder WLAN-Verbindung:
 - Bedientools (z.B. FieldCare, DeviceCare)
 - Webserver (Zugriff via Webbrowser z.B. Microsoft Internet Explorer, Microsoft Edge)

Anschlussgehäuse Messaufnehmer

Es sind verschiedene Geräteausführungen des Anschlussgehäuses verfügbar.


Messaufnehmer

Druckmesszelle und Temperatursensor

Gerätearchitektur

■ 1 Möglichkeiten für die Messgeräteinbindung in ein System

- 1 Automatisierungssystem (z.B. SPS)
- 2 Anschlusskabel (0/4...20 mA HART etc.)
- 3 Feldbus
- 4 Koppler
- 5 Nicht explosionsgefährdeter Bereich
- 6 Explosionsgefährdeter Bereich: Zone 2; Class I, Division 2
- Explosionsgefährdeter Bereich: Zone 1; Class I, Division 1

Verlässlichkeit

IT-Sicherheit

Eine Gewährleistung unsererseits ist nur gegeben, wenn das Produkt gemäß der Betriebsanleitung installiert und eingesetzt wird. Das Produkt verfügt über Sicherheitsmechanismen, um es gegen versehentliche Veränderung der Einstellungen zu schützen.

IT-Sicherheitsmaßnahmen gemäß dem Sicherheitsstandard des Betreibers, die das Produkt und dessen Datentransfer zusätzlich schützen, sind vom Betreiber selbst zu implementieren.

Gerätespezifische IT-Sicherheit

Um die betreiberseitigen Schutzmaßnahmen zu unterstützen, bietet das Gerät einige spezifische Funktionen. Diese Funktionen sind durch den Anwender konfigurierbar und gewährleisten bei korrekter Nutzung eine erhöhte Sicherheit im Betrieb. Die folgende Auflistung ist eine Übersicht der wichtigsten Funktionen:

Funktion/Schnittstelle	Werkseinstellung	Empfehlung
Schreibschutz via Hardware-Verriegelungs- schalter → 🖺 10	Nicht aktiviert	Individuell nach Risikoabschätzung
Freigabecode (gilt auch für Webserver Login oder FieldCare- Verbindung) → 🖺 10	Nicht aktiviert (0000)	Bei der Inbetriebnahme einen individuel- len Freigabecode vergeben
WLAN (Bestelloption in Anzeigemodul)	Aktiviert	Individuell nach Risikoabschätzung
WLAN Security Modus	Aktiviert (WPA2- PSK)	Nicht verändern
WLAN-Passphrase (Passwort) → 🖺 10	Seriennummer	Bei der Inbetriebnahme einen individuel- len WLAN-Passphrase vergeben
WLAN-Modus	Access Point	Individuell nach Risikoabschätzung
Webserver → 🖺 10	Aktiviert	Individuell nach Risikoabschätzung
Serviceschnittstelle CDI-RJ45 → 🗎 10	_	Individuell nach Risikoabschätzung

Zugriff via Hardwareschreibschutz schützen

Der Schreibzugriff auf die Parameter des Geräts via Vor-Ort-Anzeige, Webbrowser oder Bedientool (z.B. FieldCare, DeviceCare) kann über einen Verriegelungsschalter (DIP-Schalter auf dem Hauptelektronikmodul) deaktiviert werden. Bei aktiviertem Hardwareschreibschutz ist nur Lesezugriff auf die Parameter möglich.

Der Hardwareschreibschutz ist im Auslieferungszustand deaktiviert.

Zugriff via Passwort schützen

Um den Schreibzugriff auf die Parameter des Geräts oder den Zugriff auf das Gerät via der WLAN-Schnittstelle zu schützen, stehen unterschiedliche Passwörter zur Verfügung.

• Anwenderspezifischer Freigabecode

Den Schreibzugriff auf die Parameter des Geräts via Vor-Ort-Anzeige, Webbrowser oder Bedientool (z.B. FieldCare, DeviceCare) schützen. Das Zugriffsrecht wird durch die Verwendung eines anwenderspezifischen Freigabecodes klar geregelt.

WLAN-Passphrase

Der Netzwerkschlüssel schützt eine Verbindung zwischen einem Bediengerät (z.B. Notebook oder Tablet) und dem Gerät über die optional bestellbare WLAN-Schnittstelle.

Infrastruktur Modus

Bei Betrieb im Infrastruktur Modus entspricht der WLAN-Passphrase dem betreiberseitig konfigurierten WLAN-Passphrase.

Anwenderspezifischer Freigabecode

Der Schreibzugriff auf die Parameter des Geräts via Vor-Ort-Anzeige, Webbrowser oder Bedientool (z.B. FieldCare, DeviceCare) kann durch den veränderbaren, anwenderspezifischen Freigabecode geschützt werden.

WLAN-Passphrase: Betrieb als WLAN Access Point

Eine Verbindung zwischen einem Bediengerät (z.B. Notebook oder Tablet) und dem Gerät über die optional bestellbare WLAN-Schnittstelle wird durch den Netzwerkschlüssel geschützt. Die WLAN-Authentifizierung des Netzwerkschlüssels ist konform dem Standard IEEE 802.11.

Der Netzwerkschlüssel ist im Auslieferungszustand geräteabhängig vordefiniert. Er kann über das Untermenü **WLAN-Einstellungen** im Parameter **WLAN-Passphrase** angepasst werden.

Infrastruktur Modus

Eine Verbindung zwischen Gerät und dem WLAN Access Point ist anlagenseitig über SSID und Passphrase geschützt. Für einen Zugriff an den zuständigen Systemadministrator wenden.

Allgemeine Hinweise für die Verwendung der Passwörter

- Der bei Auslieferung gültige Freigabecode und Netzwerkschlüssel aus Sicherheitsgründen bei der Inbetriebnahme ändern.
- Bei der Definition und Verwaltung des Freigabecodes und Netzwerkschlüssels sind die allgemein üblichen Regeln für die Generierung eines sicheren Passworts zu berücksichtigen.
- Die Verwaltung und der sorgfältige Umgang mit dem Freigabecode und Netzwerkschlüssel obliegt dem Benutzer.

Zugriff via Webserver

Mit dem integrierten Webserver kann das Gerät über einen Webbrowser bedient und konfiguriert werden. Die Verbindung erfolgt via Serviceschnittstelle (CDI-RJ45) oder WLAN-Schnittstelle.

Der Webserver ist im Auslieferungszustand aktiviert. Über den Parameter **Webserver Funktionalität** kann der Webserver bei Bedarf (z. B. nach der Inbetriebnahme) deaktiviert werden.

Die Geräte- und Status-Informationen können auf der Login-Seite ausgeblendet werden. Dadurch wird ein unberechtigtes Auslesen der Informationen unterbunden.

Detaillierte Informationen zu den Parametern des Geräts: Dokument "Beschreibung Geräteparameter".

Zugriff via Serviceschnittstelle (CDI-RJ45)

Das Gerät kann über die Serviceschnittstelle (CDI-RJ45) mit einem Netzwerk verbunden werden. Aufgrund gerätespezifischer Funktionen ist ein sicherer Betrieb des Geräts in einem Netzwerk gewährleistet.

Es wird empfohlen die einschlägigen Industrienormen und Richtlinien anzuwenden, die von nationalen und internationalen Sicherheitsausschüssen verfasst wurden wie zum Beispiel IEC/ISA62443 oder IEEE. Hierzu zählen organisatorische Sicherheitsmaßnahmen wie die Vergabe von Zutrittsberechtigungen und auch technische Maßnahmen wie zum Beispiel eine Netzwerksegmentierung.

i

Messumformer mit einer Ex de Zulassung dürfen nicht über die Serviceschnittstelle (CDI-RJ45) angeschlossen werden!

Eingang

Messgröße

Direkte Messgrößen

- Durchflussgeschwindigkeit
- Schallgeschwindigkeit
- Prozesstemperatur (optional): Basierend auf Pt1000 Klasse A Platin-Messwiderstand
- Prozessdruck (optional): Basierend auf Druckmesszelle zur Messung des Absolutdrucks

Berechnete Messgrößen

- Volumenfluss
- Normvolumenfluss (Norm-/Standardvolumenfluss)
- Massefluss
- Energiefluss
- Dichte

Optional berechnete Messgrößen

Bestellmerkmal "Anwendungspaket", Option EF "Erweiterte Gasanalyse"

- Wobbe-Index
- Methananteil
- Molare Masse
- Dynamische Viskosität
- Brennwert
- i

Optional berechnete Messgrößen sind abhängig vom Gastyp.

Messbereich

- Mit der spezifizierten Messgenauigkeit: v = 0,3 ... 40 m/s (0,98 ... 131,2 ft/s)
- Mit reduzierter Messgenauigkeit: v = 0,3 ... 60 m/s (0,98 ... 196,8 ft/s)

Durchflusskennwerte in SI-Einheiten

			Werkseinstellungen		
Nenn	weite	Empfohlene Durchfluss- menge	Endwert Stromaus- gang	Impulswertigkeit	Schleichmenge (v ~ 0,1 m/s)
[mm]	[in]	[m³/h]	[m³/h]	[m³/Puls]	[m³/h]
25	1	0,50 67	50	0,007	0,17
50	2	2,05 274	210	0,03	0,68
80	3	4,60 614	460	0,06	1,5
100	4	8 1064	800	0,1	2,7
150	6	18,1 2 414	1800	0,3	6,0
200	8	32 4235	3 2 0 0	0,4	11
250	10	50 6 662	5000	0,7	17
300	12	71 9426	7 100	1,0	24

Durchflusskennwerte in US-Einheiten

		Werkseinstellungen			
Nenn	weite	Empfohlene Durchfluss- menge	Endwert Stromaus- gang	Impulswertigkeit	Schleichmenge (v ~ 0,1 m/s)
[in]	[mm]	[ft³/hr]	[ft³/hr]	[ft³/Puls]	[ft³/hr]
1	25	17,7 2 358	1800	0,2	5,9
2	50	73 9 668	7300	1	24
3	80	163 21694	16000	2	54
4	100	282 37 579	28000	4	94
6	150	639 85 253	64000	9	213

12

			Werkseinstellungen		
Nenn	weite	Empfohlene Durchfluss- menge	Endwert Stromaus- gang	Impulswertigkeit	Schleichmenge (v ~ 0,1 m/s)
[in]	[mm]	[ft³/hr]	[ft³/hr]	[ft³/Puls]	[ft³/hr]
8	200	1122 149544	110 000	16	374
10	250	1764 235259	180 000	25	588
12	300	2 497 332 890	250 000	35	832

Zur Berechnung des Messbereichs: Produktauswahlhilfe Applicator $\rightarrow~\cong~77$

Empfohlener Messbereich

Durchflussgrenze → 🖺 47

Messdynamik

133:1

Eingangssignal

Aus- und Eingangsvarianten

→ 🖺 15

Eingelesene Messwerte

Um die Messgenauigkeit bestimmter Messgrößen zu erhöhen oder für Gase den Normvolumenfluss zu berechnen, wird die Verwendung der integrierten Druck- und Temperaturmessung empfohlen:

- Temperaturmessung zur Steigerung der Messgenauigkeit (Bestellmerkmal "Messrohr; Wandler; Sensorausführung", Option AB "316L; Titan Gr. 2; Temperaturmessung integriert")
- Temperatur- und Druckmessung zur Steigerung der Messgenauigkeit (Bestellmerkmal "Messrohr; Wandler; Sensorausführung", Option AC "316L; Titan Gr. 2; Druck- + Temperaturmessung integriert")

Optional stellt das Messgerät Schnittstellen zur Verfügung, die die Übertragung von extern gemessenen Messgrößen (Temperatur, Druck, Gaszusammensetzung (Gaszusammensetzung nur mittels Modbus übertragbar)) ins Messgerät ermöglichen:

- Analogeingänge 4-20 mA
- Digitaleingänge (via HART-Eingang oder Modbus)

Druckwerte können als Absolut- oder Relativdruck übertragen werden. Für Relativdruck muss der atmosphärische Druck durch den Kunden spezifiziert werden.

HART-Protokoll

Das Schreiben der Messwerte vom Automatisierungssystem zum Messgerät erfolgt über das HART-Protokoll. Das Druckmessgerät muss folgende protokollspezifische Funktionen unterstützen:

- HART-Protokoll
- Burst-Modus

Stromeingang

Digitale Kommunikation

Das Schreiben der Messwerte durch das Automatisierungssystem kann erfolgen über: Modbus RS485

Stromeingang 0/4...20 mA

Stromeingang	0/420 mA (aktiv/passiv)	
Strombereich	420 mA (aktiv)0/420 mA (passiv)	
Auflösung	1 μΑ	
Spannungsabfall	Typisch: 0,6 2 V bei 3,6 22 mA (passiv)	
Maximale Eingangsspan- ≤ 30 V (passiv) nung		
Leerlaufspannung	≤ 28,8 V (aktiv)	
Mögliche Eingangsgrößen	DruckTemperatur	

Statuseingang

Maximale Eingangswerte	■ DC -3 30 V ■ Wenn Statuseingang aktiv (ON): $R_i > 3$ k Ω	
Ansprechzeit	Einstellbar: 5 200 ms	
Eingangssignalpegel	 Low-Signal (tief): DC -3 +5 V High-Signal (hoch): DC 12 30 V 	
Zuordenbare Funktionen	 Aus Die einzelnen Summenzähler separat zurücksetzen Alle Summenzähler zurücksetzen Messwertunterdrückung 	

Ausgang

Aus- und Eingangsvarianten

Abhängig von der für den Aus-/Eingang 1 gewählten Option stehen für die weiteren Aus- und Eingänge unterschiedliche Optionen zur Verfügung. Pro Aus-/Eingang 1 ...4 kann jeweils nur eine Option ausgewählt werden. Die folgenden Tabellen sind vertikal (\downarrow) zu lesen.

Beispiel: Wenn für Aus-/Eingang 1 die Option BA "4-20~mA HART" gewählt wurde, steht für den Ausgang 2 eine der Optionen A, B, D, E, F, H, I oder J und für den Ausgang 3 und 4 eine der Optionen A, B, D, E, F, H, I oder J zur Verfügung.

Aus-/Eingang 1 und Optionen für Aus-/Eingang 2

Optionen für Aus-/Eingang 3 und $4 \rightarrow \triangleq 16$

Bestellmerkmal "Ausgang; Eingang 1" (020) → Mögliche Optionen		e Optionen
Stromausgang 420 mA HART	BA	
Modbus RS485		MA
Bestellmerkmal "Ausgang; Eingang 2" (021) →	\	\
Nicht belegt	A	A
Stromausgang 420 mA	В	В
Frei konfigurierbarer Ein-/Ausgang ¹⁾	D	D
Impuls-/Frequenz-/Schaltausgang	E	E
Doppelimpulsausgang ²⁾	F	F
Relaisausgang	Н	Н
Stromeingang 0/420 mA	I	I
Statuseingang	J	J

¹⁾ Einem frei konfigurierbaren Ein-/Ausgang kann ein spezifischer Ein- oder Ausgang zugeordnet werden → 🖺 21.

²⁾ Bei Auswahl "Doppelimpulsausgang" (F) für den Aus-/Eingang 2 (021) steht für den Aus-/Eingang 3 (022) auch nur noch die Auswahl "Doppelimpulsausgang" (F) zur Verfügung.

Aus-/Eingang 1 und Optionen für Aus-/Eingang 3 und 4

Optionen für Aus-/Eingang 2 → 🖺 15

Bestellmerkmal "Ausgang; Eingang 1" (020) →	Möglich	e Optionen
Stromausgang 420 mA HART	BA	
Modbus RS485		MA
Bestellmerkmal "Aus-; Eingang 3" (022), "Aus-; Eingang 4" (023) →	↓	\
Nicht belegt	A	A
Stromausgang 420 mA	В	В
Frei konfigurierbarer Ein-/Ausgang	D	D
Impuls-/Frequenz-/Schaltausgang	E	E
Doppelimpulsausgang (Slave) 1)	F	F
Relaisausgang	Н	Н
Stromeingang 0/420 mA	I	I
Statuseingang	J	J

¹⁾ Für den Aus-/Eingang 4 steht die Auswahl Doppelimpulsausgang (F) nicht zur Verfügung.

Ausgangssignal

Stromausgang 4...20 mA HART

Bestellmerkmal	"Ausgang; Eingang 1" (20): Option BA: Stromausgang 4 20 mA HART
Signalmodus	Wahlweise einstellbar: Aktiv Passiv
Strombereich	Wahlweise einstellbar: 420 mA NAMUR 420 mA US 420 mA 020 mA (nur bei Signalmodus aktiv) Fester Stromwert
Leerlaufspannung	DC 28,8 V (aktiv)
Maximale Eingangsspan- nung	DC 30 V (passiv)
Bürde	250 700 Ω
Auflösung	0,38 μΑ
Dämpfung	Einstellbar: 0 999,9 s
Zuordenbare Messgrößen	 Volumenfluss Normvolumenfluss Massefluss Energiefluss Schallgeschwindigkeit Durchflussgeschwindigkeit Elektroniktemperatur Methananteil ¹⁾ Molare Masse ¹⁾ Dichte Dynamische Viskosität ¹⁾ Brennwert ¹⁾ Wobbe-Index ¹⁾ Druck ²⁾ Temperatur ³⁾

- 1) Nur bei Bestellmerkmal "Anwendungspaket", Option EF "Erweiterte Gasanalyse" und entsprechender Konfiguration
- 2) Nur bei Bestellmerkmal "Messrohr; Wandler; Sensorausführung", AC "316L; Titan Gr. 2; Druck- + Temperaturmessung integriert"
- 3) Nur bei Bestellmerkmal "Messrohr; Wandler; Sensorausführung", Option AB "316L; Titan Gr. 2; Temperaturmessung integriert" oder AC "316L; Titan Gr. 2; Druck- + Temperaturmessung integriert"

Modbus RS485

Physikalische Schnittstelle	RS485 gemäß Standard EIA/TIA-485
Abschlusswiderstand	Integriert, über DIP-Schalter aktivierbar

Stromausgang 4...20 mA

Bestellmerkmal	"Ausgang; Eingang 2" (21), "Ausgang; Eingang 3" (022) oder "Ausgang; Eingang 4" (023): Option B: Stromausgang 4 20 mA
Signalmodus	Wahlweise einstellbar: Aktiv Passiv

Strombereich	Wahlweise einstellbar: 420 mA NAMUR 420 mA US 420 mA 020 mA (nur bei Signalmodus aktiv) Fester Stromwert
Maximale Ausgangswerte	22,5 mA
Leerlaufspannung	DC 28,8 V (aktiv)
Maximale Eingangsspan- nung	DC 30 V (passiv)
Bürde	0 700 Ω
Auflösung	0,38 μΑ
Dämpfung	Einstellbar: 0 999,9 s
Zuordenbare Messgrößen	■ Volumenfluss ■ Normvolumenfluss ■ Massefluss ■ Energiefluss ■ Schallgeschwindigkeit ■ Durchflussgeschwindigkeit ■ Elektroniktemperatur ■ Methananteil ¹) ■ Molare Masse ¹) ■ Dichte ■ Dynamische Viskosität ¹) ■ Brennwert ¹) ■ Wobbe-Index ¹) ■ Druck ²) ■ Temperatur ³)

- 1) Nur bei Bestellmerkmal "Anwendungspaket", Option EF "Erweiterte Gasanalyse" und entsprechender Konfiguration
- 2) Nur bei Bestellmerkmal "Messrohr; Wandler; Sensorausführung", Option AC "316L; Titan Gr. 2; Druck- + Temperaturmessung integriert"
- 3) Nur bei Bestellmerkmal "Messrohr; Wandler; Sensorausführung", Option AB "316L; Titan Gr. 2; Temperaturmessung integriert" oder AC "316L; Titan Gr. 2; Druck- + Temperaturmessung integriert"

Impuls-/Frequenz-/Schaltausgang

Funktion	Als Impuls-, Frequenz- oder Schaltausgang wahlweise einstellbar
Ausführung	Open-Collector
	Wahlweise einstellbar: Aktiv Passiv
Maximale Eingangswerte	DC 30 V, 250 mA (passiv)
Leerlaufspannung	DC 28,8 V (aktiv)
Spannungsabfall	Bei 22,5 mA: ≤ DC 2 V
Impulsausgang	
Maximale Eingangswerte	DC 30 V, 250 mA (passiv)
Maximaler Ausgangs- strom	22,5 mA (aktiv)
Leerlaufspannung	DC 28,8 V (aktiv)
Impulsbreite	Einstellbar: 0,05 2 000 ms
Maximale Impulsrate	10 000 Impulse/s
Impulswertigkeit	Einstellbar

Zuordenbare Messgrößen	■ Volumenfluss
	■ Normvolumenfluss
	■ Massefluss
	Energiefluss
Frequenzausgang	
Maximale Eingangswerte	DC 30 V, 250 mA (passiv)
Maximaler Ausgangs- strom	22,5 mA (aktiv)
Leerlaufspannung	DC 28,8 V (aktiv)
Ausgangsfrequenz	Einstellbar: Endfrequenz 2 10 000 Hz (f $_{max}$ = 12 500 Hz)
Dämpfung	Einstellbar: 0 999,9 s
Impuls-Pausen-Verhältnis	1:1
Zuordenbare Messgrößen	 Volumenfluss Normvolumenfluss Massefluss Energiefluss Schallgeschwindigkeit Durchflussgeschwindigkeit Elektroniktemperatur Methananteil ¹⁾ Molare Masse ¹⁾ Dichte Dynamische Viskosität ¹⁾ Brennwert ¹⁾ Wobbe-Index ¹⁾ Druck ²⁾ Temperatur ³⁾
Schaltausgang	
Maximale Eingangswerte	DC 30 V, 250 mA (passiv)
Leerlaufspannung	DC 28,8 V (aktiv)
Schaltverhalten	Binär, leitend oder nicht leitend
Schaltverzögerung	Einstellbar: 0 100 s

Anzahl Schaltzyklen	Unbegrenzt
Zuordenbare Funktionen	 Aus An Diagnoseverhalten Grenzwert Volumenfluss Normvolumenfluss Massefluss Energiefluss Durchflussgeschwindigkeit Elektroniktemperatur Schallgeschwindigkeit Methananteil 1) Molare Masse 1) Dichte Dynamische Viskosität 1) Brennwert 1) Wobbe-Index 1) Druck 2) Temperatur 3) Summenzähler 13 Überwachung Durchflussrichtung Status Schleichmengenunterdrückung

- 1) Nur bei Bestellmerkmal "Anwendungspaket", Option EF "Erweiterte Gasanalyse" und entsprechender Konfiguration
- 2) Nur bei Bestellmerkmal "Messrohr; Wandler; Sensorausführung", Option AC "316L; Titan Gr. 2; Druck-+ Temperaturmessung integriert"
- 3) Nur bei Bestellmerkmal "Messrohr; Wandler; Sensorausführung", Option AB "316L; Titan Gr. 2; Temperaturmessung integriert" oder AC "316L; Titan Gr. 2; Druck- + Temperaturmessung integriert"

Doppelimpulsausgang

Funktion	Doppelimpuls
Ausführung	Open-Collector
	Wahlweise einstellbar: Aktiv Passiv Passiv NAMUR
Maximale Eingangswerte	DC 30 V, 250 mA (passiv)
Leerlaufspannung	DC 28,8 V (aktiv)
Spannungsabfall	Bei 22,5 mA: ≤ DC 2 V
Ausgangsfrequenz	Einstellbar: 0 1 000 Hz
Dämpfung	Einstellbar: 0 999 s
Impuls-Pausen-Verhältnis	1:1
Zuordenbare Messgrößen	 Volumenfluss Normvolumenfluss Massefluss Energiefluss

Relaisausgang

Funktion	Schaltausgang
Ausführung	Relaisausgang, galvanisch getrennt
Schaltverhalten	Wahlweise einstellbar: NO (normaly open), Werkseinstellung NC (normaly closed)

20

Maximale Schaltleistung (passiv)	■ DC 30 V, 0,1 A ■ AC 30 V, 0,5 A
Zuordenbare Funktionen	 Aus An Diagnoseverhalten Grenzwert Volumenfluss Normvolumenfluss Massefluss Energiefluss Durchflussgeschwindigkeit Elektroniktemperatur Schallgeschwindigkeit Methananteil ¹⁾ Molare Masse ¹⁾ Dichte Dynamische Viskosität ¹⁾ Brennwert ¹⁾ Wobbe-Index ¹⁾ Druck ²⁾ Temperatur ³⁾ Summenzähler 13 Überwachung Durchflussrichtung Status Schleichmengenunterdrückung

- 1) Nur bei Bestellmerkmal "Anwendungspaket", Option EF "Erweiterte Gasanalyse" und entsprechender Konfiguration
- Nur bei Bestellmerkmal "Messrohr; Wandler; Sensorausführung", AC "316L; Titan Gr. 2; Druck- + Temperaturmessung integriert"
- 3) Nur bei Bestellmerkmal "Messrohr; Wandler; Sensorausführung", Option AB "316L; Titan Gr. 2; Temperaturmessung integriert" oder AC "316L; Titan Gr. 2; Druck- + Temperaturmessung integriert"

Frei konfigurierbarer Ein-/Ausgang

Einem frei konfigurierbaren Ein-/Ausgang (Konfigurierbares I/O) wird bei der Inbetriebnahme des Geräts **ein** spezifischer Ein- oder Ausgang zugeordnet.

Für die Zuordnung stehen folgende Ein- und Ausgänge zur Verfügung:

- Stromausgang wählbar: 4...20 mA (aktiv), 0/4...20 mA (passiv)
- Impuls-/Frequenz-/Schaltausgang
- Stromeingang wählbar: 4...20 mA (aktiv), 0/4...20 mA (passiv)
- Statuseingang

Die technischen Werte entsprechen denen in diesem Kapitel beschriebenen Ein- und Ausgängen.

Ausfallsignal

Ausfallinformationen werden abhängig von der Schnittstelle wie folgt dargestellt.

Stromausgang HART

	Gerätediagnose	Gerätezustand auslesbar via HART-Kommando 48
--	----------------	--

Modbus RS485

Fehlerverhalten	Wählbar: ■ NaN-Wert anstelle des aktuellen Wertes
	Letzter gültiger Wert

Stromausgang 0/4...20 mA

4...20 mA

Fehlerverhalten	Wählbar: 4 20 mA gemäß NAMUR-Empfehlung NE 43 4 20 mA gemäß US Min. Wert: 3,59 mA Max. Wert: 22,5 mA Definierbarer Wert zwischen: 3,59 22,5 mA
	Aktueller WertLetzter gültiger Wert

0...20 mA

Fehlerverhalten	Wählbar:
	■ Maximaler Alarm: 22 mA
	■ Definierbarer Wert zwischen: 0 20,5 mA

Impuls-/Frequenz-/Schaltausgang

Impulsausgang	
Fehlerverhalten	Wählbar: ■ Aktueller Wert ■ Keine Impulse
Frequenzausgang	
Fehlerverhalten	Wählbar: ■ Aktueller Wert ■ 0 Hz ■ Definierbarer Wert zwischen: 2 12 500 Hz
Schaltausgang	
Fehlerverhalten	Wählbar: Aktueller Status Offen Geschlossen

Relaisausgang

Fehlerverhalten	Wählbar:
	Aktueller Status
	■ Offen
	■ Geschlossen

Vor-Ort-Anzeige

Klartextanzeige	Mit Hinweis zu Ursache und Behebungsmaßnahmen
Hintergrundbeleuchtung	Rote Beleuchtung signalisiert Gerätefehler.

i

Statussignal gemäß NAMUR-Empfehlung NE 107

Schnittstelle/Protokoll

- Via digitale Kommunikation:
 - HART-Protokoll
 - Modbus RS485
- Via Serviceschnittstelle
 - Serviceschnittstelle CDI-RJ45
 - WLAN-Schnittstelle

Klartextanzeige	Mit Hinweis zu Ursache und Behebungsmaßnahmen
-----------------	---

Webbrowser

Klartextanzeige	Mit Hinweis zu Ursache und Behebungsmaßnahmen
-----------------	---

Leuchtdioden (LED)

Statusinformationen	Statusanzeige durch verschiedene Leuchtdioden
	Je nach Geräteausführung werden folgende Informationen angezeigt: Versorgungsspannung aktiv Datenübertragung aktiv Gerätealarm/-störung vorhanden

Bürde

Ausgangssignal \rightarrow \blacksquare 17

Ex-Anschlusswerte

Sicherheitstechnische Werte

Bestellmerkmal "Ausgang; Eingang 1"	Ausgangstyp	Sicherheitstechnische Werte "Ausgang; Eingang 1"				
		26 (+)	27 (-)			
Option BA	Stromausgang 4 20 mA HART	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$				
Option MA	Modbus RS485	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$				

Bestellmerkmal	Ausgangstyp	Sicherheitstechnische Werte					Sicherhei		Ausgangstyp Sicherheitstechnische Werte				
"Ausgang; Eingang 2"; "Ausgang; Eingang 3" "Ausgang; Eingang 4"		Ausgang; Ein- gang 2		3 3,		Ausgang; Ein- gang 4							
3 3. 3		24 (+)	25 (-)	22 (+)	23 (-)	20 (+)	21 (-)						
Option B	Stromausgang 4 20 mA	$U_{\rm N} = 30 \text{V}$ $U_{\rm M} = 250 \text{V}$	20										
Option D	Frei konfigurierbarer Ein-/Ausgang	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$											
Option E	Impuls-/Frequenz-/ Schaltausgang	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$											
Option F	Doppelimpulsausgang	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$											
Option H	Relaisausgang	$U_N = 30 V_{DC}$ $I_N = 100 \text{ mA}_{DC} / 500 \text{ mA}_{AC}$ $U_M = 250 V_{AC}$											
Option I	Stromeingang 4 20 mA	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$											
Option J	Statuseingang	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$											

Schleichmengenunterdrückung

Die Schaltpunkte für die Schleichmengenunterdrückung sind frei wählbar.

Galvanische Trennung

Die Ausgänge sind galvanisch getrennt:

von der Spannungsversorgung

zueinander

- gegen Anschluss Potentialausgleich (PE)

Protokollspezifische Daten

HART

Hersteller-ID	0x11
Gerätetypkennung	0x5D (93)
HART-Protokoll Revision	7
Gerätebeschreibungsdateien (DTM, DD)	Informationen und Dateien unter: www.endress.com
Bürde HART	Min. 250 Ω
Systemintegration	Informationen zur Systemintegration: Betriebsanleitung → 🗎 78. • Messgrößen via HART-Protokoll • Burst Mode Funktionalität

Modbus RS485

Protokoll	Modbus Applications Protocol Specification V1.1
Antwortzeiten	 Direkter Datenzugriff: Typisch 25 50 ms Auto-Scan-Puffer (Datenbereich): Typisch 3 5 ms
Gerätetyp	Slave
Slave-Adressbereich	1 247
Broadcast-Adressbereich	0
Funktionscodes	 03: Read holding register 04: Read input register 06: Write single registers 08: Diagnostics 16: Write multiple registers 23: Read/write multiple registers
Broadcast-Messages	Unterstützt von folgenden Funktionscodes: O6: Write single registers 16: Write multiple registers 23: Read/write multiple registers
Unterstützte Baudrate	 1200 BAUD 2400 BAUD 4800 BAUD 9600 BAUD 19200 BAUD 38400 BAUD 57600 BAUD 115200 BAUD
Modus Datenübertragung	■ ASCII ■ RTU
Datenzugriff	Auf jeden Geräteparameter kann via Modbus RS485 zugegriffen werden. Zu den Modbus-Registerinformationen $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Systemintegration	Informationen zur Systemintegration: Betriebsanleitung . Modbus RS485-Informationen Funktionscodes Register-Informationen Antwortzeit Modbus-Data-Map

Energieversorgung

Klemmenbelegung

Messumformer: Versorgungsspannung, Ein-/Ausgänge

HART

	gungs- nung	Ein-/Ausgang 1		Ein-/Ausgang 2		Ein-/Ausgang 3		Ein-/Ausgang 4	
1 (+)	2 (-)	26 (+)	27 (-)	24 (+)	25 (-)	22 (+)	23 (-)	20 (+)	21 (-)
		Die Klemmenbelegung ist von der jeweiligen Bestellvariante des Geräts abhängig .							

Modbus RS485

	gungs- nung	Ein-/Ausgang 1		Ein-/Ausgang 2		Ein-/Ausgang 3		Ein-/Ausgang 4	
1 (+)	2 (-)	26 (B)	27 (A)	24 (+)	25 (-)	22 (+)	23 (-)	20 (+)	21 (-)
		Die Klemmenbelegung ist von der jeweiligen Bestellvariante des Geräts abhängig .			ngig .				

Messumformer und Anschlussgehäuse Messaufnehmer: Verbindungskabel

Die räumlich getrennt montierten Messaufnehmer und Messumformer werden mit einem Verbindungskabel verbunden. Der Anschluss erfolgt über das Anschlussgehäuse des Messaufnehmers und dem Messumformergehäuse.

Klemmenbelegung und Anschluss des Verbindungskabels:

Proline 500 – digital $\rightarrow \triangleq 26$

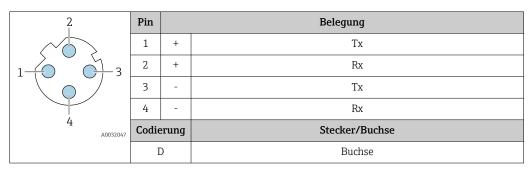
Verfügbare Gerätestecker

Gerätestecker dürfen nicht in explosionsgefährdeten Bereichen eingesetzt werden!

Gerätestecker für den Anschluss an die Serviceschnittstelle:

Bestellmerkmal "Zubehör montiert"

Option **NB**, Adapter RJ45 M12 (Serviceschnittstelle) → 🖺 25


Bestellmerkmal "Zubehör montiert", Option NB "Adapter RJ45 M12 (Serviceschnittstelle)"

Bestellmerkmal	Kabeleinführung/Anschluss → 🖺 26	
"Zubehör montiert"	Kabeleinführung 2	Kabeleinführung 3
NB	Stecker M12 × 1	-

Pinbelegung Gerätestecker

Serviceschnittstelle

Bestellmerkmal "Zubehör montiert", Option NB: Adapter RJ45 M12 (Serviceschnittstelle)

Als Stecker wird empfohlen:

- Binder, Serie 763, Teilenr. 99 3729 810 04
- Phoenix, Teilenr. 1543223 SACC-M12MSD-4Q

Versorgungsspannung

Bestellmerkmal "Energieversorgung"	Klemmenspannung		Frequenzbereich
Option I	DC 24 V	±20%	_
Option I	AC 100 240 V	-15+10%	50/60 Hz

Leistungsaufnahme

Messumformer

Max. 10 W (Wirkleistung)

Einschaltstrom Max. 36 A (<5 ms) gemäß NAMUR-Empfehlung NE 21	Einschaltstrom	Max. 36 A (<5 ms) gemäß NAMUR-Empfehlung NE 21
---	----------------	--

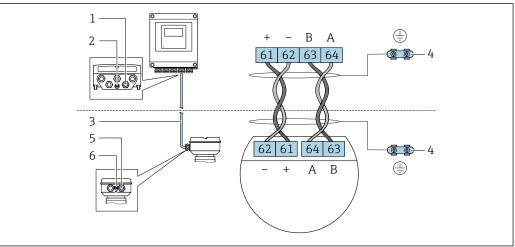
Stromaufnahme

Messumformer

- Max. 400 mA (24 V)
- Max. 200 mA (110 V, 50/60 Hz; 230 V, 50/60 Hz)

Versorgungsausfall

- Summenzähler bleiben auf dem zuletzt ermittelten Wert stehen.
- Konfiguration bleibt je nach Geräteausführung im Gerätespeicher oder im steckbaren Datenspeicher (HistoROM DAT) erhalten.
- Fehlermeldungen inklusive Stand des Betriebsstundenzählers werden abgespeichert.

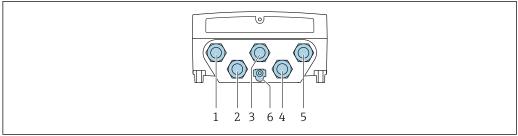

Überstromschutzeinrichtung

Das Gerät muss mit einem dedizierten Leitungsschutzschalter (LSS) betrieben werden, da es über keinen eigenen Ein/Aus-Schalter verfügt.

- Der Leitungsschutzschalter muss einfach erreichbar und gekennzeichnet sein.
- Zulässiger Nennstrom des Leitungsschutzschalter: 2 A bis maximal 10 A.

Elektrischer Anschluss

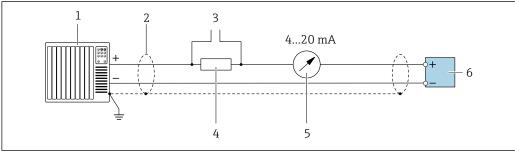
Anschluss Verbindungskabel: Proline 500 - digital


- 1 Kabeleinführung für Kabel am Messumformergehäuse
- Anschluss Potenzialausgleich (PE)
- 3 Verbindungskabel ISEM-Kommunikation
- Erdung über Erdanschluss, bei Ausführung mit Gerätestecker ist die Erdung über den Gerätestecker sicherge-
- Kabeleinführung für Kabel oder Anschluss Gerätestecker am Anschlussgehäuse Messaufnehmer
- Anschluss Potenzialausgleich (PE)

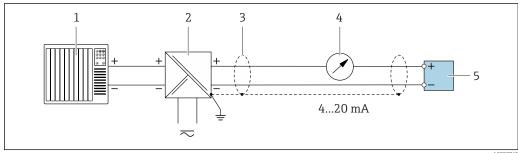
Anschluss Messumformer

- Klemmenbelegung → 🖺 25

Anschluss Messumformer: Proline 500 - digital

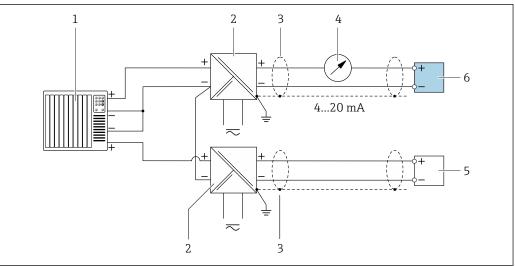

- Anschluss Versorgungsspannung
- 2 Anschluss Signalübertragung Ein-/Ausgang
- Anschluss Signalübertragung Ein-/Ausgang
- Anschluss Verbindungskabel Messaufnehmer Messumformer
- Anschluss Signalübertragung Ein-/Ausgang; Optional: Anschluss externe WLAN-Antenne
- Anschluss Potenzialausgleich (PE)
- Optional ist ein Adapter für RJ45 auf M12 Stecker erhältlich: Bestellmerkmal "Zubehör", Option NB: "Adapter RJ45 M12 (Serviceschnittstelle)"

Der Adapter verbindet die Serviceschnittstelle (CDI-RJ45) mit einem in der Kabeleinführung montierten M12 Stecker. Der Anschluss an die Serviceschnittstelle kann dadurch ohne Öffnen des Geräts über einen M12 Stecker erfolgen.


Netzwerk Verbindung (DHCP Client) über Serviceschnittstelle (CDI-RJ45) → 🖺 66

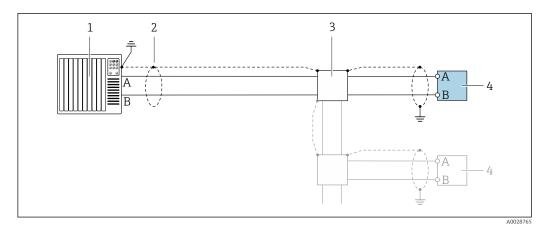
Anschlussbeispiele

Stromausgang 4 ... 20 mA HART

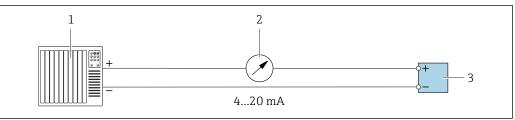

- **₽** 2 Anschlussbeispiel für Stromausgang 4 ... 20 mA HART (aktiv)
- Automatisierungssystem mit Stromeingang (z. B. SPS)
- 2 Kabelschirm einseitig erden. Beidseitige Erdung des Kabelschirms notwendig zur Erfüllung der EMV-Anforderungen; Kabelspezifikation beachten $\rightarrow \implies 32$
- 3 Anschluss für HART-Bediengeräte → 🖺 64
- Analoges Anzeigeinstrument: Maximale Bürde beachten $\rightarrow~ riangleq 17$
- Messumformer

A002876

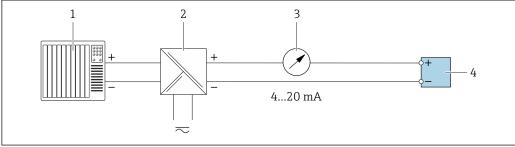
- 3 Anschlussbeispiel für Stromausgang 4 ... 20 mA HART (passiv)
- 1 Automatisierungssystem mit Stromeingang (z. B. SPS)
- 2 Spannungsversorgung
- 3 Kabelschirm einseitig erden. Beidseitige Erdung des Kabelschirms notwendig zur Erfüllung der EMV-Anforderungen; Kabelspezifikation beachten → 🖺 32
- 4 Analoges Anzeigeinstrument: Maximale Bürde beachten → 🖺 17
- 5 Messumformer


HART-Eingang

A002876

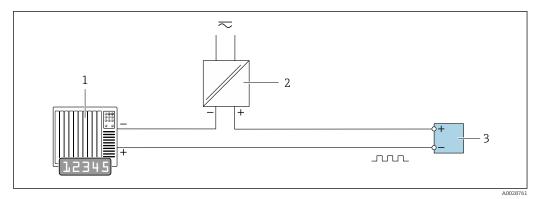

- 4 Anschlussbeispiel für HART-Eingang mit gemeinsamen "Minus" (passiv)
- 1 Automatisierungssystem mit HART-Ausgang (z.B. SPS)
- 2 Speisetrenner für Spannungsversorgung (z.B. RN221N)
- 3 Kabelschirm einseitig erden. Beidseitige Erdung des Kabelschirms notwendig zur Erfüllung der EMV-Anforderungen; Kabelspezifikation beachten
- 5 Druckmessgerät (z.B. Cerabar M, Cerabar S): Anforderungen beachten
- 6 Messumformer

Modbus RS485


- \blacksquare 5 Anschlussbeispiel für Modbus RS485, nicht explosionsgefährdeter Bereich und Zone 2; Class I, Division 2
- 1 Automatisierungssystem (z.B. SPS)
- 2 Kabelschirm einseitig erden. Beidseitige Erdung des Kabelschirms notwendig zur Erfüllung der EMV-Anforderungen; Kabelspezifikation beachten
- 3 Verteilerbox
- 4 Messumformer

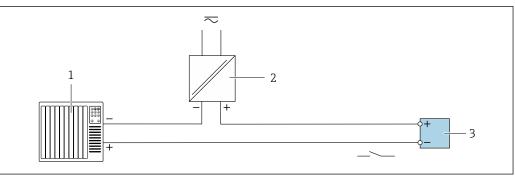
Stromausgang 4-20 mA

A002875

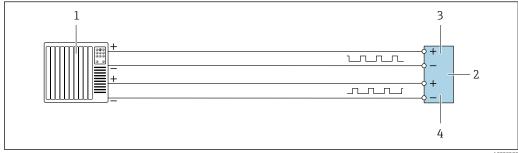

- 6 Anschlussbeispiel f
 ür Stromausgang 4-20 mA (aktiv)
- $1 \qquad \textit{Automatisierungs system mit Stromeing ang (z.B. SPS)}$
- 2 Analoges Anzeigeinstrument: Maximale Bürde beachten → 🖺 17
- 3 Messumformer

A0028759

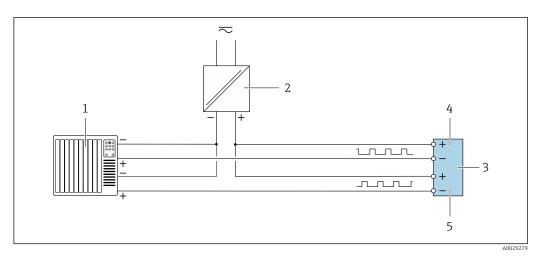
- 7 Anschlussbeispiel f
 ür Stromausgang 4-20 mA (passiv)
- 1 Automatisierungssystem mit Stromeingang (z.B. SPS)
- 2 Speisetrenner für Spannungsversorgung (z.B. RN221N)
- 3 Analoges Anzeigeinstrument: Maximale Bürde beachten → 🖺 17
- 4 Messumformer


Impuls-/Frequenzausgang

₽ 8 Anschlussbeispiel für Impuls-/Frequenzausgang (passiv)

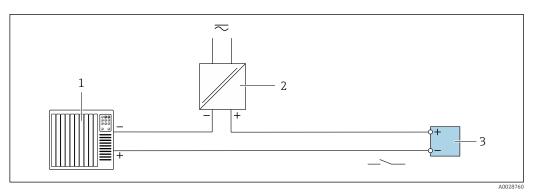

- Automatisierungssystem mit Impuls-/Frequenzeingang (z.B. SPS mit einem $10~\text{k}\Omega$ pull-up oder pull-down 1 Widerstand)
- Spannungsversorgung
- $Messum former: Eingangswerte beachten \rightarrow 18$

Schaltausgang


- **₽** 9 Anschlussbeispiel für Schaltausgang (passiv)
- Automatisierungssystem mit Schalteingang (z.B. SPS mit einem $10~\text{k}\Omega$ pull-up oder pull-down Widerstand) 1
- 2 Spannungsversorgung
- 3

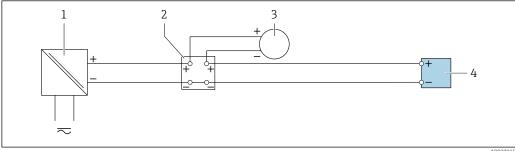
Doppelimpulsausgang

- Anschlussbeispiel für Doppelimpulsausgang (aktiv)
- Automatisierungssystem mit Doppelimpulseingang (z.B. SPS)
- 2
- 3 Doppelimpulsausgang
- Doppelimpulsausgang (Slave), phasenverschoben


30

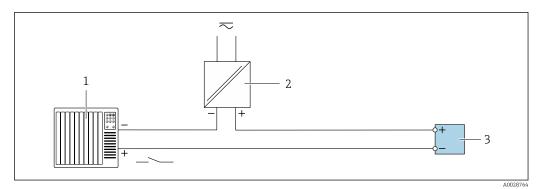
Anschlussbeispiel für Doppelimpulsausgang (passiv)

- 1 Automatisierungssystem mit Doppelimpulseingang (z.B. SPS mit einem 10 k Ω pull-up oder pull-down Widerstand)
- 2 Spannungsversorgung
- 3 *Messumformer: Eingangswerte beachten* \rightarrow \cong 20
- Doppelimpulsausgang
- Doppelimpulsausgang (Slave), phasenverschoben


Relaisausgang

Anschlussbeispiel für Relaisausgang (passiv)

- Automatisierungssystem mit Relaiseingang (z.B. SPS)
- Spannungsversorgung


Stromeingang

■ 13 Anschlussbeispiel für 4...20 mA Stromeingang

- Spannungsversorgung
- 2 Klemmenkasten
- 3 Externes Messgerät (zum Einlesen von z.B. Druck oder Temperatur)
- 4 Messumformer

Statuseingang

14 Anschlussbeispiel f
 ür Statuseingang

- Automatisierungssystem mit Statusausgang (z.B. SPS)
- 2 Spannungsversorgung
- 3 Messumformer

Potenzialausgleich

Anforderungen

Beim Potenzialausgleich:

- Betriebsinterne Erdungskonzepte beachten
- Einsatzbedingungen wie Material und Erdung der Rohrleitung berücksichtigen
- Messstoff, Messaufnehmer und Messumformer auf dasselbe elektrische Potenzial legen ¹⁾
- Für die Potenzialausgleichsverbindungen ein Erdungskabel mit dem Mindestquerschnitt von 6 mm² (10 AWG) und einem Kabelschuh verwenden

Klemmen

Federkraftklemmen: Für Litzen und Litzen mit Aderendhülsen geeignet. Leiterquerschnitt 0,2 ... 2,5 mm² (24 ... 12 AWG).

Kabeleinführungen

- Kabelverschraubung: M20 × 1,5 mit Kabel Ø 6 ... 12 mm (0,24 ... 0,47 in)
- Gewinde für Kabeleinführung:
 - NPT ½"
 - G 1/2"
 - M20

Kabelspezifikation

Zulässiger Temperaturbereich

- Die im jeweiligen Land geltenden Installationsrichtlinien sind zu beachten.
- Die Kabel müssen für die zu erwartenden Minimal- und Maximaltemperaturen geeignet sein.

Energieversorgungskabel (inkl. Leiter für die innere Erdungsklemme)

Normales Installationskabel ausreichend.

Schutzerdungskabel für die äußere Erdungsklemme

Leiterquerschnitt < 2,1 mm² (14 AWG)

Grössere Querschnitte können durch die Verwendung eines Kabelschuhs angeschlossen werden.

Die Erdungsimpedanz muss weniger als 2 Ω betragen.

Signalkabel

Stromausgang 4...20 mA HART

Abgeschirmtes Kabel empfohlen. Erdungskonzept der Anlage beachten.

Modbus RS485

Standard EIA/TIA-485 spezifiziert zwei Kabeltypen (A und B) für die Busleitung, die für alle Übertragungsraten eingesetzt werden können. Empfohlen wird Kabeltyp A.

1)

Kabeltyp	A
Wellenwiderstand	135 165 Ω bei einer Messfrequenz von 3 20 MHz
Kabelkapazität	< 30 pF/m
Aderquerschnitt	> 0,34 mm ² (22 AWG)
Kabeltyp	Paarweise verdrillt
Schleifenwiderstand	≤ 110 Ω/km
Signaldämpfung	Max. 9 dB über die ganze Länge des Leitungsquerschnitts
Abschirmung	Kupfer-Geflechtschirm oder Geflechtschirm mit Folienschirm. Bei Erdung des Kabelschirms: Erdungskonzept der Anlage beachten.

Stromausgang 0/4...20 mA

Normales Installationskabel ausreichend

Impuls-/Frequenz-/Schaltausgang

Normales Installationskabel ausreichend

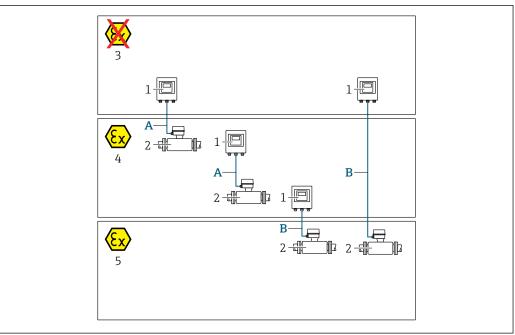
Doppelimpulsausgang

Normales Installationskabel ausreichend

Relaisausgang

Normales Installationskabel ausreichend.

Stromeingang 0/4...20 mA


Normales Installationskabel ausreichend

Statuseingang

Normales Installationskabel ausreichend

Auswahl des Verbindungskabels zwischen Messumformer und Messaufnehmer

Abhängig vom Messumformertyp und Zonen-Installation

Δ0035795

- 1 Messumformer Proline 500 digital
- 2 Messaufnehmer Prosonic Flow
- 3 Nicht explosionsgefährdeter Bereich
- 4 Explosionsgefährdeter Bereich: Zone 2; Class I, Division 2
- 5 Explosionsgefährdeter Bereich: Zone 1; Class I, Division 1
- A Standardkabel zum Messumformer 500 − digital → 🖺 34 Messumformer installiert im nicht explosionsgefährdeten Bereich oder explosionsgefährdeten Bereich: Zone 2; Class I, Division 2 / Messaufnehmer installiert im explosionsgefährdeten Bereich: Zone 2; Class I, Division 2
- B Standardkabel zum Messumformer 500 − digital → 🖺 35 Messumformer installiert im explosionsgefährdeten Bereich: Zone 2; Class I, Division 2 / Messaufnehmer installiert im explosionsgefährdeten Bereich: Zone 1; Class I, Division 1

A: Verbindungskabel Messaufnehmer - Messumformer: Proline 500 - digital

Standardkabel

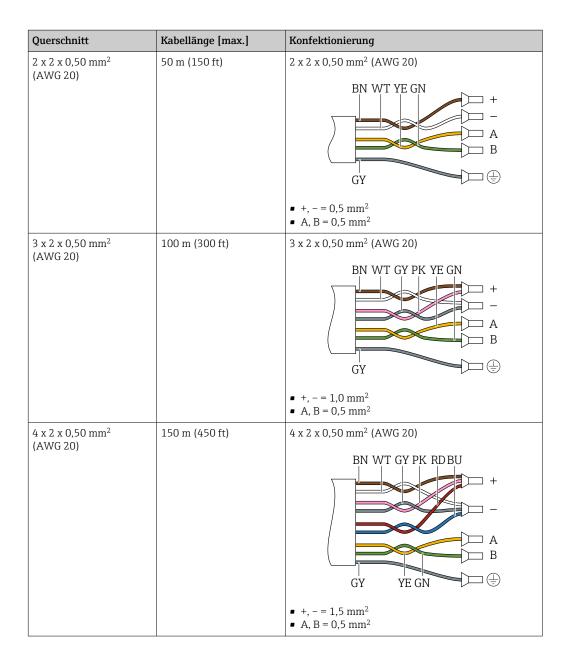
Ein Standardkabel mit folgenden Spezifikationen ist als Verbindungskabel verwendbar.

Aufbau	4 Adern; CU-Litzen blank; mit gemeinsamem Schirm
Schirmung	Kupfer-Geflecht verzinnt, optische Abdeckung ≥ 85 %
Schleifenwiderstand	Versorgungsleitung (+, –): Maximal 10 Ω
Kabellänge	Maximal 300 m (900 ft), siehe nachfolgende Tabelle.
Gerätestecker Seite 1	Buchse M12, 5-Pol, A-Codiert.
Gerätestecker Seite 2	Stecker M12, 5-Pol, A-Codiert.

Querschnitt	Kabellänge [max.]
0,34 mm ² (AWG 22)	80 m (240 ft)
0,50 mm ² (AWG 20)	120 m (360 ft)
0,75 mm ² (AWG 18)	180 m (540 ft)
1,00 mm ² (AWG 17)	240 m (720 ft)
1,50 mm ² (AWG 15)	300 m (900 ft)

34

Optional lieferbares Verbindungskabel


Flammwidrigkeit	Nach DIN EN 60332-1-2
Ölbeständigkeit	Nach DIN EN 60811-2-1
Schirmung	Kupfer-Geflecht verzinnt, optische Abdeckung ≥ 85 %

B: Verbindungskabel Messaufnehmer - Messumformer: Proline 500 - digital

Standardkabel

 $Ein \, Standardkabel \, mit \, folgenden \, Spezifikationen \, ist \, als \, Verbindungskabel \, verwendbar.$

Aufbau	4, 6, 8 Adern (2, 3, 4 Paare); CU-Litzen blank; paarverseilt mit gemeinsamem Schirm
Schirmung	Kupfer-Geflecht verzinnt, optische Abdeckung ≥ 85 %
Kapazität C	Maximal 760 nF IIC, maximal 4,2 μF IIB
Induktivität L	Maximal 26 µH IIC, maximal 104 µH IIB
Verhältnis Induktivität/ Widerstand (L/R)	Maximal 8,9 μ H/ Ω IIC, maximal 35,6 μ H/ Ω IIB (z.B. gemäß IEC 60079-25)
Schleifenwiderstand	Versorgungsleitung (+, –): Maximal 5 Ω
Kabellänge	Maximal 150 m (450 ft), siehe nachfolgende Tabelle.

Optional lieferbares Verbindungskabel

Verbindungskabel für	Zone 1; Class I, Division 1
Standardkabel	$2\times2\times0.5~\text{mm}^2$ (AWG 20) PVC-Kabel $^{1)}$ mit gemeinsamem Schirm (2 Paare, paarverseilt)
Flammwidrigkeit	Nach DIN EN 60332-1-2
Ölbeständigkeit	Nach DIN EN 60811-2-1
Schirmung	Kupfer-Geflecht verzinnt, optische Abdeckung ≥ 85 %
Dauerbetriebstemperatur	Bei fester Verlegung: -50 +105 °C (-58 +221 °F); bewegt: -25 +105 °C (-13 +221 °F)
Lieferbare Kabellänge	Fix: 20 m (60 ft); Variabel: Bis maximal 50 m (150 ft)

 UV-Strahlung kann zu Beeinträchtigung des Kabelaußenmantels führen. Das Kabel möglichst vor Sonneneinstrahlung schützen.

Überspannungsschutz

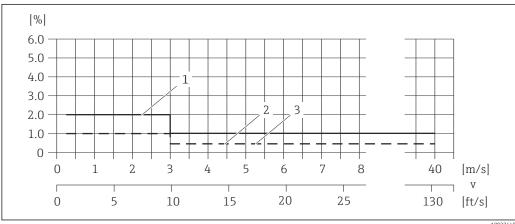
Netzspannungsschwankungen	→ 🖺 26
Überspannungskategorie	Überspannungskategorie II

Kurzzeitige, temporäre Überspannung	Zwischen Leitung und Erde bis zu 1200 V, während max. 5 s	
Langfristige, temporäre Überspannung	Zwischen Leitung und Erde bis zu 500 V	

Leistungsmerkmale

Referenzbedingungen

- Fehlergrenzen in Anlehnung an ISO/DIN 11631
- Kalibriergas: Trockene Luft
- Angaben zur Messabweichung basieren auf akkreditierten Kalibrieranlagen, die auf ISO/IEC 17025 rückgeführt sind.


Maximale Messabweichung

v.M. = vom Messwert; v.E. = vom Endwert; abs. = absolut; T = Messstofftemperatur

Volumenfluss

Standard Bestellmerkmal "Kalibration Durchfluss", Option A "1%"	■ ±1,0 % v.M. bei 3 40 m/s (9,84 131,2 ft/s) ■ ±2,0 % v.M. bei 0,3 3 m/s (0,98 9,84 ft/s)
Optional Bestellmerkmal "Kalibration Durchfluss", Option C "0.50%"	■ ±0,5 % v.M. bei 3 40 m/s (9,84 131,2 ft/s) ■ ±1,0 % v.M. bei 0,3 3 m/s (0,98 9,84 ft/s)
Optional Bestellmerkmal "Kalibration Durchfluss", Option D "0.50%, rückführbar ISO/IEC 17025"	■ ±0,5 % v.M. bei 3 40 m/s (9,84 131,2 ft/s) ■ ±1,0 % v.M. bei 0,3 3 m/s (0,98 9,84 ft/s)

- Für Durchflussgeschwindigkeiten 40 ... 60 m/s (131,2 ... 196,8 ft/s) darf das Messgerät betrieben werden, aber es können grössere Messabweichungen auftreten.
- Die Spezifikation gilt für Reynoldszahlen Re $\geq 10\,000$. Für Reynoldszahlen Re $\leq 10\,000$ können größere Messabweichungen auftreten.

Maximale Messabweichung (Volumenfluss) in % v.M.

- Standard (Bestellmerkmal "Kalibration Durchfluss", Option A "1%")
- Optional (Bestellmerkmal "Kalibration Durchfluss", Option C "0.50%")
- Optional (Bestellmerkmal "Kalibration Durchfluss", Option D "0.50%, rückführbar ISO/IEC 17025"

Normvolumenfluss

Standard Bestellmerkmal "Kalibration Durchfluss", Option A "1%"	■ ±1,2 % v.M. bei 3 40 m/s (9,84 131,2 ft/s) ■ ±2,1 % v.M. bei 0,3 3 m/s (0,98 9,84 ft/s)
Optional Bestellmerkmal "Kalibration Durchfluss", Option C "0.50%"	■ ±0,8 % v.M. bei 3 40 m/s (9,84 131,2 ft/s) ■ ±1,2 % v.M. bei 0,3 3 m/s (0,98 9,84 ft/s)
Optional Bestellmerkmal "Kalibration Durchfluss", Option D "0.50%, rückführbar ISO/IEC 17025"	■ ±0,8 % v.M. bei 3 40 m/s (9,84 131,2 ft/s) ■ ±1,2 % v.M. bei 0,3 3 m/s (0,98 9,84 ft/s)

- Die Spezifikation für Normvolumenfluss gilt für die integrierte Temperatur- und Druckmessung (Bestellmerkmal "Messrohr; Wandler; Sensorausführung", Option AC "316L; Titan Gr. 2; Druck-+ Temperaturmessung integriert"), wenn die Druckmesszelle im optimalen Druckmessbereich betrieben wird.
- Für Durchflussgeschwindigkeiten 40 ... 60 m/s (131,2 ... 196,8 ft/s) darf das Messgerät betrieben werden, aber es können grössere Messabweichungen auftreten.
- Die Spezifikation gilt für Reynoldszahlen Re $\geq 10\,000$. Für Reynoldszahlen Re $\leq 10\,000$ können größere Messabweichungen auftreten.

Temperatur

Optional (Bestellmerkmal "Messrohr; Wandler; Sensorausführung", Option AB "316L; Titan Gr. 2; Temperaturmessung integriert" oder AC "316L; Titan Gr. 2; Druck- + Temperaturmessung integriert") ± 0.35 °C $\pm 0.002 \cdot$ T °C (± 0.63 °F $\pm 0.0011 \cdot$ (T - 32) °F)

Die zusätzliche Messabweichung durch die Wärmeableitung wird hier nicht berücksichtigt. Der Wärmeableitfehler kann durch den Einsatz einer Wärmeisolation reduziert werden $\rightarrow \triangleq 47$.

Druck

Optional (Bestellmerkmal "Messrohr; Wandler; Sensorausführung", Option AC "316L; Titan Gr. 2; Druck- + Temperaturmessung integriert")

Die spezifizierten Messabweichungen beziehen sich auf den Ort der Messung im Messrohr und entsprechen nicht dem Druck in der Rohranschlussleitung vor oder hinter dem Messgerät.

Bestellmerkmal "Druckkompo-	Nennwert absolut [bar (psi)]	Druckbereiche und Messabweichungen		
nente"		Druckbereich absolut [bar (psi)]	Messabweichung absolut	
Option B "Druckmesszelle	2 bar (30 psi)	0,01 (0,1) ≤ p ≤ 0,4 (5,8)	±0,5 % von 0,4 bar (5,8 psi)	
2bar/29psi abs"		0,4 (5,8) ≤ p ≤ 2 (29)	±0,5 % v.M.	
Option C "Druckmesszelle	4 bar (60 psi)	0,01 (0,1) \le p \le 0,8 (11,6)	±0,5 % von 0,8 bar (11,6 psi)	
4bar/58psi abs"		0,8 (11,6) \le p \le 4 (58)	±0,5 % v.M.	
Option D "Druckmesszelle	10 bar (150 psi)	0,01 (0,1) ≤ p ≤ 2 (29)	±0,5 % von 2 bar (29 psi)	
10bar/145psi abs"		2 (29) ≤ p ≤ 10 (145)	±0,5 % v.M.	
Option E "Druckmesszelle	40 bar (600 psi)	0,01 (0,1) ≤ p ≤ 8 (116)	±0,5 % von 8 bar (116 psi)	
40bar/580psi abs"		8 (116) ≤ p ≤ 40 (580)	±0,5 % v.M.	
Option F "Druckmesszelle	100 bar (1500 psi)	0,01 (0,1) ≤ p ≤ 20 (290)	±0,5 % von 20 bar (290 psi)	
100bar/1450psi abs"		20 (290) ≤ p ≤ 100 (1450)	±0,5 % v.M.	

Schallgeschwindigkeit

±0,2 % v.M.

Genauigkeit der Ausgänge

Die Ausgänge weisen die folgende Grundgenauigkeit auf:

Stromausgang

Genauigkeit	±5 μA
, ,	'

Impuls-/Frequenzausgang

v.M. = vom Messwert

gkeit Max. ±50 ppm v.M. (über den kompletten Umgebungstemperaturbereich)	
--	--

Wiederholbarkeit

v.M. = vom Messwert

Volumenfluss

- ±0,2 % v.M. bei 3 ... 40 m/s (9,84 ... 131,2 ft/s)
- ±0,4 % v.M. bei 0,3 ... 3 m/s (0,98 ... 9,84 ft/s)

Normvolumenfluss

- ±0,25 % v.M. bei 3 ... 40 m/s (9,84 ... 131,2 ft/s)
- ±0,45 % v.M. bei 0,3 ... 3 m/s (0,98 ... 9,84 ft/s)

Temperatur

 $\pm 0.175 \,^{\circ}\text{C} \pm 0.001 \cdot \text{T} \,^{\circ}\text{C} \, (\pm 0.315 \,^{\circ}\text{F} \pm 0.00055 \cdot (\text{T} - 32) \,^{\circ}\text{F})$

Druck

Optional (Bestellmerkmal "Messrohr; Wandler; Sensorausführung", Option AC "316L; Titan Gr. 2; Druck- + Temperaturmessung integriert")

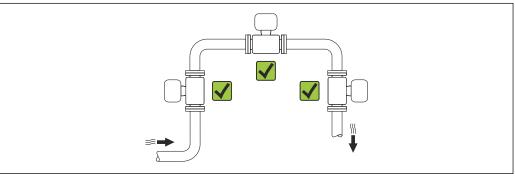
Bestellmerkmal "Druckkompo-	Nennwert absolut [bar (psi)]	Druckbereiche und Messabweichungen		
nente"		Druckbereich absolut [bar (psi)]	Messabweichung absolut	
Option B "Druckmesszelle 2bar/29psi abs"	2 bar (30 psi)	$0.01 (0.1) \le p \le 0.4 (5.8) 0.4 (5.8) \le p \le 2 (29)$	±0,1 % von 0,4 bar (5,8 psi) ±0,1 % v.M.	
Option C "Druckmesszelle 4bar/58psi abs"	4 bar (60 psi)	$\begin{array}{c} 0.01 \ (0.1) \leq p \leq 0.8 \ (11.6) \\ 0.8 \ (11.6) \leq p \leq 4 \ (58) \end{array}$	±0,1 % von 0,8 bar (11,6 psi) ±0,1 % v.M.	
Option D "Druckmesszelle 10bar/145psi abs"	10 bar (150 psi)	$0.01 (0.1) \le p \le 2 (29)$ 2 (29) $\le p \le 10 (145)$	±0,1 % von 2 bar (29 psi) ±0,1 % v.M.	
Option E "Druckmesszelle 40bar/580psi abs"	40 bar (600 psi)	$0.01 (0.1) \le p \le 8 (116)$ 8 (116) $\le p \le 40 (580)$	±0,1 % von 8 bar (116 psi) ±0,1 % v.M.	
Option F "Druckmesszelle 100bar/1450psi abs"	100 bar (1500 psi)	$0.01 (0.1) \le p \le 20 (290)$ $20 (290) \le p \le 100 (1450)$	±0,1 % von 20 bar (290 psi) ±0,1 % v.M.	

Schallgeschwindigkeit

±0,04 % v.M.

Einfluss Umgebungstemperatur

Stromausgang


Temperaturkoeffizient	Max. 1 μA/°C
-----------------------	--------------

Impuls-/Frequenzausgang

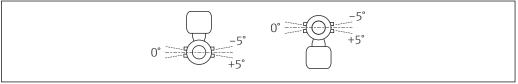
Temperaturkoeffizient	Kein zusätzlicher Effekt. In Genauigkeit enthalten.
-----------------------	---

Montage

Montageort

Einbaulage

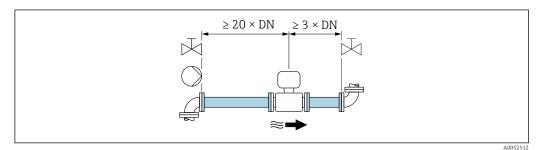
Die Pfeilrichtung auf dem Messaufnehmer hilft, den Messaufnehmer entsprechend der Durchflussrichtung einzubauen (Fließrichtung des Messstoffs durch die Rohrleitung).



- Das Messgerät planparallel und spannungsfrei einbauen.
- Der Innendurchmesser der Rohrleitung muss dem Innendurchmesser des Messaufnehmers entsprechen.

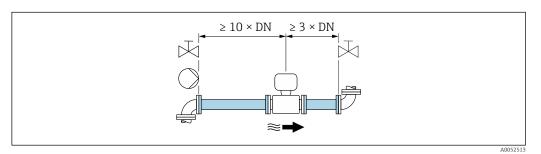
	Einbaulag	Kompaktausführung	
A	Vertikale Einbaulage	A0015545	
В	Horizontale Einbaulage Messumfor- merkopf oben ¹⁾	A0015589	✓ ✓
С	Horizontale Einbaulage Messumfor- merkopf unten ¹⁾	A0015590	✓
D	Horizontale Einbaulage Messumfor- merkopf seitlich	A0015592	×

Die horizontale Ausrichtung der Wandler darf nur um max. ±5° abweichen, insbesondere wenn eine Flüssigkeit im Messstoff vorhanden ist (nasses Gas).

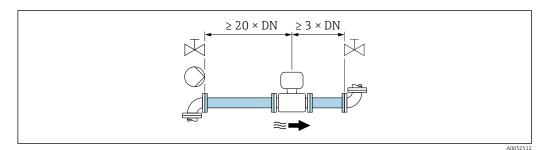


Ein- und Auslaufstrecken

Die Messaufnehmer sind nach Möglichkeit vor Armaturen wie z. B. Ventilen, T-Stücken, Bögen, Pumpen zu montieren. Besteht diese Möglichkeit nicht, wird unter Beachtung der aufgeführten


minimalen Ein- und Auslaufstrecken bei optimaler Sensorkonfiguration die spezifizierte Messgenauigkeit des Messgeräts erreicht.

Einpfadausführung: DN 25 (1")

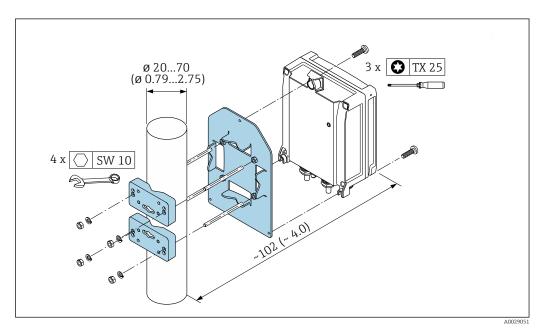


Einpfadausführung: Minimale Ein- und Auslaufstrecken bei verschiedenen Strömungshindernissen. Bei Bestellmerkmal "Kalibration Durchfluss", Option A "1 %".

Zweipfadausführung: DN 50...300 (2...12")

Zweipfadausführung: Minimale Ein- und Auslaufstrecken bei verschiedenen Strömungshindernissen. Bei Bestellmerkmal "Kalibration Durchfluss", Option A "1 %" ".

2 Zweipfadausführung: Minimale Ein- und Auslaufstrecken bei verschiedenen Strömungshindernissen. Bei Bestellmerkmal "Kalibration Durchfluss", Option C "0.50%" und Option D "0.50%, rückführbar ISO/IEC17025".

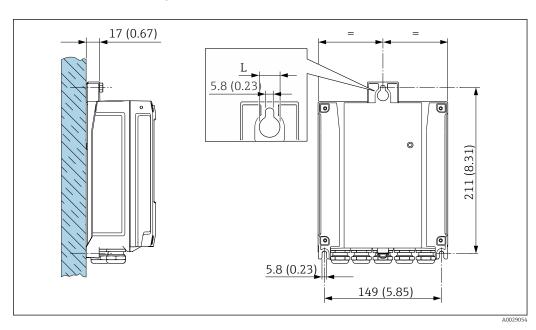

Montage Gehäuse Messumformer

Messumformer Proline 500 - digital

Rohrmontage

Benötigtes Werkzeug:

- Gabelschlüssel SW 10
- Torx Schraubendreher TX 25



■ 19 Maßeinheit mm (in)

Wandmontage

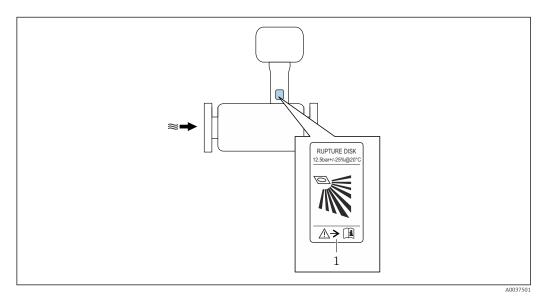
Benötigtes Werkzeug:

Bohrmaschine mit Bohrer Ø 6,0 mm

🗷 20 Maßeinheit mm (in)

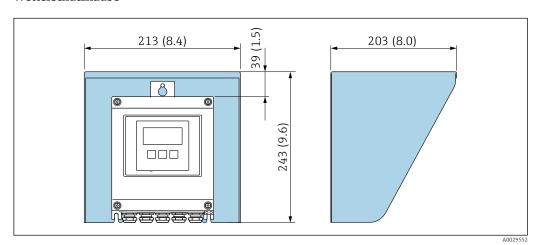
L Abhängig vom Bestellmerkmal "Messumformergehäuse"

Bestellmerkmal "Messumformergehäuse"


- Option **A**, Alu, beschichtet: L =14 mm (0,55 in)
- Option **D**, Polycarbonat: L = 13 mm (0,51 in)

42

Spezielle Montagehinweise


Berstscheibe

Die Lage der Berstscheibe ist durch einen darauf angebrachten Aufkleber gekennzeichnet. Ein Auslösen der Berstscheibe zerstört den Aufkleber und ist somit optisch kontrollierbar.

1 Hinweisschild zur Berstscheibe

Wetterschutzhaube

■ 21 Wetterschutzhaube Proline 500 – digital; Maßeinheit mm (in)

Umgebung

Umgebungstemperaturbereich

Messgerät	■ Standard: -40 +60 °C (-40 +140 °F) ■ Optional Bestellmerkmal "Test, Zeugnis", Option JP: -50 +60 °C (-58 +140 °F)	
Ablesbarkeit der Vor-Ort-Anzeige	$-20 \dots +60 ^{\circ}\text{C} (-4 \dots +140 ^{\circ}\text{F})$ Außerhalb des Temperaturbereichs kann die Ablesbarkeit der Vor-Ort-Anzeige beeinträchtigt sein.	

▶ Bei Betrieb im Freien:

Direkte Sonneneinstrahlung vermeiden, besonders in wärmeren Klimaregionen.

Lagerungstemperatur

Alle Komponenten außer Anzeigemodule:

 $-40 \dots +80 \,^{\circ}\text{C} \, (-40 \dots +176 \,^{\circ}\text{F})$, vorzugsweise bei $+20 \,^{\circ}\text{C} \, (+68 \,^{\circ}\text{F})$

Anzeigemodule

-40 ... +80 °C (-40 ... +176 °F)

Relative Luftfeuchte

Das Gerät ist für den Einsatz in Außen- und Innenbereichen mit einer relativen Luftfeuchte von $4\dots95\%$ geeignet.

Betriebshöhe

Gemäß EN 61010-1

- $\le 2000 \,\mathrm{m} \,(6562 \,\mathrm{ft})$
- > 2 000 m (6 562 ft) mit zusätzlichen Überspannungsschutz (z.B. Endress+Hauser HAW Series)

Schutzart

Messumformer

- IP66/67, Type 4X enclosure, geeignet für Verschmutzungsgrad 4
- Bei geöffnetem Gehäuse: IP20, Type 1 enclosure, geeignet für Verschmutzungsgrad 2
- Anzeigemodul: IP20, Type 1 enclosure, geeignet für Verschmutzungsgrad 2

Messaufnehmer

- IP66/67, Type 4X enclosure, geeignet für Verschmutzungsgrad 4
- Bei geöffnetem Gehäuse: IP20, Type 1 enclosure, geeignet für Verschmutzungsgrad 2

Optional

Externe WLAN-Antenne

IP67

Vibrations- und Schockfestigkeit

Schwingen sinusförmig in Anlehnung an IEC 60068-2-6

- 2 ... 8,4 Hz, 7,5 mm peak
- 8,4 ... 2 000 Hz, 2 g peak

Schwingen Breitbandrauschen in Anlehnung an IEC 60068-2-64

- 10 ... 200 Hz, 0,01 g²/Hz
- 200 ... 2 000 Hz, 0,003 g²/Hz
- Total: 2,70 g rms

Schocks Halbsinus in Anlehnung an IEC 60068-2-27

6 ms 50 g

Stoß durch raue Handhabung in Anlehnung an IEC 60068-2-31

Elektromagnetische Verträglichkeit (EMV)

Nach IEC/EN 61326 und NAMUR-Empfehlung 21 (NE 21)

Details sind in der Konformitätserklärung ersichtlich.

Diese Einrichtung ist nicht dafür vorgesehen, in Wohnbereichen verwendet zu werden, und kann einen angemessenen Schutz des Funkempfangs in solchen Umgebungen nicht sicherstellen.

Prozess

Messstofftemperaturbereich

Messaufnehmer

- Ohne integrierter Druckmesszelle: $-50 \dots +150 \,^{\circ}\text{C} \, (-58 \dots +302 \,^{\circ}\text{F})$
- Mit integrierter Druckmesszelle: -50 ... +100 °C (-58 ... +212 °F)

Schallgeschwindigkeitsbereich

200 ... 600 m/s (656 ... 1969 ft/s)

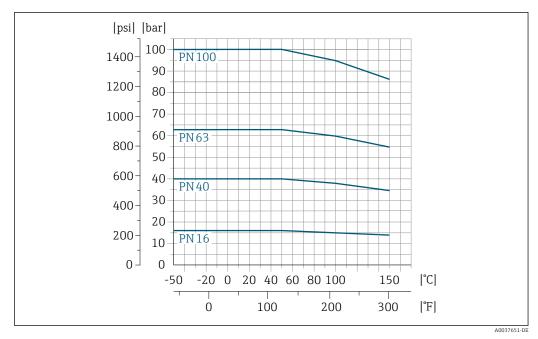
Messstoffdruckbereich

Min. Messstoffdruck: 0,7 bar (10,2 psi) absolut

Der maximal zulässige Messstoffdruck wird durch die Druck-Temperatur-Kurven (→ 🗎 45) und die Druckangaben der integrierten Druckmesszelle (optional; Bestellmerkmal "Messrohr; Wandler; Sensorausführung", Option AC "316L; Titan Gr. 2; Druck- + Temperaturmessung integriert") definiert.

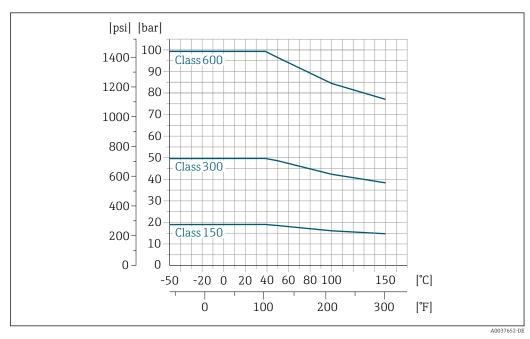
▲ WARNUNG

Der maximale Druck für das Messgerät ist abhängig vom druckschwächsten Glied.


- ▶ Angaben zum Druckbereich der Druckmesszelle beachten.
- ▶ Die Druckgeräterichtlinie (2014/68/EU) verwendet die Abkürzung "PS". Die Abkürzung "PS" entspricht dem MWP (Maximum Working Pressure/max. Betriebsdruck) der Druckmesszelle.
- ▶ Der MWP für die Druckmesszelle ist abhängig vom druckschwächsten Glied der ausgewählten Komponenten, d.h. neben der Druckmesszelle ist auch der Prozessanschluss zu beachten. Ebenfalls die Druck-/Temperaturabhängigkeit beachten.
- ▶ Der MWP darf unbegrenzt am Gerät anliegen. Der MWP ist auf dem Typenschild angegeben. Dieser Wert bezieht sich auf eine Referenztemperatur von +20 °C (+68 °F) und darf über unbegrenzte Zeit an der Druckmesszelle anliegen.
- ▶ Der OPL (Over Pressure Limit = Sensor Überlastgrenze) für das Messgerät ist abhängig vom druckschwächsten Glied der ausgewählten Komponenten, d.h. neben der Druckmesszelle ist auch der Prozessanschluss zu beachten. Ebenfalls die Druck-/Temperaturabhängigkeit beachten.
- ▶ Der Prüfdruck entspricht der Überlastgrenze der Druckmesszelle und darf nur zeitlich begrenzt anliegen um sicherzustellen, dass sich die Messung innerhalb der Spezifikation befindet und damit kein bleibender Schaden entsteht.

Druckmesszelle	Maximaler Sensormessbereich		MWP	OPL
	Untere (LRL)	Obere (URL)		
	[bar (psi)]	[bar (psi)]	[bar (psi)]	[bar (psi)]
2 bar (30 psi)	0 (0)	+2 (+30)	6,7 (100,5)	10 (150)
4 bar (60 psi)	0 (0)	+4 (+60)	10,7 (160,5)	16 (240)
10 bar (150 psi)	0 (0)	+10 (+150)	25 (375)	40 (600)
40 bar (600 psi)	0 (0)	+40 (+600)	100 (1500)	160 (2 400)
100 bar (1500 psi)	0 (0)	+100 (+1500)	100 (1500)	160 (2 400)

Druck-Temperatur-Kurven


Die folgenden Druck-Temperatur-Kurven beziehen sich auf alle drucktragenden Teile des Geräts und nicht nur auf den Prozessanschluss. Die Kurven zeigen den maximal erlaubten Messstoffdruck in Abhängigkeit von der jeweiligen Messstofftemperatur.

Vorschweißflansch in Anlehnung an DIN EN 1092-1, PN 16/40/63/100

■ 22 Mit Flanschwerkstoff 1.4404 (316, 316L)

Vorschweißflansch in Anlehnung an ASME B16.5 2), Class 150/300/600

■ 23 Mit Flanschwerkstoff 1.4404 (316, 316L)

Berstscheibe

Der Messgerätehals wird immer mit einer Berstscheibe mit einem Auslösedruck von 10 ... 15 bar (145 ... 217,5 psi) ausgestattet. Die Berstscheibe dient zur Erkennung einer Undichtheit und zum kontrollierten Ablassen des Überdrucks im Messgerätehals. Das Messgerät mit eingebauter Berstscheibe erfüllt die Anforderung der ANSI/ISA-12.27.01 für Dual Seal.

²⁾ Materialgruppe 2.2

Durchflussgrenze

Der Rohrleitungsdurchmesser und die Durchflussmenge bestimmen die Nennweite des Messaufnehmers.

Zur Übersicht der Messbereich-Endwerte: Kapitel "Messbereich" → 🖺 12

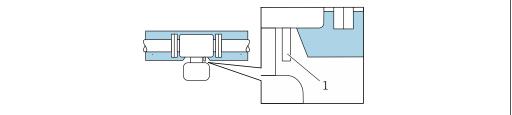
- Der minimal empfohlene Endwert beträgt ca. 1/20 des maximalen Endwerts.
- Für die häufigsten Anwendungen sind 10 ... 50 % des maximalen Endwerts als ideal anzusehen.

Druckverlust

Bei Einbau des Messaufnehmers in eine Rohrleitung mit gleicher Nennweite entsteht kein Druckverlust.

Wärmeisolation

Für eine optimale Messperformance darauf achten, dass im Bereich des Messaufnehmers weder Wärmezufuhr noch -verlust stattfinden kann. Dies kann durch Installation einer Wärmeisolation sichergestellt werden. Damit kann auch die Kondensatbildung im Messgerät begrenzt werden.


Die Wärmeisolation wird insbesondere in den Fällen empfohlen, in denen die Differenz zwischen Prozess- und Umgebungstemperatur groß ist. Dies führt zum so genannten Wärmeableitfehler bei der Temperaturmessung.

MARNUNG

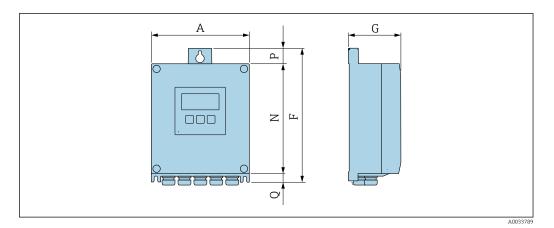
Überhitzung der Messelektronik durch Wärmeisolierung!

- Empfohlene Einbaulage: Horizontale Einbaulage, Anschlussgehäuse des Messaufnehmers nach unten gerichtet.
- ▶ Das Anschlussgehäuse des Messaufnehmers nicht mit isolieren.
- ► Maximal zulässige Temperatur am unteren Ende des Anschlussgehäuse des Messaufnehmers: 80 °C (176 °F)
- Wärmeisolation mit freiem Halsrohr: Wir empfehlen das Halsrohr nicht zu isolieren, um eine optimale Wärmeabfuhr zu gewährleisten.

Die Wärmeisolation darf das Messumformergehäuse sowie die Druckmesszelle nicht bedecken.

A0037676

🗷 24 Wärmeisolation mit freiem Halsrohr und Druckmesszelle

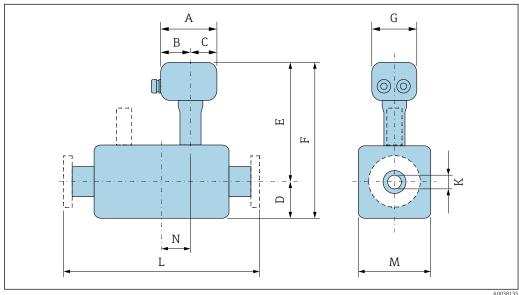

Druckmesszelle

Konstruktiver Aufbau

Abmessungen in SI-Einheiten

Gehäuse Messumformer Proline 500 - digital

Nicht explosionsgefährdeter Bereich oder explosionsgefährdeter Bereich: Zone 2; Class I, Division 2


Bestellmerkmal "Messumformergehäuse", Option A "Alu, beschichtet" und Bestellmerkmal "Integrierte ISEM Elektronik", Option A "Sensor"

A	F	G	N	P	Q
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
167	232	89	187	24	

Bestellmerkmal "Messumformergehäuse", Option D "Polycarbonat" und Bestellmerkmal "Integrierte ISEM Elektronik", Option A "Sensor"

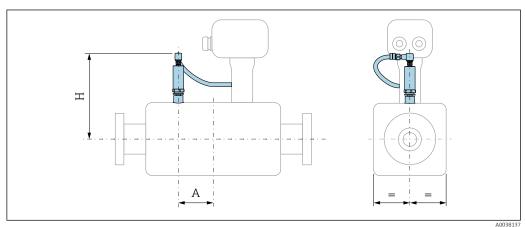
A	F	G	N	P	Q
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
177	234	89	197	17	

Anschlussgehäuse Messaufnehmer

11003013

Bestellmerkmal "Sensor Anschlussgehäuse", Option A "Alu, beschichtet"

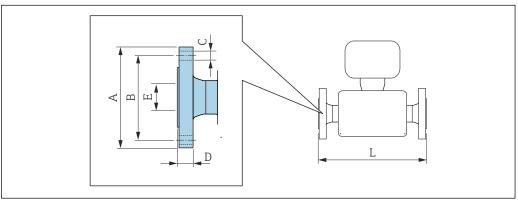
DN	A 1)	B 1)	С	D	E	F	G	K	L	M	N
[mm]	[mm]	[mm]	[mm]								
25	148	94	54	20	337	357	136	24,3	2)	143	47
50	148	94	54	32	350	382	136	49,2	2)	225	63
80	148	94	54	44	362	406	136	73,7	2)	245	55
100	148	94	54	57	371	428	136	97,2	2)	265	72
150	148	94	54	84	397	481	136	146,3	2)	308	62
200	148	94	54	110	423	533	136	193,7	2)	349	78
250	148	94	54	138	450	588	136	242,9	2)	390	84
300	148	94	54	163	476	639	136	288,9	2)	430	96


- 1) Je nach verwendeter Kabelverschraubung: Werte bis \pm 30 mm
- 2)

Bestellmerkmal "Sensor Anschlussgehäuse", Option L "Guss, rostfrei"

DN	A 1)	B 1)	С	D	E	F	G	К	L	M	N
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
25	145	86	59	20	334	354	136	24,3	2)	143	47
50	145	86	59	32	346,5	378,5	136	49,2	2)	225	63
80	145	86	59	44	358,5	402,5	136	73,7	2)	245	55
100	145	86	59	57	367,5	424,5	136	97,2	2)	265	72
150	145	86	59	84	393,5	477,5	136	146,3	2)	308	62
200	145	86	59	110	419,5	529,5	136	193,7	2)	349	78
250	145	86	59	138	447	585	136	242,9	2)	390	84
300	145	86	59	163	472,5	635,5	136	288,9	2)	430	96

- Je nach verwendeter Kabelverschraubung: Werte bis + 30 mm Abhängig vom jeweiligen Prozessanschluss \rightarrow $\stackrel{ ext{le}}{=}$ 50
- 1) 2)


Druckmesszelle

Bestellmerkmal "Druckkomponente": Optionen B/C/D/E/F "Druckmesszelle 2/4/10/40/100 bar absolut"								
DN [mm]	A [mm]	B [mm]						
25	61	172						
50	76	187						
80	96	201						
100	85	213						
150	74	240						
200	87	269						
250	102	299						
300	110	326						

Flanschanschlüsse

Vorschweißflansch EN 1092-1-B1, ASME B16.5

A001562

Längentoleranz Maß L in mm:
■ DN 25...150: +0 / -3

■ DN 200...300: +1 / -2

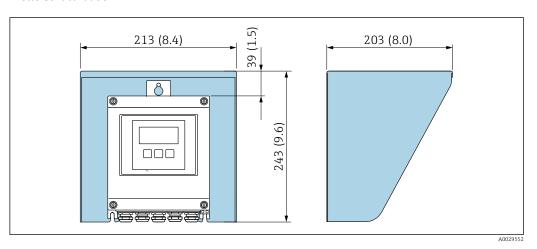
	Flansch in Anlehnung an EN 1092-1-B1: PN 16 1.4404 (316, 316L): Bestellmerkmal "Prozessanschluss", Option D1S										
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]					
25	_	-	-	-	-	-					
50	_	-	-	-	-	_					
80	-	-	-	-	-	-					
100	220	180	8 × Ø18	20	107,1	400					
150	285	240	8 × Ø22	22	159,3	400					
200	340	295	12 × Ø22	24	206,5	400					
250	405	355	12 × Ø26	26	260,5	450					
300	460	410	12 × Ø26	28	309,7	500					
Oberflächenra	uheit (Flansch):	EN 1092-1-B1	, Ra 3,2 12,5 μm								

	Flansch in Anlehnung an EN 1092-1-B1: PN 40 1.4404 (316, 316L): Bestellmerkmal "Prozessanschluss", Option D2S										
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]					
25	115	85	4 × Ø14	18	28,5	300					
50	165	125	4 × Ø18	20	54,5	350					
80	200	160	8 × Ø18	24	82,5	400					
100	235	190	8 × Ø22	24	107,1	400					
150	300	250	8 × Ø26	28	159,3	400					
200	375	320	12 × Ø30	34	206,5	452					
250	450	385	12 × Ø33	38	258,9	520					
300	515	450	16 × Ø33	42	307,9	574					
Oberflächenra	uheit (Flansch):	EN 1092-1-B1	, Ra 3,2 12,5 μm			•					

Flansch in Anlehnung an EN 1092-1-B1: PN 63 1.4404 (316, 316L): Bestellmerkmal "Prozessanschluss", Option D3W										
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]				
25	-	-	-	-	-	-				
50	180	135	4 × Ø22	26	54,5	372				
80	215	170	8 × Ø22	28	81,7	430				
100	250	200	8 × Ø26	30	106,3	420				
150	345	280	8 × Ø33	36	157,1	434				
200	415	345	12 × Ø36	42	204,9	496				
250	470	400	12 × Ø36	46	255,5	560				
300	530	460	16 × Ø36	52	301,9	624				
Oberflächenra	uheit (Flansch):	EN 1092-1-B1	, Ra 3,2 12,5 μm							

Flansch in Anlehnung an EN 1092-1-B1: PN 100 1.4404 (316, 316L): Bestellmerkmal "Prozessanschluss", Option D4W										
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]				
25	140	100	4 × Ø18	24	28,5	330				
50	195	145	4 × Ø26	28	53,9	384				
80	230	180	8 × Ø26	32	80,9	442				
100	265	210	8 × Ø30	36	104,3	444				
150	355	290	12 × Ø33	44	154,2	474				
200	430	360	12 × Ø36	52	199,1	536				
250	505	430	12 × Ø39	60	248,1	624				
300	585	500	16 × Ø42	68	295,5	684				
Oberflächenra	uheit (Flansch):	EN 1092-1 For	m B2 (DIN 2526 Fo	rm E), Ra 0,8	3,2 µm					

	Flansch in Anlehnung an ASME B16.5: Class 150 RF Schedule 40 1.4404 (316, 316L): Bestellmerkmal "Prozessanschluss", Option AAS										
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]					
25	108	79,2	4 × Ø15,7	14,2	26,7	300					
50	152,4	120,7	4 × Ø19,1	19,1	52,6	350					
80	190,5	152,4	4 × Ø19,1	23,9	78	400					
100	228,6	190,5	8 × Ø19,1	24,5	102,4	400					
150	279,4	241,3	8 × Ø22,4	25,4	154,2	400					
200	345	298,5	8 × Ø22,3	29	202,7	478					
250	405	362	12 × Ø25,4	30,6	254,6	512					
300	485	431,8	12 × Ø25,4	32,2	303,1	570					
Oberflächenra	uheit (Flansch)	: Ra 3,2 6,3	μm			-					

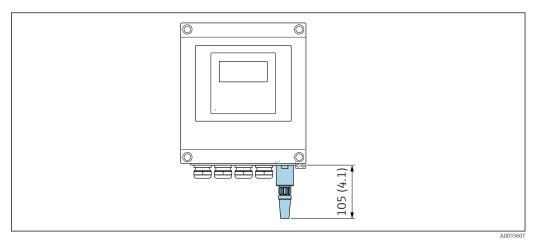

	Flansch in Anlehnung an ASME B16.5: Class 300 RF Schedule 40 1.4404 (316, 316L): Bestellmerkmal "Prozessanschluss", Option ABS										
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]					
25	124	88,9	4 × Ø19,1	17,5	26,7	300					
50	165,1	127	8 × Ø19,1	22,4	52,6	350					
80	209,6	168,1	8 × Ø22,4	28,4	78	400					
100	254	200,2	8 × Ø22,4	31,8	102,4	400					
150	317,5	269,7	12 × Ø22,4	36,6	154,2	400					
200	380	330,2	12 × Ø25,4	41,7	202,7	498					
250	445	387,4	16 × Ø28,6	48,1	254,6	544					
300	520	450,8	16 × Ø31,8	51,3	303,1	602					
Oberflächenra	uheit (Flansch)): Ra 3,2 6,3	μm		•						

	Flansch in Anlehnung an ASME B16.5: Class 300 RF Schedule 80 1.4404 (316, 316L): Bestellmerkmal "Prozessanschluss", Option AGS											
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]						
25	124	88,9	4 × Ø19,1	17,5	24,3	300						
50	165,1	127	8 × Ø19,1	22,4	49,2	350						
80	209,6	168,1	8 × Ø22,4	28,4	73,7	400						
100	254	200,2	8 × Ø22,4	31,8	97	400						
150	317,5	269,7	12 × Ø22,4	36,6	146,3	400						
200	380	330,2	12 × Ø25,4	41,7	193,7	498						
250	445	387,4	16 × Ø28,6	48,1	242,8	544						
300	520	450,8	16 × Ø31,8	51,3	288,9	602						
Oberflächenra	uheit (Flansch)): Ra 3,2 6,3	μm									

	Flansch in Anlehnung an ASME B16.5: Class 600 RF Schedule 80 1.4404 (316, 316L): Bestellmerkmal "Prozessanschluss", Option ACS									
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]				
25	124	88,9	4 × Ø19,1	24,5	24,3	352				
50	165	127	8 × Ø19,1	32,4	49,2	408				
80	210	168,3	8 × Ø22,2	38,8	73,7	466				
100	275	215,9	8 × Ø25,4	45,1	97	482				
150	355	292,1	12 × Ø28,6	54,7	146,3	492				
200	420	349,2	12 × Ø31,8	62,6	193,7	554				
250	510	431,8	16 × Ø35,0	70,5	242,8	626				
300	560	489	20 × Ø35,0	73,7	288,9	666				
Oberflächenra	uheit (Flansch)): Ra 3,2 6,3	μm							

Zubehör

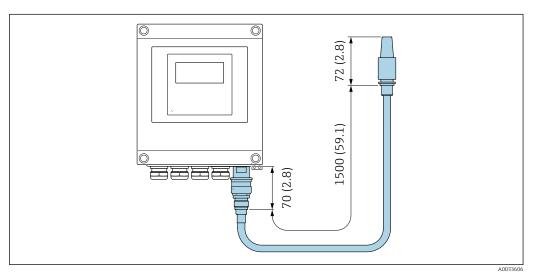
Wetters chutzhaube



🛮 25 Wetterschutzhaube Proline 500 – digital; Maßeinheit mm (in)

Externe WLAN-Antenne

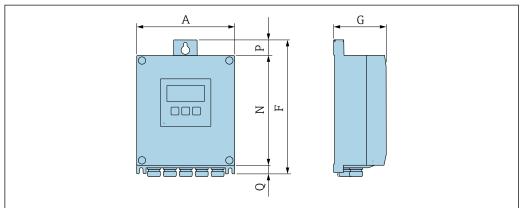
Proline 500 – digital


Externe WLAN-Antenne am Gerät montiert

🛮 26 Maßeinheit mm (in)

Externe WLAN-Antenne mit Kabel montiert

Bei schlechten Sende-/Empfangsbedingungen am Montageort des Messumformers kann die externe WLAN-Antenne getrennt vom Messumformer montiert werden.



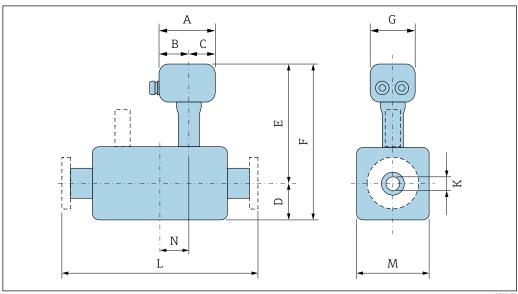
■ 27 Maßeinheit mm (in)

Abmessungen in US-Einheiten

Gehäuse Messumformer Proline 500 - digital

Nicht explosionsgefährdeter Bereich oder explosionsgefährdeter Bereich: Zone 2; Class I, Division 2

A0033789


Bestellmerkmal "Messumformergehäuse", Option A "Alu, beschichtet" und Bestellmerkmal "Integrierte ISEM Elektronik", Option A "Sensor"

A	F	G	N	P	Q
[in]	[in]	[in]	[in]	[in]	[in]
6,57	9,13	3,50	7,36	0,94	

Bestellmerkmal "Messumformergehäuse", Option D "Polycarbonat" und Bestellmerkmal "Integrierte ISEM Elektronik", Option A "Sensor"

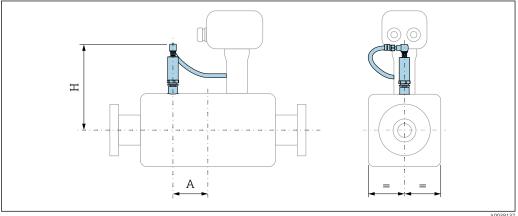
A	F	G	N	P	Q
[in]	[in]	[in]	[in]	[in]	[in]
6,97	9,21	3,50	7,76	0,67	

Anschlussgehäuse Messaufnehmer

A0038135

Bestellmerkmal "S	Sensor Anschlusso	rehäuse". O	ption A "Alu,	beschichtet"

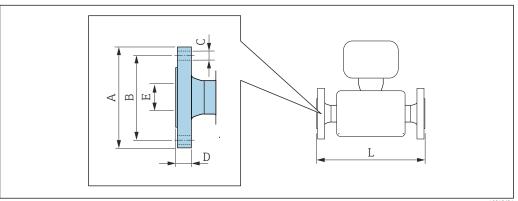
DN	A 1)	B 1)	С	D	E	F	G	К	L	M	N
[in]											
1	5,83	3,70	2,13	0,79	13,3	14,1	5,35	0,96	2)	5,63	1,85
2	5,83	3,70	2,13	1,26	13,8	15,0	5,35	1,94	2)	8,86	2,48
3	5,83	3,70	2,13	1,73	14,3	16,0	5,35	2,90	2)	9,65	2,17
4	5,83	3,70	2,13	2,24	14,6	16,9	5,35	3,83	2)	10,4	2,83
6	5,83	3,70	2,13	3,31	15,6	18,9	5,35	5,76	2)	12,1	2,44
8	5,83	3,70	2,13	4,33	16,7	21,0	5,35	7,63	2)	13,7	3,07
10	5,83	3,70	2,13	5,43	17,7	23,2	5,35	9,56	2)	15,4	3,31
12	5,83	3,70	2,13	6,42	18,7	25,2	5,35	11,4	2)	16,9	3,78


- 1) Je nach verwendeter Kabelverschraubung: Werte bis + 1,18 in
- 2)

Bestellmerkmal "Sensor Anschlussgehäuse", Option L "Guss, rostfrei"

DN	A 1)	B 1)	С	D	Е	F	G	К	L	M	N
[in]											
1	5,71	3,39	2,32	0,79	13,2	13,9	5,35	0,96	2)	5,63	1,85
2	5,71	3,39	2,32	1,26	13,6	14,9	5,35	1,94	2)	8,86	2,48
3	5,71	3,39	2,32	1,73	14,1	15,9	5,35	2,90	2)	9,65	2,17
4	5,71	3,39	2,32	2,24	14,5	16,7	5,35	3,83	2)	10,4	2,83
6	5,71	3,39	2,32	3,31	15,5	18,8	5,35	5,76	2)	12,1	2,44
8	5,71	3,39	2,32	4,33	16,5	20,9	5,35	7,63	2)	13,7	3,07
10	5,71	3,39	2,32	5,43	17,6	23,0	5,35	9,56	2)	15,4	3,31
12	5,71	3,39	2,32	6,42	18,6	25,0	5,35	11,4	2)	16,9	3,78

- Je nach verwendeter Kabelverschraubung: Werte bis +1,18 in Abhängig vom jeweiligen Prozessanschluss \rightarrow $\stackrel{ ext{le}}{=}$ 57 1) 2)


Druckmesszelle

Bestellmerkmal "Druckkomponente": Optionen B/C/D/E/F "Druckmesszelle 29/58/145/580/1450 psia"							
DN [in]	A [in]	B [in]					
1	2,40	6,77					
2	2,99	7,36					
3	3,78	7,91					
4	3,35	8,39					
6	2,91	9,45					
8	3,43	10,6					
10	4,02	11,8					
12	4,33	12,8					

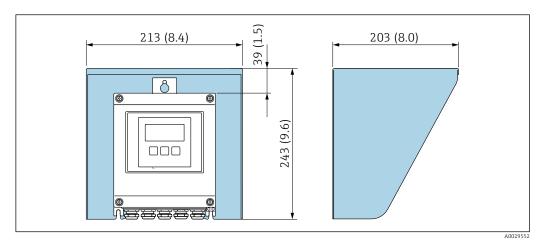
Flanschanschlüsse

Vorschweißflansch ASME B16.5

Längentoleranz Maß L in inch:
■ DN 1...6": +0 / -0,11

■ DN 8...12": +0,04 / -0,08

	Flansch in Anlehnung an ASME B16.5: Class 150 RF Schedule 40 1.4404 (316, 316L): Bestellmerkmal "Prozessanschluss", Option AAS									
DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]	L [in]				
1	4,25	3,12	4 × Ø0,62	0,56	1,05	11,8				
2	6,00	4,75	4 × Ø0,75	0,75	2,07	13,8				
3	7,50	6,00	4 × Ø0,75	0,94	3,07	15,8				
4	9,00	7,50	8 × Ø0,75	0,96	4,03	15,8				
6	11,0	9,50	8 × Ø0,88	1,00	6,07	15,8				
8	13,6	11,8	8 × Ø0,88	1,14	7,98	18,8				
10	15,9	14,3	12 × Ø1,00	1,20	10,0	20,2				
12	19,1	17,0	12 × Ø1,00	1,27	11,9	22,4				
Oberflächeni	auheit (Flansc	h): Ra 125 2	50 µin							

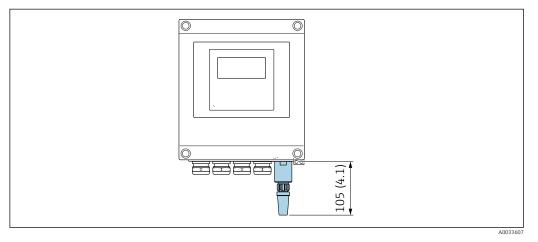

	Flansch in Anlehnung an ASME B16.5: Class 300 RF Schedule 40 1.4404 (316, 316L): Bestellmerkmal "Prozessanschluss", Option ABS									
DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]	L [in]				
1	4,88	3,5	4 × Ø0,75	0,69	1,05	11,8				
2	6,50	5,00	8 × Ø0,75	0,88	2,07	13,8				
3	8,25	6,62	8 × Ø0,88	1,12	3,07	15,8				
4	10,0	7,88	8 × Ø0,88	1,25	4,03	15,8				
6	12,5	10,6	12 × Ø0,88	1,44	6,07	15,8				
8	15,0	13,0	12 × Ø1,00	1,64	7,98	19,6				
10	17,5	15,3	16 × Ø1,13	1,89	10,0	21,4				
12	20,5	17,8	16 × Ø1,25	2,02	11,9	23,7				
Oberflächen	auheit (Flansc	h): Ra 125 2	50 µin							

	Flansch in Anlehnung an ASME B16.5: Class 300 RF Schedule 80 1.4404 (316, 316L): Bestellmerkmal "Prozessanschluss", Option AGS										
DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]	L [in]					
1	4,88	3,5	4 × Ø0,75	0,69	0,96	11,8					
2	6,50	5,00	8 × Ø0,75	0,88	1,94	13,8					
3	8,25	6,62	8 × Ø0,88	1,12	2,9	15,8					
4	10,0	7,88	8 × Ø0,88	1,25	3,82	15,8					
6	12,5	10,6	12 × Ø0,88	1,44	5,76	15,8					
8	15,0	13,0	12 × Ø1,00	1,64	7,63	19,6					
10	17,5	15,3	16 × Ø1,13	1,89	9,56	21,4					
12	20,5	17,8	16 × Ø1,25	2,02	11,4	23,7					
Oberflächeni	auheit (Flansc	h): Ra 125 2	50 µin								

	Flansch in Anlehnung an ASME B16.5: Class 600 RF Schedule 80 1.4404 (316, 316L): Bestellmerkmal "Prozessanschluss", Option ACS										
DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]	L [in]					
1	4,88	3,5	4 × Ø0,75	0,96	0,96	13,9					
2	6,50	5,00	8 × Ø0,75	1,28	1,94	16,1					
3	8,27	6,63	8 × Ø0,87	1,53	2,90	18,4					
4	10,8	8,50	8 × Ø1,00	1,78	3,82	18,9					
6	14,0	11,5	12 × Ø1,13	2,15	5,76	19,4					
8	16,5	13,8	12 × Ø1,25	2,46	7,63	21,8					
10	20,1	17,0	16 × Ø1,38	2,78	9,56	24,7					
12	22,1	19,3	20 × Ø1,38	2,90	11,4	26,2					
Oberflächenr	auheit (Flansc	h): Ra 125 2	50 µin								

Zubehör

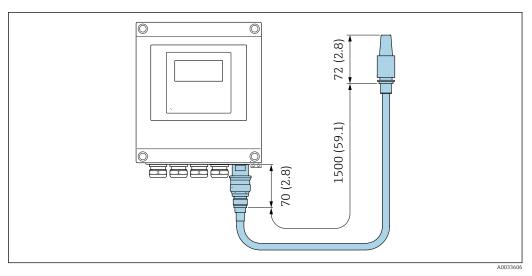
Wetterschutzhaube



■ 28 Wetterschutzhaube Proline 500 – digital; Maßeinheit mm (in)

Externe WLAN-Antenne

Proline 500 – digital


Externe WLAN-Antenne am Gerät montiert

■ 29 Maßeinheit mm (in)

Externe WLAN-Antenne mit Kabel montiert

Bei schlechten Sende-/Empfangsbedingungen am Montageort des Messumformers kann die externe WLAN-Antenne getrennt vom Messumformer montiert werden.

■ 30 Maßeinheit mm (in)

Gewicht

Messumformer

- Proline 500 digital Polycarbonat: 1,4 kg (3,1 lbs)
 Proline 500 digital Aluminium: 2,4 kg (5,3 lbs)

Messaufnehmer

- Messaufnehmer mit Anschlussgehäuseausführung aus Guss, rostfrei: +3,7 kg (+8,2 lbs)
 Messaufnehmer mit Anschlussgehäuseausführung aus Aluminium:

Gewicht in SI-Einheiten

Nennwe	eite	EN (DIN) [kg]						
		Druckstufe						
[mm]	[in]	PN 16	PN 40	PN 63	PN 100			
25	1	10	10	12	12			
50	2	15	15	19	21			
80	3	21	21	25	29			
100	4	23	26	32	39			
150	6	35	42	62	76			
200	8	51	71	98	128			
250	10	77	114	143	206			
300	12	107	161	201	297			

Nennweite		ASME [kg]			
			Druckstufe		
[mm]	[in]	Class 150 RF Sch.40	Class 300 RF Sch.40	Class 300 RF Sch.80	Class 600 RF Sch.80
25	1	9	10	10	11
50	2	14	16	16	18
80	3	21	24	24	28
100	4	27	35	35	49
150	6	39	55	56	89
200	8	66	91	93	136
250	10	93	133	133	222
300	12	142	193	198	278

Gewicht in US-Einheiten

Nennweite		ASME [lbs]			
		Druckstufe			
[mm]	[in]	Class 150 RF Sch.40	Class 300 RF Sch.40	Class 300 RF Sch.80	Class 600 RF Sch.80
25	1	20	22	22	24
50	2	31	35	35	40
80	3	46	53	53	62
100	4	60	77	77	108
150	6	86	121	123	196
200	8	146	201	205	300
250	10	205	293	293	490
300	12	313	426	437	613

Werkstoffe

- Wenn Bestellmerkmal "Weitere Zulassung", Option LR "NACE MR0175 / ISO 15156 (mediumberührte Teile), Erklärung" oder LS "NACE MR0103 / ISO 17945 (mediumberührte Teile), Erklärung" bestellt wurde, entsprechen alle eingesetzten metallischen Werkstoffe den Standards NACE MR0175 und NACE MR0103.
- Der Dichtungswerkstoff ist getestet nach NACE TM0187 und NORSOK M710-B.

▲ GEFAHR

Undichtheit des Ultraschallwandlers möglich!

Austritt giftiger und/oder explosiver Gase!

- ▶ Das Dichtungsmaterial ist nicht geeignet für Anwendungen im reinen Wasserdampf.
- ► Das Dichtungsmaterial darf keiner Drucksteigerung bei niedrigen Prozesstemperaturen unterhalb -40 °C (-40 °F) ausgesetzt werden.

Gehäuse Messumformer

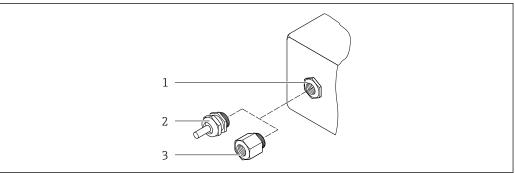
Gehäuse Messumformer Proline 500 – digital

Bestellmerkmal "Messumformergehäuse":

- Option **A** "Alu beschichtet": Aluminium, AlSi10Mg, beschichtet
- Option **D** "Polycarbonat": Polycarbonat

Fensterwerkstoff

Bestellmerkmal "Messumformergehäuse":


- Option **A** "Alu, beschichtet": Glas
- Option **D** "Polycarbonat": Kunststoff

Anschlussgehäuse Messaufnehmer

Bestellmerkmal "Sensor Anschlussgehäuse":

- Option **A** "Alu beschichtet": Aluminium, AlSi10Mg, beschichtet
- Option L "Guss, rostfrei": 1.4409 (CF3M) ähnlich zu 316L

Kabeleinführungen/-verschraubungen

A002064

- 31 Mögliche Kabeleinführungen/-verschraubungen
- 1 Innengewinde M20 × 1,5
- 2 Kabelverschraubung M20 × 1,5
- 3 Adapter für Kabeleinführung mit Innengewinde G ½" oder NPT ½"

Kabeleinführungen und Adapter	Werkstoff
Kabelverschraubung M20 × 1,5	Kunststoff
 Adapter für Kabeleinführung mit Innengewinde G ½" Adapter für Kabeleinführung mit Innengewinde NPT ½" 	Messing vernickelt
Nur für bestimmte Geräteausführungen verfügbar: Bestellmerkmal "Messumformergehäuse": Option A "Alu, beschichtet" Option D "Polycarbonat" Bestellmerkmal "Sensor Anschlussgehäuse": Proline 500 – digital: Option A "Alu beschichtet" Option L "Guss, rostfrei"	

Verbindungskabel

UV-Strahlung kann zu Beeinträchtigung des Kabelaußenmantels führen. Das Kabel möglichst vor Sonneneinstrahlung schützen.

Verbindungskabel Messaufnehmer - Messumformer Proline 500 – digital

PVC-Kabel mit Kupferschirm

Messrohr

Rostfreier Stahl: 1.4408/1.4409 (CF3M)

Prozessanschlüsse

Rostfreier Stahl: 1.4404 (316, 316L)

Kabel Messumformerhals/Ultraschallwandler

Inkl. Anschlüsse Messumformerhals und Ultraschallwandler Rostfreier Stahl: 1.4404 (316, 316L)

Ultraschallwandler

Titan Grade 2

Sensorhalter: Rostfreier Stahl: 1.4404 (316, 316L)

Dichtung Ultraschallwandler

FKM-Werkstoffgruppe

Temperatursensor

Rostfreier Stahl: 1.4404 (316, 316L)

Dichtung Temperatursensor

Dichtungsfrei (selbstdichtendes NPT-Gewinde mit Dichtmittel)

Druckmesszelle

Rostfreier Stahl: 1.4404 (316, 316L)

Dichtung Druckmesszelle

Dichtungsfrei (selbstdichtendes NPT-Gewinde mit Dichtmittel)

Zubehör

Wetterschutzhaube

Rostfreier Stahl, 1.4404 (316L)

Externe WLAN-Antenne

- Antenne: Kunststoff ASA (Acrylnitril-Styrol-Acrylester) und Messing vernickelt
- Adapter: Rostfreier Stahl und Messing vernickelt
- Kabel: Polyethylen
- Stecker: Messing vernickelt
- Befestigungswinkel: Rostfreier Stahl

Prozessanschlüsse

Flansche:

- EN 1092-1-B1
- ASME B16.5

Zu den verschiedenen Werkstoffen der Prozessanschlüsse → 🗎 62

Anzeige und Bedienoberfläche

Bedienkonzept

Nutzerorientierte Menüstruktur für anwenderspezifische Aufgaben

- Inbetriebnahme
- Betrieb
- Diagnose
- Expertenebene

Schnelle und sichere Inbetriebnahme

- Geführte Menüs ("Make-it-run" Assistenten) für Anwendungen
- Menüführung mit kurzen Erläuterungen der einzelnen Parameterfunktionen
- Zugriff auf das Gerät via Webserver
- WLAN-Zugriff auf das Gerät mittels mobilem Handbediengerät, Tablet oder Smartphone

Sicherheit im Betrieb

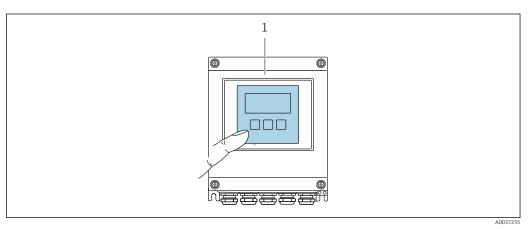
- Bedienung in Landessprache
- Einheitliche Bedienphilosophie am Gerät und in den Bedientools
- Beim Austausch von Elektronikmodulen: Übernahme der Gerätekonfiguration durch den integrierten Datenspeicher (HistoROM Backup), der die Prozess-, Messgerätedaten und das Ereignis-Logbuch enthält. Keine Neuparametrierung nötig.

Effizientes Diagnoseverhalten erhöht die Verfügbarkeit der Messung

- Behebungsmaßnahmen sind via Gerät und in den Bedientools abrufbar
- Vielfältige Simulationsmöglichkeiten, Logbuch zu eingetretenen Ereignissen und optional Linienschreiberfunktionen

Sprachen

Bedienung in folgenden Landessprachen möglich:


- Via Vor-Ort-Bedienung
 Englisch, Deutsch, Französisch, Spanisch, Italienisch, Niederländisch, Portugiesisch, Polnisch, Russisch, Türkisch, Chinesisch, Japanisch, Koreanisch, Vietnamesisch, Tschechisch, Schwedisch
- Via Webbrowser
 Englisch, Deutsch, Französisch, Spanisch, Italienisch, Niederländisch, Portugiesisch, Polnisch, Russisch, Türkisch, Chinesisch, Japanisch, Vietnamesisch, Tschechisch, Schwedisch
- Via Bedientool "FieldCare", "DeviceCare": Englisch, Deutsch, Französisch, Spanisch, Italienisch, Chinesisch, Japanisch

Vor-Ort-Bedienung

Via Anzeigemodul

Ausstattung:

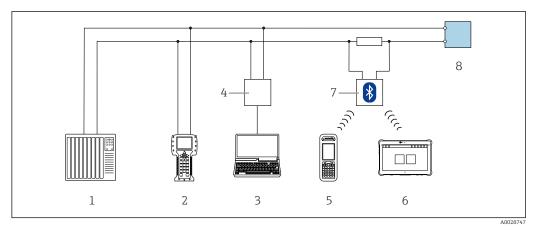
- Bestellmerkmal "Anzeige; Bedienung", Option F "4-zeilige, beleuchtete, grafische Anzeige; Touch Control"
- Bestellmerkmal "Anzeige; Bedienung", Option G "4-zeilige, beleuchtete, grafische Anzeige; Touch Control + WLAN"
- i

■ 32 Bedienung mit Touch Control

1 Proline 500 - digital

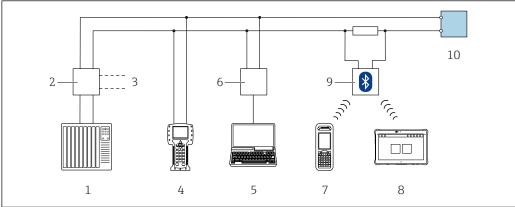
Anzeigeelemente

- 4-zeilige, beleuchtete, grafische Anzeige
- Hintergrundbeleuchtung weiß, bei Gerätefehler rot
- Anzeige für die Darstellung von Messgrößen und Statusgrößen individuell konfigurierbar


Bedienelemente

- Bedienung von außen ohne Öffnen des Gehäuses via Touch Control (3 optische Tasten): 🕀, 🖃, 🗉
- Bedienelemente auch in den verschiedenen Zonen des explosionsgefährdeten Bereichs zugänglich

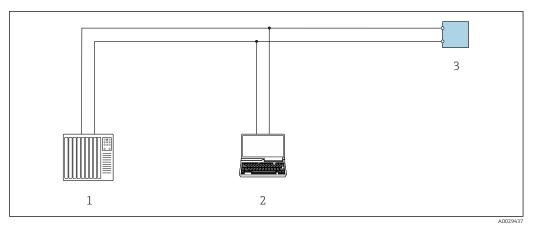
Fernbedienung


Via HART-Protokoll

Diese Kommunikationsschnittstelle ist bei Geräteausführungen mit HART-Ausgang verfügbar.

■ 33 Möglichkeiten der Fernbedienung via HART-Protokoll (aktiv)

- 1 Automatisierungssystem (z.B. SPS)
- 2 Field Communicator 475
- 3 Computer mit Webbrowser (z.B. Microsoft Edge) zum Zugriff auf integrierten Gerätewebserver oder Computer mit Bedientool (z.B. FieldCare, DeviceCare, AMS Device Manager, SIMATIC PDM) mit COM DTM "CDI Communication TCP/IP"
- 4 Commubox FXA195 (USB)
- 5 Field Xpert SFX350 oder SFX370
- 6 Field Xpert SMT70
- 7 VIATOR Bluetooth-Modem mit Anschlusskabel
- 8 Messumformer


A0028746

■ 34 Möglichkeiten der Fernbedienung via HART-Protokoll (passiv)

- 1 Automatisierungssystem (z.B. SPS)
- 2 Messumformerspeisegerät, z.B. RN221N (mit Kommunikationswiderstand)
- 3 Anschluss für Commubox FXA195 und Field Communicator 475
- 4 Field Communicator 475
- 5 Computer mit Webbrowser (z.B. Microsoft Edge) zum Zugriff auf integrierten Gerätewebserver oder Computer mit Bedientool (z.B. FieldCare, DeviceCare, AMS Device Manager, SIMATIC PDM) mit COM DTM "CDI Communication TCP/IP"
- 6 Commubox FXA195 (USB)
- 7 Field Xpert SFX350 oder SFX370
- 8 Field Xpert SMT70
- 9 VIATOR Bluetooth-Modem mit Anschlusskabel
- 10 Messumformer

Via Modbus-RS485-Protokoll

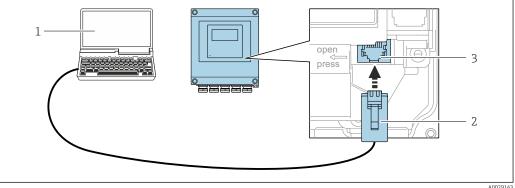
Diese Kommunikationsschnittstelle ist bei Geräteausführungen mit Modbus-RS485-Ausgang verfügbar.

■ 35 Möglichkeiten der Fernbedienung via Modbus-RS485-Protokoll (aktiv)

- Automatisierungssystem (z.B. SPS)
- Computer mit Webbrowser (z.B. Microsoft Edge) zum Zugriff auf integrierten Gerätewebserver oder mit Bedientool (z.B. FieldCare, DeviceCare) mit COM DTM "CDI Communication TCP/IP" oder Modbus DTM
- 3 Messumformer

Serviceschnittstelle

Via Serviceschnittstelle (CDI-RJ45)

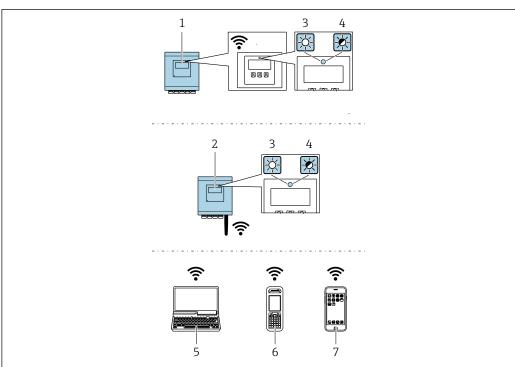

Um eine Konfiguration des Geräts vor Ort durchzuführen kann eine Punkt-zu-Punkt-Verbindung aufgebaut werden. Der Anschluss erfolgt bei geöffnetem Gehäuse direkt über die Serviceschnittstelle (CDI-RJ45) des Geräts.

Optional ist für den nicht explosionsgefährdeten Bereich ein Adapter für RJ45 auf M12 Stecker erhältlich:

Bestellmerkmal "Zubehör", Option NB: "Adapter RJ45 M12 (Serviceschnittstelle)"

Der Adapter verbindet die Serviceschnittstelle (CDI-RJ45) mit einem in der Kabeleinführung montierten M12 Stecker. Der Anschluss an die Serviceschnittstelle kann ohne Öffnen des Geräts über einen M12 Stecker erfolgen.

Messumformer Proline 500 – digital



- **№** 36 Anschluss via Service-Schnittstelle (CDI-RJ45)
- Computer mit Webbrowser (z.B. Microsoft Internet Explorer, Microsoft Edge) zum Zugriff auf integrierten Webserver oder mit Bedientool "FieldCare", "DeviceCare" mit COM DTM "CDI Communication TCP/IP" oder Modbus DTM
- Standard-Ethernet-Verbindungskabel mit RJ45-Stecker
- Serviceschnittstelle (CDI-RJ45) des Messgeräts mit Zugriff auf integrierten Webserver

Via WLAN-Schnittstelle

Die optionale WLAN-Schnittstelle ist bei folgender Geräteausführung vorhanden: Bestellmerkmal "Anzeige; Bedienung", Option G "4-zeilig, beleuchtet; Touch Control + WLAN"

66

A0027602

- 1 Messumformer mit integrierter WLAN-Antenne
- 2 Messumformer mit externer WLAN-Antenne
- 3 LED leuchtet konstant: WLAN-Empfang am Messgerät ist aktiviert
- 4 LED blinkt: WLAN-Verbindung zwischen Bediengerät und Messgerät ist hergestellt
- 5 Computer mit WLAN-Schnittstelle und Webbrowser (z.B. Microsoft Internet Explorer, Microsoft Edge) zum Zugriff auf integrierten Gerätewebserver oder mit Bedientool (z.B. FieldCare, DeviceCare)
- 6 Mobiles Handbediengerät mit WLAN-Schnittstelle und Webbrowser (z.B. Microsoft Internet Explorer, Microsoft Edge) zum Zugriff auf integrierten Gerätewebserver oder Bedientool (z.B. FieldCare, DeviceCare)
- 7 Smartphone oder Tablet (z.B. Field Xpert SMT70)

Funktion	WLAN: IEEE 802.11 b/g (2,4 GHz) • Access Point mit DHCP Server (Werkseinstellung) • Netzwerk
Verschlüsselung	WPA2-PSK AES-128 (gemäß IEEE 802.11i)
Einstellbare WLAN-Kanäle	1 bis 11
Schutzart	IP67
Verfügbare Antennen	 Interne Antenne Externe Antenne (optional) Bei schlechten Sende-/Empfangsbedingungen am Montageort. Als Zubehör verfügbar . Jeweils nur 1 Antenne aktiv!
Reichweite	 Interne Antenne: Typischerweise 10 m (32 ft) Externe Antenne: Typischerweise 50 m (164 ft)
Werkstoffe (Externe Antenne)	 Antenne: Kunststoff ASA (Acrylnitril-Styrol-Acrylat-Copolymere) und Messing vernickelt Adapter: Rostfreier Stahl und Messing vernickelt Kabel: Polyethylen Stecker: Messing vernickelt Befestigungswinkel: Rostfreier Stahl

Unterstützte Bedientools

Für den lokalen Zugriff oder den Fernzugriff auf das Messgerät können verschiedene Bedientools verwendet werden. Abhängig vom verwendeten Bedientool kann der Zugriff mithilfe von unterschiedlichen Bediengeräten und via verschiedene Schnittstellen erfolgen.

Unterstützte Bedientools	Bediengerät	Schnittstelle	Weitere Informationen
Webbrowser	Notebook, PC oder Tab- let mit Webbrowser	Serviceschnittstelle CDI-RJ45WLAN-Schnittstelle	Sonderdokumentation zum Gerät
DeviceCare SFE100	Notebook, PC oder Tab- let mit Microsoft Wind- ows-System	Serviceschnittstelle CDI-RJ45WLAN-SchnittstelleFeldbus-Protokoll	→ 🖺 77
FieldCare SFE500	Notebook, PC oder Tab- let mit Microsoft Wind- ows-System	Serviceschnittstelle CDI-RJ45WLAN-SchnittstelleFeldbus-Protokoll	→ 🖺 77
Field Xpert	SMT70/77/50	 Alle Feldbus-Protokolle WLAN-Schnittstelle Bluetooth Serviceschnittstelle CDI-RJ45 	Betriebsanleitung BA01202S Gerätebeschreibungsdateien: Updatefunktion vom Handbe- diengerät verwenden
SmartBlue App	Smartphone oder Tablet mit iOs oder Android	WLAN	→ 🖺 77

- Weitere Bedientools auf Basis FDT Technologie mit einem Gerätetreiber wie DTM/iDTM oder DD/EDD sind für die Gerätebedienung nutzbar. Diese Bedientools sind bei den jeweiligen Herstellern erhältlich. Es wird eine Integration u.a. in folgende Bedientools unterstützt:
 - FactoryTalk AssetCentre (FTAC) von Rockwell Automation → www.rockwellautomation.com
 - Process Device Manager (PDM) von Siemens → www.siemens.com
 - Asset Management Solutions (AMS) von Emerson → www.emersonprocess.com
 - FieldCommunicator 375/475 von Emerson → www.emersonprocess.com
 - Field Device Manager (FDM) von Honeywell \rightarrow www.process.honeywell.com
 - FieldMate von Yokogawa → www.yokogawa.com
 - PACTWare → www.pactware.com

Die zugehörigen Gerätebeschreibungsdateien sind verfügbar: www.endress.com \rightarrow Download-Area

Webserver

Mit dem integrierten Webserver kann das Gerät über einen Webbrowser Serviceschnittstelle (CDI-RJ45) oder via WLAN-Schnittstelle bedient und konfiguriert werden. Der Aufbau des Bedienmenüs ist dabei derselbe wie bei der Vor-Ort-Anzeige. Neben den Messwerten werden auch Statusinformationen zum Gerät dargestellt und ermöglichen eine Kontrolle des Gerätezustands. Zusätzlich können die Daten vom Gerät verwaltet und die Netzwerkparameter eingestellt werden.

Für die WLAN-Verbindung wird ein Gerät benötigt, das über eine optional bestellbare WLAN-Schnittstelle verfügt: Bestellmerkmal "Anzeige; Bedienung", Option G "4-zeilig beleuchtet; Touch Control + WLAN". Das Gerät dient als Access Point und ermöglicht eine Kommunikation mittels Computer oder mobilem Handbediengerät.

Unterstützte Funktionen

Datenaustausch zwischen Bediengerät (wie z. B. Notebook) und Messgerät:

- Konfiguration vom Messgerät laden (XML-Format, Konfiguration sichern)
- Konfiguration ins Messgerät speichern (XML-Format, Konfiguration wieder herstellen)
- Export der Eventliste (.csv-Datei)
- Export der Parametereinstellungen (.csv-Datei oder PDF-Datei, Dokumentation der Konfiguration der Messstelle erstellen)
- Export des Verifikationsprotokolls Heartbeat (PDF-Datei, nur verfügbar mit dem Anwendungspaket **Heartbeat Verification** → 🗎 74)
- Flashen der Firmware-Version für z.B. Upgrade der Geräte-Firmware
- Download Treiber für Systemintegration

HistoROM Datenmanagement

Das Messgerät verfügt über ein HistoROM Datenmanagement. Das HistoROM Datenmanagement umfasst sowohl die Speicherung als auch das Importieren und Exportieren wichtiger Geräte- und Prozessdaten. Dadurch können Betriebs- und Serviceeinsätze wesentlich sicherer und effizienter durchgeführt werden.

Im Auslieferungszustand sind die Werkseinstellungen der Parametrierdaten als Sicherung im Gerätespeicher hinterlegt. Dieser kann z.B. nach der Inbetriebnahme mit einem aktualisierten Datensatz überschrieben werden.

Zusatzinformationen Speicherkonzept

Es gibt verschiedene Speicher, in denen Gerätedaten gespeichert und vom Gerät genutzt werden:

	HistoROM Backup	T-DAT	S-DAT
Verfügbare Daten	 Ereignis-Logbuch z. B. Diagnose- ereignisse Sicherung eines Parameterdaten- satzes Firmwarepaket des Geräts 	 Messwertspeicherung (Bestelloption "Extended HistoROM") Aktueller Parameterdatensatz (wird zur Laufzeit durch Firmware verwendet) Schleppzeiger (Minimum/Maximum-Werte) Summenzählerwert 	 Messaufnehmerdaten: z. B. Nennweite Seriennummer Kalibrierdaten Gerätekonfiguration (z. B. SW-Optionen, fixes I/O oder Multi I/O)
Speicherort	Fix auf der Benutzerschnittstellen- Leiterplatte im Anschlussraum	Steckbar auf der Benutzerschnittstellen-Leiter- platte im Anschlussraum	Im Sensorstecker im Messumformer-Halsteil

Datensicherung

Automatisch

- Automatische Speicherung der wichtigsten Gerätedaten (Messaufnehmer und -umformer) in den DAT-Modulen
- Im Austauschfall Messumformer oder Messgerät: Nach Austausch des T-DATs mit bisherigen Gerätedaten steht das neue Messgerät sofort und fehlerfrei wieder in Betrieb
- Im Austauschfall Messaufnehmer: Nach Austausch des Messaufnehmers werden neue Messaufnehmerdaten aus S-DAT im Messgerät übernommen und das Messgerät steht sofort und fehlerfrei in Betrieb
- Im Austauschfall Elektronikmodul (z.B. I/O-Elektronikmodul): Nach Austausch des Elektronikmoduls wird die Software des Moduls mit der vorhandenen Gerätefirmware verglichen. Im Bedarfsfall erfolgt ein Up- oder Downgrade der Software des Moduls. Anschließend ist das Elektronikmodul sofort einsatzbereit und es tritt kein Kompatibilitätsfehler auf.

Manuel

Zusätzlicher Parameterdatensatz (komplette Parametereinstellungen) im integrierten Gerätespeicher HistoROM Backup für:

- Datensicherungsfunktion
 Sicherung und spätere Wiederherstellung einer Geräteparametrierung im Gerätespeicher HistoROM Backup
- Datenvergleichsfunktion
 Vergleich der aktuellen Geräteparametrierung mit der im Gerätespeicher HistoROM Backup gespeicherten Geräteparametrierung

Datenübertragung

Manuell

Übertragung einer Geräteparametrierung auf ein anderes Gerät mithilfe der Exportfunktion des jeweiligen Bedientools, z.B. mit FieldCare, DeviceCare oder Webserver: Zum Duplizieren der Parametrierung oder zur Ablage in ein Archiv (z.B. zwecks Sicherung)

Ereignisliste

Automatisch

- Chronologische Anzeige von max. 20 Ereignismeldungen in der Ereignisliste
- Mit Freischaltung des Anwendungspakets Extended HistoROM (Bestelloption): Anzeige von bis zu 100 Ereignismeldungen in der Ereignisliste mit Zeitstempel, Klartextbeschreibung und Behebungsmaßnahmen
- Export und Anzeige der Ereignisliste über verschiedene Schnittstellen und Bedientools z.B. Device-Care, FieldCare oder Webserver

Messwertspeicher

Manuell

Mit Freischaltung des Anwendungspakets Extended HistoROM (Bestelloption):

- Aufzeichnung über 1 bis 4 Kanäle von bis zu 1000 Messwerten (jeweils bis zu 250 Messwerte pro Kanal)
- Frei konfigurierbares Aufzeichnungsintervall
- Export der Messwertaufzeichnung über verschiedene Schnittstellen und Bedientools z.B. Field-Care, DeviceCare oder Webserver

Zertifikate und Zulassungen

Aktuelle Zertifikate und Zulassungen zum Produkt stehen unter www.endress.com auf der jeweiligen Produktseite zur Verfügung:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- 3. **Downloads** auswählen.

CE-Kennzeichnung

Das Gerät erfüllt die gesetzlichen Anforderungen der anwendbaren EU-Richtlinien. Diese sind zusammen mit den angewandten Normen in der entsprechenden EU-Konformitätserklärung aufgeführt.

Endress+Hauser bestätigt die erfolgreiche Prüfung des Geräts mit der Anbringung der CE-Kennzeichnung.

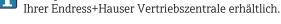
UKCA-Kennzeichnung

Das Gerät erfüllt die gesetzlichen Anforderungen der anwendbaren UK-Rechtsverordnungen (Statutory Instruments). Diese sind zusammen mit den zugewiesenen Normen in der entsprechenden UKCA-Konformitätserklärung aufgeführt. Durch Selektion der Bestelloption zur UKCA-Kennzeichnung bestätigt Endress+Hauser die erfolgreiche Prüfung und Bewertung des Geräts mit der Anbringung der UKCA-Kennzeichnung.

Kontaktadresse Endress+Hauser UK: Endress+Hauser Ltd. Floats Road

Manchester M23 9NF United Kingdom

www.uk.endress.com


RCM-Kennzeichnung

Das Messsystem stimmt überein mit den EMV-Anforderungen der Behörde "Australian Communications and Media Authority (ACMA)".

Ex-Zulassung

Das Messgerät ist zum Einsatz im explosionsgefährdeten Bereich zertifiziert und die zu beachtenden Sicherheitshinweise im separaten Dokument "Safety Instructions" (XA) beigefügt. Dieses ist auf dem Typenschild referenziert.

Die separate Ex-Dokumentation (XA) mit allen relevanten Daten zum Explosionsschutz ist bei

Proline 500 – digital

ATEX/IECEx

Aktuell sind die folgenden Ex-Ausführungen lieferbar:

Ex db ia

	Messumformer	Messaufnehmer		
Kategorie	Zündschutzart	Kategorie	Zündschutzart	
-	-	II2G	Ex db ia IIC T6T1 Gb	
II3G	Ex ec nC IIC T5T4 Gc	II2G	Ex db ia IIC T6T1 Gb	

70

Ех ес

	Messumformer	Messaufnehmer		
Kategorie	Zündschutzart	Kategorie	Zündschutzart	
-	-	II3G	Ex ec ic IIC	
II3G	Ex ec nC IIC T5T4 Gc	II3G	Ex ec ic IIC	

Ex tb

Me	ssumformer	Messaufnehmer		
Kategorie	Zündschutzart	Kategorie	Zündschutzart	
-	_	II2D	Ex ia tb IIIC T** °C Db	

$_{C}CSA_{US}$

Aktuell sind die folgenden Ex-Ausführungen lieferbar:

IS

Messumformer	Messaufnehmer	
Class I Division 2 Groups A-D	Class I, II, III Division 1 Groups A-G	

NI

Messumformer	Messaufnehmer
Class I Division 2 Groups A-D	Class I Division 2 Groups A-D

Ех і

Messumformer	Messaufnehmer	
Class I Zone 2, AEx/Ex nA nC IIC T5T4 Gc	Class I Zone 1, AEx/Ex d ia IIC T6T1 Gb	

Ex nA

Messumformer	Messaufnehmer
Class I Zone 2, AEx/Ex nA nC IIC T5T4 Gc	Class I Zone 2, AEx/Ex nA ic IIC T6T1 Gc

Ex tb

Messumformer	Messaufnehmer
-	Zone 21, AEx/Ex ia tb IIIC T** °C Db

Funktionale Sicherheit

Das Messgerät ist für Durchflussüberwachungen (Min., Max., Bereich) bis SIL 2 (einkanalige Architektur; Bestellmerkmal "Weitere Zulassung", Option LA) und SIL 3 (mehrkanalige Architektur mit homogener Redundanz) einsetzbar und nach IEC 61508 unabhängig beurteilt und zertifiziert.

Folgende Überwachungen in Schutzeinrichtungen sind möglich: Volumendurchfluss

i

Handbuch zur Funktionalen Sicherheit mit Informationen zum SIL-Gerät

Zertifizierung HART

HART Schnittstelle

Das Messgerät ist von der FieldComm Group zertifiziert und registriert. Das Gerät erfüllt alle Anforderungen der folgenden Spezifikationen:

- Zertifiziert gemäß HART 7
- Das Gerät kann auch mit zertifizierten Geräten anderer Hersteller betrieben werden (Interoperabilität)

Druckgerätezulassung

Die Messgeräte sind mit oder ohne PED oder PESR bestellbar. Wenn ein Gerät mit PED oder PESR benötigt wird, muss dies explizit bestellt werden. Bei Geräten mit Nennweiten kleiner oder gleich DN 25 (1") ist dies weder möglich noch erforderlich. Für PESR ist unter Bestellmerkmal "Zulassungen" zwingend eine UK-Bestelloption zu wählen.

- Mit der Kennzeichnung
- a) PED/G1/x (x = Kategorie) oder
- b) PESR/G1/x (x = Kategorie)
- auf dem Messaufnehmer-Typenschild bestätigt Endress+Hauser die Konformität mit den "Grundlegenden Sicherheitsanforderungen"
- a) des Anhangs I der Druckgeräterichtlinie 2014/68/EU oder
- b) des Schedule 2 der Statutory Instruments 2016 no. 1105.
- Geräte mit dieser Kennzeichnung (mit PED oder PESR) sind geeignet für folgende Messstoffarten: Fluide der Gruppe 1 und 2 mit einem Dampfdruck von größer oder kleiner gleich 0,5 bar (7,3 psi)
- Geräte ohne diese Kennzeichnung (ohne PED oder PESR) sind nach guter Ingenieurspraxis ausgelegt und hergestellt. Sie entsprechen den Anforderungen von
 - a) Art. 4 Abs. 3 der Druckgeräterichtlinie 2014/68/EU oder
 - b) Part 1, Abs. 8 der Statutory Instruments 2016 no. 1105.

Ihr Einsatzbereich ist

- a) in den Diagrammen 6 bis 9 im Anhang II der Druckgeräterichtlinie 2014/68/EU oder
- b) im Schedule 3, Abs. 2 der Statutory Instruments 2016 no. 1105 dargestellt.

Funkzulassung

Das Messgerät besitzt eine Funkzulassung.

Detaillierte Informationen zur Funkzulassung: Sonderdokumentation → 🗎 78

Weitere Zertifizierungen

CRN-Zulassung

Für einige Gerätevarianten gibt es eine CRN-Zulassung. Für ein CRN-zugelassenes Gerät muss ein CRN-zugelassener Prozessanschluss mit einer CSA-Zulassung bestellt werden.

Tests und Zeugnisse

- EN10204-3.1 Materialnachweis, mediumberührte Teile und Messaufnehmergehäuse (Bestellmerkmal "Test, Zeugnis", Option JA)
- Druckprüfung, internes Verfahren, Prüfbericht (Bestellmerkmal "Test, Zeugnis", Option JB)
- Umgebungstemperatur –50 °C (–58 °F) (Bestellmerkmal "Test, Zeugnis", Option JP)
- Helium-Dichtheitsprüfung, internes Verfahren, Prüfbericht (Bestellmerkmal "Test, Zeugnis", Option KC)
- EN10204-2.1 Werksbescheinigung und EN10204-2.2 Werkszeugnis

Prüfung von Schweißnähten

Bestellmerkmal "Test, Zeugnis", Option	Röntgenprüfnorm		Prozessanschluss
	ISO 10675-1 ZG1	ASME B31.3 NFS	
KE	х		RT
KI		Х	RT
K5	х		DR
К6		Х	DR

RT = Durchstrahlprüfung, DR = Digitale Röntgenprüfung Alle Optionen mit Testbericht

Externe Normen und Richtlinien

■ EN 60529

Schutzarten durch Gehäuse (IP-Code)

■ EN 61010-1

Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte - Allgemeine Anforderungen

■ IEC/EN 61326-2-3

Emission gemäß Anforderungen für Klasse A. Elektromagnetische Verträglichkeit (EMV-Anforderungen).

■ NAMUR NE 21

Elektromagnetische Verträglichkeit von Betriebsmitteln der Prozess- und Labortechnik

■ NAMUR NE 32

Sicherung der Informationsspeicherung bei Spannungsausfall bei Feld- und Leitgeräten mit Mikroprozessoren

■ NAMUR NE 43

Vereinheitlichung des Signalpegels für die Ausfallinformation von digitalen Messumformern mit analogem Ausgangssignal.

■ NAMUR NE 53

Software von Feldgeräten und signalverarbeitenden Geräten mit Digitalelektronik

■ NAMUR NE 105

Anforderungen an die Integration von Feldbus-Geräten in Engineering-Tools für Feldgeräte

■ NAMUR NE 107

Selbstüberwachung und Diagnose von Feldgeräten

■ NAMUR NE 131

Anforderungen an Feldgeräte für Standardanwendungen

■ ETSI EN 300 328

Vorschriften für 2,4-GHz-Funkkomponenten.

■ EN 301489

Elektromagnetische Verträglichkeit und Funkspektrumangelegenheiten (ERM).

■ AGA Report No. 9

Measurement of gas by multipath ultrasonic meters.

■ ISO 17089

Measurement of fluid flow in closed conduits – Ultrasonic meters for gas.

Bestellinformationen

Ausführliche Bestellinformationen sind verfügbar:

- Im Produktkonfigurator auf der Endress+Hauser Internetseite: www.endress.com -> "Corporate" klicken -> Land wählen -> "Products" klicken -> Produkt mit Hilfe der Filter und Suchmaske auswählen -> Produktseite öffnen -> Die Schaltfläche "Konfiguration" rechts vom Produktbild öffnet den Produktkonfigurator.
- Bei Ihrer Endress+Hauser Vertriebszentrale: www.addresses.endress.com

Produktkonfigurator - das Tool für individuelle Produktkonfiguration

- Tagesaktuelle Konfigurationsdaten
- Je nach Gerät: Direkte Eingabe von messstellenspezifischen Angaben wie Messbereich oder Bediensprache
- Automatische Überprüfung von Ausschlusskriterien
- Automatische Erzeugung des Bestellcodes mit seiner Aufschlüsselung im PDF- oder Excel-Ausgabeformat
- Direkte Bestellmöglichkeit im Endress+Hauser Onlineshop

Anwendungspakete

Um die Funktionalität des Geräts je nach Bedarf zu erweitern, sind für das Gerät verschiedene Anwendungspakete lieferbar: z.B. aufgrund von Sicherheitsaspekten oder spezifischer Anforderungen von Applikationen.

Die Anwendungspakete können bei Endress+Hauser mit dem Gerät bestellt oder nachbestellt werden. Ausführliche Angaben zum betreffenden Bestellcode sind bei Ihrer Endress+Hauser Vertriebszentrale erhältlich oder auf der Produktseite der Endress+Hauser Website: www.endress.com.

Detaillierte Informationen zu den Anwendungspaketen: Sonderdokumentationen $\rightarrow \blacksquare 79$

Diagnosefunktionalität

Bestellmerkmal "Anwendungspaket", Option EA "Extended HistoROM"

Umfasst Erweiterungen bezüglich Ereignislogbuch und Freischaltung des Messwertspeichers.

Ereignislogbuch:

Speichervolumen wird von 20 Meldungseinträgen (Standardausführung) auf bis zu 100 erweitert.

Messwertspeicher (Linienschreiber):

- Speichervolumen wird für bis zu 1000 Messwerte aktiviert.
- 250 Messwerte können über jeden der 4 Speicherkanäle ausgegeben werden. Aufzeichnungsintervall ist frei konfigurierbar.
- Auf Messwertaufzeichnungen kann via Vor-Ort-Anzeige oder Bedientool z.B. FieldCare, Device-Care oder Webserver zugegriffen werden.

Detaillierte Angaben: Betriebsanleitung zum Gerät.

Heartbeat Technology

Bestellmerkmal "Anwendungspaket", Option EB "Heartbeat Verification + Monitoring"

Heartbeat Verification

Erfüllt die Anforderung an die rückführbare Verifikation nach DIN ISO 9001:2008 Kapitel 7.6 a) "Lenkung von Überwachungs- und Messmitteln".

- Funktionsprüfung im eingebauten Zustand ohne Prozessunterbrechung.
- Rückverfolgbare Verifikationsergebnisse auf Anforderung, inklusive Bericht.
- Einfacher Prüfablauf über Vor-Ort-Bedienung oder weitere Bedienschnittstellen.
- Eindeutige Messstellenbewertung (Bestanden / Nicht bestanden) mit hoher Testabdeckung im Rahmen der Herstellerspezifikation.
- Verlängerung von Kalibrationsintervallen gemäß Risikobewertung durch Betreiber.

Heartbeat Monitoring

Liefert kontinuierlich für das Messprinzip charakteristische Daten an ein externes Condition Monitoring System zum Zweck der vorbeugenden Wartung oder der Prozessanalyse. Diese Daten ermöglichen:

- Im Kontext mit weiteren Informationen, Rückschlüsse auf die zeitliche Beeinträchtigung der Messleistung durch die Messapplikation zu nehmen.
- Die rechtzeitige Planung von Serviceeinsätzen.
- Die Überwachung der Prozess- oder Produktqualität.

Detaillierte Angaben: Sonderdokumentation zum Gerät.

Erweiterte Gasanalyse

Bestellmerkmal "Anwendungspaket", Option EF "Erweiterte Gasanalyse". Das Anwendungspaket ist nur bestellbar in Kombination mit Bestellmerkmal "Messrohr; Wandler; Sensorausführung", Option AC "316L; Titan Gr. 2; Druck- + Temperaturmessung integriert".

Mit dem Anwendungspaket können die wichtigsten Gaseigenschaften (molare Masse, Brennwert, Wobbe-Index etc.) berechnet und ausgegeben werden.

Es stehen folgende Gasarten zur Verfügung:

- Reines Gas (bekanntes Gas)
- Gasgemisch (bekannte Zusammensetzung)
- Kohlegas/Biogas (Messung des Methananteils)
- Erdgas standardisierte Berechnung (mit international anerkannten Gasmodellen: AGA NX-19, ISO 12213-2, ISO 12213-3, AGA 5, ISO 6976)
- Erdgas Einsatz Schallgeschwindigkeit (schallgeschwindigkeitsbasiertes Modell zur Messung eines Erdgases, dessen Zusammensetzung unbekannt oder variabel ist)
- Anwenderspezifisches Gas (generisches Gas oder Gasgemisch ohne Kenntnis der Zusammensetzung)

Zubehör

Für das Gerät sind verschiedene Zubehörteile lieferbar, die bei Endress+Hauser mit dem Gerät bestellt oder nachbestellt werden können. Ausführliche Angaben zum betreffenden Bestellcode sind bei Ihrer Endress+Hauser Vertriebszentrale erhältlich oder auf der Produktseite der Endress+Hauser Webseite: www.endress.com.

Gerätespezifisches Zubehör

Zum Messumformer

Zubehör	Beschreibung	
Messumformer Proline 500 – digital	Messumformer für den Austausch oder für die Lagerhaltung. Über den Bestellcode können folgende Spezifikationen angegeben werden: Zulassungen Ausgang Eingang Anzeige/Bedienung Gehäuse Software Messumformer Proline 500 – digital: Bestellnummer: 9X5BXX-*******A Messumformer Proline 500 – digital: Einbauanleitung EA01264D	
Externe WLAN-Antenne	Externe WLAN-Antenne mit 1,5 m (59,1 in) Verbindungskabel und zwei Befestigungswinkel. Bestellmerkmal "Zubehör beigelegt", Option P8 "Wireless Antenne Weitbereich". ■ Die externe WLAN-Antenne ist nicht für den Einsatz in hygienischen Anwendungen geeignet. ■ Weitere Angaben zur WLAN-Schnittstelle → 🖺 66. ■ Bestellnummer: 71351317 ■ Einbauanleitung EA01238D	
Rohrmontageset	Rohrmontageset für Messumformer. Messumformer Proline 500 – digital Bestellnummer: 71346427 Einbauanleitung EA01195D	
Wetterschutzhaube Messumformer Proline 500 – digital	Wird dazu verwendet, das Messgerät vor Wettereinflüssen zu schützen: z.B. vor Regenwasser, übermäßiger Erwärmung durch Sonneneinstrahlung. Messumformer Proline 500 – digital Bestellnummer: 71343504 Einbauanleitung EA01191D	
Anzeigeschutz Proline 500 – digital	Wird dazu verwendet, die Anzeige vor Schlag oder Abrieb, zum Beispiel durch Sand in Wüstengebieten, zu schützen. Bestellnummer: 71228792 Einbauanleitung EA01093D	
Verbindungskabel Proline 500 – digital Messaufnehmer – Messumformer	Das Verbindungskabel kann direkt mit dem Messgerät (Bestellmerkmal "Kabel, Sensoranschluss) oder als Zubehör (Bestellnummer DK9012) bestellt werden. Folgende Kabellängen sind verfügbar: Bestellmerkmal "Kabel, Sensoranschluss" Option B: 20 m (65 ft) Option E: Frei konfigurierbar bis max. 50 m Option F: Frei konfigurierbar bis max. 165 ft Maximal mögliche Kabellänge für ein Verbindungskabel Proline 500 – digital: 300 m (1000 ft)	

Kommunikationsspezifisches Zubehör

Zubehör	Beschreibung	
Commubox FXA195 HART	Für die eigensichere HART-Kommunikation mit FieldCare über die USB-Schnittstelle. Technische Information TI00404F	
HART Loop Converter HMX50	Dient zur Auswertung und Umwandlung von dynamischen HART-Prozessvariablen in analoge Stromsignale oder Grenzwerte.	
	Technische Information TI00429FBetriebsanleitung BA00371F	
Fieldgate FXA42	Übertragung von Messwerten angeschlossener 4 bis 20 mA analoger, sowie digitaler Messgeräte	
	 Technische Information TI01297S Betriebsanleitung BA01778S Produktseite: www.endress.com/fxa42 	
Field Xpert SMT50	Das Tablet PC Field Xpert SMT50 für die Gerätekonfiguration ermöglicht ein mobiles Plant Asset Management. Es eignet sich für das Inbetriebnahme- und Wartungspersonal, um Feldinstrumente mit digitaler Kommunikationsschnittstelle zu verwalten und den Arbeitsfortschritt zu dokumentieren. Dieses Tablet PC ist als Komplettlösung konzipiert, mit einer vorinstallierten Treiberbibliothek, stellt es ein einfaches und touchfähiges "Werkzeug" dar, über das sich Feldinstrumente während ihres gesamten Lebenszyklus verwalten lassen. Technische Information TI01555S Betriebsanleitung BA02053S Produktseite: www.endress.com/smt50	
Field Xpert SMT70	Das Tablet PC Field Xpert SMT70 für die Gerätekonfiguration ermöglicht ein mobiles Plant Asset Management in explosions- und nicht explosionsgefährdeten Bereichen. Es eignet sich für das Inbetriebnahme- und Wartungspersonal, um Feldinstrumente mit digitaler Kommunikationsschnittstelle zu verwalten und den Arbeitsfortschritt zu dokumentieren. Dieses Tablet PC ist als Komplettlösung konzipiert, mit einer vorinstallierten Treiberbibliothek, stellt es ein einfaches und touchfähiges "Werkzeug" dar, über das sich die Feldinstrumente während ihres gesamten Lebenszyklus verwalten lassen. Technische Information TI01342S Betriebsanleitung BA01709S	
	Produktseite: www.endress.com/smt70	
Field Xpert SMT77	Der Tablet PC Field Xpert SMT77 für die Gerätekonfiguration ermöglicht ein mobiles Plant Asset Management in Ex-Zone-1-Bereichen.	
	 Technische Information TI01418S Betriebsanleitung BA01923S Produktseite: www.endress.com/smt77 	

Servicespezifisches Zubehör	Zubehör	Beschreibung
	Applicator	Software für die Auswahl und Auslegung von Endress+Hauser Messgeräten: Auswahl von Messgeräten mit industriespezifischen Anforderungen Berechnung aller notwendigen Daten zur Bestimmung des optimalen Durchflussmessgeräts: z.B. Nennweite, Druckabfall, Fließgeschwindigkeit und Messgenauigkeiten. Grafische Darstellung von Berechnungsergebnissen Ermittlung des partiellen Bestellcodes Verwaltung, Dokumentation und Abrufbarkeit aller projektrelevanter Daten und Parameter über die gesamte Lebensdauer eines Projekts.
		Applicator ist verfügbar: • Über das Internet: https://portal.endress.com/webapp/applicator • Als downloadbare DVD für die lokale PC-Installation.
	Netilion	lloT-Ökosystem: Unlock knowledge Mit dem Netilion lloT-Ökosystem ermöglicht Ihnen Endress+Hauser, Ihre Anlagenleistung zu optimieren, Arbeitsabläufe zu digitalisieren, Wissen weiterzugeben und die Zusammenarbeit zu verbessern. Auf der Grundlage jahrzehntelanger Erfahrung in der Prozessautomatisierung bietet Endress+Hauser der Prozessindustrie ein lloT-Ökosystem, mit dem Sie Erkenntnisse aus Daten gewinnen. Diese Erkenntnisse können zur Optimierung von Prozessen eingesetzt werden, was zu einer höheren Anlagenverfügbarkeit, Effizienz und Zuverlässigkeit führt – und letztlich zu einer profitableren Anlage. www.netilion.endress.com
	FieldCare	FDT-basiertes Anlagen-Asset-Management-Tool von Endress+Hauser. Es kann alle intelligenten Feldeinrichtungen in Ihrer Anlage konfigurieren und unterstützt Sie bei deren Verwaltung. Durch Verwendung von Statusinformationen stellt es darüber hinaus ein einfaches, aber wirkungsvolles Mittel dar, deren Zustand zu kontrollieren.
		Betriebsanleitung BA00027S und BA00059S
	DeviceCare	Tool zum Verbinden und Konfigurieren von Endress+Hauser Feldgeräten. Innovation-Broschüre IN01047S

System komponenten

Zubehör	Beschreibung
Bildschirmschreiber Memograph M	Der Bildschirmschreiber Memograph M liefert Informationen über alle relevanten Messgrößen. Messwerte werden sicher aufgezeichnet, Grenzwerte überwacht und Messstellen analysiert. Die Datenspeicherung erfolgt im 256 MB großen internen Speicher und zusätzlich auf SD-Karte oder USB-Stick. Technische Information TI00133R Betriebsanleitung BA00247R

Ergänzende Dokumentation

Eine Übersicht zum Umfang der zugehörigen Technischen Dokumentation bieten:

- Device Viewer (www.endress.com/deviceviewer): Seriennummer vom Typenschild eingeben
- Endress+Hauser Operations App: Seriennummer vom Typenschild eingeben oder Matrixcode auf dem Typenschild einscannen

Standarddokumentation

Ergänzende Informationen zu Semistandard-Optionen sind in der zugehörigen Sonderdokumentation in der TSP-Datenbank verfügbar.

Kurzanleitung

Kurzanleitung zum Messaufnehmer

Messgerät	Dokumentationscode
Proline Prosonic Flow G	KA01374D

Kurzanleitung zum Messumformer

	Dokumentationscode	
Messgerät	HART	Modbus RS485
Proline 500 – digital	KA01377D	KA01378D

Betriebsanleitung

Messgerät	Dokumentationscode	
	HART	Modbus RS485
Prosonic Flow G 500	BA01836D	BA01837D

Beschreibung Geräteparameter

	Dokumentationscode	
Messgerät	HART	Modbus RS485
Prosonic Flow G 500	GP01132D	GP01133D

GeräteabhängigeSicherheitshinweiseZusatzdokumentationSicherheitshinweise für elektrische Betriebsmittel für explosionsgefährdete Bereiche.

Inhalt	Dokumentationscode
ATEX/IECEx Ex ia	XA01850D
ATEX/IECEx Ex ec	XA01849D
cCSAus Ex ia	XA01852D
cCSAus Ex ec	XA01851D
cCSAus XP	XA01853D
EAC Ex ia	XA02471D
EAC Ex nA	XA02472D
JPN Ex d	XA02077D
KCs Ex d	XA03193D
INMETRO Ex ia	XA01997D
INMETRO Ex ec	XA01998D
NEPSI Ex ia	XA02045D
NEPSI Ex nA	XA02046D
UKEX Ex ia	XA02576D
UKEX Ex ec	XA02577D

Handbuch zur Funktionalen Sicherheit

Inhalt	Dokumentationscode
Proline Prosonic Flow G 500	SD02308D

Sonderdokumentation

Inhalt	Dokumentationscode	
	HART	Modbus RS485
Angaben zur Druckgeräterichtlinie	SD01	614D
Funkzulassungen für WLAN-Schnittstelle für Anzeigemodul A309/A310	SD01793D	
Erweiterte Gasanalyse	SD02351D	SD02352D
Heartbeat Technology	SD02304D	SD02305D
Webserver	SD02311D	SD02312D

Einbauanleitung

Inhalt	Bemerkung
Einbauanleitung für Ersatzteilsets und Zubehör	Dokumentationscode: Bei den Zubehörteilen jeweils angegeben → 🖺 75.

Eingetragene Marken

HART®

Eingetragene Marke der FieldComm Group, Austin, Texas, USA

 ${f Modbus}^{
m ext{ iny E}}$

Eingetragene Marke der SCHNEIDER AUTOMATION, INC.

www.addresses.endress.com