Betriebsanleitung iTEMP TMT36

IO-Link Temperaturtransmitter

😵 IO-Link

BA02289T/09/DE/01.23-00

71611153 2023-10-10 Gültig ab Version 01.01 (Geräteversion)

Inhaltsverzeichnis

1	Hinweise zum Dokument	4
1.1 1.2 1.3 1.4	Dokumentfunktion	44556
1.J 2	Grundlegende Sicherheitshinweise	7
2.1 2.2 2.3 2.4 2.5 2.6	Anforderungen an das Personal Bestimmungsgemäße Verwendung Arbeitssicherheit Betriebssicherheit Produktsicherheit IT-Sicherheit	7 7 7 8 8
3	Warenannahme und Produktidenti-	~
3.1 3.2 3.3	fizierung Warenannahme Produktidentifizierung Lagerung und Transport	9 9 0
4	Montage 1	1
4.1 4.2 4.3	Montagebedingungen1Gerät montieren1Montagekontrolle1	1 1 3
5	Elektrischer Anschluss 14	4
5.1 5.2 5.3 5.4 5.5	Anschlussbedingungen1Verdrahtung auf einen Blick1Sensor anschließen1Transmitter anschließen1Anschlusskontrolle1	4 5 5 6
6	Bedienungsmöglichkeiten 1	7
6.1 6.2 6.3	Übersicht zu Bedienungsmöglichkeiten 1 Messwertanzeige- und Bedienelemente 1 Aufbau und Funktionsweise des Bedienme-	7 7
6.4	nüs	9 0
7	Systemintegration 22	1
7.1 7.2 7.3	Übersicht zu IODD Gerätebeschreibungsdatei .2Gerät in System einbinden	1 1 2
8	Inbetriebnahme 28	8
8.1 8.2 8.3	Installationskontrolle2Gerät einschalten2Gerät konfigurieren2	8 8 8

8.4	Einstellungen schützen vor unerlaubtem Zugriff	31
	Zugrint	21
9	Diagnose und Störungsbehebung	32
9.1	Allgemeine Störungsbehebungen	32
9.2	Diagnoseinformation auf Vor-Ort-Anzeige	33
9.3	Diagnoseinformation via Kommunikations-	
	schnittstelle	33
9.4	Diagnoseliste	34
9.5	Ereignis-Logbuch (Event logbook)	35
9.6	Firmware-Historie	35
10	Wartung und Reinigung	35
10	Wartung und Kenngung	22
11	Reparatur	35
11.1	Allgemeine Hinweise	35
11.2	Ersatzteile	35
11.3	Rücksendung	36
11.4	Entsorgung	36
12	Zubehör	36
12.1	Gerätespezifisches Zubehör	36
12.2	Kommunikationsspezifisches Zubehör	37
12.3	Servicespezifisches Zubehör	37
10	Taskrisska Datar	20
12		20
13.1	Eingang	38
13.2	Ausgang	38
12.5	Spannungsversorgung	39 20
13.5	Leistungsmerkinale	ور 40
13.6	Konstruktiver Aufbau	41
13.7	Zertifikate und Zulassungen	42

1 Hinweise zum Dokument

1.1 Dokumentfunktion

Diese Anleitung liefert alle Informationen, die in den verschiedenen Phasen des Lebenszyklus des Geräts benötigt werden: Von der Produktidentifizierung, Warenannahme und Lagerung über Montage, Anschluss, Bedienungsgrundlagen und Inbetriebnahme bis hin zur Störungsbeseitigung, Wartung und Entsorgung.

1.2 Verwendete Symbole

1.2.1 Warnhinweissymbole

GEFAHR

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu Tod oder schwerer Körperverletzung führen wird.

WARNUNG

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu Tod oder schwerer Körperverletzung führen kann.

A VORSICHT

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu leichter oder mittelschwerer Körperverletzung führen kann.

HINWEIS

Dieser Hinweis enthält Informationen zu Vorgehensweisen und weiterführenden Sachverhalten, die keine Körperverletzung nach sich ziehen.

1.2.2 Elektrische Symbole

Symbol	Bedeutung
	Gleichstrom
\sim	Wechselstrom
\sim	Gleich- und Wechselstrom
	Erdanschluss Eine geerdete Klemme, die vom Gesichtspunkt des Benutzers über ein Erdungssystem geerdet ist.
	Anschluss Potenzialausgleich (PE: Protective earth) Erdungsklemmen, die geerdet werden müssen, bevor andere Anschlüsse hergestellt werden dürfen.
	 Die Erdungsklemmen befinden sich innen und außen am Gerät: Innere Erdungsklemme: Anschluss Potenzialausgleich wird mit dem Versorgungsnetz verbunden. Äußere Erdungsklemme: Gerät wird mit dem Erdungssystem der Anlage verbunden.

1.2.3 Symbole für Informationstypen

Symbol	Bedeutung
\checkmark	Erlaubt Abläufe, Prozesse oder Handlungen, die erlaubt sind.
	Zu bevorzugen Abläufe, Prozesse oder Handlungen, die zu bevorzugen sind.

Symbol	Bedeutung
×	Verboten Abläufe, Prozesse oder Handlungen, die verboten sind.
1	Tipp Kennzeichnet zusätzliche Informationen.
H	Verweis auf Dokumentation
	Verweis auf Seite
	Verweis auf Abbildung
►	Zu beachtender Hinweis oder einzelner Handlungsschritt
1., 2., 3	Handlungsschritte
L >	Ergebnis eines Handlungsschritts
?	Hilfe im Problemfall
	Sichtkontrolle

1.2.4 Symbole in Grafiken

Symbol	Bedeutung	Symbol	Bedeutung
1, 2, 3,	Positionsnummern	1., 2., 3	Handlungsschritte
A, B, C,	Ansichten	A-A, B-B, C-C,	Schnitte
EX	Explosionsgefährdeter Bereich	×	Sicherer Bereich (Nicht explosionsgefährdeter Bereich)

1.3 Werkzeugsymbole

Sym	bol	Bedeutung
	Þ	Schlitzschraubendreher
A	0011220	
	6/	Kreuzschlitz-Schraubendreher
A	40011219	
		Innensechskantschlüssel
	L 0011221	
Ø	Í.	Gabelschlüssel
A	40011222	
ß		Torx Schraubendreher
	A0013442	

1.4 Dokumentation

Eine Übersicht zum Umfang der zugehörigen Technischen Dokumentation bieten:

- Device Viewer (www.endress.com/deviceviewer): Seriennummer vom Typenschild eingeben
 - *Endress+Hauser Operations App*: Seriennummer vom Typenschild eingeben oder Matrixcode auf dem Typenschild einscannen

Dokumenttyp	Zweck und Inhalt des Dokuments
Technische Information (TI)	Planungshilfe für Ihr Gerät Das Dokument liefert alle technischen Daten zum Gerät und gibt einen Überblick, was rund um das Gerät bestellt werden kann.
Kurzanleitung (KA)	Schnell zum 1. Messwert Die Anleitung liefert alle wesentlichen Informationen von der Warenan- nahme bis zur Erstinbetriebnahme.
Betriebsanleitung (BA)	Ihr Nachschlagewerk Die Anleitung liefert alle Informationen, die in den verschiedenen Phasen des Lebenszyklus vom Gerät benötigt werden: Von der Produktidentifizie- rung, Warenannahme und Lagerung über Montage, Anschluss, Bedie- nungsgrundlagen und Inbetriebnahme bis hin zur Störungsbeseitigung, Wartung und Entsorgung.
Beschreibung Geräteparameter (GP)	Referenzwerk für Ihre Parameter Das Dokument liefert detaillierte Erläuterungen zu jedem einzelnen Para- meter. Die Beschreibung richtet sich an Personen, die über den gesamten Lebenszyklus mit dem Gerät arbeiten und dabei spezifische Konfiguratio- nen durchführen.
Sicherheitshinweise (XA)	Abhängig von der Zulassung liegen dem Gerät bei Auslieferung Sicher- heitshinweise für elektrische Betriebsmittel in explosionsgefährdeten Bereichen bei. Diese sind integraler Bestandteil der Betriebsanleitung. Auf dem Typenschild ist angegeben, welche Sicherheitshinweise (XA) für das ieweilige Gerät relevant sind
Geräteabhängige Zusatzdokumen- tation (SD/FY)	Anweisungen der entsprechenden Zusatzdokumentation konsequent beachten. Die Zusatzdokumentation ist fester Bestandteil der Dokumen- tation zum Gerät.

Folgende Dokumentationen können je nach bestellter Geräteausführung verfügbar sein:

1.5 Eingetragene Marken

OIO-Link[®]

Ist ein eingetragenes Warenzeichen. In Verbindung mit Produkten und Dienstleistungen darf es grundsätzlich nur von Mitgliedern der IO-Link-Firmengemeinschaft und von Nicht-Mitgliedern, die eine entsprechende Lizenz erworben haben, verwendet werden. Genauere Hinwiese zur Nutzung finden Sie in den Regeln der IO-Link Community unter: www.io.link.com.

2 Grundlegende Sicherheitshinweise

2.1 Anforderungen an das Personal

Das Personal für Installation, Inbetriebnahme, Diagnose und Wartung muss folgende Bedingungen erfüllen:

- Ausgebildetes Fachpersonal: Verfügt über Qualifikation, die dieser Funktion und Tätigkeit entspricht.
- ► Vom Anlagenbetreiber autorisiert.
- Mit den nationalen Vorschriften vertraut.
- Vor Arbeitsbeginn: Anweisungen in Anleitung und Zusatzdokumentation sowie Zertifikate (je nach Anwendung) lesen und verstehen.
- Anweisungen und Rahmenbedingungen befolgen.

Das Bedienpersonal muss folgende Bedingungen erfüllen:

- Entsprechend den Aufgabenanforderungen vom Anlagenbetreiber eingewiesen und autorisiert.
- Anweisungen in dieser Anleitung befolgen.

2.2 Bestimmungsgemäße Verwendung

Das Gerät ist ein universeller und konfigurierbarer Temperaturtransmitter mit einem Sensoreingang für Widerstandsthermometer (RTD). Das Gerät in der Bauform Kopftransmitter ist zur Montage in einen Anschlusskopf Form B nach DIN EN 50446 konzipiert. Die Montage mit dem optional erhältlichen DIN rail Clip auf einer Hutschiene ist ebenfalls möglich.

Falls das Gerät in einer vom Hersteller nicht spezifizierten Weise verwendet wird, kann der durch das Gerät gebotene Schutz beeinträchtigt werden.

Der Hersteller haftet nicht für Schäden, die aus unsachgemäßer oder nicht bestimmungsgemäßer Verwendung entstehen.

2.3 Arbeitssicherheit

Bei Arbeiten am und mit dem Gerät:

• Erforderliche persönliche Schutzausrüstung gemäß nationalen Vorschriften tragen.

2.4 Betriebssicherheit

Beschädigung des Geräts!

- Das Gerät nur in technisch einwandfreiem und betriebssicherem Zustand betreiben.
- Der Betreiber ist für den störungsfreien Betrieb des Geräts verantwortlich.

Umbauten am Gerät

Eigenmächtige Umbauten am Gerät sind nicht zulässig und können zu unvorhersehbaren Gefahren führen!

• Wenn Umbauten trotzdem erforderlich sind: Rücksprache mit dem Hersteller halten.

Reparatur

Um die Betriebssicherheit weiterhin zu gewährleisten:

- ▶ Nur wenn die Reparatur ausdrücklich erlaubt ist, diese am Gerät durchführen.
- Die nationalen Vorschriften bezüglich Reparatur eines elektrischen Geräts beachten.
- ▶ Nur Original-Ersatzteile und Zubehör verwenden.

2.5 Produktsicherheit

Das Gerät ist nach dem Stand der Technik und guter Ingenieurspraxis betriebssicher gebaut und geprüft und hat das Werk in sicherheitstechnisch einwandfreiem Zustand verlassen.

Es erfüllt die allgemeinen Sicherheitsanforderungen und gesetzlichen Anforderungen. Zudem ist es konform zu den EU-Richtlinien, die in der gerätespezifischen EU-Konformitätserklärung aufgelistet sind. Mit Anbringung der CE-Kennzeichnung bestätigt der Hersteller diesen Sachverhalt.

2.6 IT-Sicherheit

Eine Gewährleistung unsererseits ist nur gegeben, wenn das Produkt gemäß der Betriebsanleitung installiert und eingesetzt wird. Das Produkt verfügt über Sicherheitsmechanismen, um es gegen versehentliche Veränderung der Einstellungen zu schützen.

IT-Sicherheitsmaßnahmen gemäß dem Sicherheitsstandard des Betreibers, die das Produkt und dessen Datentransfer zusätzlich schützen, sind vom Betreiber selbst zu implementieren.

3 Warenannahme und Produktidentifizierung

3.1 Warenannahme

Nach dem Erhalt des Geräts, wie folgt vorgehen:

- 1. Überprüfen, ob die Verpackung unversehrt ist.
- 2. Bei vorliegenden Beschädigungen: Schaden unverzüglich dem Hersteller melden.
- 3. Beschädigte Komponenten nicht installieren, da der Hersteller andernfalls die Einhaltung der ursprünglichen Sicherheitsanforderungen oder die Materialbeständigkeit nicht gewährleisten kann und auch nicht für daraus entstehende Konsequenzen verantwortlich gemacht werden kann.
- 4. Den Lieferumfang mit dem Inhalt der Bestellung vergleichen.
- 5. Alle zum Transport verwendeten Verpackungsmaterialien entfernen.
- 6. Entsprechen die Typenschilddaten den Bestellangaben auf dem Lieferschein?
- 7. Sind die Technische Dokumentation und alle weiteren erforderlichen Dokumente, z. B. Zertifikate vorhanden?

Wenn eine der Bedingungen nicht erfüllt ist: An Vertriebszentrale wenden.

3.2 Produktidentifizierung

Folgende Möglichkeiten stehen zur Identifizierung des Geräts zur Verfügung:

- Typenschildangaben
- Seriennummer vom Typenschild in *Device Viewer* eingeben (www.endress.com/deviceviewer): Alle Angaben zum Gerät und eine Übersicht zum Umfang der mitgelieferten Technischen Dokumentation werden angezeigt.
- Seriennummer vom Typenschild in die Endress+Hauser Operations App eingeben oder mit der Endress+Hauser Operations App den 2-D-Matrixcode (QR-Code) auf dem Typenschild scannen: Alle Angaben zum Gerät und zum Umfang der zugehörigen Technischen Dokumentation werden angezeigt.

3.2.1 Typenschild

Das richtige Gerät?

Folgende Informationen zum Gerät sind dem Typenschild zu entnehmen:

- Herstelleridentifikation, Gerätebezeichnung
- Bestellcode
- Erweiterter Bestellcode
- Seriennummer
- Messstellenbezeichnung (TAG)
- Technische Werte: Versorgungsspannung, Stromaufnahme, Umgebungstemperatur, Kommunikationsspezifische Daten (optional)
- Schutzart
- Zulassungen mit Symbolen
- Angaben auf dem Typenschild mit Bestellung vergleichen.

3.2.2 Name und Adresse des Herstellers

Name des Herstellers:	Endress+Hauser Wetzer GmbH + Co. KG
Adresse des Herstellers:	Obere Wank 1, D-87484 Nesselwang oder www.endress.com

3.3 Lagerung und Transport

Lagerungstemperatur: -50 ... +100 °C (-58 ... +212 °F)

Maximale relative Luftfeuchtigkeit: < 95 % nach IEC 60068-2-30

Bei Lagerung und Transport das Gerät so verpacken, dass es zuverlässig vor Stößen und äußeren Einflüssen geschützt wird. Die Originalverpackung bietet optimalen Schutz.

Bei Lagerung und Transport folgende Umgebungseinflüsse unbedingt vermeiden:

- Direkte Sonneneinstrahlung
- Nähe zu heißen Gegenständen
- Vibration
- Aggressive Medien

4 Montage

4.1 Montagebedingungen

4.1.1 Abmessungen

Abmessungen des Gerätes siehe Kapitel 'Technische Daten'.

4.1.2 Montageort

Im Anschlusskopf Form B nach DIN EN 50446, direkte Montage auf Messeinsatz mit Kabeldurchführung (Mittelloch 7 mm (0,28 in).

Mit dem Zubehörteil DIN rail Clip ist auch eine Montage des Kopftransmitters auf Hutschiene nach IEC 60715 möglich.

Informationen über die Bedingungen, die am Montageort vorliegen müssen, um das Gerät bestimmungsgemäß zu betreiben, wie Umgebungstemperatur, Schutzart, Klimaklasse, etc., sind im Kapitel 'Technische Daten' zu finden.

4.2 Gerät montieren

Zur Montage des Kopftransmitters ist ein Kreuzschlitz-Schraubendreher erforderlich:

- Maximales Drehmoment f
 ür Befestigungsschrauben = 1 Nm (³/₄ lbf ft), Schraubendreher: Pozidriv PZ2
- Maximales Drehmoment für Schraubklemmen = 0,35 Nm ($\frac{1}{4}$ lbf ft), Schraubendreher: Pozidriv PZ1

- A Anschlusskopf Form B nach DIN EN 50446, direkte Montage auf Messeinsatz mit Kabeldurchführung (Mittelloch 7 mm (0,28 in)
- *B* Mit DIN rail Clip auf Hutschiene nach IEC 60715 (TH35)

А	Montage in einen Anschlusskopf (Anschlusskopf Form B nach DIN EN 50446)	
1	Anschlusskopf	
2	Sicherungsringe	

А	Montage in einen Anschlusskopf (Anschlusskopf Form B nach DIN EN 50446)
3	Messeinsatz
4	Anschlussdrähte
5	Kopftransmitter
6	Montagefedern
7	Montageschrauben
8	Anschlusskopfdeckel
9	Kabeldurchführung

Vorgehensweise Montage in einen Anschlusskopf, Pos. A:

- 1. Anschlusskopfdeckel (8) am Anschlusskopf öffnen.
- 2. Die Anschlussdrähte (4) des Messeinsatzes (3) durch das Mittelloch im Kopftransmitter (5) führen.
- 3. Die Montagefedern (6) auf die Montageschrauben (7) stecken.
- 4. Die Montageschrauben (7) durch die seitlichen Bohrungen des Kopftransmitters und des Messeinsatzes (3) führen. Anschließend beide Montageschrauben mit den Sicherungsringen (2) fixieren.
- 5. Anschließend den Kopftransmitter (5) mit dem Messeinsatz (3) im Anschlusskopf festschrauben.
- 6. Nach erfolgter Verdrahtung (siehe Kap. 'Elektrischer Anschluss') den Anschlusskopfdeckel (8) wieder verschließen.

В	Montage auf Hutschiene (Hutschiene nach IEC 60715)
1	Montageschrauben mit -federn
2	Kopftransmitter
3	Sicherungsringe
4	DIN rail Clip
5	Hutschiene

Vorgehensweise Montage auf Hutschiene, Pos. B:

- 1. DIN rail clip (4) auf die Hutschiene (5) bis zum Einrasten drücken
- Montageschrauben (1) durch die seitlichen Bohrungen des Kopftransmitters führen (2) und mit den Sicherungsringen (3) fixieren.
- 3. Kopftransmitter (2) am DIN rail clip (4) festschrauben.

4.2.1 Montage für Nordamerika

I Kopftransmittermontage

- 1 Schutzrohr
- 2 Messeinsatz
- 3 Adapter, Verschraubung
- 4 Anschlusskopf
- 5 Kopftransmitter
- 6 Montageschrauben

Thermometeraufbau mit RTD Sensoren und Kopftransmitter:

- 1. Das Schutzrohr (1) am Prozessrohr oder an der Prozessbehälterwand anbringen. Das Schutzrohr vorschriftsmäßig befestigen, bevor der Prozessdruck angelegt wird.
- 2. Benötigte Halsrohrnippel und Adapter (3) am Schutzrohr anbringen.
- **3.** Einbau von Dichtungsringen beachten, wenn diese für raue Umgebungsbedingungen oder spezielle Vorschriften benötigt werden.
- 4. Die Montageschrauben (6) durch die seitlichen Bohrungen des Kopftransmitters (5) führen.
- 5. Den Kopftransmitter (5) im Anschlusskopf (4) so positionieren, dass die Klemmen zur Spannungsversorgung (Klemmen 1 und 2) zur Kabeldurchführung weisen.
- 6. Mit einem Schraubendreher den Kopftransmitter (5) im Anschlusskopf (4) festschrauben.
- Die Anschlussdrähte des Messeinsatzes (3) durch die untere Kabeldurchführung des Anschlusskopfes (4) und durch das Mittelloch im Kopftransmitter (5) führen. Anschlussdrähte und Transmitter (siehe Kapitel 'Elektrischer Anschluss') miteinander verdrahten.
- 8. Den Anschlusskopf (4) mit dem eingebauten und verdrahteten Kopftransmitter auf die bereits installierten Nippel und Adapter (3) schrauben.

4.3 Montagekontrolle

Führen Sie nach der Montage des Gerätes folgende Kontrollen durch:

Gerätezustand und -spezifikationen	Hinweise
Ist das Gerät, die Anschlüsse und Anschlussleitungen unbeschädigt?	
Entsprechen die Umgebungsbedingungen der Gerätespezifikation (z.B. Umgebungstem- peratur, Messbereich, usw.)?	siehe Kapitel 'Tech- nische Daten'
Sind Anschlüsse ordnungsgemäß und mit dem spezifizierten Drehmoment ausgeführt?	-

5 Elektrischer Anschluss

AVORSICHT

- Gerät nicht unter Betriebsspannung installieren bzw. verdrahten. Ein Nichtbeachten kann zur Zerstörung von Teilen der Elektronik führen.
- Vertauschte Anschlüsse der Klemmen L+, L- und C/Q verursachen keine Beschädigung der Elektronik.

5.1 Anschlussbedingungen

Zur Verdrahtung des Kopftransmitters mit Schraubklemmen ist ein Kreuzschlitz-Schraubendreher erforderlich. Die Verdrahtung bei der Push-in-Klemmenausführung erfolgt ohne Werkzeug.

Bei der Verdrahtung eines eingebauten Kopftransmitters grundsätzlich wie folgt vorgehen:

- 1. Kabelverschraubung und den Gehäusedeckel am Anschlusskopf oder am Feldgehäuse öffnen.
- 2. Die Leitungen durch die Öffnung der Kabelverschraubung führen.
- Die Leitungen gemäß →
 ⁽¹⁾
 ⁽¹⁾
- 4. Kabelverschraubung wieder anziehen und den Gehäusedeckel schließen.

Um Anschlussfehler zu vermeiden, in jedem Falle vor der Inbetriebnahme die Hinweise in der Anschlusskontrolle beachten!

5.2 Verdrahtung auf einen Blick

HINWEIS

 ESD - Electrostatic discharge. Klemmen vor elektrostatischer Entladung schützen. Ein Nichtbeachten kann zur Zerstörung oder Fehlfunktion von Teilen der Elektronik führen.

2 Klemmenbelegung Kopftransmitter

- 1 Sensoreingang RTD: 4-, 3- und 2-Leiter
- 2 Display-Anschluss
- L+ Spannungsversorgung 18 ... 30 V_{DC}
- L- Spannungsversorgung 0 V_{DC}
- C/Q IO-Link oder Schaltausgang

5.3 Sensor anschließen

5.3.1 An Schraubklemmen anschließen

Maximales Drehmoment für Schraubklemmen = 0,35 Nm ($\frac{1}{4}$ lbf ft), Schraubendreher: Pozidriv Z1

5.3.2 An Push-in-Klemmen anschließen

Image: Anschluss Push-in-Klemmen

Pos. A, Massivleiter:

- 1. Leiterende abisolieren. Abisolierlänge min. 10 mm (0,39 in).
- 2. Leiterende in die Klemmstelle einführen.
- 3. Verbindung mit leichtem Ziehen am Leiter überprüfen, ggf. ab 1. wiederholen.

Pos. B, Feindrähtige Leiter ohne Aderendhülse:

- 1. Leiterende abisolieren. Abisolierlänge min. 10 mm (0,39 in).
- 2. Hebelöffner nach unten drücken.
- 3. Leiterende in die Klemmstelle einführen.
- 4. Hebelöffner loslassen.
- 5. Verbindung mit leichtem Ziehen am Leiter überprüfen, ggf. ab 1. wiederholen.

Pos. C, Lösen der Verbindung:

- 1. Hebelöffner nach unten drücken.
- 2. Leiter aus der Klemme ziehen.
- 3. Hebelöffner loslassen.

5.4 Transmitter anschließen

Rabelspezifikation

- Maximale Kabellänge im IO-Link Betrieb: ≤ 20 m (65,6 ft). Es bestehen keine Anforderungen bezüglich Schirmung.
- Leitungsquerschnitt siehe Technische Daten, \rightarrow B 39

Generelle Vorgehensweise zum Klemmenanschluss beachten. \rightarrow 🗎 14.

5.5 Anschlusskontrolle

Gerätezustand und -spezifikationen	Hinweise
Sind Gerät oder Kabel unbeschädigt?	
Elektrischer Anschluss	Hinweise
Stimmt die Versorgungsspannung mit den Angaben auf dem Typenschild überein?	Kopftransmitter: U = z. B. 18 30 V_{DC}
Sind die montierten Kabel von Zug entlastet?	
Sind Hilfsenergie- und Signalkabel korrekt angeschlos- sen?	→ 🗎 14
Sind alle Schraubklemmen gut angezogen, bzw. die Verbindungen der Federklemmen geprüft?	
Sind alle Kabeleinführungen montiert, fest angezogen und dicht?	

6 Bedienungsmöglichkeiten

6.1 Übersicht zu Bedienungsmöglichkeiten

1 Temperaturtransmitter mit aufsteckbarer Anzeigeeinheit

2 Fernbedienung im Automatisierungssystem (z. B. SPS) via IO-Link-Schnittstelle

Konfigurationsprogramme

IO-Link-Funktionen und gerätespezifische Parameter werden über die IO-Link-Kommunikation des Gerätes konfiguriert. Es gibt spezielle Konfigurationssets, z. B. den FieldPort SFP20. Damit kann jedes IO-Link-Gerät konfiguriert werden. Typischerweise werden IO-Link-Geräte über das Automatisierungssystem konfiguriert (z. B. Siemens TIA Portal + Port Configuration Tool).

6.2 Messwertanzeige- und Bedienelemente

Für den Kopftransmitter sind Anzeige- und Bedienelemente vor Ort nur verfügbar, wenn der Kopftransmitter mit Display bestellt wurde! Das Display kann auch nachbestellt werden, siehe Kapitel "Zubehör".

6.2.1 Anzeigeelemente

Kopftransmitter

Optionales LC-Display des Kopftransmitters

Posnr.	Funktion	Beschreibung
1	Anzeige Geräte- kennzeichen	Gerätekennzeichen, 32 Zeichen lang.
2	Anzeige 'Kommu- nikation'	Bei Lese- und Schreibzugriff über IO-Link erscheint das Kommunikationssymbol.
3	Einheitenanzeige	Einheitenanzeige für den jeweilig angezeigten Messwert.

Posnr.	Funktion	Beschreibung
4	Messwertanzeige	Anzeige des aktuellen Messwerts.
5	Werte-/Kanalan- zeige	PV = Prozesswert P1 = Schaltsignalkanal SSC.1 P2 = Schaltsignalkanal SSC.2 DT = Gerätetemperatur
6	Anzeige 'Konfigu- ration gesperrt'	Bei Sperrung der Parametrierung/Konfiguration über Hardware erscheint das Symbol 'Konfiguration gesperrt'.
7	Statussignale	
	Symbole	Bedeutung
	F	Fehlermeldung "Ausfall" (Failure) Es liegt ein Betriebsfehler vor. Der Messwert ist nicht mehr gültig.
		Fehlermeldung und "" (kein gültiger Messwert vorhanden) werden im Dis- play abwechselnd angezeigt, siehe Kapitel "Diagnose und Störungsbehebung"
	С	"Funktionskontrolle" (Function check) Das Gerät befindet sich im Service-Modus (zum Beispiel während einer Simula- tion).
	S	"Außerhalb der Spezifikation" (Out of specification) Das Gerät wird außerhalb seiner technischen Spezifikationen betrieben (z. B. während des Anlaufens oder einer Reinigung).
	М	"Wartungsbedarf" (Maintenance required) Es ist eine Wartung erforderlich. Der Messwert ist weiterhin gültig. Messwert und Statusmeldung werden im Display abwechselnd angezeigt.

6.2.2 Bedienung vor Ort

HINWEIS

 ESD - Electrostatic discharge. Klemmen vor elektrostatischer Entladung schützen. Ein Nichtbeachten kann zur Zerstörung oder Fehlfunktion von Teilen der Elektronik führen.

Vorgehensweise zur DIP-Schalter Einstellung:

- 1. Deckel am Anschlusskopf oder Feldgehäuse öffnen.
- 2. Das aufgesteckte Display vom Kopftransmitter abziehen.
- 3. DIP-Schalter auf der Rückseite des Displays entsprechend konfigurieren. Generell: Schalter auf ON = Funktion ist aktiv, Schalter auf OFF = Funktion ist deaktiviert.
- 4. Display in der richtigen Position auf den Kopftransmitter stecken.
- 5. Deckel wieder auf dem Anschlusskopf oder Feldgehäuse befestigen.

Schreibschutz ein-/ausschalten

Der Schreibschutz wird über einen DIP-Schalter auf der Rückseite des optionalen Aufsteckdisplays ein- oder ausgeschaltet.

Bei aktivem Schreibschutz ist eine Veränderung der Parameter nicht möglich. Ein Schlosssymbol auf dem Display zeigt den Schreibschutz an. Der Schreibschutz bleibt auch nach Abziehen des Displays aktiv. Um den Schreibschutz zu deaktivieren, muss das Display mit deaktiviertem DIP-Schalter (WRITE LOCK = OFF) auf den Transmitter aufgesteckt werden. Der Transmitter übernimmt die Einstellung im laufenden Messbetrieb und muss nicht erneut gestartet werden.

Displayanzeige drehen

Die Anzeige kann per DIP-Schalter um 180° gedreht werden.

6.3 Aufbau und Funktionsweise des Bedienmenüs

Identification	→ Vendor name	
Parameter	Application Sensor Unit	
	Linearization Call./v. Dusen coeff.	RO
	Switch output Output mode	
	Switch. signal channel 1.x → SP1	
	Teach single value	
	System Device temperature	
	Display Display interval	
	Device reset	
Observation	Sensor value	
Diagnosis	Device status	
	Active diagnostics	
	Diagnostic list Actual diagnostics 1	
	Event logbook Previous diagnostics 1	
	Min./Max. values Sensor min value	
	Simulation Sensor simulation	
	Smart Sensor descr. Meas. data channel 1	

6.3.1 Aufbau des Bedienmenüs

Bei Umstellung der Messwert-Einheit auf °F bleiben die Prozessdaten in °C für weitere Prozessberechnungen erhalten. Die Umstellung der Einheit dient lediglich zur Messwert-Anzeige.

Menü	Typische Aufgaben	Inhalt/Bedeutung
"Identifikation"	Informationen zur Hersteller- und Geräteidentifikation	Enthält alle Parameter zur eindeutigen Identifizierung des Herstellers und Gerätes.
"Parameter"	 Inbetriebnahme, Aufgaben und Informationen zur Gerätekonfiguration: Konfiguration der Messung Konfiguration der Messwertverarbeitung (Skalie- rung, Linearisierung, etc.) Konfiguration des Schaltsignals Anzeige der Gerätetemperatur und Betriebszeit Informationen zur Anzeigekonfiguration Rücksetzen des Gerätes 	 Enthält alle Parameter zur Inbetriebnahme: Untermenü "Sensor" Enthält alle Parameter zur Konfiguration der Messung Untermenü "Linearisierung" Enthält alle Parameter zur Linearisierung der Messung Untermenü "Schaltsignalkanal" Enthält alle Parameter zur Konfiguration des Schaltausgangs, z. B. Eingabe der Schaltpunkte, Definition der Schaltlogik (high active, low active), Schaltmodus (1-Punkt-, Fenster- oder 2-Punktfunktion), Teachfunktion.
		Enthält alle übergeordneten Geräteparameter, die zur Geräteinforma- tion und -anpassung zugeordnet sind. Untermenü "Anzeige" Konfiguration der Anzeige
"Observation"	Beobachtung der Prozessdaten	Enthält alle Parameter zur Anzeige der Prozessdaten: Aktueller Wert am Sensoreingang, erweiterter Gerätestatus und den Zustand am Schaltsignalkanal.
"Diagnose"	 Fehlerbehebung: Diagnose und Behebung von Prozessfehlern. Fehlerdiagnose in schwierigen Fällen. Interpretation von Fehlermeldungen des Geräts und Behebung der zugehörigen Fehler. 	 Enthält alle Parameter zur Detektion und Analyse von Betriebsfehlern: Aktive Diagnose, Diagnoseliste Anzeige der aktuell anstehenden und aufgetretenen Fehlermeldungen, sortiert nach Priorität. Siehe Kap. 'Diagnose und Störungsbehebung'. Untermenü "Ereignislogbuch" Anzeige aller Diagnose- und Informationsereignisse in chronologischer Reihenfolge Untermenü "Minimale/Maximale Werte" Anzeige aller minimal und maximal gemessenen Prozess- und Gerätetemperaturen Untermenü "Simulation" Dient zur Simulation von Eingangs- und Ausgangswerten

Untermenüs

6.4 Zugriff auf Bedienmenü via Bedientool

Die IO-Link-Schnittstelle ermöglicht den direkten Zugriff auf Prozess- und Diagnosedaten und bietet die Möglichkeit, das Gerät im laufenden Betrieb zu parametrieren.

Weitere Informationen zu IO-Link: www.io-link.com

6.4.1 DeviceCare

Funktionsumfang

-

DeviceCare ist ein kostenloses Konfigurationstool für Endress+Hauser Geräte. Unterstützt werden Geräte mit den Protokollen HART, PROFIBUS, FOUNDATION Fieldbus, Ethernet/IP, Modbus, CDI, ISS, IPC und PCP, sofern ein geeigneter Treiber (Geräte-DTM) existiert. Zielgruppe sind Kunden ohne digitales Netzwerk in Anlagen und Werkstätten sowie Endress+Hauser Servicetechniker. Die Geräte können direkt über ein Modem (Punkt-zu-Punkt) oder ein Bussystem verbunden werden. Es zeichnet sich durch eine einfache, schnelle und intuitive Bedienung aus. Wahlweise kann es auf einem PC, Laptop oder Tablet mit dem Betriebssystem Windows verwendet werden.

Bezugsquelle für Gerätebeschreibungsdateien

Siehe Angaben im Kapitel "Systemintegration".

7 Systemintegration

7.1 Übersicht zu IODD Gerätebeschreibungsdatei

Um Feldgeräte in ein digitales Kommunikationssystem einzubinden, benötigt das IO-Link System eine Beschreibung der Geräteparameter wie Ausgangsdaten, Eingangsdaten, Datenformat, Datenmenge und unterstützte Übertragungsrate. Diese Daten sind in der Gerätebeschreibung IODD (IO Device Description) enthalten, die während der Inbetriebnahme des Kommunikationssystems dem IO-Link Master über generische Module zur Verfügung gestellt werden.

Download via endress.com

1. endress.com/download

- 2. Im Suchbereich **Geräte Treiber** auswählen.
- 3. Als **Typ** "IO Device Description (IODD)" auswählen.
- 4. **Produktwurzel** auswählen oder als Text eingeben.

Trefferliste wird angezeigt.

5. Passende Version herunterladen.

Download via ioddfinder

- 1. ioddfinder.io-link.com
- 2. Bei Hersteller "Endress+Hauser" auswählen.
- 3. Produktname eingeben.
 - └ Trefferliste wird angezeigt.
- 4. Passende Version herunterladen.

Für das Bedientool DeviceCare wird ebenfalls die IODD Gerätebeschreibung benötigt. Diese muss für das Bedientool über den IODD DTM Configurator angepasst werden. Der IODD DTM Configurator steht unter folgender Adresse zum Download zur Verfügung: www.software-products.endress.com

Nach erfolgter Registrierung via Download --> Device Configuration Software & Device Driver --> DTM/FDI Package Libraries die Software: **IO-Link IODD Interpreter DTM** herunterladen und installieren.

Im IODD DTM Configurator die IODD Gerätebeschreibungsdatei (*.xml) öffnen. Diese wird anschließend für die Verwendung in DeviceCare angepasst und automatisch in die DTM-library aufgenommen.

7.2 Gerät in System einbinden

Geräte-ID	0x93FE01
Hersteller-ID	0x0011 (17)

7.2.1 Prozessdaten

Wenn das Gerät im digitalen Betrieb arbeitet, werden der Zustand des Schaltausgangs und der Temperaturwert in Form von Prozessdaten über IO-Link übertragen. Die Signalübertragung erfolgt zunächst im SIO-Mode (Standard IO-Mode). Sobald über den IO-Link Master der so genannte "Wake Up" Befehl durchgeführt wird, startet die digitale IO-Link Kommunikation.

- Im SIO-Modus wird der Schaltausgang an der C/Q-Klemme geschaltet. Im IO-Link-Kommunikationsbetrieb ist diese Klemme ausschließlich der Kommunikation vorbehalten.
- Die Prozessdaten des Geräts werden mit 48-Bit zyklisch übertragen.

Beschreibung	Bit offset	Datentyp
Temperatur	16	Float32
Extended device status	8	Uinteger8
Schaltsignal SSC .2	1	Boolean
Schaltsignal SSC .1	0	Boolean

Erklärung

Prozesswert	Wert	Bedeutung		
Temperatur	-1,7014118 · 10 ⁺³⁸ +1,7014118 · 10 ⁺³⁸ °C	Aktuell gemessener Temperaturwert		
	$3,3 \cdot 10^{+38}$ = No measurement data	Prozesswert falls kein gültiger Mess- wert vorhanden ist		
	$-2,65 \cdot 10^{+38} = $ Out of range (-)	Prozesswert falls der Messwert unter- halb des unteren Grenzwertes ist		
	+2,65 \cdot 10 ⁺³⁸ = Out of range (+)	Prozesswert falls der Messwert ober- halb des oberen Grenzwertes ist		
Extended device sta-	36 = Failure	Zusammengefasster Status gemäß PI-		
tus	37 = Failure-Simulation	Spezifikationen		
	60 = Functional Check			
	61 = Fuctional Check-Simulation			
	120 = Out of Spec			
	121 = Out of Spec-Simulation			
	128 = Good			
	129 = Good-Simulation	-		
	164 = Maintenance			
	165 = Maintenance-Simulation	-		
Schaltsignal Status	0 = Off	Schaltausgang geöffnet / low		
SSC.2	1 = On	Schaltausgang geschlossen / high		
Schaltsignal Status	0 = Off	Schaltausgang geöffnet / low		
SSC.1	1 = On	Schaltausgang geschlossen / high		

7.3 Gerätedaten auslesen und schreiben

Gerätedaten werden immer azyklisch und auf Anfrage des IO-Link Masters über den ISDU Kommunikationskanal ausgetauscht. Der IO-Link-Master kann folgende Parameterwerte oder Gerätezustände auslesen:

Die Defaultwerte gelten für Parameter, die bei der Bestellung nicht kundenspezifisch eingestellt werden.

Bezeichnung	Index Dez - (Hex)	Subin- dex	Größe (Byte)	Datentyp	Zugriff	Default- wert	Wertebereich	Data sto- rage
Herstellername	16 - (0x0010)	0	32	String	r/-	Endress +Hauser	-	-
Herstellertext	17 - (0x0011)	0	32	String	r/-	People for Process Automa- tion	-	-
Produktname	18 - (0x0012)	0	32	String	r/-	iTEMP TMT36	-	-
Produkttext	20 - (0x0014)	0	32	String	r/-	Tempera- ture transmit- ter	-	-
Product-ID	19 - (0x0013)	0	32	String	r/-	TMT36	-	-
Seriennummer	21 - (0x0015)	0	16	String	r/-	-	-	-
Hardware-Revision	22 - (0x0016)	0	16	String	r/-	-	-	-
Firmware-Version	23 - (0x0017)	0	8	String	r/-	-	-	-
Anwendungspezifi- sche Kennzeichnung	24 - (0x0018)	0	32	String	r/w	***	-	Yes
Funktionskenn- zeichnung	25 - (0x0019)	0	32	String	r/w	***	-	Yes
Standordkennzeich- nung	26 - (0x001a)	0	32	String	r/w	***	-	Yes
Bestellcode	12375 - (0x3057)	0	20	String	r/-	-	-	-
Erweiterter Bestell- code	259 - (0x0103)	0	20	String	r/-	-	-	-

7.3.1 Identifikation

7.3.2 Parameter

Bezeichnung	Index Dez - (Hex)	Subin- dex	Größe (Byte)	Datentyp	Zugriff	Default- wert	Wertebereich	Data sto- rage
Einheit	8274 - (0x2052)	0	1	UInteger8	r/w	°C	32 = °C 33 = °F	Yes
Sensortyp	8242 - (0x2032)	0	1	UInteger8	r/w	Pt100 IEC60751 , a = 0.00385 (1)	12 = Pt100 IEC60751, a = 0.00385 (1) 15 = Pt1000 IEC60751, a = 0.00385 (4) 3 = RTD Platinum (Callendar/van Dusen)	Yes
Anschlussart	8248 - (0x2038)	0	1	UInteger8	r/w	4-wire	2 = 2- wire 3 = 3-wire 4 = 4- wire	Yes
2-Leiter Kompensa- tion	8249 - (0x2039)	0	4	Float	r/w	0,0	0,0 30,0 Ω	Yes
Sensor Offset	8247 - (0x2037)	0	4	Float	r/w	0,0	±10,0 °C	Yes

Bezeichnung	Index Dez - (Hex)	Subin- dex	Größe (Byte)	Datentyp	Zugriff	Default- wert	Wertebereich	Data sto- rage
Dämpfung	8265 - (0x2049)	0	1	UInteger8	r/w	0	0 120 s	Yes
Call./v. Dusen Koeff. RO	8253 - (0x203d)	0	4	Float	r/w	100,0	10 2 000 Ω	Yes
Call./v. Dusen Koeff. A	8250 - (0x203a)	0	4	Float	r/w	0,003908 3	0,003 0,004	Yes
Call./v. Dusen Koeff. B	8251 - (0x203b)	0	4	Float	r/w	- 5,775 · 1 0 ⁻⁷	$\pm 2 \cdot 10^{-06}$	Yes
Call./v. Dusen Koeff. C	8252 - (0x203c)	0	4	Float	r/w	- 4,183 · 1 0 ⁻¹²	±1 · 10 ⁻⁰⁹	Yes
Untere Sensor- grenze	8244 - (0x2034)	0	4	Float	r/w	-200,0	−200 +850 °C	Yes
Obere Sensorgrenze	8243 - (0x2033)	0	4	Float	r/w	-850,0	−200 +850 °C	Yes
Ausgangsmodus	8263 - (0x2047)	0	2	UInteger16	r/w	PNP	4951 = PNP 4952 = NPN 495 = PushPull	Yes
Fail-safe value	8264 - (0x2048)	0	2	UInteger16	r/w	HighZ	33193 = Low 33192 = High 4950 = HighZ	Yes
SSC .1 Param			1					
SP1	60 - (0x003c)	1	4	Float	r/w	90,0	-1 · 10 ⁺²⁰ +1 · 10 ^{−20} °C	Yes
SP2	60 - (0x003c)	2	4	Float	r/w	100,0	-1 · 10 ⁺²⁰ +1 · 10 ⁻²⁰ ℃	Yes
SSC .1 Konfig								
Logik	61 - (0x003d)	1	1	UInteger8	r/w	High active	0 = High active 1 = Low active	Yes
Modus	61 - (0x003d)	2	1	UInteger8	r/w	Two point	0 = Deactivated 1 = Single point 2 = Window 3 = Two point	Yes
Hysterese	61 - (0x003d)	3	4	Float	r/w	0,0	-1 · 10 ⁺²⁰ +1 · 10 ^{−20} °C	Yes
SSC .2 Param								
SP1	62 - (0x003e)	1	4	Float	r/w	90,0	-1 · 10 ⁺²⁰ +1 · 10 ⁻²⁰ ℃	Yes
SP2	62 - (0x003e)	2	4	Float	r/w	100,0	-1 · 10 ⁺²⁰ +1 · 10 ^{−20} °C	Yes
SSC .2 Konfig								
Logik	63 - (0x003f)	1	1	UInteger8	r/w	High active	0 = High active 1 = Low active	Yes
Modus	63 - (0x003f)	2	1	UInteger8	r/w	Two point	0 = Deactivated 1 = Single point 2 = Window 3 = Two point	Yes
Hysterese	63 - (0x003f)	3	4	Float	r/w	0,0	-1 · 10 ⁺²⁰ +1 · 10 ⁻²⁰ °C	Yes
Teach-Auswahl	58 - (0x003a)	0	1	UInteger8	r/w	SSC 1.1	1 = SSC 1.1 2 = SSC 1.2	-

Bezeichnung	Index Dez - (Hex)	Subin- dex	Größe (Byte)	Datentyp	Zugriff	Default- wert	Wertebereich	Data sto- rage
Teach-Ergebnis	59 - (0x003b)	0	1	UInteger8	r/-	Idle	0 = Idle 1 = SP 1 success 2 = SP 2 success 3 = SP 1, SP2 success 4 = Wait for command 5 = Busy 7 = Error	-
Gerätetemperatur	8313 - (0x2079)	0	4	Float	r/-	-	-	-
Betriebszeit	8280 - (0x2058)	0	4	UInteger32	r/-	-	-	-
Alarmverzögerung	8279 - (0x2057)	0	1	UInteger8	r/w	2	0 5 s	Yes
Intervall Anzeige	8225 - (0x2021)	0	1	UInteger8	r/w	4	4 20 s	Yes
1. Anzeigewert	8226 - (0x2022)	0	1	UInteger8	r/w	Process value	13 = Process value 20 = SSC.1 21 = SSC.2 1 = Device temperature	Yes
1. Nachkommastel- len	8227 - (0x2023)	0	1	UInteger8	r/w	X.X	255 = Automatic 0 = x 1 = x.x 2 = x.xx	Yes
2. Anzeigewert	8228 - (0x2024)	0	1	UInteger8	r/w	Off	12 = Off 13 = Process value 20 = SSC.1 21 = SSC.2 1 = Device temperature	
2. Nachkommastel- len	8229 - (0x2025)	0	1	UInteger8	r/w	X.X	255 = Automatic $0 = x$ $1 = x.x$ $2 = x.xx$	
3. Anzeigewert	8230 - (0x2026)	0	1	UInteger8	r/w	Off	12 = Off 13 = Process value 20 = SSC.1 21 = SSC.2 1 = Device temperature	Yes
3. Nachkommastel- len	8231 - (0x2027)	0	1	UInteger8	r/w	X.X	255 = Automatic 0 = x 1 = x.x 2 = x.xx	Yes

7.3.3 Observation

Bezeichnung	Index Dez - (Hex)	Subin- dex	Größe (Byte)	Datentyp	Zugriff	Default- wert	Wertebereich	Data sto- rage
Eingelesene Pro- zessdaten								
Wert Sensor	40 - (0x0028)	1	4	Float	r/-	0	- $1,7014118 \cdot 10^{+38} \dots +1,7014118 \cdot 10^{+38} \circ$ C $3,3 \cdot 10^{+38} = No \text{ measurement data}$ -2,65 $\cdot 10^{+38} = Out \text{ of range (-)}$ +2,65 $\cdot 10^{+38} = Out \text{ of range (+)}$	-

Bezeichnung	Index Dez - (Hex)	Subin- dex	Größe (Byte)	Datentyp	Zugriff	Default- wert	Wertebereich	Data sto- rage
Erweiterter Geräte- status	40 - (0x0028)	2	1	UInteger8	r/-	Not speci- fied	36 = Failure 37 = Failure - simulation 60 = Function check 61 = Function check - simulation 120 = Out of specification 121 = Out of specification - simulation 128 = Good 164 = Maintenance required 165 = Maintenance required - simulation 129 = Good - simulation 0 = Not specified	-
Schaltsignalkanal .2	40 - (0x0028)	3	1	Boolean	r/-	0	0 = Off 1 = On	-
Schaltsignalkanal .1	40 - (0x0028)	4	1	Boolean	r/-	0	0 = Off 1 = On	-

7.3.4 Diagnose

Bezeichnung	Index Dez - (Hex)	Subin- dex	Größe (Byte)	Datentyp	Zugriff	Default- wert	Wertebereich	Data sto- rage
Gerätestatus	36 - (0x0024)	0	1	UInteger8	r/-	0	0 = Device is OK 1 = Maintenance required 2 = Out of specification 3 = Functional check 4 = Failure	-
Detaillierter Geräte- status	37 - (0x0025)	0	15	OctetString	r/-	0x00	-	-
Aktuelle Diagnose 1	8284 - (0x205c)	0	2	UInteger16	r/-	-	-	-
Aktuelle Diagnose 2	8285 - (0x205d)	0	2	UInteger16	r/-	-	-	-
Aktuelle Diagnose 3	8286 - (0x205e)	0	2	UInteger16	r/-	-	-	-
Letzte Diagnose 1	8295 - (0x2067)	0	2	UInteger16	r/-	-	-	-
Zeitstempel 1	8290 - (0x2062)	0	4	UInteger32	r/-	-	-	-
Letzte Diagnose 2	8296 - (0x2068)	0	2	UInteger16	r/-	-	-	-
Zeitstempel 2	8291 - (0x2063)	0	4	UInteger32	r/-	-	-	-
Letzte Diagnose 3	8297 - (0x2069)	0	2	UInteger16	r/-	-	-	-
Zeitstempel 3	8292 - (0x2064)	0	4	UInteger32	r/-	-	-	-
Letzte Diagnose 4	8298 - (0x206a)	0	2	UInteger16	r/-	-	-	-
Zeitstempel 4	8293 - (0x2065)	0	4	UInteger32	r/-	-	-	-
Letzte Diagnose 5	8299 - (0x206b)	0	2	UInteger16	r/-	-	-	-
Zeitstempel 5	8294 - (0x2066)	0	4	UInteger32	r/-	-	-	-

Bezeichnung	Index Dez - (Hex)	Subin- dex	Größe (Byte)	Datentyp	Zugriff	Default- wert	Wertebereich	Data sto- rage
Sensor Min-Wert	8246 - (0x2036)	0	4	Float	r/-	-	-	-
Sensor Max-Wert	8245 - (0x2035)	0	4	Float	r/-	-	-	-
Gerätetemperatur Min-Wert	8319 - (0x207f)	0	4	Float	r/-	-	-	-
Gerätetemperatur Max-Wert	8318 - (0x207e)	0	4	Float	r/-	-	-	-
Sensor Simulation	8259 - (0x2043)	0	1	UInteger8	r/w	Off	0 = Off 1 = On	-
Sensor Simulations- wert	8254 - (0x203e)	0	4	Float	r/w	0.0	±1 · 10 ⁺²⁰	-
Simulation Schalt- ausgang .2	8482 - (0x2122)	0	2	UInteger16	r/w	Off	4166 = Off 4167 = High 4168 = Low	-
Simulation Schalt- ausgang .1	8418 - (0x20e2)	0	2	UInteger16	r/w	Off	4166 = Off 4167 = High 4168 = Low	-
Messdatenkanal 1								
Messbereichsanfang	16512 - (0x4080)	1	4	Float	r/-	-200,0	-	-
Messbereichsende	16512 - (0x4080)	2	4	Float	r/-	850,0	-	-
Einheit	16512 - (0x4080)	3	2	UInteger16	r/-	°C	1001 = °C	-
Skalierung	16512 - (0x4080)	4	1	Integer8	r/-	0	-	-

8 Inbetriebnahme

8.1 Installationskontrolle

Vor Inbetriebnahme der Messstelle folgende Kontrollen durchführen:

- 1. Montagekontrolle durchführen mithilfe der Checkliste.
- 2. Anschlusskontrolle durchführen mithilfe der Checkliste.

8.2 Gerät einschalten

Während des Einschaltvorgangs durchläuft der Transmitter interne Testfunktionen. Auf dem Display erscheint folgende Sequenz von Meldungen:

Schritt	Anzeige					
1	Text "Display" und Firmware-Version des Displays					
2	Gerätename mit Firmware-, Hardwareversion und die IO-Link Device ID im Hexadezimal-Format					
3	Anzeige der Sensorkonfiguration (Sensorelement und Anschlussart)					
4	Anzeige der Schaltpunkte					
5a	Aktueller Messwert oder					
5b	aktuelle Statusmeldung					
	Falls der Einschaltvorgang nicht erfolgreich ist, wird je nach Ursache das entsprechende Diagno- seereignis angezeigt. Eine detaillierte Auflistung der Diagnoseereignisse sowie die entspre- chende Fehlerbehebung siehe Kapitel "Diagnose und Störungsbehebung".					

Das Gerät arbeitet nach ca. 5 Sekunden. Nach erfolgreichem Einschaltvorgang wird der normale Messbetrieb aufgenommen.

8.3 Gerät konfigurieren

IO-Link-Funktionen und gerätespezifische Parameter werden über die IO-Link-Kommunikation des Gerätes konfiguriert. Es gibt spezielle Konfigurationssets, z. B. den FieldPort SFP20. Damit kann jedes IO-Link-Gerät konfiguriert werden.

Typischerweise werden IO-Link-Geräte über das Automatisierungssystem konfiguriert (z. B. Siemens TIA Portal + Port Configuration Tool). Das Gerät unterstützt IO-Link Data Storage, dadurch wird ein einfacher Gerätetausch ermöglicht.

8.3.1 Switching signal channels und Schaltausgang

IO-Link switching signal channels (SSC)

SSCs sind durch das IO-Link Smart Sensor Profile spezifiziert. Das Gerät verfügt über zwei unabhängige SSCs (SSC .1 und SSC .2). Jeder der beiden Kanäle gibt auf Basis der gemessenen Prozesstemperatur ein binäres Schaltsignal (OFF oder ON) aus, welches in den IO-Link Prozessdaten als **Switching signal channel 1** und **Switching signal channel 2** übertragen wird. Beide Kanäle können mit den Parametern: **SP1/SP2**, **Logi**c, **Mode** und **Hysteresis** konfiguriert werden, siehe Kapitel Systemintegration. Zudem können die Ausgangswerte über die Parameter **Simulation switch output .1/.2** auf einen festen Wert gelegt werden ('High' wird zu ON und 'low' wird zu OFF).

Neben der manuellen Konfiguration der Schaltpunkte **SP1/SP2** steht zusätzlich ein Einlern-Mechanismus im Menü Teach zur Verfügung. Hierbei wird per Systembefehl der jeweilige aktuelle Prozesswert in den gewählten SSC geschrieben.

Physischer Schaltausgang

Basierend auf dem binären Signal im **Switching signal channel 1** wird das Ausgangssignal C/Q erzeugt. Das Ausgangssignal liegt nur an der C/Q-Klemme an, wenn die IO-Link Kommunikation deaktiviert ist (SIO-Modus). Entsprechend dem binären Wert des **Switching signal channel 1** und dem Parameter **Output Mode** wird die Spannung des Ausgangssignals C/Q nach folgender Tabelle ausgegeben.

Zuordnuna	binäres	Schaltsianal	und Ausaai	nassianal	C/O
				-9-0-90	- ~

Output Mode	Switching signal channel 1	Schaltausgang C/Q
PNP	OFF	Not connected (HighZ)
	ON	L+
NPN	OFF	Not connected (HighZ)
	ON	L-
PushPull	OFF	L-
	ON	L+

Ist der Wert des Parameter **Logic** auf Low active eingestellt, werden die binären Schaltsignale im Vergleich zu den in der Tabelle angegebenen Werten invertiert. OFF -> ON, ON -> OFF.

Im Fehlerfall lässt sich das Ausgangssignal C/Q mit Hilfe des Parameters **Fail-safe value** festlegen: Low (L-), High (L+) und HighZ (not connected). Dieser Wert gilt unabhängig von der Einstellung des Parameters **Output Mode**.

Schaltsignale

Die Schaltsignale bieten eine einfache Möglichkeit, die Messwerte auf Grenzüberschreitung zu überwachen. Im Folgenden sind die verschiedenen Verhaltensweisen der auswählbaren Schaltmodi veranschaulicht.

Modus Single Point

SP2 wird in diesem Modus nicht verwendet.

🖻 6 SSC, Single Point

- H Hysterese
- SP1 Schaltpunkt 1
- MV Messwert

Modus Window

 $\rm SP_{hi}$ entspricht immer dem größeren Wert von SP1 oder SP2 und $\rm SP_{lo}$ immer dem kleineren Wert von SP1 oder SP2.

- 🖻 7 SSC, Window
- H Hysterese
- W Fenster
- $SP_{lo}~Schaltpunkt~mit~kleinerem~Messwert$
- SP_{hi} Schaltpunkt mit größerem Messwert
- MV Messwert

Modus Two-point

 $\rm SP_{hi}$ entspricht immer dem größeren Wert von SP1 oder SP2 und $\rm SP_{lo}$ immer dem kleineren Wert von SP1 oder SP2.

Hysterese wird nicht verwendet.

🖻 8 SSC, Two-Point

SP_{lo} Schaltpunkt mit kleinerem Messwert

SP_{hi} Schaltpunkt mit größerem Messwert

MV Messwert

8.4 Einstellungen schützen vor unerlaubtem Zugriff

Über einen DIP-Schalter WRITE LOCK auf der Rückseite des optionalen Aufsteckdisplays kann ein Schreibschutz aktiviert werden. Siehe auch Kapitel 'Bedienung vor Ort'.

Bei aktivem Schreibschutz ist eine Veränderung der Parameter nicht möglich. Ein Schlosssymbol auf dem Display zeigt den Schreibschutz an. Der Schreibschutz bleibt auch nach Abziehen des Displays aktiv. Um den Schreibschutz zu deaktivieren, muss das Display mit deaktiviertem DIP-Schalter (WRITE LOCK = OFF) auf den Transmitter aufgesteckt werden. Der Transmitter übernimmt die Einstellung im laufenden Messbetrieb und muss nicht erneut gestartet werden.

9 Diagnose und Störungsbehebung

9.1 Allgemeine Störungsbehebungen

Fehlersuche in jedem Fall mit den nachfolgenden Checklisten beginnen, falls nach der Inbetriebnahme oder während des Messbetriebs Störungen auftreten. Die verschiedenen Abfragen führen gezielt zur Fehlerursache und den entsprechenden Behebungsmaßnahmen.

Das Gerät kann auf Grund seiner Bauform nicht repariert werden. Es ist jedoch möglich, das Gerät für eine Überprüfung einzusenden. Kapitel "Rücksendung" beachten.

Fehler	Mögliche Ursache	Behebung	
	Versorgungsspannung stimmt nicht mit der Angabe auf dem Typenschild überein.	Spannung am Transmitter mittels eines Voltmeters direkt überprüfen und korri- gieren.	
Gerät reagiert nicht.	Anschlusskabel haben keinen Kon- takt zu den Klemmen.	Kontaktierung der Kabel prüfen und gegebenenfalls korrigieren.	
	Elektronik ist defekt.	Gerät tauschen.	
	Einbaulage des Sensors ist fehler- haft.	Sensor richtig einbauen.	
	Ableitwärme über den Sensor.	Einbaulänge des Sensors beachten.	
	Gerätekonfiguration ist fehlerhaft (Leiter- Anzahl).	Gerätefunktion Anschlussart ändern.	
Messwert ist falsch/ungenau.	Falscher RTD eingestellt.	Gerätefunktion Sensortyp ändern.	
	Anschluss des Sensors (Leiter- Anzahl oder falsch angeschlossen).	Anschluss des Sensors überprüfen.	
	Leitungswiderstand des Sensors (2- Leiter) wurde nicht kompensiert.	Leitungswiderstand kompensieren.	
	Offset falsch eingestellt.	Offset überprüfen.	
Keine Kommunikation	Kommunikationsleitung ist nicht verbunden.	Beschaltung und Kabel prüfen	
	Kommunikationsleitung ist falsch am IO-Link Master aufgelegt.	beschaltung und Kabel prufen.	

Allgemeine Fehler

9.2 Diagnoseinformation auf Vor-Ort-Anzeige

A Anzeige bei Diagnoseverhalten Warnung

- B Anzeige bei Diagnoseverhalten Alarm
- 1 Statussignal in der Kopfzeile
- 2 Status wird abwechselnd zum Hauptmesswert in Form des jeweiligen Buchstabens (M, C oder S) plus der definierten Fehlernummer angezeigt.
- 3 Status wird abwechselnd zur Anzeige "- - -" (kein gültiger Messwert vorhanden) in Form des jeweiligen Buchstabens (F) plus der definierten Fehlernummer angezeigt.

9.3 Diagnoseinformation via Kommunikationsschnittstelle

Der Parameter **Device Status** zeigt die Ereigniskategorie der höchstprioren aktiven Diagnosemeldung an. Diese werden in der Diagnoseliste angezeigt.

Statussignale

Die Statussignale geben Auskunft über den Zustand und die Verlässlichkeit des Geräts, indem sie die Ursache der Diagnoseinformation (Diagnoseereignis) kategorisieren. Die Statussignale sind gemäß NAMUR-Empfehlung NE 107 klassifiziert: F = Failure, C = Function Check, S = Out of Specification, M = Maintenance Required

Buch- stabe	Symbol	Ereigniskategorie	Bedeutung
F	⊗	Betriebsfehler	Es liegt ein Betriebsfehler vor.
С	V	Service-Modus	Das Gerät befindet sich im Service-Modus (zum Beispiel während einer Simulation).
S	A	Außerhalb der Spe- zifikation	Das Gerät wird außerhalb seiner technischen Spezifikationen betrieben (z. B. während des Anlaufens oder einer Reinigung).
м	\$	Wartung erforder- lich	Es ist eine Wartung erforderlich.

9.3.1 Verhalten des Geräts bei Störung

Alle Diagnosemeldungen werden im Ereignis-Logbuch (Event logbook) gespeichert und können dort abgerufen werden.

Das Gerät zeigt Warnungen und Störungen über IO-Link an. Alle Warnungen und Störungen des Geräts dienen nur der Information und erfüllen keine Sicherheitsfunktion. Die vom Gerät diagnostizierten Fehler werden über IO-Link entsprechend der NE107 ausgegeben. Dabei ist zwischen folgendem Diagnoseverhalten zu unterscheiden:

Warnung

Bei diesem Diagnoseverhalten misst das Gerät weiter. Das Ausgangssignal wird nicht beeinflusst (Ausnahme: Simulation der Prozessgröße ist aktiv).

- Alarm
 - Bei dieser Fehlerart misst das Gerät nicht weiter. Das Ausgangssignal nimmt seinen Fehlerzustand an (Wert im Fehlerfall - siehe Kap. 'Übersicht zu den Diagnoseinformationen').
 - Das PDValid Flag zeigt an, dass die Prozessdaten ungültig sind.
 - Der Fehlerzustand wird über IO-Link angezeigt.

9.3.2 Übersicht zu den Diagnoseinformationen

Diagnose- meldung	Diagnosever- halten	IO-Link Event Qualifier	IO-Link Event Code	Ursache	Behebungsmaßnahme
F041	Alarm	IO-Link Error	0x8D3D	Bruch Sensor erkannt	1. Elektrische Verdrahtung prüfen
					2. Sensor ersetzen
					3. Konfiguration der Anschlussart prüfen
F043	Alarm	IO-Link Error	0x8D00	Kurzschluss Sensor erkannt	1. Elektrische Verdrahtung prüfen
					2. Sensor prüfen
					3. Sensor oder Kabel ersetzen
S047	Warnung	IO-Link Warning	0x1819	Sensorlimit erreicht	1. Sensor prüfen.
					2. Prozessbedingungen prüfen.
F201	Alarm	IO-Link Error	0x8D02	Elektronik fehlerhaft	1. Gerät neu starten.
					2. Elektronik ersetzen.
C401	Warnung	IO-Link Notifica- tion	0x181F	Werksreset aktiv	► Werksreset aktiv, bitte warten.
C402	-	-	-	Initialisierung aktiv	 Initialisierung aktiv, bitte warten.
F410	Alarm	IO-Link Error	0x8D0A	Datenübertragung fehlge-	1. Verbindung prüfen.
				schlagen	2. Datenübertragung wiederholen.
C411	Warnung	IO-Link Warning	0x1808	Up-/Download aktiv	► Up-/Download aktiv, bitte warten.
F419	Alarm	IO-Link Error	0x1856	Stromtrennung erforderlich	 Energieversorgung des Geräts aus- und wieder einschalten.
C485	Warnung	IO-Link Warning	0x181A	Simulation Prozessgröße aktiv	 Simulation ausschalten.
C494	Warnung	IO-Link Warning	0x181C	Simulation Schaltausgang aktiv	 Simulation Schaltausgang ausschalten.
F537	Alarm	IO-Link Error	0x181D	Konfiguration	1. Geräteparametrierung prüfen.
					2. Up- und Download der neuen Konfiguration.
S801	Warnung	IO-Link Warning	0x181E	Versorgungsspannung zu niedrig	 Versorgungsspannung erhöhen.
S804	Alarm	IO-Link Warning	0x1801	Schaltausgang überlastet	1. Lastwiderstand am Schaltausgang erhöhen.
					2. Ausgang prüfen.
					3. Gerät ersetzen.
S825	Warnung	IO-Link Warning	0x1812	Elektroniktemperatur außer-	1. Umgebungstemperatur prüfen.
				halb Bereich	2. Prozesstemperatur prüfen.

9.4 Diagnoseliste

Wenn mehrere Diagnoseereignisse gleichzeitig anstehen, werden nur die 3 Diagnosemeldungen mit der höchsten Priorität in der Diagnoseliste angezeigt. Das Hauptmerkmal der Anzeigepriorität ist das Statussignal in folgender Reihenfolge: F, C, S, M. Stehen mehrere Diagnosereignisse mit demselben Statussignal an, wird die Priorität in numerischer Reihenfolge der Ereignisnummer festgelegt, z. B. F042 erscheint vor F044 und vor S044.

9.5 Ereignis-Logbuch (Event logbook)

Im **Ereignis-Logbuch** werden die Diagnosemeldungen in chronologischer Reihenfolge angezeigt. Zusätzlich wird zu jeder Diagnosemeldung ein Zeitstempel gespeichert, der auf den Betriebsstundenzähler referenziert.

9.6 Firmware-Historie

Änderungsstand

Die Firmware-Version (FW) auf dem Typenschild und in der Betriebsanleitung gibt den Änderungsstand des Geräts an: XX.YY.ZZ (Beispiel 01.02.01).

XX	Änderung der Hauptversion. Kompatibilität ist nicht mehr gegeben. Gerät und Betriebsanleitung ändern sich.
YY	Änderung bei Funktionalität und Bedienung. Kompatibilität ist gegeben. Betriebsanleitung ändert sich.
ZZ	Fehlerbeseitigung und interne Änderungen. Betriebsanleitung ändert sich nicht.

Datum	Firmware Version	Änderungen	Dokumentation
02/2024	01.01.zz	Original Firmware	BA02289T/09/DE/01.23

10 Wartung und Reinigung

Für das Gerät sind grundsätzlich keine speziellen Wartungsarbeiten erforderlich. Das Gerät kann mit einem sauberen, trockenen Tuch gereinigt werden.

11 Reparatur

11.1 Allgemeine Hinweise

Aufgrund seiner Ausführung kann das Gerät nicht repariert werden.

11.2 Ersatzteile

Aktuell verfügbare Ersatzteile zum Produkt siehe online unter: https://www.endress.com/deviceviewer (→ Seriennummer eingeben)

Тур	Bestellnummer
Standard - DIN Befestigungsset (2 Schrauben und Federn, 4 Wellensicherungsringe, 1 Stop- fen für die CDI-Schnittstelle)	71044061
US - M4 Befestigungsset (2 Schrauben und 1 Stopfen für die CDI-Schnittstelle)	71044062

11.3 Rücksendung

Die Anforderungen für eine sichere Rücksendung können je nach Gerätetyp und landesspezifischer Gesetzgebung unterschiedlich sein.

- 1. Informationen auf der Internetseite einholen: http://www.endress.com/support/return-material
- 2. Das Gerät bei einer Reparatur, Werkskalibrierung, falschen Lieferung oder Bestellung zurücksenden.

11.4 Entsorgung

X

Gemäß der Richtlinie 2012/19/EG über Elektro- und Elektronik-Altgeräte (WEEE) sind unsere Produkte mit dem abgebildeten Symbol gekennzeichnet, um die Entsorgung von WEEE als unsortierten Hausmüll zu minimieren. Diese Produkte dürfen nicht als unsortierter Hausmüll entsorgt werden und können an Endress+Hauser zur Entsorgung zurückgegeben werden zu den in unseren Allgemeinen Geschäftsbedingungen festgelegten oder individuell vereinbarten Bedingungen.

12 Zubehör

Für das Gerät sind verschiedene Zubehörteile lieferbar, die bei Endress+Hauser mit dem Gerät bestellt oder nachbestellt werden können. Ausführliche Angaben zum betreffenden Bestellcode sind bei Ihrer Endress+Hauser Vertriebszentrale erhältlich oder auf der Produktseite der Endress+Hauser Webseite: www.endress.com.

12.1 Gerätespezifisches Zubehör

Adapter für Hutschienenmontage, DIN-rail clip nach IEC 60715 (TH35) ohne Befestigungsschrauben

Standard - DIN-Befestigungsset (2 Schrauben + Federn, 4 Sicherungsscheiben und 1 Abdeckkappe für den Display-Anschluss)

US - M4 Befestigungsschrauben (2 Schrauben M4 und 1 Abdeckkappe CDI-Stecker)

Aufsteckbare Anzeigeeinheit für Kopftransmitter TID10

12.2 Kommunikationsspezifisches Zubehör

Zubehör	Beschreibung
FieldPort SFP20	 Mobiles Parametriertool für alle IO-Link Geräte: Der FieldPort SFP20 ist eine USB-Schnittstelle zur Konfiguration von IO-Link Geräten. Der FieldPort SFP20 kann via einem USB-Kabel an ein Laptop oder Tablet angeschlossen werden. Mit dem FieldPort SFP20 ist eine Punkt-zu-Punkt-Verbindung zwischen Laptop und IO-Link Geräte möglich. M12-Anschluss für IO-Link Feldgeräte
IO-Link Master BL20	IO-Link Master für Hutschiene von Turck unterstützt PROFINET, EtherNet/IP und Modbus TCP. Mit Webserver für eine einfache Konfiguration.
Field Xpert SMT50	Universeller, leistungsstarker Tablet PC zur Gerätekonfiguration in nicht explosi- onsgefährdeten Bereichen.

12.3 Servicespezifisches Zubehör

Applicator

Software für die Auswahl und Auslegung von Endress+Hauser Messgeräten:

- Berechnung aller notwendigen Daten zur Bestimmung des optimalen Messgeräts: z.B.
- Druckabfall, Messgenauigkeiten oder Prozessanschlüsse.
- Grafische Darstellung von Berechnungsergebnissen

Verwaltung, Dokumentation und Abrufbarkeit aller projektrelevanten Daten und Parameter über die gesamte Lebensdauer eines Projekts.

Applicator ist verfügbar: https://portal.endress.com/webapp/applicator

Konfigurator

Produktkonfigurator - das Tool für eine individuelle Produktkonfiguration

- Tagesaktuelle Konfigurationsdaten
- Je nach Gerät: Direkte Eingabe von messstellenspezifischen Angaben wie Messbereich oder Bediensprache
- Automatische Erzeugung des Bestellcodes mit seiner Aufschlüsselung im PDF- oder Excel-Ausgabeformat
- Direkte Bestellmöglichkeit im Endress+Hauser Onlineshop

Der Konfigurator steht auf der Endress+Hauser Website zur Verfügung unter: www.endress.com -> Klicken Sie auf "Corporate" -> wählen Sie Ihr Land -> klicken Sie auf "Produkte" -> wählen Sie das Produkt mithilfe der Filter und des Suchfeldes -> öffnen Sie die Produktseite -> die Schaltfläche "Produkt konfigurieren" rechts neben dem Produktbild öffnet den Produktkonfigurator.

DeviceCare SFE100

Konfigurationswerkzeug für HART-, PROFIBUS- und FOUNDATION Fieldbus-Feldgeräte DeviceCare steht zum Download bereit unter <u>www.software-products.endress.com</u>. Zum Download ist die Registrierung im Endress+Hauser-Softwareportal erforderlich.

Technische Information TI01134S

13 Technische Daten

13.1 Eingang

Messgröße

Temperatur

Widerstandsthermometer (RTD) nach Standard	Bezeichnung	α	Messbereichsgrenzen
IEC 60751:2022	Pt100 (1) Pt1000 (4)	0,003851	-200 +850 ℃ (-328 +1562 ℉) -200 +500 ℃ (-328 +932 ℉)
-	Callendar van Dusen	-	Die Messbereichsgrenzen werden bestimmt durch die Ein- gabe der Grenzwerte, die abhängig von den Koeffizienten A bis C und R0 sind.
	 Anschlussart: 2-Leiter-, 3-Leiter oder 4-Leiteranschluss, Sensorstrom: ≤ 0,3 mA bei 2-Leiterschaltung Kompensation des Leitungswiderstandes möglich (0 30 Ω) bei 3-Leiter- und 4-Leiteranschluss Sensorleitungswiderstand bis max. 50 Ω je Leitung 		

13.2 Ausgang

Ausgangssignal	C/Q (IO-Link oder Schaltausgang)		
Schaltausgang	 1 × PNP, NPN oder Push-Pull Schaltausgang, konfigurierbar Schaltvermögen Ia ≤ 150 mA Spannungsabfall PNP, NPN ≤ 2 V Überlastsicherheit: Die Last des Schaltstroms wird automatisch überprüft. Wenn eine Überlast erkannt wird, schaltet das Gerät in einen sicheren Zustand. Die Diagnosemel- dung Überlast am Schaltausgang wird ausgegeben. Schaltfunktionen: Hysterese- oder Fensterfunktion Öffner oder Schließer 		
Ausfallinformation	Die Ausfallinformation wird erstellt, wenn die Messinformation ungültig ist oder fehlt. Das Gerät gibt eine Liste der drei höchst priorisierten Diagnosemeldungen aus.		
	Der Fehlerzustand des S	Schaltausgangs ist konfigurierbar: An, Aus, Hochohmig.	
Dämpfung	Dämpfung Sensoreingang einstellbar	0 120 s	
	Werkseinstellung	0 s	
Protokollspezifische Daten	IO-Link Spezifikation	Version 1.1.3	
	Geräte-ID	0x93FE01	
	Hersteller-ID	0x0011 (17)	
	IO-Link Smart Sensor Pro- file 4.3.1	Unterstützt: • Identification and diagnosis • Measuring and switching sensor, floating point, 1 channel	
	SIO-Modus	Ja	
	Geschwindigkeit	COM2; 38,4 kBaud	

Minimale Zykluszeit	10 ms
Prozessdatenbreite	6 byte
IO-Link Data Storage	Ja
Block Parametrierung	Ja

Einschaltverzögerung \leq 5 s, bis das erste gültige Messwert-Signal anliegt

Spannungsversorgung 13.3

Versorgungsspannung	$U = 18 \dots 30 V_{DC}$, verpolungssicher			
Stromaufnahme	I ≤ 11 mA			
Klemmen	Wahlweise Schraub- oder Push-in-Klemmen:			
	Klemmenausführung	Leitungsausführung	Leitungsquerschnitt	
	Schraubklemmen	Starr oder flexibel	≤ 1,5 mm² (16 AWG)	
	Push-in-Klemmen ¹⁾ (Kabelaus- führung, Abisolierlänge = min. 10 mm (0.39 in)	Starr oder flexibel	0,2 1,5 mm² (24 16 AWG)	
		Flexibel mit Aderendhülsen mit	0,25 1,5 mm² (24 16 AWG)	

1) Bei Push-in- Klemmen und der Verwendung von flexiblen Leitern mit einem Leitungsquerschnitt $\leq 0,3$ mm² müssen Aderendhülsen verwendet werden.

oder ohne Kunststoffhülse

Leistungsmerkmale 13.4

Antwortzeit	Messwerterneuerung:		
	Widerstandsthermometer (RTD)	≤ 0,5 s	
Referenzbedingungen	 Kalibrationstemperatur: +25 °C ±3 K (77 °F Versorgungsspannung: 24 V DC 4-Leiter-Schaltung für Widerstandsabgleich 	±5,4 °F) h	
Maximale Messabweichung	Nach DIN EN 60770 und oben angegebenen Referenzbedingungen. Die Angaben zur Messabweichung entsprechen $\pm 2~\sigma$ (Gauß'sche Normalverteilung). Die Angaben beinhalten Nichtlinearitäten und Wiederholbarkeit.		
		Messabweichung (±)	
	im gesamten Messbereich	0,15 K	

Sensorabgleich	Sensor-Transmitter-Matching
	Zur signifikanten Verbesserung der Temperaturmessgenauigkeiten von RTD Sensoren ermöglicht das Gerät folgende Methode:
	Callendar-Van-Dusen-Gleichung: $R_T = R_0[1+AT+BT^2+C(T-100)T^3]$
	Die Koeffizienten A, B und C dienen zur Anpassung von Sensor und Messumformer, um die Genauigkeit des Messsystems zu verbessern. Die Koeffizienten sind für einen Standard- sensor in der IEC 60751 angegeben. Wenn kein Standardsensor zur Verfügung steht oder eine höhere Genauigkeit gefordert ist, können die Koeffizienten für jeden Sensor mit Hilfe der Sensorkalibrierung spezifisch ermittelt werden.
	Das Sensor-Transmitter-Matching mit der oben genannten Methode verbessert die Genau- igkeit der Temperaturmessung des gesamten Systems erheblich. Dies ergibt sich daraus, dass der Messumformer, anstelle der standardisierten Sensorkurvendaten, die spezifischen Daten des angeschlossenen Sensors zur Berechnung der gemessenen Temperatur verwen- det.
	1-Punkt Abgleich (Offset)
	Verschiebung des Sensorwertes

Betriebseinflüsse

Betriebseinflüsse Umgebungstemperatur und Versorgungsspannung für Widerstandsthermometer (RTD) im gesamten Messbereich

Bezeichnung	Standard	Umgebungstemperatur: Effekt (±) pro 1 °C (1,8 °F) Änderung	Versorgungsspannung: Effekt (±) pro V Änderung
Pt100 (1)	IEC 60751:2022	0,04 °C (0,07 °F)	0,02 °C (0,04 °F)
Pt1000 (4)		0,02 °C (0,03 °F)	0,01 °C (0,02 °F)

Langzeitdrift (±)		
nach 1 Jahr	nach 3 Jahren	nach 5 Jahren
Messwertbezogen		
0,05 K	0,06 K	0,07 K

Berechnung der maximalen Messabweichung: $\sqrt{(Messabweichung^2 + Einfluss Umgebungstemperatur^2 + Einfluss Versorgungsspannung^2)}$

13.5 Umgebungsbedingungen

Umgebungstemperatur	−40 +85 °C (−40 +185 °F)
Lagerungstemperatur	−50 +100 °C (−58 +212 °F)
Einsatzhöhe	Bis zu 4000 m (13 123 ft)über Normalnull.

Feuchte	 Betauung: Zulässig Maximale relative Feuchte: 95 % nach IEC 60068-2-30
Klimaklasse	Klimaklasse C1 nach IEC 60654-1
Schutzart	Kopftransmitter mit Schraub- oder Push-in-Klemmen: IP 20. Im eingebauten Zustand vom verwendeten Anschlusskopf abhängig.
Stoß- und Schwingungsfes- tigkeit	Schwingungsfestigkeit gemäß IEC 60068-2-6: • 5 25 Hz, 1,6 mm • 25 100 Hz, 4g
	Stoßfestigkeit gemäß IEC 60068-2-27:
Elektromagnetische Ver- träglichkeit (EMV)	CE Konformität
	Elektromagnetische Verträglichkeit gemäß allen relevanten Anforderungen der IEC/EN 61326-Serie und NAMUR Empfehlung EMV (NE21). Details sind aus der Konformitätser- klärung ersichtlich.
	Maximale Messabweichung < 1 % vom Messbereich.
	Störfestigkeit nach IEC/EN 61326-Serie, Anforderung Industrieller Bereich
	Störaussendung nach IEC/EN 61326-Serie (CISPR 11), Betriebsmittel der Klasse B, Gruppe 1
	IO-Link
	Im IO-Link-Betrieb werden die Anforderungen der IEC/EN 61131-9 erfüllt.
Überspannungskategorie	Überspannungskategorie II
Verschmutzungsgrad	Verschmutzungsgrad 2

13.6 Konstruktiver Aufbau

Bauform, Maße

Angaben in mm (in)

9 Ausführung mit Schraubklemmen

A Display-Anschluss

B Federweg $L \ge 5 mm (0, 2 in)$ (nicht bei US - M4 Befestigungsschrauben)

I0 Ausführung mit Push-in Klemmen. Abmessungen sind identisch mit der Ausführung mit Schraubklemmen, außer Gehäusehöhe.

Gewicht	40 50 g (1,4 1,8 oz)
Werkstoffe	Alle verwendeten Werkstoffe sind RoHS-konform.
	 Gehäuse: Polycarbonat (PC) Anschlussklemmen: Schraubklemmen: Messing vernickelt Push-in Klemmen: Messing verzinnt, Kontaktfedern 1.4310, 301 (AISI) Vergussmasse: SIL Gel
	13.7 Zertifikate und Zulassungen
	Aktuelle Zertifikate und Zulassungen zum Produkt stehen unter <u>www.endress.com</u> auf der jeweiligen Produktseite zur Verfügung:
	1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
	2. Produktseite öffnen.
	3. Downloads auswählen.
MTTF	371 Jahre

Bei der mittleren Ausfallzeit (Mean Time to Failure, MTTF) handelt es sich um die theoretisch zu erwartende Zeitspanne, bis das Gerät während des Normalbetriebs ausfällt. Der Begriff MTTF wird für Systeme verwendet, die nicht reparierbar sind, so z. B. Temperaturtransmitter.

www.addresses.endress.com

