Valid as of version 01.00.zz (Device firmware) Products Solutions

Services

# Operating Instructions **Proline Promag W 800**

Electromagnetic flowmeter Modbus RS485







- Make sure the document is stored in a safe place such that it is always available when working on or with the device.
- To avoid danger to individuals or the facility, read the "Basic safety instructions" section carefully, as well as all other safety instructions in the document that are specific to working procedures.
- The manufacturer reserves the right to modify technical data without prior notice. Your Endress+Hauser sales organization will supply you with current information and updates to this manual.

# Table of contents

| 1          | About this document 6                        | 6          | Mounting procedure                                                                                    | 22         |
|------------|----------------------------------------------|------------|-------------------------------------------------------------------------------------------------------|------------|
| 1.1<br>1.2 | Document function 6 Symbols                  | 6.1        | Mounting requirements                                                                                 |            |
|            | 1.2.1 Safety symbols 6                       |            | 6.1.2 Environmental and process                                                                       |            |
|            | 1.2.2 Electrical symbols 6                   |            | requirements                                                                                          |            |
|            | 1.2.3 Communication-specific symbols 6       | 6.2        | 6.1.3 Special mounting instructions                                                                   |            |
|            | 1.2.4 Tool symbols                           | 6.2        | Mounting the measuring device                                                                         |            |
|            | certain types of information                 |            | 6.2.2 Preparing the measuring device                                                                  |            |
|            | 1.2.6 Symbols in graphics 7                  |            | 6.2.3 Mounting the sensor                                                                             |            |
| 1.3        | Documentation 8                              |            | 6.2.4 Mounting the transmitter of the                                                                 |            |
| 1.4        | Registered trademarks 8                      |            | remote version, Proline 800 -                                                                         |            |
|            |                                              |            | Advanced                                                                                              | 38         |
| 2          | Safety instructions 9                        |            | 6.2.5 Turning the transmitter housing,                                                                | , 0        |
| 2.1        | Requirements for the personnel 9             |            | Proline 800 - Advanced                                                                                |            |
| 2.2        | Intended use                                 | 6.3        | 6.2.6 Mounting the external battery pack  Post-mounting check                                         |            |
| 2.3        | Workplace safety                             | 0.5        | Post-mounting check                                                                                   | 40         |
| 2.4        | Operational safety                           | 7          | Electrical connection                                                                                 | 44         |
| 2.5        | Product safety                               |            |                                                                                                       |            |
| 2.6<br>2.7 | IT security                                  | 7.1<br>7.2 | Electrical safety                                                                                     |            |
| ۷./        | 2.7.1 Access via the SmartBlue app 11        | 7.2        | 7.2.1 Requirements for connecting cable                                                               |            |
|            | 2.7.2 Protecting access via hardware write   |            | 7.2.2 Required tool                                                                                   |            |
|            | protection                                   |            | 7.2.3 Pin assignment, Proline 800 -                                                                   |            |
|            | 2.7.3 Access via Bluetooth® wireless         |            | Standard                                                                                              | 46         |
|            | technology 12                                |            | 7.2.4 Terminal assignment, Proline 800 -                                                              |            |
|            |                                              |            | Advanced                                                                                              |            |
| 3          | Product description 13                       |            | 7.2.5 Shielding and grounding                                                                         | 48<br>49   |
| 3.1        | Product design                               |            | <ul><li>7.2.6 Requirements for the supply unit</li><li>7.2.7 Preparing the measuring device</li></ul> |            |
|            | 3.1.1 Proline Promag 800 - Standard 13       |            | 7.2.8 Preparing the connecting cable for                                                              | 47         |
|            | 3.1.2 Proline Promag 800 - Advanced 14       |            | the remote version                                                                                    | 49         |
|            |                                              | 7.3        | Connecting the measuring device                                                                       | 51         |
| 4          | Incoming acceptance and product              |            | 7.3.1 Connecting the remote version                                                                   | 51         |
|            | identification 15                            |            | 7.3.2 Connecting the transmitter                                                                      |            |
| 4.1        | Incoming acceptance                          | 7,         | 7.3.3 Ensuring potential equalization                                                                 | 54         |
| 4.2        | Product identification                       | 7.4        | Power supply via battery packs Proline 800 - Standard                                                 | 57         |
|            | 4.2.1 Transmitter nameplate 16               |            | 7.4.1 Battery pack arrangement                                                                        |            |
|            | 4.2.2 Sensor nameplate 16                    |            | 7.4.2 Inserting and connecting the battery                                                            | ,          |
|            | 4.2.3 Symbols on the device 17               |            | pack                                                                                                  | 58         |
|            |                                              | 7.5        | Power supply via battery packs, Proline 800 -                                                         |            |
| 5          | Storage and transport 18                     |            | Advanced                                                                                              | 59         |
| 5.1        | Storage conditions                           |            | 7.5.1 Battery pack arrangement                                                                        | 59         |
| 5.2        | Storing the device                           |            | 7.5.2 Inserting and connecting buffer                                                                 | 60         |
|            | 5.2.1 Proline Promag 800 - Standard 18       | 7.6        | capacitors and battery packs Connecting the pressure sensor, Proline 800                              | OC         |
| - 0        | 5.2.2 Proline Promag 800 - Advanced 20       | /.0        | - Advanced                                                                                            | 61         |
| 5.3        | Transporting the product                     | 7.7        | Power supply via the external battery pack,                                                           | J.1        |
|            | 5.3.1 Measuring devices without lifting lugs |            | Proline 800 - Advanced                                                                                | 62         |
|            | 5.3.2 Measuring devices with lifting lugs 21 |            | 7.7.1 Connecting the external battery                                                                 |            |
|            | 5.3.3 Transporting with a fork lift 21       |            | pack                                                                                                  | 62         |
| 5.4        | Packaging disposal                           |            | 7.7.2 Inserting batteries into the external                                                           | <i>(</i> ) |
|            |                                              |            | battery pack                                                                                          | 62         |
|            |                                              | i          |                                                                                                       |            |

| 7.8<br>7.9                   | Special connection instructions                                                                                  | 63                         | 11.7                         | Checking, verifying or calibrating the measuring device                     | . 80                                          |
|------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------|
|                              | 7.9.1 Activating the terminating resistor                                                                        | 64                         | 12                           | Diagnosis and troubleshooting                                               | 81                                            |
| 7.10                         | Ensuring the degree of protection                                                                                |                            | 12.1<br>12.2                 | General troubleshooting                                                     | . 81<br>. 83                                  |
|                              | 7.10.2 Degree of protection IP68, type 6P enclosure, with "Cust-potted" option, Proline 800 - Advanced (separate | 64                         | 12.3                         | Diagnostic information via communication interface                          | . 84<br>. 84                                  |
|                              | version)                                                                                                         | 64                         |                              | Adapting the diagnostic information 12.4.1 Adapting the diagnostic behavior | 85<br>. 85                                    |
| 7.11                         | Advanced                                                                                                         |                            | 12.5<br>12.6<br>12.7         | Overview of diagnostic information Pending diagnostic events                | 88<br>89                                      |
| 8                            | Operation options                                                                                                | 67                         | 12.8                         | Event logbook                                                               |                                               |
| 3.1<br>3.2                   | Overview of operation options                                                                                    |                            |                              | 12.8.2 Filtering the event logbook                                          | 89                                            |
|                              | SmartBlue app                                                                                                    | 67                         | 12.10                        | Resetting the measuring device                                              | 91                                            |
| 9                            | System integration                                                                                               | 69                         | 12.11                        | Firmware history                                                            | . 92                                          |
| 9.1                          | Overview of device description files 9.1.1 Current version data for the device                                   |                            | 13                           | Maintenance                                                                 | 93                                            |
| 9.2                          | 9.1.2 Operating tools                                                                                            | 69<br>69                   | 13.1                         | Maintenance work                                                            | <ul><li>93</li><li>93</li></ul>               |
|                              | <ul> <li>9.2.2 Register information</li></ul>                                                                    | 71<br>71                   | 13.2<br>13.3                 | 13.1.3 Replacing the batteries                                              | . 98                                          |
|                              | 9.2.6 Modbus data map                                                                                            |                            | 14                           | Repair                                                                      | 99                                            |
| 10                           | Commissioning                                                                                                    |                            | 14.1                         | General notes                                                               |                                               |
| 10.1<br>10.2<br>10.3<br>10.4 | Post-mounting and post-connection check Preparatory steps                                                        | 75<br>75<br>75<br>75<br>75 | 14.2<br>14.3<br>14.4<br>14.5 | 14.1.2 Notes for repair and conversion Spare parts                          | 99<br>99                                      |
|                              | switch                                                                                                           | 76                         | 15                           | Accessories                                                                 | 101                                           |
| 11<br>11.1<br>11.2           | Operation                                                                                                        | <b>78</b> 78               | 15.1                         | Device-specific accessories                                                 | <ul><li>101</li><li>101</li><li>101</li></ul> |
| 11.3<br>11.4<br>11.5         | Performing a totalizer reset                                                                                     | 79<br>79<br>79             | 15.2                         | 15.1.3 For the sensor                                                       | 101                                           |
| 11.6                         | 11.5.1 "Software configuration" submenu Updating the firmware                                                    | 79<br>80                   | 16                           | Technical data                                                              | 103                                           |
| 11.0                         | opacing the minware                                                                                              | 00                         | 16.1<br>16.2                 | Application                                                                 | 103<br>103                                    |

| 16.3  | Input                       | 103 |
|-------|-----------------------------|-----|
| 16.4  | Output                      | 106 |
| 16.5  | Power supply                | 108 |
| 16.6  | Performance characteristics | 112 |
| 16.7  | Mounting                    | 113 |
| 16.8  | Environment                 | 114 |
| 16.9  | Process                     | 116 |
| 16.10 | Mechanical construction     | 118 |
| 16.11 | Operability                 | 125 |
| 16.12 | Certificates and approvals  | 125 |
| 16.13 | Application packages        | 127 |
|       | Accessories                 | 128 |
| 16.15 | Supplemental documentation  | 128 |
|       |                             |     |
| Index | ζ                           | 129 |
|       |                             |     |

# 1 About this document

# 1.1 Document function

These Operating Instructions contain all the information required in the various life cycle phases of the device: from product identification, incoming acceptance and storage, to installation, connection, operation and commissioning, through to troubleshooting, maintenance and disposal.

# 1.2 Symbols

# 1.2.1 Safety symbols

#### **⚠** DANGER

This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

#### **▲** WARNING

This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

# **A** CAUTION

This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

#### NOTICE

This symbol contains information on procedures and other facts which do not result in personal injury.

# 1.2.2 Electrical symbols

| Symbol                                                                                                                                       | Meaning                                                                                                                                                                                                                                          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ===                                                                                                                                          | Direct current                                                                                                                                                                                                                                   |  |
| ~                                                                                                                                            | Alternating current                                                                                                                                                                                                                              |  |
| $\sim$                                                                                                                                       | Direct current and alternating current                                                                                                                                                                                                           |  |
| =                                                                                                                                            | Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.                                                                                                                            |  |
| Potential equalization connection (PE: protective earth) Ground terminals that must be connected to ground prior to establishin connections. |                                                                                                                                                                                                                                                  |  |
|                                                                                                                                              | The ground terminals are located on the interior and exterior of the device:  Interior ground terminal: potential equalization is connected to the supply network.  Exterior ground terminal: device is connected to the plant grounding system. |  |

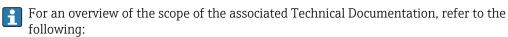
# 1.2.3 Communication-specific symbols

| Symbol | Meaning                                                                            |
|--------|------------------------------------------------------------------------------------|
| *      | <b>Bluetooth</b> Wireless data transmission between devices over a short distance. |

# 1.2.4 Tool symbols

| Symbol   | Meaning                   |
|----------|---------------------------|
| <b>O</b> | Torx screwdriver          |
| 00       | Flat-blade screwdriver    |
| 96       | Phillips head screwdriver |
| 06       | Allen key                 |
| Ń        | Open-ended wrench         |

# 1.2.5 Symbols for certain types of information


| Symbol      | Meaning                                                        |  |
|-------------|----------------------------------------------------------------|--|
| <b>✓</b>    | Permitted Procedures, processes or actions that are permitted. |  |
| <b>✓ ✓</b>  | Preferred Procedures, processes or actions that are preferred. |  |
| X           | Forbidden Procedures, processes or actions that are forbidden. |  |
| i           | Tip Indicates additional information.                          |  |
| Ţ <u>i</u>  | Reference to documentation                                     |  |
| A           | Reference to page                                              |  |
|             | Reference to graphic                                           |  |
| <b>&gt;</b> | Notice or individual step to be observed                       |  |
| 1., 2., 3   | Series of steps                                                |  |
| L           | Result of a step                                               |  |
| ?           | Help in the event of a problem                                 |  |
| <b>(a)</b>  | Visual inspection                                              |  |

# 1.2.6 Symbols in graphics

| Symbol         | Meaning         |
|----------------|-----------------|
| 1, 2, 3,       | Item numbers    |
| 1., 2., 3.,    | Series of steps |
| A, B, C,       | Views           |
| A-A, B-B, C-C, | Sections        |
| EX             | Hazardous area  |

| Symbol | Meaning                        |
|--------|--------------------------------|
| ×      | Safe area (non-hazardous area) |
| ≋➡     | Flow direction                 |

# 1.3 Documentation



- *Device Viewer* (www.endress.com/deviceviewer): Enter the serial number from the nameplate
- Endress+Hauser Operations app: Enter serial number from nameplate or scan matrix code on nameplate.

The following documentation may be available depending on the device version ordered:

| Document type                                        | Purpose and content of the document                                                                                                                                                                                                                                                                                         |  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Technical Information (TI)                           | Planning aid for your device The document contains all the technical data on the device and provides an overview of the accessories and other products that can be ordered for the device.                                                                                                                                  |  |
| Brief Operating Instructions (KA)                    | Guide that takes you quickly to the 1st measured value The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning.                                                                                                                                            |  |
| Operating Instructions (BA)                          | Your reference document These Operating Instructions contain all the information that is required in the various life cycle phases of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning, through to troubleshooting, maintenance and disposal. |  |
| Description of Device Parameters (GP)                | Reference for your parameters  The document provides a detailed explanation of each individual parameter. The description is aimed at those who work with the device over the entire life cycle and perform specific configurations.                                                                                        |  |
| Safety Instructions (XA)                             | Depending on the approval, safety instructions for electrical equipment in hazardous areas are also supplied with the device. The Safety Instructions are a constituent part of the Operating Instructions.  Information on the Safety Instructions (XA) that are relevant for the device is provided on the nameplate.     |  |
| Supplementary device-dependent documentation (SD/FY) | Always comply strictly with the instructions in the relevant supplementary documentation. The supplementary documentation is a constituent part of the device documentation.                                                                                                                                                |  |

# 1.4 Registered trademarks

## Modbus®

Registered trademark of SCHNEIDER AUTOMATION, INC.

# 2 Safety instructions

# 2.1 Requirements for the personnel

The personnel for installation, commissioning, diagnostics and maintenance must fulfill the following requirements:

- ► Trained, qualified specialists must have a relevant qualification for this specific function and task.
- ► Are authorized by the plant owner/operator.
- ► Are familiar with federal/national regulations.
- ▶ Before starting work, read and understand the instructions in the manual and supplementary documentation as well as the certificates (depending on the application).
- ▶ Follow instructions and comply with basic conditions.

The operating personnel must fulfill the following requirements:

- ► Are instructed and authorized according to the requirements of the task by the facility's owner-operator.
- ▶ Follow the instructions in this manual.

## 2.2 Intended use

#### Application and media

The measuring device described in this manual is intended only for the flow measurement of liquids with a minimum conductivity of 20  $\mu$ S/cm.

Measuring devices for use in applications where there is an increased risk due to process pressure are labeled accordingly on the nameplate.

To ensure that the measuring device remains in proper condition for the operation time:

- ► Keep within the specified pressure and temperature range.
- ► Only use the measuring device in full compliance with the data on the nameplate and the general conditions listed in the Operating Instructions and supplementary documentation.
- ► Based on the nameplate, check whether the ordered device is permitted for the intended use in the hazardous area (e.g. explosion protection, pressure vessel safety).
- ► Use the measuring device only for media to which the process-wetted materials are sufficiently resistant.
- ▶ If the ambient temperature of the measuring device is outside the atmospheric temperature, it is absolutely essential to comply with the relevant basic conditions as specified in the device documentation → 🖺 8.
- ► Protect the measuring device permanently against corrosion from environmental influences.

#### Incorrect use

Non-designated use can compromise safety. The manufacturer is not liable for damage caused by improper or non-designated use.

#### **A** WARNING

## Danger of breakage due to corrosive or abrasive fluids and ambient conditions!

- ▶ Verify the compatibility of the process fluid with the sensor material.
- ▶ Ensure the resistance of all fluid-wetted materials in the process.
- ► Keep within the specified pressure and temperature range.

# **NOTICE**

#### Verification for borderline cases:

► For special fluids and fluids for cleaning, Endress+Hauser is glad to provide assistance in verifying the corrosion resistance of fluid-wetted materials, but does not accept any warranty or liability as minute changes in the temperature, concentration or level of contamination in the process can alter the corrosion resistance properties.

#### Residual risks

# **A** CAUTION

Risk of hot or cold burns! The use of media and electronics with high or low temperatures can produce hot or cold surfaces on the device.

► Mount suitable touch protection.

# 2.3 Workplace safety

When working on and with the device:

▶ Wear the required personal protective equipment as per national regulations.

# 2.4 Operational safety

Damage to the device!

- ▶ Operate the device in proper technical condition and fail-safe condition only.
- ▶ The operator is responsible for the interference-free operation of the device.

#### Modifications to the device

Unauthorized modifications to the device are not permitted and can lead to unforeseeable dangers!

▶ If modifications are nevertheless required, consult with the manufacturer.

#### Repair

To ensure continued operational safety and reliability:

- ► Carry out repairs on the device only if they are expressly permitted.
- ▶ Observe federal/national regulations pertaining to the repair of an electrical device.
- ▶ Use only original spare parts and accessories.

# 2.5 Product safety

This measuring device is designed in accordance with good engineering practice to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate.

It meets general safety standards and legal requirements. It also complies with the EU directives listed in the device-specific EU Declaration of Conformity. The manufacturer confirms this by affixing the CE mark to the device..

# 2.6 IT security

Our warranty is valid only if the product is installed and used as described in the Operating Instructions. The product is equipped with security mechanisms to protect it against any inadvertent changes to the settings.

IT security measures, which provide additional protection for the product and associated data transfer, must be implemented by the operators themselves in line with their security standards.

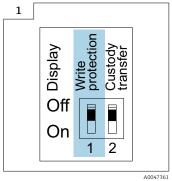
# 2.7 Device-specific IT security

The device offers a range of specific functions to support protective measures on the operator's side. These functions can be configured by the user and guarantee greater inoperation safety if used correctly. The following list provides an overview of the most important functions:

# 2.7.1 Access via the SmartBlue app

Two access levels (user roles) are defined for the device: the Operator user role and the Maintenance user role. The Maintenance user role is the default setting.

If a user-specific access code is not defined (in the Enter access code parameter), the default setting **0000** continues to apply and the Maintenance user role is automatically enabled. The device's configuration data are not write-protected and can be edited at all times.


If a user-specific access code has been defined (in the Enter access code parameter), all the parameters are write-protected and the device is accessed with the Operator user role. The previously defined access code must first be entered again before the Maintenance user role is enabled and all the parameters can be write-accessed.

# 2.7.2 Protecting access via hardware write protection

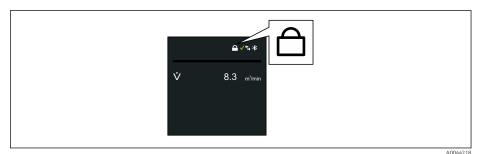
Write access to the device parameters via the operating tool can be disabled by means of a write protection switch (DIP switch on the back of the local display). When hardware write protection is enabled, only read access to the parameters is possible.

Hardware write protection is disabled when the device is delivered  $\rightarrow \equiv 11$ .

#### Write protection via write protection switch



▶ ③ Information regarding the write protection switch is provided on the connection nameplate in the connection compartment cover.


Unlike parameter write protection via a user-specific access code, this allows write access to the entire operating menu to be locked.

The parameter values are now read only and cannot be edited any more.

The following parameters can always be modified even if parameter write protection is activated:

- Enter access code
- Contrast display
- Clientt ID
- 1. Loosen the 4 fixing screws on the housing cover and open the housing cover.

- 2. Set the write protection (WP) switch on the display module to the **ON** position.
  - Hardware write protection is enabled.
     In the Locking status parameter, the Hardware locked option is displayed.
     On the local display, the â symbol appears in the header.



3. **WARNING** 

Excessive tightening torque applied to the fixing screws!

Risk of damaging the plastic transmitter.

▶ Tighten the fixing screws as per the tightening torque  $\rightarrow$   $\bigcirc$  33.

Reassemble the transmitter in the reverse order.

# 2.7.3 Access via Bluetooth® wireless technology

Secure signal transmission via Bluetooth® wireless technology uses an encryption method tested by the Fraunhofer Institute.

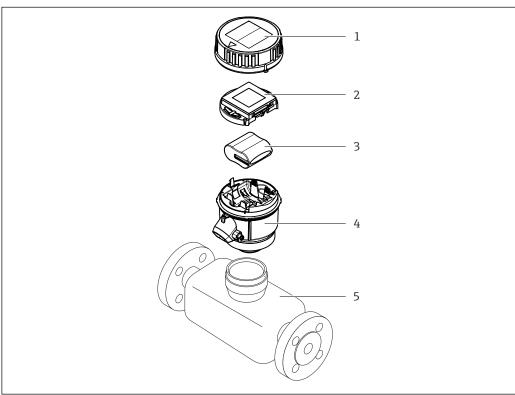
- The device is not visible via *Bluetooth*® wireless technology without the SmartBlue App.
- Only one point-to-point connection is established between the device and a smartphone or tablet.
- It is possible to configure the *Bluetooth*® wireless technology interface in such a way that *Bluetooth*® is only active (the device is only then visible) if the display is activated onsite via Wake on Touch.

#### **Product description** 3

The device consists of a transmitter and a sensor.

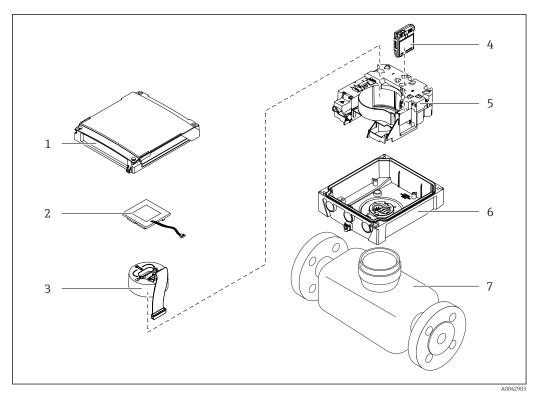
# Proline Promag 800 - Standard

Compact version – transmitter and sensor form a mechanical unit.


## Proline Promag 800 - Advanced

Two device versions are available:

- Compact version transmitter and sensor form a mechanical unit.
- Remote version transmitter and sensor are mounted in separate locations.

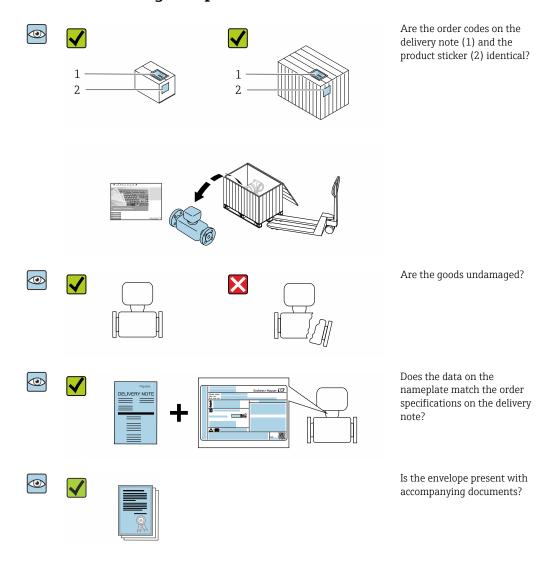

#### 3.1 Product design

#### 3.1.1 Proline Promag 800 - Standard



- Transmitter housing cover
- Display module
- Battery pack
- Transmitter housing
- Sensor

#### Proline Promag 800 - Advanced 3.1.2




**₽** 1 Important components of the compact version

- Transmitter housing cover Display module
- 2
- 3 Electronics module
- Cellular module only with order code for "Output; input", option P "Cellular radio" Electronics board carrier incl. battery compartment
- Transmitter housing
- Sensor

# 4 Incoming acceptance and product identification

# 4.1 Incoming acceptance



- If one of the conditions is not satisfied, contact your Endress+Hauser Sales Center.

# 4.2 Product identification

The device can be identified in the following ways:

- Nameplate
- Order code with details of the device features on the delivery note
- Enter the serial numbers from the nameplates in the *Device Viewer* (www.endress.com/deviceviewer): all the information about the device is displayed.
- Enter the serial numbers from the nameplates into the *Endress+Hauser Operations app* or scan the DataMatrix code on the nameplate with the *Endress+Hauser Operations app*: all the information about the device is displayed.

For an overview of the scope of the associated Technical Documentation, refer to the following:

- The "Additional standard device documentation" → 128 and "Supplementary device-dependent documentation" sections → 128
- The *Device Viewer*: Enter the serial number from the nameplate (www.endress.com/deviceviewer)
- The *Endress+Hauser Operations app*: Enter the serial number from the nameplate or scan the DataMatrix code on the nameplate.

# 4.2.1 Transmitter nameplate

- Name of the transmitter
- Manufacturer address/certificate holder
- Order code
- Serial number
- Extended order code
- Firmware version (FW) and device revision (Dev.Rev.) from the factory
- Permitted ambient temperature (T<sub>a</sub>)
- FCC-ID (Federal Communications Commission)
- Degree of protection
- Permitted temperature range for cable
- 2-D matrix code
- Date of manufacture: year-month
- FCC mark
- CE mark, RCM-Tick mark
- Electrical connection data, e.q. available inputs and outputs, supply voltage

# 4.2.2 Sensor nameplate

- Name of sensor
- Manufacturer address/certificate holder
- Order code
- Serial number
- Extended order code
- Nominal diameter of the sensor
- Test pressure of the sensor
- Medium temperature range
- Material of liner and electrodes
- Degree of protection: e.g. IP, NEMA
- Permitted ambient temperature (T<sub>a</sub>)
- 2-D matrix code
- CE mark, RCM-Tick mark
- Flow direction
- Date of manufacture: year-month

#### 🚹 Order code

The measuring device is reordered using the order code.

#### Extended order code

- The device type (product root) and basic specifications (mandatory features) are always listed.
- Of the optional specifications (optional features), only the safety and approvalrelated specifications are listed (e.g. LA). If other optional specifications are also ordered, these are indicated collectively using the # placeholder symbol (e.g. #LA#).
- If the ordered optional specifications do not include any safety and approval-related specifications, they are indicated by the + placeholder symbol (e.g. XXXXXX-ABCDE +).

# 4.2.3 Symbols on the device

| Symbol                                                                                                                  | Meaning                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\triangle$                                                                                                             | WARNING! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury. Please consult the documentation for the measuring device to discover the type of potential danger and measures to avoid it. |
| <u> </u>                                                                                                                | Reference to documentation Refers to the corresponding device documentation.                                                                                                                                                                                  |
| Protective ground connection A terminal that must be connected to the ground prior to establishing any other connection |                                                                                                                                                                                                                                                               |

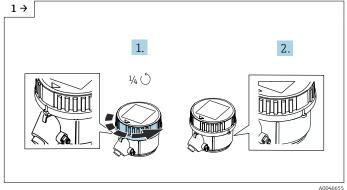
# 5 Storage and transport

# 5.1 Storage conditions

Observe the following notes for storage:

- ► Store in the original packaging to ensure protection from shock.
- ▶ Do not remove protective covers or protective caps installed on process connections. They prevent mechanical damage to the sealing surfaces and contamination in the measuring tube.
- ▶ Protect from direct sunlight. Avoid unacceptably high surface temperatures.
- ► Select a storage location that excludes the possibility of condensation forming on the measuring device. Fungi and bacteria can damage the liner.
- ► Store in a dry and dust-free place.
- ► Do not store outdoors.

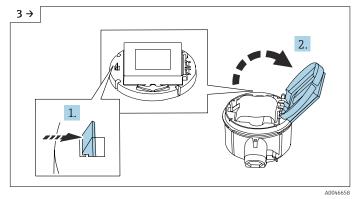
Storage temperature  $\rightarrow \implies 114$ 


## **A** WARNING

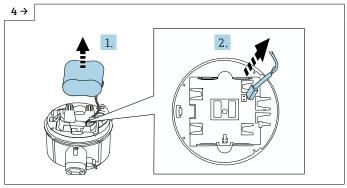
#### Batteries may explode if not handled properly!

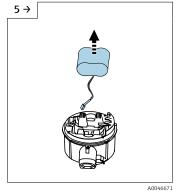
- ▶ Do not recharge batteries.
- ► Do not open batteries.
- ▶ Do not expose batteries to naked flame.

# 5.2 Storing the device


# 5.2.1 Proline Promag 800 - Standard

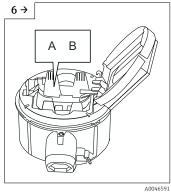




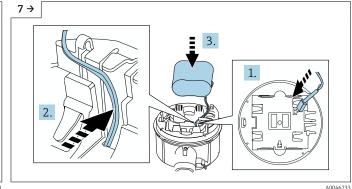


lacktriangle Turn the cover to the right by a 1/4 turn.

► Lift off the cover.

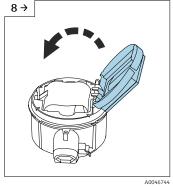



▶ Open the cover of the electronics carrier.





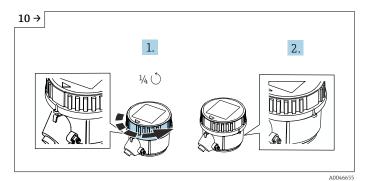

► Take the battery out of the battery compartment (it is still attached, however) and disconnect the battery plug.


 Now remove the battery from the battery compartment entirely.

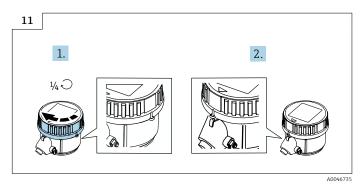


► Set switch "B" to "OFF".




► Insert the battery plug and place the cable in the recess of the battery carrier as shown in the graphic. Place the battery in the battery compartment.

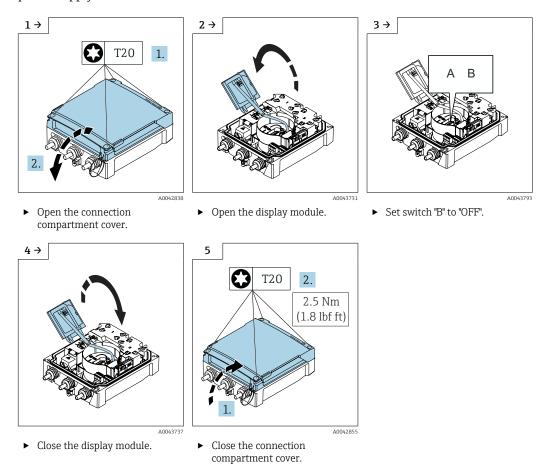



► Close the cover of the electronics carrier.



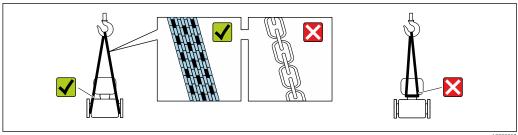
► Fit the cover on the transmitter housing.




ightharpoonup Turn the cover to the right by a 1/4 turn.



► Turn the cover to the left by a 1/4 turn.


# 5.2.2 Proline Promag 800 - Advanced

Do not store buffer capacitors individually for longer than 4 months. Long-term storage is possible with battery packs inserted and connected in the device. If the device is stored for longer than 2 months with the batteries inserted and connected, disconnect the battery power supply via the switch.



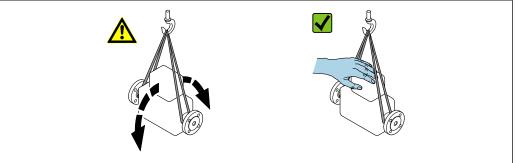
# 5.3 Transporting the product

Transport the measuring device to the measuring point in the original packaging.



A0029252

Do not remove protective covers or caps installed on process connections. They prevent mechanical damage to the sealing surfaces and contamination in the measuring tube.


# 5.3.1 Measuring devices without lifting lugs

## **A** WARNING

Center of gravity of the measuring device is higher than the suspension points of the webbing slings.

Risk of injury if the measuring device slips.

- Secure the measuring device against slipping or turning.
- ▶ Observe the weight specified on the packaging (stick-on label).



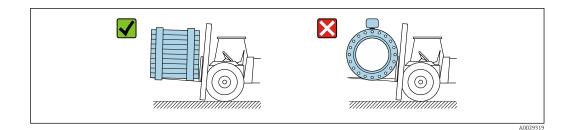
A0020216

# 5.3.2 Measuring devices with lifting lugs

## **A** CAUTION

Special transportation instructions for devices with lifting lugs

- ▶ Only use the lifting lugs fitted on the device or flanges to transport the device.
- ► The device must always be secured at two lifting lugs at least.


# 5.3.3 Transporting with a fork lift

If transporting in wood crates, the floor structure enables the crates to be lifted lengthwise or at both sides using a forklift.

## **A** CAUTION

Risk of damaging the magnetic coil!

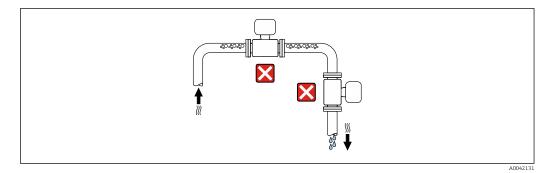
- ▶ If transporting by forklift, do not lift the sensor by the metal casing.
- ▶ This would buckle the casing and damage the internal magnetic coils.



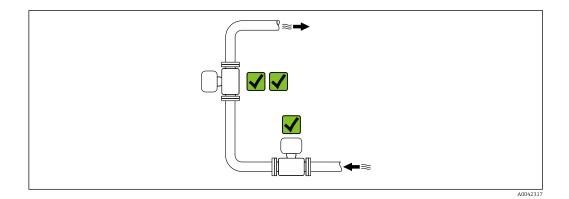
5.4 Packaging disposal

All packaging materials are environmentally friendly and 100% recyclable:

- Outer packaging of device
   Stretch wrap made of polymer in accordance with EU Directive 2002/95/EC (RoHS)
- Packaging
  - Wood crate treated in accordance with ISPM 15 standard, confirmed by IPPC logo
  - Cardboard box in accordance with European packaging guideline 94/62/EC, recyclability confirmed by Resy symbol
- Transport material and fastening fixtures
  - Disposable plastic pallet
  - Plastic straps
  - Plastic adhesive strips
- Filler material
   Paper pads

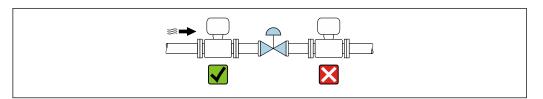

# 6 Mounting procedure

# 6.1 Mounting requirements


# 6.1.1 Mounting position

# Mounting location

- Do not install the device at the highest point of the pipe.
- Do not install the device upstream from a free pipe outlet in a down pipe.

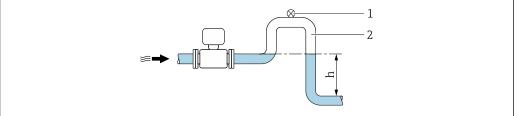



The device should ideally be installed in an ascending pipe.



Installation near valves

Install the device in the direction of flow upstream from the valve.

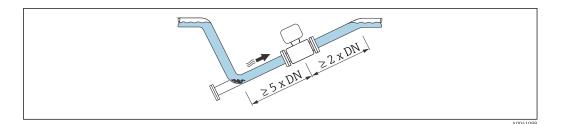



Installation upstream from a down pipe

# **NOTICE**

## Negative pressure in the measuring pipe can damage the liner!

- ▶ If installing upstream of down pipes whose length  $h \ge 5$  m (16.4 ft): install a siphon with a vent valve downstream of the device.
- This arrangement prevents the flow of liquid stopping in the pipe and air entrainment.



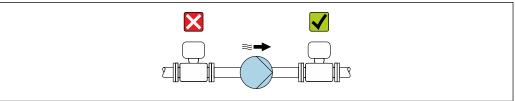

A002898

- 1 Vent valve
- 2 Pipe siphon
- h Length of down pipe

*Installation with partially filled pipes* 

- Partially filled pipes with a gradient require a drain-type configuration.
- The installation of a cleaning valve is recommended.




No inlet and outlet runs for devices with the order code for "Design": Option C.

*Installation near pumps* 

## **NOTICE**

# Negative pressure in the measuring tube can damage the liner!

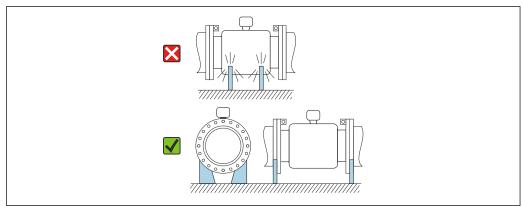
- ► In order to maintain the system pressure, install the device in the flow direction downstream from the pump.
- ▶ Install pulsation dampers if reciprocating, diaphragm or peristaltic pumps are used.



A004108

- - Information on the measuring system's resistance to vibration and shock  $\rightarrow \stackrel{\triangle}{=} 115$

Installation of very heavy devices


Support required for nominal diameters of DN  $\geq$  350 mm (14 in).

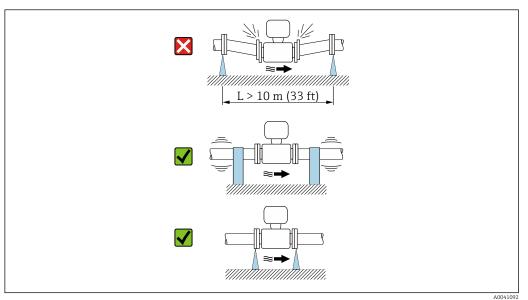
# **NOTICE**

## Damage to the device!

If incorrect support is provided, the sensor housing could buckle and the internal magnetic coils could be damaged.

▶ Only provide supports at the pipe flanges.




A0041087

Installation in event of pipe vibrations

# **NOTICE**

# Pipe vibrations can damage the device!

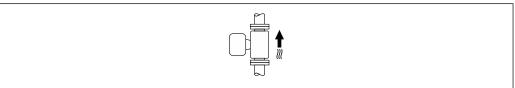
- ▶ Do not expose the device to strong vibrations.
- ► Support the pipe and fix it in place.
- ► Support the device and fix it in place.



Information on the measuring system's resistance to vibration and shock  $\rightarrow~\cong~115$ 

#### Orientation

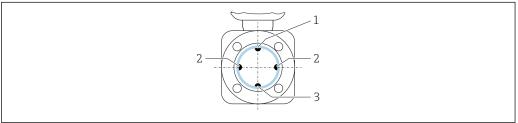
The direction of the arrow on the nameplate helps you to install the measuring device according to the flow direction (direction of medium flow through the piping).


| Orien                                      | Recommendation    |               |
|--------------------------------------------|-------------------|---------------|
| Vertical orientation                       | <b>↑</b> A0015591 |               |
| Horizontal orientation, transmitter at top | A0015589          | <b>√</b> ✓ 1) |

| Orien                                         | Recommendation |                  |
|-----------------------------------------------|----------------|------------------|
| Horizontal orientation, transmitter at bottom | A0015590       | (2) 3)<br>(3) 4) |
| Horizontal orientation, transmitter at side   | A0015592       | ×                |

- Applications with low process temperatures may reduce the ambient temperature. To maintain the minimum ambient temperature for the transmitter, this orientation is recommended.
- 2) Applications with high process temperatures may increase the ambient temperature. To maintain the maximum ambient temperature for the transmitter, this orientation is recommended.
- 3) To prevent the electronics from overheating in the event of strong heat formation (e.g. CIP or SIP cleaning process), install the device with the transmitter part pointing downwards.
- With the empty pipe detection function switched on: empty pipe detection only works if the transmitter housing is pointing upwards.

#### Vertical


Optimum for self-emptying pipe systems and for use in conjunction with empty pipe detection.



A0015591

#### Horizontal

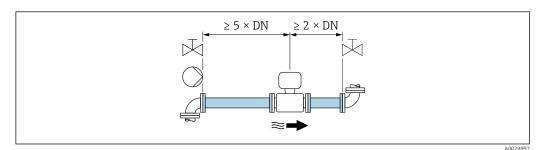
- Ideally, the measuring electrode plane should be horizontal. This prevents brief insulation of the measuring electrodes by entrained air bubbles.
- Empty pipe detection only works if the transmitter housing is pointing upwards as
  otherwise there is no guarantee that the empty pipe detection function will actually
  respond to a partially filled or empty measuring tube.

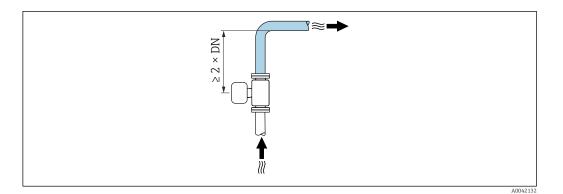


A0029344

- 1 EPD electrode for empty pipe detection
- 2 Measuring electrodes for signal detection
- 3 Reference electrode for potential equalization

#### Inlet and outlet runs


Installation with inlet and outlet runs


Installation requires inlet and outlet runs: devices with the order code for "Design", option E and G.

# Installation with elbows, pumps or valves

To avoid a vacuum and to maintain the specified level of accuracy, if possible install the device upstream from assemblies that produce turbulence (e.g. valves, T-sections) and downstream from pumps.

Maintain straight, unimpeded inlet and outlet runs.





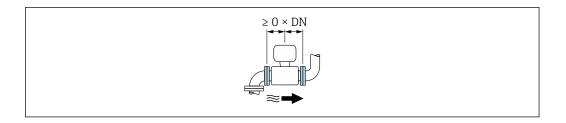
Installation without inlet and outlet runs

Depending on the device design and installation location, the inlet and outlet runs can be reduced or omitted entirely.

# i

#### Maximum measurement error

When the device is installed with the inlet and outlet runs described, a maximum measurement error of  $\pm 0.5$  % of the reading  $\pm 2$  mm/s (0.08 in/s) can be guaranteed.

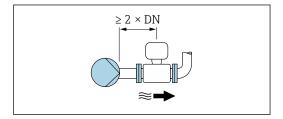

## Devices and possible order options

| Order code for "Design" |                                                                           |                                          |  |  |  |  |  |
|-------------------------|---------------------------------------------------------------------------|------------------------------------------|--|--|--|--|--|
| Option                  | Description                                                               | Design                                   |  |  |  |  |  |
| С                       | Fixed flange, constricted measuring tube, $0 \times DN$ inlet/outlet runs | Constricted measuring tube <sup>1)</sup> |  |  |  |  |  |

1) "Constricted measuring tube" stands for a reduction of the internal diameter of the measuring tube. The reduced internal diameter causes a higher flow velocity inside the measuring tube.

#### Installation before or after bends

Installation without inlet and outlet runs is possible: devices with the order code for "Design", option C.




#### *Installation downstream of pumps*

Installation without inlet and outlet runs is possible: devices with the order code for "Design", option C.



In the case of devices with the order code for "Design", option J and K, an inlet run of only  $\geq 2$  x DN must be taken into consideration.



#### Installation upstream of valves

Installation without inlet and outlet runs is possible: devices with the order code for "Design", option C.

#### *Installation downstream of valves*

The device can be installed without inlet and outlet runs if the valve is 100% open during operation: devices with the order code for "Design", option C.

#### **Installation dimensions**



# 6.1.2 Environmental and process requirements

#### Ambient temperature range

| Transmitter           | -25 to +60 °C (-13 to +140 °F)                                                                                                                                                                                                              |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Local display         | -20 to $+60$ °C ( $-4$ to $+140$ °F); readability of the local display may be impaired at temperatures outside the temperature range.                                                                                                       |
| Sensor                | <ul> <li>Process connection material, carbon steel:         <ul> <li>10 to +60 °C (+14 to +140 °F)</li> </ul> </li> <li>Process connection material, stainless steel:         <ul> <li>40 to +60 °C (-40 to +140 °F)</li> </ul> </li> </ul> |
| Liner                 | Do not exceed or fall below the permitted temperature range of the liner $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                 |
| External battery pack | Do not exceed or fall below the battery temperature range specified by the manufacturer.                                                                                                                                                    |

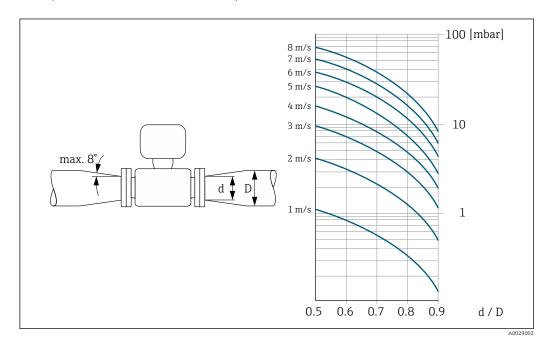
#### If operating outdoors:

- Measuring device suitable for use in wet environments
- Install the measuring device in a shady location.
- Avoid direct exposure to weather conditions.

- If the compact version of the device is insulated at low temperatures, the insulation must also include the device neck.
- Protect the display against impact.
- Protect the display from abrasion by sand in desert areas.
- Protect the pressure sensor from icing.
- Pisplay guard available as an accessory  $\rightarrow \triangleq 101$ .

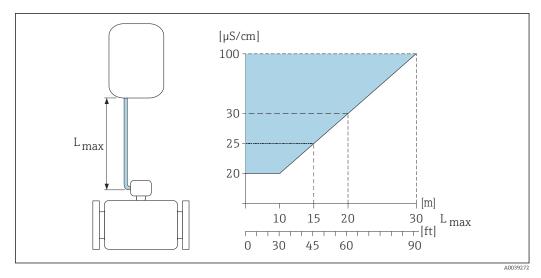
#### System pressure

Installation near pumps  $\rightarrow \triangleq 24$ 


#### **Vibrations**

Installation in event of pipe vibrations  $\rightarrow \triangleq 25$ 

#### **Adapters**


The sensor can also be installed in larger-diameter pipes with the aid of suitable adapters according to DIN EN 545 (double-flange reducers). The resultant increase in the rate of flow improves measuring accuracy with very slow-moving fluids. The nomogram shown here can be used to calculate the pressure loss caused by reducers and expanders.

- The nomogram only applies to liquids with a viscosity similar to that of water.
- 1. Calculate the ratio of the diameters d/D.
- 2. From the nomogram read off the pressure loss as a function of flow velocity (downstream from the reduction) and the d/D ratio.



# Length of connecting cable

To obtain correct measurement results, observe the permitted connecting cable length of  $L_{\text{max}}$ . This length is determined by the conductivity of the medium.

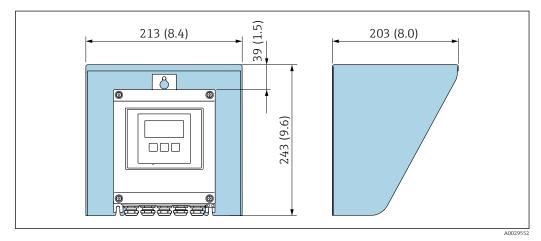


■ 2 Permitted length of connecting cable

Colored area = permitted range  $L_{max}$ =length of connecting cable in [m] ([ft]) [ $\mu$ S/cm] = medium conductivity

#### Corrosive environment

The fully welded remote version of the device can be used permanently in a corrosive (saline) environment.


The measuring device satisfies certified corrosion protection in accordance with EN ISO 12944 C5M. The fully welded design and the protective varnish guarantee use in a saline environment.

# **6.1.3** Special mounting instructions

# Display guard

► To ensure that the display guard can be easily opened, maintain the following minimum head clearance: 350 mm (13.8 in)

#### Weather protection cover



**■** 3 Weather protection cover; engineering unit mm (in)

#### For immersion in water, Proline 800 - Standard

The SmartBlue app cannot be used if the device is immersed in water, as Bluetooth connectivity will not be available.

#### NOTICE

# If the maximum water depth and operating duration is exceeded, this can damage the device!

▶ Observe the maximum water depth and operating duration.

Order code "Sensor option", option CT "IP68, type 6P, 168h/3m (10 ft)"

- For use of device under rain or surface water
- Use at a maximum water depth of 3 m (10 ft) for 168 h

#### For immersion in water, Proline 800 - Advanced



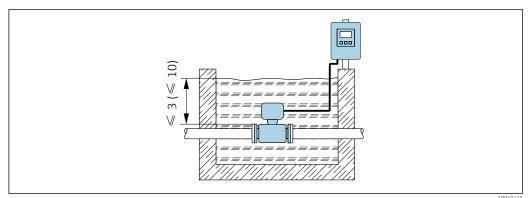
- Only the remote version of the device with IP68 protection, type 6P is suitable for underwater use: order code for "Sensor option", options CB, CC, CD, CE and CQ.
- Pay attention to regional installation instructions.

### **NOTICE**

# If the maximum water depth and operating duration is exceeded, this can damage the device!

▶ Observe the maximum water depth and operating duration.

Order code for "Sensor option", options CB, CC


- For the operation of the device under water
- Operating duration at a maximum depth of:
  - 3 m (10 ft): permanent use
  - 10 m (30 ft): maximum 48 hours

Order code for "Sensor option", option CQ "IP68, type 6P, factory encapsulation"

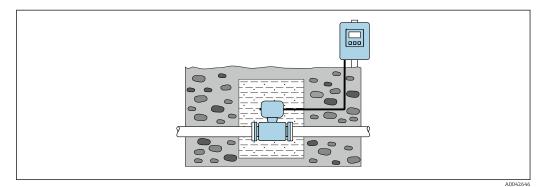
- For permanent use of device under rain or surface water
- Use at a maximum water depth of 3 m (10 ft)

Order code for "Sensor option", options CD, CE

- For the operation of the device under water and in saline water
- Operating duration at a maximum depth of:
  - 3 m (10 ft): permanent use
  - 10 m (30 ft): maximum 48 hours



.


Installation for permanent immersion in water

# For use in buried applications, Proline 800 - Advanced

- Only the remote version of the device with IP68 protection is suitable for use in buried applications: order code for "Sensor option", options CD and CE.
  - Pay attention to regional installation instructions.

Order code for "Sensor option", options CD, CE

For the use of the device in buried applications.



# 6.2 Mounting the measuring device

# 6.2.1 Required tools

#### For Proline 800 transmitter

Torque wrench

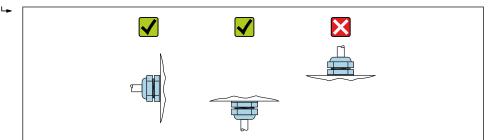
# For Proline 800 - Advanced transmitter

- Torque wrench
- For wall mounting:
  - Open-ended wrench for hexagonal screw max. M5
- For pipe mounting:
  - Open-ended wrench AF 8
  - Phillips head screwdriver PH 2
- For turning the transmitter housing (compact version):
  - Phillips head screwdriver PH 2
  - Torx screwdriver TX 20
  - Open-ended wrench AF 7

#### For sensor

For flanges and other process connections: Use a suitable mounting tool.

## 6.2.2 Preparing the measuring device


- 1. Remove all remaining transport packaging.
- 2. Remove any protective covers or protective caps present from the sensor.
- 3. Remove stick-on label on the electronics compartment cover.

# 6.2.3 Mounting the sensor

#### **A** WARNING

# Danger due to improper process sealing!

- ► Ensure that the inside diameters of the gaskets are greater than or equal to that of the process connections and piping.
- ▶ Ensure that the seals are clean and undamaged.
- ► Secure the seals correctly.
- 1. Ensure that the direction of the arrow on the sensor matches the flow direction of the medium.
- 2. To ensure compliance with device specifications, install the measuring device between the pipe flanges in a way that it is centered in the measurement section.
- 3. If using ground disks, comply with the Installation Instructions provided.
- 4. Observe the necessary screw tightening torques  $\rightarrow \triangleq 33$ .
- 5. Install the measuring device or turn the transmitter housing so that the cable entries do not point upwards.



A0029263

#### Mounting the seals

# **A** CAUTION

An electrically conductive layer could form on the inside of the measuring tube! Risk of measuring signal short circuit.

▶ Do not use electrically conductive sealing compounds such as graphite.

Comply with the following instructions when installing seals:

- 1. Make sure that the seals do not protrude into the piping cross-section.
- 2. For DIN flanges: only use seals according to DIN EN 1514-1.
- 3. For a "hard rubber" liner: additional seals are always required.
- 4. For a "polyurethane" liner: additional seals are generally **not** required.

# Mounting the ground cable/ground disks

# Screw tightening torques

Note the following points:

- The screw tightening torques listed below apply only to lubricated threads and to pipes not subjected to tensile stress.
- Tighten the screws uniformly and in diagonally opposite sequence.
- Overtightening the screws will deform the sealing surface or damage the seal.
- In the case of linings made of hard rubber, seals made of rubber or rubber-like materials are recommended..

Nominal screw tightening torques → 🖺 38

# **NOTICE**

# Insufficient sealing!

Operational reliability of the measuring device could be compromised. Overtightening the screws can deform or damage the liner in the area of the sealing surface.

► The values for the screw tightening torques depend on variables such as the seal, screws, lubricants, tightening methods etc. These variables are outside the control of the manufacturer. The values indicated are therefore guideline values only.

*Maximum screw tightening torques* 

Maximum screw tightening torques for EN 1092-1 (DIN 2501)

| Nominal          | diameter | Pressure rating | Screws   | Flange<br>thickness | Max. screw tightening torque [Ni |     |      |
|------------------|----------|-----------------|----------|---------------------|----------------------------------|-----|------|
| [mm]             | [in]     | [bar]           | [mm]     | [mm]                | HR                               | PUR | PTFE |
| 25               | 1        | PN 40           | 4 × M12  | 18                  | -                                | 15  | 26   |
| 32               | -        | PN 40           | 4 × M16  | 18                  | -                                | 24  | 41   |
| 40               | 1 ½      | PN 40           | 4 × M16  | 18                  | -                                | 31  | 52   |
| 50               | 2        | PN 40           | 4 × M16  | 20                  | 48                               | 40  | 65   |
| 65 <sup>1)</sup> | -        | PN 16           | 8 × M16  | 18                  | 32                               | 27  | 44   |
| 65               | -        | PN 40           | 8 × M16  | 22                  | 32                               | 27  | 44   |
| 80               | 3        | PN 16           | 8 × M16  | 20                  | 40                               | 34  | 53   |
|                  |          | PN 40           | 8 × M16  | 24                  | 40                               | 34  | 53   |
| 100              | 4        | PN 16           | 8 × M16  | 20                  | 43                               | 36  | 57   |
|                  |          | PN 40           | 8 × M20  | 24                  | 59                               | 50  | 79   |
| 125              | -        | PN 16           | 8 × M16  | 22                  | 56                               | 48  | 75   |
|                  |          | PN 40           | 8 × M24  | 26                  | 83                               | 71  | 112  |
| 150              | 6        | PN 16           | 8 × M20  | 22                  | 74                               | 63  | 99   |
|                  |          | PN 40           | 8 × M24  | 28                  | 104                              | 88  | 137  |
| 200              | 8        | PN 10           | 8 × M20  | 24                  | 106                              | 91  | 141  |
|                  |          | PN 16           | 12 × M20 | 24                  | 70                               | 61  | 94   |
|                  |          | PN 25           | 12 × M24 | 30                  | 104                              | 92  | 139  |
| 250              | 10       | PN 10           | 12 × M20 | 26                  | 82                               | 71  | 110  |
|                  |          | PN 16           | 12 × M24 | 26                  | 98                               | 85  | 132  |
|                  |          | PN 25           | 12 × M27 | 32                  | 150                              | 134 | 201  |
| 300              | 12       | PN 10           | 12 × M20 | 26                  | 94                               | 81  | 126  |
|                  |          | PN 16           | 12 × M24 | 28                  | 134                              | 118 | 179  |
|                  |          | PN 25           | 16 × M27 | 34                  | 153                              | 138 | 204  |
| 350              | 14       | PN 6            | 12 × M20 | 22                  | 111                              | 120 | -    |
|                  |          | PN 10           | 16 × M20 | 26                  | 112                              | 118 | -    |
|                  |          | PN 16           | 16 × M24 | 30                  | 152                              | 165 | -    |
|                  |          | PN 25           | 16 × M30 | 38                  | 227                              | 252 | -    |
| 400              | 16       | PN 6            | 16 × M20 | 22                  | 90                               | 98  | -    |
|                  |          | PN 10           | 16 × M24 | 26                  | 151                              | 167 | -    |
|                  |          | PN 16           | 16 × M27 | 32                  | 193                              | 215 | -    |
|                  |          | PN 25           | 16 × M33 | 40                  | 289                              | 326 | _    |
| 450              | 18       | PN 6            | 16 × M20 | 22                  | 112                              | 126 | _    |
|                  |          | PN 10           | 20 × M24 | 28                  | 153                              | 133 | -    |

| Nominal      | diameter       | Pressure rating | Screws        | Flange<br>thickness | Max. screw tightening torque [Nn |     |      |
|--------------|----------------|-----------------|---------------|---------------------|----------------------------------|-----|------|
| [mm]         | [in]           | [bar]           | [mm]          | [mm]                | HR                               | PUR | PTFE |
|              |                | PN 16           | 20 × M27      | 40                  | 198                              | 196 | -    |
|              |                | PN 25           | 20 × M33      | 46                  | 256                              | 253 | -    |
| 500          | 20             | PN 6            | 20 × M20      | 24                  | 119                              | 123 | -    |
|              |                | PN 10           | 20 × M24      | 28                  | 155                              | 171 | -    |
|              |                | PN 16           | 20 × M30      | 34                  | 275                              | 300 | -    |
|              |                | PN 25           | 20 × M33      | 48                  | 317                              | 360 | -    |
| 600          | 24             | PN 6            | 20 × M24      | 30                  | 139                              | 147 | -    |
|              |                | PN 10           | 20 × M27      | 28                  | 206                              | 219 | -    |
| 600          | 24             | PN 16           | 20 × M33      | 36                  | 415                              | 443 | -    |
| 600          | 24             | PN 25           | 20 × M36      | 58                  | 431                              | 516 | -    |
| 700          | 28             | PN 6            | 24 × M24      | 24                  | 148                              | 139 | -    |
|              |                | PN 10           | 24 × M27      | 30                  | 246                              | 246 | -    |
|              |                | PN 16           | 24 × M33      | 36                  | 278                              | 318 | -    |
|              |                | PN 25           | 24 × M39      | 46                  | 449                              | 507 | -    |
| 800          | 32             | PN 6            | 24 × M27      | 24                  | 206                              | 182 | -    |
|              |                | PN 10           | 24 × M30      | 32                  | 331                              | 316 | -    |
|              |                | PN 16           | 24 × M36      | 38                  | 369                              | 385 | -    |
|              |                | PN 25           | 24 × M45      | 50                  | 664                              | 721 | -    |
| 900          | 36             | PN 6            | 24 × M27      | 26                  | 230                              | 637 | -    |
|              |                | PN 10           | 28 × M30      | 34                  | 316                              | 307 | -    |
|              |                | PN 16           | 28 × M36      | 40                  | 353                              | 398 | -    |
|              |                | PN 25           | 28 × M45      | 54                  | 690                              | 716 | -    |
| Abbreviation | ns (liner): HR | = hard rubber,  | PUR = polyure | ethane              |                                  |     |      |

# 1) Sizing as per EN 1092-1 (not DIN 2501)

# Maximum screw tightening torques for ASME B16.5

| Nominal | diameter | Pressure rating | Screws  | Max. screw tightening torque |          | rque |          |
|---------|----------|-----------------|---------|------------------------------|----------|------|----------|
| []      | [:]      | [mail           | f:1     | Н                            | IR       | PUR  |          |
| [mm]    | [in]     | [psi]           | [in]    | [Nm]                         | [lbf·ft] | [Nm] | [lbf·ft] |
| 25      | 1        | Class 150       | 4 × ½   | -                            | -        | 7    | 5        |
| 25      | 1        | Class 300       | 4 × 5/8 | -                            | -        | 8    | 6        |
| 40      | 1 ½      | Class 150       | 4 × ½   | -                            | -        | 10   | 7        |
| 40      | 1 1/2    | Class 300       | 4 × ¾   | -                            | -        | 15   | 11       |
| 50      | 2        | Class 150       | 4 × 5/8 | 35                           | 26       | 22   | 16       |
| 50      | 2        | Class 300       | 8 × 5/8 | 18                           | 13       | 11   | 8        |
| 80      | 3        | Class 150       | 4 × 5/8 | 60                           | 44       | 43   | 32       |
| 80      | 3        | Class 300       | 8 × ¾   | 38                           | 28       | 26   | 19       |
| 100     | 4        | Class 150       | 8 × 5/8 | 42                           | 31       | 31   | 23       |
| 100     | 4        | Class 300       | 8 × ¾   | 58                           | 43       | 40   | 30       |
| 150     | 6        | Class 150       | 8 × ¾   | 79                           | 58       | 59   | 44       |

| Nominal    | diameter                                                    | Pressure rating | Screws     | Max. screw tightening torque |          |      | rque     |  |
|------------|-------------------------------------------------------------|-----------------|------------|------------------------------|----------|------|----------|--|
| [mm]       | [in]                                                        | [ngi]           | [in]       | F                            | HR       |      | PUR      |  |
| [mm]       | [in]                                                        | [psi]           | [in]       | [Nm]                         | [lbf·ft] | [Nm] | [lbf·ft] |  |
| 150        | 6                                                           | Class 300       | 12 × ¾     | 70                           | 52       | 51   | 38       |  |
| 200        | 8                                                           | Class 150       | 8 × ¾      | 107                          | 79       | 80   | 59       |  |
| 250        | 10                                                          | Class 150       | 12 × 7/8   | 101                          | 74       | 75   | 55       |  |
| 300        | 12                                                          | Class 150       | 12 × 7/8   | 133                          | 98       | 103  | 76       |  |
| 350        | 14                                                          | Class 150       | 12 × 1     | 135                          | 100      | 158  | 117      |  |
| 400        | 16                                                          | Class 150       | 16 × 1     | 128                          | 94       | 150  | 111      |  |
| 450        | 18                                                          | Class 150       | 16 × 1 1/8 | 204                          | 150      | 234  | 173      |  |
| 500        | 20                                                          | Class 150       | 20 × 1 1/8 | 183                          | 135      | 217  | 160      |  |
| 600        | 24                                                          | Class 150       | 20 × 1 1/4 | 268                          | 198      | 307  | 226      |  |
| Abbreviati | Abbreviations (liner): HR = hard rubber, PUR = polyurethane |                 |            |                              |          |      |          |  |

# Maximum screw tightening torques for JIS B2220

| Nominal diameter       | Pressure rating                                             | Screws   | Max. screw tighte | ening torque [Nm] |  |  |  |  |
|------------------------|-------------------------------------------------------------|----------|-------------------|-------------------|--|--|--|--|
| [mm]                   | [bar]                                                       | [mm]     | HR                | PUR               |  |  |  |  |
| 25                     | 10K                                                         | 4 × M16  | -                 | 19                |  |  |  |  |
| 25                     | 20K                                                         | 4 × M16  | -                 | 19                |  |  |  |  |
| 32                     | 10K                                                         | 4 × M16  | -                 | 22                |  |  |  |  |
| 32                     | 20K                                                         | 4 × M16  | -                 | 22                |  |  |  |  |
| 40                     | 10K                                                         | 4 × M16  | -                 | 24                |  |  |  |  |
| 40                     | 20K                                                         | 4 × M16  | -                 | 24                |  |  |  |  |
| 50                     | 10K                                                         | 4 × M16  | 40                | 33                |  |  |  |  |
| 50                     | 20K                                                         | 8 × M16  | 20                | 17                |  |  |  |  |
| 65                     | 10K                                                         | 4 × M16  | 55                | 45                |  |  |  |  |
| 65                     | 20K                                                         | 8 × M16  | 28                | 23                |  |  |  |  |
| 80                     | 10K                                                         | 8 × M16  | 29                | 23                |  |  |  |  |
| 80                     | 20K                                                         | 8 × M20  | 42                | 35                |  |  |  |  |
| 100                    | 10K                                                         | 8 × M16  | 35                | 29                |  |  |  |  |
| 100                    | 20K                                                         | 8 × M20  | 56                | 48                |  |  |  |  |
| 125                    | 10K                                                         | 8 × M20  | 60                | 51                |  |  |  |  |
| 125                    | 20K                                                         | 8 × M22  | 91                | 79                |  |  |  |  |
| 150                    | 10K                                                         | 8 × M20  | 75                | 63                |  |  |  |  |
| 150                    | 20K                                                         | 12 × M22 | 81                | 72                |  |  |  |  |
| 200                    | 10K                                                         | 12 × M20 | 61                | 52                |  |  |  |  |
| 200                    | 20K                                                         | 12 × M22 | 91                | 80                |  |  |  |  |
| 250                    | 10K                                                         | 12 × M22 | 100               | 87                |  |  |  |  |
| 250                    | 20K                                                         | 12 × M24 | 159               | 144               |  |  |  |  |
| 300                    | 10K                                                         | 16 × M22 | 74                | 63                |  |  |  |  |
| 300                    | 20K                                                         | 16 × M24 | 138               | 124               |  |  |  |  |
| Abbreviations (liner): | Abbreviations (liner): HR = hard rubber, PUR = polyurethane |          |                   |                   |  |  |  |  |

Maximum screw tightening torques for AWWA C207, Class D

| Nom<br>diam |                                                             | Screws     | Max. screw tightening torque |          |      |          |
|-------------|-------------------------------------------------------------|------------|------------------------------|----------|------|----------|
| [mm]        | [in]                                                        | [in]       | HR                           |          | PUR  |          |
|             |                                                             |            | [Nm]                         | [lbf·ft] | [Nm] | [lbf·ft] |
| 700         | 28                                                          | 28 × 1 1/4 | 247                          | 182      | 292  | 215      |
| 750         | 30                                                          | 28 × 1 1/4 | 287                          | 212      | 302  | 223      |
| 800         | 32                                                          | 28 × 1 ½   | 394                          | 291      | 422  | 311      |
| 900         | 36                                                          | 32 × 1 ½   | 419                          | 309      | 430  | 317      |
| Abbrevia    | Abbreviations (liner): HR = hard rubber, PUR = polyurethane |            |                              |          |      |          |

# Maximum screw tightening torques for AS 2129, Table E

| Nominal diameter | Screws   | Max. screw tightening torque [Nm] |     |  |
|------------------|----------|-----------------------------------|-----|--|
| [mm]             | [mm]     | HR                                | PUR |  |
| 50               | 4 × M16  | 32                                | -   |  |
| 80               | 4 × M16  | 49                                | -   |  |
| 100              | 8 × M16  | 38                                | -   |  |
| 150              | 8 × M20  | 64                                | -   |  |
| 200              | 8 × M20  | 96                                | -   |  |
| 250              | 12 × M20 | 98                                | -   |  |
| 300              | 12 × M24 | 123                               | -   |  |
| 350              | 12 × M24 | 203                               | -   |  |
| 400              | 12 × M24 | 226                               | -   |  |
| 450              | 16 × M24 | 226                               | -   |  |
| 500              | 16 × M24 | 271                               | -   |  |
| 600              | 16 × M30 | 439                               | -   |  |
| 700              | 20 × M30 | 355                               | -   |  |
| 750              | 20 × M30 | 559                               | -   |  |
| 800              | 20 × M30 | 631                               | -   |  |
| 900              | 24 × M30 | 627                               | -   |  |

# Maximum screw tightening torques for AS 4087, PN 16

| Nominal diameter | Screws   | Max. screw tightening torque [Nm] |     |
|------------------|----------|-----------------------------------|-----|
| [mm]             | [mm]     | HR                                | PUR |
| 50               | 4 × M16  | 32                                | _   |
| 80               | 4 × M16  | 49                                | _   |
| 100              | 4 × M16  | 76                                | _   |
| 150              | 8 × M20  | 52                                | _   |
| 200              | 8 × M20  | 77                                | _   |
| 250              | 8 × M20  | 147                               | -   |
| 300              | 12 × M24 | 103                               | -   |
| 350              | 12 × M24 | 203                               | -   |

| Nominal diameter                                            | Screws   | Max. screw tighte | ning torque [Nm] |
|-------------------------------------------------------------|----------|-------------------|------------------|
| [mm]                                                        | [mm]     | HR                | PUR              |
| 375                                                         | 12 × M24 | 137               | -                |
| 400                                                         | 12 × M24 | 226               | -                |
| 450                                                         | 12 × M24 | 301               | -                |
| 500                                                         | 16 × M24 | 271               | -                |
| 600                                                         | 16 × M27 | 393               | -                |
| 700                                                         | 20 × M27 | 330               | -                |
| 750                                                         | 20 × M30 | 529               | -                |
| 800                                                         | 20 × M33 | 631               | -                |
| 900                                                         | 24 × M33 | 627               | -                |
| Abbreviations (liner): HR = hard rubber, PUR = polyurethane |          |                   |                  |

Nominal screw tightening torques

Nominal screw tightening torques for JIS B2220

| Nominal diameter                                            | Pressure rating | Screws     | Nom. screw tighte | ening torque [Nm] |
|-------------------------------------------------------------|-----------------|------------|-------------------|-------------------|
| [mm]                                                        | [bar]           | [mm]       | HR                | PUR               |
| 350                                                         | 10K             | 16 × M22   | 109               | 109               |
|                                                             | 20K             | 16 × M30×3 | 217               | 217               |
| 400                                                         | 10K             | 16 × M24   | 163               | 163               |
|                                                             | 20K             | 16 × M30×3 | 258               | 258               |
| 450                                                         | 10K             | 16 × M24   | 155               | 155               |
|                                                             | 20K             | 16 × M30×3 | 272               | 272               |
| 500                                                         | 10K             | 16 × M24   | 183               | 183               |
|                                                             | 20K             | 16 × M30×3 | 315               | 315               |
| 600                                                         | 10K             | 16 × M30   | 235               | 235               |
|                                                             | 20K             | 16 × M36×3 | 381               | 381               |
| 700                                                         | 10K             | 16 × M30   | 300               | 300               |
| 750                                                         | 10K             | 16 × M30   | 339               | 339               |
| Abbreviations (liner): HR = hard rubber, PUR = polyurethane |                 |            |                   |                   |

# 6.2.4 Mounting the transmitter of the remote version, Proline 800 - Advanced

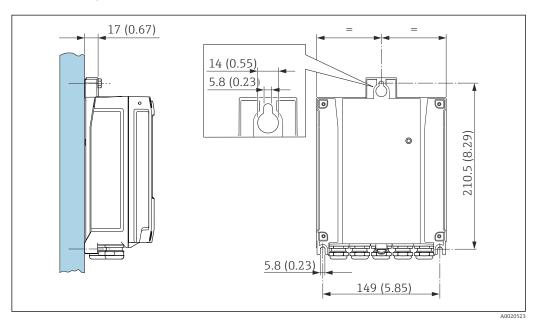
# **A** CAUTION

## Ambient temperature too high!

Danger of electronics overheating and housing deformation.

- ▶ Do not exceed the permitted maximum ambient temperature.  $\rightarrow$  🗎 28
- ► If operating outdoors: Avoid direct sunlight and exposure to weathering, particularly in warm climatic regions.

#### **A** CAUTION


#### Excessive force can damage the housing!

► Avoid excessive mechanical stress.

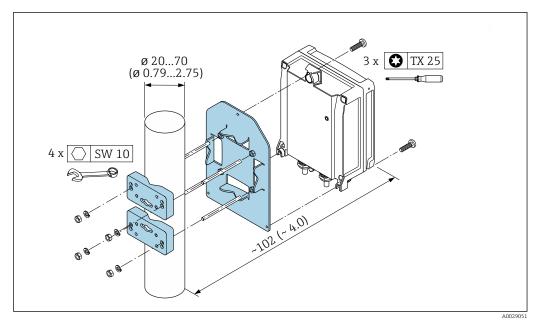
The transmitter of the remote version can be mounted in the following ways:

- Wall mounting
- Pipe mounting

# Wall mounting Proline 800 - Advanced



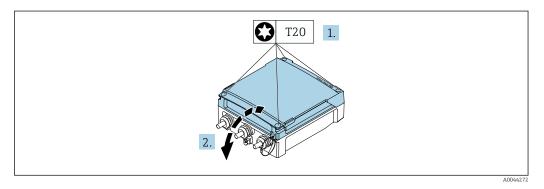
- 5 Unit mm (in)
- 1. Drill the holes.
- 2. Insert wall plugs into the drilled holes.
- 3. Lightly screw in the securing screws.
- 4. Fit the transmitter housing over the securing screws and hook into place.
- 5. Tighten the securing screws.
- 6. Mount the antenna directly on the wall using the antenna bracket.


# Post mounting Proline 800 - Advanced

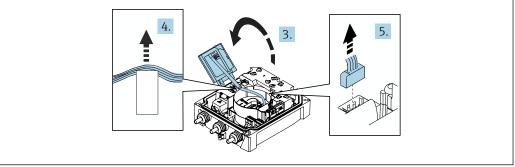
# NOTICE

# Excessive tightening torque applied to the fixing screws!

Risk of damaging the plastic transmitter.

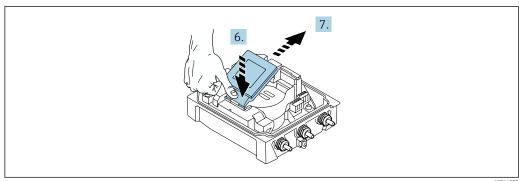

- ► Tighten the fixing screws as per the tightening torque: 2.5 Nm (1.8 lbf ft)
- ▶ Mount the antenna on the post using the antenna bracket.



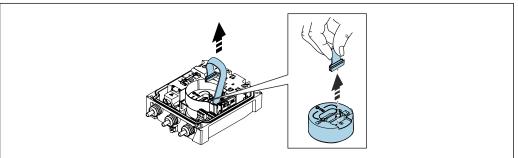

■ 6 Unit mm (in)

# 6.2.5 Turning the transmitter housing, Proline 800 - Advanced

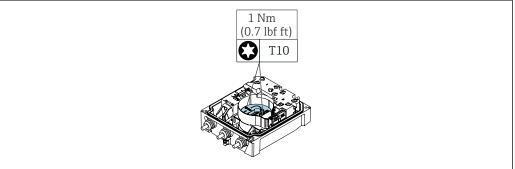
To provide easier access to the connection compartment or display module, the transmitter housing can be turned.



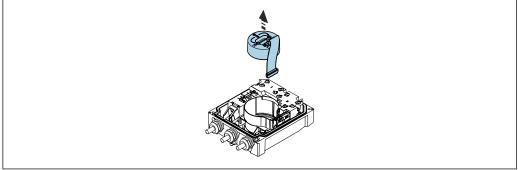

- 1. Loosen the fixing screws of the housing cover (when reassembling, pay attention to the tightening torque  $\rightarrow \triangleq 42$ ).
- 2. Open the housing cover.




A004427

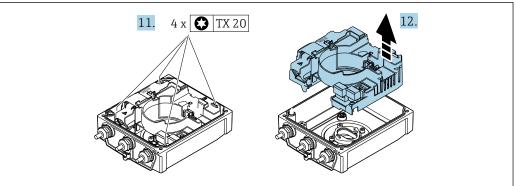

- 3. Open the display module.
- 4. Push the ribbon cable out of the holder.
- 5. Disconnect the plug.




- 6. Push the display module down gently at the hinge.
- 7. Pull the display module out of the holder.

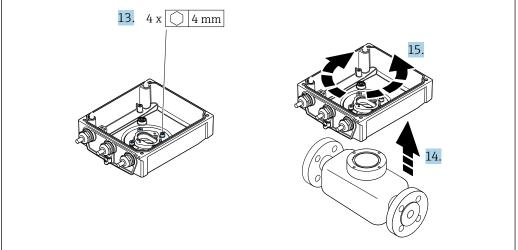


8. Disconnect the plug of the electronics module.




9. Release the screws on the electronics module.




A0042843

10. Remove the electronics module.



A004427

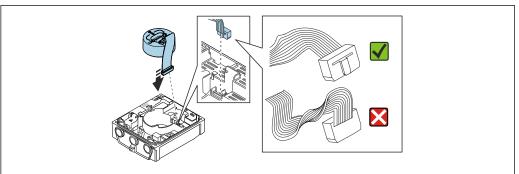
- 11. Loosen the fixing screws of the main electronics module (when reassembling, pay attention to the tightening torque  $\rightarrow \triangleq 42$ ).
- 12. Remove the main electronics module.



A004427

- 13. Loosen the fixing screws of the transmitter housing (when reassembling, pay attention to the tightening torque  $\rightarrow \implies 42$ ).
- 14. Lift the transmitter housing.
- 15. Turn the housing to the desired position in increments of 90°.

#### Reassembling the transmitter housing


#### **NOTICE**

# Excessive tightening torque applied to the fixing screws!

Risk of damaging the plastic transmitter.

- ► Tighten the fixing screws as per the tightening torque: 2.5 Nm (1.8 lbf ft)
- ► Mount the antenna on the post using the antenna bracket.

| Step<br>→   40 | Fixing screw            | Tightening torques  |
|----------------|-------------------------|---------------------|
| 1              | Housing cover           | 2.5 Nm (1.8 lbf ft) |
| 9              | Electronics module      | 0.6 Nm (0.4 lbf ft) |
| 11             | Main electronics module | 1.5 Nm (1.1 lbf ft) |
| 13             | Transmitter housing     | 5.5 Nm (4.1 lbf ft) |



A004427

▶ Reverse the procedure to reassemble the measuring device.

# 6.2.6 Mounting the external battery pack

# 6.3 Post-mounting check

| Is the device undamaged (visual inspection)?                                                                                                                                                                                                                                                        |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Does the measuring device conform to the measuring point specifications?  For example:  Process temperature → 🖹 116 → 🖺 128  Pressure (refer to the section on "Pressure-temperature ratings" in the "Technical Information" document. → 🖺 128  Ambient temperature → 🖺 28  Measuring range → 🖺 103 |  |
| Has the correct orientation been selected for the sensor →   According to sensor type  According to medium temperature  According to medium properties (outgassing, with entrained solids)                                                                                                          |  |
| Does the arrow on the sensor nameplate match the actual direction of flow of the fluid through the piping $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                        |  |
| Are the measuring point identification and labeling correct (visual inspection)?                                                                                                                                                                                                                    |  |
| Is the device adequately protected against precipitation and direct sunlight?                                                                                                                                                                                                                       |  |
| Have the fixing screws been tightened with the correct tightening torque?                                                                                                                                                                                                                           |  |

# 7 Electrical connection

#### NOTICE

In the device versions with a mains connection (order code for "Power supply" option K or S), the device does not have an internal circuit breaker to disconnect from the power supply network.

- ► For this reason, assign the measuring device a switch or power-circuit breaker so that the power supply line can be easily disconnected from the mains.
- ▶ Although the measuring device is equipped with a fuse, additional overcurrent protection (maximum 16 A) should be integrated into the system installation.

# 7.1 Electrical safety

In accordance with applicable national regulations.

# 7.2 Connecting requirements

# 7.2.1 Requirements for connecting cable

The connecting cables provided by the customer must fulfill the following requirements.

#### Permitted temperature range

- The installation guidelines that apply in the country of installation must be observed.
- The cables must be suitable for the minimum and maximum temperatures to be expected.

## Power supply cable (incl. conductor for the inner ground terminal)

Standard installation cable is sufficient.

#### Signal cable

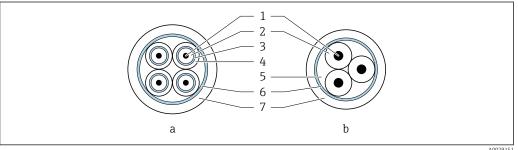
Pulse /switch output

Standard installation cable is sufficient.

Modbus RS485

The EIA/TIA-485 standard specifies two types of cable (A and B) for the bus line which can be used for every transmission rate. Cable type A is recommended.

| Cable type               | A                                                                                                                                            |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Characteristic impedance | 135 to 165 $\Omega$ at a measuring frequency of 3 to 20 MHz                                                                                  |
| Cable capacitance        | < 30 pF/m                                                                                                                                    |
| Wire cross-section       | > 0.34 mm <sup>2</sup> (22 AWG)                                                                                                              |
| Cable type               | Twisted pairs                                                                                                                                |
| Loop resistance          | ≤110 Ω/km                                                                                                                                    |
| Signal damping           | Max. 9 dB over the entire length of the cable cross-section                                                                                  |
| Shield                   | Copper braided shielding or braided shielding with foil shield. When grounding the cable shield, observe the grounding concept of the plant. |


## Connecting cable for remote version

#### Electrode cable

| Standard cable                       | 3 ×0.38 mm <sup>2</sup> (20 AWG) with common, braided copper shield ( $\phi$ ~9.5 mm (0.37 in)) and individual shielded cores |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Cable for empty pipe detection (EPD) | $4\times0.38~mm^2$ (20 AWG) with common, braided copper shield (4 $\sim\!9.5~mm$ (0.37 in)) and individual shielded cores     |
| Conductor resistance                 | ≤50 Ω/km (0.015 Ω/ft)                                                                                                         |
| Capacitance: core/shield             | ≤420 pF/m (128 pF/ft)                                                                                                         |
| Operating temperature                | −25 to +70 °C (−13 to +158 °F)                                                                                                |

# Coil current cable

| Standard cable                          | $3\times0.75~mm^2$ (18 AWG) with common, braided copper shield (# $\sim\!9$ mm (0.35 in)) |
|-----------------------------------------|-------------------------------------------------------------------------------------------|
| Conductor resistance                    | ≤37 Ω/km (0.011 Ω/ft)                                                                     |
| Capacitance: core/core, shield grounded | ≤120 pF/m (37 pF/ft)                                                                      |
| Operating temperature                   | −25 to +70 °C (−13 to +158 °F)                                                            |
| Test voltage for cable insulation       | ≤ AC 1433 V rms 50/60 Hz or ≥ DC 2026 V                                                   |



A0029151

#### **₽** 7 Cable cross-section

- Electrode cable а
- Coil current cable b
- Core
- 2 Core insulation
- 3 Core shield
- Core jacket
- Core reinforcement
- Cable shield
- Outer jacket

## Armored connecting cable

Armored connecting cables with an additional, reinforcing metal braid should be used:

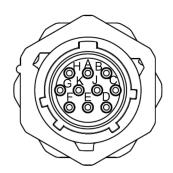
- When laying the cable directly in the ground
- Where there is a risk of damage from rodents
- If using the device below IP68 degree of protection

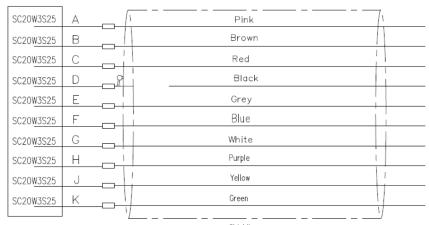
Operation in environments with strong electrical interference

specifications  $\rightarrow \blacksquare 115$ .

Grounding is by means of the ground terminal provided for the purpose inside the connection housing. The stripped and twisted lengths of cable shield to the ground terminal must be as short as possible.

The selection of a sensor with a steel housing is recommended for use in the vicinity of electrical power supply lines with strong currents.


#### Cable diameter


- Cable glands supplied:
  - For standard cable: M20  $\times$  1.5 with cable  $\phi$  6 to 12 mm (0.24 to 0.47 in)
  - For reinforced cable: M20  $\times$  1.5 with cable  $\phi$  9.5 to 16 mm (0.37 to 0.63 in)
- (Plug-in) spring terminals for wire cross-sections 0.5 to 2.5 mm<sup>2</sup> (20 to 14 AWG)

# 7.2.2 Required tool

- Torque wrench
- For cable entries: use appropriate tool
- Wire stripper
- When using stranded cables: crimper for wire end ferrule
- For removing cables from terminal: flat blade screwdriver ≤ 3 mm (0.12 in)

# 7.2.3 Pin assignment, Proline 800 - Standard





UTS61210S Shielding

| Pin | Function                                       |
|-----|------------------------------------------------|
| A   | PSO1+ (pulse/status output 1+)                 |
| В   | COM (reference potential pulse/status outputs) |
| С   | NC (not connected)                             |
| D   | Earth                                          |
| Е   | RS485_+ (Modbus B)                             |

| Pin | Function                       |
|-----|--------------------------------|
| F   | RS485 (Modbus A)               |
| G   | PSO3+ (pulse/status output 3+) |
| Н   | PSO2+ (pulse/status output 2+) |
| J   | NC (not connected)             |
| K   | NC (not connected)             |

| Connection methods available Outputs | Possible options for order code                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin                                  | "Electrical connection" Option E: MIL-DTL-26482 plug  The connector solution on the Promag 800 with standard transmitter ensures IP68 protection in both the plugged-in and disconnected state on the socket side. This plastic connector solution is fully compatible with MIL-DTL-26482 Series I. Mixing it with MIL-DTL-26482 Series I (metal) and the plastic version does not ensure compliance with the IP68, type 6P protection class. |

# 7.2.4 Terminal assignment, Proline 800 - Advanced

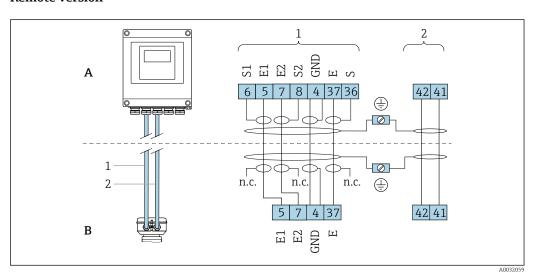
#### Transmitter

| Connection methods available |              |                                                                                                                               |
|------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------|
| Outputs                      | Power supply | Possible options for order code                                                                                               |
| Terminals                    | Terminals    | "Electrical connection" ■ Option A: coupling M20x1 ■ Option B: thread M20x1 ■ Option C: thread G ½" ■ Option D: thread NPT ½" |

# Supply voltage

| Order code for<br>"Power supply" | Terminal numbers   | Terminal voltage |              | Frequency range |
|----------------------------------|--------------------|------------------|--------------|-----------------|
| Option <b>K</b> , <b>S</b>       | 1 (L+/L), 2 (L-/N) | DC 24 V          | -20 to +25 % | _               |
|                                  |                    | AC 100 to 240 V  | -15 to +10 % | 50/60 Hz, ±3 Hz |

| Order code for "Output" | Terminal numbers           |                            |                            |                                        |
|-------------------------|----------------------------|----------------------------|----------------------------|----------------------------------------|
| and "Input"             | 20                         | 21                         | 22                         | 23                                     |
| Option I, K, M, N, P    | Pulse-/<br>switch output 2 | Pulse-/<br>switch output 3 | Pulse-/<br>switch output 1 | Common<br>reference<br>potential (COM) |


If a status input is also connected, the following terminals must be assigned, which are located on the second terminal block of the IO board:

| Order code for "Output" and "Input" | Terminal numbers               |                                |  |
|-------------------------------------|--------------------------------|--------------------------------|--|
|                                     | 24                             | 25                             |  |
| Option I, M, P                      | Positive terminal status input | Negative terminal status input |  |

#### Signal transmission Modbus RS485

| Order code for "Output" and "Input" | Terminal numbers |        |
|-------------------------------------|------------------|--------|
|                                     | 26 (+)           | 27 (-) |
| Option <b>M</b>                     | В                | A      |

#### Remote version



■ 8 Remote version terminal assignment

- A Transmitter wall-mount housing
- B Sensor connection housing
- 1 Electrode cable
- 2 Coil current cable
- n.c. Not connected, insulated cable shields

Terminal No. and cable colors: 6/5 = brown; 7/8 = white; 4 = green; 36/37 = yellow

# 7.2.5 Shielding and grounding

#### Shielding and grounding concept

- 1. Maintain electromagnetic compatibility (EMC).
- 2. Pay attention to the protection of persons.
- 3. Comply with national installation regulations and guidelines.
- 4. Observe cable specifications  $\rightarrow \triangleq 44$ .
- 5. Keep the stripped and twisted lengths of cable shield to the ground terminal as short as possible.
- 6. Shield cables fully.

# Grounding of the cable shield

#### NOTICE

In systems without potential matching, the multiple grounding of the cable shield causes mains frequency equalizing currents!

Damage to the bus cable shield.

- Only ground the bus cable shield to either the local ground or the protective ground at one end.
- ▶ Insulate the shield that is not connected.

To comply with EMC requirements:

1. Ensure the cable shield is grounded to the potential matching line at multiple points.

2. Connect every local ground terminal to the potential matching line.

# 7.2.6 Requirements for the supply unit

Supply voltage

| Order code<br>"Power supply"            | Terminal numbers     | Terminal voltage |              | Frequency range |
|-----------------------------------------|----------------------|------------------|--------------|-----------------|
| Option K                                | 1 (7 - (7) 2 (7 (31) | DC 24 V          | -20 to +25 % | _               |
| Option <b>S</b> (wide range power unit) | 1 (L+/L), 2 (L-/N)   | AC 100 to 240 V  | -15 to +10 % | 50/60 Hz, ±3 Hz |

# 7.2.7 Preparing the measuring device

Carry out the steps in the following order:

- 1. Mount the sensor and transmitter.
- 2. Sensor connection housing: Connect connecting cable.
- 3. Transmitter: Connect connecting cable.
- 4. Transmitter: Connect signal cable and cable for supply voltage.

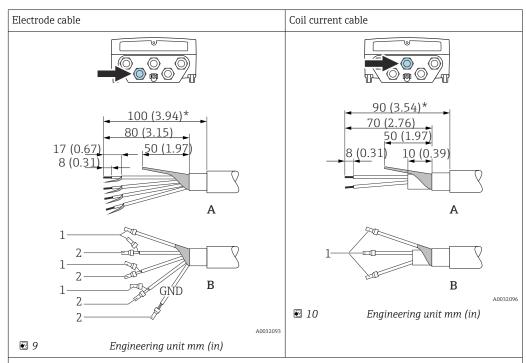
#### NOTICE

#### Insufficient sealing of the housing!

Operational reliability of the measuring device could be compromised.

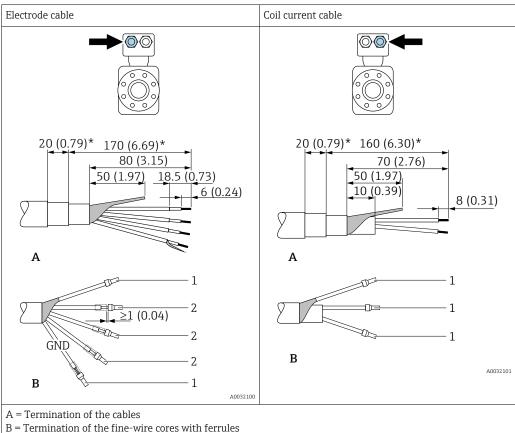
- ▶ Use suitable cable glands corresponding to the degree of protection.
- 1. Remove dummy plug if present.
- 2. If the measuring device is supplied without cable glands:
  Provide suitable cable gland for corresponding connecting cable.
- 3. If the measuring device is supplied with cable glands:

  Observe requirements for connecting cables → 


  44.

# 7.2.8 Preparing the connecting cable for the remote version

When terminating the connecting cable, pay attention to the following points:


- In the case of the electrode cable:
   Make sure that the ferrules do not touch the core shields on the sensor side.
   Minimum distance = 1 mm (exception: green "GND" cable)
- 2. In the case of the coil current cable:
  Insulate one core of the three-core cable at the level of the core reinforcement. You only require two cores for the connection.
- 3. For cables with fine-wire cores (stranded cables): Fit the cores with ferrules.

#### Transmitter



- A = Termination of the cables
- $\boldsymbol{B}$  = Termination of the fine-wire cores with ferrules
- $1 = \text{Red ferrules}, \phi 1.0 \text{ mm } (0.04 \text{ in})$
- 2 = White ferrules,  $\phi$  0.5 mm (0.02 in)
- \* = Stripping only for reinforced cables

#### Sensor



- $1 = \text{Red ferrules}, \phi 1.0 \text{ mm } (0.04 \text{ in})$
- $2 = \text{White ferrules}, \phi 0.5 \text{ mm } (0.02 \text{ in})$
- \* = Stripping only for reinforced cables

#### 7.3 Connecting the measuring device

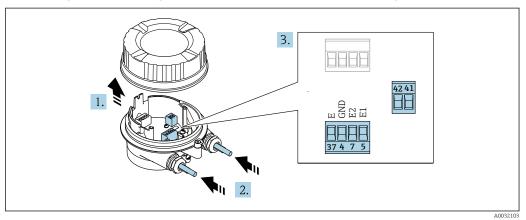
#### **▲** WARNING

#### Risk of electric shock! Components carry dangerous voltages!

- ▶ Have electrical connection work carried out by correspondingly trained specialists only.
- Observe applicable federal/national installation codes and regulations.
- Comply with local workplace safety regulations.
- Observe grounding concept of the plant.
- Never mount or wire the measuring device while it is connected to the supply voltage.
- Before the supply voltage is applied, connect the protective ground to the measuring device.

#### 7.3.1 Connecting the remote version

## **A** WARNING


# Risk of damaging electronic components!

- Connect the sensor and transmitter to the same potential equalization.
- Only connect the sensor to a transmitter with the same serial number.
- Ground the connection housing of the sensor via the external screw terminal.

The following sequence of steps is recommended for the remote version:

- 1. Mount the sensor and transmitter.
- 2. Connect the connecting cable of the remote version.
- 3. Connect the transmitter.

## Connecting the connecting cable to the sensor connection housing



■ 11 Sensor: connection module

- 1. Loosen the securing clamp of the housing cover.
- 2. Unscrew and lift off the housing cover.

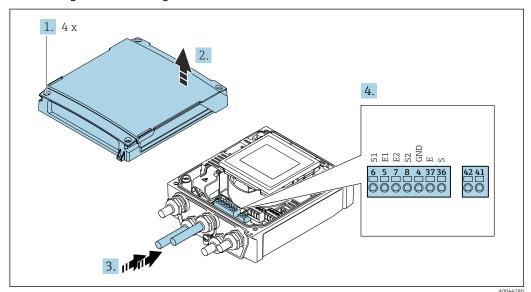
### 3. NOTICE

#### For conduit extensions:

► Fit O-ring on cable and push it back sufficiently. When inserting the cable, the O-ring must be located outside the conduit extension.

Push the cable through the cable entry. To ensure tight sealing, do not remove the sealing ring from the cable entry.

- 4. Strip the cable and cable ends. In the case of stranded cables, also fit ferrules .  $\rightarrow \implies 49$
- 5. Connect the cable according to the terminal assignment .  $\rightarrow$   $\stackrel{\triangle}{=}$  48
- 6. Firmly tighten the cable glands.


#### 7. A WARNING

# Housing degree of protection may be voided due to insufficient sealing of the housing.

► Screw in the screw without using any lubricant. The threads on the cover are coated with a dry lubricant.

Reverse the procedure to reassemble the sensor.

## Connecting the connecting cable to the transmitter



■ 12 Transmitter: main electronics module with terminals

- 1. Loosen the 4 fixing screws on the housing cover.
- 2. Open the housing cover.
- 3. Push the cable through the cable entry. To ensure tight sealing, do not remove the sealing ring from the cable entry.
- 5. Connect the cable according to the terminal assignment  $. \rightarrow \triangleq 48$
- 6. Firmly tighten the cable glands.

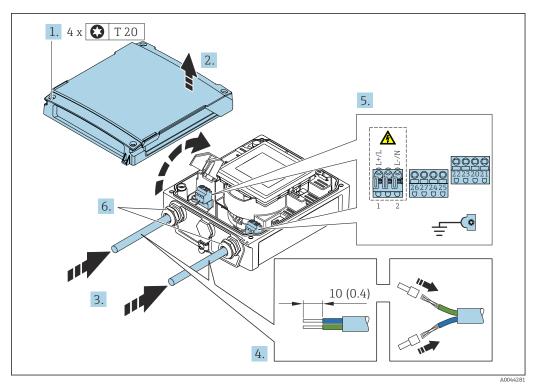
#### 7. A WARNING

Housing degree of protection may be voided due to insufficient sealing of the housing.

► Screw in the screw without using any lubricant.

Reassemble the transmitter in the reverse order.

# 7.3.2 Connecting the transmitter


#### **A** WARNING

Housing degree of protection may be voided due to insufficient sealing of the housing.

► Screw in the screw without using any lubricant. The threads on the cover are coated with a dry lubricant.

Tightening torques for plastic housing

| Housing cover fixing screw | 1.3 Nm      |
|----------------------------|-------------|
| Cable entry                | 4.5 to 5 Nm |
| Ground terminal            | 2.5 Nm      |



■ 13 Connecting the supply voltage and Modbus RS485

- 1. Loosen the 4 fixing screws on the housing cover.
- 2. Open the housing cover.
- 3. Push the cable through the cable entry. To ensure tight sealing, do not remove the sealing ring from the cable entry.
- 4. Strip the cable and cable ends. In the case of stranded cables, also fit ferrules .  $\rightarrow \implies 49$
- 5. Connect the cable according to the terminal assignment . For supply voltage: open the shock protection cover.
- 6. Firmly tighten the cable glands.

#### Reassembling the transmitter

- 1. Close the shock protection cover.
- 2. Close the housing cover.

## 3. **WARNING**

Housing degree of protection may be voided due to insufficient sealing of the housing.

► Screw in the screw without using any lubricant.

Tighten the 4 fixing screws on the housing cover.

# 7.3.3 Ensuring potential equalization

#### Introduction

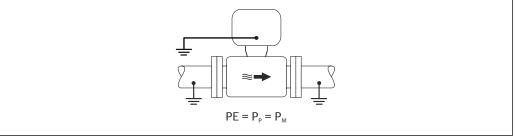
Correct potential equalization (equipotential bonding) is a prerequisite for stable and reliable flow measurement. Inadequate or incorrect potential equalization can result in device failure and present a safety hazard.

The following requirements must be observed to ensure correct, trouble-free measurement:

- The principle that the medium, the sensor and the transmitter must be at the same electrical potential applies.
- Take in-company grounding guidelines, materials and the grounding conditions and potential conditions of the pipe into consideration.
- The necessary potential equalization connections must be established using a ground cable with a minimum cross-section of 6 mm² (0.0093 in²) and a cable lug.
- In the case of remote device versions, the ground terminal in the example always refers to the sensor and not to the transmitter.
- You can order accessories such as ground cables and ground disks directly from Endress+Hauser → 🗎 101

#### Abbreviations used

- PE (Protective Earth): potential at the protective earth terminals of the device
- P<sub>P</sub> (Potential Pipe): potential of the pipe, measured at the flanges
- P<sub>M</sub> (Potential Medium): potential of the medium


#### Connection examples for standard situations

Unlined and grounded metal pipe

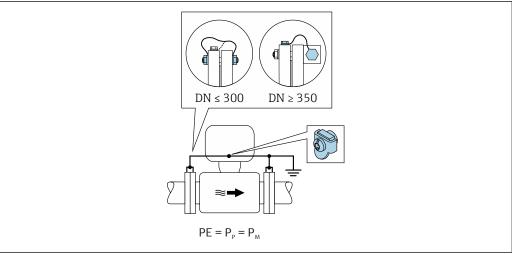
- Potential equalization is via the measuring pipe.
- The medium is set to ground potential.

#### Starting conditions:

- Pipes are correctly grounded on both sides.
- Pipes are conductive and at the same electrical potential as the medium



A0044854


► Attach the connection housing of the transmitter or sensor to ground potential by means of the ground terminal provided for this purpose.

Metal pipe without liner

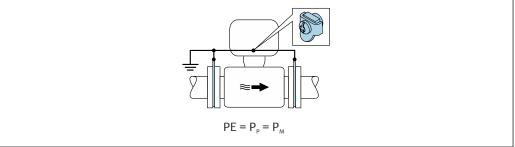
- Potential equalization is via the ground terminal and pipe flanges.
- The medium is set to ground potential.

#### Starting conditions:

- Pipes are not sufficiently grounded.
- Pipes are conductive and at the same electrical potential as the medium



A0042089


- 1. Connect both sensor flanges to the pipe flange via a ground cable and ground them.
- 2. Attach the connection housing of the transmitter or sensor to ground potential by means of the ground terminal provided for this purpose.
- 3. For DN  $\leq$  300 (12"): Mount the ground cable directly on the conductive flange coating of the sensor with the flange screws.
- 4. For DN  $\geq$  350 (14"): Mount the ground cable directly on the metal transport bracket. Observe the screw tightening torques: see the Brief Operating Instructions for the sensor

#### Plastic pipe or pipe with insulating liner

- Potential equalization is via the ground terminal and ground disks.
- The medium is set to ground potential.

#### Starting conditions:

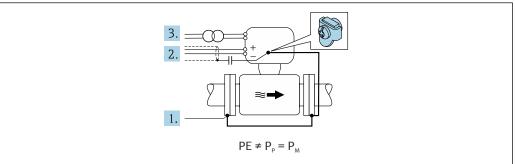
- The pipe has an insulating effect.
- Low-impedance medium grounding close to the sensor is not guaranteed.
- Equalizing currents through the medium cannot be ruled out.



A0044856

- 1. Connect the ground disks to the ground terminal of the transmitter or sensor connection housing via the ground cable.
- 2. Connect the connection to ground potential.

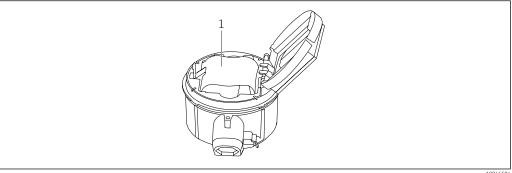
## Connection example with the potential of medium not equal to protective ground


In these cases, the medium potential can differ from the potential of the device.

## Metal, ungrounded pipe

The sensor and transmitter are installed in a way that provides electrical insulation from PE, e.g. applications for electrolytic processes or systems with cathodic protection.

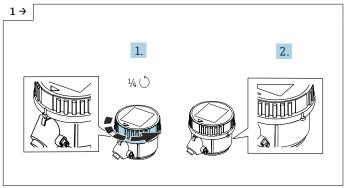
### Starting conditions:

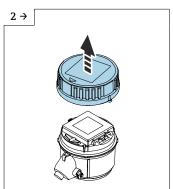

- Unlined metal pipe
- Pipes with an electrically conductive liner



- 1. Connect the pipe flanges and transmitter via the ground cable.
- 2. Route the shielding of the signal lines via a capacitor (recommended value  $1.5\mu F/$ 50V).
- 3. Device connected to power supply such that it is floating in relation to the protective earth (isolation transformer). This measure is not required in the case of 24V DC supply voltage without PE (= SELV power unit).

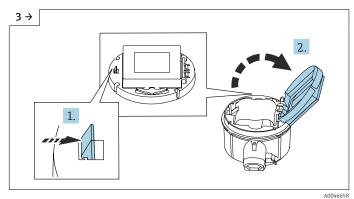
#### 7.4 Power supply via battery packs Proline 800 -Standard


#### 7.4.1 **Battery pack arrangement**




Battery pack

# 7.4.2 Inserting and connecting the battery pack


The device is delivered either with the batteries already installed, or enclosed separately, depending on national standards and guidelines. If the batteries are inserted and connected upon delivery, it is important to ensure that switch "B" is set to "ON" in order to operate the device.





► Turn the cover to the right by a 1/4 turn.

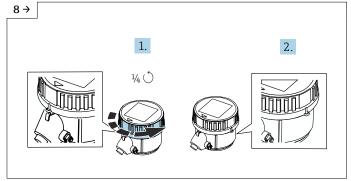
► Lift off the cover.



**4** → A B

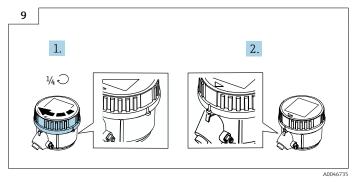
A0046591

▶ Open the cover of the electronics carrier.


► Set switch "B" to "ON".



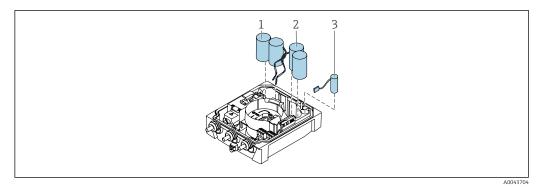
6 → A0046744


Insert the battery plug and place the cable in the recess of the battery carrier as shown in the graphic. Place the battery in the battery compartment. ► Close the cover of the electronics carrier.





► Fit the cover on the transmitter housing.


► Turn the cover to the right by a 1/4 turn.

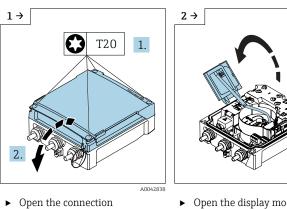


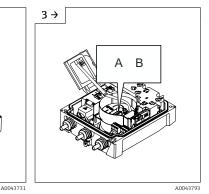
► Turn the cover to the left by a 1/4 turn.

# 7.5 Power supply via battery packs, Proline 800 - Advanced

# 7.5.1 Battery pack arrangement



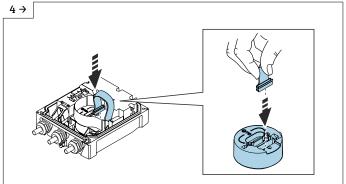

1 Battery pack 1

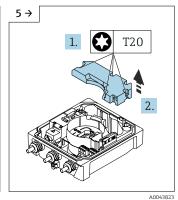

2 Battery pack 2

3 Buffer capacitor

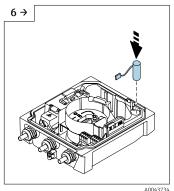
#### 7.5.2 Inserting and connecting buffer capacitors and battery packs

- The device is delivered either with the batteries already installed, or enclosed separately, depending on national standards and guidelines. If the batteries are inserted and connected upon delivery, to operate the device it is important to ensure that switch "B" is set to "ON" and the ribbon cable is connected to the electronics
- The device starts once the buffer capacitor is connected. After 15 seconds, a measured value appears on the display.
- Connect the battery packs immediately once the buffer capacitor has been connected.

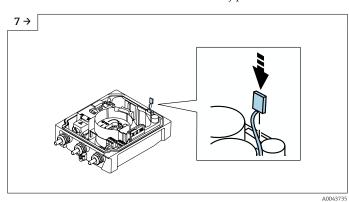



compartment cover.

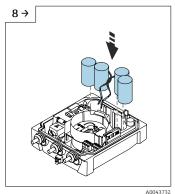

▶ Open the display module.

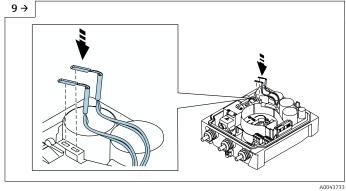
► Set switch "B" to "ON".





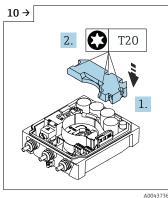

Remove the cover of the battery pack.

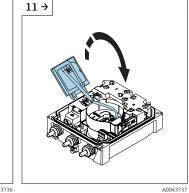


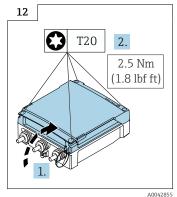


► Insert the buffer capacitor.



A0044382


▶ Plug the buffer capacitor into connector 3.



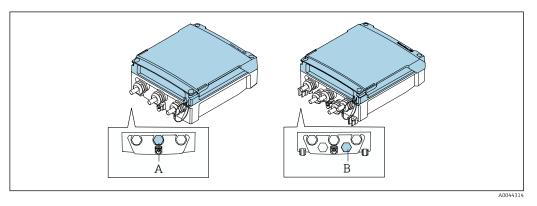




▶ Insert battery packs 1 and 2.

- ▶ Plug the connector of battery pack 1 into connector 1.
- ▶ Plug the connector of battery pack 2 into connector 2.
- ► The device switches on.
- ▶ After 15 seconds, a measured value appears on the display.





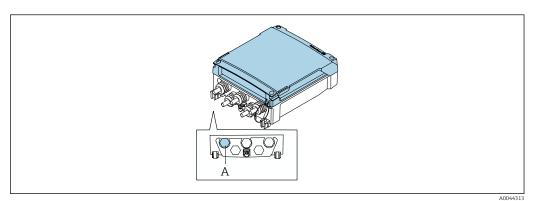



Mount the cover of the battery pack.

Close the display module.

 Close the connection compartment cover.

# 7.6 Connecting the pressure sensor, Proline 800 - Advanced




- A Plug for the pressure sensor on the housing of the compact transmitter
- *B* Plug for the pressure sensor on the housing of the remote transmitter

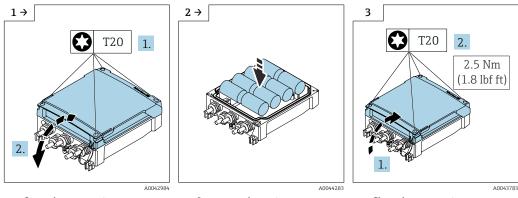
Connect the pressure sensor to the plug indicated.

# 7.7 Power supply via the external battery pack, Proline 800 - Advanced

# 7.7.1 Connecting the external battery pack



A Plug for the external battery pack


Connect the external battery pack to the plug indicated.

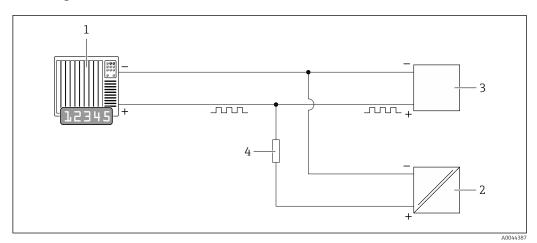
# 7.7.2 Inserting batteries into the external battery pack

### **WARNING**

#### Batteries may explode if not handled properly!

- ▶ Do not recharge batteries.
- ► Do not open batteries.
- ▶ Do not expose batteries to naked flame.
- Observe the specified temperature range of the batteries.

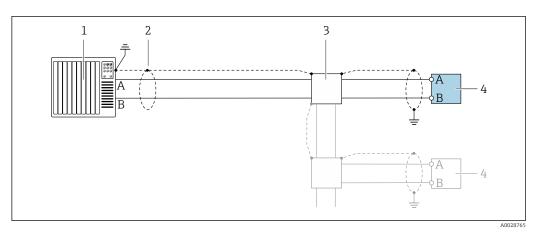



- Open the connection compartment cover.
- Insert new batteries.
- Close the connection compartment cover.

The device does not display the remaining capacity of the external batteries. The value on the display refers exclusively to the batteries fitted internally. If internal and external batteries are connected, the external batteries are used first of all, and then the internal batteries are used.

# 7.8 Special connection instructions

# 7.8.1 Connection examples


# Pulseoutput



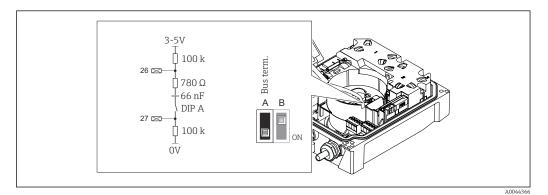
■ 14 Connection example for pulse output (passive)

- 1 Automation system with pulse input (e.g. PLC)
- 2 External DC power supply (e.g. 24 VDC)
- 4 Pull-up resistor (e.g. 10 kOhm)

#### Modbus RS485



■ 15 Connection example for Modbus RS485, non-hazardous area


- 1 Control system (e.g. PLC)
- 3 Distribution box (optional)
- 4 Transmitter

# 7.9 Hardware settings

# 7.9.1 Activating the terminating resistor

#### Modbus RS485

To avoid incorrect communication transmission caused by impedance mismatch, terminate the Modbus RS485 cable correctly at the start and end of the bus segment.



■ 16 Terminating resistor can be enabled via DIP switch on the electronics module

= 10 Terminating resistor carries chapted via 211 Switch on the electronics module

If the device is not powered via an external mains voltage (only possible with order code for "Energy supply", option K "100-240VAC/ 19-30VDC, lithium battery" and option S "100-240VAC/19-30VDC, w/o battery"), switch "A" must always be set to "ON".

# 7.10 Ensuring the degree of protection

# 7.10.1 Degree of protection IP68, type 6P enclosure or IP66/67, type 4X enclosure, Proline 800 - Standard

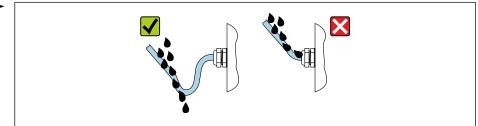
Depending on the version, the sensor meets all the requirements for IP68 protection, type 6P enclosure or IP66/67, type 4X enclosure  $\rightarrow \blacksquare 114$ .

To guarantee IP68 protection, type 6P enclosure or IP67, type 4X enclosure, carry out the following steps after the electrical connection:

- 1. Check that the housing seal is clean and fitted correctly. Dry, clean or replace the seals if necessary.
- 2. Tighten the housing cover until the triangular marks on the cover point to one another exactly.
- 3. Tighten the bayonet lock on the connection plug until it engages into place.

# 7.10.2 Degree of protection IP68, type 6P enclosure, with "Custpotted" option, Proline 800 - Advanced (separate version)

To guarantee IP68 protection, type 6P enclosure for the "Cust-potted" options, carry out the following steps after the electrical connection:


- 1. Firmly tighten the cable glands (torque: 2 to 3.5 Nm) until there is no gap between the bottom of the cover and the housing support surface.
- 2. Firmly tighten the union nut of the cable glands.
- 3. Pot the field housing with a potting compound.
- 4. Check that the housing seals are clean and fitted correctly. Dry, clean or replace the seals if necessary.
- 5. Tighten all housing screws and screw covers (torque: 20 to 30 Nm).

# 7.10.3 Degree of protection IP66/67, type 4X enclosure, Proline 800 - Advanced

The measuring device fulfills all the requirements for the degree of protection IP66/67, type 4X enclosure.

To guarantee IP66/67 protection, type 4X enclosure, carry out the following steps after the electrical connection:

- 1. Check that the housing seals are clean and fitted correctly. Dry, clean or replace the seals if necessary.
- 2. Tighten all housing screws and screw covers.
- 3. Firmly tighten the cable glands.
- 4. To ensure that moisture does not enter the cable entry, route the cable so that it loops down before the cable entry ("water trap").



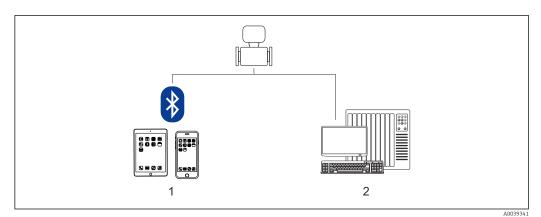
A0029278

5. Insert dummy plugs (corresponding to the housing degree of protection) into unused cable entries.

#### **NOTICE**

Standard dummy plugs used for transportation do not have the appropriate degree of protection and can result in damage to the device!

► Use suitable dummy plugs corresponding to the degree of protection.


# 7.11 Post-connection check

| Are cables or the device undamaged (visual inspection)?                                                                                            |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Do the cables used comply with the requirements?                                                                                                   |  |
| Are the mounted cables relieved of tension?                                                                                                        |  |
| Are all cable glands installed, securely tightened and leak-tight? Cable run with "water trap" $\rightarrow$ $\cong$ 64?                           |  |
| Only for remote version: is the sensor connected to the right transmitter? Check the serial number on the nameplate of the sensor and transmitter. |  |
| Does the supply voltage match the specifications on the transmitter nameplate?                                                                     |  |
| Is the terminal assignment correct?                                                                                                                |  |

| Is the terminal assignment or the pin assignment of the device plug correct?                                                                                                                      |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Batteries correctly inserted and secured?                                                                                                                                                         |  |
| DIP switch in correct position?                                                                                                                                                                   |  |
| If supply voltage is present, do values appear on the display module? If power is supplied exclusively via the battery: does information appear on the display module when the module is touched? |  |
| Is the potential equalization established correctly → 🖺 54?                                                                                                                                       |  |
| Are all housing covers installed and the screws tightened with the correct tightening torque?                                                                                                     |  |

# 8 Operation options

# 8.1 Overview of operation options



- 1 Smartphone/tablet (via SmartBlue)
- 2 Computer (via Modbus)

For custody transfer, once the device has been put into circulation or sealed, its operation is restricted.

# 8.2 Access to the operating menu via the SmartBlue app

The device can be operated and configured via the SmartBlue app. In this case, the connection is established via the Bluetooth® wireless technology interface.

Supported functions

- Device selection in Live List and access to the device (login)
- Configuration of the device
- Access to measured values, device status and diagnostic information
- Data logger readout
- Certificate management
- Device software update
- Heartbeat report
- Parameter report

The SmartBlue app is available to download free of charge for Android devices (Google Playstore) and iOS devices (iTunes Apple Store): *Endress+Hauser SmartBlue* 

Directly to the app with the QR code:



A003320

Downloading the SmartBlue app:

- 1. Install and start the SmartBlue app.
  - → A Live List shows all the devices available.

    The list displays the devices with the configured tag name. The default setting of the device tag is EH\_5W8C\_XXYYZZ (XXYYZZ = the first 6 characters of the device serial number).

- 2. For Android devices, activate GPS positioning (not necessary for devices with IOS)
- 3. Select the device from the Live List.
  - The Login dialog box opens.
- For energy-saving reasons, if the device is not powered by a power unit, it is only visible in the live list for 10 seconds every minute.
  - The device appears immediately in the live list if the local display is touched for 5 seconds.
  - The device with the highest signal strength appears at the very top of the live list.

#### Logging in:

- 4. Enter the user name: admin
- 5. Enter the initial password: serial number of the device, (pay attention to lower/upper case).
  - When you log in for the first time, a message is displayed advising you to change the password.
- 6. Confirm your entry.
  - ► The main menu opens.
- 7. Optional: Change Bluetooth® password: System → Connectivity → Bluetooth configuration → Change Bluetooth password
- Forgotten your password: contact Endress+Hauser Service.

# 9 System integration

# 9.1 Overview of device description files

## 9.1.1 Current version data for the device

| Firmware version                 | 01.00.zz | <ul> <li>On the title page of the manual</li> <li>On the transmitter nameplate → □ 15</li> <li>Firmware version         Diagnostics → Device information → Firmware version</li> </ul> |
|----------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Release date of firmware version | 12.2020  |                                                                                                                                                                                        |

# 9.1.2 Operating tools

The suitable device description file for the individual operating tools is listed in the table below, along with information on where the file can be acquired.

| Operating tool via service interface (SmartBlue) | Sources for obtaining device descriptions                                                                                           |  |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| SmartBlue app                                    | And Roll App ON Google Play  Download on the App Store                                                                              |  |
|                                                  | A0033202                                                                                                                            |  |
| DeviceCare                                       | <ul> <li>www.endress.com → Downloads area</li> <li>CD-ROM (contact Endress+Hauser)</li> <li>DVD (contact Endress+Hauser)</li> </ul> |  |

# 9.2 Modbus RS485 information

# 9.2.1 Function codes

Function codes are used to define which read or write action is carried out via the Modbus protocol. The measuring device supports the following function codes:

| Code | Name                                | Description                                                                                                                                                           | Application                                                                          |  |  |
|------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|
| 03   | Read holding<br>register            | Master reads one or more Modbus registers from the device. A maximum of 125 consecutive registers can be read with 1 telegram: 1 register = 2 bytes                   | Read device parameters with read<br>and write access<br>Example:<br>Read volume flow |  |  |
|      |                                     | The measuring device does not make a distinction between function codes 03 and 04; these codes therefore yield the same result.                                       |                                                                                      |  |  |
| 04   | Read input<br>register              | Master reads one or more Modbus registers from the device. A maximum of 125 consecutive registers can be read with 1 telegram: 1 register = 2 bytes                   | Read device parameters with read access Example: Read totalizer value                |  |  |
|      |                                     | The measuring device does not make a distinction between function codes 03 and 04; these codes therefore yield the same result.                                       |                                                                                      |  |  |
| 06   | Write single<br>registers           | Master writes a new value to <b>one</b> Modbus register of the measuring device.  Use function code 16 to write                                                       | Write only 1 device parameter<br>Example: reset totalizer                            |  |  |
|      |                                     | multiple registers with just 1 telegram.                                                                                                                              |                                                                                      |  |  |
| 08   | Diagnostics                         | Master checks the communication connection to the measuring device.                                                                                                   |                                                                                      |  |  |
|      |                                     | The following "Diagnostics codes" are supported:  Sub-function 00 = Return query data (loopback test)  Sub-function 02 = Return diagnostics register                  |                                                                                      |  |  |
| 16   | Write multiple registers            | Master writes a new value to multiple Modbus registers of the device. A maximum of 120 consecutive registers can be written with 1 telegram.                          | Write multiple device parameters                                                     |  |  |
|      |                                     | If the required device parameters are not available as a group, yet must nevertheless be addressed with a single telegram, use Modbus data map → 🖺 72                 |                                                                                      |  |  |
| 23   | Read/Write<br>multiple<br>registers | Master reads and writes a maximum of 118 Modbus registers of the measuring device simultaneously with 1 telegram. Write access is executed <b>before</b> read access. | Write and read multiple device parameters  Example:  Read mass flow  Reset totalizer |  |  |

Broadcast messages are only allowed with function codes 06, 16 and 23.

# 9.2.2 Register information

# 9.2.3 Response time

Response time of the measuring device to the request telegram of the Modbus master: typically 3 to 5 ms

#### Modbus RS485 power save mode

If the device is not powered via an external mains voltage (only possible with order code for "Energy supply", option K "100-240VAC/ 19-30VDC, lithium battery" and option S "100-240VAC/19-30VDC, w/o battery"), the Modbus-RS485 circuit on the transmitter, i.e. the slave, is deactivated between two communication cycles in order to save energy. To activate the circuit and communicate with the slave, a retry function must be provided in the Modbus master which resends a telegram to the slave if no response is received. In addition, DIP switch A on the electronics module must be set to "ON".  $\Rightarrow \blacksquare$  11

The first telegram sent by the master first activates the Modbus RS485 circuit on the slave. After a certain period of time, specified by the master, in which the slave does not send a reply, the master sends a retry message with the same content. The slave can interpret and reply to this telegram. The Modbus-RS485 circuit is deactivated again afterwards.

This approach is particularly suitable for low data throughput rates and point-to-point connections. Power supply via the mains voltage is recommended for high data throughput rates and bus networks.

# 9.2.4 Data types

#### 

| INTEGER Data length = 2 bytes (1 register) |                              |
|--------------------------------------------|------------------------------|
| Byte 1                                     | Byte 0                       |
| Most significant byte (MSB)                | Least significant byte (LSB) |

# Most significant byte (MSB) Least significant byte (LSB) STRING Data length = depends on device parameter Example of a device parameter with a data length = 18 bytes (9 registers)

| Byte 17                     | Byte 16 | <br>Byte 1 | Byte 0                       |
|-----------------------------|---------|------------|------------------------------|
| Most significant byte (MSB) |         |            | Least significant byte (LSB) |

# 9.2.5 Byte transmission sequence

Byte addressing, i.e. the transmission sequence of the bytes, is not specified in the Modbus specification. It is necessary to coordinate the addressing method between the master and slave during commissioning. This can be configured in the device using the **Byte order** parameter.

| FLOAT                                                     |                      |                      |                      |                      |  |
|-----------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|--|
| Selection                                                 | Sequence             |                      |                      |                      |  |
|                                                           | 1.                   | 2.                   | 3.                   | 4.                   |  |
| 1-0-3-2*                                                  | Byte 1<br>(MMMMMMMM) | Byte 0<br>(MMMMMMMM) | Byte 3<br>(SEEEEEEE) | Byte 2<br>(EMMMMMMM) |  |
| 0 - 1 - 2 - 3                                             | Byte 0<br>(MMMMMMMM) | Byte 1<br>(MMMMMMMM) | Byte 2 (EMMMMMMM)    | Byte 3<br>(SEEEEEEE) |  |
| 2 - 3 - 0 - 1                                             | Byte 2<br>(EMMMMMMM) | Byte 3<br>(SEEEEEEE) | Byte 0<br>(MMMMMMM)  | Byte 1<br>(MMMMMMM)  |  |
| 3 - 2 - 1 - 0                                             | Byte 3<br>(SEEEEEEE) | Byte 2<br>(EMMMMMMM) | Byte 1<br>(MMMMMMMM) | Byte 0<br>(MMMMMMMM) |  |
| * = factory setting, S = sign, E = exponent, M = mantissa |                      |                      |                      |                      |  |

The bytes are transmitted depending on the selection in the **Byte order** parameter:

| INTEGER                    |                                    |                  |  |  |
|----------------------------|------------------------------------|------------------|--|--|
| Selection                  | Sequence                           | Sequence         |  |  |
|                            | 1.                                 | 2.               |  |  |
| 1-0-3-2*<br>3-2-1-0        | Byte 1<br>(MSB)                    | Byte 0<br>(LSB)  |  |  |
| 0-1-2-3<br>2-3-0-1         | Byte 0<br>(LSB)                    | Byte 1<br>(MSB)  |  |  |
| * = factory setting, MSB = | most significant byte, LSB = least | significant byte |  |  |

| STRING Example of a device parameter with a data length = 18 bytes (9 registers) |                  |                  |  |                 |                 |
|----------------------------------------------------------------------------------|------------------|------------------|--|-----------------|-----------------|
| Selection                                                                        | Sequence         |                  |  |                 |                 |
|                                                                                  | 1.               | 2.               |  | 17.             | 18.             |
| 1-0-3-2*<br>3-2-1-0                                                              | Byte 17<br>(MSB) | Byte 16          |  | Byte 1          | Byte 0<br>(LSB) |
| 0-1-2-3<br>2-3-0-1                                                               | Byte 16          | Byte 17<br>(MSB) |  | Byte 0<br>(LSB) | Byte 1          |
| * = factory setting, MSB = most significant byte, LSB = least significant byte   |                  |                  |  |                 |                 |

# 9.2.6 Modbus data map

#### Function of the Modbus data map

The device offers a special memory area, the Modbus data map (for a maximum of 16 device parameters), to allow users to call up multiple device parameters via Modbus RS485 and not only individual device parameters or a group of consecutive device parameters.

Grouping of device parameters is flexible and the Modbus master can read or write to the entire data block simultaneously with a single request telegram.

#### Structure of the Modbus data map

The Modbus data map consists of two data sets:

- Scan list: Configuration area
   The device parameters to be grouped are defined in a list by entering their Modbus RS485 register addresses in the list.
- Data area

The measuring device reads out the register addresses entered in the scan list cyclically and writes the associated device data (values) to the data area.



#### Scan list configuration

For configuration, the Modbus RS485 register addresses of the device parameters to be grouped must be entered in the scan list. Please note the following basic requirements of the scan list:

| Max. entries                | 16 device parameters                                                                                                              |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Supported device parameters | Only parameters with the following characteristics are supported:  Access type: read or write access  Data type: float or integer |

Configuration of the scan list via SmartBlue or DeviceCare

Application  $\rightarrow$  Communication  $\rightarrow$  Modbus data map  $\rightarrow$  Scan list register 0 to 15

| Scan list |                        |
|-----------|------------------------|
| No.       | Configuration register |
| 0         | Scan list register 0   |
|           |                        |
| 15        | Scan list register 15  |

Configuration of the scan list via Modbus RS485

Carried out using register addresses 5001 - 5016

| Scan list |                       |           |                        |
|-----------|-----------------------|-----------|------------------------|
| No.       | Modbus RS485 register | Data type | Configuration register |
| 0         | 5001                  | Integer   | Scan list register 0   |
|           |                       | Integer   |                        |
| 15        | 5016                  | Integer   | Scan list register 15  |

#### Reading out data via Modbus RS485

The Modbus master accesses the data area of the Modbus data map to read out the current values of the device parameters defined in the scan list.

| Master access to data area | Via register addresses 5051-5081 |
|----------------------------|----------------------------------|
|----------------------------|----------------------------------|

| Data area                      |                |                              |               |            |
|--------------------------------|----------------|------------------------------|---------------|------------|
| Device parameter value         | Modbus RS485   | Modbus RS485 register        |               | Access**   |
|                                | Start register | End register<br>(Float only) |               |            |
| Value of scan list register 0  | 5051           | 5052                         | Integer/float | read/write |
| Value of scan list register 1  | 5053           | 5054                         | Integer/float | read/write |
| Value of scan list register    |                |                              |               |            |
| Value of scan list register 15 | 5081           | 5082                         | Integer/float | read/write |

<sup>\*</sup> Data type depends on the device parameters entered in the scan list.

\*\* Data access depends on the device parameters entered in the scan list. If the device parameter entered supports read and write access, the parameter can also be accessed via the data area.

# 10 Commissioning

# 10.1 Post-mounting and post-connection check

Before commissioning the device:

- ► Make sure that the post-installation and post-connection checks have been performed successfully.
- Checklist for "Post-mounting" check → 🖺 43
- Checklist for "Post-connection check" → 🖺 65

# 10.2 Preparatory steps

The device can only be operated via the SmartBlue App.

#### 10.2.1 Install the SmartBlue App

P Download the SmartBlue App → 🖺 67

## 10.2.2 Connect the SmartBlue App to the device

**P** Log in → **B** 68

# 10.3 Configuring the measuring device

Complete this wizard to commission the device.

For each parameter, enter the appropriate value or select the appropriate option.

#### NOTE

If you exit the wizard before completing all required parameters, the changes you have made will be saved. For this reason, the device may then be in an undefined state! In this case, a reset to the default settings is recommended.

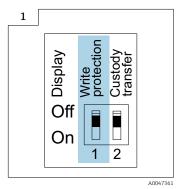
- 1. Open the **Guidance** menu.
- 2. Start the **Commissioning** wizard.
- 3. Follow the instructions in the **SmartBlue App**.
  - ► The configuration is completed.

# 10.4 Protecting settings from unauthorized access

The following options exist for protecting the configuration of the measuring device from unintentional modification after commissioning:

- Write protection via write protection switch → 🗎 11

#### 10.4.1 Write protection via access code


The effects of the user-specific access code are as follows:

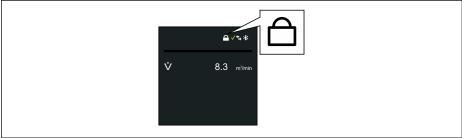
Via the SmartBlue App, the parameters for the measuring device configuration are write-protected and their values can no longer be changed.

#### Defining the access code via the SmartBlue App

- 1. Open the **System** menu.
- 2. Open the **User management** submenu.
- 3. Open the **Define access code** wizard.
- 4. Define a string, consisting of up to 4 numbers, for the access code.
  - ► The parameters are write-protected.
- If parameter write protection is activated via an access code, it can also only be deactivated via this access code .
  - The user role with which the user is currently logged on is indicated by the Access status parameter. Navigation path: System → User management → Access status

## 10.4.2 Write protection via write protection switch




▶ ■ Information regarding the write protection switch is provided on the connection nameplate in the connection compartment cover.

Unlike parameter write protection via a user-specific access code, this allows write access to the entire operating menu to be locked.

The parameter values are now read only and cannot be edited any more.

# The following parameters can always be modified even if parameter write protection is activated:

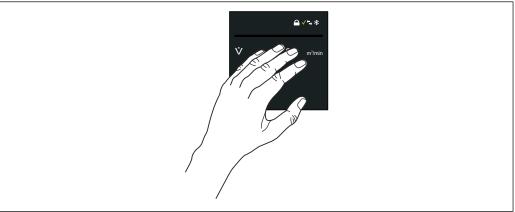
- Enter access code
- Contrast display
- Clientt ID
- 1. Loosen the 4 fixing screws on the housing cover and open the housing cover.
- 2. Set the write protection (WP) switch on the display module to the **ON** position.
  - Hardware write protection is enabled.
     In the Locking status parameter, the Hardware locked option is displayed.
     On the local display, the ⚠ symbol appears in the header.



A0044218

# 3. **AWARNING**

Excessive tightening torque applied to the fixing screws! Risk of damaging the plastic transmitter.


▶ Tighten the fixing screws as per the tightening torque  $\rightarrow$   $\blacksquare$  33.

Reassemble the transmitter in the reverse order.

# 11 Operation

## 11.1 Wake on Touch

If you touch the display for 5 seconds the device shows measured values and status information.



10043867



#### Locking status

The device is locked via the hardware.



#### Bluetooth

Bluetooth function is enabled.



#### **Device communication**

Device communication is enabled.



#### Received signal strength (cellular radio)

Displays the received signal strength.



#### **Failure**

- A device error has occurred.
- Output signal is no longer valid.



#### Maintenance required

- Maintenance required.
- Output signal is still valid.



#### Out of specification

- Device is being operated outside the technical specification limits, e.g. outside the process temperature range.
- Device is operated outside the configuration performed by the user, e.g. maximum flow rate.

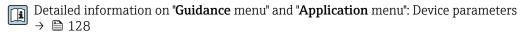


#### Diagnosis enabled

Output signal is valid.



#### **Function check**


- Device is in service mode, e.g. during a simulation.
- Output signal is temporarily invalid.

78

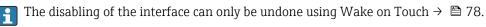
# 11.2 Adapting the measuring device to the process conditions

To do so, users can choose from the following menus:

- Guidance
- Application



# 11.3 Performing a totalizer reset


#### **Navigation**

"Application" menu  $\rightarrow$  Totalizers  $\rightarrow$  Totalizer handling  $\rightarrow$  Reset all totalizers

#### Parameter overview with brief description

| Parameter            | Description                          | Selection                                         |
|----------------------|--------------------------------------|---------------------------------------------------|
| Reset all totalizers | Reset all totalizers to 0 and start. | <ul><li>Cancel</li><li>Reset + totalize</li></ul> |

# 11.4 Disabling the Bluetooth interface

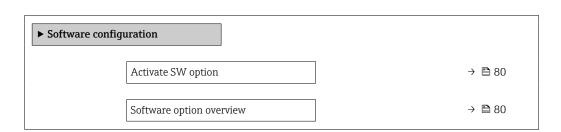


#### Navigation

"System" menu  $\rightarrow$  Connectivity  $\rightarrow$  Bluetooth configuration  $\rightarrow$  Bluetooth

#### Parameter overview with brief description

| Parameter | Description                           | Selection                                                             |
|-----------|---------------------------------------|-----------------------------------------------------------------------|
| Bluetooth | Enable or disable Bluetooth function. | <ul> <li>Enable</li> <li>On touch</li> <li>Not available *</li> </ul> |


<sup>\*</sup> Visibility depends on order options or device settings

# 11.5 Enabling the software option

#### 11.5.1 "Software configuration" submenu

#### Navigation

"System" menu → Software configuration



#### Parameter overview with brief description

| Parameter                | Description                                                                                 | User entry / User interface                                                                                                                                 |
|--------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Activate SW option       | Enter the application package code or code of another reordered functionality to enable it. | Positive integer                                                                                                                                            |
| Software option overview | Shows all enabled software options.                                                         | <ul> <li>Extended data logger</li> <li>Extended HistoROM</li> <li>Heartbeat Verification</li> <li>Custody transfer</li> <li>Heartbeat Monitoring</li> </ul> |

# 11.6 Updating the firmware

Firmware updates are available in the Download Area of the Endress+Hauser website:  $www.endress.com \rightarrow Downloads$ 

Specify the following details for the "Device driver":

- Type: "Firmware Flash File"
- Product root: "5W8C"
- Process communication: "Modbus RS485"
- Device type: "0x6463 (Promag 800)"
- Select device version
- Start the search
- 1. Extract the ZIP file.
- 2. Save the extracted "Firmware Flash File" to the mobile device.
  - iOS: Files → SmartBlue → UpdatePackages Android: Internal memory → SmartBlue → Firmware
- 3. Connect to the measuring device via the SmartBlue app.
- 4. In the SmartBlue app, open: System  $\rightarrow$  Software configuration  $\rightarrow$  Firmware update.
- 5. Wait until the firmware is loaded.
- 6. Start the firmware update and let it run through to the end.
- 7. Wait until the measuring device is restarted.

The new firmware has been successfully installed.

# 11.7 Checking, verifying or calibrating the measuring device

The measuring device is set as follows when checked, verified or calibrated.

- For devices with a power supply unit which are operated with an external power supply, the measuring interval is automatically switched to the minimum value.
- 1. Connect to the measuring device via the SmartBlue app.
- 2. In the SmartBlue app: Application  $\rightarrow$  Sensor  $\rightarrow$  Sensor adjustment  $\rightarrow$  Open measurement interval value.
- 3. Set the value to 0.25 s.
  - ► This minimizes the measurement times required on the calibration rig.
- 4. Once the measurements are complete, the measuring interval must be reset to 15 s (factory setting) to preserve the battery life.

80

# 12 Diagnosis and troubleshooting

# 12.1 General troubleshooting

For local display

| Fault                                                     | Possible causes                                                                    | Remedial action                                                                    |
|-----------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Local display remains dark for longer than 5 seconds when | Supply voltage does not match the voltage specified on the nameplate.              | Apply the correct supply voltage → 🖺 53.                                           |
| touched.                                                  | Supply voltage has incorrect polarity.                                             | Reverse polarity of supply voltage.                                                |
|                                                           | The connecting cables are not connected correctly.                                 | Check the cable connection and correct if necessary.                               |
|                                                           | No battery pack inserted or connected.  No buffer capacitor inserted or connected. | Insert or connect battery pack. Insert or connect buffer capacitor.                |
|                                                           | Device is not powered from the mains.                                              | Touch the display for 5 seconds $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ |

## For output signals

| Error                                                                                                   | Possible causes                                                    | Remedial action                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Signal output outside the valid range                                                                   | Main electronics module is defective.                              | Order spare part → 🖺 99.                                                                                                                            |
| Device shows correct value on local display, but signal output is incorrect, though in the valid range. | Parameter configuration error                                      | Check and adjust parameter configuration.                                                                                                           |
| Device measures incorrectly.                                                                            | Configuration error or device is operated outside the application. | Check and correct parameter configuration.     Observe limit values specified in the "Technical Data".                                              |
| Measuring device not in smartphone or tablet live list                                                  | Bluetooth communication set to "on touch"                          | Check whether the Bluetooth logo is visible on the local display or not.     Touch the display for 5 seconds so that a measured value is displayed. |
| Device not responding via SmartBlue app                                                                 | No Bluetooth connection                                            | Enable Bluetooth function on smartphone or tablet. The device is already connected to another smartphone/tablet.                                    |
| Login via SmartBlue app not possible                                                                    | Device is being put into operation for the first time              | Enter initial password (device serial number) and change.                                                                                           |
| Device cannot be operated via SmartBlue app                                                             | Incorrect password entered                                         | Enter correct password.                                                                                                                             |
|                                                                                                         | Password forgotten                                                 | Contact Endress+Hauser Service.                                                                                                                     |
| No write access to parameters                                                                           | Hardware write protection enabled                                  | <ul> <li>Check user role</li> <li>Enter the correct customer-specific access code</li> <li>Hardware write protection via DIP switch</li> </ul>      |

#### For access

| Error                                   | Possible causes                                     | Remedial action                                                                                                                         |
|-----------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Write access to parameter not possible. | Hardware write protection is enabled.               | Set the write protection switch on the back of the display to the <b>ON</b> position $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ |
| Write access to parameter not possible. | Current user role has limited access authorization. | 1. Check user role → 🗎 11.<br>2. Enter correct customer-specific access code<br>→ 🖺 11.                                                 |

| Error                                        | Possible causes                                                                                              | Remedial action                                                                                         |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Connection via Modbus RS485 is not possible. | Modbus RS485 bus cable is connected incorrectly.                                                             | Check the terminal assignment $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                        |
| Connection via Modbus RS485 is not possible. | In battery mode, switch A, which is located under the electronics module, is set to the <b>OFF</b> position. | Set switch A to <b>ON</b> .                                                                             |
| Connection via Modbus RS485 is not possible. | In battery mode, the device is in the power save mode.                                                       | Add the missing master message to wake the device from the power save mode $\Rightarrow 	riangleq 71$ . |
| Connection via Modbus RS485 is not possible. | Modbus RS485 cable is incorrectly terminated.                                                                | Check the terminating resistor $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                       |
| Connection via Modbus RS485 is not possible. | Settings for the communication interface are incorrect.                                                      | Check the Modbus RS485 configuration .                                                                  |

# SmartBlue operation with Bluetooth®

| Error                                                                  | Possible causes                                                                                                               | Remedial action                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Device is not visible in the live list                                 | No Bluetooth connection                                                                                                       | Enable Bluetooth in the device                                                                                                                                                                                                                                                 |
|                                                                        | Bluetooth signal outside range                                                                                                | Reduce distance between device and smartphone/tablet                                                                                                                                                                                                                           |
|                                                                        | Geopositioning is not enabled on<br>Android devices or is not permitted<br>for the SmartBlue app                              | Enable/permit the geopositioning service on Android device for the SmartBlue app                                                                                                                                                                                               |
| Device appears in the live list but a connection cannot be established | The device is already connected with another smartphone/tablet via Bluetooth. Only one point-to-point connection is permitted | Disconnect the smartphone/tablet from the device                                                                                                                                                                                                                               |
|                                                                        | Incorrect user name and password                                                                                              | The standard user name is "admin" and the password is the device serial number indicated on the device nameplate (only if the password was not changed by the user beforehand)  If the password has been forgotten, contact Endress+Hauser Service (www.addresses.endress.com) |
| Connection via SmartBlue not possible                                  | Incorrect password entered                                                                                                    | Enter the correct password, paying attention to lower/upper case                                                                                                                                                                                                               |
|                                                                        | Password forgotten                                                                                                            | contact Endress+Hauser Service<br>(www.addresses.endress.com)                                                                                                                                                                                                                  |
| No communication with device via SmartBlue                             | No Bluetooth connection                                                                                                       | Enable the Bluetooth function on the smartphone, tablet and device                                                                                                                                                                                                             |
|                                                                        | The device is already connected to another smartphone/tablet.                                                                 | Disconnect the device from the other smartphone/tablet                                                                                                                                                                                                                         |
|                                                                        | Ambient conditions (e.g. walls/tanks) disturbing the Bluetooth connection                                                     | Establish direct line-of-sight connection                                                                                                                                                                                                                                      |
| Device cannot be operated via SmartBlue                                | <b>Operator</b> option has no authorization                                                                                   | Switch to the <b>Maintenance</b> option                                                                                                                                                                                                                                        |

# 12.2 Diagnostic information on local display

## 12.2.1 Diagnostic message

Faults detected by the self-monitoring system of the measuring device are displayed as a diagnostic message in alternation with the operational display.



#### Maintenance required

- Maintenance required.
- Output signal is still valid.



#### Out of specification

- Device is being operated outside the technical specification limits, e.g. outside the process temperature range.
- Device is operated outside the configuration performed by the user, e.g. maximum flow rate.



#### **Function check**

- Device is in service mode, e.g. during a simulation.
- Output signal is temporarily invalid.
- If two or more diagnostic events are pending simultaneously, only the message of the diagnostic event with the highest priority is shown.

#### Status signals

The status signals provide information on the state and reliability of the device by categorizing the cause of the diagnostic information (diagnostic event).



The status signals are categorized according to VDI/VDE 2650 and NAMUR Recommendation NE 107: F = Failure, C = Function Check, S = Out of Specification, M = Maintenance Required

| Symbol | Meaning                                                                                                                                                                                                                                                                                                    |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F      | Failure An operating error has occurred. The measured value is no longer valid.                                                                                                                                                                                                                            |
| С      | <b>Function check</b> The device is in simulation mode.                                                                                                                                                                                                                                                    |
| S      | <ul> <li>Out of specification</li> <li>The device is being operated:</li> <li>Outside its technical specification limits (e.g. outside the process temperature range)</li> <li>Outside the configuration performed by the user (e.g. outside the maximum output frequency of the pulse output).</li> </ul> |

#### Diagnostic behavior

| Diagnostic message | Meaning                                                                                                                                                                                                                  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>8</b>           | <ul> <li>Alarm</li> <li>Measurement is interrupted.</li> <li>Signal outputs and totalizers assume the defined alarm condition.</li> <li>A diagnostic message is generated.</li> </ul>                                    |  |
| <b>W</b>           | Function check  Process measured values are simulated to test the outputs/wiring.  Overload I/O 1, I/O 2  Flow override is active                                                                                        |  |
| <u>^</u>           | <ul> <li>Warning</li> <li>Measurement is resumed.</li> <li>Measuring operation with limited accuracy</li> <li>The signal outputs and totalizers are not affected.</li> <li>A diagnostic message is generated.</li> </ul> |  |

#### Diagnostic behavior of outputs

| Output        | Diagnostic behavior                                                                                                                                                  |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Switch output | <ul> <li>The output is switched off (fail-safe) if events with the status signal F occur</li> <li>No further response to events with other status signals</li> </ul> |  |
| Pulse output  | <ul> <li>Pulse output stops if events with the status signal F occur</li> <li>No further response to events with other status signals</li> </ul>                     |  |
| Totalizer     | <ul> <li>Totalizer stops if events with the status signal F occur</li> <li>No further response to events with other status signals</li> </ul>                        |  |

# 12.3 Diagnostic information via communication interface

#### 12.3.1 Reading out diagnostic information

Diagnostic information can be read out via Modbus RS485 register addresses.

- Via register address **6801** (data type = string): diagnosis code, e.g. F270
- Via register address **6821** (data type = string): diagnosis code, e.g. F270
- For an overview of diagnostic events with diagnosis number and diagnosis code  $\rightarrow \stackrel{ riangle}{=} 85$

## 12.3.2 Configuring error response mode

The error response mode for Modbus RS485 communication can be configured in the **Communication** submenu using 2 parameters.

#### Navigation path

Application → Communication

| Parameter overview with | ı brief description |
|-------------------------|---------------------|
|-------------------------|---------------------|

| Parameter    | Description                                                                                                                                                          | Options                                                                             | Factory setting |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------|
| Failure mode | Select measured value output behavior when a diagnostic message occurs via Modbus communication.  The effect of this parameter depends on the option selected in the | <ul> <li>NaN value</li> <li>Last valid value</li> <li>NaN = not a number</li> </ul> | NaN value       |
|              | Assign diagnostic behavior parameter.                                                                                                                                |                                                                                     |                 |

# 12.4 Adapting the diagnostic information

## 12.4.1 Adapting the diagnostic behavior

Each item of diagnostic information is assigned a specific diagnostic behavior at the factory. The user can change this assignment for specific diagnostic information in the **Diagnostic settings** submenu.

Diagnostics → Diagnostic settings

You can assign the following options to the diagnostic number as the diagnostic behavior:

| Options            | Description                                                                                                                                                                                                                                                                  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alarm              | The device stops measurement. The measured value output via Modbus RS485 and totalizer assume the defined alarm condition. A diagnostic message is generated and the event with the highest priority is shown in alternation with the primary variable on the local display. |
| Warning            | The device continues to measure. The measured value output via Modbus RS485 and the totalizer are not affected. A diagnostic message is generated.                                                                                                                           |
| Logbook entry only | The device continues to measure. The diagnostic message is displayed only in the <b>Event logbook</b> submenu and is not displayed in alternation with the operational display.                                                                                              |
| Off                | The diagnostic event is ignored, and no diagnostic message is generated or entered.                                                                                                                                                                                          |

# 12.5 Overview of diagnostic information

The amount of diagnostic information and the number of measured variables affected increase if the measuring device has one or more application packages.

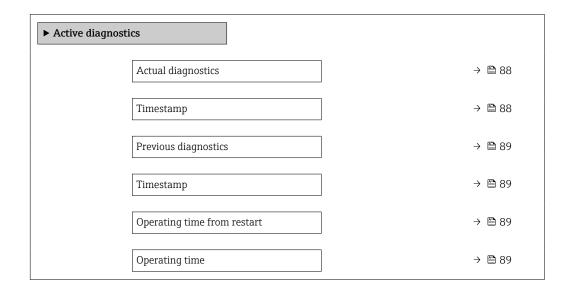
| Diagnostic<br>number | Short text                         | Remedy instructions                                                    | Status<br>signal<br>[from the<br>factory] | Diagnostic<br>behavior<br>[from the<br>factory] |
|----------------------|------------------------------------|------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|
| Diagnostic of s      | ensor                              |                                                                        |                                           |                                                 |
| 082                  | Data storage inconsistent          | Check module connections     Contact service                           | F                                         | Alarm                                           |
| 083                  | Memory content inconsistent        | Restart device     Restore S-DAT data     Replace S-DAT                | F                                         | Alarm                                           |
| 169                  | Conductivity<br>measurement failed | Check grounding conditions     Deactivate conductivity     measurement | М                                         | Warning                                         |

| Diagnostic<br>number | Short text                              | Remedy instructions                                                                                                   | Status<br>signal<br>[from the<br>factory] | Diagnostic<br>behavior<br>[from the<br>factory] |
|----------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|
| 170                  | Coil resistance faulty                  | Check ambient and process temperature                                                                                 | F                                         | Alarm                                           |
| 181                  | Sensor connection faulty                | Check sensor cable and sensor     Execute Heartbeat Verification     Replace sensor cable or sensor                   | F                                         | Alarm                                           |
| Diagnostic of e      | electronic                              |                                                                                                                       |                                           |                                                 |
| 201                  | Electronics faulty                      | Restart device     Replace electronics                                                                                | F                                         | Alarm                                           |
| 242                  | Firmware incompatible                   | Check firmware version     Flash or replace electronic module                                                         | F                                         | Alarm                                           |
| 245                  | Firmware update failed                  | Retry firmware update     Replace celluar radio module                                                                | М                                         | Warning                                         |
| 252                  | Module incompatible                     | Check electronic modules     Check if correct modules are     available (e.g. NEx, Ex)     Replace electronic modules | F                                         | Alarm                                           |
| 270                  | Electronic module defective             | Replace electronic module                                                                                             | F                                         | Alarm                                           |
| 271                  | Electronic module faulty                | Restart device     Replace electronic module                                                                          | F                                         | Alarm                                           |
| 272                  | Electronic module faulty                | Restart device                                                                                                        | F                                         | Alarm                                           |
| 273                  | Electronic module defective             | Change electronics                                                                                                    | F                                         | Alarm                                           |
| 278                  | Display module defective                | Replace display module                                                                                                | F                                         | Alarm                                           |
| 283                  | Memory content inconsistent             | Reset device     Contact service                                                                                      | F                                         | Alarm                                           |
| 302                  | Device verification active              | Device verification active, please wait.                                                                              | С                                         | Warning                                         |
| 311                  | Electronic module faulty                | Do not reset device     Contact service                                                                               | М                                         | Warning                                         |
| 331                  | Firmware update failed in module 1 to n | Update firmware of device     Restart device                                                                          | F                                         | Warning                                         |
| 372                  | Electronic module faulty                | Restart device     Check if failure recurs     Replace sensor electronic module (ISEM)                                | F                                         | Alarm                                           |
| 376                  | Electronic module faulty                | Replace electronic module     Turn off diagnostic message                                                             | S                                         | Warning 1)                                      |
| 378                  | Electronic module supply voltage faulty | Restart device     Check if failure recurs     Replace electronic module                                              | F                                         | Alarm                                           |
| 383                  | Memory content                          | Reset device                                                                                                          | F                                         | Alarm                                           |
| 387                  | HistoROM data faulty                    | Contact service organization                                                                                          | F                                         | Alarm                                           |
| Diagnostic of o      | configuration                           |                                                                                                                       |                                           |                                                 |
| 410                  | Data transfer failed                    | Retry data transfer     Check connection                                                                              | F                                         | Alarm                                           |
| 412                  | Processing download                     | Download active, please wait                                                                                          | С                                         | Warning                                         |
| 417                  | Communication network not available     | Check communication network     Check cellular radio antenna     Check network subscription                           | M                                         | Warning                                         |

| Diagnostic<br>number | Short text                         | Remedy instructions                                                                                                                              | Status<br>signal<br>[from the<br>factory] | Diagnostic<br>behavior<br>[from the<br>factory] |
|----------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|
| 418                  | Software shutdown successfully     | Disconnect the power supply of the device                                                                                                        | F                                         | Alarm                                           |
| 425                  | Communication certificate faulty   | Replace affected certificate                                                                                                                     | М                                         | Warning                                         |
| 437                  | Configuration incompatible         | Update firmware     Execute factory reset                                                                                                        | F                                         | Alarm                                           |
| 438                  | Dataset different                  | Check dataset file     Check device parameterization     Download new device     parameterization                                                | M                                         | Warning                                         |
| 443                  | Pulse output 1 to n faulty         | Check pulse output settings     Check process                                                                                                    | S                                         | Warning 1)                                      |
| 453                  | Flow override active               | Deactivate flow override                                                                                                                         | С                                         | Warning                                         |
| 465                  | SIM card defective                 | Check SIM card     Replace SIM card                                                                                                              | M                                         | Warning                                         |
| 484                  | Failure mode simulation active     | Deactivate simulation                                                                                                                            | С                                         | Alarm                                           |
| 485                  | Process variable simulation active | Deactivate simulation                                                                                                                            | С                                         | Warning                                         |
| 493                  | Pulse output simulation active     | Deactivate pulse output simulation                                                                                                               | С                                         | Warning                                         |
| 495                  | Diagnostic event simulation active | Deactivate simulation                                                                                                                            | С                                         | Warning                                         |
| 511                  | Electronic module settings faulty  | Check measuring period and integration time     Check sensor properties                                                                          | С                                         | Alarm                                           |
| 531                  | Empty pipe adjustment faulty       | Execute EPD adjustment                                                                                                                           | S                                         | Warning                                         |
| 540                  | Custody transfer mode failed       | Power off device and toggle DIP switch     Deactivate custody transfer mode     Reactivate custody transfer mode     Check electronic components | F                                         | Alarm                                           |
| Diagnostic of p      | process                            |                                                                                                                                                  |                                           |                                                 |
| 810                  | Server connection failed           | Check server                                                                                                                                     | М                                         | Warning                                         |
| 832                  | Electronics temperature too high   | Reduce ambient temperature                                                                                                                       | S                                         | Warning 1)                                      |
| 833                  | Electronics temperature too low    | Increase ambient temperature                                                                                                                     | S                                         | Warning 1)                                      |
| 842                  | Process value above limit          | Low flow cut off active!<br>Check low flow cut off configuration                                                                                 | S                                         | Warning 1)                                      |
| 890                  | Battery low                        | Prepare battery replacement                                                                                                                      | С                                         | Warning                                         |
| 891                  | Battery empty                      | Replace battery                                                                                                                                  | M                                         | Warning                                         |
| 938                  | Coil current not stable            | Check if external magnetic interference is present     Perform Heartbeat Verification     Check flow value                                       | F                                         | Alarm 1)                                        |
| 955                  | Flow limit exceeded                | Check process                                                                                                                                    | S                                         | Warning 1)                                      |
| 956                  | Pressure limit exceeded            | Check process                                                                                                                                    | S                                         | Warning 1)                                      |
| 957                  | Time-dependent flow limit exceeded | Check process                                                                                                                                    | S                                         | Warning 1)                                      |

| Diagnostic<br>number | Short text                                | Remedy instructions                                                                              | Status<br>signal<br>[from the<br>factory] | Diagnostic<br>behavior<br>[from the<br>factory] |
|----------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|
| 958                  | Time-dependent pressure limit exceeded    | Check process                                                                                    | S                                         | Warning 1)                                      |
| 959                  | Event at status input detected            | Check triggering signal path                                                                     | С                                         | Warning 1)                                      |
| 960                  | Battery lifetime is less<br>than 180 days | Replace batteries                                                                                | С                                         | Warning 1)                                      |
| 961                  | Electrode potential out of specification  | Check process conditions     Check ambient conditions                                            | S                                         | Warning 1)                                      |
| 962                  | Pipe empty                                | Perform full pipe adjustment     Perform empty pipe adjustment     Turn off empty pipe detection | S                                         | Warning 1)                                      |

<sup>1)</sup> Diagnostic behavior can be changed.


# 12.6 Pending diagnostic events

The **Diagnostics** menu allows the user to view the current diagnostic event and the previous diagnostic event separately.

- To call up the measures to rectify a diagnostic event: Via SmartBlue App
- Other pending diagnostic events can be displayed in the **Diagnostic list** submenu  $\rightarrow \stackrel{\square}{=} 89$ .

#### Navigation

"Diagnostics" menu  $\rightarrow$  Active diagnostics



#### Parameter overview with brief description

| Parameter          | Description                                                                       | User interface                                |
|--------------------|-----------------------------------------------------------------------------------|-----------------------------------------------|
| Actual diagnostics | Shows the current occured diagnostic event along with its diagnostic information. | Positive integer                              |
| Timestamp          | Displays the timestamp for the currently active diagnostic message.               | Days (d), hours (h), minutes (m), seconds (s) |

| Parameter                   | Description                                                                                                           | User interface                                |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
| Previous diagnostics        | Shows the diagnostic event that occurred prior to the current diagnostic event along with its diagnostic information. | Positive integer                              |  |
| Timestamp                   | Shows the timestamp of the previous diagnostic message.                                                               | Days (d), hours (h), minutes (m), seconds (s) |  |
| Operating time from restart | Shows the time the device has been in operation since the last device restart.                                        | Days (d), hours (h), minutes (m), seconds (s) |  |
| Operating time              | Indicates how long the device has been in operation.                                                                  | Days (d), hours (h), minutes (m), seconds (s) |  |

# 12.7 Diagnostics list

Up to 5 currently pending diagnostic events can be displayed in the **Diagnostic list** submenu along with the associated diagnostic information. If more than 5 diagnostic events are pending, the events with the highest priority are shown on the display.

#### Navigation path

Diagnostics → Diagnostic list



To call up the measures to rectify a diagnostic event: Via SmartBlue  $\ensuremath{\mathsf{App}}$ 

# 12.8 Event logbook

## 12.8.1 Reading out the event logbook

A chronological overview of the event messages that have occurred is provided in the **Events list** submenu.

#### Navigation path

 $\textbf{Diagnostics} \ \text{menu} \rightarrow \textbf{Event logbook} \ \text{submenu} \rightarrow \text{Events list}$ 

100 event messages can be displayed in chronological order.

The event history includes entries for:

- Diagnostic events → 🖺 85
- Information events  $\rightarrow$   $\blacksquare$  90

In addition to the operating time when the event occurred, each event is also assigned a symbol that indicates whether the event has occurred or is finished:

- Diagnostics event
  - ①: Occurrence of the event
  - 🕒: End of the event
- Information event
  - €: Occurrence of the event
- To call up the measures to rectify a diagnostic event: Via SmartBlue App
- For filtering the displayed event messages  $\rightarrow \triangleq 89$

#### 12.8.2 Filtering the event logbook

Using the **Filter options** parameter you can define which category of event message is displayed in the **Events list** submenu.

#### Navigation path

Diagnostics → Event logbook → Filter options

#### Filter categories

- All
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- Information (I)

## 12.8.3 Overview of information events

Unlike a diagnostic event, an information event is displayed in the event logbook only and not in the diagnostic list.

| Info number | Info name                               |  |
|-------------|-----------------------------------------|--|
| I1000       | (Device ok)                             |  |
| I1079       | Sensor changed                          |  |
| I1089       | Power on                                |  |
| I1090       | Configuration reset                     |  |
| I1091       | Configuration changed                   |  |
| I11036      | Date/time set successfully              |  |
| I11068      | Device ok                               |  |
| I11095      | Device ok                               |  |
| I1137       | Display module replaced                 |  |
| I1151       | History reset                           |  |
| I1155       | Reset electronics temperature           |  |
| I1157       | Memory error event list                 |  |
| I1256       | Display: access status changed          |  |
| I1335       | Firmware changed                        |  |
| I1351       | Empty pipe detection adjustment failure |  |
| I1353       | Empty pipe detection adjustment ok      |  |
| I1397       | Fieldbus: access status changed         |  |
| I1398       | CDI: access status changed              |  |
| I1444       | Device verification passed              |  |
| I1445       | Device verification failed              |  |
| I1457       | Measurement error verification failed   |  |
| I1459       | I/O module verification failed          |  |
| I1461       | Sensor verification failed              |  |
| I1462       | Electronic module verification failed   |  |
| I1512       | Download started                        |  |
| I1513       | Download finished                       |  |
| I1514       | Upload started                          |  |
| I1515       | Upload finished                         |  |
| I1517       | Custody transfer active                 |  |
| I1518       | Custody transfer inactive               |  |
| I1622       | Calibration changed                     |  |
| I1624       | All totalizers reset                    |  |
| I1625       | Write protection activated              |  |

| Info number | Info name                             |
|-------------|---------------------------------------|
| I1626       | Write protection deactivated          |
| I1634       | Reset to factory settings             |
| I1635       | Reset to delivery settings            |
| I1649       | Hardware write protection activated   |
| I1650       | Hardware write protection deactivated |
| I1651       | Custody transfer parameter changed    |
| I1725       | Electronic module changed             |

# 12.9 Resetting the measuring device

The entire device configuration or some of the configuration can be reset to a defined state with the **Device reset** parameter ( $\rightarrow \implies 91$ ).

#### **Navigation**

"System" menu  $\rightarrow$  Device management  $\rightarrow$  Device reset

#### Parameter overview with brief description

| Parameter    | Description                                                                       | Selection                                                                                                                                                                                                |
|--------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Device reset | Reset the device configuration - either entirely or in part - to a defined state. | <ul> <li>Cancel</li> <li>To delivery settings*</li> <li>Restart device*</li> <li>Restore S-DAT backup*</li> <li>Shut down device</li> <li>Create T-DAT backup*</li> <li>Restore T-DAT backup*</li> </ul> |

<sup>\*</sup> Visibility depends on order options or device settings

#### 12.10 Device information

The **Device information** submenu contains all parameters that display different information for device identification.

#### Navigation

"System" menu  $\rightarrow$  Information  $\rightarrow$  Device

#### Parameter overview with brief description

| Parameter             | Description                                      | User interface                                                      |  |
|-----------------------|--------------------------------------------------|---------------------------------------------------------------------|--|
| Serial number         | Shows the serial number of the measuring device. | Character string comprising numbers, letters and special characters |  |
| Order code            | Shows the device order code.                     | Character string comprising numbers, letters and special characters |  |
| Firmware version      | Shows the device firmware version installed.     | Character string comprising numbers, letters and special characters |  |
| Extended order code 1 | Shows the 1st part of the extended order code.   | Character string comprising numbers, letters and special characters |  |
| Extended order code 2 | Shows the 2nd part of the extended order code.   | Character string comprising numbers, letters and special characters |  |
| Extended order code 3 | Shows the 3rd part of the extended order code.   | Character string comprising numbers, letters and special characters |  |

| Parameter    | Description                                          | User interface                                                             |  |
|--------------|------------------------------------------------------|----------------------------------------------------------------------------|--|
| Device name  | Shows the name of the transmitter.                   | itter. Character string comprising numbers, letters and special characters |  |
| ENP version  | Shows the version of the electronic nameplate (ENP). | Character string comprising numbers, letters and special characters        |  |
| Manufacturer | Displays the manufacturer.                           | Character string comprising numbers, letters and special characters        |  |

# 12.11 Firmware history

| Release<br>date | Firmware<br>version | Firmware<br>Changes | Documentation type     | Documentation        |
|-----------------|---------------------|---------------------|------------------------|----------------------|
| 03.2021         | 01.00.zz            | Original firmware   | Operating instructions | BA02043D/06/EN/01.21 |

## 13 Maintenance

#### 13.1 Maintenance work

No special maintenance work is required.

#### 13.1.1 Exterior cleaning

When cleaning the exterior of measuring devices, always use cleaning agents that do not attack the surface of the housing or the gaskets.

#### **A** WARNING

#### Cleaning agents can damage the plastic transmitter housing!

- ▶ Do not use high-pressure steam.
- ▶ Only use the permitted cleaning agents specified.

#### Permitted cleaning agents for the plastic housing:

- Commercially available household cleaners
- Methyl alcohol or isopropyl alcohol
- Mild soap solutions

## 13.1.2 Interior cleaning

No interior cleaning is planned for the device.

## 13.1.3 Replacing the batteries

#### **A** WARNING

#### Batteries may explode if not handled properly!

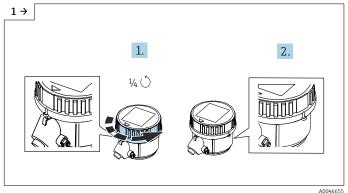
- ▶ Do not recharge batteries.
- ► Do not open batteries.
- ▶ Do not expose batteries to naked flame.

#### Replacing the battery pack

#### **WARNING**

#### Batteries may explode if not handled properly!

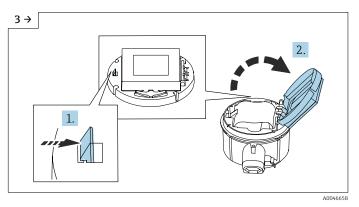
- ► Do not recharge batteries.
- ▶ Do not open batteries.
- Do not expose batteries to naked flame.
- Safety precautions must be taken when storing batteries. Observe the instructions in the safety data sheets for the batteries (MATERIAL SAFETY DATA SHEET).
- Replace the battery pack if a diagnostic message is output.
- Observe the specified temperature range of the batteries.
- If the device is no longer in operation due to a flat battery, the buffer capacitor must be replaced as well as the battery.


Check the battery charge state via the SmartBlue app

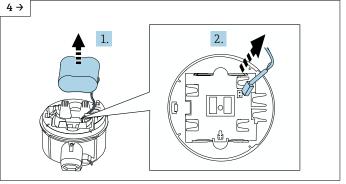
- 1. Open **System**.
- 2. Open Power (battery).
- 3. Open State of charge battery 1 or State of charge battery 2.
- 4. Switch off the device as described below and replace the empty battery pack.

Shut down device

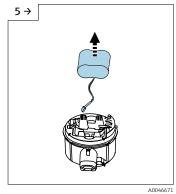
- 1. Open **System**.
- 2. Open **Device management**.
- 3. Open **Device reset**.
- 4. Select **Shut down device**.
- 5. Press **OK** to confirm.
  - As soon as **F418** appears on the local display, the device can be disconnected from the power supply by means of DIP switch B without any loss of data. If an external power supply (external battery pack) is available, the device does not need to be switched off.
- 6. Replace the empty battery pack.


Replacing the empty battery pack - Promag 800

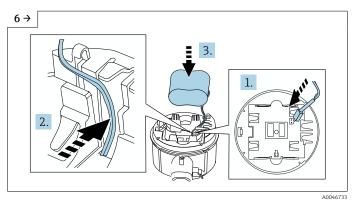


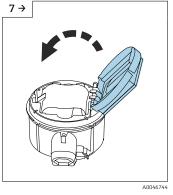



► Lift off the cover.


► Turn the cover to the right by a 1/4 turn.



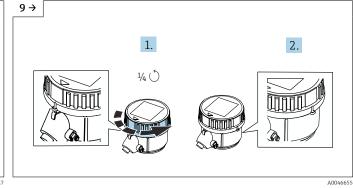

▶ Open the cover of the electronics carrier.




► Take the battery out of the battery compartment (it is still attached, however) and disconnect the battery plug.

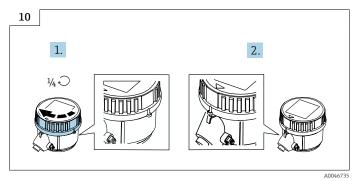


 Now remove the battery from the battery compartment entirely.



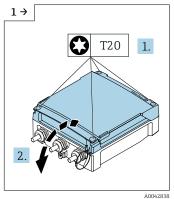


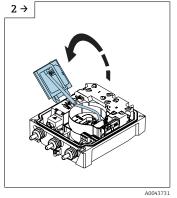

► Insert the battery plug and place the cable in the recess of the battery carrier as shown in the graphic. Place the battery in the battery compartment.

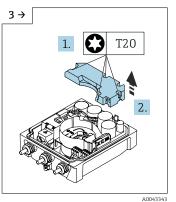

► Close the cover of the battery carrier.






► Fit the cover on the transmitter housing.

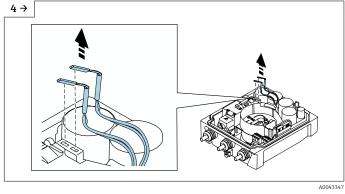

► Turn the cover to the right by a 1/4 turn.

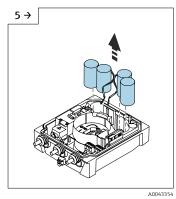



► Turn the cover to the left by a 1/4 turn.

#### Replacing the empty battery pack - Promag 800 Advanced





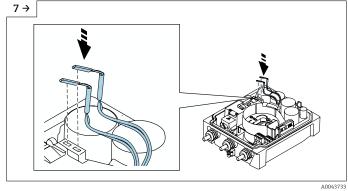




• Open the connection compartment cover.

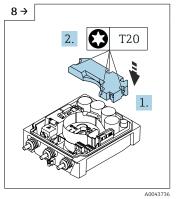
► Open the display module.

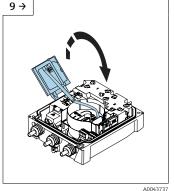

► Remove the cover of the battery pack.

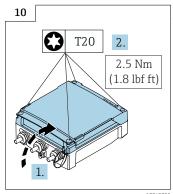





► Unplug the empty battery pack.


Remove the empty battery pack.





► Insert the new battery pack.



- ► Plug in the connector of the new battery pack.
- The device switches back on. After 15 seconds, a measured value appears on the display.







 Mount the cover of the battery pack. ► Close the display module.

- Close the connection compartment cover.
- ► Confirm the battery replacement.

#### Confirm battery replacement

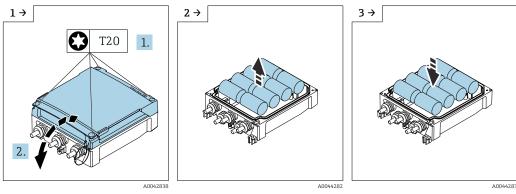
- 1. Open **System**.
- 2. Open **Power management**.
- 3. Open Confirm battery replacement.
- 4. Select the number of the battery pack that was replaced.
- 5. Press **OK** to confirm.
  - ► The replacement of the battery pack is complete.

#### Replacing batteries in the external battery pack

#### **A** WARNING

#### Batteries may explode if not handled properly!

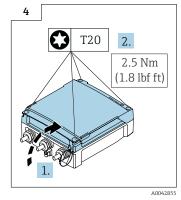
- ▶ Do not recharge batteries.
- ► Do not open batteries.
- ▶ Do not expose batteries to naked flame.
- The external battery pack can be operated with lithium thionyl chloride 3.6V D batteries and also with alkaline 1.5V D batteries. Only insert batteries of the same type and charge level into the external battery pack.


The following lithium thyionyl chloride batteries are recommended by Endress +Hauser:

- Tadiran SL2780
- Saft LS33600
- Eve ER34615
- Tadiran SL2880

The following alkaline batteries are recommended by Endress+Hauser:

- Energizer E95
- Duracell MX1300
- Panasonic LR20XWA
- Varta 4020


Replacing empty batteries - Promag 800 Advanced



► Open the connection compartment cover.

► Remove empty batteries.

▶ Insert new batteries.



 Close the connection compartment cover.

The device does not display the remaining capacity of the external batteries. The value on the display refers exclusively to the batteries fitted internally. If internal and external batteries are connected, the external batteries are used first of all, and then the internal batteries are used.

# 13.2 Measuring and test equipment

Endress+Hauser offers a variety of measuring and testing equipment, such as Netilion or device tests.

Your Endress+Hauser Sales Center can provide detailed information on the services.

List of some of the measuring and testing equipment:  $\rightarrow \triangleq 102$ 

#### 13.3 Endress+Hauser services

Endress+Hauser offers a wide variety of services for maintenance such as recalibration, maintenance service or device tests.

Your Endress+Hauser Sales Center can provide detailed information on the services.

# 14 Repair

#### 14.1 General notes

#### 14.1.1 Repair and conversion concept

The Endress+Hauser repair and conversion concept provides for the following:

- The measuring devices have a modular design.
- Spare parts are grouped into logical kits with the associated Installation Instructions.
- Repairs are carried out by Endress+Hauser Service or by appropriately trained customers.
- Certified devices can only be converted to other certified devices by Endress+Hauser Service or at the factory.

#### 14.1.2 Notes for repair and conversion

For repair and conversion of a measuring device, observe the following notes:

- ▶ Use only original Endress+Hauser spare parts.
- ▶ Carry out the repair according to the Installation Instructions.
- ▶ Observe the applicable standards, federal/national regulations, Ex documentation (XA) and certificates.
- Document all repairs and conversions and enter the details in Netilion Analytics.

# 14.2 Spare parts

Device Viewer (www.endress.com/deviceviewer):

All the spare parts for the measuring device, along with the order code, are listed here and can be ordered. If available, users can also download the associated Installation Instructions.

- 🚹 Measuring device serial number:
  - Is located on the nameplate of the device.

#### 14.3 Endress+Hauser services

Endress+Hauser offers a wide range of services.

Your Endress+Hauser Sales Center can provide detailed information on the services.

#### 14.4 Return

The requirements for safe device return can vary depending on the device type and national legislation.

- 1. Refer to the web page for information: https://www.endress.com/support/return-material
  - ► Select the region.
- 2. If returning the device, pack the device in such a way that it is reliably protected against impact and external influences. The original packaging offers the best protection.

# 14.5 Disposal



If required by the Directive 2012/19/EU on waste electrical and electronic equipment (WEEE), the product is marked with the depicted symbol in order to minimize the disposal of WEEE as unsorted municipal waste. Do not dispose of products bearing this marking as unsorted municipal waste. Instead, return them to the manufacturer for disposal under the applicable conditions.

# 14.5.1 Removing the measuring device

1. Switch off the device.

#### **▲** WARNING

#### Danger to persons from process conditions!

- ▶ Beware of hazardous process conditions such as pressure in the measuring device, high temperatures or aggressive media.
- 2. Carry out the mounting and connection steps from the "Mounting the measuring device" and "Connecting the measuring device" sections in reverse order. Observe the safety instructions.

#### 14.5.2 Disposing of the measuring device

#### **A** WARNING

#### Danger to personnel and environment from fluids that are hazardous to health.

► Ensure that the measuring device and all cavities are free of fluid residues that are hazardous to health or the environment, e.g. substances that have permeated into crevices or diffused through plastic.

Observe the following notes during disposal:

- ▶ Observe valid federal/national regulations.
- ► Ensure proper separation and reuse of the device components.

#### 14.5.3 Battery disposal

Dispose of batteries according to local regulations.

# 15 Accessories

Various accessories, which can be ordered with the device or subsequently from Endress +Hauser, are available for the device. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

# 15.1 Device-specific accessories

#### 15.1.1 For the Proline 800 transmitter - Standard

| Accessories                          | Description                                                                                                              |  |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| Ground cable                         | Set, consisting of two ground cables for potential equalization.                                                         |  |  |
| Display guard                        | Is used to protect the display against impact or scoring, for example from sand in desert areas.  Order number: 71504534 |  |  |
| Cable set, Modbus, 3x pulse, 5m/15ft | Order number: 71504535                                                                                                   |  |  |
| Application package,<br>Promag 800   | Order number: DK5014                                                                                                     |  |  |
| 1x battery pack, lithium             | Order number: DK5016-AA                                                                                                  |  |  |

## 15.1.2 For the Proline 800 - Advanced transmitter

| Accessories                         | Description                                                                                                                                                                               |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Connecting cable for remote version | Coil current and electrode cables, various lengths, reinforced cables available on request.                                                                                               |  |  |
| Ground cable                        | Set, consisting of two ground cables for potential equalization.                                                                                                                          |  |  |
| Post mounting kit                   | Post mounting kit for transmitter.                                                                                                                                                        |  |  |
| Weather protection cover            | Is used to protect the measuring device from the effects of the weather: e.g. rainwater, excess heating from direct sunlight.  Order number: 71343504  Installation Instructions EA01191D |  |  |
| Application package,<br>Promag 800  | Order number: DK5014                                                                                                                                                                      |  |  |
| 1x battery pack, lithium            | Order number: DK5016-CA                                                                                                                                                                   |  |  |
| 2x battery pack, lithium            | Order number: DK5016-CB                                                                                                                                                                   |  |  |

# 15.1.3 For the sensor

| Accessories  | Description                                                                          |
|--------------|--------------------------------------------------------------------------------------|
| Ground disks | Are used to ground the medium in lined measuring tubes to ensure proper measurement. |
|              | For details, see Installation Instructions EA00070D                                  |

# 15.2 Service-specific accessories

| Accessories                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Applicator                      | Software for selecting and sizing Endress+Hauser measuring devices:  Choice of measuring devices for industrial requirements  Calculation of all the necessary data for identifying the optimum flowmeter: e.g. nominal diameter, pressure loss, flow velocity and accuracy.  Graphic illustration of the calculation results  Determination of the partial order code, administration, documentation and access to all project-related data and parameters over the entire life cycle of a project.  Calculation of the expected battery life.  Applicator is available: |
|                                 | <ul> <li>Via the Internet: https://portal.endress.com/webapp/applicator</li> <li>As a downloadable DVD for local PC installation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Netilion                        | lloT ecosystem: Unlock knowledge Endress+Hauser's Netilion lloT ecosystem enables you to optimize your plant performance, digitize workflows, share knowledge and improve collaboration. Based on decades of experience in process automation, Endress+Hauser offers the process industry an lloT ecosystem that enables you to gain useful insights from data. This knowledge can be used to optimize processes, leading to higher plant availability, efficiency and reliability, and ultimately to a more profitable plant. www.netilion.endress.com                   |
| Endress+Hauser<br>SmartBlue app | If the device has an optional WLAN interface, it can be operated and configured with the SmartBlue App.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                 | <ul> <li>Supported functions</li> <li>Access to the device (login)</li> <li>Configuration of the device</li> <li>Access to measured values, device status and diagnostic information</li> <li>SmartBlue is available as download for Android devices from the Google Play</li> <li>Store and for iOS devices from the iTunes Store: Endress+Hauser SmartBlue</li> </ul>                                                                                                                                                                                                   |
|                                 | Directly to the app with the QR code:  ANDROID APP ON Google Play  Download on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                 | App Store                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                 | System requirements  i OS devices: iPhone 4S or higher from iOS9.0; iPad2 or higher from iOS9.0; iPod Touch 5th generation or higher from iOS9.0  Devices with Android: from Android 4.4 KitKat and Bluetooth® 4.0                                                                                                                                                                                                                                                                                                                                                        |

102

# 16 Technical data

# 16.1 Application

The measuring device is intended only for the flow measurement of liquids with a minimum conductivity of 20  $\mu$ S/cm.

To ensure that the device remains in proper operating condition for its service life, use the measuring device only for media against which the process-wetted materials are sufficiently resistant.

# 16.2 Function and system design

#### Measuring principle

Electromagnetic flow measurement on the basis of Faraday's law of magnetic induction.

#### Measuring system

The device consists of a transmitter and a sensor.

#### Proline Promag 800 - Standard

Compact version – transmitter and sensor form a mechanical unit.

#### Proline Promag 800 - Advanced

Two device versions are available:

- Compact version transmitter and sensor form a mechanical unit.
- Remote version transmitter and sensor are mounted in separate locations.

For information on the structure of the measuring device  $\rightarrow = 13$ 

# **16.3** Input

#### Measured variable

#### Direct measured variables

- Volume flow (proportional to induced voltage)
- Electrical conductivity
- Pressure (optional)

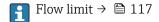
#### Measuring range

Typically v = 0.01 to 10 m/s (0.03 to 33 ft/s) with the specified accuracy

Electrical conductivity:  $\geq 20 \,\mu\text{S/cm}$  for liquids in general

Flow characteristic values in SI units

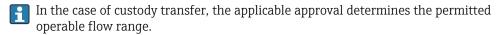
|      | ninal<br>neter | Recommended<br>Flow rate                       | Factory settings                                          |                         |
|------|----------------|------------------------------------------------|-----------------------------------------------------------|-------------------------|
|      |                | min./max. full scale value<br>(v ~ 0.3/10 m/s) | Pulse value Low flow cut off (~ 2 pulse/s) (v ~ 0.04 m/s) |                         |
| [mm] | [in]           | [m <sup>3</sup> /h]                            | [m³]                                                      | [m³/h]                  |
| 25   | 1              | 9 to 300 dm <sup>3</sup> /min                  | 0.5 dm <sup>3</sup>                                       | 1 dm³/min               |
| 32   | -              | 15 to 500 dm <sup>3</sup> /min                 | $1 \text{ dm}^3$                                          | 2 dm³/min               |
| 40   | 1 ½            | 25 to 700 dm <sup>3</sup> /min                 | 1.5 dm <sup>3</sup>                                       | 3 dm³/min               |
| 50   | 2              | 35 to 1100 dm <sup>3</sup> /min                | 2.5 dm <sup>3</sup>                                       | 5 dm³/min               |
| 65   | -              | 60 to 2 000 dm <sup>3</sup> /min               | 5 dm <sup>3</sup>                                         | 8 dm³/min               |
| 80   | 3              | 90 to 3000 dm <sup>3</sup> /min                | 5 dm <sup>3</sup>                                         | 12 dm³/min              |
| 100  | 4              | 145 to 4700 dm <sup>3</sup> /min               | 10 dm <sup>3</sup>                                        | 20 dm <sup>3</sup> /min |


| Nominal<br>diameter |      | Recommended<br>Flow rate                       | Factor                       | ry settings                     |
|---------------------|------|------------------------------------------------|------------------------------|---------------------------------|
|                     |      | min./max. full scale value<br>(v ~ 0.3/10 m/s) | Pulse value<br>(~ 2 pulse/s) | Low flow cut off (v ~ 0.04 m/s) |
| [mm]                | [in] | [m <sup>3</sup> /h]                            | [m³]                         | [m <sup>3</sup> /h]             |
| 125                 | -    | 220 to 7 500 dm <sup>3</sup> /min              | 15 dm <sup>3</sup>           | 30 dm <sup>3</sup> /min         |
| 150                 | 6    | 20 to 600                                      | 0.025                        | 2.5                             |
| 200                 | 8    | 35 to 1100                                     | 0.05                         | 5                               |
| 250                 | 10   | 55 to 1700                                     | 0.05                         | 7.5                             |
| 300                 | 12   | 80 to 2 400                                    | 0.1                          | 10                              |
| 350                 | 14   | 110 to 3 300                                   | 0.1                          | 15                              |
| 375                 | 15   | 140 to 4200                                    | 0.15                         | 20                              |
| 400                 | 16   | 140 to 4200                                    | 0.15                         | 20                              |
| 450                 | 18   | 180 to 5 400                                   | 0.25                         | 25                              |
| 500                 | 20   | 220 to 6600                                    | 0.25                         | 30                              |
| 600                 | 24   | 310 to 9600                                    | 0.3                          | 40                              |
| 700                 | 28   | 420 to 13500                                   | 0.5                          | 50                              |
| 750                 | 30   | 480 to 15 000                                  | 0.5                          | 60                              |
| 800                 | 32   | 550 to 18000                                   | 0.75                         | 75                              |
| 900                 | 36   | 690 to 22 500                                  | 0.75                         | 100                             |

## Flow characteristic values in US units

| Nominal<br>diameter |      | Recommended<br>Flow rate                       | Factory settings             |                                 |
|---------------------|------|------------------------------------------------|------------------------------|---------------------------------|
|                     |      | min./max. full scale value<br>(v ~ 0.3/10 m/s) | Pulse value<br>(~ 2 pulse/s) | Low flow cut off (v ~ 0.04 m/s) |
| [in]                | [mm] | [gal/min]                                      | [gal]                        | [gal/min]                       |
| 1                   | 25   | 2.5 to 80                                      | 0.2                          | 0.25                            |
| -                   | 32   | 4 to 130                                       | 0.2                          | 0.5                             |
| 1 1/2               | 40   | 7 to 185                                       | 0.5                          | 0.75                            |
| 2                   | 50   | 10 to 300                                      | 0.5                          | 1.25                            |
| -                   | 65   | 16 to 500                                      | 1                            | 2                               |
| 3                   | 80   | 24 to 800                                      | 2                            | 2.5                             |
| 4                   | 100  | 40 to 1250                                     | 2                            | 4                               |
| -                   | 125  | 60 to 1950                                     | 5                            | 7                               |
| 6                   | 150  | 90 to 2 650                                    | 5                            | 12                              |
| 8                   | 200  | 155 to 4850                                    | 10                           | 15                              |
| 10                  | 250  | 250 to 7 500                                   | 15                           | 30                              |
| 12                  | 300  | 350 to 10600                                   | 25                           | 45                              |
| 14                  | 350  | 500 to 15 000                                  | 30                           | 60                              |
| 15                  | 375  | 600 to 19000                                   | 50                           | 60                              |
| 16                  | 400  | 600 to 19000                                   | 50                           | 60                              |
| 18                  | 450  | 800 to 24000                                   | 50                           | 90                              |
| 20                  | 500  | 1000 to 30000                                  | 75                           | 120                             |
| 24                  | 600  | 1400 to 44000                                  | 100                          | 180                             |

| Nominal<br>diameter |      | Recommended<br>Flow rate                       | Factory settings             |                                 |
|---------------------|------|------------------------------------------------|------------------------------|---------------------------------|
|                     |      | min./max. full scale value<br>(v ~ 0.3/10 m/s) | Pulse value<br>(~ 2 pulse/s) | Low flow cut off (v ~ 0.04 m/s) |
| [in]                | [mm] | [gal/min]                                      | [gal]                        | [gal/min]                       |
| 28                  | 700  | 1900 to 60 000                                 | 125                          | 210                             |
| 30                  | 750  | 2 150 to 67 000                                | 150                          | 270                             |
| 32                  | 800  | 2 450 to 80 000                                | 200                          | 300                             |
| 36                  | 900  | 3 100 to 100 000                               | 225                          | 360                             |


#### Recommended measuring range



For custody transfer, the applicable approval determines the permitted measuring range, the pulse value and the low flow cut off.

#### Operable flow range

Over 1000:1



#### Input signal

#### External measured values

Digital communication

The measured values are written by the automation system via Modbus RS485.

#### Status input

| Maximum input values | ■ DC 30 V<br>■ 6 mA                                                                                                        |
|----------------------|----------------------------------------------------------------------------------------------------------------------------|
| Response time        | Configurable: 50 to 200 ms                                                                                                 |
| Input signal level   | <ul> <li>Low signal (low): DC -3 to +5 V</li> <li>High signal (high): DC 12 to 30 V</li> </ul>                             |
| Assignable functions | <ul> <li>Off</li> <li>Reset totalizers 1-3 separately</li> <li>Reset all totalizers</li> <li>Logbook entry only</li> </ul> |

#### Status input, power save mode

To activate the status input, the signal must change from low level to high level with a maximum rise time of 10 ms and the high level must be present for at least the duration of the response time. The input signal can then be set back to "low" again. After this, the status input is ready for another activation.

# 16.4 Output

# Output signal

# Status/pulse output

| Function  Version  Maximum input values | Proline Promag 800 - Standard With the order code for "Output; Input", option N: Modbus RS485, 3 outputs can be set either as a pulse output or switch output Proline Promag 800 - Advanced With the order code for "Output; Input", option M: Modbus RS485, 3 outputs can be set either as a pulse output or switch output Passive, open collector  DC 30 V 30 mA                                                                 |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Voltage drop                            | At 25 mA: ≤ DC 2 V                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Pulse output                            |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pulse width                             | Configurable: 0.1 to 500 ms                                                                                                                                                                                                                                                                                                                                                                                                        |
| Maximum pulse rate                      | 100 Impulse/s                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Pulse value                             | Configurable                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Assignable measured variables           | Volume flow                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Switch output                           |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Switching behavior                      | Binary, conductive or non-conductive                                                                                                                                                                                                                                                                                                                                                                                               |
| Number of switching cycles              | Unlimited                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Assignable functions                    | <ul> <li>Off</li> <li>On</li> <li>Diagnostic behavior</li> <li>Limit value: <ul> <li>Off</li> <li>VolumeFlow</li> <li>FlowVelocity</li> <li>Conductivity</li> <li>Totalizer 1</li> <li>Totalizer 2</li> <li>Totalizer 3</li> <li>Temperature</li> <li>Pressure</li> <li>BatteryLevel</li> </ul> </li> <li>Flow direction monitoring</li> <li>Status <ul> <li>Empty pipe detection</li> <li>Low flow cut off</li> </ul> </li> </ul> |
| Status output, power save n             |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         | An active status output is not permanently conductive. Rather, it is only conductive for the length of the pulse width at a repeat rate that corresponds to the device measurement interval.                                                                                                                                                                                                                                       |

## Modbus RS485

| Physical interface | In accordance with EIA/TIA-485-A standard |
|--------------------|-------------------------------------------|

Signal on alarm

Depending on the interface, failure information is displayed as follows.

106

#### Status/pulse output

| Status/pulse output |           |
|---------------------|-----------|
| Failure mode        | No pulses |

#### Modbus RS485

| Failure mode | Choose from:                         |
|--------------|--------------------------------------|
|              | ■ NaN value instead of current value |
|              | ■ Last valid value                   |

#### Local display

| Plain text display With information on the cause |  |
|--------------------------------------------------|--|
|--------------------------------------------------|--|

#### Interface/protocol

Via digital communication:

- SmartBlue App
- Modbus RS485

| Plain text display | With information on cause and remedial measures |
|--------------------|-------------------------------------------------|
|--------------------|-------------------------------------------------|

#### Low flow cut off

The switch points for low flow cut off are user-selectable.

#### Galvanic isolation

The following circuits are galvanically isolated from one another:

- Inputs
- Outputs
- Optional power supply with the order code for "Energy supply", option K "100-240VAC/ 19-30VDC, lithium battery" and option S "100-240VAC/19-30VDC, w/o battery"

## Protocol-specific data

## Modbus RS485

| Protocol            | Modbus Applications Protocol Specification V1.1                                                                                                                                                                              |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Device type         | Slave                                                                                                                                                                                                                        |
| Slave address range | 1 to 247                                                                                                                                                                                                                     |
| Function codes      | <ul> <li>03: Read holding register</li> <li>04: Read input register</li> <li>06: Write single registers</li> <li>08: Diagnostics</li> <li>16: Write multiple registers</li> <li>23: Read/write multiple registers</li> </ul> |
| Broadcast messages  | Supported by the following function codes:  O6: Write single registers  16: Write multiple registers  23: Read/write multiple registers                                                                                      |
| Supported baud rate | <ul> <li>1200 BAUD</li> <li>2400 BAUD</li> <li>4800 BAUD</li> <li>9600 BAUD</li> <li>19200 BAUD</li> <li>38400 BAUD</li> <li>57600 BAUD</li> <li>115200 BAUD</li> </ul>                                                      |

| Data transfer mode | RTU                                                     |
|--------------------|---------------------------------------------------------|
| Data access        | Each device parameter can be accessed via Modbus RS485. |
|                    | For Modbus register information → 🗎 128                 |

#### Modbus RS485 power save mode

If the device is not powered via an external mains voltage (only possible with order code for "Energy supply", option K "100-240VAC/ 19-30VDC, lithium battery" and option S "100-240VAC/19-30VDC, w/o battery"), the Modbus-RS485 circuit on the transmitter, i.e. the slave, is deactivated between two communication cycles in order to save energy. To activate the circuit and communicate with the slave, a retry function must be provided in the Modbus master which resends a telegram to the slave if no response is received. In addition, DIP switch A on the electronics module must be set to "ON".  $\Rightarrow$   $\Rightarrow$  11

The first telegram sent by the master first activates the Modbus RS485 circuit on the slave. After a certain period of time, specified by the master, in which the slave does not send a reply, the master sends a retry message with the same content. The slave can interpret and reply to this telegram. The Modbus-RS485 circuit is deactivated again afterwards.

This approach is particularly suitable for low data throughput rates and point-to-point connections. Power supply via the mains voltage is recommended for high data throughput rates and bus networks.

#### Data logger

The data logger logs up to 10,000 (optionally 50,000) protocol data records. A log entry consists of a time stamp and the configured values.

The data logger logs the following values:

- Volume flow
- Pressure
- Electrical conductivity
- Totalizer 1
- Totalizer 2
- Totalizer 3
- Battery charge state
- System diagnostics status

The logging cycle (hours:minutes:seconds) applies for all values to be logged. If no logging cycle is selected, the data logger is switched off and does not log any more data.

It is possible to access the data logger locally via the SmartBlue app or via a cloud-based application for data analysis.

# 16.5 Power supply

Terminal assignment

→ 🖺 47

Supply voltage

#### Supply voltage via batteries

- 3.6 V DC
- 38 Ah at 25 °C(per battery pack)
- Maximum power: 500 mW

# Supply voltage via external battery housing - Proline Promag 800 - Advanced (optional)

Order code for "Accessory enclosed", option "External battery housing without a battery", option "PG".

- Maximum power: 3.5 W
- Interface is designed for connection of an additional external battery supply to increase the service life.
- Two internal battery packs
- The battery life display refers to the internally installed battery packs.

# Supply voltage via external power supply - Proline Promag 800 - Advanced (optional)

Order code for "Power supply", options "K", "S"

- 85 to 265 V AC/ 19 to 30 V DC <sup>1)</sup>
- 47 to 63 Hz
- Maximum power: 4 W
- Two battery packs to back up the device supply if the external mains power supply fails

| Temporary overvoltage                                                | up to the levels of overvoltage category ll |
|----------------------------------------------------------------------|---------------------------------------------|
| Short-term temporary overvoltages between line and neutral conductor | up to 1200 V for a maximum of 5 s           |
| Permanent temporary overvoltage between line and earth               | up to 500 V                                 |

#### Battery concept

#### Battery configuration options

The following configurations of power sources are possible:

## Proline Promag 800 - Standard

1 LTC 2) battery pack, order code for "Power supply", option H

## Proline Promag 800 - Advanced

2 LTC  $^{2)}$  battery packs and 1 buffer capacitor  $^{3)}$ , order code for "Energy supply", option H and K

#### LTC battery specifications

- High-power lithium-thionyl chloride battery (size D)
- 3.6 V DC
- Not rechargeable
- 38 Ah nominal capacity at 25 °C (per battery pack)
- High-power lithium-thionyl chloride batteries are listed under Hazard Class 9:

Miscellaneous Hazardous Materials.

Observe the hazardous materials regulations described in the Safety Datasheet.

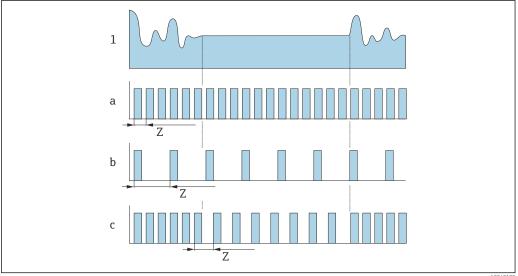
The Safety Datasheet can be requested from any Endress+Hauser sales organization.

<sup>1)</sup> These values are absolute minimum and maximum values. No tolerance applies. The DC power unit must be safety-tested (e.g. PELV, SELV) with transients of less than 700 Vp.

<sup>2)</sup> Lithium-thionyl chloride

<sup>3)</sup> Lithium-hybrid-layer capacitor

# **Buffer capacitor specifications**


- Lithium hybrid layer capacitor
- 3.7 V DC
- 155 mAh nominal capacity at 25 °C
- Lithium hybrid layer capacitors are listed under Hazard Class 9:

Miscellaneous Hazardous Materials.

Observe the hazardous materials regulations described in the Safety Datasheet.

The Safety Datasheet can be requested from any Endress+Hauser sales organization.

### Estimated battery lifetime



A00401

■ 17 Operating principle of various data logging methods

- 1 Flow profile
- a Minimum measuring interval value (external power supply)
- b Fixed measuring interval value between the sensor-dependent minimum and 60 seconds
- c Intelligent adaptation
- Z Measuring interval value
- With an external power supply, the device operates in continuous measuring mode. The measurement interval value is automatically set to the minimum value that is technically possible.
- Measuring interval value

The measuring interval is specified in the "Measuring interval value" parameter. This option is recommended to optimize battery lifetime.

Enter the value for the measuring interval. Additional information: To increase battery life, set as long an interval as possible. To optimize the measuring result, set as short an interval as possible.

Intelligent adaptation

Under normal process conditions, the measuring device measures according to the measuring interval specified in the "Measuring interval value" parameter. If the process conditions change, the measuring device measures in shorter intervals according to the usage rate specified in the "Energy budget intelligent adaption" parameter. This option is recommended to optimize the measuring result.

### Nominal estimated battery lifetime - Proline 800

| Sensor         | Transmitter with Modbus |
|----------------|-------------------------|
| DN 15 to 300   | 10 years                |
| DN 350 to 600  | 8 years                 |
| DN 700 to 1200 | 4 years                 |

#### Test conditions:

- A full battery pack
- EFM measuring interval: 15 seconds (for a fixed measuring interval value. For intelligent adaptation: consider the influence of the settings in the Applicator.)
- Display: 60s @ 1 day
- An active pulse output with 2 Hz @ 5 ms
- Modbus transmission interval: 15 seconds
- Ambient temperature: 25 °C (77 °F)

#### The battery lifetime is significantly shortened by:

- Shortening the EFM measuring interval
- Frequently activating the display
- Decreasing the pulse value of the pulse outputs
- Increasing the pulse width of the pulse outputs
- Shortening the Modbus transmission interval
- Operating at ambient temperatures < 0 °C (32 °F) and > 40 °C (104 °F)

# Nominal estimated battery lifetime - Proline 800 Advanced

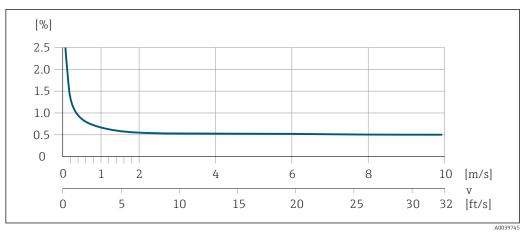
| DN 15 to 300   | 15 years |
|----------------|----------|
| DN 350 to 600  | 12 years |
| DN 700 to 1200 | 7 years  |

# Test conditions:

- Two full battery packs
- EFM measuring interval: 15 seconds (for a fixed measuring interval value. For intelligent adaptation: consider the influence of the settings in the Applicator.)
- Display: 60s @ 1 day, background lighting 30%
- An active pulse output with 2 Hz @ 5 ms
- Modbus transmission interval: 15 seconds
- Data logger interval: 15 minutes
- External pressure sensor
- Ambient temperature: 25 °C (77 °F)

#### The battery lifetime is significantly shortened by:

- Shortening the EFM measuring interval
- Frequently activating the display
- Increasing the setting for the background lighting
- Decreasing the pulse value of the pulse outputs
- Increasing the pulse width of the pulse outputs
- Shortening the Modbus transmission interval
- Shortening the data logger interval
- Operating at ambient temperatures < 0 °C (32 °F) and > 40 °C (104 °F)
- Poor cellular network reception


# Power consumption

#### Switch-on current:

- Maximum 30 A (< 5 ms) at 230  $V_{AC}$
- Maximum 3 A (< 5 ms) at 24  $V_{DC}$

| Current consumption            | Order code for "Power supply"                                                                                                                                                                                                                                                                             | Maximum current consumption                                |  |  |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|--|
|                                | Option <b>K</b> : 100-240VAC/19-30VDC, lithium battery                                                                                                                                                                                                                                                    | 300 mADC                                                   |  |  |
|                                | Option <b>S</b> : 100-240VAC/19-30VDC, w/o lithium battery                                                                                                                                                                                                                                                | Option <b>S</b> : 100-240VAC/19-30VDC, w/o lithium battery |  |  |
|                                | Fine-wire fuse (slow-blow) T1A                                                                                                                                                                                                                                                                            |                                                            |  |  |
| Device rade                    | The wife ruse (slow blow) TIT                                                                                                                                                                                                                                                                             |                                                            |  |  |
| Power supply failure           | The batteries act as a power supply back-up if the measuring device is being powered externally and a power failure occurs.                                                                                                                                                                               |                                                            |  |  |
| Electrical connection          | → 🖺 51                                                                                                                                                                                                                                                                                                    |                                                            |  |  |
| Potential equalization         | → 🖺 54                                                                                                                                                                                                                                                                                                    |                                                            |  |  |
| Terminals                      | Spring terminals for wire cross-sections 0.5 to 2.5 mm <sup>2</sup> (20                                                                                                                                                                                                                                   | O to 14 AWG)                                               |  |  |
| Cable entries                  | Cable entry thread  ■ NPT ½"  ■ G ½"                                                                                                                                                                                                                                                                      |                                                            |  |  |
|                                | <b>Cable gland</b> • For standard cable: M20 × 1.5 with cable $\phi$ 6 to 12 mm (0.24 to 0.47 in) • For armored cable: M20 × 1.5 with cable $\phi$ 9.5 to 16 mm (0.37 to 0.63 in)                                                                                                                         |                                                            |  |  |
|                                | If metal cable entries are used, use a grounding plate.                                                                                                                                                                                                                                                   |                                                            |  |  |
| Cable specification            | → 🖺 44                                                                                                                                                                                                                                                                                                    |                                                            |  |  |
|                                | 16.6 Performance characteristics                                                                                                                                                                                                                                                                          |                                                            |  |  |
| Reference operating conditions | <ul> <li>Error limits following DIN EN 29104, in future ISO 20456</li> <li>Water, typically: +15 to +45 °C (+59 to +113 °F); 0.5 to 7 bar (73 to 101 psi)</li> <li>Data as indicated in the calibration protocol</li> <li>Accuracy based on accredited calibration rigs according to ISO 17025</li> </ul> |                                                            |  |  |
| Maximum measurement            | Error limits under reference operating conditions                                                                                                                                                                                                                                                         |                                                            |  |  |
| error                          | o.r. = of reading                                                                                                                                                                                                                                                                                         |                                                            |  |  |
|                                | Volume flow $\pm 0.5 \%$ o.r. $\pm 2$ mm/s (0.08 in/s)                                                                                                                                                                                                                                                    |                                                            |  |  |
|                                | Fluctuations in the supply voltage do not have any effect within the specified range.                                                                                                                                                                                                                     |                                                            |  |  |

112



 $\blacksquare$  18 Maximum measurement error in % o.r.

# **Electrical conductivity**

Maximum measurement error not specified.

#### Pressure

- Pressure range, absolute [bar (psi)]  $0.01 (0.1) \le p \le 8 (116)$   $8 (116) \le p \le 40 (580)$
- Measurement error, absolute ±0.5 % of 8 bar (116 psi) ±0.5 % o.r.

## Accuracy of outputs

The outputs have the following base accuracy specifications.

Pulse output

o.r. = of reading

| Accuracy | Max. ±50 ppm o.r. (over the entire ambient temperature range) |
|----------|---------------------------------------------------------------|
|----------|---------------------------------------------------------------|

# Repeatability

o.r. = of reading

# Volume flow

Max.  $\pm 0.2$  % o.r.  $\pm 2$  mm/s (0.08 in/s)

# **Electrical conductivity**

Max. ±5 % o.r.

# Influence of ambient temperature

# Pulse output

| Temperature coefficient | No additional effect. Included in accuracy. |
|-------------------------|---------------------------------------------|

# 16.7 Mounting

Mounting requirements

→ 🖺 22

# 16.8 Environment

# Ambient temperature range

→ 🖺 28

### Storage temperature

- Protect the measuring device against direct sunlight during storage in order to avoid unacceptably high surface temperatures.
- Select a storage location where moisture cannot collect in the measuring device as fungus or bacteria infestation can damage the liner.
- If protection caps or protective covers are mounted these should never be removed before installing the measuring device.

# Relative humidity

The device is suitable for use outdoors and indoors with a relative humidity of 4 to 95 %.

## Operating height

# According to EN 61010-1

- $\le 2000 \text{ m} (6562 \text{ ft})$
- > 2 000 m (6 562 ft) with additional overvoltage protection (e.g. Endress+Hauser HAW Series)

#### Atmosphere

If a plastic transmitter housing is permanently exposed to certain steam and air mixtures, this can damage the housing.



In cases of doubt, please contact the Sales Center.

## Degree of protection

#### **Transmitter**

- Standard: IP66/67, Type 4X enclosure, suitable for pollution degree 4
- When the housing is open: IP20, Type 1 enclosure, suitable for pollution degree 2
- An inserted mating connector or a fitted protection cap is accepted as a prerequisite for maintaining the specified degree of protection.

# Proline Promag 800 sensor - Standard

- Standard: IP66/67, type 4X enclosure, suitable for pollution degree 4
- Optional or with order code "Calibration flow", option 8 "Water custody transfer approval":
  - IP68 type 6P, suitable for pollution degree 4
  - Order code "Sensor option", option CT "IP68, type 6P, 168h/3m (10 ft)" For use of device under rain or surface water Use at a maximum water depth of 3 m (10 ft) for 168 h

# Proline Promag 800 - Advanced sensor

- Standard: IP66/67, Type 4X enclosure, suitable for pollution degree 4
- Optionally available for remote version:
  - IP66/67, type 4X enclosure; fully welded, with protective varnish EN ISO 12944 C5-M. Suitable for use in corrosive atmospheres.
  - IP68, type 6P enclosure; fully welded, with protective varnish as per EN ISO 12944 C5-M. Suitable for permanent immersion in water  $\leq$  3 m (10 ft) or up to 48 hours at depths  $\leq$  10 m (30 ft).
  - IP68, type 6P enclosure; fully welded, with protective varnish as per EN ISO 12944 Im1/Im2/Im3. Suitable for permanent immersion in saline water  $\leq$  3 m (10 ft) or up to 48 hours at depths  $\leq$  10 m (30 ft) or in buried applications.

114

#### Accessories

Optional:

- External battery power supply: IP66/IP67, Type 4X enclosure
- Pressure measurement: IP68, 48 h under water 3 m (10 ft) with order code for "Accessory enclosed", option PJ
- Pressure measurement: IP67 with order code for "Accessory enclosed", option PI

# Vibration-resistance and shock-resistance



#### Proline 800 - Advanced

Mount external mobile communications antenna remotely for any measuring points that are subject to vibration.

#### Vibration sinusoidal, in accordance with IEC 60068-2-6

Compact version

- 2 to 8.4 Hz, 7.5 mm peak
- 8.4 to 2000 Hz, 2 g peak

Remote version

- 2 to 8.4 Hz, 7.5 mm peak
- 8.4 to 2000 Hz, 2 g peak

# Vibration broad-band random, according to IEC 60068-2-64

Compact version

- 10 to 200 Hz, 0.01 q<sup>2</sup>/Hz
- 200 to 2000 Hz, 0.003 g<sup>2</sup>/Hz
- Total: 2.70 g rms

Remote version

- 10 to 200 Hz, 0.01 q<sup>2</sup>/Hz
- 200 to 2000 Hz, 0.003 q<sup>2</sup>/Hz
- Total: 2.70 g rms

# Shock half-sine, according to IEC 60068-2-27

- Compact version; order code for "Housing", option D "Compact IP68,type 6P, polycarbonate"
   6 ms 50 q
- Compact version; order code for "Housing", option M "Compact, polycarbonate"
   6 ms 50 g
- Remote version; order code for "Housing", option N "Remote, polycarbonate" 6 ms 50 g

#### Rough handling shocks according to IEC 60068-2-31

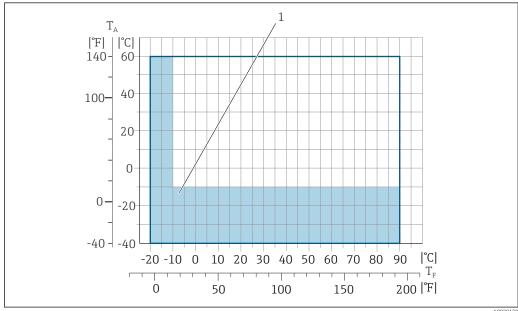
## Mechanical load

Transmitter housing:

- Protect against mechanical effects, such as shock or impact
- Do not use as a ladder or climbing aid

# Electromagnetic compatibility (EMC)

#### As per IEC/EN 61326


- Details are provided in the Declaration of Conformity.
- This unit is not intended for use in residential environments and cannot guarantee adequate protection of the radio reception in such environments.
- The selection of a sensor with a steel housing is recommended for use in the vicinity of electrical power supply lines with strong currents.

# 16.9 Process

#### Medium temperature range

- 0 to +70 °C (+32 to +158 °F) for hard rubber, DN 50 to 900 (2 to 36")
- -20 to +50 °C (-4 to +122 °F) for polyurethane, DN 25 to 900 (1 to 36")
- $-20 \text{ to } +70 ^{\circ}\text{C} (-4 \text{ to } +158 ^{\circ}\text{F}) \text{ for PTFE, DN } 25 \text{ to } 300 \text{ (1 to } 12")}$

| Hard rubber  | DN 50 to 900 (2 to 36") | 0 to +70 °C (+32 to +158 °F)  |
|--------------|-------------------------|-------------------------------|
| Polyurethane | DN 25 to 900 (1 to 36") | −20 to +50 °C (−4 to +122 °F) |
| PTFE         | DN 25 to 300 (1 to 12") | −20 to +70 °C (−4 to +158 °F) |



A0038130

- $T_A$  Ambient temperature
- T<sub>F</sub> Medium temperature
- 1 Colored area: The ambient temperature range of -10 to -40 °C (+14 to -40 °F) and the medium temperature range of -10 to -20 °C (+14 to -4 °F) only apply for stainless flanges.

#### Conductivity

 $\geq$ 20 µS/cm for liquids in general.

Remote version
The necessary minimum conductivity also depends on the length of the connecting cable → 

29.

# Pressure-temperature ratings

# Pressure tightness

Liner: hard rubber

| Nominal | diameter | Limit values for absolute pressure in [mbar] ([psi]) for medium temperatures: |                  | ([psi]) for medium |
|---------|----------|-------------------------------------------------------------------------------|------------------|--------------------|
| [mm]    | [in]     | +25 °C (+77 °F)                                                               | +50 °C (+122 °F) | +70 °C (+158 °F)   |
| 50 900  | 2 36     | 0 (0)                                                                         | 0 (0)            | 0 (0)              |

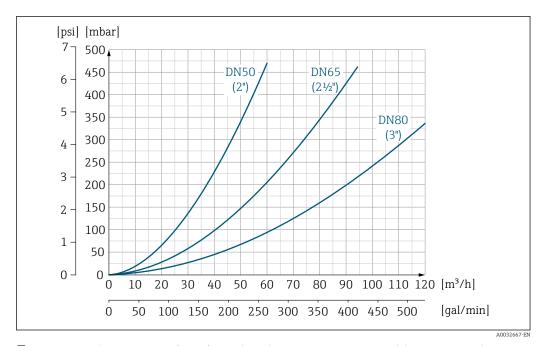
# Liner: polyurethane

|   | Nominal diameter |      | Limit values for absolute pressure in [mbar] ([psi]) for medium temperatures: |                  |
|---|------------------|------|-------------------------------------------------------------------------------|------------------|
| İ | [mm] [in]        |      | +25 °C (+77 °F)                                                               | +50 °C (+122 °F) |
|   | 25 900           | 1 36 | 0 (0)                                                                         | 0 (0)            |

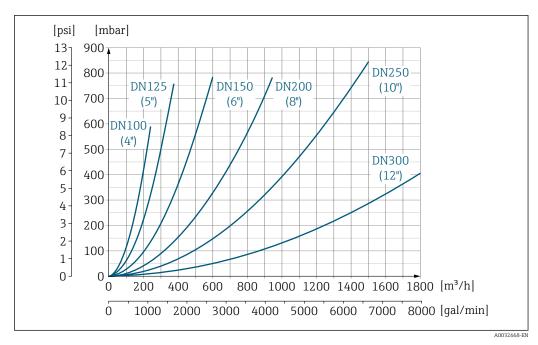
# Liner: PTFE

| Nominal diameter |       | Limit values for absolute pressure in [mbar] ([psi]) for medium temperatures: |                  |
|------------------|-------|-------------------------------------------------------------------------------|------------------|
| [mm]             | [in]  | +25 °C (+77 °F)                                                               | +70 °C (+158 °F) |
| 25               | 1     | 0 (0)                                                                         | 0 (0)            |
| 40               | 2     | 0 (0)                                                                         | 0 (0)            |
| 50               | 2     | 0 (0)                                                                         | 0 (0)            |
| 65               | 2 1/2 | 0 (0)                                                                         | 40 (0.58)        |
| 80               | 3     | 0 (0)                                                                         | 40 (0.58)        |
| 100              | 4     | 0 (0)                                                                         | 135 (2.0)        |
| 125              | 5     | 135 (2.0)                                                                     | 240 (3.5)        |
| 150              | 6     | 135 (2.0)                                                                     | 240 (3.5)        |
| 200              | 8     | 200 (2.9)                                                                     | 290 (4.2)        |
| 250              | 10    | 330 (4.8)                                                                     | 400 (5.8)        |
| 300              | 12    | 400 (5.8)                                                                     | 500 (7.3)        |

#### Flow limit


The diameter of the pipe and the flow rate determine the nominal diameter of the sensor. The optimum velocity of flow is between 2 to 3 m/s (6.56 to 9.84 ft/s).




For custody transfer, the applicable approval determines the permitted measuring range.

# Pressure loss

- No pressure loss occurs if the sensor is installed in a pipe with the same nominal diameter.
- Pressure losses for configurations incorporating adapters according to DIN EN 545  $\rightarrow$   $\stackrel{ riangle}{\Rightarrow}$  29



■ 19 Pressure loss DN 50 to 80 (2 to 3") for order code for "Design", option C "Fixed flange, constricted measuring tube", 0 x DN inlet/outlet runs"



■ 20 Pressure loss DN 100 to 300 (4 to 12") for order code for "Design", option C "Fixed flange, constricted measuring tube", 0 x DN inlet/outlet runs"

System pressure  $\rightarrow \stackrel{ riangle}{=} 29$ Vibrations  $\rightarrow \stackrel{ riangle}{=} 29$ 

# **16.10** Mechanical construction

Design, dimensions For the dimensions and installation lengths of the device, see the "Technical Information" document, "Mechanical construction" section  $\Rightarrow \implies 128$ 

Weight

All values (weight exclusive of packaging material) refer to devices with flanges of the standard pressure rating.

The weight may be lower than indicated depending on the pressure rating and design.

# Weight in SI units

| Order code for "Design", option C, D, E: DN 25 to 400 mm (1 to 16 in) |       |                   |      |  |
|-----------------------------------------------------------------------|-------|-------------------|------|--|
| Nominal diameter                                                      |       | Reference values  |      |  |
|                                                                       |       | EN (DIN), AS, JIS |      |  |
| [mm]                                                                  | [in]  | Pressure rating   | [kg] |  |
| 25                                                                    | 1     | PN 40             | 10   |  |
| 32                                                                    | _     | PN 40             | 11   |  |
| 40                                                                    | 1 1/2 | PN 40             | 12   |  |
| 50                                                                    | 2     | PN 40             | 13   |  |
| 65                                                                    | -     | PN 16             | 13   |  |
| 80                                                                    | 3     | PN 16             | 15   |  |
| 100                                                                   | 4     | PN 16             | 18   |  |
| 125                                                                   | -     | PN 16             | 25   |  |
| 150                                                                   | 6     | PN 16             | 31   |  |
| 200                                                                   | 8     | PN 10             | 52   |  |
| 250                                                                   | 10    | PN 10             | 81   |  |
| 300                                                                   | 12    | PN 10             | 95   |  |
| 350                                                                   | 14    | PN 6              | 106  |  |
| 375                                                                   | 15    | PN 6              | 121  |  |
| 400                                                                   | 16    | PN 6              | 121  |  |

| Order code for "Design", option G: DN 450 to 900 mm (18 to 36 in) |      |                  |
|-------------------------------------------------------------------|------|------------------|
|                                                                   |      | Reference values |
| Nominal diameter                                                  |      | EN (DIN) (PN 6)  |
| [mm]                                                              | [in] | [kg]             |
| 450                                                               | 18   | 161              |
| 500                                                               | 20   | 156              |
| 600                                                               | 24   | 208              |
| 700                                                               | 28   | 304              |
| _                                                                 | 30   | -                |
| 800                                                               | 32   | 357              |
| 900                                                               | 36   | 485              |

# Weight in US units

| Order code for "Design", option C, D, E: DN 1 to 16 in (25 to 400 mm) |      |                                      |
|-----------------------------------------------------------------------|------|--------------------------------------|
| Nominal diameter                                                      |      | Reference values<br>ASME (Class 150) |
| [mm]                                                                  | [in] | [1b]                                 |
| 25                                                                    | 1    | 11                                   |
| 32                                                                    | _    | -                                    |
| 40                                                                    | 1 ½  | 15                                   |
| 50                                                                    | 2    | 20                                   |
| 65                                                                    | _    | -                                    |
| 80                                                                    | 3    | 31                                   |
| 100                                                                   | 4    | 42                                   |
| 125                                                                   | -    | -                                    |
| 150                                                                   | 6    | 73                                   |
| 200                                                                   | 8    | 115                                  |
| 250                                                                   | 10   | 198                                  |
| 300                                                                   | 12   | 284                                  |
| 350                                                                   | 14   | 379                                  |
| 375                                                                   | 15   | -                                    |
| 400                                                                   | 16   | 448                                  |

| Order code for "Design", option G: DN 18 to 36 in (450 to 900 mm) |      |                                      |
|-------------------------------------------------------------------|------|--------------------------------------|
| Nominal diameter                                                  |      | Reference values<br>ASME (Class 150) |
| [mm]                                                              | [in] | [16]                                 |
| 450                                                               | 18   | 562                                  |
| 500                                                               | 20   | 628                                  |
| 600                                                               | 24   | 893                                  |
| 700                                                               | 28   | 882                                  |
| _                                                                 | 30   | 1014                                 |
| 800                                                               | 32   | 1213                                 |
| 900                                                               | 36   | 1764                                 |

Measuring tube specification

The values are reference values and can vary depending on the pressure rating, design and order option.

# Measuring tube specification in SI units

HR = hard rubber, PUR = polyurethane, PTFE = polytetrafluorethylene

| Nominal diameter  |      |          | Pressure rating Measuring tube internal diar |                |     | l diameter |      |      |
|-------------------|------|----------|----------------------------------------------|----------------|-----|------------|------|------|
|                   |      | EN (DIN) | ASME                                         | AS 2129        | JIS | HR         | PUR  | PTFE |
|                   |      |          |                                              | AS 4087        |     |            |      |      |
| [mm]              | [in] |          |                                              |                |     | [mm]       | [mm] | [mm] |
| 25                | 1    | PN 40    | Class 150                                    | -              | 20K | -          | 24   | 25   |
| 32                | -    | PN 40    | -                                            | _              | 20K | -          | 32   | 34   |
| 40                | 1 ½  | PN 40    | Class 150                                    | _              | 20K | -          | 38   | 40   |
| 50                | 2    | PN 40    | Class 150                                    | Table E, PN 16 | 10K | 50         | 50   | 52   |
| 50 <sup>1)</sup>  | 2    | PN 40    | Class 150                                    | Table E, PN 16 | 10K | 32         | -    | _    |
| 65                | -    | PN 16    | -                                            | -              | 10K | 66         | 66   | 68   |
| 65 <sup>1)</sup>  | -    | PN 16    | -                                            | -              | 10K | 38         | -    | _    |
| 80                | 3    | PN 16    | Class 150                                    | Table E, PN 16 | 10K | 79         | 79   | 80   |
| 80 <sup>1)</sup>  | 3    | PN 16    | Class 150                                    | Table E, PN 16 | 10K | 50         | -    | _    |
| 100               | 4    | PN 16    | Class 150                                    | Table E, PN 16 | 10K | 101        | 104  | 104  |
| 100 <sup>1)</sup> | 4    | PN 16    | Class 150                                    | Table E, PN 16 | 10K | 66         | -    | _    |
| 125               | -    | PN 16    | -                                            | -              | 10K | 127        | 130  | 129  |
| 125 <sup>1)</sup> | -    | PN 16    | -                                            | _              | 10K | 79         | -    | -    |
| 150               | 6    | PN 16    | Class 150                                    | Table E, PN 16 | 10K | 155        | 158  | 156  |
| 150 <sup>1)</sup> | 6    | PN 16    | Class 150                                    | Table E, PN 16 | 10K | 102        | -    | -    |
| 200               | 8    | PN 10    | Class 150                                    | Table E, PN 16 | 10K | 204        | 207  | 202  |
| 200 <sup>1)</sup> | 8    | PN 16    | Class 150                                    | Table E, PN 16 | 10K | 127        | -    | _    |
| 250               | 10   | PN 10    | Class 150                                    | Table E, PN 16 | 10K | 258        | 261  | 256  |
| 250 <sup>1)</sup> | 10   | PN 16    | Class 150                                    | Table E, PN 16 | 10K | 156        | -    | _    |
| 300               | 12   | PN 10    | Class 150                                    | Table E, PN 16 | 10K | 309        | 312  | 306  |
| 300 <sup>1)</sup> | 12   | PN 16    | Class 150                                    | Table E, PN 16 | 10K | 204        | -    | _    |
| 350               | 14   | PN 10    | Class 150                                    | Table E, PN 16 | 10K | 337        | 340  | -    |
| 375               | 15   | -        | -                                            | PN 16          | 10K | 389        | 392  | _    |
| 400               | 16   | PN 10    | Class 150                                    | Table E, PN 16 | 10K | 387        | 390  | _    |
| 450               | 18   | PN 10    | Class 150                                    | -              | 10K | 436        | 439  | _    |
| 500               | 20   | PN 10    | Class 150                                    | Table E, PN 16 | 10K | 487        | 490  | -    |
| 600               | 24   | PN 10    | Class 150                                    | Table E, PN 16 | 10K | 585        | 588  | _    |
| 700               | 28   | PN 10    | Class D                                      | Table E, PN 16 | 10K | 694        | 697  | _    |
| 750               | 30   | -        | Class D                                      | Table E, PN 16 | 10K | 743        | 746  | _    |
| 800               | 32   | PN 10    | Class D                                      | Table E, PN 16 | -   | 794        | 797  | _    |
| 900               | 36   | PN 10    | Class D                                      | Table E, PN 16 | -   | 895        | 898  | -    |

<sup>1)</sup> Order code for "Design", option C

# Measuring tube specification in US units

HR = hard rubber, PUR = polyurethane, PTFE = polytetrafluorethylene

| Nominal diameter  |       | Pressure rating | Meas  | suring tube internal dia | meter |
|-------------------|-------|-----------------|-------|--------------------------|-------|
|                   |       | ASME            | HR    | PUR                      | PTFE  |
| [mm]              | [in]  |                 | [in]  | [in]                     | [in]  |
| 25                | 1     | Class 150       | -     | 0.93                     | 1.00  |
| 40                | 1 1/2 | Class 150       | -     | 1.51                     | 1.57  |
| 50                | 2     | Class 150       | 1.98  | 1.98                     | 2.04  |
| 50 <sup>1)</sup>  | 2     | Class 150       | 1.26  | -                        | -     |
| 80                | 3     | Class 150       | 3.11  | 3.11                     | 3.15  |
| 80 <sup>1)</sup>  | 3     | Class 150       | 1.97  | -                        | -     |
| 100               | 4     | Class 150       | 3.99  | 4.11                     | 4.09  |
| 100 <sup>1)</sup> | 4     | Class 150       | 2.60  | -                        | -     |
| 150               | 6     | Class 150       | 6.11  | 6.23                     | 6.15  |
| 150 <sup>1)</sup> | 6     | Class 150       | 4.02  | -                        | _     |
| 200               | 8     | Class 150       | 8.02  | 8.14                     | 7.96  |
| 200 1)            | 8     | Class 150       | 5.00  | -                        | -     |
| 250               | 10    | Class 150       | 10.14 | 10.26                    | 10.09 |
| 250 <sup>1)</sup> | 10    | Class 150       | 6.14  | -                        | -     |
| 300               | 12    | Class 150       | 12.15 | 12.26                    | 12.03 |
| 300 <sup>1)</sup> | 12    | Class 150       | 8.03  | -                        | -     |
| 350               | 14    | Class 150       | 13.3  | 13.4                     | -     |
| 375               | 15    | -               | 15.3  | 15.4                     | -     |
| 400               | 16    | Class 150       | 15.2  | 15.4                     | -     |
| 450               | 18    | Class 150       | 17.2  | 17.3                     | _     |
| 500               | 20    | Class 150       | 19.2  | 19.3                     | -     |
| 600               | 24    | Class 150       | 23.0  | 23.1                     | -     |
| 700               | 28    | Class D         | 27.3  | 27.4                     | -     |
| 750               | 30    | Class D         | 29.3  | 29.4                     | -     |
| 800               | 32    | Class D         | 31.3  | 31.4                     | -     |
| 900               | 36    | Class D         | 35.2  | 35.4                     | -     |
|                   |       |                 |       |                          |       |

1) Order code for "Design", option C

Materials

# Transmitter housing

Compact version

- Housing material: Polycarbonate
- Window material: Polycarbonate

Remote version (wall-mount housing)

Housing material: Polycarbonate

Window material: Polycarbonate

#### Sensor connection housing

- Aluminum, AlSi10Mg, coated
- Polycarbonate plastic (only in conjunction with order code for "Sensor option", options CB
   ... CE)

#### Cable entries/cable glands

Compact and remote versions and sensor connection housing

| Cable entry/cable gland                                                         | Material                                                                                                                            |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Cable gland M20 × 1.5                                                           | Plastic                                                                                                                             |
| Remote version: cable gland M20 $\times$ 1.5 Option of armored connecting cable | <ul> <li>Sensor connection housing:         Nickel-plated brass</li> <li>Transmitter wall-mount housing:         Plastic</li> </ul> |
| Adapter for cable entry with female thread G ½" or NPT ½"                       | Nickel-plated brass                                                                                                                 |

#### Connecting cable for remote version

Electrode and coil current cable:

- Standard cable: PVC cable with copper shield
- Armored cable: PVC cable with copper shield and additional steel wire braided jacket

# Sensor housing

- DN 25 to 300 (1 to 12")
  - Aluminum half-shell housing, aluminum, AlSi10Mg, coated
  - Fully welded carbon steel housing with protective varnish
- DN 350 to (14 to ")

Fully welded carbon steel housing with protective varnish

#### Measuring tubes

■ DN 25 to 600 (1 to 24")

Stainless steel: 1.4301, 1.4306, 304, 304L

■ DN 700 to 9003000 (28 to 36120")

Stainless steel: 1.4301, 304

#### Liner

- DN 25 to 300 (1 to 12"): PTFE
- DN 25 to 900 (1 to 36"): polyurethane
- DN 50 to 900 (2 to 36"): hard rubber

## Electrodes

- Stainless steel, 1.4435 (316L)
- Alloy C22, 2.4602 (UNS N06022)

#### **Process connections**

- For flanges made of carbon steel:
  - DN  $\leq$  300 (12"): with Al/Zn protective coating or protective varnish
  - DN  $\geq$  350 (14"): protective varnish
- All carbon steel lap joint flanges are supplied with a hot-dip galvanized finish.

#### EN 1092-1 (DIN 2501)

#### Fixed flange

- Carbon steel:
  - DN ≤ 300: S235JRG2, S235JR+N, P245GH, A105, E250C
  - DN 350 to 900: P245GH, S235JRG2, A105, E250C
- Stainless steel:
  - DN ≤ 300: 1.4404, 1.4571, F316L
  - DN 350 to 600: 1.4571, F316L, 1.4404
  - DN 700 to 900: 1.4404, F316L

#### Lap joint flange

- Carbon steel DN ≤ 300: S235JRG2, A105, E250C
- Stainless steel DN  $\leq$  300: 1.4306,1.4404, 1.4571, F316L

#### Lap joint flange, stamped plate

- Carbon steel DN ≤ 300: S235JRG2 similar to S235JR+AR or 1.0038
- Stainless steel DN ≤ 300: 1.4301 similar to 304

#### **ASME B16.5**

Fixed flange, lap joint flange

Carbon steel: A105

# JIS B2220

Carbon steel: A105, A350 LF2

#### AS 2129

Carbon steel: A105, E250C, P235GH, P265GH, S235JRG2

#### AS 4087

Carbon steel: A105, P265GH, S275JR

#### Seals

As per DIN EN 1514-1, form IBC

## Accessories

## Ground disks

- Stainless steel, 1.4435 (316L)
- Alloy C22, 2.4602 (UNS N06022)

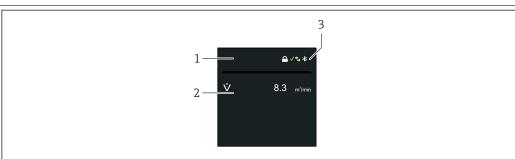
# Fitted electrodes

Measurement, reference and empty pipe detection electrodes available as standard with:

- 1.4435 (316L)
- Alloy C22, 2.4602 (UNS N06022)

#### Process connections

- EN 1092-1 (DIN 2501)
- ASME B16.5
- IIS B2220
- AS 2129 Table E
- AS 4087 PN 16


For information on the different materials used in the process connections  $\rightarrow \triangleq 124$ 

# Surface roughness

Electrodes with 1.4435 (316L); Alloy C22, 2.4602 (UNS N06022): < 0.5 μm (19.7 μin) (All data refer to parts in contact with the medium)

# 16.11 Operability

# Local display



- Tag name (configurable)
- 2 Measured variable 1 to 4 (configurable) with sign
- Bluetooth connection active, device status, locking status, battery status, cellular network reception

### Operation

Via Bluetooth® wireless technology

# Digital communication

Modbus

#### SmartBlue app

The device has a *Bluetooth*® wireless technology interface and can be operated and configured using the SmartBlue app.

- The range under reference conditions is 10 m (33 ft).
- Incorrect operation by unauthorized persons is prevented by means of encrypted communication and password encryption.

#### 16.12 Certificates and approvals

Current certificates and approvals for the product are available at www.endress.com on the relevant product page:

- 1. Select the product using the filters and search field.
- 2. Open the product page.
- 3. Select **Downloads**.

# CE mark

The device meets the legal requirements of the applicable EU Directives. These are listed in the corresponding EU Declaration of Conformity along with the standards applied.

Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.

# UKCA marking

The device meets the legal requirements of the applicable UK regulations (Statutory Instruments). These are listed in the UKCA Declaration of Conformity along with the designated standards. By selecting the order option for UKCA marking, Endress+Hauser confirms a successful evaluation and testing of the device by affixing the UKCA mark.

Contact address Endress+Hauser UK:

Endress+Hauser Ltd.

Floats Road

Manchester M23 9NF United Kingdom www.uk.endress.com

#### RCM marking

The measuring system meets the EMC requirements of the "Australian Communications and Media Authority (ACMA)".

#### Drinking water approval

- ACS
- KTW/W270
- NSF 61
- WRAS BS 6920

# Radio approval

The measuring device has radio approval.



For detailed information on the radio approval, see the Special Documentation  $\rightarrow \; \stackrel{\textstyle \square}{=} \; 128$ 

#### Pressure Equipment Directive

- With the marking
  - a) PED/G1/x (x = category) or
  - b) PESR/G1/x (x = category)

on the sensor nameplate, Endress+Hauser confirms compliance with the "Essential Safety Requirements"

- a) specified in Annex I of the Pressure Equipment Directive 2014/68/EU or
- b) Schedule 2 of Statutory Instruments 2016 No. 1105.
- Devices not bearing this marking (without PED or PESR) are designed and manufactured according to sound engineering practice. They meet the requirements of
  - a) Art. 4 Para. 3 of the Pressure Equipment Directive 2014/68/EU or
  - b) Part 1, Para. 8 of Statutory Instruments 2016 No. 1105.

The scope of application is indicated

- a) in diagrams 6 to 9 in Annex II of the Pressure Equipment Directive 2014/68/EU or
- b) Schedule 3, Para. 2 of Statutory Instruments 2016 No. 1105.

# Measuring instrument approval

The measuring device is (optionally) approved as a cold water meter (MI-001) for volume measurement in service subject to legal metrological control in accordance with the European Measuring Instruments Directive 2014/32/EU (MID).

The measuring device is qualified according to OIML R49: 2013.

# External standards and guidelines

■ EN 60529

Degrees of protection provided by enclosure (IP code)

■ EN 61010-1

Safety requirements for electrical equipment for measurement, control and laboratory use - general requirements

■ IEC/EN 61326-2-3

Emission in accordance with Class A requirements. Electromagnetic compatibility (EMC requirements).

- ANSI/ISA-61010-1 (82.02.01)
  - Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use Part 1 General Requirements
- CAN/CSA-C22.2 No. 61010-1-12
  - Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use Part 1 General Requirements
- ETSI EN 300 328
  - Guidelines for 2.4 GHz radio components.
- EN 301489

Electromagnetic compatibility and radio spectrum matters (ERM).

# **16.13** Application packages

Many different application packages are available to enhance the functionality of the device. Such packages might be needed to address safety aspects or specific application requirements.

The application packages can be ordered with the device or subsequently from Endress+Hauser. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

#### Diagnostics functions

Order code for "Application package", option EM "Extended data logger"

Comprises extended functions concerning the event log and the activation of the measured value memory.

Event log:

Memory volume is extended from  $10\,000$  message entries (standard version) to  $50\,000$  entries.



For detailed information, see the Operating Instructions for the device.

#### Heartbeat Technology

Order code for "Application package", option EB "Heartbeat Verification + Monitoring"

#### **Heartbeat Verification**

Meets the requirement for traceable verification to DIN ISO 9001:2008 Chapter 7.6 a) "Control of monitoring and measuring equipment".

- Functional testing in the installed state.
- Traceable verification results on request, including a report.
- Simple testing process via local operation or other operating interfaces.
- Clear measuring point assessment (pass/fail) with high test coverage within the framework of manufacturer specifications.
- Extension of calibration intervals according to operator's risk assessment.

# **Heartbeat Monitoring**

Continuously supplies data, which are characteristic of the measuring principle, to an external condition monitoring system for the purpose of preventive maintenance or process analysis. These data enable the operator to:

- Draw conclusions using these data and other information about the impact process influences (e.g. buildup, interference from the magnetic field) have on the measuring performance over time.
- Schedule servicing in time.
- Monitor the process or product quality .

For detailed information, see the Special Documentation for the device.

# 16.14 Accessories



#### Supplemental documentation 16.15



For an overview of the scope of the associated Technical Documentation, refer to the following:

- Device Viewer (www.endress.com/deviceviewer): Enter the serial number from the nameplate
- Endress+Hauser Operations app: Enter serial number from nameplate or scan matrix code on nameplate.

#### Standard documentation

#### **Technical Information**

| Measuring device | Documentation code |
|------------------|--------------------|
| Promag W 800     | TI01523D           |

# **Brief Operating Instructions**

*Brief Operating Instructions for the sensor* 

| Measuring device | Documentation code |
|------------------|--------------------|
| Proline Promag W | KA01266D           |

# *Brief Operating Instructions for transmitter*

| Measuring device | Documentation code |
|------------------|--------------------|
| Proline 800      | KA01494D           |

# **Description of Device Parameters**

| Measuring device | Documentation code |
|------------------|--------------------|
| Proline 800      | GP01153D           |

# Supplementary devicedependent documentation

# Special documentation

| Content                                     | Documentation code |
|---------------------------------------------|--------------------|
| Heartbeat Technology                        | SD02694D           |
| Display with Bluetooth interface            | SD02655D           |
| Using Open Source Software Licenses         | SD02658D           |
| Information on Custody Transfer Measurement | SD02038D           |

#### **Installation instructions**

| Contents                                                      | Note                                                                                                                                                                                       |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Installation instructions for spare part sets and accessories | <ul> <li>Access the overview of all the available spare part sets via <i>Device Viewer</i> →  99</li> <li>Accessories available for order with Installation Instructions →  128</li> </ul> |

# Index

| Adapters                                         | D-+- 1                                                 |
|--------------------------------------------------|--------------------------------------------------------|
| Auapters                                         | Data logger                                            |
| Adapting the diagnostic behavior 85              | Date of manufacture                                    |
| Ambient conditions                               | Declaration of Conformity                              |
| Ambient temperature                              | Defining the access code                               |
| Mechanical load                                  | Degree of protection 64, 11                            |
| Operating height                                 | Design                                                 |
| Relative humidity                                | Measuring device                                       |
| Vibration-resistance and shock-resistance 115    | Device components                                      |
| Ambient temperature                              | Device description files 6                             |
| Influence                                        | Device fuse                                            |
| Ambient temperature range 28, 114                | Device name                                            |
| Application                                      | Sensor                                                 |
| Resetting the totalizer                          | Transmitter                                            |
| Totalizer reset                                  | Device repair                                          |
| Applicator                                       | Device revision 6                                      |
| Approvals                                        | Device type code 6                                     |
| Auto scan buffer                                 | Device Viewer                                          |
| see Modbus RS485 Modbus data map                 | DeviceCare                                             |
| see Modbus 18405 Modbus data map                 | Device description file 6                              |
| В                                                | Diagnostic behavior                                    |
| Battery configuration options 109                | Diagnostic information                                 |
| Buffer capacitor specifications                  | Communication interface 8                              |
| Buried applications                              | Overview                                               |
| Duricu applications                              | Remedial measures 8                                    |
| С                                                |                                                        |
| Cable entries                                    | Diagnostic information on local display 8              |
| Technical data                                   | Diagnostic message                                     |
| Cable entry                                      | Diagnostics list                                       |
| Degree of protection                             |                                                        |
| CE mark                                          | see Write protection switch Disabling write protection |
| Certificates                                     |                                                        |
| Check                                            | Disposal                                               |
| Connection                                       | Function                                               |
| Mounting procedure                               | Symbols                                                |
| Checklist                                        | Document function                                      |
| Post-connection check 65                         | Down pipe                                              |
| Post-mounting check                              | Drinking water approval                                |
| Cleaning                                         | Diffiking water approval                               |
| Exterior cleaning                                | Е                                                      |
| Interior cleaning                                | Electrical connection                                  |
| Commissioning                                    | Degree of protection 6                                 |
| Conductivity                                     | Measuring device 4                                     |
| Configuring error response mode, Modbus RS485 84 | Electromagnetic compatibility                          |
| Configuring the measuring device                 | Enabling write protection                              |
| Connect the SmartBlue App to the device          | Endress+Hauser services                                |
| Connecting cable                                 | Maintenance                                            |
| Connecting the measuring device                  | Repair                                                 |
| Connecting the pressure sensor 61                | Environment                                            |
| Connection                                       | Storage temperature                                    |
| see Electrical connection                        | Error messages                                         |
| Connection preparations                          | 5                                                      |
| Connection tool                                  | see Diagnostic messages Estimated battery lifetime     |
| Corrosive environment                            | Estimated battery lifetime                             |
| Current consumption                              | Event logbook                                          |
| Current consumption                              | Events list                                            |

| Extended order code              | M                                        |     |
|----------------------------------|------------------------------------------|-----|
| Sensor                           | Main electronics module                  | .3  |
| Transmitter                      | Maintenance work                         | 13  |
| Exterior cleaning                | Manufacturer ID 6                        | 9   |
| F                                | Materials                                | 2   |
| <b>r</b>                         | Maximum measurement error                | .2  |
| Field of application             | Measured variables                       |     |
| Residual risks                   | Measured                                 | )3  |
| FieldCare                        | see Process variables                    |     |
| Device description file          | Measuring and test equipment 9           | 8   |
| Filtering the event logbook      | Measuring device                         |     |
| Firmware                         | Conversion                               |     |
| Release date                     | Design                                   | .3  |
| Version                          | Disposal                                 |     |
| Firmware history                 | Integrating via communication protocol 6 |     |
| Fitted electrodes                | Mounting the sensor                      |     |
| Flow direction                   | Mounting the ground cable/ground disks 3 |     |
| Flow limit                       | Mounting the seals                       |     |
| Functions                        | Screw tightening torques 3               |     |
| see Parameter                    | Screw tightening torques, maximum 3      |     |
| see Parameter                    | Screw tightening torques, nominal 3      |     |
| G                                | Preparing for electrical connection 4    |     |
| Galvanic isolation               | Preparing for mounting                   |     |
| Curvaine isolation               | Removing                                 |     |
| H                                | Repairs                                  |     |
| Hardware write protection        | Measuring instrument approval            |     |
| Heavy sensors                    | Measuring principle                      |     |
|                                  | Measuring range                          |     |
| I                                | Measuring system                         |     |
| I/O electronics module           | Measuring tube specification             |     |
| Identifying the measuring device | Mechanical load                          |     |
| Immersion in water               | Medium temperature range                 | .U  |
| Installation requirements        | Configuring error response mode 8        | ) / |
| Incoming acceptance              | Diagnostic information                   |     |
| Indicator                        | Function codes 6                         |     |
| Current diagnostic event         | Modbus data map                          |     |
| Previous diagnostic event        | Read access 6                            |     |
| Influence                        | Reading out data                         |     |
| Ambient temperature              | Register addresses                       |     |
| Information about this document  | Register information                     |     |
| Inlet runs                       | Response time                            |     |
| Input                            | Scan list                                |     |
| Inspection                       | Write access 6                           |     |
| Received goods                   | Mounting dimensions                      |     |
| Install the Smartblue App        | see Installation dimensions              |     |
| Corrosive environment            | Mounting location                        | 2   |
| Heavy sensors                    | Mounting preparations                    |     |
| Partially filled pipe            | Mounting procedure                       |     |
| System pressure                  | Mounting requirements                    |     |
| Installation dimensions          | Adapters                                 |     |
| Intended use                     | Buried applications                      |     |
| Interior cleaning                | Down pipe                                |     |
| J                                | Inlet and outlet runs 2                  |     |
| L                                | Installation dimensions 2                |     |
| Length of connecting cable 29    | Length of connecting cable 2             |     |
| Low flow cut off                 | Mounting location                        |     |
| LTC battery specifications       | Orientation                              |     |
|                                  | Vibrations                               | 9   |

130

| Mounting tool                                 | RCM marking                                         |
|-----------------------------------------------|-----------------------------------------------------|
| N                                             | Reading out diagnostic information, Modbus RS485 84 |
| Nameplate                                     | Recalibration                                       |
| Sensor                                        | Registered trademarks                               |
| Transmitter                                   | Remote version                                      |
| Netilion                                      | Connecting the signal cables 51                     |
| Nominal estimated battery lifetime            | Repair                                              |
| Troiming commuted buttery meeting             | Notes                                               |
| 0                                             | Repair of a device                                  |
| Operable flow range                           | Repeatability                                       |
| Operating height                              | Replacement                                         |
| Operation                                     | Device components                                   |
| Updating the firmware 80                      | Requirements for personnel                          |
| Operation options                             | Return                                              |
| SmartBlue app 67                              | neturn                                              |
| Operational safety                            | S                                                   |
| Order code                                    | Safety                                              |
| Orientation (vertical, horizontal)            | Screw tightening torques                            |
| Outlet runs                                   | Maximum                                             |
| Output signal                                 | Nominal                                             |
| Output variables                              | Sensor                                              |
| _                                             | Mounting                                            |
| P                                             | Serial number                                       |
| Packaging disposal                            | Settings                                            |
| Parameter settings                            | Adapting the measuring device to the process        |
| Active diagnostics (Submenu)                  | conditions                                          |
| Bluetooth configuration (Submenu)             | Resetting the device 91                             |
| Device (Submenu)                              | Signal on alarm                                     |
| Device management (Submenu) 91                | Software release 69                                 |
| Software configuration (Submenu)              | Spare part                                          |
| Totalizer handling (Submenu)                  | Spare parts                                         |
| Partially filled pipe                         | Special connection instructions 63                  |
| Performance characteristics                   | Standards and guidelines                            |
| Post-connection check                         | Status signals                                      |
| Post-connection check (checklist)             | Storage conditions                                  |
| Post-mounting check                           | Storage temperature                                 |
| Post-mounting check (checklist)               | Storage temperature range                           |
| Potential equalization                        | Storing the device                                  |
| Power consumption                             | Submenu                                             |
| Power supply failure                          | Active diagnostics                                  |
| Power supply via the external battery pack 62 | Bluetooth configuration                             |
| Preparatory steps 75                          | Device                                              |
| Commissioning                                 | Device management                                   |
| Pressure loss                                 | Events list                                         |
| Pressure tightness                            | Software configuration                              |
| Pressure-temperature ratings                  | Totalizer handling                                  |
| Process conditions                            | Supplemental documentation                          |
| Conductivity                                  | Supply unit                                         |
| Flow limit                                    | Requirements                                        |
| Medium temperature                            | Surface roughness                                   |
| Pressure loss                                 | Surface roughness                                   |
| Pressure tightness                            | System design                                       |
| Process connections                           | Measuring system                                    |
| Product safety                                | see Measuring device design                         |
| Protecting parameter settings                 | System integration                                  |
| F                                             | System pressure                                     |
| R                                             |                                                     |
| Radio approval                                |                                                     |

| •                                                                               |
|---------------------------------------------------------------------------------|
| Technical data, overview                                                        |
| Temperature range                                                               |
| Storage temperature                                                             |
| Terminal assignment                                                             |
| Tool                                                                            |
| Electrical connection                                                           |
| For mounting                                                                    |
| Transport                                                                       |
| Transmitter                                                                     |
| Connecting the signal cables 53                                                 |
| Turning the housing 40                                                          |
| Transporting the measuring device 20                                            |
| Troubleshooting                                                                 |
| General                                                                         |
| Turning the electronics housing                                                 |
| see Turning the transmitter housing                                             |
| Turning the transmitter housing 40                                              |
| U                                                                               |
| UKCA marking                                                                    |
| Use in saline water                                                             |
| Use of measuring device                                                         |
| Borderline cases                                                                |
| Incorrect use                                                                   |
| see Intended use                                                                |
| ***                                                                             |
| V                                                                               |
| Version data for the device                                                     |
| Vibration-resistance and shock-resistance       115         Vibrations       29 |
| VIDIALIOIIS                                                                     |
| W                                                                               |
| W@M Device Viewer                                                               |
| Weight                                                                          |
| Transport (notes)                                                               |
| Workplace safety                                                                |
| Write protection                                                                |
| Via access code                                                                 |
| Via write protection switch                                                     |
| Write protection switch                                                         |



www.addresses.endress.com