Действительно начиная с версии 01.00.zz (Фирменное ПО прибора)

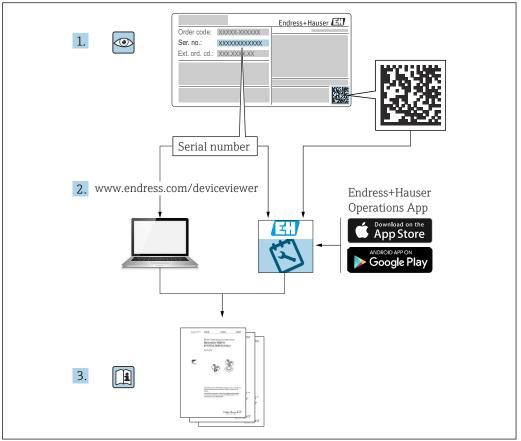
Products Solutions

Services

Инструкция по эксплуатации **Cerabar PMC51B**

Измерение рабочего давления Аналоговый сигнал

4-20 mA Analog



A002355

- Убедитесь в том, что документ хранится в безопасном месте и всегда доступен при работе с прибором
- В целях предотвращения опасности для персонала и имущества внимательно ознакомьтесь с разделом «Основные указания по технике безопасности», а также со всеми другими указаниями по технике безопасности, содержащимися в документе и имеющими отношение к рабочим процедурам

Изготовитель сохраняет за собой право на изменение технических характеристик без предварительного уведомления. Актуальную информацию и обновления настоящего руководства по эксплуатации можно получить в региональной торговой организации Endress+Hauser.

Содержание

1	Об этом документе	4
1.1	Назначение документа	. 4
1.2	Символы	
1.3	Список аббревиатур	. 6
1.4	Расчет диапазона изменения	. 6
1.5	Документация	
1.6	Зарегистрированные товарные знаки	7
2	Основные указания по технике	
	безопасности	8
2.1	Требования к персоналу	. 8
2.2	Использование по назначению	
2.3	Техника безопасности на рабочем месте	8
2.4	Эксплуатационная безопасность	8
2.5	Безопасность изделия	9
3	Описание изделия	10
3.1	Конструкция изделия	10
5.1	конструкция изделия	10
4	Приемка и идентификация	
	изделия	12
4.1	Приемка	12
4.2	Идентификация изделия	12
4.3	Хранение и транспортировка	13
5	Монтаж	14
5.1	Требования, предъявляемые к монтажу	14
5.2	Монтаж прибора	16
5.3	Проверка после монтажа	22
6	Электрическое подключение	23
6.1	Требования, предъявляемые к	
	подключению	23
6.2	Подключение прибора	23
6.3	Обеспечение требуемой степени защиты	27
6.4	Проверка после подключения	28
7	Опции управления	29
7.1	Кнопки управления и DIP-переключатели	
7.1	на электронной вставке	29
7.2	локального дисплея	29
8	Вроп в эксплуатацию	30
8.1	Ввод в эксплуатацию	30
8.2	Предварительные условия Функциональная проверка	30
8.3	Тастройка прибора	30
8.4	Защита параметров настройки от	JU
J. 1	несанкционированного доступа	31
	TOO STITE TO THE POPULATION OF MOCTATION	ノエ

9	диагностика и устранение	
	неисправностей	33
9.1	Общая процедура устранения неисправностей	33
9.2	Отображение диагностической информации на локальном дисплее	35
9.3	Диагностический список	35
9.4 9.5	Журнал событий	39 42
9.6	История разработки встроенного ПО	43
10	Техническое обслуживание	44
10.1	Работы по техническому обслуживанию	44
11	Ремонт	45
11.1	Общие сведения	45
11.2 11.3	Запасные части Возврат	45 46
11.4	Утилизация	46
12	Аксессуары	47
12.1	Аксессуары, специально предназначенные для прибора	47
12.2	Device Viewer	47
13	Технические данные	48
13.1 13.2 13.3	Выход	48 49 52
Алф	авитный указатель	55

1 Об этом документе

1.1 Назначение документа

Данное руководство содержит информацию, необходимую для работы с прибором на различных этапах его эксплуатации: начиная с идентификации, приемки и хранения, монтажа, подсоединения, ввода в эксплуатацию и эксплуатации и завершая устранением неисправностей, сервисным обслуживанием и утилизацией.

1.2 Символы

1.2.1 Символы техники безопасности

Λ ΟΠΑCΗΟ

Этот символ предупреждает об опасной ситуации. Если не предотвратить такую ситуацию, она приведет к серьезной или смертельной травме.

№ ОСТОРОЖНО

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к серьезной или смертельной травме.

№ ВНИМАНИЕ

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к травме легкой или средней степени тяжести.

УВЕДОМЛЕНИЕ

Этот символ содержит информацию о процедурах и других данных, которые не приводят к травмам.

1.2.2 Электротехнические символы

Заземление: 📥

Клемма для подключения к системе заземления.

1.2.3 Описание информационных символов

Разрешено: 🗸

Означает разрешенные процедуры, процессы или действия.

Запрещено: 🔀

Означает запрещенные процедуры, процессы или действия.

Дополнительная информация: 🚹

Ссылка на документацию: 📵

Ссылка на страницу: 🖺

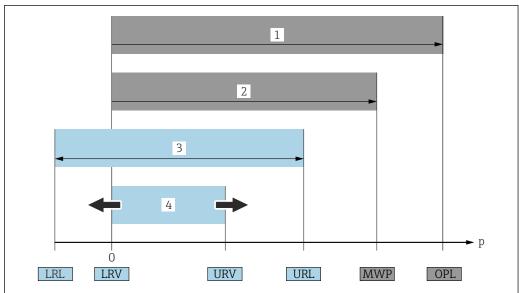
Серия шагов: 1., 2., 3.

Результат отдельного шага: 💵

1.2.4 Символы на рисунках

Номера пунктов: 1, 2, 3 ...

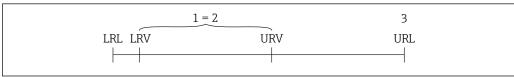
Серия шагов: 1., 2., 3.


Виды: А, В, С, ...

1.2.5 Символы на приборе

Указания по технике безопасности: _ → 📵

Соблюдайте указания по технике безопасности, содержащиеся в соответствующем руководстве по эксплуатации.


1.3 Список аббревиатур

A0029505

- 1 ПИД (предел избыточного давления, предельная перегрузка для измерительной ячейки) прибора зависит от элемента с наименьшим номинальным давлением среди выбранных компонентов, то есть необходимо принимать во внимание не только саму измерительную ячейку, но и присоединение к процессу. Следует учитывать зависимость между температурой и давлением.
- 2 МРД (максимальное рабочее давление) измерительных ячеек определяется элементом с наименьшим номинальным давлением среди выбранных компонентов, т. е. кроме измерительной ячейки необходимо принимать во внимание присоединение к процессу. Следует учитывать зависимость между температурой и давлением. Воздействие максимального рабочего давления (МРД) на прибор допускается в течение неограниченного времени. Значение МРД указано на заводской табличке
- 3 Максимальный диапазон измерения соответствует промежутку между НПИ и ВПИ. Этот диапазон измерения эквивалентен максимальному диапазону калибровки/регулировки
- 4 Калибруемая (настраиваемая) шкала соответствует промежутку между НЗД и ВЗД. Заводская настройка: от 0 до ВПИ. Другие калибруемые диапазоны можно заказать в качестве пользовательских диапазонов
- р Давление
- НПИ Нижний предел измерения
- ВПИ Верхний предел измерения
- НЗД Нижнее значение диапазона
- ВЗД Верхнее значение диапазона
- ДД Динамический диапазон. Примеры см. в следующем разделе

1.4 Расчет диапазона изменения

A002954

- 1 Калибруемая (настраиваемая) шкала
- 2 Манометрическая нулевая шкала
- 3 Верхний предел измерения

Пример:

- Измерительная ячейка: 10 бар (150 фунт/кв. дюйм)
- Верхний предел измерения (ВПИ) = 10 бар (150 фунт/кв. дюйм)
- Калибруемая (настраиваемая) шкала: 0 до 5 бар (0 до 75 фунт/кв. дюйм)
- Нижнее значение диапазона (НЗД) = 0 бар (0 фунт/кв. дюйм)
- Верхнее значение диапазона (ВЗД) = 5 бар (75 фунт/кв. дюйм)

$$\Pi$$
Д = $\frac{B\Pi N}{|B3Д}$ - $H3Д|$

В данном примере ДИ равен 2:1. Этот измерительный интервал основан на нулевой точке.

1.5 Документация

Все доступные документы можно загрузить:

- по серийному номеру прибора (описание см. на обложке);
- по двухмерному штрих-коду прибора (описание см. на обложке);
- в разделе «Документация» на веб-сайте www.endress.com.

1.5.1 Дополнительная документация для различных приборов

В зависимости от заказанного исполнения прибор поставляется с дополнительными документами: строго соблюдайте инструкции, приведенные в дополнительной документации. Дополнительная документация является неотъемлемой частью документации по прибору.

1.6 Зарегистрированные товарные знаки

KALREZ®

Зарегистрированный товарный знак компании DuPont Performance Elastomers L.L.C., Уилмингтон, США

Основные указания по технике безопасности

2.1 Требования к персоналу

Персонал, занимающийся монтажом, вводом в эксплуатацию, диагностикой и техническим обслуживанием, должен соответствовать указанным ниже требованиям.

- ► Пройти необходимое обучение и обладать соответствующей квалификацией для выполнения конкретных функций и задач.
- Получить разрешение на выполнение данных работ от руководства предприятия.
- Ознакомиться с нормами федерального/национального законодательства.
- ► Перед началом работы внимательно ознакомиться с инструкциями, представленными в руководстве, с сопроводительной документацией, а также с сертификатами (в зависимости от цели применения).
- Следовать инструкциям и соблюдать условия.

Обслуживающий персонал должен соответствовать указанным ниже требованиям.

- ► Пройти инструктаж и получить разрешение на выполнение данных работ от руководства предприятия.
- ▶ Следовать инструкциям, приведенным в настоящем руководстве по эксплуатации.

2.2 Использование по назначению

Прибор Cerabar представляет собой преобразователь для измерения уровня и давления.

2.2.1 Использование не по назначению

Изготовитель не несет ответственности за повреждения, вызванные неправильным использованием или использованием прибора не по назначению.

Устойчивость материалов к вредному воздействию

Сведения о специальных жидкостях, в том числе жидкостях для очистки: специалисты Endress+Hauser готовы предоставить всю необходимую информацию, касающуюся коррозионной устойчивости материалов, находящихся в контакте с жидкостями, но не несут какой-либо ответственности и не предоставляют каких бы то ни было гарантий.

2.3 Техника безопасности на рабочем месте

При работе с прибором следует соблюдать следующие правила.

- ▶ В соответствии с федеральным/национальным законодательством персонал должен использовать средства индивидуальной защиты.
- ▶ Подключение прибора выполняется при отключенном сетевом напряжении.

2.4 Эксплуатационная безопасность

Опасность несчастного случая!

- ► Эксплуатируйте только такой прибор, который находится в надлежащем техническом состоянии, без ошибок и неисправностей.
- ▶ Ответственность за работу изделия без помех несет оператор.

Модификации датчика

Несанкционированное изменение конструкции прибора запрещено и может представлять опасность.

► Если, несмотря на это, все же требуется внесение изменений в конструкцию датчика, обратитесь в компанию Endress+Hauser.

Ремонт

Условия длительного обеспечения эксплуатационной безопасности и надежности:

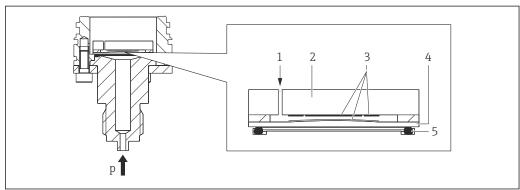
- проведение ремонта прибора только при наличии специального разрешения;
- соблюдение федерального/национального законодательства в отношении ремонта электрических приборов;
- ▶ использование только оригинальных запасных частей и комплектующих производства компании Endress+Hauser.

Взрывоопасные зоны

Во избежание травмирования персонала и повреждения оборудования при использовании прибора в зоне, указанной в сертификате (например, взрывозащита, безопасность сосуда, работающего под давлением):

- информация на заводской табличке позволяет определить соответствие приобретенного прибора сертифицируемой рабочей зоне, в которой прибор будет установлен.
- см. характеристики в отдельной сопроводительной документации, которая является неотъемлемой частью настоящего руководства по эксплуатации.

2.5 Безопасность изделия


Прибор разработан в соответствии с надлежащей инженерной практикой, соответствует современным требованиям по безопасности, прошел испытания и поставляется с завода в безопасном для эксплуатации состоянии.

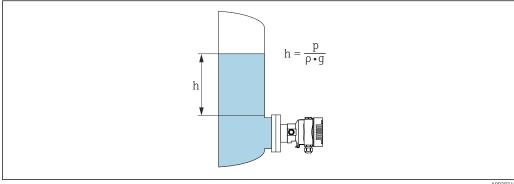
Он соответствует общим стандартам безопасности и требованиям законодательства. Кроме того, прибор соответствует директивам ЕС, перечисленным в декларации соответствия требованиям ЕС для конкретного прибора. Компания Endress+Hauser подтверждает это нанесением маркировки СЕ на прибор.

3 Описание изделия

3.1 Конструкция изделия

3.1.1 Керамическая мембрана (Ceraphire®)

A00430


- 1 Атмосферное давление (ячейки для измерения избыточного давления)
- 2 Керамическая подложка
- 3 Электроды
- 4 Керамическая мембрана
- 5 Уплотнение
- р Давление

Керамическая измерительная ячейка работает без масла. Давление воздействует непосредственно на прочную керамическую мембрану, прогибая ее. Изменение емкости, зависимое от давления, измеряется на электродах керамической подложки и мембраны. Диапазон измерения определяется толщиной керамической мембраны.

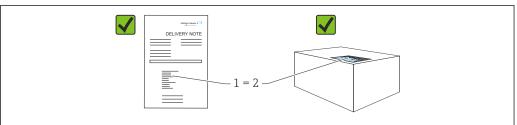
Преимущества

- Высокая устойчивость к перегрузкам
- Благодаря сверхчистой (99,9 %) керамике:
 - чрезвычайно высокая химическая стабильность;
 - стойкость к воздействию истирания и коррозии;
 - высокая механическая стабильность.
- Пригодность к эксплуатации в условиях вакуума

3.1.2 Измерение уровня (уровень, объем и масса)

A003834

- h Высота (уровень)
- р Давление
- р Плотность среды
- д Гравитационное ускорение


10

Преимущества

- Возможность измерения объема и массы в резервуаре любой формы благодаря произвольному программированию характеристической кривой
- Широкие возможности применения, примеры приведены ниже.
 - В условиях пенообразования
 - В резервуарах с мешалками или фитингами с сетчатым фильтром
 - Для сжиженных газов

4 Приемка и идентификация изделия

4.1 Приемка

A0016870

- Совпадает ли код заказа, указанный в накладной (1), с кодом заказа, который указан на наклейке изделия (2)?
- Не поврежден ли груз?
- Совпадают ли данные, указанные на заводской табличке, с параметрами заказа и сведениями, указанными в накладной?
- Имеется ли в наличии документация?
- Если применимо (см. заводскую табличку): имеются ли указания по технике безопасности (XA)?
- Eсли можно ответить «нет» на любой из этих вопросов, обратитесь в компанию Endress+Hauser.

4.1.1 Комплект поставки

Комплект поставки состоит из следующих компонентов:

- прибор;
- опциональные аксессуары.

Сопутствующая документация:

- краткое руководство по эксплуатации;
- акт выходного контроля;
- дополнительные указания по технике безопасности для приборов с сертификатами (например, ATEX, MЭК Ех или NEPSI);
- дополнительно: бланк заводской калибровки, сертификаты испытаний.
- Руководство по эксплуатации можно получить через Интернет по адресу www.endress.com → «Документация»

4.2 Идентификация изделия

Возможны следующие варианты идентификации изделия.

- Информация, указанная на заводской табличке
- Код заказа с разбивкой функций прибора, указанный в транспортной накладной
- Ввод серийного номера с заводской таблички в программу *Device Viewer* (www.endress.com/deviceviewer): будут отображены все о измерительном приборе.

4.2.1 Адрес изготовителя

Endress+Hauser SE+Co. KG Hauptstraße 1 79689 Maulburg, Германия

Место изготовления: см. заводскую табличку.

4.2.2 Заводская табличка

В зависимости от исполнения прибора используются разные заводские таблички.

На заводской табличке приведены следующие сведения:

- наименования изготовителя и прибора;
- адрес владельца сертификата и страна изготовления;
- код заказа и серийный номер;
- технические характеристики;
- сведения о сертификации.

Сравните данные, указанные на заводской табличке, с условиями заказа.

4.3 Хранение и транспортировка

4.3.1 Условия хранения

- Используйте оригинальную упаковку
- Храните измерительный прибор в чистом сухом помещении. Примите меры по защите от ударных повреждений

Диапазон температуры хранения

См. техническое описание.

4.3.2 Транспортировка изделия до точки измерения

▲ ОСТОРОЖНО

Неправильная транспортировка!

Корпус и диафрагма могут быть повреждены, существует опасность несчастного случая!

► Транспортировать измерительный прибор до точки измерения следует в оригинальной упаковке.

5 Монтаж

5.1 Требования, предъявляемые к монтажу

5.1.1 Общие инструкции

- Не прикасайтесь к мембране (например, для очистки) твердыми и/или заостренными предметами.
- Снимайте защиту с мембраны непосредственно перед монтажом прибора.

В обязательном порядке плотно затягивайте крышку корпуса и кабельные вводы.

- 1. Затяните контргайки кабельных вводов.
- 2. Затяните соединительную гайку.

5.1.2 Инструкции по монтажу

- Монтаж приборов осуществляется по тем же правилам, по которым устанавливаются манометры (DIN EN 837-2).
- Чтобы обеспечить оптимальную читаемость локального дисплея, отрегулируйте положение корпуса и локального дисплея.
- Компания Endress+Hauser выпускает монтажный кронштейн для закрепления прибора на трубе или на стене.
- Используйте промывочные кольца для фланцев, если существует вероятность скопления налипаний технологической среды или засорения присоединения к процессу.
 - Промывочное кольцо зажимается между присоединением к процессу и технологическим оборудованием.
 - Налипания материала перед технологической мембраной можно смывать через два боковых промывочных отверстия; эти же отверстия используются для вентиляции напорной камеры.
- При измерении в технологической среде, содержащей твердые частицы (например, в загрязненной жидкости), может быть полезной установка сепараторов и сливных клапанов для улавливания и удаления осадка.
- Использование вентильного блока позволяет легко вводить прибор в эксплуатацию, монтировать его и обслуживать без прерывания технологического процесса.
- При монтаже прибора, осуществлении электрического подключения и во время эксплуатации необходимо предотвращать проникновение влаги в корпус.
- Кабели и заглушки следует по возможности направлять вниз, чтобы не допустить проникновение влаги (например, дождевой воды или конденсата) внутрь прибора.

5.1.3 Инструкции по монтажу для резьбового соединения

Прибор с резьбой G 1 ½"

Установите плоское уплотнение на уплотняемую поверхность присоединения к процессу.

Избегайте дополнительной нагрузки на мембрану: не уплотняйте резьбу пенькой или подобными материалами.

- Прибор с резьбой NPT
 - Оберните резьбу фторопластовой лентой, чтобы уплотнить ее.
 - Затягивайте прибор только за шестигранный участок; не поворачивайте его за корпус.
 - При заворачивании не прикладывайте избыточного усилия; заверните резьбу NPT на необходимую глубину согласно стандарту.
- Для перечисленных ниже присоединений к процессу предписан момент затяжки не более 40 Нм (29,50 фунт сила фут).
 - Резьба ISO 228 G ½", с установленной заподлицо мембраной
 - Резьба DIN 13 M20 x 1,5, с установленной заподлицо мембраной
 - Резьба NPT 3/4", с установленной заподлицо мембраной

Монтаж приборов с резьбой PVDF

▲ ОСТОРОЖНО

Опасность повреждения присоединения к процессу!

Опасность несчастного случая!

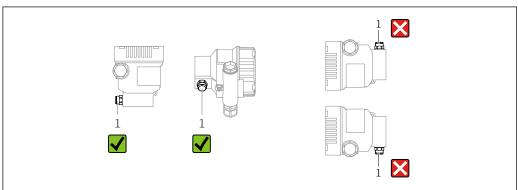
- ► Приборы с резьбой PVDF необходимо устанавливать с помощью монтажного кронштейна из комплекта поставки!
- ▶ Резьба PVDF не предназначена для применения в сочетании с металлами!

▲ ОСТОРОЖНО

Усталость материала вследствие воздействия давления и температуры!

Опасность получения травмы при разлете деталей! Высокое давление и высокая температура могут привести к срыву резьбы.

- ▶ Регулярно проверяйте резьбовое соединение на наличие утечек.
- ▶ Для уплотнения резьбы ½" NPT используйте фторопластовую ленту.

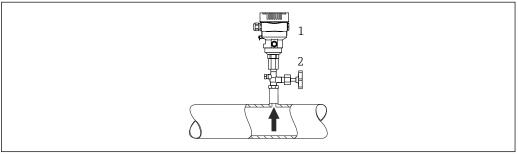

5.1.4 Ориентация

УВЕДОМЛЕНИЕ

Повреждение прибора!

При охлаждении нагретого прибора во время очистки (например, холодной водой) внутри него кратковременно создается вакуум. В результате влага может проникнуть в измерительную ячейку через фильтр-компенсатор давления (1).

▶ Устанавливайте прибор следующим образом.

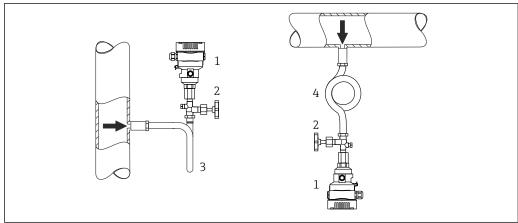


A003872

- Не допускайте загрязнения фильтра-компенсатора давления (1)
- Смещение нулевой точки в зависимости от положения (если при пустом резервуаре измеренное значение отличается от нуля) можно исправить.
- Для монтажа рекомендуется использовать отсечные устройства и/или гидрозатворы.
- Ориентация зависит от условий измерения.

5.2 Монтаж прибора

5.2.1 Измерение давления газа



A0038730

- 1 Прибор
- 2 Отсечное устройство

Смонтируйте прибор и отсечное устройство выше точки отбора давления, чтобы образующийся конденсат стекал внутрь технологического оборудования.

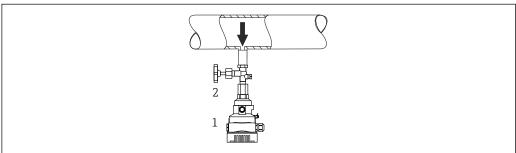
5.2.2 Измерение давления пара

A0038731

- 1 Прибор
- 2 Отсечное устройство
- 3 Сифон U-образной формы
- 4 Сифон О-образной формы

Учитывайте максимально допустимую температуру окружающей среды для измерительного преобразователя!

Монтаж:

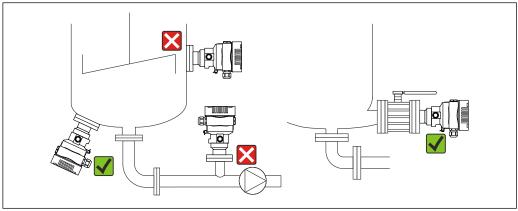

- Идеальный вариант размещение прибора с О-образным сифоном ниже точки отбора давления
 - Кроме того, прибор можно монтировать выше точки отбора давления
- Перед вводом в эксплуатацию сифон необходимо заполнить жидкостью

16

Преимущества использования сифонов:

- Защищает измерительный прибор от горячей, находящейся под давлением среды благодаря образованию и сбору конденсата
- Ослабление гидроудара
- Воздействие водного столба ограниченной высоты приводит к минимальной (пренебрежимо малой) погрешности измерения и минимальному (незначительному) тепловому влиянию на прибор
- Технические характеристики (например, материалы изготовления и каталожные номера) см. в дополнительном документе SD01553P.

5.2.3 Измерение давления жидкости



A0038732

- 1 Прибор
- 2 Отсечное устройство

Смонтируйте прибор с отсечным устройством ниже точки отбора давления или вровень с ней.

5.2.4 Измерение уровня

A003873

- В обязательном порядке устанавливайте прибор ниже самой низкой точки измерения.
- Не устанавливайте прибор в следующих местах:
 - в зоне заполнения резервуара;
 - в выходной зоне резервуара;
 - в зоне всасывания насоса;
 - в точке резервуара, на которую могут воздействовать импульсы давления мешалки.
- Устанавливайте прибор после отсечного устройства: в этом случае упрощается выполнение калибровки и функциональной проверки.

5.2.5 Работа в кислородной (газовой) среде

Кислород и другие газы могут вступать во взрывную реакцию с маслами, смазками и пластмассами. Необходимо предпринять следующие меры предосторожности:

- Все компоненты системы, например приборы, должны быть очищены согласно национальным требованиям.
- В зависимости от используемых материалов, при выполнении измерений в кислородной среде запрещается превышать определенные значения максимально допустимой температуры и максимально допустимого давления.

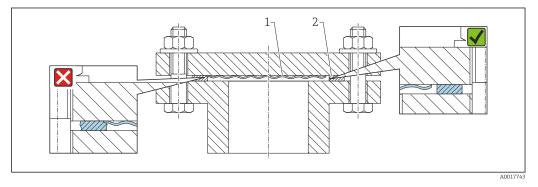
Очистка прибора (не аксессуаров) предоставляется в качестве дополнительной услуги.

Приборы с измерительными ячейками, номинальное значение < 10 бар (150 фунт/кв. дюйм)

- Р_{макс.} Предел избыточного давления (ПИД) измерительной ячейки в зависимости от используемого технологического присоединения
- Приборы с резьбой PVDF:
 - Монтируйте только с прилагаемым монтажным кронштейном!
 - р_{макс.}: 15 бар (225 фунт/кв. дюйм)
- T_{Makc}: 60 °C (140 °F)

Приборы с измерительными ячейками, номинальное значение ≥ 10 бар (150 фунт/кв. дюйм)

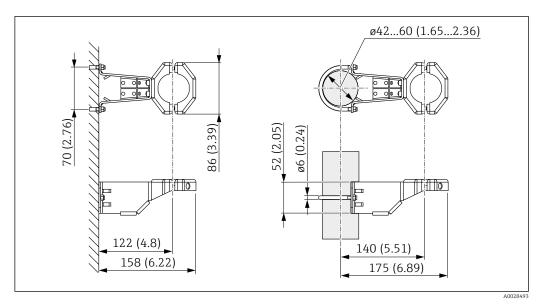
- р_{макс.}: 40 бар (600 фунт/кв. дюйм)
- T_{Makc}: 60 °C (140 °F)


5.2.6 Уплотнение для монтажа на фланце

УВЕДОМЛЕНИЕ

Соприкосновение уплотнения с мембраной!

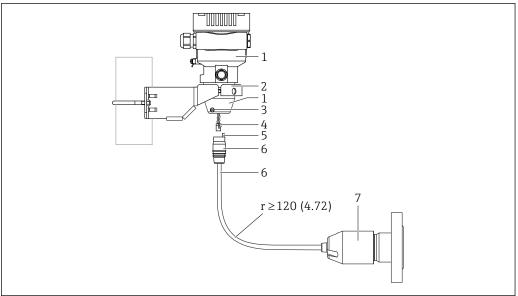
Недостоверные результаты измерения!


▶ Проследите за тем, чтобы уплотнение не соприкасалось с мембраной.

- 1 Мембрана
- 2 Уплотнение

5.2.7 Монтажный кронштейн для прибора или выносного корпуса

Прибор или выносной корпус можно установить на стену или трубу (диаметр трубы от $1\frac{1}{4}$ до 2 дюймов) с помощью монтажного кронштейна.


Единица измерения мм (дюйм)

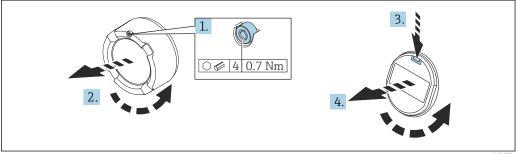
Информация о заказе

- Заказ можно оформить через конфигуратор выбранного продукта.
- Можно заказать в качестве отдельного аксессуара, каталожный номер 71102216.
- Если оформляется заказ прибора с выносным корпусом, то монтажный кронштейн входит в комплект поставки.

При монтаже на трубопроводе следует затягивать гайки кронштейна равномерно, с моментом не менее 5 Нм (3,69 фунт сила фут).

5.2.8 Сборка и монтаж прибора с выносным корпусом

A0038728


Единица измерения мм (дюйм)

- 1 Корпус монтируется с помощью переходника из комплекта поставки
- 2 Прилагается монтажный кронштейн, пригодный для монтажа прибора на стену или трубопровод (диаметром от 1~44 до 2~2 дюймов)
- 3 Стопорный винт
- 4 Разъем
- 5 Компенсация давления
- 6 Кабель со штепсельным разъемом
- 7 В исполнении с выносным корпусом измерительная ячейка поставляется с уже смонтированными присоединением к процессу и кабелем.

Сборка и монтаж

- 1. Подключите разъем (поз. 4) к соответствующему гнезду кабеля (поз. 6).
- 2. Вставьте кабель с гнездом (поз. 6) в переходник корпуса (поз. 1) до упора.
- 3. Затяните стопорный винт (поз. 3).
- Закрепите корпус на стене или трубе с помощью монтажного кронштейна (поз. 2). При монтаже на трубопроводе равномерно затягивайте гайки кронштейна моментом не менее 5 Нм (3,69 фунт сила фут). Прокладывайте кабель с радиусом изгиба (r) ≥ 120 мм (4,72 дюйм).

5.2.9 Поворот дисплея

A0038224

▲ ОСТОРОЖНО

Электропитание включено!

Опасность поражения электрическим током и/или взрыва!

▶ Прежде чем вскрыть прибор, отключите сетевое напряжение.

№ ВНИМАНИЕ

Корпус с двумя отсеками: При открытии крышки клеммного отсека пальцы могут попасть между крышкой и фильтром компенсации давления.

- ▶ Открывайте крышку осторожно.
- 1. Если имеется: ослабьте винт фиксатора крышки отсека электроники с помощью шестигранного ключа.
- 2. Отверните крышку отсека электроники от корпуса преобразователя и проверьте уплотнение крышки.
- 3. Отожмите блокировочный механизм и снимите дисплей.
- 4. Поверните дисплей в необходимое положение: не более 4 × 90° в каждом направлении. Установите дисплей на отсек электронной части в требуемом положении и защелкните фиксаторы. Приверните крышку отсека электронной части обратно на корпус преобразователя. Если имеется: затяните фиксатор крышки шестигранным ключом 0,7 Нм (0,52 фунт сила фут) $\pm 0,2$ Нм (0,15 фунт сила фут).

5.2.10 Закрытие крышек корпуса

УВЕДОМЛЕНИЕ

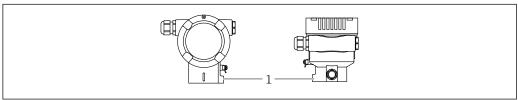
Повреждение резьбы и крышки корпуса вследствие загрязнения!

- Удаляйте загрязнения (например, песок) с резьбы крышки и корпуса.
- ▶ Если при закрытии крышки все же ощущается сопротивление, повторно проверьте резьбу на наличие загрязнений.

Резьба корпуса

На резьбу отсека для электроники и клеммного отсека может быть нанесено антифрикционное покрытие.

Следующее указание относится ко всем материалам корпуса:


№ Не смазывайте резьбу корпуса.

5.2.11 Поворот корпуса

Корпус можно развернуть на угол до 380°, ослабив стопорный винт.

Преимущества

- Простота монтажа благодаря оптимальному выравниванию корпуса.
- Простота доступа к прибору при эксплуатации.
- Оптимальная читаемость изображения на локальном дисплее (опциональном).

Стопорный винт

УВЕДОМЛЕНИЕ

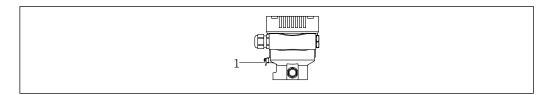
Корпус невозможно отвернуть полностью.

- Ослабьте наружный стопорный винт не более чем на 1,5 оборота. Если винт вывернуть слишком далеко или полностью (за пределы точки входа резьбы), мелкие детали (контрдиск) могут ослабнуть и выпасть.
- \blacktriangleright Затяните крепежный винт (с шестигранным гнездом 4 мм (0,16 дюйм)) моментом не более 3,5 Нм (2,58 фунт сила фут) \pm 0,3 Нм (0,22 фунт сила фут).

5.3 Проверка после монтажа

🗆 Прибор не поврежден (внешний осмотр)?
□Идентификация и маркировка точки измерения соответствуют норме (внешний осмотр)?
🗆 Прибор защищен от осадков и прямых солнечных лучей?
🗆 Крепежные винты и фиксатор крышки плотно затянуты?
 Измерительный прибор соответствует техническим условиям точки измерения? Примеры приведены ниже.

- Рабочая температура
- Рабочее давление
- Температура окружающей среды
- Диапазон измерения

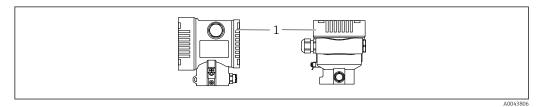

22

6 Электрическое подключение

6.1 Требования, предъявляемые к подключению

6.1.1 Выравнивание потенциалов

Защитное заземление на приборе подключать запрещено При необходимости линия выравнивания потенциалов может быть подключена к внешней клемме заземления прибора до его подключения.


Клемма заземления для подключения линии выравнивания потенциалов

▲ ОСТОРОЖНО

Опасность взрыва!

- ► Указания по технике безопасности при использовании прибора во взрывоопасных зонах приведены в отдельной документации.
- Для обеспечения оптимальной электромагнитной совместимости выполните следующие условия.
 - Длина линии согласования потенциалов должна быть минимально возможной.
 - Площадь поперечного сечения должна быть не менее 2,5 мм² (14 AWG).

6.2 Подключение прибора

Крышка клеммного отсека

📳 Резьба корпуса

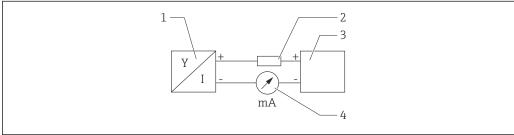
На резьбу отсека для электроники и клеммного отсека может быть нанесено антифрикционное покрытие.

Следующее указание относится ко всем материалам корпуса:

№ Не смазывайте резьбу корпуса.

6.2.1 Напряжение питания

- Ex d, Ex e, невзрывобезопасное исполнение. Напряжение питания: 10,5 до 35 В пост. тока
- Ех і. Напряжение питания: 10,5 до 30 В пост. тока
- Блок питания должен иметь сертификат безопасности (например PELV, SELV, класс 2) и соответствовать определенным спецификациям протокола. Для 4–20 мА применяются те же требования, что и для HART.


6.2.2 Клеммы

- Сетевое напряжение и внутренняя клемма заземления: 0,5 до 2,5 мм² (20 до 14 AWG)
- Наружная клемма заземления: 0,5 до 4 мм² (20 до 12 AWG)

6.2.3 Спецификация кабеля

- Защитное заземление или заземление кабельного экрана: номинальная площадь поперечного сечения $> 1 \text{ мм}^2$ (17 AWG). Номинальная площадь поперечного сечения от 0,5 мм² (20 AWG) до 2,5 мм² (13 AWG).
- Наружный диаметр кабеля: Ø5 до 12 мм (0,2 до 0,47 дюйм), зависит от используемого кабельного уплотнения (см. техническое описание).

6.2.4 4-20 mA

A002890

■ 1 Блок-схема

- 1 Прибор
- 2 Нагрузка
- 3 Подача питания
- 4 Мультиметр

6.2.5 Защита от перенапряжения

Приборы без дополнительной защиты от перенапряжения

Оборудование, поставляемое компанией Endress+Hauser, соответствует требованиям производственного стандарта MЭK/DIN EN 61326-1 (таблица 2, «Промышленное оборудование»).

В зависимости от типа порта (источник питания переменного тока, источник питания постоянного тока, порт ввода/вывода) применяются различные уровни испытаний в соответствии со стандартом МЭК/DIN EN 61326-1 в отношении переходных перенапряжений (скачков напряжения) (МЭК/DIN EN 61000-4-5 Surge). Испытательный уровень на портах питания постоянного тока и портах ввода/вывода составляет 1000 В между фазой и заземлением.

Категория перенапряжения

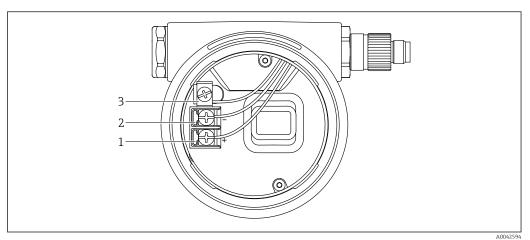
Категория перенапряжения II

6.2.6 Подключение проводов

▲ ОСТОРОЖНО

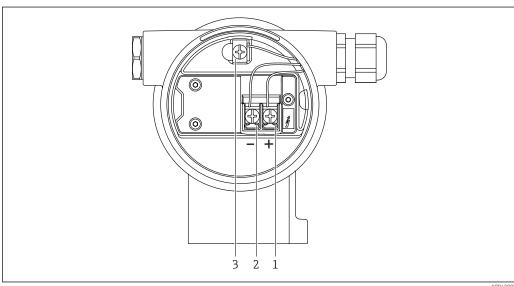
Может быть подключено сетевое напряжение!

Опасность поражения электрическим током и/или взрыва!


- ► Если прибор используется во взрывоопасной зоне, необходимо обеспечить его соответствие национальным стандартам и требованиям, которые приведены в документации по технике безопасности (ХА). Используйте предписанное к применению кабельное уплотнение.
- Сетевое напряжение должно соответствовать техническим требованиям, указанным на заводской табличке.
- ▶ Подключение прибора выполняется при отключенном сетевом напряжении.
- ► При необходимости линия выравнивания потенциалов может быть подключена к внешней клемме заземления преобразователя до подключения прибора.
- ► Для прибора должен быть предусмотрен автоматический выключатель в соответствии со стандартом MЭK/EN 61010.
- ► Кабели должны быть надлежащим образом изолированы с учетом сетевого напряжения и категории перенапряжения.
- Соединительные кабели должны обеспечивать достаточную температурную стабильность с учетом температуры окружающей среды.
- ▶ Эксплуатируйте прибор только с закрытыми крышками.
- ▶ В систему встроены защитные схемы для защиты от обратной полярности, влияния высокочастотных помех и скачков напряжения.

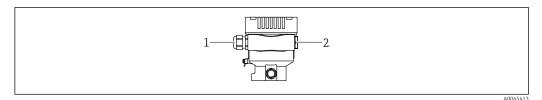
Подключите прибор в следующем порядке:

- 1. Высвободите фиксатор крышки (при наличии).
- 2. Отверните крышку.
- 3. Пропустите кабели сквозь кабельные уплотнения или кабельные вводы.
- 4. Подключите кабели.
- 5. Затяните кабельные уплотнения или кабельные вводы, чтобы загерметизировать их. Затяните контргайку кабельного ввода на корпусе. Гайку кабельного ввода M20 следует затягивать с помощью гаечного ключа типоразмера 24/25 мм моментом 8 Нм (5,9 фунт сила фут).
- 6. Плотно заверните крышку клеммного отсека.
- 7. Если имеется: затяните фиксатор крышки шестигранным ключом 0,7 Нм (0,52 фунт сила фут)±0,2 Нм (0,15 фунт сила фут).


6.2.7 Назначение клемм

Корпус с одним отсеком

- **₽** 2 Клеммы подключения и клемма заземления в отсеке подключения
- 1 Положительная клемма
- 2 Отрицательная клемма
- 3 Внутренняя клемма заземления


Корпус с двумя отсеками

- **№** 3 Клеммы подключения и клемма заземления в отсеке подключения
- 1 Положительная клемма
- 2 Отрицательная клемма
- 3 Внутренняя клемма заземления

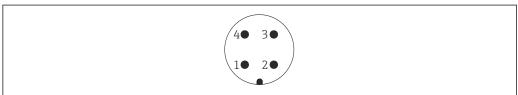
26

6.2.8 Кабельные вводы

- 1 Кабельный ввод
- 2 Заглушка

Тип кабельного ввода зависит от заказанного исполнения прибора.

Обязательно направляйте соединительные кабели вниз, чтобы влага не проникала в клеммный отсек.


При необходимости сформируйте провисающую петлю для отвода влаги или используйте защитный козырек от непогоды.

6.2.9 Разъемы, предусмотренные для прибора

Если прибор оснащен разъемом, то вскрывать корпус для подключения не требуется.

Используйте прилагаемые уплотнения, чтобы предотвратить проникновение влаги внутрь прибора.

Приборы с разъемом М12

A0011175

- 1 Сигнал +
- 2 Нет назначения
- 3 Сигнал –
- 4 Заземление

6.3 Обеспечение требуемой степени защиты

6.3.1 Кабельные вводы

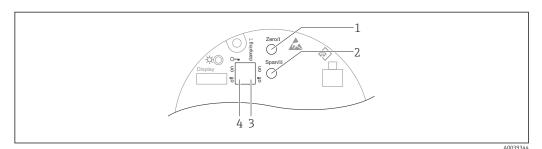
- Кабельное уплотнение M20, пластмасса, IP66/68, тип 4X/6P
- Кабельное уплотнение M20, никелированная латунь, IP66/68, тип 4X/6P
- Кабельное уплотнение M20, 316L, IP66/68, тип 4X/6P
- Резьба М20, IP66/68, тип 4X/6Р
- Резьба G 1/2, IP66/68, тип 4X/6Р
 Если выбрана резьба G 1/2, то прибор поставляется со стандартной резьбой M20 и переходником на резьбу G 1/2 (см. прилагаемую документацию)
- Резьба NPT 1/2, IP66/68, тип 4X/6P
- Заглушка для защиты при транспортировке: IP22, тип 2
- *Кабель 5 м, IP66/68, тип 4X/6Р, компенсация давления по кабелю

- *Клапанная заглушка ISO 4400 M16, IP65 тип 4X
- Разъем HAN7D, 90 градусов, IP65, NEMA тип 4X
- Разъем М12

Если корпус закрыт, а соединительный кабель подключен: IP66/67, NEMA тип 4X Если корпус открыт или соединительный кабель не подключен: IP20, NEMA тип 1

УВЕДОМЛЕНИЕ

Разъемы M12 и HAN7D: ненадлежащий монтаж может привести к аннулированию класса защиты IP!


- ► Степень защиты относится только к такому состоянию, при котором соединительный кабель подключен, а уплотнение плотно затянуто.
- ► Степень защиты действует только в том случае, если соединительный кабель соответствует классу защиты IP67 NEMA, тип 4X.
- ► Классы защиты IP действуют только при наличии защитной заглушки или подсоединенного кабеля.

6.4 Проверка после подключения

После подключения проводов прибора следует выполнить следующие проверки.
🗆 Линия выравнивания потенциалов подключена?
□ Назначение клемм соответствует требованиям?
🗆 Герметичны ли кабельные уплотнения и заглушки?
🗆 Разъемы цифровой шины должным образом закреплены?
□ Крышки завернуты должным образом?

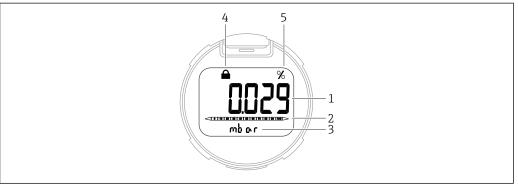
7 Опции управления

7.1 Кнопки управления и DIP-переключатели на электронной вставке

Кнопка управления для нижнего значения диапазона (Zero)

- Кнопка управления для верхнего значения диапазона (Span)
- DIP-переключатель для демпфирования
- DIP-переключатель для блокирования и разблокирования прибора

Настройки, выполненные с помощью DIP-переключателей, приоритетны по сравнению с другими методами управления (например, с помощью ПО FieldCare/ DeviceCare).


7.2 локального дисплея

7.2.1 Дисплей прибора (опционально)

Функции:

Индикация измеренных значений, сообщений о неисправностях и уведомлений

Дисплей прибора можно заказать с дополнительным модулем для связи по беспроводной технологии $Bluetooth^{\otimes}$.

€ 4 Сегментный дисплей

- Измеренное значение (до 5 цифр)
- 2 Гистограмма, пропорциональная выходному току
- 3 Единица измерения измеренного значения
- Заблокировано (символ появляется, когда прибор заблокирован)
- Выход измеренного значения в %

8 Ввод в эксплуатацию

8.1 Предварительные условия

Диапазон измерения и единица измерения, используемая для передачи измеряемого значения, соответствуют техническим характеристикам, которые указаны на заводской табличке.

▲ ОСТОРОЖНО

Рабочее давление составляет меньше (больше) минимально (максимально) допустимого давления!

Опасность получения травмы при разлете деталей! Индикация предупреждающего сообщения в случае недопустимо высокого давления.

- ► Если давление прибора ниже минимально допустимого или выше максимально допустимого, выдается сообщение.
- Используйте прибор только в пределах диапазона измерения!

8.1.1 Состояние при поставке

Если не были заказаны индивидуальные настройки.

- Значения калибровки определяются заданным номинальным значением для измерительной ячейки.
- Ток аварийного сигнала устанавливается на уровне не менее 3,6 мА (только если при заказе не была выбрана другая опция).
- DIP-переключатель находится в положении Off

8.2 Функциональная проверка

Перед вводом точки измерения в эксплуатацию выполните функциональную проверку.

- Контрольный список «Проверка после монтажа» (см. раздел «Монтаж»)
- Контрольный список «Проверка после подключения» (см. раздел «Электрическое подключение»)

8.3 Настройка прибора

8.3.1 Ввод в эксплуатацию с помощью кнопок на электронной вставке

Управление перечисленными ниже функциями возможно с помощью кнопок на электронной вставке:

- Регулировка положения (коррекция нулевой точки)
 Изменение ориентации прибора может вызвать сдвиг значения давления
 Этот сдвиг можно компенсировать регулировкой положения
- Настройка нижнего и верхнего значений диапазона
 Фактическое давление должно быть в пределах диапазона номинального давления для датчика (см. технические характеристики, указанные на заводской табличке)
- Сброс параметров прибора

Выполнение регулировки положения

- 1. Прибор установлен в требуемом положении, давление не применяется.
- 2. Одновременно нажмите кнопки Zero и Span и удерживайте их не менее 3 секунд.

3. Когда светодиод загорается на короткое время, имеющееся давление принято для регулировки положения.

Установка нижнего значения диапазона (давления или масштабируемой переменной)

- 1. На прибор воздействует необходимое давление, которое соответствует нижнему значению диапазона.
- 2. Нажмите кнопку Zero и удерживайте ее нажатой не менее 3 секунд.
- 3. Когда светодиод загорается на короткое время, имеющееся давление принято для нижнего значения диапазона.

Установка верхнего значения диапазона (давления или масштабируемой переменной)

- 1. На прибор воздействует необходимое давление, которое соответствует верхнему значению диапазона.
- 2. Нажмите кнопку Span и удерживайте ее нажатой не менее 3 секунд.
- 3. Когда светодиод загорается на короткое время, имеющееся давление принято для верхнего значения диапазона.
- 4. Светодиод на электронной вставке не загорелся?
 - Давление, соответствующее верхнему значению диапазона, не принято.
 «Мокрая» калибровка невозможна, если выбрана опция опция
 Масштаб.переменная в меню параметр Назначить РV и опция опция
 Таблица в меню параметр Передаточная функция масштаб.переменной.

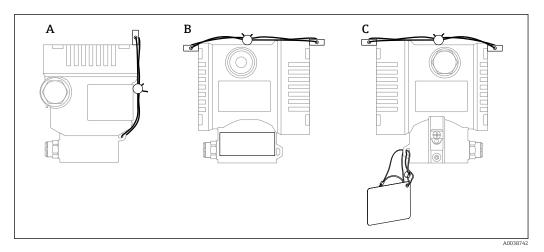
Проверка настроек (давления или масштабируемой переменной)

- 1. Кратковременно (около 1 секунды) нажмите кнопку Zero, чтобы отобразить нижнее значение диапазона.
- 2. Кратковременно (около 1 секунды) нажмите кнопку Span, чтобы отобразить верхнее значение диапазона.
- 3. Кратковременно нажмите одновременно кнопки Zero и Span (около 1 секунды), чтобы отобразить смещение положения.

Сброс параметров прибора

▶ Одновременно нажмите кнопки Zero и Span и удерживайте их не менее 12 секунд.

8.4 Защита параметров настройки от несанкционированного доступа


8.4.1 Аппаратное блокирование и разблокирование

DIP-переключатель 1 на электронной вставке используется для блокирования и разблокирования управления.

Если управление заблокировано DIP-переключателем, то на локальном дисплее отображается символ ключа (📵).

Опломбирование прибора

На крышке корпуса предусмотрены средства опломбирования в случае использования прибора для коммерческого учета.

Α

Корпус с одним отсеком Корпус с двумя отсеками В

9 Диагностика и устранение неисправностей

9.1 Общая процедура устранения неисправностей

9.1.1 Ошибки общего характера

Прибор не отвечает

- Возможная причина: сетевое напряжение не соответствует техническим требованиям, указанным на заводской табличке Способ устранения неисправности: подключите прибор к источнику питания регламентированного напряжения
- Возможная причина: не соблюдена полярность питания Способ устранения неисправности: измените полярность
- Возможная причина: ненадежный контакт между кабелями и клеммами
 Способ устранения неисправности: проверьте и при необходимости восстановите электрический контакт между кабелями и клеммами
- Возможная причина: слишком велико сопротивление нагрузки
 Способ устранения неисправности: увеличение напряжения питания для обеспечения минимально необходимого напряжения на клеммах

На дисплее отсутствуют видимые значения

- Возможная причина: неправильное подключение разъема кабеля дисплея Способ устранения неисправности: надлежащее подключение разъема
- Возможная причина: неисправен дисплей
 Способ устранения неисправности: замена дисплея

9.1.2 Меры по устранению неисправности

Если отображается сообщение об ошибке, примите следующие меры.

- Проверьте кабель/источник питания.
- Проверьте достоверность значения давления.
- Перезапустите прибор.
- Выполните сброс (понадобится повторная настройка прибора).

Если эти меры не привели к устранению неисправности, обратитесь в представительство компании Endress+Hauser.

9.1.3 Дополнительные проверки

Если не удается определить явную причину ошибки (или если причиной неисправности может быть как прибор, так и технологическое оборудование), то можно выполнить следующие дополнительные проверки.

- 1. Проверьте цифровое значение давления (дисплей, и т. п.).
- 2. Убедитесь в том, что соответствующий прибор работает должным образом. Если цифровое значение не соответствует ожидаемому значению давления, замените прибор.
- 3. Включите моделирование и проверьте измеренное значение на токовом выходе. Замените основную электронику, если токовый выход не соответствует смоделированному значению.

9.1.4 Реакция выходов на ошибки

В случае ошибки на токовом выходе используется значение ≤3,6 мA (заводская настройка 3,6 мA).


3,6 мА является минимальным значением для выдачи аварийного сигнала, максимальное значение для выдачи аварийного сигнала (21,5 до 23 мА) устанавливается по отдельному заказу.

9.2 Отображение диагностической информации на локальном дисплее

9.2.1 Диагностическое сообщение

Отображение измеренного значения и диагностическое сообщение в ситуации возникновения сбоя

Неисправность, обнаруженная системой самоконтроля прибора, отображается в виде диагностического сообщения, чередующегося с обозначением единицы измерения.

10010050

- 1 Сигнал состояния
- 2 Символ состояния с диагностическим событием

Сигналы состояния

F

Опция "Отказ (F)"

Произошла ошибка прибора. Измеренное значение недействительно.

С

Опция "Проверка функций (С)"

Прибор работает в сервисном режиме (например, во время моделирования).

S

Опция "Не соответствует спецификации (S)"

Прибор эксплуатируется в следующих условиях.

- За пределами технических ограничений (например, при запуске или очистке)
- С нарушением технологических ограничений, установленных пользователем (например, если уровень выходит за пределы настроенного диапазона)

Μ

Опция "Требуется техническое обслуживание (М)"

Требуется техническое обслуживание. Измеренное значение остается действительным.

9.3 Диагностический список

9.3.1 Список диагностических событий

Количество диагностик	Краткий текст	Действия по восстановлению	Сигнал статуса [заводские]	Характеристики диагностики [заводские]
Диагностика	датчика			
062	Сбой соединения датчика	Проверьте соединение сенсора	F	Alarm
081	Ошибка инициализации датчика	1. Перезапустите прибор 2. Обратитесь в сервисную службу	F	Alarm
100	Ошибка датчика	1. Перезапустите прибор 2. Обратитесь в отдел сервиса Endress+Hauser	F	Alarm
101	Температура датчика	Проверьте температуру процесса Проверьте температуру окружающей среды	F	Alarm
102	Ошибка несовместимости датчика	1. Перезапустите прибор 2. Обратитесь в сервисную службу	F	Alarm
Диагностика	электроники			
203	HART неисправность прибора	Проверить состояние прибора	S	Warning
204	HART дефект электроники	Проверить состояние прибора	F	Alarm
242	Несовместимая прошивка	Проверьте программное обеспечение Перепрограммируйте или замените основной электронный модуль	F	Alarm
252	Несовместимый модуль	1. Проверить, правильный ли блок электроники подключен 2. Заменить модуль электроники	F	Alarm
263	Обнаружена несовместимость	Проверьте настройки прибора Проверьте тип электронного блока	М	Warning
270	Неисправность основного электрон.модуля	Заменить главный блок электроники	F	Alarm
272	Неисправность блока основной электроники	1. Перезапустите прибор 2. Обратитесь в сервисную службу	F	Alarm
273	Неисправность основного электрон.модуля	Заменить главный блок электроники	F	Alarm
282	Некорректное хранение данных	Перезапустите прибор	F	Alarm
283	Несовместимость содержимого памяти	1. Перезапустите прибор 2. Обратитесь в сервисную службу	F	Alarm
287	Несовместимость содержимого памяти	1. Перезапустите прибор 2. Обратитесь в сервисную службу	М	Warning

Количество диагностик	Краткий текст	Действия по восстановлению	Сигнал статуса [заводские]	Характеристики диагностики [заводские]
388	Электроника и HistoROM неисправны	Перезапустите устройство Замените электронику и HistoROM Свяжитесь с сервисом	F	Alarm
Диагностика	конфигурации	,		
410	Сбой передачи данных	Повторите передачу данных Проверьте присоединение	F	Alarm
412	Обработка загрузки	Выполняется загрузка, пожалуйста, подождите	С	Warning
420	НАRT Конфигурация прибора заблокирована	Проверьте конфигурацию блокировки устройства	S	Warning
421	НАRT токовая петля зафиксир.	Проверьте режим Multi- drop или текущее моделирование.	S	Warning
431	Требуется выравнивание	Выполнить баланс.	С	Warning
435	Ошибка линеаризации	Проверьте точки данных и минимальный интервал	F	Alarm
437	Конфигурация несовместима	1. Обновите прошивку 2. Выполните сброс до заводских настроек	F	Alarm
438	Массив данных отличается	Проверьте файл с массивом данных Проверьте параметризацию устройства Скачайте файл с новой параметризацией устройства	М	Warning
441	Токовый выход 1 насыщенный	Проверьте технологический процесс Проверьте настройки токового выхода	S	Warning
484	Моделир. режима неисправности активиров.	Деактивировать моделирование	С	Alarm
485	Моделирование переменной процесса	Деактивировать моделирование	С	Warning
491	Ток.выход моделирование запущено	Деактивировать моделирование	С	Warning
495	Моделирование диагност. событий активно	Деактивировать моделирование	S	Warning
500	Аварийное давление процесса	Проверьте давление процесса Проверьте настройки сигнализации	S	Warning ¹⁾
501	авар.масштаб.переменная процесса	Проверьте условия процесса Проверьте настройки масштабируемых переменных	S	Warning ¹⁾

Количество диагностик	Краткий текст	Действия по восстановлению	Сигнал статуса [заводские]	Характеристики диагностики [заводские]
502	Аварийная температура процесса	Проверьте температуру процесса Проверьте сигнальные настройки	S	Warning ¹⁾
503	Подстройка нуля	Проверьте диапазон измерения Проверьте настройку положения	M	Warning
Диагностика	процесса			
801	Слишком низкое напряжение питания	Напряжение питания слишком низкое, увеличьте напряжение питания	F	Alarm
802	Слишком высокое напряжение питания	Уменьшите напряжение питания	S	Warning
805	Ток контура неисправность	1. Проверьте проводку 2. Замените электронику	F	Alarm
806	Диагностика контура	Проверьте напряжение питания Проверьте кабели и клеммы	М	Warning ¹⁾
807	Нет баз.знач низк.напряжение при 20мА	Напряжение питания слишком низкое, увеличьте напряжение питания	М	Warning
822	Температура датчика вне диапазона	Проверьте температуру процесса Проверьте температуру окружающей среды	S	Warning ¹⁾
825	Температура электроники	Проверьте температуру окружающей среды Проверьте рабочую температуру	S	Warning
841	Рабочий диапазон	Проверьте давление процесса Проверьте измерительный диапазон датчика	S	Warning 1)
846	НАRT неосновная переменная вне диапазона	Проверить состояние прибора	S	Warning
847	НАRT основная переменная вне диапазона	Проверить состояние прибора	S	Warning
848	НАRT переменная прибора предупреждение	Проверить состояние прибора	S	Warning
900	Обнаружен высокий шумовой сигнал	Проверьте импульсную линию Проверьте положение клапана Поверьте процесс	М	Warning ¹⁾
901	Обнаружен низкий шумовой сигнал	Проверьте импульсную линию Проверьте положение клапана Поверьте процесс	M	Warning 1)

Количество диагностик	Краткий текст	Действия по восстановлению	Сигнал статуса [заводские]	Характеристики диагностики [заводские]
902	Обнаружен минимальный шумовой сигнал	Проверьте импульсную линию Проверьте положение клапана Поверьте процесс	M	Warning ¹⁾
906	обнаружен сигнал вне диапазона	B Восстановите базовый уровень. Aдаптируйте диапазон сигналов в SSD.	S	Warning ¹⁾

1) Параметры диагностики могут быть изменены.

9.4 Журнал событий

9.4.1 История событий

Подменю **Перечень событий** содержит хронологический обзор сообщений о произошедших событиях $^{1)}$.

Навигационный путь

Диагностика → Журнал событий

В хронологическом порядке могут отображаться до 100 сообщений о событиях.

История событий содержит записи следующих типов.

- Диагностические события
- Информационные события

Кроме времени наступления события (которое исчисляется в часах работы прибора), с каждым событием связывается символ, который указывает состояние события (длится оно или закончилось).

- Диагностическое событие
 - : Наступление события
 - 🕒: Окончание события
- Информационное событие
 - €: Наступление события

9.4.2 Фильтрация журнала событий

С помощью фильтров можно определить, какая категория сообщений о событиях отображается в подменю **Перечень событий**.

Навигационный путь

Диагностика → Журнал событий

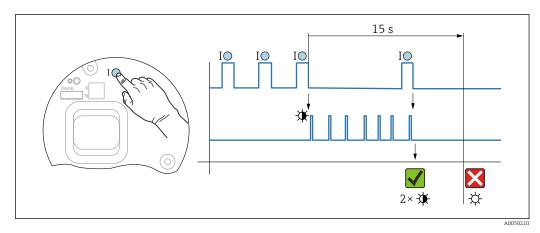
9.4.3 Обзор информационных событий

Номер данных	Наименование данных
I1000	(Прибор ОК)
I1079	Датчик изменён
I1089	Питание включено

¹⁾ При управлении с помощью ПО FieldCare список событий можно просмотреть с помощью функции Event List/HistoROM программы FieldCare.

Номер данных	Наименование данных	
I1090	Сброс конфигурации	
I1091	Конфигурация изменена	
I11074	Проверка прибора активна	
I1110	Переключатель защиты от записи изменен	
I11104	Диагностика контура	
I11284	Переключ. настройки HW MIN активен	
I11285	Переключатель настройки ПО активен	
I11341	SSD baseline created	
I1151	Сброс истории	
I1154	Сброс измер напряжения клемм мин/макс	
I1155	Сброс измерения температуры электроники	
I1157	Журнал событий ошибок	
I1256	Дисплей: статус доступа изменен	
I1264	Безопасная последовательность прервана!	
I1335	Прошивка изменена	
I1397	Fieldbus: статус доступа изменен	
I1398	CDI: статус доступа изменен	
I1440	Главный модуль электроники изменен	
I1444	Проверка прибора успешно завершена	
I1445	Проверка прибора не выполнена	
I1461	Ошибка проверки датчика	
I1512	Началась загрузка	
I1513	Загрузка завершена	
I1514	Загрузка началась	
I1515	Загрузка завершена	
I1551	Исправлена ошибка назначения	
I1552	Не выполнено: поверка гл.электрон.	
I1554	Последовательность безопасности начата	
I1555	Последовательность безопасн.подтверждена	
I1556	Безопасный режим выкл	
I1956	Сброс	

9.4.4 Обзор информационных событий

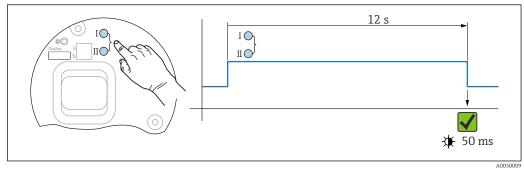

Номер данных	Наименование данных	
I1000	(Прибор ОК)	
I1079	Датчик изменён	
I1089	Питание включено	
I1090	Сброс конфигурации	
I1091	Конфигурация изменена	
I11074	Проверка прибора активна	
I1110	Переключатель защиты от записи изменен	
I11104	Диагностика контура	

Номер данных	Наименование данных
I11284	Переключ. настройки HW MIN активен
I11285	Переключатель настройки ПО активен
I11341	SSD baseline created
I1151	Сброс истории
I1154	Сброс измер напряжения клемм мин/макс
I1155	Сброс измерения температуры электроники
I1157	Журнал событий ошибок
I1256	Дисплей: статус доступа изменен
I1264	Безопасная последовательность прервана!
I1335	Прошивка изменена
I1397	Fieldbus: статус доступа изменен
I1398	CDI: статус доступа изменен
I1440	Главный модуль электроники изменен
I1444	Проверка прибора успешно завершена
I1445	Проверка прибора не выполнена
I1461	Ошибка проверки датчика
I1512	Началась загрузка
I1513	Загрузка завершена
I1514	Загрузка началась
I1515	Загрузка завершена
I1551	Исправлена ошибка назначения
I1552	Не выполнено: поверка гл.электрон.
I1554	Последовательность безопасности начата
I1555	Последовательность безопасн.подтверждена
I1556	Безопасный режим выкл
I1956	Сброс

9.5 Сброс параметров прибора

9.5.1 Сброс прибора с помощью электронных вставных ключей

Сброс пароля Bluetooth и роли пользователя (версия ПО 01.01.2000 и выше)


🖪 5 Последовательность сброса пароля

Удаление/сброс пароля

- 1. Нажмите рабочую клавишу I три раза.
 - ▶ Функция сброса пароля запущена, светодиод мигает.
- 2. В 15 с нажмите рабочую клавишу I один раз.
 - └ Пароль сбрасывается, и светодиодный индикатор кратковременно мигает.

Если рабочая клавиша I не нажата в течение 15 с, действие отменяется и светодиодный индикатор гаснет.

Сброс параметров прибора на заводские настройки

🛮 6 Рабочие клавиши на электронной вставке

Сброс параметров прибора на заводские настройки

- ▶ Одновременно нажмите рабочие клавиши I и II и удерживайте как минимум 12 с.

История разработки встроенного ПО 9.6

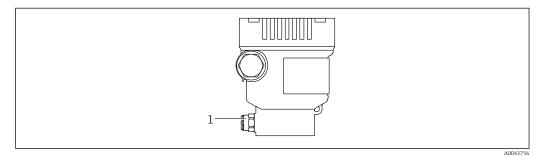
Можно заказать конкретную версию программного обеспечения с помощью раздела "Комплектация изделия". Это позволяет обеспечить совместимость версии программного обеспечения при интеграции с существующей или запланированной системой.

9.6.1 Версия 01.00.zz

Оригинальная версия ПО

9.6.2 Версия 01.01.zz

- Расширенная функциональность технологии Heartbeat
- Сводный статус HART


10 Техническое обслуживание

10.1 Работы по техническому обслуживанию

В этой главе описано техническое обслуживание компонентов физического прибора.

10.1.1 Фильтр-компенсатор давления

Не допускайте загрязнения фильтра-компенсатора давления (1).

l Фильтр-компенсатор давления

10.1.2 Промывочные кольца

Использование промывочных колец позволяет очищать мембрану, не снимая прибор с технологического оборудования.

Для получения более подробных сведений обращайтесь в торговую организацию компании Endress+Hauser.

10.1.3 Очистка наружной поверхности

Примечания в отношении очистки

- Используемые моющие средства не должны разрушать поверхности и уплотнения.
- Механических повреждений мембраны (например, острыми предметами) следует избетать
- Сохраняйте надлежащую степень защиты прибора.

11 Ремонт

11.1 Общие сведения

11.1.1 Принцип ремонта

Ремонтная концепция компании Endress+Hauser состоит в том, что измерительные приборы выпускаются в модульной конфигурации, поэтому ремонт может быть выполнен в сервисном центре Endress+Hauser или силами должным образом подготовленного персонала заказчика.

Запасные части объединены в логические комплекты и снабжены соответствующими руководствами по замене.

Чтобы получить дополнительные сведения об услугах и запасных частях, обратитесь в сервисный центр Endress+Hauser.

11.1.2 Ремонт приборов с сертификатами взрывозащиты

▲ ОСТОРОЖНО

Ненадлежащий ремонт может поставить под угрозу электробезопасность! Опасность взрыва!

- Осуществлять ремонт прибора, имеющего разрешение для эксплуатации во взрывоопасных зонах, должны только специалисты сервисной службы Endress +Hauser или опытные квалифицированные специалисты в соответствии с национальным законодательством.
- ► Требуется соблюдение действующих отраслевых стандартов и национального законодательства в отношении взрывоопасных зон, указаний по технике безопасности и сертификатов.
- ► Используйте только оригинальные запасные части, выпускаемые компанией Endress+Hauser.
- ▶ Учитывайте обозначение прибора, указанное на заводской табличке. Для замены могут использоваться только аналогичные детали.
- ▶ Выполняйте ремонт в соответствии с инструкциями.
- ▶ Только специалисты сервисного центра Endress+Hauser имеют право вносить изменения в конструкцию сертифицированного прибора и модифицировать его до уровня иного сертифицированного исполнения.

11.2 Запасные части

- Некоторые заменяемые компоненты прибора можно идентифицировать по заводским табличкам запасных частей. На них приводится информация об этих запасных частях.
- Все запасные части для измерительного прибора вместе с кодами заказа перечислены в *Device Viewer* (www.endress.com/deviceviewer) и могут быть заказаны. Кроме того, можно загрузить соответствующие руководства по монтажу (при их наличии).
- 🚹 Серийный номер прибора
 - Находится на заводской табличке прибора и запасной части.
 - Возможно считывание посредством ПО прибора.

11.3 Возврат

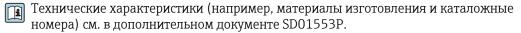
Прибор необходимо вернуть для выполнения заводской калибровки или в том случае, если был заказан или доставлен не тот прибор.

В соответствии с законодательными нормами в отношении компаний с сертифицированной системой менеджмента качества ISO в компании Endress+Hauser действует специальная процедура обращения с бывшей в употреблении продукцией. Чтобы обеспечить быстрый, безопасный и профессиональный возврат прибора, изучите процедуру и условия возврата, изложенные на веб-сайте Endress+Hauser http://www.endress.com/support/return-material.

- ▶ Выберите страну.
 - □ Откроется веб-сайт ответствующего офиса продаж со всей необходимой информацией, касающейся возврата.
- 1. Если вашей страны нет в списке: Выберите ссылку "Choose your location".
 - □ Откроется обзор офисов продаж и представительств компании Endress +Hauser.
- 2. Обратитесь в торговую организацию Endress+Hauser вашего региона.

11.4 Утилизация

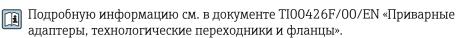
Если этого требует Директива 2012/19 EC об отходах электрического и электронного оборудования (WEEE),


изделия маркируются указанным символом, с тем чтобы свести к минимуму возможность утил как несортированных коммунальных отходов. Не утилизируйте изделия с такой маркировкой как несортированные коммунальные отходы. Вместо этого верните их изготовителю для утилизации в соответствии с действующими правилами.

12 Аксессуары

12.1 Аксессуары, специально предназначенные для прибора

12.1.1 Механические аксессуары


- Монтажный кронштейн для корпуса
- Монтажный кронштейн для отсечных и сливных клапанов
- Отсечные и сливные клапаны
 - Отсечные и сливные клапаны можно заказать как прилагаемый аксессуар (уплотнение для установки прилагается).
 - Отсечные и сливные клапаны можно заказать как установленные аксессуары (установленные вентильные блоки поставляются с документацией об испытании на герметичность).
 - Сертификаты (например, сертификат на материалы 3.1 и NACE) и испытания (например, PMI и испытание под давлением), которые заказаны с прибором, относятся к преобразователю и вентильному блоку.
 - В течение срока службы клапанов может потребоваться подтяжка уплотнений.
- Сифоны (PZW)
- Промывочные кольца
- Защитный козырек от погодных явлений

12.1.2 Штекерные разъемы

- Разъем M12, 90 градусов, 5-метровый кабель IP67, соединительная гайка, Cu Sn/Ni
- Разъем M12, соединительная гайка IP67, Cu Sn/Ni
- Разъем M12, 90 градусов, соединительная гайка IP67, Cu Sn/Ni
- Классы защиты IP действуют только при наличии защитной заглушки или подсоединенного кабеля.

12.1.3 Приварные аксессуары

12.2 Device Viewer

Все запасные части для измерительного прибора вместе с кодами заказа перечислены в *Device Viewer* (www.endress.com/deviceviewer).

13 Технические данные

13.1 Выход

Выходной сигнал

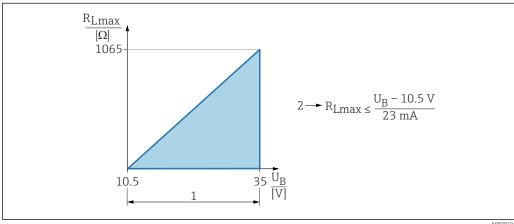
Токовый выход

Аналоговый сигнал 4-20 мА, 2-проводное подключение

Для токового выхода предусмотрено три различных режима работы.

- 4.0-20.5 MA
- NAMUR NE 43: 3,8-20,5 мА (заводская настройка)
- Режим US: 3,9-20,8 мA

Аварийный сигнал


Сигнал при сбое в соответствии с рекомендацией NAMUR NE 43.

Аналоговый сигнал 4-20 мА:

- Нарушение верхней границы диапазона сигнала: > 20,5 мА
- Нарушение нижней границы диапазона сигнала: < 3,8 мА
- Минимальный уровень аварийного сигнала (< 3,6 мА, заводская настройка)

Нагрузка

Аналоговый сигнал 4-20 мА

A00392

- 1 Подача питания 10,5 до 35 В
- 2 $R_{L_{MAKC.}} = макс.$ сопротивление нагрузки
- U_{B} Напряжение питания

Демпфирование

Демпфирование действует для всех выходов (выходного сигнала и дисплея). Демпфирование можно активировать следующими способами.

- С помощью DIP-переключателя на электронной вставке .
- Заводская настройка: 1 с.

Данные по взрывозащищенному подключению

См. отдельную техническую документацию (указания по технике безопасности (XA)) на веб-сайте www.endress.com/download.

Линеаризация

Функция линеаризации прибора позволяет преобразовывать измеренное значение в любые единицы измерения высоты или объема. Также возможен ввод пользовательских таблиц, каждая из которых может содержать до 32 пар значений.

13.2 Окружающая среда

Диапазон температуры окружающей среды

Следующие значения действительны для рабочей температуры до $+85\,^{\circ}$ C ($+185\,^{\circ}$ F). При более высокой рабочей температуре допустимая температура окружающей среды снижается.

- Прибор без сегментного или графического дисплея Стандартный вариант: −40 до +85 °C (−40 до +185 °F).
- Прибор с сегментным или графическим дисплеем: -40 до +85 °C (-40 до +185 °F) с ограничением оптических свойств, таких как быстродействие и контрастность отображения. Можно использовать без ограничений до -20 до +60 °C (-4 до +140 °F).
 - Сегментный дисплей: до -50 до +85 °C (-58 до +185 °F) с ограничением рабочих характеристик и срока службы.
- Раздельный корпус: -20 до +60 °C (-4 до +140 °F).

Взрывоопасная зона

- Информацию о приборах, предназначенных для использования во взрывоопасных зонах, см. в документе «Указания по технике безопасности», на монтажных чертежах и контрольных чертежах.
- Приборы с наиболее распространенными сертификатами взрывозащиты (например, ATEX/MЭК Ex) можно использовать во взрывоопасных средах при температуре до температуры окружающей среды.

Температура хранения

- Прибор без ЖК-дисплея
- Стандартный вариант: -40 до +90 °С (-40 до +194 °F)
- С ЖК-дисплеем: -40 до +85 °C (-40 до +185 °F)
- Выносной корпус: −40 до +60 °C (−40 до +140 °F)

С разъемом M12 углового типа: -25 до +85 °C (-13 до +185 °F)

Рабочая высота

До 5000 м (16404 фут) над уровнем моря.

Климатический класс

Класс 4К4H (температура воздуха -20 до +55 °C (-4 до +131 °F), относительная влажность 4-100 %), соответствует DIN EN 60721-3-4.

Возможно образование конденсата.

Степень защиты

Испытание согласно правилам МЭК 60529 и NEMA 250-2014

Корпус и присоединение к процессу

IP66/68, тип 4X/6P

(ІР68: (1,83 м водного столба в течение 24 ч)

Кабельные вводы

- Сальник M20, пластмасса, IP66/68, тип 4X/6P
- Сальник M20, никелированная латунь, IP66/68, тип 4X/6P
- Сальник M20, 316L, IP66/68, тип 4X/6Р
- Резьба М20, IP66/68, тип 4X/6Р
- Резьба G 1/2, IP66/68, тип 4X/6Р
 Если выбрана резьба G 1/2, то прибор поставляется с резьбой M20 в стандартной комплектации, а переходник G 1/2 добавляется в комплект поставки вместе с
- соответствующей документацией. Резьба NPT 1/2, IP66/68, тип 4X/6P

- Заглушка для защиты при транспортировке: IP22, тип 2
- Разъем HAN7D, 90 градусов IP65 NEMA, тип 4х
- Разъем М12

Если корпус закрыт, а соединительный кабель подключен: IP66/67, NEMA тип 4X. Если корпус открыт и/или соединительный кабель не подключен: IP20, NEMA тип 1.

УВЕДОМЛЕНИЕ

Разъемы M12 и HAN7D: ненадлежащий монтаж может привести к аннулированию класса защиты IP!

- ► Степень защиты относится только к такому состоянию, при котором соединительный кабель подключен, а сальник плотно затянут.
- ► Степень защиты действует только в том случае, если соединительный кабель соответствует классу защиты IP67 NEMA, тип 4X.
- ► Классы защиты IP действуют только при наличии защитной заглушки или подсоединенного кабеля.

Присоединение к процессу и переходник, применяемые при использовании раздельного корпуса

Кабель FEP

- IP69 (на стороне датчика)
- IP66. тип 4/6P
- IP68 (1,83 мм водного столба в течение 24 ч), тип 4/6Р

Кабель РЕ

- IP69 (на стороне датчика)
- IP66, тип 4/6P
- IP68 (1,83 мм водного столба в течение 24 ч), тип 4/6Р

Виброустойчивость

Корпус с одним отсеком

Механическая конструкция	Синусоидальные колебания IEC62828-1/ IEC61298-3	Ударопрочность
Прибор	10-60 Гц: ±0,35 мм (0,0138 дюйм) 60-1000 Гц: 5 g	30 g
Прибор в исполнении с сертификатом Ex d и XP $^{1)}$	10-60 Гц: ±0,15 мм (0,0059 дюйм) 60-1000 Гц: 2 g	30 g

¹⁾ Не для высокотемпературного исполнения с сертификатом Ех d и XP.

Алюминиевый корпус с двумя отсеками

Механическая конструкция	Синусоидальные колебания IEC62828-1/IEC61298-3	Ударопрочность
Прибор	10-60 Гц: ±0,15 мм (0,0059 дюйм) 60-1000 Гц: 2 g	30 g
Прибор в исполнении с сертификатом Ex d ¹⁾	10-60 Гц: ±0,15 мм (0,0059 дюйм) 60-1000 Гц: 2 g	30 g

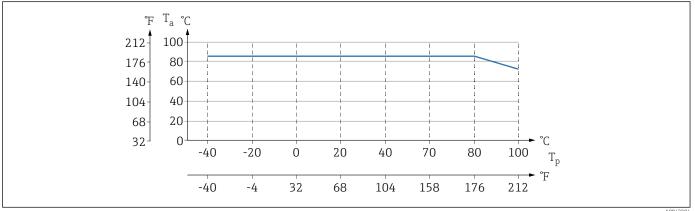
1) Не для высокотемпературного исполнения с сертификатом Ех d и XP.

Электромагнитная совместимость (ЭМС)

- Электромагнитная совместимость соответствует стандартам серии EN 61326 и рекомендациям NAMUR по ЭМС (NE21)
- Требования стандарта EN 61326-3 для функции обеспечения безопасности (SIL) выполнены
- Максимальное отклонение под влиянием помех: < 0,5 % диапазона при полном диапазоне измерения (ДИ 1:1)

Более подробные сведения приведены в Декларации соответствия требованиям ЕС.

13.3 Процесс


Диапазон температуры процесса

УВЕДОМЛЕНИЕ

Допустимая рабочая температура зависит от присоединения к процессу, технологического уплотнения, температуры окружающей среды и типа сертификации.

► При выборе прибора необходимо учитывать все температурные данные, приведенные в настоящем документе.

-40 до +100 °C (-40 до +212 °F)

A00432

Endress+Hauser

- 🗉 7 Значения действительны для вертикального монтажа без изоляции.
- *T_p* Рабочая температура
- $T_a \;\;\;$ Температура окружающей среды

Указанные диапазоны рабочей температуры относятся к постоянной работе прибора (допускается отклонение не более 5 $^{\circ}$ C (41 $^{\circ}$ F))

Уплотнения

Обратите внимание на диапазон рабочей температуры уплотнения. Указанные значения температуры зависят от устойчивости уплотнения к воздействию технологической среды.

Уплотнение	Температура
FKM	−25 до +100 °C (−13 до +212 °F)
FKM Очистка для эксплуатации в кислородной среде	−10 до +60 °C (+14 до +140 °F)
FFKM Perlast G75LT	−20 до +100 °C (−4 до +212 °F)
FFKM Kalrez 6375	+5 до +100 °С (+41 до +212 °F)
FFKM Chemraz 505	–10 до +100 °C (+14 до +212 °F)
EPDM	-40 до +100 °C (-40 до +212 °F)
HNBR	−25 до +100 °C (−13 до +212 °F)

52

Работа в кислородной (газовой) среде

Кислород и другие газы могут вступать во взрывную реакцию с маслами, смазками и пластмассами. Необходимо предпринять следующие меры предосторожности:

- Все компоненты системы, например приборы, должны быть очищены согласно национальным требованиям.
- В зависимости от используемых материалов, при выполнении измерений в кислородной среде запрещается превышать определенные значения максимально допустимой температуры и максимально допустимого давления.

Очистка прибора (не аксессуаров) предоставляется в качестве дополнительной услуги.

Приборы с измерительными ячейками, номинальное значение < 10 бар (150 фунт/кв. дюйм)

- ullet $P_{\text{макс}}$ Предел избыточного давления (ПИД) измерительной ячейки в зависимости от используемого технологического присоединения
- Приборы с резьбой PVDF:
 - Монтируйте только с прилагаемым монтажным кронштейном!
 - р_{макс}: 15 бар (225 фунт/кв. дюйм)
- T_{Makc}: 60 °C (140 °F)

Приборы с измерительными ячейками, номинальное значение ≥ 10 бар (150 фунт/кв. дюйм)

- р_{макс.}: 40 бар (600 фунт/кв. дюйм)
- T_{Makc.}: 60 °C (140 °F)

Термический удар

Применение при резких перепадах температуры

Резкие перепады температуры приводят к временным ошибкам в измерениях. Действие термокомпенсации проявляется в течение нескольких минут. Внутренняя термокомпенсация срабатывает тем быстрее, чем меньше перепад температуры и продолжительнее интервал времени.

🛂 Для получения более подробных сведений обращайтесь в торговую организацию компании Endress+Hauser.

Диапазон рабочего давления

Характеристики давления

▲ ОСТОРОЖНО

Максимально допустимое давление для прибора зависит от компонента с наименьшим номинальным давлением (компоненты: присоединение к процессу, дополнительные установленные компоненты или аксессуары).

- Эксплуатируйте прибор только в пределах допустимых значений, указанных для компонентов!
- ▶ МРД (максимальное рабочее давление): МРД указано на заводской табличке. Это значение относится к исходной базовой температуре +20 °C (+68 °F) и может воздействовать на прибор в течение неограниченного времени. Обратите внимание на зависимость МРД от температуры. Значения давления, допустимые при более высокой температуре для фланцев, см. в стандартах EN 1092-1 (с учетом температурной стабильности материалы 1.4435 и 1.4404 сгруппированы в соответствии со стандартом EN 1092-1; химический состав двух материалов может быть идентичным), ASME В 16.5а, JIS В 2220 (в каждом случае действует новейшая версия стандарта). Данные МРД, которые отличаются от этих правил, приведены в соответствующих разделах технического описания.
- ► Предел избыточного давления это максимальное давление, которому может подвергаться прибор во время испытания. Это давление превышает максимальное рабочее давление на определенный коэффициент. Значения относятся к исходной базовой температуре +20 °C (+68 °F).
- ▶ В директиве для оборудования, работающего под давлением (2014/68/EU), используется аббревиатура PS. Аббревиатура PS соответствует МРД (максимальному рабочему давлению) прибора.
- ▶ При таком сочетании диапазонов измерительной ячейки и присоединения к процессу, при котором предел избыточного давления (ПИД) присоединения к процессу составляет меньше номинального значения для измерительной ячейки, на заводе-изготовителе прибор настраивается не больше чем на значение ПИД для присоединения к процессу. Если требуется использовать полный диапазон измерительной ячейки, то выберите присоединение к процессу с более высоким значением ПИД (1,5 x PN; МРД = PN).
- ▶ Использование в кислородной среде: нельзя превышать значения Р_{макс.} и Т_{макс.}

Разрушающее давление

При указанном разрушающем давлении следует ожидать полного разрушения компонентов, находящихся под давлением, и/или утечки на приборе. Поэтому крайне важно избегать неприемлемых рабочих условий путем тщательного планирования и согласования параметров технологической установки.

Работа со сверхчистым газом

Компания Endress+Hauser также выпускает приборы для особых условий применения, например для работы в среде сверхчистого газа. Такие приборы специально очищаются от следов масла и смазки. Для этих приборов отсутствуют какие-либо ограничения рабочих условий процесса.

Работа в среде пара и насыщенного пара

Для работы в среде пара и насыщенного пара следует использовать прибор с металлической мембраной или предусмотреть при установке гидрозатвор для температурной развязки.

Алфавитный указатель

Б Безопасность изделия
Д Декларация соответствия
Диагностика Символы
Символы 35 Диагностические события 35 Диагностический список 35 Диагностическое сообщение 35 Документация по прибору Дополнительная документация 7
Заводская табличка13Запасные части45Заводская табличка45
И Использование по назначению 8 Использование приборов 8 Использование не по назначению 8 Пограничные состояния 8 История событий 39
Л Локальный дисплей см. В аварийном состоянии см. Диагностическое сообщение
М Маркировка СЕ (декларация соответствия) 9
H Назначение прибора см. Использование по назначению
О Очистка
П Поворот дисплея
Список событий 39 Принцип ремонта 45
С Сигналы состояния
Т Техника безопасности на рабочем месте 8 Техническое обслуживание 44 Требования к персоналу

Y
Указания по технике безопасности
Основная
Устранение неисправности
Утилизация
Φ
Фильтрация журнала событий
Э Эксплуатационная безопасность
D
Device Viewer 4 ¹

www.addresses.endress.com