Sensor de condutividade higiênico Digital com tecnologia Memosens

Constante da célula $k = 0.57 \text{ cm}^{-1}$

Aplicação

Para medições em que condutividades muito diversas devem ser medidas em um sistema de medição.

Aplicações típicas incluem:

- Separações de fases
- Cromatografia
- Fermentações
- Monitoramento CIP em tubos pequenos
- Ultrafiltração
- Limpeza de água de lastro em navios
- Limpeza da água na esteira de um navio

Sensores com sondas de temperatura são usados em conjunto com medidores de condutividade que suportam a compensação automática de temperatura:

- Liquiline CM442/CM444/CM448
- Liquiline CM42

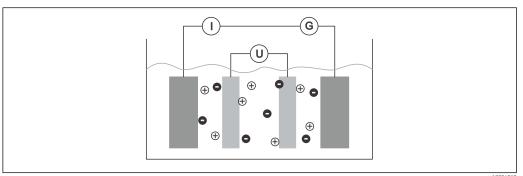
Seus benefícios

- Alta precisão na medição já que a constante de célula é medida individualmente
- Certificado de inspeção do fabricante indicando a constante de célula individual
- Conexões de processo sanitárias para instalação em tubos ou célula de fluxo
- Fácil de limpar graças às superfícies eletropolidas
- Pode ser esterilizado até 140 °C (284 °F)
- Aço inoxidável 1.4435 (AISI 316 L) atende às mais altas exigências da indústria farmacêutica
- Proteção IP68
- Todo o sensor é certificado conforme EHEDG e 3-A
- Conformidade FDA

Outras vantagens da tecnologia Memosens

- Segurança máxima do processo
- Segurança dos dados graças à transmissão digital de dados
- Muito fácil de usar como dados do sensor memorizados no sensor
- O registro de dados de carregamento do sensor no sensor permite a manutenção preditiva

Sumário

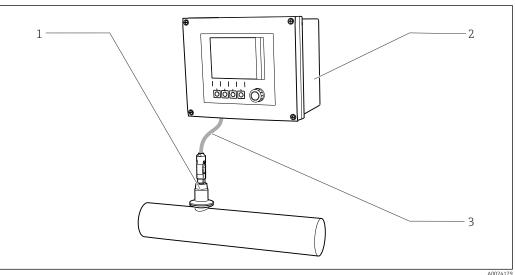

Princípio de medição	3
Comunicação e processamento de dados	4
Confiabilidade	
Entrada . Variáveis medidas	5 5
Fonte de alimentação	
Características de desempenho Incerteza de medição Tempo de resposta Erro de medição Repetibilidade	5 5 5 6
Montagem	6
Ambiente	7 8 8
Processo Temperatura do processo Pressão do processo Índices de temperatura/pressão	8 8
Peso	9 10 10
Aprovações Ex . Compatibilidade sanitária . Compatibilidade farmacêutica . Relatórios de teste . Certificação adicional .	11 11 11 11 11 11

nformações para pedido	12
Página do produto	12
Configurador de produtos	12
Escopo de entrega	12
Acessórios	12
Cabo de medição	12
Soluções de calibração	13

Função e projeto do sistema

Princípio de medição

A célula de medição possui quatro eletrodos. Uma corrente alternada é aplicada através do par de eletrodos externos. Ao mesmo tempo, a tensão aplicada é medida nos dois eletrodos internos. A condutividade eletrolítica entre os eletrodos pode ser estabelecida com confiança baseada na tensão medida e no fluxo de corrente causado pela resistência do líquido. A vantagem dessa tecnologia quando comparada aos sensores tradicionais de dois eletrodos é que os efeitos eletroquímicos nos eletrodos ativos são suprimidos pelos dois eletrodos de medição de tensão adicionais.


₽ 1 Medição da condutividade

- Medição de intensidade da corrente
- Medição por tensão
- G Gerador

Sistema de medição

Um sistema de medição completo compreende pelo menos:

- Sensor de condutividade Memosens CLS82E
- Transmissor, por ex. Liquiline M CM42
- Cabo de medição, por ex. cabo de dados Memosens CYK10

₽ 2 Exemplo de um sistema de medição

- Memosens CLS82E
- Transmissor Liquiline CM44x
- Cabo de medição

Comunicação e processamento de dados

Comunicação com o transmissor

Sempre conecte os sensores digitais com a tecnologia Memosens a um transmissor com a tecnologia Memosens. A transmissão de dados a um transmissor para sensores analógicos não é possível.

Sensores digitais podem armazenar os dados do sistema de medição no sensor. Isso inclui os sequintes:

- Dados do fabricante
 - Número de série
 - Código de pedido
 - Data de fabricação
- Dados de calibração
 - Data de calibração
 - Constante de célula
 - Constante de célula delta
 - Número de calibrações
 - Número de série do transmissor usado para realizar a última calibração ou ajuste
- Dados de operação
 - Faixa de aplicação de temperatura
 - Faixa de aplicação de condutividade
 - Data do início do comissionamento
 - Valor máximo da temperatura
 - Horas de operação em temperaturas altas

Confiabilidade

Confiabilidade

A tecnologia Memosens digitaliza os valores medidos no sensor e transmite os dados para o transmissor usando uma . O resultado:

- Se o sensor falhar ou houver uma interrupção na conexão entre o sensor e o transmissor, isso será detectado e relatado de forma confiável.
- A disponibilidade do ponto de medição é detectada e relatada de forma confiável.

Manutenção

Fácil manuseio

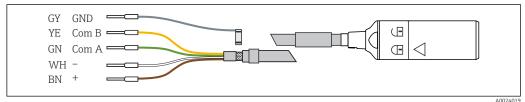
Sensores com tecnologia Memosens possuem componentes eletrônicos integrados que armazenam dados de calibração e outras informações (por ex. total de horas de operação ou horas em operação sob condições de medição extremas). Uma vez que o sensor foi conectado, os dados são transferidos automaticamente ao transmissor e usados para calcular o valor atual medido. Como os dados de calibração são armazenados no sensor, ele pode ser calibrado e ajustado independentemente do ponto de medição. O resultado:

- A fácil calibração no laboratório de medição sob condições externas ideais aumenta a qualidade da calibração.
- Os sensores pré-calibrados podem ser substituídos rápida e facilmente, resultando em um aumento perceptível na disponibilidade do ponto de medição.
- Graças à disponibilidade dos dados do sensor, os intervalos de manutenção podem ser definidos com precisão, possibilitando a manutenção preventiva.
- O histórico do sensor pode ser documentado em portadores de dados externos e programas de avaliação.
- Assim, aplicação atual do sensor pode ser determinada com base em seu histórico anterior.

Integridade

Com a transmissão indutiva do valor medido usando uma conexão sem contato, o Memosens garante a máxima segurança do processo e oferece os seguintes benefícios:

- Todos os problemas causados pela umidade são eliminados.
 - Conexão plug-in permanece livre de corrosão
 - Uma distorção do valor medido devido à umidade não é possível.
 - O sistema de encaixe pode até ser conectado debaixo d'áqua.
- O transmissor é galvanicamente desacoplado do meio.
- A segurança da EMC é garantida por medidas de triagem para a transmissão digital de valores medidos.


Entrada

Variáveis medidas	CondutividadeTemperatura				
Faixas de medição	Condutividade 1)	1 μS/cm a 500 mS/cm			
	Temperatura	-5 a 140 °C (23 a 284 °F)			
	1) (em relação a água a 25 °C	.) (em relação a água a 25 °C (77 °F))			
Constante de célula	$k = 0.57 \text{ cm}^{-1}$				
Compensação de temperatura	Pt1000 (Classe A de acordo com IEC 60751)				

Fonte de alimentação

Conexão elétrica

A conexão elétrica do sensor ao transmissor é estabelecida usando o cabo de medição CYK10.

■ 3 Cabo de medição CYK10

Características de desempenho

Incerteza de medição

Cada sensor individual é medido de fábrica com aprox. $50 \,\mu\text{S/cm}$ usando um sistema de medição de referência que pode ser comprovado para NIST ou PTB. A constante de célula exata é inserida no certificado do fabricante fornecido. A incerteza de medição na determinação da célula constante é $1,0\,\%$.

Tempo de resposta

Temperatura 1)

Com Pg 13,5 ou braçadeira $t_{90} \le 16 \text{ s}^{-2}$ Com outra conexão do processo $t_{90} \le 28 \text{ s}^{-2}$

- 1) DIN VDI/VDE 3522-2 (0,3 m/s laminar)
- 2) Com previsão de temperatura ativada como padrão

Erro de medição

Condutividade

Na faixa de 1 μ S/cm a 1 mS/cm $^{-1}$ \leq 2% de leitura Na faixa de 1 mS/cm a 500 mS/cm $^{-1}$ \leq 4% de leitura

Temperatura

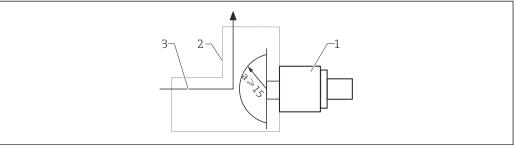
Com Pg 13,5 ou braçadeira \leq 0,5 K, na faixa de medição de -5 a 100 °C (23 a 212 °F)

≤ 1,0 K, na faixa de medição de 100 a 140 °C (212 a

284°F)

Com outra conexão do processo \leq 1,0 K, na faixa de medição de -5 a 140 °C (23 a 284 °F)

1) No estado conforme entrega (ajuste de fábrica a 50 μS/cm)

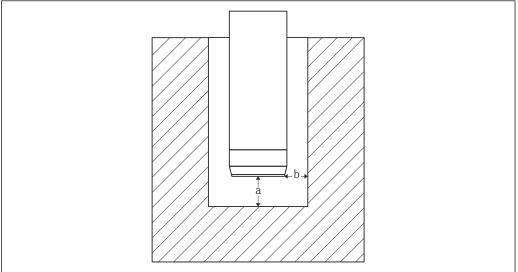

	oe				

Condutividade Temperatura $\leq 0.2~\%$ da leitura, em faixas de medição específicas $\leq 0.05~\mathrm{K}$

Montagem

Instruções de instalação

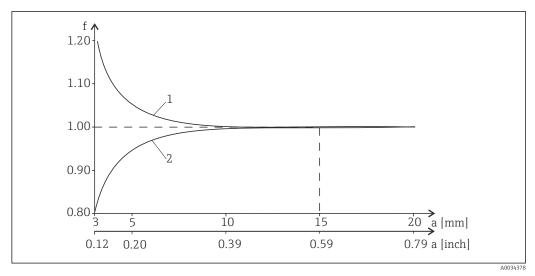
A instalação é recomendada para assegurar a linearidade. Se a distância até as paredes laterais e opostas deve ser de pelo menos 15 mm.


A002462

■ 4 A distância mínima entre o tubo e a extremidade da célula de medição

- 1 Sensor
- 2 Tubo
- 3 Direção do fluxo

A corrente iônica no líquido é influenciada pelas paredes quando instaladas em condições confinadas. Este resultado é compensado pelo que se conhece fator de instalação. O fator de instalação pode ser inserido no transmissor para a medição ou a constante de célula é corrigida multiplicando-se pelo fator de instalação.


O valor do fator da instalação varia conforme o diâmetro e a condutividade do bocal do tubo e a distância entre o sensor e a parede. O fator de instalação de ser desconsiderada (f = 1,00) caso a distância até parede seja suficiente (a > 15 mm). Se a distância até a parede for menor, o fator de instalação aumenta nos tubos eletricamente isolados (f > 1) e diminui nos tubos eletricamente condutivos (f < 1). O fator de instalação pode ser determinado usando as soluções de calibração.

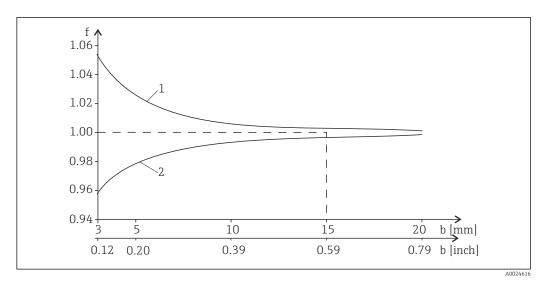

A002462

Diagrama do sensor em condições de instalação confinadas

- A Distância até a parede
- b Largura da lacuna

- 6 Relação entre o fator de instalação fator f e a distância até a parede
- Parede do tubo eletricamente isolado
- Parede do tubo eletricamente condutivo

- \blacksquare 7 Relação entre o fator de instalação f e a largura da lacuna b
- 1 Parede do tubo eletricamente isolado
- 2 Parede do tubo eletricamente condutivo

Propriedades sanitárias

Para instalação de acordo com o 3-A, favor observar o seguinte:

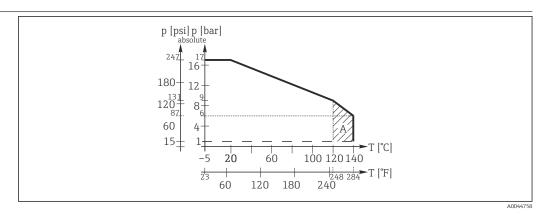
- ▶ Após a montagem do equipamento, a integridade higiênica deve ser garantida.
- Devem ser usadas conexões de processo em conformidade com a 3-A.

Fatores de instalação para conjuntos

Para os conjuntos de vazão ou conjuntos com um protetor do cesto em que não é possível manter uma distância a >15 mm (→ 📵 4, 🗎 6) até o elemento do sensor, recomenda-se determinar o fator de instalação ao calibrar o conjunto usado para assegurar o erro medido do sensor especificado.

Ambiente

Temperatura ambiente

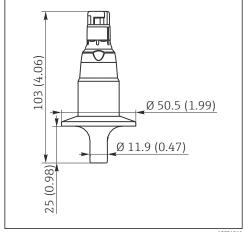

-20 para 60 °C (-4 para 140 °F)

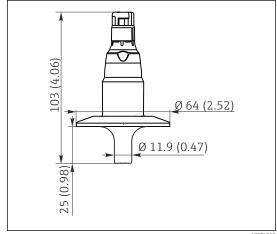
Temperatura de armazenamento	-25 a +80 °C (-10 a +180 °F)
Umidade relativa	5 a 95 %
Grau de proteção	IP 68 / NEMA tipo 6P (coluna d'água de 1,9 m, 20 °C, 24 h)

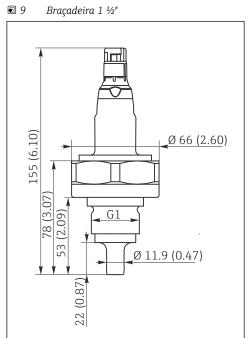
Processo

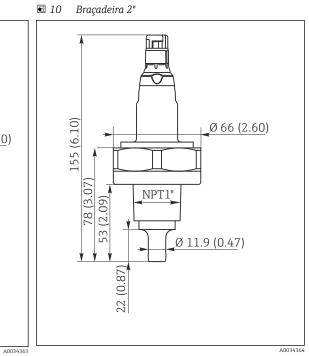
Temperatura do processo	Operação normal: Esterilização (máx. 45 min.):	-5 a 120 °C (23 a 248 °F) Máx. de 140 °C (284 °F) em 6 bar (87 psi)
Pressão do processo	17 bars (247 psi) a 20 °C (68 °F) 9 bars (131 psi) a 120 °C (248 °F)	

Índices de temperatura/ pressão

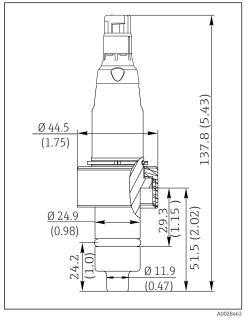

 \blacksquare 8 Nível de pressão/temperatura

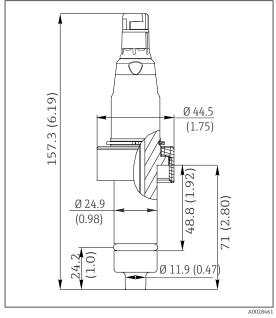

A Pode ser esterilizado por um período curto (45 min.)

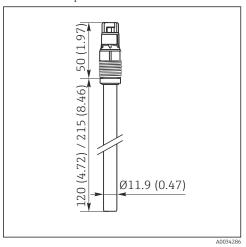

8


Construção mecânica

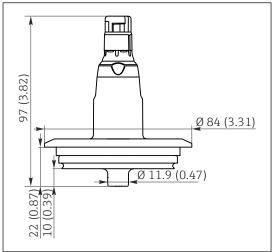
Dimensões







■ 11 G1 ■ 12 NPT1"



■ 13 DN 25 padrão

■ 14 DN 25 B. Braun

■ 15 Pg 13.5

■ 16 Varivent N DN 40 - DN 125

i

Todos os designs são fornecidos sem vedação de processo.

Peso

Dependendo da versão, por ex.

- Conexão de processo Pg 13,5: 0,06 a 0,09 kg (0,13 a 0,20 lbs)
- Conexão de processo G1 ou NPT: aprox. 0,9 kg (1,98 lbs)

Materiais (em contato com o meio)

Elemento do sensor: Platina e cerâmica (óxido de zircônio) Conexão do processo: Aço inoxidável 1.4435 (AISI 316L)

Apenas para CLS82E-**NA* 1) e CLS82E-**NB* 2):

Vedação: EPDM

- 1) Conexão DN25 padrão
- 2) Conexão DN25 B. Braun

Rugosidade da superfície

 $R_a < 0.38 \mu m$

Certificados e aprovações

Certificados atuais e aprovações para o produto estão disponíveis na www.endress.com respectiva página do produto em:

- 1. Selecione o produto usando os filtros e o campo de pesquisa.
- 2. Abra a página do produto.
- 3. Selecione **Downloads**.
- 📮 Certificados e aprovações são opcionais, ou seja, dependem da versão do produto.

Aprovações Ex

CLS82E-BA

II 1 G Ex ia IIC T3/T4/T6 Ga

CLS82E-CI

CSA C/US IS Cl. I Div. 1 GP A-D T3/T4/T6 + CSA C/US IS Cl. I Zona 0 AEx ia IIC T3/T4/T6

CLS82F-GA

EAC Ex, OEx ia IIC T3/T4/T6 Ga X

CLS82E-IA

Ex ia IIC T3/T4/T6 Ga

CLS82E-NA

NEPSI Ex ia IIC T3/T4/T6 Ga

Compatibilidade sanitária

EHEDG

As conexões de processo sanitárias são certificadas conforme EHEDG tipo EL classe I.

Norma (EC) Nº 1935/2004

Atende aos requisitos da norma (EC) No. 1935/2004

O produto atende portanto os requisitos para materiais que entram em contato com alimentos.

3-A

Atende aos requisitos da atual norma sanitária 3-A 74-xx.

FDA

Todos os materiais em contato com o meio atendem aos requisitos da FDA.

Norma chinesa para materiais de contato com alimentos

Atende aos requisitos da norma GB4806.1-2016.

Compatibilidade farmacêutica

Em conformidade com os requisitos derivados do cGMP

Certificado de conformidade para requerimentos farmacêuticos, confirma a conformidade com o teste de reatividade biológica USP 87, USP 88 Classe VI, conformidade de material FDA, livre de TSE/BSE, rugosidade da superfície

ASME BPE

Produzido conforme os critérios da ASME BPE válida atualmente.

Relatórios de teste

Certificado de inspeção do fabricante

Indicação da constante de célula individual

Teste de rugosidade da superfície

Superfícies de aço inoxidável em contato com o meio testadas para \leq R_a 0,38 μm .

Certificação adicional

Certificado de inspeção conforme EN 10204 3.1

Dependendo da versão, é aplicado um teste de certificado 3.1 de acordo com EN 10204.

Normas e diretrizes externas

EAC

O produto foi certificado de acordo com diretrizes TP TC 004/2011 e TP TC 020/2011 que se aplicam ao espaço econômico europeu (EEE). A marca de conformidade EAC é afixada ao produto.

Informações para pedido

Página do produto

www.endress.com/cls82e

Configurador de produtos

- 1. **Configurar**: Clique neste botão na página do produto.
- 2. Selecione Seleção estendida.
 - O Configurador abre em uma janela separada.
- Configure o equipamento de acordo com seus requisitos ao selecionar a opção desejada para cada recurso.
 - Desta forma, você receberá um código de pedido válido e completo para o equipamento.
- 4. Aceitar: Adicione o produto configurado ao carrinho de compras.
- Para diversos produtos, você também tem a opção de baixar desenhos CAD ou 2D da versão do produto selecionada.
- 5. CAD: Abra esta tabela
 - A janela do desenho é exibida. Você pode escolher entre diferentes visualizações. Você pode baixá-los em formatos selecionáveis.

Escopo de entrega

O escopo de entrega inclui:

- Sensor (versão conforme pedido)
- Instruções de operação
- XA, Instruções de segurança para equipamentos elétricos em áreas classificadas
- Relatório da inspeção final

Acessórios

Os seguintes itens são os mais importantes acessórios disponíveis no momento em que esta documentação foi publicada.

Os acessórios listados são tecnicamente compatíveis com o produto nas instruções.

- Restrições específicas para a aplicação da combinação dos produtos são possíveis.
 Garanta a conformidade do ponto de medição à aplicação. Isso é responsabilidade do operador do ponto de medição.
- 2. Preste atenção às informações nas instruções de todos os produtos, especialmente os dados técnicos
- 3. Para os acessórios não listados aqui, contatar seu escritório de serviços ou de vendas.

Cabo de medição

Memosens cabo de dados CYK10

- Para sensores digitais com tecnologia Memosens
- Configurador do produto na página do produto: www.endress.com/cyk10
- Informações Técnicas TI00118C

Memosens cabo de dados CYK11

- Cabo de extensão para sensores digitais com protocolo Memosens
- Configurador do Produto na página do produto: www.endress.com/cyk11
- Informações Técnicas TI00118C

Soluções de calibração

Soluções de calibração de condutividade CLY11

Soluções de precisão indicadas como SRM (Material de referência padrão) pela NIST para calibração qualificada dos sistemas de medição de condutividade conforme ISO 9000

- CLY11-A, 74 µS/cm (temperatura de referência 25 °C (77 °F)), 500 ml (16,9 fl.oz) N° do pedido 50081902
- \blacksquare CLY11–B, 149,6 µS/cm (temperatura de referência 25 °C (77 °F)), 500 ml (16,9 fl.oz) Nº do pedido 50081903
- CLY11-C, 1,406 mS/cm (temperatura de referência 25 °C (77 °F)), 500 ml (16,9 fl.oz)
 Nº do pedido 50081904
- \blacksquare CLY11-C, 12,64 mS/cm (temperatura de referência 25 °C (77 °F)), 500 ml (16,9 fl.oz) Nº do pedido 50081905
- \blacksquare CLY11-E, 107,00 mS/cm (temperatura de referência 25 °C (77 °F)), 500 ml (16,9 fl.oz) Nº do pedido 50081906

Informações Técnicas TI00162C

www.addresses.endress.com