
Technical Information iTHERM ModuLine TM121

Thermometer with RTD or TC insert complete with thermowell manufactured from pipe or tube material

Metric version with basic technology for all standard applications. Insert replaceable without process interruption

Application

- For universal use
- For use in non-hazardous areas
- Measuring range: -50 to +650 °C (-58 to +2012 °F)
- Pressure range up to 50 bar (725 psi)
- Degree of protection: up to IP 68

Head transmitters

Endress+Hauser transmitters are available with enhanced measurement accuracy and reliability compared to directly wired sensors. With a choice of the following outputs and communication protocols, they are easily customized to your measuring

- Analog output 4 to 20 mA, HART[®] protocol
- IO-Link[®]

Your benefits

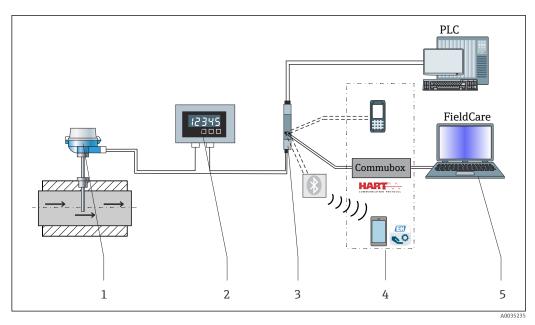
- Economical, reliable measurement
- User-friendly from product selection to maintenance
- Wide range of process connections
- Bluetooth[®] connectivity (optional)

Table of contents

Function and system design iTHERM ModuLine Measuring principle Measuring system Modular design	3 • 4 • 4
Input	. 7
Output Output signal Family of temperature transmitters	7 7 7
Power supply	9 9
Performance characteristics	11 11 12 12 12 13 14
Installation Orientation Installation instructions	14 14 14
Ambient conditionsAmbient temperature rangeStorage temperatureHumidityClimate classDegree of protectionShock and vibration resistanceElectromagnetic compatibility (EMC)	15 15 15 15 15 15 15
Process Process temperature range Process pressure range	15 15 15
Mechanical construction	17 20 20 21 30 30 30

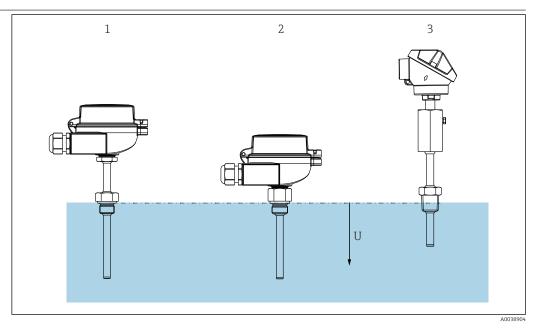
Supplementary documentation	34
Accessories	
Ordering information	33
Certificates and approvals	32

Function and system design

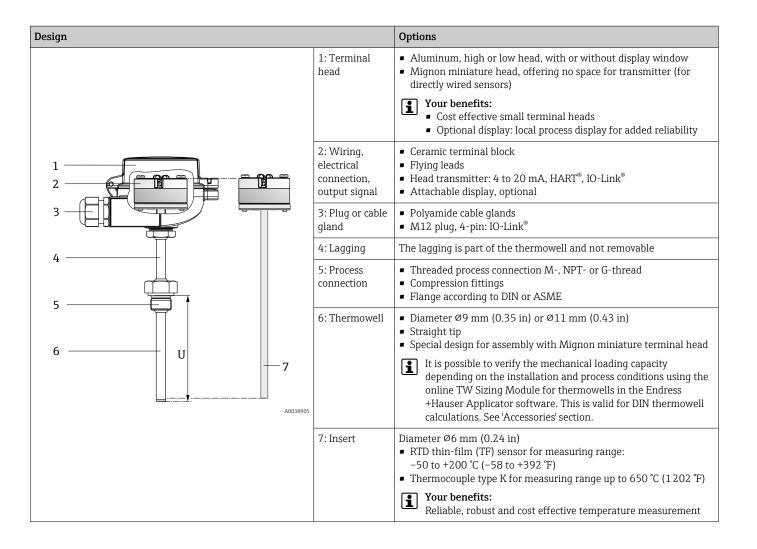

iTHERM ModuLine This thermometer is part of the product line of modular thermometers for industrial applications.

Differentiating factors when selecting a suitable thermometer:

Thermowell	Direct contac	Direct contact - without thermowell		mowell, welded	Thermowell from barstock material
Device type			Metric		
Thermometer					TM151
	TM101	TM111	TM121	TM131	
	A0039102	A0038281	A0038194	A0038195	A0052360
FLEX segment	F	E	F	Е	Е
Properties	Excellent price- performance ratio	iTHERM StrongSens and QuickSens inserts	Excellent price- performance ratio with thermowell	 iTHERM StrongSens and QuickSens inserts QuickNeck Fast response times Dual-seal technology Dual-compartment housing 	 iTHERM StrongSens and QuickSens inserts QuickNeck TwistWell Fast response times Dual-seal technology Dual-compartment housing
Hazardous area	-	<u></u>	-	- <u>ÈX</u>	


Measuring principle	Resistance thermometers (RTD)
	These resistance thermometers use a Pt100 temperature sensor according to IEC 60751. The temperature sensor is a temperature-sensitive platinum resistor with a resistance of 100 Ω at 0 °C (32 °F) and a temperature coefficient α = 0.003851 °C ⁻¹ .
	 There are generally two different kinds of platinum resistance thermometers: Wire-wound (WW):Wire Wound, WW In these thermometers, a double coil of fine, high-purity platinum wire is accommodated in a ceramic support. This support is then sealed top and bottom with a ceramic protective layer. Such resistance thermometers not only facilitate very reproducible measurements but also offer good long-term stability of the resistance/temperature characteristic within temperature ranges up to 600 °C (1112 °F). This type of sensor is relatively large in size and is comparatively sensitive to vibrations. Thin-film platinum resistance thermometers(Thin Film, TF): A very thin, ultrapure platinum layer, approx. 1 µm thick, is vaporized in a vacuum on a ceramic substrate and then structured photolithographically. The platinum conductor paths formed in this way create the measuring resistance. Additional covering and passivation layers are applied and reliably protect the thin platinum layer from contamination and oxidation, even at high temperatures.
	The primary advantages of thin film temperature sensors over wire wound versions are their smaller sizes and better vibration resistance. A relatively low principle-based deviation of the resistance/ temperature characteristic from the standard characteristic of IEC 60751 can frequently be observed among TF sensors at high temperatures. As a result, the tight limit values of tolerance class A as per IEC 60751 can only be observed with TF sensors at temperatures up to approx. 300 °C (572 °F).
	Thermocouples (TC)
	Thermocouples are comparatively simple, robust temperature sensors which use the Seebeck effect for temperature measurement: if two electrical conductors made of different materials are connecte at a point, a weak electrical voltage can be measured between the two open conductor ends if the conductors are subjected to a thermal gradient. This voltage is called thermoelectric voltage or electromotive force (emf). Its magnitude depends on the type of conducting materials and the temperature difference between the "measuring point" (the junction of the two conductors) and the "cold junction" (the open conductor ends). Accordingly, thermocouples primarily only measure differences in temperature. The absolute temperature at the measuring point can be determined from these if the associated temperature at the cold junction is known or is measured separately and compensated for. The material combinations and associated thermoelectric voltage/temperature characteristics of the most common types of thermocouple are standardized in the IEC 60584 and ASTM E230/ANSI MC96.1 standards.
Measuring system	Endress+Hauser offers a complete portfolio of optimized components for the temperature measuring point – everything you need for the seamless integration of the measuring point into the overall facility. These include: • Power supply unit/barrier

- Display unitsSurge arrester
- For more information, see the brochure "System Components Solutions for a Complete Measuring Point" (FA00016K)


- 1 Example of application, measuring point layout with additional Endress+Hauser components
- 1 Installed iTHERM thermometer with HART[®] communication protocol
- 2 RIA15 loop-powered process indicator The process indicator is incorporated into the current loop and displays the measuring signal or the HART[®] process variables in digital form. The process display unit does not require an external power supply. It is powered directly from the current loop.
- 3 Active barrier RN42 The RN42 (17.5 V_{DC}, 20 mA) active barrier has a galvanically isolated output for supplying voltage to loop-powered transmitters. The universal power supply works with an input supply voltage of 24 to 230 V AC/DC, 0/50/60 Hz, which means that it can be used in all international power grids.
- 4 Communication examples: HART[®] Communicator (handheld terminal), FieldXpert, Commubox FXA195 for intrinsically safe HART[®] communication with FieldCare via the USB interface, Bluetooth[®] technology with SmartBlue App.
- 5 FieldCare is a FDT-based plant asset management tool from Endress+Hauser, for details see section "accessories".

Modular design

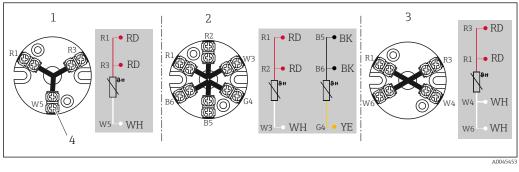
☑ 2 Various versions of the thermometer are available.

- 1 With thermowell and lagging determined by the chosen design and various process connections
- 2 With thermowell and threaded process connection lagging determined by the chosen design
- 3 Special design with Mignon head
- U Immersion length

Measured variable	Temperature (temperature linear transmission behavior)		
Measuring range	Depends on the type of sensor use	1	
	Sensor type	Measuring range	
	Pt100 thin-film (TF), basic iTHERM QuickSens, fast response	–50 to +200 °C (–58 to +392 °F)	
	Pt100 thin film (TF), standard	−50 to +400 °C (−58 to +752 °F)	
	Pt100 thin film (TF), iTHERM StrongSens, vibration-resistant ≤ 60g	−50 to +500 °C (−58 to +932 °F)	
	Pt100 wire wound (WW), extended measuring range	-200 to +600 °C (-328 to +1112 °F)	
	Thermocouple TC, type J	-40 to +750 °C (-40 to +1382 °F)	
	Thermocouple TC, type K	-40 to +1100 °C (-40 to +2012 °F)	
	Thermocouple TC, type N		

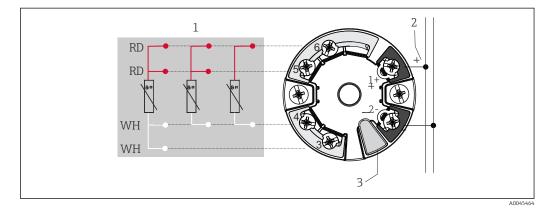
Input

Output

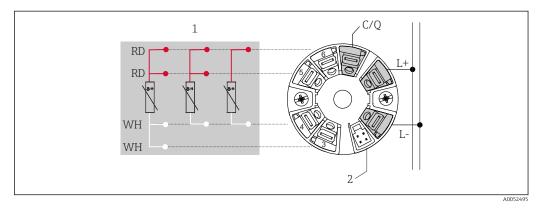

Output signal	Generally, the measured value can be transmitted in one of two ways:				
	 Directly-wired sensors - sensor measured values forwarded without a transmitter. Via all common protocols by selecting an appropriate Endress+Hauser iTEMP transmitter. All the transmitters listed below are mounted directly in the terminal head and wired with the sensory mechanism. 				
Family of temperature transmitters	Thermometers fitted with iTEMP transmitters are an installation-ready complete solution to improve temperature measurement by significantly increasing accuracy and reliability, when compared to direct wired sensors, as well as reducing both wiring and maintenance costs.				
	4 to 20 mA head transmitters They offer a high degree of flexibility, thereby supporting universal application with low inventory storage. The iTEMP transmitters can be configured quickly and easily at a PC. Endress+Hauser offers free configuration software which can be downloaded from the Endress+Hauser Website. More information can be found in the Technical Information.				
	HART® head transmitters The transmitter is a 2-wire device with one or two measuring inputs and one analog output. The device not only transfers converted signals from resistance thermometers and thermocouples, it also transfers resistance and voltage signals using HART® communication. Swift and easy operation, visualization and maintenance using universal device configuration tools like FieldCare, DeviceCare or FieldCommunicator 375/475. Integrated Bluetooth® interface for the wireless display of measured values and configuration via the Endress+Hauser SmartBlue app (optional). For more information, see the Technical Information.				
	Head transmitter with IO-Link [®] The temperature transmitter is an IO-Link [®] device with a measurement input and an IO-Link [®] interface. It offers a configurable, simple and cost-effective solution thanks to digital communication via IO-Link [®] . The device is mounted in a terminal head form B (flat face) as per DIN EN 5044.				
	Advantages of the iTEMP transmitters: Dual or single sensor input (optionally for certain transmitters) Pluggable display (optionally for certain transmitters) Unsurpassed reliability, accuracy and long-term stability in critical processes Mathematical functions Monitoring of the thermometer drift, sensor backup functionality, sensor diagnostic functions Sensor-transmitter matching based on Callendar/Van Dusen coefficients				

Power supply

The sensor connection wires are equipped with terminal lugs. The nominal diameter of a lug is 1.3 mm (0.05 in)

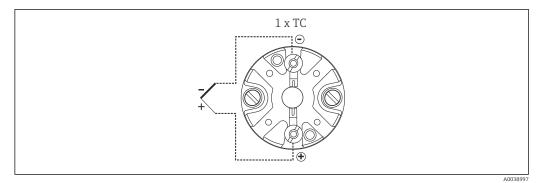

Terminal assignment

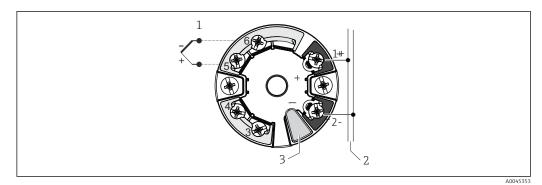
Type of sensor connection RTD


3 Mounted ceramic terminal block

- 1 3-wire
- 2 2x3-wire
- 3 4-wire
- 4 Outside screw

Head mounted transmitter TMT7x or TMT31 (single input)


- 1 Sensor input, RTD, 4-, 3- and 2-wire
- 2 Power supply/bus connection
- 3 Display connection/CDI interface


■ 5 Head-mounted transmitter TMT36 (single input)

- 1 RTD sensor input: 4-, 3- and 2-wire
- 2 Display connection
- L+ 18 to 30 V_{DC} power supply
- L- $O V_{DC}$ power supply
- C/Q IO-Link or switch output

Type of sensor connection thermocouple (TC)

6 Mounted ceramic terminal block

■ 7 Head-mounted transmitter TMT7x (single input)

1 Sensor input

2 Power supply and bus connection

3 Display connection and CDI interface

Thermocouple wire colors

As per IEC 60584	As per ASTM E230
 Type J: black (+), white (-) Type K: green (+), white (-) Type N: pink (+), white (-) 	 Type J: white (+), red (-) Type K: yellow (+), red (-) Type N: orange (+), red (-)

Terminals

iTEMP head transmitters fitted with push-in terminals unless screw terminals are explicitly selected, the second process seal is chosen or a double sensor is installed.

Cable entries

See "Terminal heads" section $\rightarrow \cong 30$

The cable entries must be selected during the configuration of the device.

Connectors

Endress+Hauser offers a wide variety of connectors for the simple and fast integration of the thermometer into a process control system. The following tables show the PIN assignments of the various plug connector combinations.

Abbreviations

#1	Order: first transmitter/insert	#2	Order: second transmitter/insert
i	Insulated. Wires marked 'i' are not connected and are insulated with heat shrink tubes.	YE	Yellow
GND	Grounded. Wires marked 'GND' are connected to the internal grounding screw in the terminal head.		Red
BN	Brown	WH	White
GNYE	Green-yellow	PK	Pink

BU	Blue	GN	Green
GY	Gray	BK	Black

Terminal head with one cable entry

Plug																
Plug thread	M12															
PIN number	1	2	3	4												
Electrical connection (terminal head)																
Flying leads, thermocouples are not connected		Not conn	ected (not insulated	1)												
3-wire terminal block (1x Pt100)	RD	RD	RD	RD		WH										
4-wire terminal block (1x Pt100)				RD	KD		KD	KD	RD	RD	RD	RD	KD	RD	KD	RD
6-wire terminal block (2x Pt100)	RD (#1) ¹⁾	RD (#1) ¹⁾	WH (#1) ¹⁾													
1x TMT 4 to 20 mA or HART®	+	i	-	i												
2x TMT 4 to 20 mA or HART [®] in the terminal head with a high cover	+(#1)	+(#2)	-(#1)	-(#2)												
PIN position and color code			3 1 BN 2 GNYE 3 BU 2 4 GY	A0018929												

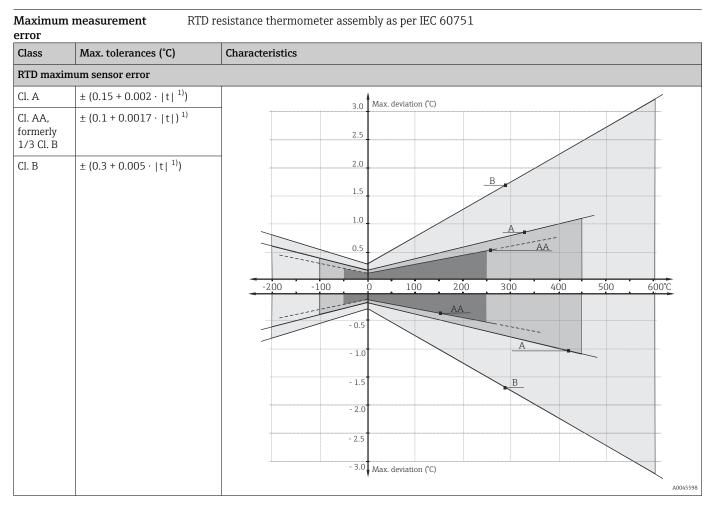
1) Second Pt100 is not connected

Terminal head with one cable entry

Plug	1x IO-Link [®] , 4-pin			
Plug thread	M12			
PIN number	1	2	3	4
Electrical connection (terminal head)				
Flying leads		Not connected	(not insulated)	
3-wire terminal block (1x Pt100)	RD	i	RD	WH
4-wire terminal block (1x Pt100)		Cannot be	combined	
6-wire terminal block (2x Pt100)				
1x TMT 4 to 20 mA or HART®				
2x TMT 4 to 20 mA or HART [®] in the terminal head with a high cover	Cannot be combined			
1x TMT PROFIBUS® PA	Cannot be combined			
2x TMT PROFIBUS® PA		Calliot be	combined	
1x TMT FF		Connetho	combined	
2x TMT FF		Cannot be	combined	
1x TMT PROFINET®		Connethe	combined	
2x TMT PROFINET®		Cannot be	combined	
1x TMT IO-Link®	L+	-	L-	C/Q
2x TMT IO-Link®	L+ (#1)	-	L-(#1)	C/Q
PIN position and color code			3 1 BN 3 BU 4 BK 2	A0055383

Connection combination: insert - transmitter

Insert	Transmitter connection		
liisett	1x 1-channel		
1x Pt100 or 1x TC, flying leads	Pt100 or TC (#1): Transmitter		
2x Pt100 or 1x TC, flying leads	Pt100 (# 1): Transmitter Pt100 (#2) insulated		


Surge arrester

To protect against overvoltage in the power supply and signal/communication cables for the thermometer electronics, Endress+Hauser offers the HAW562 surge arrester for DIN rail mounting and the HAW569 for field housing installation.

For more information see the Technical Information "HAW562 Surge arrester" TI01012K and "HAW569 Surge arrester" TI01013K.

Performance characteristics

Reference conditions	These data are relevant for determining the measurement accuracy of the transmitters used. For details, see the relevant Technical Information.

1) |t| = absolute temperature value in °C

i

To obtain the maximum tolerances in $^\circ\! F$, multiply the results in $^\circ\! C$ by a factor of 1.8.

Sensor type ¹⁾	Operating temperature range	Class B	Class A	Class AA
Pt100 (TF) Basic	−50 to +200 °C (−58 to +392 °F)	−50 to +200 °C (−58 to +392 °F)	−30 to +200 °C (−22 to +392 °F)	-
Pt100 (TF) Standard	−50 to +400 °C (−58 to +752 °F)	−50 to +400 °C (−58 to +752 °F)	−30 to +250 °C (−22 to +482 °F)	0 to +150 °C (32 to 302 °F)
Pt100 (TF) iTHERM QuickSens	−50 to +200 °C (−58 to +392 °F)	−50 to +200 °C (−58 to +392 °F)	−30 to +200 °C (−22 to +392 °F)	0 to +150 ℃ (32 to 302 ℉)
Pt100 (TF) iTHERM StrongSens	−50 to +500 °C (−58 to +932 °F)	−50 to +500 °C (−58 to +932 °F)	−30 to +300 °C (−22 to +572 °F)	0 to +150 ℃ (+32 to +302 ℉)
Pt100 (WW)	−200 to +600 °C (−328 to +1112 °F)	-200 to +600 °C (-328 to +1112 °F)	−100 to +450 °C (−148 to +842 °F)	−50 to +250 °C (−58 to +482 °F)

Temperature ranges

1) Selection depending on product and configuration

Permissible deviation limits of thermoelectric voltages from the standard characteristic for thermocouples as per IEC 60584 or ASTM E230/ANSI MC96.1:

Standard	Туре	Standard tolerance		Specia	l tolerance
IEC 60584		Class	Deviation	Class	Deviation
	K (NiCr-NiAl)	2	±2.5 ℃ (-40 to +333 ℃) ±0.0075 t (333 to 1200 ℃)	1	±1.5 °C (-40 to +375 °C) ±0.004 t (375 to 1000 °C)

Standard	Туре	Standard tolerance	Special tolerance
ASTM E230/ANSI		Deviation; the larger value applies in each case	
MC96.1	· ·	±2.2 K or ±0.02 t (-200 to 0 °C) ±2.2 K or ±0.0075 t (0 to 1260 °C)	±1.1 K or ±0.004 t (0 to 1260 °C)

Depends on the head transmitter used. For details, see the Technical Information.

Influence of ambient temperature

Self-heating

RTD elements are passive resistors that are measured using an external current. This measurement current causes a self-heating effect in the RTD element itself which in turn creates an additional measurement error. In addition to the measurement current, the size of the measurement error is also affected by the temperature conductivity and flow velocity of the process. This self-heating error is negligible when an Endress+Hauser iTEMP temperature transmitter (very small measurement current) is connected.

Response time

Tests in water at 0.4 m/s (1.3 ft/s), according to IEC 60751; 10 K temperature step change.

Typical values

Thermowell diameter: 9 mm (0.35 in)	t ₅₀	t ₉₀
RTD insert	30 s	90 s
Thermocouple (TC) insert	20 s	60 s

Typical values

Thermowell diameter: 11 mm (0.43 in)	t ₅₀	t ₉₀
RTD insert	40 s	100 s
Thermocouple (TC) insert	30 s	90 s

Calibration	 Calibration of thermometers Calibration involves comparing the measured values of a unit under test (UUT) with those of a more precise calibration standard using a defined and reproducible measurement method. The aim is to determine the deviation of the UUT's measured values from the true value of the measured variable Two different methods are used for thermometers: Calibration at fixed-point temperatures, e.g. at the freezing point of water at 0 °C, Calibration compared against a precise reference thermometer.
	The thermometer to be calibrated must display the fixed point temperature or the temperature of the reference thermometer as accurately as possible. Temperature-controlled calibration baths with very homogeneous thermal values, or special calibration furnaces are typically used for thermometer calibrations. The measurement uncertainty may increase due to heat conduction errors and short immersion lengths. The existing measurement uncertainty is recorded on the individual calibration certificate. For accredited calibrations in accordance with ISO17025, a measurement uncertainty the is twice as high as the accredited measurement uncertainty is not permitted. If this limit is exceeded only a factory calibration is possible.
	 Evaluation of thermometers If a calibration with an acceptable measurement uncertainty and transferable measurement results not possible, Endress+Hauser offers customers a thermometer evaluation measurement service, if technically feasible. This is the case when: The process connections/flanges are too big or the immersion length (IL) is too short to allow the UUT to be immersed sufficiently in the calibration bath or furnace (see the following table), or Due to heat conduction along the thermometer tube, the resulting sensor temperature generally deviates significantly from the actual bath/furnace temperature.
	The measured value of the UUT is determined using the maximum possible immersion depth and th specific measuring conditions and measurement results are documented on an evaluation certificate
	Sensor-transmitter-matching The resistance/temperature curve of platinum resistance thermometers is standardized but in practice it is rarely possible to keep to the values precisely over the entire operating temperature range. For this reason, platinum resistance sensors are divided into tolerance classes, such as Class A, AA or B as per IEC 60751. These tolerance classes describe the maximum permissible deviation of the specific sensor characteristic curve from the standard curve, i.e. the maximum temperature- dependent characteristic error that is permitted. The conversion of measured sensor resistance values to temperatures in temperature transmitters or other meter electronics is often susceptible to considerable errors as the conversion is generally based on the standard characteristic curve.
	 When Endress +Hauser temperature transmitters are used, this conversion error can be reduced significantly by sensor-transmitter matching: Calibration at three temperatures at least and determination of the actual temperature sensor characteristic curve, Adjustment of the sensor-specific polynomial function using Calendar-van Dusen (CvD) coefficients, Configuration of the temperature transmitter with the sensor-specific CvD coefficients for resistance/temperature conversion, and another calibration of the reconfigured temperature transmitter with connected resistance thermometer.
	Endress+Hauser offers its customers this kind of sensor-transmitter matching as a separate service. Furthermore, the sensor-specific polynomial coefficients of platinum resistance thermometers are always provided on every Endress+Hauser calibration certificate where possible, e.g. at least three calibration points, so that users themselves can also appropriately configure suitable temperature transmitters.
	For the device, Endress+Hauser offers standard calibrations at a reference temperature of -80 to +600 °C (-112 to +1112 °F) based on the ITS90 (International Temperature Scale). Calibrations in other temperature ranges are available from your Endress+Hauser sales center on request. Calibrations are traceable to national and international standards. The calibration certificat is referenced to the serial number of the device. Only the insert is calibrated.
	Minimum immersion length (IL) for inserts required to perform a correct calibration
	Due to the limitations of furnace geometries, the minimum insertion lengths must be observed at high temperatures to enable a calibration to be performed with an acceptable degree of measurement uncertainty. The same applies when using a head transmitter. Due to heat conduction, minimum lengths must be observed in order to guarantee the functionality of the transmitter -40 to +85 °C (-40 to +185 °F)

Calibration temperature	Minimum immersion length IL in mm without head transmitter
−196 °C (−320.8 °F)	120 mm (4.72 in) ¹⁾
-80 to +250 °C (-112 to +482 °F)	No minimum immersion length required ²⁾
251 to 550 °C (483.8 to 1022 °F)	300 mm (11.81 in)
551 to 600 °C (1023.8 to 1112 °F)	400 mm (15.75 in)

1) with iTEMP head transmitter min. 150 mm (5.91 in) is required

 at a temperature of 80 to 250 °C (176 to 482 °F), the iTEMP head transmitter requires min. 50 mm (1.97 in)

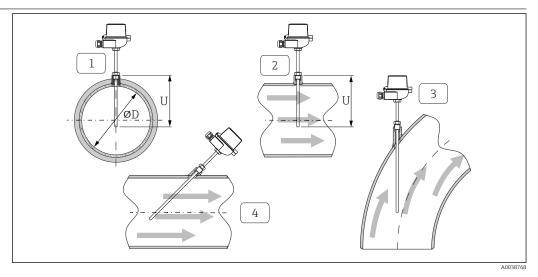
Insulation resistance

RTD:

Insulation resistance according to IEC 60751 > 100 M Ω at 25 °C between terminals and sheath material measured with a minimum test voltage of 100 V DC

TC:

Insulation resistance according to IEC 1515 between terminals and sheath material with a test voltage of 500 V DC:


- > 1 G Ω at 20 °C
- > 5 MΩ at 500 °C

Installation

Orientation

No restrictions. However, self-draining in the process should be guaranteed depending on the application.

Installation instructions

8 Installation examples

1 - 2 In pipes with a small cross-section, the sensor tip should reach or extend slightly past the center axis of the pipe (=U).

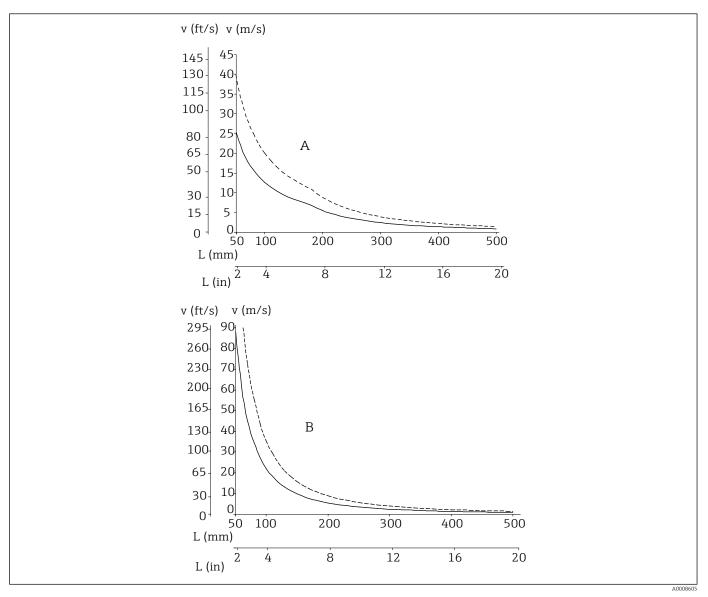
3 - 4 Slanted orientation.

The immersion length of the thermometer influences the measurement accuracy. If the immersion length is too small, errors in the measurement are caused by heat conduction via the process connection and the container wall. Therefore, if installing in a pipe the immersion length should be at least half the pipe diameter. Installation at an angle (see item 3 and 4) could be another solution. When determining the immersion length, all the parameters of the thermometer and of the process to be measured must be taken into account (e.g. flow velocity, process pressure).

The counterparts for process connections and seals are not supplied with the thermometer and must be ordered separately if needed.

Ambient conditions

Ambient temperature range	Terminal head		Temperature in °C	: (°F)	
				ne terminal head used and the cable gland or fieldbus "Terminal heads" section.	
	With mounted head transmitter -40 to +85 °C (-4		-40 to +85 °C (-40	40 to +185 °F)	
	With mounted head transmi display	tter and	-20 to +70 °C (-4 t	to +70 °C (–4 to +158 °F)	
Storage temperature	For information, see the ambient temperature above.				
Humidity	Depends on the transmitter used If Endress+Hauser iTEMP head transmitters are used: Condensation permitted as per IEC 60 068-2-33 Max. rel. humidity: 95% as per IEC 60068-2-30			MP head transmitters are used:	
Climate class	As per EN 60654-1, Class	С			
Degree of protection	Max. IP 66 (NEMA Type 4x encl.)	Depending	on the design (termi	nal head, connector, etc.).	
	Partly IP 68	Tested in 1.83 m (6 ft) over 24 h			
	vibration resistance of 3g depends on the sensor typ	in a range o	f 10 to 500 Hz. Th		
	vibration resistance of 3g i depends on the sensor typ Sensor type	in a range o	f 10 to 500 Hz. Th	e vibration resistance of the measuring poi	
	vibration resistance of 3g depends on the sensor typ	in a range o	f 10 to 500 Hz. Th	e vibration resistance of the measuring poi owing table:	
	vibration resistance of 3g i depends on the sensor typ Sensor type Pt100 (WW)	in a range o	f 10 to 500 Hz. Th	e vibration resistance of the measuring poi owing table: Vibration resistance for the sensor tip	
	vibration resistance of 3g i depends on the sensor type Sensor type Pt100 (WW) Pt100 (TF), basic	in a range o e and design	f 10 to 500 Hz. Th	e vibration resistance of the measuring poi owing table: Vibration resistance for the sensor tip $\leq 30 \text{ m/s}^2 (3g)$	
Shock and vibration resistance	vibration resistance of 3g i depends on the sensor typ Sensor type Pt100 (WW) Pt100 (TF), basic Pt100 (TF), standard	in a range o e and design TF) 'F), version: Ø	f 10 to 500 Hz. Th n. Refer to the follo 6 mm (0.24 in)	e vibration resistance of the measuring point owing table: Vibration resistance for the sensor tip $\leq 30 \text{ m/s}^2 (3g)$ $\leq 40 \text{ m/s}^2 (4g)$	
	vibration resistance of 3g i depends on the sensor typ Sensor type Pt100 (WW) Pt100 (TF), basic Pt100 (TF), standard iTHERM StrongSens Pt100 (iTHERM QuickSens Pt100 (T	in a range o e and design TF) 'F), version: Ø	f 10 to 500 Hz. Th n. Refer to the follo 6 mm (0.24 in)	the vibration resistance of the measuring point owing table: Vibration resistance for the sensor tip \leq 30 m/s² (3g) \leq 40 m/s² (4g) \leq 600 m/s² (60g) \leq 600 m/s² (60g)	
	vibration resistance of 3g i depends on the sensor typ Sensor type Pt100 (WW) Pt100 (TF), basic Pt100 (TF), standard iTHERM StrongSens Pt100 (T iTHERM QuickSens Pt100 (T iTHERM QuickSens Pt100 (T Thermocouple inserts	in a range o e and design TF) TF), version: ¢ F), version: ¢	f 10 to 500 Hz. Th n. Refer to the follo 06 mm (0.24 in) 03 mm (0.12 in)	the vibration resistance of the measuring point owing table: Vibration resistance for the sensor tip \leq 30 m/s² (3g) \leq 40 m/s² (4g) \leq 600 m/s² (60g) \leq 30 m/s² (3g)	
resistance	vibration resistance of 3g i depends on the sensor typ Sensor type Pt100 (WW) Pt100 (TF), basic Pt100 (TF), standard iTHERM StrongSens Pt100 (T iTHERM QuickSens Pt100 (T iTHERM QuickSens Pt100 (T Thermocouple inserts	in a range o e and design TF) TF), version: ¢ F), version: ¢	f 10 to 500 Hz. Th n. Refer to the follo 06 mm (0.24 in) 03 mm (0.12 in)	the vibration resistance of the measuring point bowing table: Vibration resistance for the sensor tip \leq 30 m/s² (3g) \leq 40 m/s² (4g) \leq 600 m/s² (60g) \leq 30 m/s² (3g) \leq 30 m/s² (3g)	
esistance Electromagnetic	vibration resistance of 3 g i depends on the sensor typ Sensor type Pt100 (WW) Pt100 (TF), basic Pt100 (TF), standard iTHERM StrongSens Pt100 (T iTHERM QuickSens Pt100 (T iTHERM QuickSens Pt100 (T Thermocouple inserts Depends on the head trans	in a range o e and design TF) TF), version: ¢ F), version: ¢ smitter used	f 10 to 500 Hz. Th n. Refer to the follo 26 mm (0.24 in) 23 mm (0.12 in) 1. For details, see th	the vibration resistance of the measuring point bowing table: Vibration resistance for the sensor tip \leq 30 m/s² (3g) \leq 40 m/s² (4g) \leq 600 m/s² (60g) \leq 30 m/s² (3g) \leq 30 m/s² (3g)	


P_{max.} = 50 bar (725 psi) The maximum possible process pressure depends on various influencing factors, such as the design, process connection and process temperature. For information on the maximum possible process pressures for the individual process connections, see the "Process connection" section.

It is possible to check the mechanical loading capacity as a function of the installation and process conditions online using the Sizing Thermowell calculation tool in the Endress+Hauser Applicator software. https://portal.endress.com/webapp/applicator

Process pressure range

Permitted flow velocity depending on the immersion length and process medium

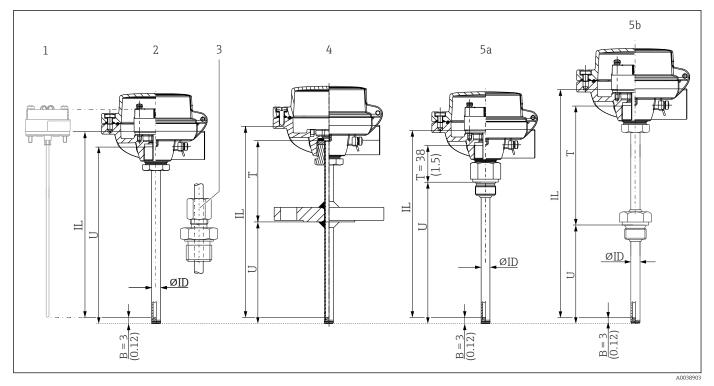
The highest flow velocity tolerated by the thermometer diminishes with increasing insert immersion length exposed to the flowing fluid. The flow velocity is also dependent on the diameter of the thermometer tip, the type of medium being measured, the process temperature and the process pressure. The following figures exemplify the maximum permitted flow velocities in water and superheated steam at a process pressure of 50 bar (725 psi).

■ 9 Maximum flow velocity with thermowell diameter 9 mm (0.35 in)(-----) or 12 mm (0.47 in) (-----)

A Medium: water at $T = 50 \degree C (122 \degree F)$

- B Medium: superheated steam at T = 400 °C (752 °F)
- L Immersion length
- v Flow velocity

Mechanical construction

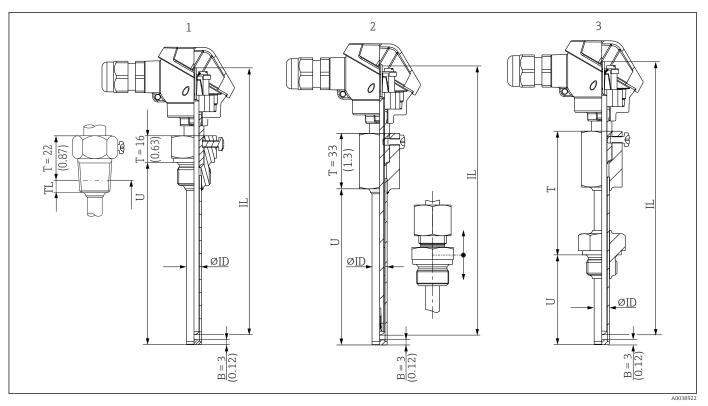

Design, dimensions	All dimensions in mm (in). The design of the thermometer depends on the general design version
	used:

- Thermometer without lagging DIN43772 Form 2
 Lagging DIN 43772 Form 2G, 2F, 3G, 3F
 Design with Mignon head

Various dimensions, such as the immersion length U for example, are variable values and are therefore indicated as items in the following dimensional drawings. i

Variable dimensions:

Item	Description		
IL	Insertion length of insert		
В	Thermowell bottom thickness: predefined, depends on thermowell version (see also the individual table data)		
Т	Length of lagging: variable or predefined, depends on thermowell version (see also the individual table data)		
U	Immersion length: variable, depending on the configuration		
	Variable for calculating the insertion length of the insert, depending on different screw-in lengths in terminal head thread M24x1.5 or ½" NPT, see insert length calculation (IL).		
	1 2 3		
	M24x1.5 NPT ¹ /2"		
	■ 10 Different screw-in lengths in terminal head thread for M24x1.5 and ½" NPT		
	 Metric thread M24x1.5 Conical thread NPT ¹/₂" M10x1 adapter for Mignon terminal head 		
ØID	Thermowell diameter = 9x1.25 mm or 11x2 mm		
	Diameter tolerances Lower tolerance limit: 0.0 mm Upper tolerance limit: +0.1 mm 		

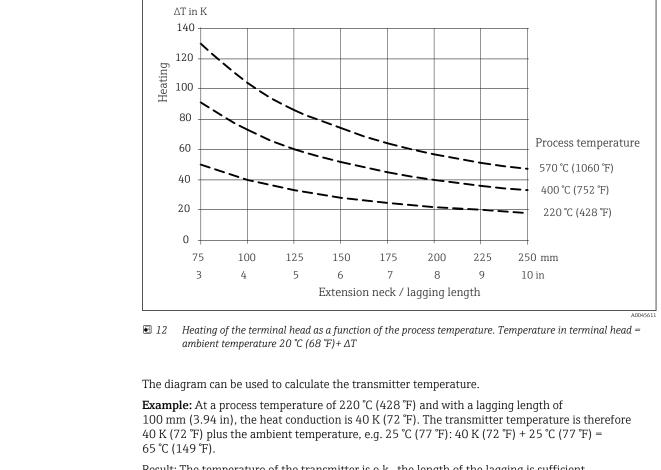


- 1
- 2
- 3
- Measuring insert with mounted transmitter Without process connection, without lagging With compression fitting, without lagging With flanged process connection, with lagging 4
- With threaded process connection, lagging determined by the chosen design With threaded process connection, with lagging 5а
- 5b

Calculation of insert length IL $^{1)}$

Version 2 and 3:	For connection head with M24 thread (with head TA30A, TA20AB): IL = U + 11 mm (28 in) For connection head with ½"NPT thread (with head TA30EB): IL = U + 26 mm (66 in)
	For connection head with M24 thread (with head TA30A, TA20AB): IL = U + T + 11 mm (28 in) For connection head with ½"NPT thread (with head TA30EB): IL = U + T + 26 mm (66 in) Length of lagging T determined by design.

1) A replaceable TS111 is used as the insert


🖻 11 Thermometer design with Mignon head

- 1 With threaded process connection, cylindrical or conical, without lagging
- 2 Without process connection, alternatively with compression fitting
- 3 With process connection, thread or flange, with lagging

Calculation of insert length: $IL = U + T + 38 \text{ mm} (96.5 \text{ in})^{1}$

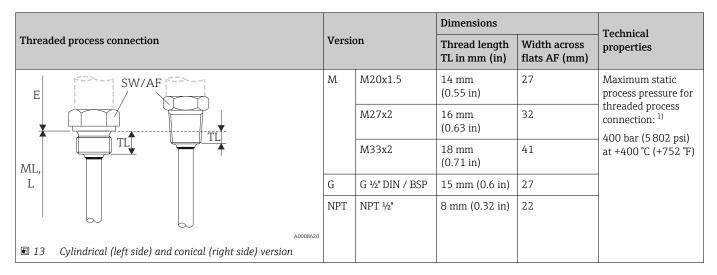
As illustrated in the following figure, the length of the lagging may influence the temperature in the terminal head. This temperature must remain within the limit values defined in the "Operating conditions" section.

¹⁾ The insert cannot be replaced in this version.

Result: The temperature of the transmitter is o.k., the length of the lagging is sufficient.

Weight 1 to 10 kg (2 to 22 lbs) for standard versions.

The temperatures for continuous operation specified in the following table are only intended as reference values for use of the various materials in air and without any significant mechanical load. The maximum operating temperatures can be reduced considerably in cases where abnormal conditions such as high mechanical load occur or in aggressive media.


Material

Material name	Short form	Recommended max. temperature for continuous use in air	Properties
AISI 316L/1.4404 1.4435	X2CrNiMo17-12-2 X2CrNiMo18-14-3	650 °C (1202 °F)	 Austenitic, stainless steel High corrosion resistance in general Particularly high corrosion-resistance in chlorinated and acidic, non-oxidizing atmospheres by adding molybdenum (e.g. phosphoric and sulfuric acids, acetic and tartaric acids with low concentration) Increased resistance to intergranular corrosion and pitting Compared to 1.4404, 1.4435 has even higher corrosion resistance and a lower delta ferrite content
Alloy600/2.4816	NiCr15Fe	1100 ℃ (2012 ℉)	 A nickel/chromium alloy with very good resistance to aggressive, oxidizing and reducing atmospheres, even at high temperatures Resistance to corrosion caused by chlorine gases and chlorinated media as well as many oxidizing mineral and organic acids, sea water etc. Corrosion from ultrapure water Not to be used in sulfur-containing atmospheres

Please note that the maximum temperature also always depends on the temperature sensor used!

Process connections

Thread

1) Maximum pressure specifications only for the thread. The failure of the thread is calculated, taking the static pressure into consideration. The calculation is based on a fully tightened thread (TL = thread length)

The 316L compression fittings can only be used once due to deformation. This applies to all the components of the compression fittings! A replacement compression fitting must be secured at another point as the fitting damages the thermowell. PEEK compression fittings must never be used at a temperature that is lower than the temperature present when the compression fitting was secured. This is because the fitting would no longer be leak-tight as a result of heat contraction of the PEEK material.

SWAGELOCK or similar fittings are strongly recommended for higher requirements.

Compression fitting

			Dimensions		Technical
Type TK40	Version	Ødi	L	Width across flats AF	properties
		9 mm (0.35 in)			• P _{max} .: 40 bar
2 3 4 4 4 4 4 4 4 4 4 4 4 4 4	NPT ½" , ferrule material 316L G ½" , ferrule material 316L G 1", ferrule material 316L	11 mm (0.43 in)	NPT ½": 52 mm (2.05 in) G ½": 47 mm (1.85 in) G 1": 66 mm (2.6 in)	NPT ½": 24 mm (0.95 in) G½": 27 mm (1.06 in) G1": 41 mm (1.61 in)	(580 psi) at +200 °C (+392 °F) • P _{max} : 25 bar (363 psi) at +400 °C (+752 °F) Min. tightening torque: 70 Nm

Flange

The flanges are supplied in stainless steel AISI 316L with material number 1.4404 or 1.4435. With regard to their stability-temperature property, the materials 1.4404 and 1.4435 are grouped together under 13E0 in DIN EN 1092-1 Tab.18 and under 023b in JIS B2220:2004 Tab. 5. The ASME flanges are grouped together under Tab. 2-2.2 in ASME B16.5-2013. Inches are converted into metric units (in - mm) using the factor 2.54. In the ASME standard, the metric data is rounded to 0 or 5.

Versions

- DIN flanges: German Standards Institute DIN 2527
- EN flanges: European standard DIN EN 1092-1:2002-06 and 2007
- ASME flanges: American Society of Mechanical Engineers ASME B16.5-2013
- JIS flanges: Japanese Industrial Standard B2220:2004
- HG/T flanges: Chinese Chemical Standard HG/T 20592-2009 and 20615-2009

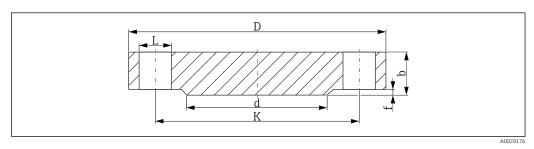
DIN 2526¹⁾ DIN EN 1092-1 **ASME B16.5** Flanges Sealing surface Form Rz (µm) Form Rz (µm) Ra (µm) Form Ra (µm) A 2) 12.5 to 50 3.2 to 12.5 Flat face (FF) without А raised face В 40 to 160 3.2 to 6.3 (AARH A0043514 125 to 250 B1 ³⁾ 40 to 160 12.5 to 50 3.2 to 12.5 Raised face with raised С µin) face D 40 (RF) E 16 B2 3.2 to 12.5 0.8 to 3.2 A0043516 С 3.2 to 12.5 0.8 to 3.2 3.2 Tongue F Tongue (T) IJ 40043513 D Groove Ν Groove (G) П A0043518

Geometry of sealing surfaces

Flanges	Sealing surface	DIN 2526 ¹⁾		DIN EN 1092	2-1		ASME B16.5	
		Form	Rz (µm)	Form	Rz (µm)	Ra (µm)	Form	Ra (µm)
Projection	A0043519	V 13	-	E	12.5 to 50	3.2 to 12.5	Male (M)	3.2
Recess		R 13		F			Female (F)	
Projection	U A0043521	V 14	for O-rings	Н	3.2 to 12.5	3.2 to 12.5	-	-
Recess	A0043522	R 14		G			-	-
With ring- type joint	A0052680	-	-	-	-	-	Ring-type joint (RTJ)	1.6

1)

Contained in DIN 2527 Typically PN2.5 to PN40 Typically from PN63 2) 3)


Flanges according to the old DIN standard are compatible with the new DIN EN 1092-1 standard. Change in pressure ratings: Old DIN standards PN64 \rightarrow DIN EN 1092-1 PN63.

Height of raised fac	:e 1)
----------------------	-------

Standard	Flanges	Height of raised face f	Tolerance
DIN EN 1092-1:2002-06	all types	2 (0.08)	0
DIN EN 1092-1:2007	≤ DN 32		-1 (-0.04)
	> DN 32 to DN 250	3 (0.12)	0 -2 (-0.08)
	> DN 250 to DN 500	4 (0.16)	0 -3 (-0.12)
	> DN 500	5 (0.19)	0 -4 (-0.16)
ASME B16.5 - 2013	≤ Class 300	1.6 (0.06)	±0.75 (±0.03)
	≥ Class 600	6.4 (0.25)	0.5 (0.02)
JIS B2220:2004	< DN 20	1.5 (0.06) 0	-
	> DN 20 to DN 50	2 (0.08) 0	
	> DN 50	3 (0.12) 0	

¹⁾ Dimensions in mm (in)

EN flanges (DIN EN 1092-1)

■ 14 Raised face B1

- Bore diameter L
- Diameter of raised face Diameter of pitch circle Flange diameter d
- K D
- b Total flange thickness
- Height of raised face (generally 2 mm (0.08 in) f

PN16¹⁾

DN	D	b	К	d	L	approx. kg (lbs)
25	115 (4.53)	18 (0.71)	85 (3.35)	68 (2.68)	4xØ14 (0.55)	1.50 (3.31)
32	140 (5.51)	18 (0.71)	100 (3.94)	78 (3.07)	4xØ18 (0.71)	2.00 (4.41)
40	150 (5.91)	18 (0.71)	110 (4.33)	88 (3.46)	4xØ18 (0.71)	2.50 (5.51)
50	165 (6.5)	18 (0.71)	125 (4.92)	102 (4.02)	4xØ18 (0.71)	2.90 (6.39)
65	185 (7.28)	18 (0.71)	145 (5.71)	122 (4.80)	8xØ18 (0.71)	3.50 (7.72)
80	200 (7.87)	20 (0.79)	160 (6.30)	138 (5.43)	8xØ18 (0.71)	4.50 (9.92)
100	220 (8.66)	20 (0.79)	180 (7.09)	158 (6.22)	8xØ18 (0.71)	5.50 (12.13)
125	250 (9.84)	22 (0.87)	210 (8.27)	188 (7.40)	8xØ18 (0.71)	8.00 (17.64)
150	285 (11.2)	22 (0.87)	240 (9.45)	212 (8.35)	8xØ22 (0.87)	10.5 (23.15)
200	340 (13.4)	24 (0.94)	295 (11.6)	268 (10.6)	12xØ22 (0.87)	16.5 (36.38)
250	405 (15.9)	26 (1.02)	355 (14.0)	320 (12.6)	12xØ26 (1.02)	25.0 (55.13)
300	460 (18.1)	28 (1.10)	410 (16.1)	378 (14.9)	12xØ26 (1.02)	35.0 (77.18)

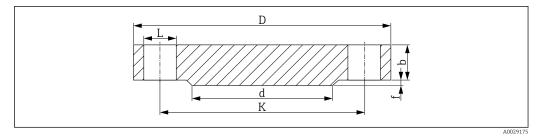
The dimensions in the following tables are in mm (in), unless otherwise specified 1)

PN25

DN	D	b	К	d	L	approx. kg (lbs)
25	115 (4.53)	18 (0.71)	85 (3.35)	68 (2.68)	4xØ14 (0.55)	1.50 (3.31)
32	140 (5.51)	18 (0.71)	100 (3.94)	78 (3.07)	4xØ18 (0.71)	2.00 (4.41)
40	150 (5.91)	18 (0.71)	110 (4.33)	88 (3.46)	4xØ18 (0.71)	2.50 (5.51)
50	165 (6.5)	20 (0.79)	125 (4.92)	102 (4.02)	4xØ18 (0.71)	3.00 (6.62)
65	185 (7.28)	22 (0.87)	145 (5.71)	122 (4.80)	8xØ18 (0.71)	4.50 (9.92)
80	200 (7.87)	24 (0.94)	160 (6.30)	138 (5.43)	8xØ18 (0.71)	5.50 (12.13)
100	235 (9.25)	24 (0.94)	190 (7.48)	162 (6.38)	8xØ22 (0.87)	7.50 (16.54)
125	270 (10.6)	26 (1.02)	220 (8.66)	188 (7.40)	8xØ26 (1.02)	11.0 (24.26)
150	300 (11.8)	28 (1.10)	250 (9.84)	218 (8.58)	8xØ26 (1.02)	14.5 (31.97)
200	360 (14.2)	30 (1.18)	310 (12.2)	278 (10.9)	12xØ26 (1.02)	22.5 (49.61)
250	425 (16.7)	32 (1.26)	370 (14.6)	335 (13.2)	12xØ30 (1.18)	33.5 (73.9)
300	485 (19.1)	34 (1.34)	430 (16.9)	395 (15.6)	16xØ30 (1.18)	46.5 (102.5)

PN40						
DN	D	b	К	d	L	approx. kg (lbs)
15	95 (3.74)	16 (0.55)	65 (2.56)	45 (1.77)	4xØ14 (0.55)	0.81 (1.8)
25	115 (4.53)	18 (0.71)	85 (3.35)	68 (2.68)	4xØ14 (0.55)	1.50 (3.31)
32	140 (5.51)	18 (0.71)	100 (3.94)	78 (3.07)	4xØ18 (0.71)	2.00 (4.41)
40	150 (5.91)	18 (0.71)	110 (4.33)	88 (3.46)	4xØ18 (0.71)	2.50 (5.51)
50	165 (6.5)	20 (0.79)	125 (4.92)	102 (4.02)	4xØ18 (0.71)	3.00 (6.62)
65	185 (7.28)	22 (0.87)	145 (5.71)	122 (4.80)	8xØ18 (0.71)	4.50 (9.92)
80	200 (7.87)	24 (0.94)	160 (6.30)	138 (5.43)	8xØ18 (0.71)	5.50 (12.13)
100	235 (9.25)	24 (0.94)	190 (7.48)	162 (6.38)	8xØ22 (0.87)	7.50 (16.54)
125	270 (10.6)	26 (1.02)	220 (8.66)	188 (7.40)	8xØ26 (1.02)	11.0 (24.26)
150	300 (11.8)	28 (1.10)	250 (9.84)	218 (8.58)	8xØ26 (1.02)	14.5 (31.97)
200	375 (14.8)	36 (1.42)	320 (12.6)	285 (11.2)	12xø30 (1.18)	29.0 (63.95)
250	450 (17.7)	38 (1.50)	385 (15.2)	345 (13.6)	12xø33 (1.30)	44.5 (98.12)
300	515 (20.3)	42 (1.65)	450 (17.7)	410 (16.1)	16xø33 (1.30)	64.0 (141.1)

PN63


DN	D	b	К	d	L	approx. kg (lbs)
25	140 (5.51)	24 (0.94)	100 (3.94)	68 (2.68)	4xØ18 (0.71)	2.50 (5.51)
32	155 (6.10)	24 (0.94)	110 (4.33)	78 (3.07)	4xØ22 (0.87)	3.50 (7.72)
40	170 (6.69)	26 (1.02)	125 (4.92)	88 (3.46)	4xø22 (0.87)	4.50 (9.92)
50	180 (7.09)	26 (1.02)	135 (5.31)	102 (4.02)	4xØ22 (0.87)	5.00 (11.03)
65	205 (8.07)	26 (1.02)	160 (6.30)	122 (4.80)	8xØ22 (0.87)	6.00 (13.23)
80	215 (8.46)	28 (1.10)	170 (6.69)	138 (5.43)	8xØ22 (0.87)	7.50 (16.54)
100	250 (9.84)	30 (1.18)	200 (7.87)	162 (6.38)	8xØ26 (1.02)	10.5 (23.15)
125	295 (11.6)	34 (1.34)	240 (9.45)	188 (7.40)	8xØ30 (1.18)	16.5 (36.38)
150	345 (13.6)	36 (1.42)	280 (11.0)	218 (8.58)	8xØ33 (1.30)	24.5 (54.02)
200	415 (16.3)	42 (1.65)	345 (13.6)	285 (11.2)	12xØ36 (1.42)	40.5 (89.3)
250	470 (18.5)	46 (1.81)	400 (15.7)	345 (13.6)	12xØ36 (1.42)	58.0 (127.9)
300	530 (20.9)	52 (2.05)	460 (18.1)	410 (16.1)	16xØ36 (1.42)	83.5 (184.1)

PN100

DN	D	b	К	d	L	approx. kg (lbs)
25	140 (5.51)	24 (0.94)	100 (3.94)	68 (2.68)	4xØ18 (0.71)	2.50 (5.51)
32	155 (6.10)	24 (0.94)	110 (4.33)	78 (3.07)	4xØ22 (0.87)	3.50 (7.72)
40	170 (6.69)	26 (1.02)	125 (4.92)	88 (3.46)	4xØ22 (0.87)	4.50 (9.92)
50	195 (7.68)	28 (1.10)	145 (5.71)	102 (4.02)	4xØ26 (1.02)	6.00 (13.23)
65	220 (8.66)	30 (1.18)	170 (6.69)	122 (4.80)	8xØ26 (1.02)	8.00 (17.64)
80	230 (9.06)	32 (1.26)	180 (7.09)	138 (5.43)	8xØ26 (1.02)	9.50 (20.95)
100	265 (10.4)	36 (1.42)	210 (8.27)	162 (6.38)	8xØ30 (1.18)	14.0 (30.87)
125	315 (12.4)	40 (1.57)	250 (9.84)	188 (7.40)	8xØ33 (1.30)	22.5 (49.61)
150	355 (14.0)	44 (1.73)	290 (11.4)	218 (8.58)	12xø33 (1.30)	30.5 (67.25)
200	430 (16.9)	52 (2.05)	360 (14.2)	285 (11.2)	12xØ36 (1.42)	54.5 (120.2)

DN	D	b	К	d	L	approx. kg (lbs)
250	505 (19.9)	60 (2.36)	430 (16.9)	345 (13.6)	12xø39 (1.54)	87.5 (192.9)
300	585 (23.0)	68 (2.68)	500 (19.7)	410 (16.1)	16xØ42 (1.65)	131.5 (289.9)

ASME flanges (ASME B16.5-2013)

■ 15 Raised face RF

- L Bore diameter
- d
- Diameter of raised face Diameter of pitch circle Κ
- Flange diameter D
- Total flange thickness b
- Height of raised face, Class 150/300: 1.6 mm (0.06 in) or from Class 600: 6.4 mm (0.25 in) f

Surface quality of sealing surface Ra ≤ 3.2 to 6.3 μm (126 to 248 μin).

Class	150 ¹⁾
-------	-------------------

DN	D	b	К	d	L	approx. kg (lbs)
1"	108.0 (4.25)	14.2 (0.56)	79.2 (3.12)	50.8 (2.00)	4xØ15.7 (0.62)	0.86 (1.9)
1¼"	117.3 (4.62)	15.7 (0.62)	88.9 (3.50)	63.5 (2.50)	4xØ15.7 (0.62)	1.17 (2.58)
11⁄2"	127.0 (5.00)	17.5 (0.69)	98.6 (3.88)	73.2 (2.88)	4xØ15.7 (0.62)	1.53 (3.37)
2"	152.4 (6.00)	19.1 (0.75)	120.7 (4.75)	91.9 (3.62)	4xØ19.1 (0.75)	2.42 (5.34)
21⁄2"	177.8 (7.00)	22.4 (0.88)	139.7 (5.50)	104.6 (4.12)	4xØ19.1 (0.75)	3.94 (8.69)
3"	190.5 (7.50)	23.9 (0.94)	152.4 (6.00)	127.0 (5.00)	4xØ19.1 (0.75)	4.93 (10.87)
31⁄2"	215.9 (8.50)	23.9 (0.94)	177.8 (7.00)	139.7 (5.50)	8xØ19.1 (0.75)	6.17 (13.60)
4"	228.6 (9.00)	23.9 (0.94)	190.5 (7.50)	157.2 (6.19)	8xØ19.1 (0.75)	7.00 (15.44)
5"	254.0 (10.0)	23.9 (0.94)	215.9 (8.50)	185.7 (7.31)	8xø22.4 (0.88)	8.63 (19.03)
6"	279.4 (11.0)	25.4 (1.00)	241.3 (9.50)	215.9 (8.50)	8xø22.4 (0.88)	11.3 (24.92)
8"	342.9 (13.5)	28.4 (1.12)	298.5 (11.8)	269.7 (10.6)	8xØ22.4 (0.88)	19.6 (43.22)
10"	406.4 (16.0)	30.2 (1.19)	362.0 (14.3)	323.8 (12.7)	12xØ25.4 (1.00)	28.8 (63.50)

The dimensions in the following tables are in mm (in), unless otherwise specified 1)

Class 300

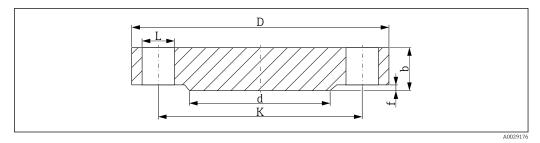
DN	D	b	К	d	L	approx. kg (lbs)
1"	124.0 (4.88)	17.5 (0.69)	88.9 (3.50)	50.8 (2.00)	4xØ19.1 (0.75)	1.39 (3.06)
1¼"	133.4 (5.25)	19.1 (0.75)	98.6 (3.88)	63.5 (2.50)	4xØ19.1 (0.75)	1.79 (3.95)
11⁄2"	155.4 (6.12)	20.6 (0.81)	114.3 (4.50)	73.2 (2.88)	4xø22.4 (0.88)	2.66 (5.87)
2"	165.1 (6.50)	22.4 (0.88)	127.0 (5.00)	91.9 (3.62)	8xØ19.1 (0.75)	3.18 (7.01)
21⁄2"	190.5 (7.50)	25.4 (1.00)	149.4 (5.88)	104.6 (4.12)	8xø22.4 (0.88)	4.85 (10.69)
3"	209.5 (8.25)	28.4 (1.12)	168.1 (6.62)	127.0 (5.00)	8xØ22.4 (0.88)	6.81 (15.02)

DN	D	b	К	d	L	approx. kg (lbs)
31⁄2"	228.6 (9.00)	30.2 (1.19)	184.2 (7.25)	139.7 (5.50)	8xØ22.4 (0.88)	8.71 (19.21)
4"	254.0 (10.0)	31.8 (1.25)	200.2 (7.88)	157.2 (6.19)	8xØ22.4 (0.88)	11.5 (25.36)
5"	279.4 (11.0)	35.1 (1.38)	235.0 (9.25)	185.7 (7.31)	8xØ22.4 (0.88)	15.6 (34.4)
6"	317.5 (12.5)	36.6 (1.44)	269.7 (10.6)	215.9 (8.50)	12xø22.4 (0.88)	20.9 (46.08)
8"	381.0 (15.0)	41.1 (1.62)	330.2 (13.0)	269.7 (10.6)	12xØ25.4 (1.00)	34.3 (75.63)
10"	444.5 (17.5)	47.8 (1.88)	387.4 (15.3)	323.8 (12.7)	16xØ28.4 (1.12)	53.3 (117.5)

Class 600

DN	D	b	К	d	L	approx. kg (lbs)
1"	124.0 (4.88)	17.5 (0.69)	88.9 (3.50)	50.8 (2.00)	4xØ19.1 (0.75)	1.60 (3.53)
1¼"	133.4 (5.25)	20.6 (0.81)	98.6 (3.88)	63.5 (2.50)	4xØ19.1 (0.75)	2.23 (4.92)
1½"	155.4 (6.12)	22.4 (0.88)	114.3 (4.50)	73.2 (2.88)	4xø22.4 (0.88)	3.25 (7.17)
2"	165.1 (6.50)	25.4 (1.00)	127.0 (5.00)	91.9 (3.62)	8xØ19.1 (0.75)	4.15 (9.15)
21⁄2"	190.5 (7.50)	28.4 (1.12)	149.4 (5.88)	104.6 (4.12)	8xØ22.4 (0.88)	6.13 (13.52)
3"	209.5 (8.25)	31.8 (1.25)	168.1 (6.62)	127.0 (5.00)	8xØ22.4 (0.88)	8.44 (18.61)
3½"	228.6 (9.00)	35.1 (1.38)	184.2 (7.25)	139.7 (5.50)	8xØ25.4 (1.00)	11.0 (24.26)
4"	273.1 (10.8)	38.1 (1.50)	215.9 (8.50)	157.2 (6.19)	8xØ25.4 (1.00)	17.3 (38.15)
5"	330.2 (13.0)	44.5 (1.75)	266.7 (10.5)	185.7 (7.31)	8xØ28.4 (1.12)	29.4 (64.83)
6"	355.6 (14.0)	47.8 (1.88)	292.1 (11.5)	215.9 (8.50)	12xØ28.4 (1.12)	36.1 (79.6)
8"	419.1 (16.5)	55.6 (2.19)	349.3 (13.8)	269.7 (10.6)	12xØ31.8 (1.25)	58.9 (129.9)
10"	508.0 (20.0)	63.5 (2.50)	431.8 (17.0)	323.8 (12.7)	16xØ35.1 (1.38)	97.5 (214.9)

Class 900


DN	D	b	К	d	L	approx. kg (lbs)
1"	149.4 (5.88)	28.4 (1.12)	101.6 (4.0)	50.8 (2.00)	4xØ25.4 (1.00)	3.57 (7.87)
1¼"	158.8 (6.25)	28.4 (1.12)	111.3 (4.38)	63.5 (2.50)	4xØ25.4 (1.00)	4.14 (9.13)
1½"	177.8 (7.0)	31.8 (1.25)	124.0 (4.88)	73.2 (2.88)	4xØ28.4 (1.12)	5.75 (12.68)
2"	215.9 (8.50)	38.1 (1.50)	165.1 (6.50)	91.9 (3.62)	8xØ25.4 (1.00)	10.1 (22.27)
21⁄2"	244.4 (9.62)	41.1 (1.62)	190.5 (7.50)	104.6 (4.12)	8xØ28.4 (1.12)	14.0 (30.87)
3"	241.3 (9.50)	38.1 (1.50)	190.5 (7.50)	127.0 (5.00)	8xØ25.4 (1.00)	13.1 (28.89)
4"	292.1 (11.50)	44.5 (1.75)	235.0 (9.25)	157.2 (6.19)	8xØ31.8 (1.25)	26.9 (59.31)
5"	349.3 (13.8)	50.8 (2.0)	279.4 (11.0)	185.7 (7.31)	8xØ35.1 (1.38)	36.5 (80.48)
6"	381.0 (15.0)	55.6 (2.19)	317.5 (12.5)	215.9 (8.50)	12xø31.8 (1.25)	47.4 (104.5)
8"	469.9 (18.5)	63.5 (2.50)	393.7 (15.5)	269.7 (10.6)	12xø38.1 (1.50)	82.5 (181.9)
10"	546.1 (21.50)	69.9 (2.75)	469.0 (18.5)	323.8 (12.7)	16xØ38.1 (1.50)	122 (269.0)

Class 1500

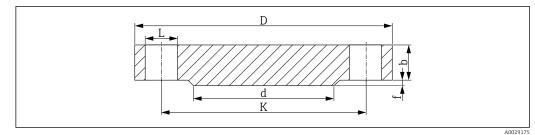
DN	D	b	К	d	L	approx. kg (lbs)
1"	149.4 (5.88)	28.4 (1.12)	101.6 (4.0)	50.8 (2.00)	4xØ25.4 (1.00)	3.57 (7.87)
1¼"	158.8 (6.25)	28.4 (1.12)	111.3 (4.38)	63.5 (2.50)	4xø25.4 (1.00)	4.14 (9.13)
1½"	177.8 (7.0)	31.8 (1.25)	124.0 (4.88)	73.2 (2.88)	4xØ28.4 (1.12)	5.75 (12.68)
2"	215.9 (8.50)	38.1 (1.50)	165.1 (6.50)	91.9 (3.62)	8xØ25.4 (1.00)	10.1 (22.27)

DN	D	b	К	d	L	approx. kg (lbs)
21⁄2"	244.4 (9.62)	41.1 (1.62)	190.5 (7.50)	104.6 (4.12)	8xØ28.4 (1.12)	14.0 (30.87)
3"	266.7 (10.5)	47.8 (1.88)	203.2 (8.00)	127.0 (5.00)	8xØ31.8 (1.25)	19.1 (42.12)
4"	311.2 (12.3)	53.8 (2.12)	241.3 (9.50)	157.2 (6.19)	8xØ35.1 (1.38)	29.9 (65.93)
5"	374.7 (14.8)	73.2 (2.88)	292.1 (11.5)	185.7 (7.31)	8xØ41.1 (1.62)	58.4 (128.8)
6"	393.7 (15.50)	82.6 (3.25)	317.5 (12.5)	215.9 (8.50)	12xø38.1 (1.50)	71.8 (158.3)
8"	482.6 (19.0)	91.9 (3.62)	393.7 (15.5)	269.7 (10.6)	12xø44.5 (1.75)	122 (269.0)
10"	584.2 (23.0)	108.0 (4.25)	482.6 (19.0)	323.8 (12.7)	12xø50.8 (2.00)	210 (463.0)

HG/T flanges (HG/T 20592-2009)

■ 16 Raised face

- L
- Bore diameter Diameter of raised face Diameter of pitch circle d
- Κ
- Flange diameter D
- b
- Total flange thickness Height of raised face (generally 2 mm (0.08 in) f


PN40

DN	D	b	К	d	L	approx. kg (lbs)
25	115 (4.53)	16 (0.63)	85 (3.35)	68 (2.68)	4xØ14 (0.55)	1.50 (3.31)
40	150 (5.91)	16 (0.63)	110 (4.33)	88 (3.46)	4xØ18 (0.71)	2.50 (5.51)
50	165 (6.5)	18 (0.71)	125 (4.92)	102 (4.02)	4xØ18 (0.71)	3.00 (6.62)

PN63

DN	D	b	К	d	L	approx. kg (lbs)
50	180 (7.09)	24 (0.95)	135 (5.31)	102 (4.02)	4xØ22 (0.87)	5.00 (11.03)

HG/T flanges (HG/T 20615-2009)

🖻 17 Raised face

- L Bore diameter
- d Diameter of raised face
- K Diameter of pitch circle
- D Flange diameter
- b Total flange thickness
- f Height of raised face, Class 150/300: 2 mm (0.08 in) or from Class 600: 7 mm (0.28 in)

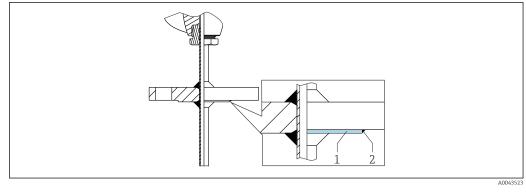
Surface quality of sealing surface Ra \leq 3.2 to 6.3 μ m (126 to 248 μ in).

Class	1	5	n	1)	

DN	D	b	К	d	L	approx. kg (lbs)
1"	110.0 (4.33)	12.7 (0.5)	79.4 (3.13)	50.8 (2.00)	4xØ16 (0.63)	0.86 (1.9)
11⁄2"	125.0 (4.92)	15.9 (0.63)	98.4 (3.87)	73.0 (2.87)	4xØ16 (0.63)	1.53 (3.37)
2"	150 (5.91)	17.5 (0.69)	120.7 (4.75)	92.1 (3.63)	4xØ18 (0.71)	2.42 (5.34)

1) The dimensions in the following tables are in mm (in), unless otherwise specified

Class 300


DN	D	b	К	d	L	approx. kg (lbs)
1"	125.0 (4.92)	15.9 (0.63)	88.9 (3.50)	50.8 (2.00)	4xØ18 (0.71)	1.39 (3.06)
11⁄2"	155 (6.10)	19.1 (0.75)	114.3 (4.50)	73 (2.87)	4xØ22 (0.87)	2.66 (5.87)
2"	165 (6.50)	20.7 (0.82)	127.0 (5.00)	92.1 (3.63)	8xØ18 (0.71)	3.18 (7.01)

Class 600

DN	D	b	К	d	L	approx. kg (lbs)
2"	165 (6.50)	25.4 (1.00)	127.0 (5.00)	92.1 (3.63)	8xØ18 (0.71)	4.15 (9.15)

Thermowell material, nickel-based, with flange

If the thermowell materials Alloy600 and Alloy C276 are combined with a flange process connection, only the raised face and not the complete flange is made of the alloy for cost reasons. This is welded onto a flange with the parent material 316L. Identified in the order code by the material designation Alloy600 > 316L or Alloy C276 > 316L.

1 Raised face

```
2 Weld
```

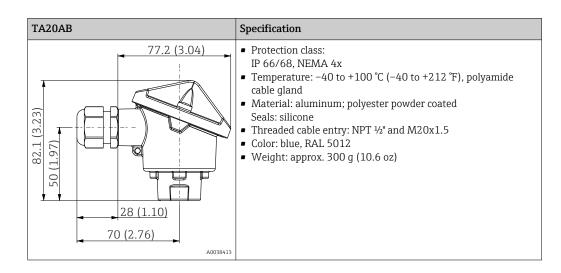
Inserts

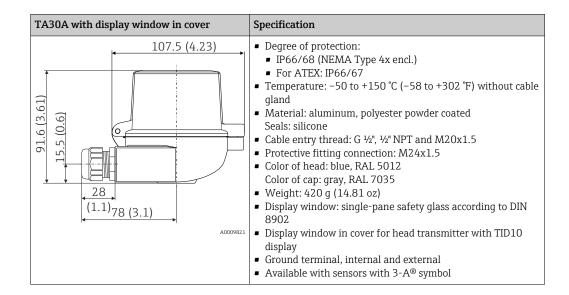
Depending on the configuration, the device can be fitted with a replaceable insert.²⁾

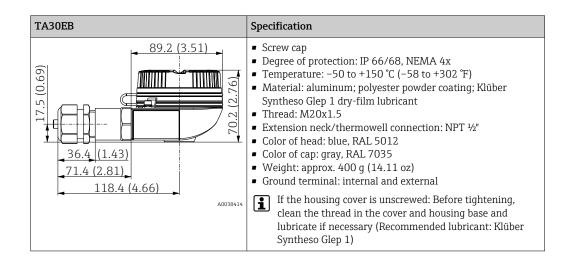
Sensor	Standard thin-film		
Sensor design; connection method	1x or 2x Pt100, 3- or 4-wire, basic version, stainless steel sheath		
Vibration resistance of the insert tip	Up to 3g		
Measuring range; accuracy class	–50 to +200 °C (–58 to +392 °F), Class A or B		
Diameter	6 mm (0.24 in)		

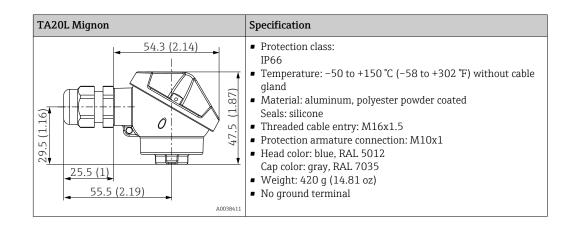
TC thermocouples	Туре К	
Sensor design	Mineral insulated, alloy 600 sheathed TC cable	
Vibration resistance of the insert tip	Up to 3g	
Measuring range	-270 to +1100 °C (-454 to +2 012 °F)	
Connection type	Ungrounded hot junction	
Temperature-sensitive length	Insert length	
Diameter	6 mm (0.24 in)	

The iTHERM inserts are available as a spare part. The insertion length (IL) depends on the immersion length of the thermowell (U), the thickness of the base (B), and the length of the thermowell lagging (L) for example. The insertion length (IL) must be taken into consideration when replacing the unit. Formulas for calculating IL $\rightarrow \cong 17$


For more information on the deployed insert iTHERM TS111 and TS211 with enhanced vibration resistance and fast-response sensor, see the Technical Information (TI01014T/09/ and TI01411T/09/).


Spare parts currently available for your product can be found online at: http://www.products.endress.com/spareparts_consumables. Choose the corresponding product root. Always quote the serial number of the device when ordering spare parts! The insertion length IL is automatically calculated using the serial number.


Surface roughness	Values for wetted surfaces:		
	Standard surface	$R_a \le 0.76 \ \mu m \ (0.03 \ \mu in)$	
Terminal heads	thermometer connection with cable glands in the diagrams o	ternal shape and size in accordance with DIN EN 50446, flat face and a a a M24x1.5 or ½" NPT thread. All dimensions in mm (in). The sample correspond to M20x1.5 connections with non-Ex polyamide cable : head transmitter installed. For ambient temperatures with head 'Environment'' section.	


²⁾ Not with Mignon terminal head TA20L

As a special feature, Endress+Hauser offers terminal heads with optimized terminal accessibility for easy installation and maintenance.

Cable glands and connectors ¹⁾

Туре	Suitable for cable entry	Degree of protection	Temperature range	Suitable cable diameter
Cable gland, polyamide blue (indication of Ex-i circuit)	¹ /2" NPT	IP68	−30 to +95 °C (−22 to +203 °F)	7 to 12 mm (0.27 to 0.47 in)
Cable gland polyamide	¹ ⁄ ₂ " NPT, ³ ⁄ ₄ " NPT, M20x1.5 (optionally 2x cable entry)	IP68	-40 to +100 °C (-40 to +212 °F)	5 to 9 mm (0.19 to 0.35 in)
Cable gland, polyamide	½" NPT, M20x1.5 (optionally 2x cable entry)	ІР69К	−20 to +95 °C (−4 to +203 °F)	
Cable gland for dust ignition-proof area, polyamide	½" NPT, M20x1.5	IP68	−20 to +95 °C (−4 to +203 °F)	
Cable gland for dust ignition-proof area, brass	M20x1.5	IP68 (NEMA Type 4x)	−20 to +130 °C (−4 to +266 °F)	
M12 plug, 4-pin, 316 (PROFIBUS® PA, Ethernet-APL, IO-Link®)	½" NPT, M20x1.5	IP67	-40 to +105 °C (-40 to +221 °F)	-
M12 plug, 8-pin, 316	M20x1.5	IP67	−30 to +90 °C (−22 to +194 °F)	-
7/8" plug, 4-pin, 316 (FOUNDATION ™ Fieldbus, PROFIBUS® PA)	½" NPT, M20x1.5	IP67	-40 to +105 °C (-40 to +221 °F)	-

Depending on product and configuration 1)

H

For explosion proof thermometers no cable glands are assembled.

Certificates and approvals

Current certificates and approvals for the product are available at www.endress.com on the relevant product page:

- 1. Select the product using the filters and search field.
- 2. Open the product page.
- 3. Select **Downloads**.

Ordering information

Detailed ordering information is available from your nearest sales organization

www.addresses.endress.com or in the Product Configurator at www.endress.com:

- 1. Select the product using the filters and search field.
- 2. Open the product page.

3. Select **Configuration**.

Product Configurator - the tool for individual product configuration

- Up-to-the-minute configuration data
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop

Accessories

The accessories currently available for the product can be selected at www.endress.com:

- 1. Select the product using the filters and search field.
- 2. Open the product page.
- 3. Select Spare parts & Accessories.

Service-specific accessories Applicator

Software for selecting and sizing Endress+Hauser measuring devices:

- Calculation of all the necessary data for identifying the optimum measuring device: e.g. pressure loss, accuracy or process connections.
- Graphic illustration of the calculation results

Administration, documentation and access to all project-related data and parameters over the entire life cycle of a project.

Applicator is available:

https://portal.endress.com/webapp/applicator

Configurator

Product Configurator - the tool for individual product configuration

- Up-to-the-minute configuration data
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop

The Configurator is available on the Endress+Hauser website: www.endress.com -> Click "Corporate" -> Select your country -> Click "Products" -> Select the product using the filters and the search field -> Open the product page -> The "Configure" button to the right of the product image opens the Product Configurator.

DeviceCare SFE100

Configuration tool for HART, PROFIBUS and FOUNDATION Fieldbus field devices DeviceCare is available for download at www.software-products.endress.com. You need to register in

the Endress+Hauser software portal to download the application.

Technical Information TI01134S

FieldCare SFE500

FDT-based plant asset management tool

It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.

Technical Information TI00028S

Netilion

IIoT ecosystem: Unlock knowledge

With the Netilion IIoT ecosystem, Endress+Hauser enables you to optimize plant performance, digitize workflows, share knowledge, and enhance collaboration. Drawing on decades of experience in process automation, Endress+Hauser provides the process industry with an IIoT ecosystem that unlocks valuable insights from data. These insights allow process optimization, leading to increased plant availability, efficiency, and reliability - ultimately resulting in a more profitable plant.

www.netilion.endress.com

Supplementary documentation

The following types of documentation are available on the product pages and in the Download Area of the Endress+Hauser website (www.endress.com/downloads) (depending on the selected device version):

Document	Purpose and content of the document	
Technical Information (TI)	Planning aid for your device The document contains all the technical data on the device and provides an overview of the accessories and other products that can be ordered for the device.	
Brief Operating Instructions (KA)	Guide that takes you quickly to the 1st measured value The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning.	
Operating Instructions (BA)	Your reference document The Operating Instructions contain all the information that is required in various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.	
Description of Device Parameters (GP)	Reference for your parameters The document provides a detailed explanation of each individual parameter. The description is aimed at those who work with the device over the entire life cycle and perform specific configurations.	
Safety Instructions (XA)	 Depending on the approval, Safety Instructions (XA) are supplied with the device. The Safety Instructions are an integral part of the Operating Instructions. Information on the Safety Instructions (XA) that are relevant for the device is provided on the nameplate. 	
Supplementary device-dependent documentation (SD/FY)	Always comply strictly with the instructions in the relevant supplementary documentation. The supplementary documentation is an integral part of the device documentation.	

www.addresses.endress.com

