Products Solutions Services

Technische Information Zubehöroptiken für die Rxn-10-Sonde KIO1, KNCO1, KLBIO1, KRSU1, KRBMO, KRBSL

Inhaltsverzeichnis

Arbeitsweise und Systemaufbau	. 3
Einsatzgebiete	3
Tauchoptik: Optionen	4
Tauchoptik: Datenerfassungsbereich	5
Berührungslose Optik	5
Berührungslose Optik: Optionen	6
bIO-Optik	6
bIO-Optik: Optionen	6
Bio-Multi-Ontik und Bio-Sleeves	7

Bio-Multi-Optik und Bio-Sleeves: Optionen
Optisches Raman-System für single-use Anwendungen 8
Spezifikationen9
Rxn-10-Sonde mit Zubehöroptik
Tauchoptik9
Berührungslose Optik
bIO-Optik10
Bio-Multi-Optik und Bio-Sleeves11
Optisches Raman-System für single-use Anwendungen 11

2

Arbeitsweise und Systemaufbau

Einsatzgebiete

Die Raman-Spektroskopiesonde Rxn-10 mit Kaiser Raman-Technologie wurde für die Produkt- und Prozessentwicklung sowie für die Fertigung konzipiert (wenn zusammen mit dem optischen Raman-System für single-use Anwendungen eingesetzt). Die Sonde ist mit einer Vielzahl von austauschbaren handelsüblichen Optiken (Tauch- und berührungslose Optiken) kompatibel, um die Anforderungen unterschiedlicher Anwendungen zu erfüllen.

Tabelle 1 führt die üblichen Anwendungsbereiche für die Rxn-10-Sonde und -Optik auf. Es gibt jedoch weitere mögliche Einsatzgebiete; allerdings gefährdet eine Verwendung des Geräts, die deutlich von den hier beschriebenen Einsatzgebieten abweicht, die Sicherheit von Personen und der gesamten Messeinrichtung und setzt die Gewährleistung außer Kraft.

Zu den für die Optiken empfohlenen Anwendungen gehören:

Optik	Einsatzgebiete		
Tauchoptik (KIO1)	 Entwicklungslabor Pharmazie: Arzneimittelwirkstoff-Grundverfahren, Reaktionsanalyse, Kristallisation, Endpunktbestimmung, Lösungsmittelwechsel Chemie: Materialkennzeichnung, Reaktionsanalyse, Polymerisation, Vernetzung, Mischung Lebensmittel und Getränke: Mischung, Reinigung, natürliche und synthetische Bestandteile 		
Berührungslose Optik (KNCO1)	 Polymer-Feststoffe (Pellets, Folien oder Pulver) Herstellung von Arzneimitteln Rohstoffidentifizierung Fleisch- oder Fischqualität Rezepturoptimierung 		
bIO-Optik (KLBIO1)	 Benchtop-Bioreaktoren zur Messung von Glukose, Laktat, Aminosäuren, Zelldichte, Titer und mehr Benchtop-Fermenter zur Messung von Glycerin, Methanol, Ethanol, Sorbit, Biomasse und mehr Verwendung mit der Durchflussarmatur CYA680 für ausgewählte Downstream-Bioprozessanwendungen 		
Bio-Multi-Optik (KRBMO) und Bio-Sleeve (KRBSL)	 Benchtop-Bioreaktoren zur Messung von Glukose, Laktat, Aminosäuren, Zelldichte, Titer und mehr Benchtop-Fermenter zur Messung von Glycerin, Methanol, Ethanol, Sorbit, Biomasse und mehr Verwendung mit der Durchflussarmatur CYA680 für ausgewählte Downstream-Bioprozessanwendungen 		
Optisches Raman- System für single-use Anwendungen (KRSU1)	 Single-use Bioreaktoren zur Messung von Glukose, Laktat, Aminosäuren, Zelldichte, Titer und mehr Single-use Fermenter zur Messung von Glycerin, Methanol, Ethanol, Sorbit, Biomasse und mehr 		

Tabelle 1. Einsatzgebiete

Tauchoptik: Optionen

Die Tauchoptik ist in Konfigurationen mit Durchmessern von 12,7 mm (0,5 in.) und 6,35 mm (0,25 in.) und zwei optischen Beschichtungen erhältlich:

- VIS: optimiert f
 ür den Einsatz im sichtbaren (VIS) Bereich (532 nm)
- NIR: optimiert f
 ür den Einsatz im nahen Infrarotbereich (NIR) (785 nm und 993 nm)

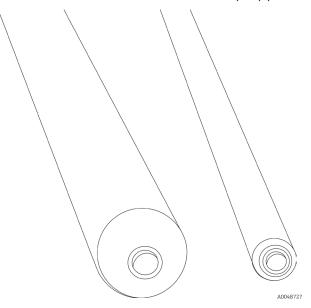


Abbildung 1. Tauchoptikspitzen mit variierenden Durchmessern

Tauchoptik: Datenerfassungsbereich

Die Tauchoptik kann entweder einen kurzen (am Fenster) oder einen langen (3 mm oder 0,12 in. ab Fenster) Datenerfassungsbereich haben. Der gewählte Datenerfassungsbereich ist auch auf der Tauchoptik angegeben.

Kurze oder lange Datenerfassungsbereiche werden für unterschiedliche Arten von Proben verwendet. Spektraldaten werden am effizientesten an der Fokusebene erfasst.

Ein kurzer Datenerfassungsbereich wird im Allgemeinen für die Proben von opaken oder trüben Medien verwendet. Würde eine Tauchoptik mit einem langen Datenerfassungsbereich zur Analyse dieser Materialen verwendet werden, würde der größte Teil oder die gesamte einfallende Strahlung durch spiegelnde oder diffuse Reflexion aufgrund von Material oberhalb der Fokusebene verloren gehen.

Ein langer Datenerfassungsbereich eignet sich besser für transparente Proben, da er die Signalintensität durch Ausnutzung des gesamten effektiven Fokalzylinders maximiert.

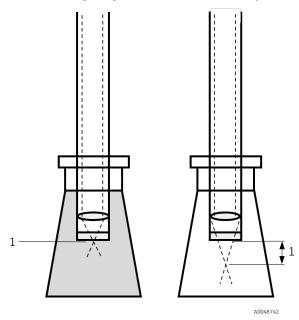


Abbildung 2. Kurzer (links) vs. langer (rechts) Datenerfassungsbereich (1)

Berührungslose Optik

In Verbindung mit der Rxn-10-Sonde ermöglichen die berührungslosen Optiken von Endress+Hauser berührungslose Raman-Messungen von Proben entweder direkt oder durch eine Sichtscheibe oder eine durchsichtige Verpackung. Diese Optiken eignen sich ideal für den Einsatz mit Feststoffen oder trüben Medien oder wenn eine Kontamination der Proben oder eine Beschädigung der optischen Komponenten zu befürchten ist.

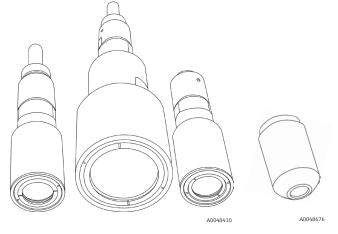


Abbildung 3. Berührungslose Optiken in variierenden Größen

5

Berührungslose Optik: Optionen Die berührungslosen Optiken sind in einer Vielzahl von Größen und, abhängig von der ausgewählten Option, mit Arbeitsabständen von 10 bis 140 mm (0,40 bis 5,52 in.) erhältlich. Die interne Linse ist mit einer von zwei möglichen Anti-Reflex-Beschichtungen erhältlich:

- VIS: optimiert für den Einsatz im sichtbaren (VIS) Bereich
- NIR: optimiert für den Einsatz im nahen Infrarotbereich (NIR)

Die nachfolgende Tabelle listet die verfügbaren Optionen auf.

Größe der berührungslosen Optik	Anti-Reflex- Beschichtung	Arbeitsabstand (mm)	Arbeitsabstand (in.)
NCO-0.4	NIR	10	0,40
NCO-0.5	VIS	12,5	0,50
NCO-1.3	VIS	33	1,30
NCO-2.5	VIS	64	2,52
NCO-3.0	NIR	75	2,96
NCO-5.5	VIS	140	5,52
NCO-5.5	NIR	140	5,52

Tabelle 2. Berührungslose Optik

bIO-Optik

Die bIO-Optik von Endress+Hauser ist eine vielseitige Tauchoptik, die zusammen mit der Rxn-10-Sonde verwendet wird. Sie misst zahlreiche spezifische Bioprozess-Komponenten in Echtzeit und ist mit standardmäßigen PG13.5 Bioreaktoranschlüssen kompatibel. Der fixe Fokus der bIO-Optik bietet langfristige Messstabilität und eine hervorragende Signalleistung, was wesentlich für übertragbare, leistungsstarke Raman-basierte Bioprozessanalysen ist. Die bIO-Optik ist in zahlreichen industrieüblichen Standardlängen erhältlich und eignet sich ideal für Anwendungen mit Benchtop-Bioreaktoren/Fermentern, die eine Kopfplatteneinführung erfordern.

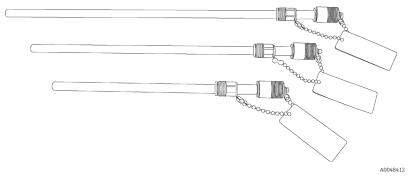


Abbildung 4. bIO-Optik in unterschiedlichen Längen

HINWEIS

Die bIO-Optic sollte NICHT mit Kohlenwasserstofflösungsmitteln (einschließlich Ketonen und Aromaten) verwendet werden.

Diese Lösungsmittel können die Sondenleistung beeinträchtigen und die Garantie außer Kraft setzen.

bIO-Optik: Optionen

Die bIO-Optik ist in folgenden Längen erhältlich: 120, 220, 320 oder 420 mm (4,73, 8,67, 12,60 oder 16,54 in.). Die Optik mit einem Durchmesser von 12 mm (0,48 in.) und PG13.5 Gewindeanschluss eignet sich ideal für eine Kopfplatteneinführung in den Bioreaktor/ Fermenter. Die 120mm-Ausführung ist kompatibel mit der Endress+Hauser Durchflussarmatur CYA680.

Bio-Multi-Optik und Bio-Sleeves Die Bio-Multi-Optik und Bio-Sleeve von Endress+Hauser bilden zusammen ein vielseitiges, zweiteiliges Tauchoptiksystem, das in Kombination mit der Rxn-10-Sonde eingesetzt wird. Das System misst zahlreiche spezifische Bioprozess-Komponenten in Echtzeit und ist mit standardmäßigen PG13.5 Bioreaktoranschlüssen kompatibel.

Das System besteht aus folgenden Komponenten:

- Eine wiederverwendbare Multi-Optik für Bioprozesse, die keinen Kontakt mit dem Prozess hat, und
- die Bio-Sleeve, die mit der Bio-Multi-Optik verbunden wird und Kontakt mit dem Produkt hat. Die Bio-Sleeve hat eine Lebensdauer von 10 Autoklavzyklen, wenn sie zusammen mit dem Bio-Sleeve-Exsikkator verwendet wird.

Der modulare Aufbau dieses Probenentnahmesystems ermöglicht die Kalibrierung der Optik ohne dass die Bio-Sleeve aus dem Bioreaktor/benetzten Bereich entfernt werden muss. Ein weiterer Vorteil des modularen Aufbaus ist der geringere Wartungsaufwand aufgrund der Vereinfachung des mediumsberührenden/sterilisierten Teils. Der fixe Fokus bietet langfristige Messstabilität und eine hervorragende Signalleistung, was wesentlich für übertragbare, leistungsstarke Raman-basierte Bioprozessanalysen ist.

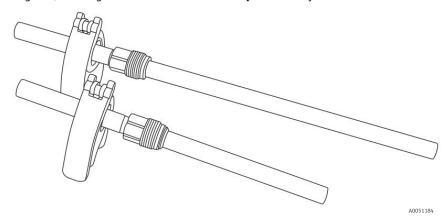


Abbildung 5. Bio-Multi-Optik und Bio-Sleeves in verschiedenen Längen

HINWEIS

Dieses System sollte NICHT mit Kohlenwasserstofflösungsmitteln (einschließlich Ketonen und Aromaten) verwendet werden.

Diese Lösungsmittel können die Sondenleistung beeinträchtigen und die Garantie außer Kraft setzen.

Die Optik ist NICHT dazu gedacht, in Flüssigkeiten eingetaucht zu werden, wenn sie nicht an der Bio-Sleeve angebracht ist.

Optionen

Bio-Multi-Optik und Bio-Sleeves: Die Bio-Multi-Optik und Bio-Sleeves sind in industrieüblichen Längen von 120 mm und 220 mm (4,73 in. und 8,67 in.) erhältlich. Die 120mm-Ausführung ist kompatibel mit der Endress+Hauser Durchflussarmatur CYA680. Das Probenentnahmesystem eignet sich ideal für Benchtop-Bioreaktor-/Fermenteranwendungen, die eine Kopfplatteneinführung erfordern.

Optisches Raman-System für single-use Anwendungen

Das optische Raman-System von Endress+Hauser für single-use Anwendungen wurde nach Industriestandards für single-use Sensorik entwickelt und für single-use Anwendungen konzipiert. Das System wird in Verbindung mit der Rxn-10-Sonde eingesetzt und besteht aus folgenden Teilen:

- Wiederverwendbare berührungslose Optik und
- eine Einwegarmatur, die vom SUB-Lieferanten montiert, geprüft und einsatzbereit geliefert wird.

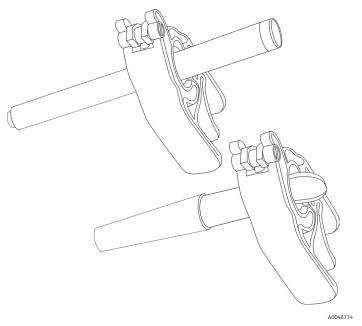


Abbildung 6. Wiederverwendbare Optik (oben) und Einwegarmatur (unten)

HINWEIS

Dieses System sollte NICHT mit Kohlenwasserstofflösungsmitteln (einschließlich Ketonen und Aromaten) verwendet werden.

 Diese Lösungsmittel können die Sondenleistung beeinträchtigen und die Garantie außer Kraft setzen.

HINWEIS

Die Optik ist NICHT dazu gedacht, in Flüssigkeiten eingetaucht zu werden, wenn sie nicht an Einwegarmatur angebracht ist.

Spezifikationen

Rxn-10-Sonde mit Zubehöroptik

Die Spezifikationen für die Rxn-10-Sonde in Verbindung mit den verschiedenen Optiken sind in den nachfolgenden Tabellen aufgeführt. Zusätzlich gilt:

- Der maximale Druck für die Tauchoptik und die bIO-Optik wird gemäß ASME B31.3 Edition 2020 für Material und Sondengeometrie bei Temperaturen berechnet, die das aufgeführte Maximum nicht überschreiten dürfen.
- Mindestdruckstufe: Alle Sonden haben eine Mindestdruckstufe von 0 bara (volles Vakuum). Sofern nicht anders angegeben, sind sie jedoch nicht für geringe Ausgasungen im Hochvakuumbetrieb ausgelegt.

Tauchoptik

Pos.		Beschreibung		
Laserwellenlänge		532 nm, 785 nm, 993 nm		
Spektrale Abdeckung		Begrenzt durch die Abdeckung des verwendeten Analysators		
Maximale in den Sondenkopf geleitete Laserleistung		< 499 mW		
Relative Feuchte		Versiegelt:	bis 95 %, keine Kondensatbildı	
		Nicht versiegelt: 2060 %, keine Kondensatbildung		
Probenschnittstelle	Temperatur	316L Edelstahl:	-30120 ℃	(-22248 °F)
		C276 Alloy:	-30280 °C	(-22536 °F)
		Titan Grade 2:	-30315 ℃	(-22599°F)
	Max. Druck ¹ ,	316L Edelstahl:	142,4 barg	(2066 psig)
	12,7 mm	C276 Alloy:	158,1 barg	(2293 psig)
	(0,5 in.) Durchmesser IO	Titan Grade 2:	65,2 barg	(946 psig)
	Max. Druck ¹ ,	316L Edelstahl:	168,5 barg	(2444 psig)
	6,35 mm	C276 Alloy:	186,2 barg	(2701 psig)
	(0,25 in.) Durchmesser IO	Titan Grade 2:	76,3 barg	(1107 psig)
Mediumsberührende	Metall	Standardmäßig C276		
Werkstoffe		316L Edelstahl oder Titan Grade 2 auf Anfrage		
	Fenster	Hochreiner Saphir, herstellerspezifische Klemmverschraubung, nicht hartgelötete Bauform		
Schaftlänge	12,7 mm (0,5 in.) Durchmesser IO	152 mm	(6 in.)	
		305 mm	(12 in.)	
		457 mm	(18 in.)	
	6,35 mm	152 mm	(6 in.)	
	(0,25 in.) Durchmesser IO	203 mm	(8 in.)	
Arbeitsabstand	Kurz (S)	0 mm	(0 in.)	
	Lang (L)	3 mm	(0,12 in.)	
Kalibriermethode	532 nm	HCA-532		
	785 nm	HCA-785		
	993 nm	HCA-1000		
Verifizierungsmethode	532 nm	Eintauchen in Zyclohexan		
	785 nm, 993 nm	Eintauchen in Zycl	lohexan oder 70 %	IPA

Tabelle 3. Spezifikationen Tauchoptik

¹Der maximale Betriebsdruck beinhaltet nicht die Druckstufen für Armaturen oder Flansche, mit denen die Sonde im Prozesssystem montiert wird. Diese Komponenten müssen unabhängig bewertet werden und können den maximalen Betriebsdruck der Sonde verringern.

Berührungslose Optik

Pos.		Beschreibung	
Laserwellenlänge		532 nm, 785 nm, 993 nm	
Spektrale Abdeckung		Begrenzt durch die Abdeckung des verwendeten Analysators	
Maximale in den Sondenkopf geleitete Laserleistung		< 499 mW	
Probenschnittstelle Temperatur		Umgebung	
	Druck	Umgebung	
	Relative Feuchte	Umgebung	
Mediumsberührende Werkstoffe		Optikabhängig	
Länge		Variiert je nach Modell	
Durchmesser		Variiert je nach Modell	
Arbeitsabstand		10140 mm (0,405,52 in.), je nach Optik siehe Tabelle 2 \rightarrow $\stackrel{\triangle}{=}$	
Kalibriermethode	532 nm	HCA-532	
	785 nm	HCA-785	
	993 nm	HCA-1000	
Verifizierungsmethode	532 nm	Zyclohexan-Küvette	
	785 nm, 993 nm	Zyclohexan oder 70 % IPA Küvette	

Tabelle 4. Spezifikationen berührungslose Optik

bIO-Optik

Pos.		Beschreibung
Laserwellenlänge		785 nm, 993 nm
Spektrale Abdeckung		Begrenzt durch die Abdeckung des verwendeten Analysators
Maximale in den Sondenkopf geleitete Laserleistung		< 499 mW
Probenschnittstelle	Temperatur	-30150 °C (-22302 °F)
	Maximaler Druck	13,8 barg (200 psig)
Mediumsberührende Werkstoffe	Rumpf	Edelstahl 316L
werkstone	Fenster	Herstellerspezifisches Material, für Bioprozesse optimiert
	Prozessanschluss	PG13.5
	Oberflächengüte	Ra 0,38 µm (Ra 15 µin) mit Elektropolierung
	Klebung	konform mit USP Class VI und ISO 10993
Eintauchbare Länge		120 mm (4,73 in.)
		220 mm (8,67 in.)
		320 mm (12,60 in.)
		420 mm (16,54 in.)
Eintauchbarer Durchmesser		12 mm (0,48 in.)
Sterilisationsmethode		Autoklav
		Ausgelegt für 25 Autoklavzyklen bei 131 °C (268 °F)
Kalibriermethode	785 nm	HCA-785
	993 nm	HCA-1000
Verifizierungsmethode	785 nm, 993 nm	bIO-Probenkammer mit 70 % IPA

Tabelle 5. Spezifikationen bIO-Optik

Bio-Multi-Optik und Bio-Sleeves

Pos.		Beschreibung	
Laserwellenlänge		785 nm	
Spektrale Abdeckung		Begrenzt durch die Abdeckung des verwendeten Analysators	
Maximale in den Sondenkopf geleitete Laserleistung		< 499 mW	
Probenschnittstelle	Temperatur	-30150 °C (-22302 °F)	
	Maximaler Druck	13,8 barg (200 psig)	
Mediumsberührende	Rumpf	Edelstahl 316L	
Werkstoffe (Bio- Sleeve)	Fenster	Herstellerspezifisches Material, für Bioprozesse optimiert	
	Prozessanschluss	PG13.5	
	Oberflächengüte	Ra 0,38 µm (Ra 15 µin) mit Elektropolierung	
	Klebung	konform mit USP Class VI und ISO 10993	
Eintauchbare Länge (Bio-Sleeve)		120 mm (4,73 in.)	
		220 mm (8,67 in.)	
Eintauchbarer Durchmesser (Bio-Sleeve)		12 mm (0,48 in.)	
Sterilisationsmethode (Bio-Sleeve)		Autoklavieren (unter Verwendung des Bio-Sleeve- Exsikkators)	
		Ausgelegt für 10 Autoklavzyklen (je 30 min) bei 131 $^{\circ}$ C (268 $^{\circ}$ F)	
Kalibriermethode	785 nm	Multi-Optik-Kalibrierzubehör (empfohlen) oder HCA-785 mit an der Bio-Multi-Optik angebrachter Bio-Sleeve	
Verifizierungsmethode	785 nm	Multi-Optik-Verifizierungszubehör mit 70 % IPA (empfohlen) oder bIO-Probenkammer mit 70 % IPA und an der Bio- Multi-Optik angebrachter Bio-Sleeve	

Tabelle 6. Spezifikationen Bio-Multi-Optik und Bio-Sleeves

Optisches Raman-System für single-use Anwendungen

Pos.		Beschreibung	
Laserwellenlänge		785 nm, 993 nm	
Spektrale Abdeckung		Begrenzt durch die Abdeckung des verwendeten Analysators	
Maximale in den Sondenkopf geleitete Laserleistung		< 499 mW	
Temperatur Probenschnittstelle		0100 °C (32212 °F)	
Eintauchbare Länge		Abmessungen variieren je nach Port und Armaturentyp des Anbieters des Bioreaktors zum Einmalgebrauch	
Eintauchbarer Durchmesser		Abmessungen variieren je nach Port und Armaturentyp des Anbieters des Bioreaktors zum Einmalgebrauch	
Kalibriermethode 785 nm		Multi-Optik-Kalibrierzubehör (empfohlen) oder HCA-785 mit single-use Kalibrieradapter	
	993 nm	HCA-1000 mit single-use Kalibrieradapter	
Verifizierungsmethode	785 nm	Multi-Optik-Verifizierungszubehör mit 70 % IPA (empfohlen) oder bIO-Probenkammer mit 70 % IPA und single-use Kalibrieradapter	
	993 nm	bIO-Probenkammer mit 70 % IPA und single-use Kalibrieradapter	

 $Tabelle\ 7.\ Spezifikationen\ optisches\ Raman-System\ für\ single-use\ Anwendungen$

www.addresses.endress.com

People for Process Automation