Surge Protective Device for DIN rail according to EN 60715

Table of contents

1	About this document 3
1.1	Symbols31.1.1Safety symbols31.1.2Symbols for certain types ofinformation and graphics2
1.2	Abbreviations
1.3	Supplementary device documentation 4
2	Design 4
2.1	Introduction
2.2	Identification marking
2.3	Description of safety function 5
	2.3.1 Safety function and safe state 5
	2.3.2 Safety integrity requirements 5
3	Commissioning (Mounting and
	electrical connection) 6
3.1	Mounting 6
3.2	Electrical connection 7
4	Operation 7
4.1	Descriptions of application requirements 7
4.2	Application 7
5	Proof test
5.1	Requirements of Proof test85.1.1Test wiring diagram9
6	Repair and error handling 11
6.1	Maintenance 11

1 About this document

1.1 Symbols

1.1.1 Safety symbols

A DANGER

This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

WARNING

This symbol alerts you to a potentially dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

ACAUTION

This symbol alerts you to a potentially dangerous situation. Failure to avoid this situation can result in minor or medium injury.

NOTICE

This symbol alerts you to a potentially harmful situation. Failure to avoid this situation can result in damage to the product or something in its vicinity.

1.1.2 Symbols for certain types of information and graphics

🚹 Tip

Indicates additional information

Reference to documentation

1.2 Abbreviations

SPD	Surge protective device
CCF	Common cause failures
FIT	Failure in time
FMEA	Failure mode and effects analysis
λs	Probability of safe failure
λD	Probability of dangerous failure
λDD	Probability of dangerous detected failure
λDU	Probability of dangerous undetected failure
λΝΕ	No effect failure
HFT	Hardware fault tolerance
HW	Hardware
MRT	Mean repair time
MTTR	Mean time to repair
PFD _{AVG}	Average probability of failure on demand
PFH	Average frequency of dangerous failure [h-1]
SFF	Safe failure fraction
T1	Proof test interval
Response time	From the input signal access to the output reaches 90 % of final value
Fault reaction time	Time from fault occurred to the module enters into a safe state

T _{RC}	Response time of the contact closure
T _{RR}	Response time of the contact release
Uc	Maximum continuous operating voltage
Up	Voltage protection level
IL	Rated load current

1.3 Supplementary device documentation

The following document types are available on the product pages and in the download area of the Endress+Hauser website www.endress.com:

- Technical Information (TI)
- Brief Operating Instructions (KA)
- Safety Instructions (XA)

2 Design

2.1 Introduction

The present specification shows the safety requirements for the development of the HAW566 series surge protective device. The device is used for protecting measuring and control circuits, bus systems and communication systems from being damaged by lightning surge or operating overvoltage.

The device consists of a protection module and a base module.

For more information about products: www.endress.com.

2.1.1 Relevant standards

Functional safety			
IEC 61508 parts 1-7:2010	Functional safety of electrical/electronic/programmable electronic safety related systems		
Other Requirements			
IEC 61643-21:2012	Low-voltage surge protective devices – Part 21:Surge protective devices connected to telecommunications and signaling networks – Performance requirements and testing methods.		

2.2 Identification marking

SIL-certified devices are marked with the SIL logo ${\scriptstyle \textcircled{\sc subarr}}$ on the nameplate.

2.3 Description of safety function

2.3.1 Safety function and safe state

Safety function

The safety function of the device is to behave like a piece of copper wire, passing through the process signal without being altered.

Safe state

The safe state of the device depends on the application.

- Lead breakage and short circuit are out of range and counted as safe failures with external diagnostics.
- Lead breakage or short circuit without external diagnostic is considered dangerous and undetectable failures.

2.3.2 Safety integrity requirements

Operation mode	Low and high demand
HFT	0
Туре	А
SFF	\geq 90 % (with external diagnostics) ¹⁾
Proof test interval	≥ 20 years
MRT	1 Hour
MTTR	8 Hours
SC	SC3
SIL	SIL3

 The SIL 3 result has taken into consideration external diagnostics that may be available when the device is integrated into a SIS. The hardware/software failures of the assumed diagnostics is outside the scope of this certification and must be considered at system level by the integrator.

All the safety parameters calculations are based on the assumptions:

- Failure rate of each component is based on the Quanterion Automated Databook.
- Component failure rates are constant over the life of the device.

FMEA Summary for the HAW566 series (with external diagnostics)							
Model	λSU	λSD	λDD	λDU	SFF	λΝΕ	λS
HAW566-AACA12A HAW566-AACA12B	5.37E-08	0.00E +00	1.68E-08	1.71E-09	97.63%	-	-
HAW566-NACA12A HAW566-NACA12B							
HAW566-AACB12A HAW566-AACB22A HAW566-AACB42A							
HAW566-AACB12B HAW566-AACB22B HAW566-AACB42B							
HAW566-NACB12A HAW566-NACB22A HAW566-NACB42A							
HAW566-NACB12B HAW566-NACB22B HAW566-NACB42B							
HAW566-AACA23A HAW566-AACA23B	6.05E-08	1.23E-08	2.48E-08	2.57E-09	97.44%	-	-
HAW566-NACA23A HAW566-NACA23B							
HAW566-AACB13A HAW566-AACB43A							
HAW566-AACB13B HAW566-AACB43B							
HAW566-NACB13A HAW566-NACB43A							
HAW566-NACB13B HAW566-NACB43B							
HAW566-AADP12A HAW566-AADP12B							
HAW566-AADP15A HAW566-AADP15B	-	-	0.0E+00	0.0E+00	-	9.0E-09	0.0E+00

3 Commissioning (Mounting and electrical connection)

3.1 Mounting

The mounting of the device is described in the Operating Instructions pertaining to the device.

3.2 Electrical connection

The electrical connection of the device is described in the Operating Instructions pertaining to the device.

KA01728K

4 Operation

4.1 Descriptions of application requirements

Ambient temperature	−40 to +80 °C
Storage temperature	−40 to +85 ℃
Relative humidity	5 to 95 %, no condensation
Rated operating voltage U _n	5 V _{DC} /24 V _{DC}
Max. operating voltage U _c	6 V _{DC} /32 V _{DC}
Operating altitude	≤ 2 000 m
IP protection level	IP20

4.2 Application

This chapter shows how to integrate a surge protective device into a safety loop:

Application examples:

- Identify the signal characteristic of the safety loop:
 - Analog
 - Digital
- Determine the signal direction of the safety loop as seen from the perspective of the safety-rated programmable logic controller (SPLC):
 - Input
 - Output
- Evaluate the safe state of the field device allocated to the surge protective device.
- Configure the mode of operation:
 - Low demand mode
 - High demand mode
- Conclude the required SIL level of the safety loop. After the safety loop is defined, assign a surge protective device to the field device. Create a basic overview as shown below.

5 Proof test

5.1 Requirements of Proof test

- This device must be subjected to a full test at least once every 5 years.
- The current, voltage and resistance are measured according to the table below to make sure that the product performance is reliable.
- The terminal numbers are marked as 1, 2, 3, 4, 5 and 6 on the products.

HAW566-AACA12A HAW566-AACA12B HAW566-NACA12A	Test	Target
HAW566-NACA12B		
1	DC spark-over voltage 1-Rail, 2-Rail	65 to 125 V
2	Breakdown voltage, 1 mA 1-2	8 to 12 V
3	Reverse leakage, 6 V 1-2	< 50 µA
4	Resistance 1-3, 2-4	$0.8 \Omega \le R \le 2.0 \Omega$
HAW566-AACA23A HAW566-AACA23B	Test	Target
HAW566-NACA23A HAW566-NACA23B		
1	DC spark-over voltage 1-Rail, 2-Rail, 3-Rail	65 to 125 V
2	Breakdown voltage, 1 mA 1-2, 2-3	8 to 12 V
3	Reverse leakage, 6 V 1-2, 2-3	< 50 µA
4	Resistance 1-4, 2-5, 3-6	$0.8 \ \Omega \le R \le 2.0 \ \Omega$
HAW566-AACB12A HAW566-AACB22A HAW566-AACB42A	Test	Target
HAW566-AACB12B HAW566-AACB22B HAW566-AACB42B		
HAW566-NACB12A HAW566-NACB22A HAW566-NACB42A		
HAW566-NACB12B HAW566-NACB22B HAW566-NACB42B		
1	DC spark-over voltage 1-Rail, 2-Rail	65 to 125 V
2	Breakdown voltage, 1 mA 1-2	36 to 42 V
3	Reverse leakage, 6 V 1-2	< 1 µA
4	Resistance 1-3, 2-4	$0.8 \Omega \le R \le 2.0 \Omega$

Test	Target
DC spark-over voltage 1-Rail, 2-Rail, 3-Rail	65 to 125 V
Breakdown voltage, 1 mA 1-2, 2-3	36 to 42 V
Reverse leakage, 6 V 1-2, 2-3	< 1 µA
Resistance 1-4, 2-5, 3-6	$0.8\Omega \le R \le 2.0\Omega$
Test	Target
DC spark-over voltage 1-Rail, 2-Rail	65 to 225 V
Breakdown voltage, 1 mA 1-2	120 to 155 V
Reverse leakage, 75 %, 1 mA 1-2 (+)	<20 μA
	TestDC spark-over voltage 1-Rail, 2-Rail, 3-RailBreakdown voltage, 1 mA 1-2, 2-3Reverse leakage, 6 V 1-2, 2-3Resistance 1-4, 2-5, 3-6TestDC spark-over voltage 1-Rail, 2-RailBreakdown voltage, 1 mA 1-2Reverse leakage, 75 %, 1 mA 1-2 (+)

5.1.1 Test wiring diagram

DC spark-over voltage test diagram:

In order to test conveniently, we can mount the device on 35 mm DIN rail guide.

Breakdown voltage and reverse leakage test diagram:

Resistance test diagram:

6 Repair and error handling

6.1 Maintenance

- Check if the connections are correct and tight before powering on surge protective devices.
- The surge protective devices are well controlled and strictly inspected before delivery. If non-functional ones are found during operation, please contact Endress+Hauser early enough.
- Within 1 year of delivery, any problems occurred during normal operations can get treatments for free.

www.addresses.endress.com

