# Betriebsanleitung **FWE200DH**

Staubmessgerät





### **Beschriebenes Produkt**

Produktname: FWE200DH

### Hersteller

Endress+Hauser SICK GmbH+Co. KG Bergener Ring 27 01458 Ottendorf-Okrilla Deutschland

# **Rechtliche Hinweise**

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte bleiben bei der Firma Endress+Hauser SICK GmbH+Co. KG. Die Vervielfältigung des Werks oder von Teilen dieses Werks ist nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes zulässig.

Jede Änderung, Kürzung oder Übersetzung des Werks ohne ausdrückliche schriftliche Zustimmung der Firma Endress+Hauser SICK GmbH+Co. KG ist untersagt. Die in diesem Dokument genannten Marken sind Eigentum ihrer jeweiligen Inhaber.

© Endress+Hauser SICK GmbH+Co. KG. Alle Rechte vorbehalten.

# **Originaldokument**

Dieses Dokument ist ein Originaldokument der Endress+Hauser SICK GmbH+Co. KG.



# Inhalt

| 1 | Wic  | htige Hi              | nweise       |                                             | 7  |
|---|------|-----------------------|--------------|---------------------------------------------|----|
|   | 1.1  | Die wic               | htigsten Gef | fahren                                      | 7  |
|   |      | 1.1.1                 | Gefahren     | durch heiße/aggressive Gase und hohen Druck | 7  |
|   |      | 1.1.2                 | Gefahr dı    | urch elektrische Betriebsmittel             | 7  |
|   |      | 1.1.3                 | Gefahr dı    | urch Laserlicht                             | 7  |
|   |      | 1.1.4                 | Gefahr dı    | urch bewegte Teile                          | 7  |
|   | 1.2  | Symbol                | e und Doku   | mentkonventionen                            | 8  |
|   |      | 1.2.1                 | Warnsym      | bole                                        | 8  |
|   |      | 1.2.2                 | Warnstuf     | en und Signalwörter                         | 8  |
|   |      | 1.2.3                 | Hinweissy    | ymbole                                      | 8  |
|   | 1.3  | Bestimi               | mungsgemä    | ßer Gebrauch                                | 8  |
|   | 1.4  | Verantv               | vortung des  | Anwenders                                   | g  |
|   |      | 1.4.1                 | Allgemeir    | ne Hinweise                                 | g  |
|   |      | 1.4.2                 | Sicherhei    | itshinweise und Schutzmaßnahmen             | g  |
| 2 | Proc | duktbes               | chreibung    |                                             | 11 |
|   | 2.1  | System                | merkmale u   | nd Einsatzbereiche                          | 11 |
|   |      | 2.1.1                 | Systemm      | erkmale und Vorteile                        | 11 |
|   |      | 2.1.2                 | Einsatzbe    | ereiche                                     | 11 |
|   | 2.2  | Arbeitsweise FWE200DH |              |                                             | 12 |
|   |      | 2.2.1                 | Funktions    | sprinzip                                    | 12 |
|   |      | 2.2.2                 | Isokinetik   | verhalten                                   | 14 |
|   |      | 2.2.3                 | Messprin     | zip Streulichtmessung                       | 14 |
|   |      | 2.2.4                 | Dämpfun      | gszeit                                      | 15 |
|   |      | 2.2.5                 | Automati     | sche Funktionskontrolle                     | 15 |
|   | 2.3  | Gerätel               | componenten  |                                             | 18 |
|   |      | 2.3.1                 | Messgass     | sonde                                       | 18 |
|   |      | 2.3.2                 | Flansch r    | nit Rohr                                    | 18 |
|   |      | 2.3.3                 | Entnahm      | e- und Rückführschlauch                     | 19 |
|   |      | 2.3.4                 | Mess- un     | d Steuereinheit                             | 19 |
|   |      |                       | 2.3.4.1      | Thermozyklon                                | 22 |
|   |      |                       | 2.3.4.2      | Messsensor                                  | 22 |
|   |      |                       | 2.3.4.3      | Steuereinheit                               | 24 |
|   |      |                       | 2.3.4.4      | Erweiterte Kalibrierfunktion                | 26 |
|   |      | 2.3.5                 | Gebläsee     | inheit                                      | 27 |
|   |      | 2.3.6                 | Optionen     |                                             | 27 |
|   |      |                       | 2.3.6.1      | Rückspüleinrichtung                         | 27 |
|   |      |                       | 2.3.6.2      | Beheizter Entnahmeschlauch                  |    |
|   |      |                       | 2.3.6.3      | Remote-Einheit                              | 28 |
|   |      |                       | 2.3.6.4      | Abdeckung unten                             |    |
|   |      |                       | 2.3.6.5      | Prüfmittel für Linearitätstest              |    |
|   | 24   | SOPAS                 | FT (PC-Prog  |                                             | 30 |

| 3 | Mon                               | tage und | Installat                                                                   | ion                                                       | 31   |  |
|---|-----------------------------------|----------|-----------------------------------------------------------------------------|-----------------------------------------------------------|------|--|
|   | 3.1                               |          |                                                                             |                                                           |      |  |
|   | 3.2                               |          |                                                                             |                                                           |      |  |
|   | 5.2                               | 3.2.1    |                                                                             | nit Rohr einbauen                                         |      |  |
|   |                                   | 3.2.2    | Mess- und Steuereinheit montieren                                           |                                                           |      |  |
|   |                                   | 3.2.2    | Gebläseeinheit montieren                                                    |                                                           |      |  |
|   |                                   |          |                                                                             |                                                           |      |  |
|   | 2.2                               | 3.2.4    |                                                                             | mote-Einheit montieren                                    |      |  |
|   | 3.3                               |          |                                                                             |                                                           |      |  |
|   |                                   | 3.3.1    | o .                                                                         | es                                                        |      |  |
|   |                                   | 3.3.2    |                                                                             | heit anschließen                                          | 38   |  |
|   |                                   |          | 3.3.2.1                                                                     | Kabel für Digital-, Analog- und Statussignale anschließen | 39   |  |
|   |                                   |          | 3.3.2.2                                                                     | Gebläseeinheit und Versorgungsspannung anschließen        | . 42 |  |
|   |                                   | 3.3.3    | Option Int                                                                  | erfacemodul einbauen und anschließen                      |      |  |
|   |                                   | 3.3.4    | Option Rückspülung installieren (nur bei separater Bestellung erforderlich) |                                                           | 5    |  |
|   |                                   | 3.3.5    |                                                                             | mote-Einheit anschließen                                  |      |  |
| 4 | Inbetriebnahme und Parametrierung |          |                                                                             |                                                           | .47  |  |
|   | 4.1                               | FWE200I  | FWE200DH in Betrieb nehmen                                                  |                                                           |      |  |
|   |                                   | 4.1.1    | Vorbereitu                                                                  | ıngsarbeiten                                              | 47   |  |
|   |                                   | 4.1.2    | FWE200D                                                                     | H anfahren                                                | . 48 |  |
|   |                                   | 4.1.3    | Messgass                                                                    | onde einbauen                                             | . 49 |  |
|   | 4.2                               | Grundlag | en                                                                          | en                                                        |      |  |
|   |                                   | 4.2.1    | Allgemein                                                                   | e Hinweise                                                | . 50 |  |
|   | 4.3                               | SOPAS E  | T installiere                                                               | en                                                        | 50   |  |
|   |                                   |          | 4.3.0.1                                                                     | Passwort für SOPAS ET-Menüs                               | . 50 |  |
|   |                                   | 4.3.1    | Verbindur                                                                   | ng zum Gerät über USB-Leitung                             |      |  |
|   |                                   |          | 4.3.1.1                                                                     | DUSTHUNTER COM-Port finden                                |      |  |
|   |                                   | 4.3.2    | Verhindur                                                                   | ng zum Gerät über Ethernet (Option)                       | 52   |  |

|   | 4.4  | Standard-Parametrierung                  |             |                                        | 53 |
|---|------|------------------------------------------|-------------|----------------------------------------|----|
|   |      | 4.4.1                                    | Werksseiti  | ge Einstellungen                       | 53 |
|   |      | 4.4.2                                    | Zustand "\  | Nartung" setzen                        | 54 |
|   |      | 4.4.3                                    | Funktions   | parameter ändern                       | 55 |
|   |      |                                          | 4.4.3.1     | Temperatureinstellungen ändern         | 55 |
|   |      |                                          | 4.4.3.2     | Grenzwert für Durchfluss festlegen     | 55 |
|   |      |                                          | 4.4.3.3     | Absaugung einstellen                   | 56 |
|   |      | 4.4.4                                    | Funktionsl  | kontrolle einstellen                   | 57 |
|   |      | 4.4.5                                    | Analogaus   | gänge parametrieren                    | 58 |
|   |      | 4.4.6                                    | Analogeing  | gänge parametrieren                    | 60 |
|   |      | 4.4.7                                    | Dämpfung    | szeit einstellen                       | 60 |
|   |      | 4.4.8                                    | Regression  | nskoeffizienten festlegen              | 62 |
|   |      | 4.4.9                                    | Kalibrierur | ng für Messung Staubkonzentration      | 63 |
|   |      | 4.4.10                                   | Datensich   | erung                                  | 65 |
|   |      | 4.4.11                                   | Messbetri   | eb starten                             | 67 |
|   | 4.5  | Interface                                | -Module pa  | rametrieren                            | 68 |
|   |      | 4.5.1                                    | Modul Mo    | dbus TCP                               | 68 |
|   |      |                                          | 4.5.1.1     | MCU-Einstellungen überprüfen           | 68 |
|   |      |                                          | 4.5.1.2     | Konfigurationsprogramm installieren    | 70 |
|   |      |                                          | 4.5.1.3     | Modbus-Modul in das Netzwerk einbinden | 71 |
|   |      |                                          | 4.5.1.4     | Modbus-Modul konfigurieren             | 75 |
|   |      |                                          | 4.5.1.5     | Funktionsfähigkeit überprüfen          | 77 |
|   |      | 4.5.2                                    | Ethernet-N  | Nodul parametrieren                    | 78 |
|   | 4.6  | Option R                                 | ückspülung  | aktivieren                             | 79 |
|   | 4.7  | Bedienung/Parametrierung über LC-Display |             |                                        | 80 |
|   |      | 4.7.1                                    |             | e Hinweise zur Nutzung                 |    |
|   |      | 4.7.2                                    | Passwort u  | und Bedienebenen                       | 80 |
|   |      | 4.7.3                                    | Menüstruk   | ctur                                   | 81 |
|   |      | 4.7.4                                    | Parametri   | erung                                  | 82 |
|   |      |                                          | 4.7.4.1     | Messgastemperatur                      | 82 |
|   |      |                                          | 4.7.4.2     | Analogaus-/-eingänge                   | 82 |
|   |      | 4.7.5                                    | Displayein  | stellungen mittels SOPAS ET ändern     | 84 |
| 5 | Wart | ung                                      |             |                                        | 85 |
|   | 5.1  | Allgemei                                 | nes         |                                        | 85 |
|   |      | 5.1.1                                    | Wartungsi   | ntervalle                              | 85 |
|   |      | 5.1.2                                    | Wartungsv   | ertrag                                 | 85 |
|   |      | 5.1.3                                    | Benötigte   | Hilfsmittel                            | 85 |
|   |      | 5.1.4                                    | Wartungsz   | ustand setzen                          | 86 |

|   | 5.2  | Wartung                     | gsarbeiten                                                | 87  |  |  |  |
|---|------|-----------------------------|-----------------------------------------------------------|-----|--|--|--|
|   |      | 5.2.1                       | Vorbereitungsarbeiten                                     | 87  |  |  |  |
|   |      | 5.2.2                       | Sichtkontrolle                                            | 88  |  |  |  |
|   |      | 5.2.3                       | Eintrittsdüsen am Thermozyklon reinigen                   | 89  |  |  |  |
|   |      | 5.2.4                       | Ejektor reinigen                                          | 90  |  |  |  |
|   |      | 5.2.5                       | Saugdüse reinigen                                         | 91  |  |  |  |
|   |      | 5.2.6                       | Zwischendüse reinigen                                     | 92  |  |  |  |
|   |      | 5.2.7                       | Messgassonde, Entnahme- und Rückführschlauch reinigen     | 92  |  |  |  |
|   |      | 5.2.8                       | Drallkammer reinigen                                      | 93  |  |  |  |
|   |      | 5.2.9                       | Optische Grenzflächen reinigen                            | 94  |  |  |  |
|   |      | 5.2.10                      | Filtereinsatz der Gebläseeinheit überprüfen / austauschen | 95  |  |  |  |
|   | 5.3  | Messsy                      | stem außer Betrieb setzen                                 | 96  |  |  |  |
| 6 | Stör | ungs- ur                    | nd Fehlerbehandlung                                       | 97  |  |  |  |
|   | 6.1  | Allgeme                     | eines                                                     | 97  |  |  |  |
|   |      | 6.1.1                       | Anzeige von Warnungs- und Störungsmeldungen               | 97  |  |  |  |
|   |      | 6.1.2                       | Funktionsstörungen                                        | 98  |  |  |  |
|   | 6.2  | Warnun                      | gs- und Störungsmeldungen im Programm SOPAS ET            | 99  |  |  |  |
|   |      | 6.2.1                       | Messsensor                                                | 99  |  |  |  |
|   |      | 6.2.2                       | Messsystem                                                | 100 |  |  |  |
|   |      | 6.2.3                       | Steuereinheit                                             | 102 |  |  |  |
| 7 | Spe  | Spezifikationen             |                                                           |     |  |  |  |
|   | 7.1  | Technis                     | che Daten                                                 | 104 |  |  |  |
|   | 7.2  | Abmessungen, Bestellnummern |                                                           |     |  |  |  |
|   |      | 7.2.1                       | Messgassonde                                              | 107 |  |  |  |
|   |      | 7.2.2                       | Flansch mit Rohr                                          | 107 |  |  |  |
|   |      | 7.2.3                       | Mess- und Steuereinheit                                   | 108 |  |  |  |
|   |      | 7.2.4                       | Gebläseeinheit                                            | 108 |  |  |  |
|   | 7.3  | Optione                     | n                                                         | 109 |  |  |  |
|   |      | 7.3.1                       | Remote-Einheit                                            | 109 |  |  |  |
|   |      | 7.3.2                       | Gestell                                                   | 110 |  |  |  |
|   |      | 7.3.3                       | Wetterschutzhaube für Gebläseeinheit                      | 110 |  |  |  |
|   |      | 7.3.4                       | Messsystem                                                | 111 |  |  |  |
|   |      | 7.3.5                       | Interfacemodule                                           | 111 |  |  |  |
|   |      | 7.3.6                       | Zubehör für Geräteüberprüfung                             | 111 |  |  |  |
|   | 7.4  | Verbrau                     | ıchsteile für 2-jährigen Betrieb                          | 112 |  |  |  |
|   |      | 7.4.1                       | Messsensor                                                | 112 |  |  |  |
|   |      | 7.4.2                       | Gebläseeinheit                                            | 112 |  |  |  |
| 8 | Anh  | ang                         |                                                           | 113 |  |  |  |
|   | 8.1  | Standar                     | rdeinstellungen FWE200DH                                  | 113 |  |  |  |

FWE200DH Wichtige Hinweise

# 1 Wichtige Hinweise

# 1.1 Die wichtigsten Gefahren

# 1.1.1 Gefahren durch heiße/aggressive Gase und hohen Druck

Die optischen Baugruppen sind direkt am gasführenden Kanal angebaut. Bei Anlagen mit geringem Gefahrpotenzial (keine Gesundheitsgefährdung, Umgebungsdruck, niedrige Temperaturen) kann der Ein- bzw. Ausbau bei Anlagenbetrieb erfolgen, wenn die gültigen Vorschriften und Sicherheitsbestimmungen der Anlage beachtet und notwendige und geeignete Schutzmaßnahmen ergriffen werden.



# WARNUNG: Gefahr durch Abgas

An den gasführenden Systemteilen (Messgassonde, Gasschläuche, Thermozyklon, Messeinheit, Ejektor) können heiße und/oder aggressive Gase austreten und bei einem ungeschützten Bediener schwere Gesundheitsschäden verursachen

- ▶ Das Messsystem vor Beginn von Arbeiten ausschalten.
- Arbeiten nur mit geeigneten Schutzeinrichtungen (Schutzkleidung, Schutzmaske) durchführen.
- Gasführende und heiße Systemteile nur nach ausreichender Abkühlung oder mit Schutzeinrichtung berühren.
- ► Die Messgassonde an Anlagen mit gesundheitsschädigenden Gasen, hohen Temperaturen oder hohem Druck nur bei Anlagenstillstand aus- bzw. einbauen

### 1.1.2 Gefahr durch elektrische Betriebsmittel



# WARNUNG: Gefahr durch Netzspannung

Das Messsystem FWE200DH ist ein elektrisches Betriebsmittel.

- ▶ Bei Arbeiten an Netzanschlüssen oder an Netzspannung führenden Teilen die Netzzuleitungen spannungsfrei schalten.
- Einen eventuell entfernten Berührungsschutz vor Einschalten der Netzspannung wieder anbringen.

# 1.1.3 Gefahr durch Laserlicht



# WARNUNG: Gefahr durch Laserlicht

Die Sende-Empfangseinheit des FWE200DH arbeitet mit einem Laser der Klasse 2.

- ► Nie direkt in den Strahlengang blicken
- ► Laserstrahl nicht auf Personen richten
- Auf Reflexionen des Laserstrahls achten.

### 1.1.4 Gefahr durch bewegte Teile



# WARNUNG: Gefahr durch bewegte Teile

Die Option Rückspüleinrichtung hat einen elektrisch angesteuerten Kugelhahn, der bei unsachgemäßer Handhabung zu Quetschungen führen kann.

Während der Ansteuerung keine Körperteile (Finger) oder Gegenstände in die Öffnungen stecken. Wichtige Hinweise FWE200DH

Wildings Till Welloc

# 1.2 Symbole und Dokumentkonventionen

# 1.2.1 Warnsymbole

| Symbol    | Bedeutung                         |
|-----------|-----------------------------------|
| <u>^!</u> | Gefahr (allgemein)                |
| 4         | Gefahr durch elektrische Spannung |

# 1.2.2 Warnstufen und Signalwörter

# **GEFAHR**

Gefahr für Menschen mit der sicheren Folge schwerer Verletzungen oder des Todes.

### **WARNUNG**

Gefahr für Menschen mit der möglichen Folge schwerer Verletzungen oder des Todes.

### VORSICHT

Gefahr mit der möglichen Folge minder schwerer oder leichter Verletzungen.

WICHTIG

Gefahr mit der möglichen Folge von Sachschäden.

# 1.2.3 Hinweissymbole

| ţ | symbol Bedeutung |                                                                     |
|---|------------------|---------------------------------------------------------------------|
|   | !                | Wichtige technische Information für dieses Produkt                  |
|   | 4                | Wichtige Information zu elektrischen oder elektronischen Funktionen |

# 1.3 Bestimmungsgemäßer Gebrauch

# Zweck des Gerätes

Das Messsystem FWE200DH dient ausschließlich zur kontinuierlichen Messung der Staubkonzentration in Abgas- und Abluftanlagen.

# **Korrekte Verwendung**

- ► Das Gerät nur so verwenden, wie es in dieser Betriebsanleitung beschrieben ist. Für andere Verwendungen trägt der Hersteller keine Verantwortung.
- Sämtliche zur Werterhaltung erforderlichen Maßnahmen, z.B. für Wartung und Inspektion bzw. Transport und Lagerung, einhalten.
- Am und im Gerät keine Bauteile entfernen, hinzufügen oder verändern, sofern dies nicht in offiziellen Informationen des Herstellers beschrieben und spezifiziert ist. Sonst
  - könnte das Gerät zu einer Gefahr werden
  - entfällt jede Gewährleistung des Herstellers

# Anwendungseinschränkungen

 Das Messsystem FWE200DH ist nicht zugelassen zum Betrieb in explosionsgefährdeten Bereichen. FWE200DH Wichtige Hinweise

# 1.4 Verantwortung des Anwenders

# 1.4.1 Allgemeine Hinweise

# Vorgesehener Anwender

Das Messsystem FWE200DH darf nur von Fachkräften bedient werden, die aufgrund ihrer fachlichen Ausbildung und Kenntnisse sowie Kenntnisse der einschlägigen Bestimmungen die ihnen übertragenen Arbeiten beurteilen und Gefahren erkennen können.

# Besondere lokale Bedingungen

- ▶ Bei der Vorbereitung und Durchführung von Arbeiten die für die jeweilige Anlage gültigen gesetzlichen Vorschriften sowie die diese Vorschriften umsetzenden technischen Regeln einhalten.
- ▶ Bei allen Arbeiten entsprechend den örtlichen, anlagenspezifischen Gegebenheiten und betriebstechnisch bedingten Gefahren und Vorschriften handeln.

### Aufbewahren der Dokumente

Zum Messsystem gehörende Betriebsanleitungen sowie Anlagendokumentationen müssen vor Ort vorhanden sein und zum Nachschlagen zur Verfügung stehen. Bei Wechsel des Besitzers des Messsystems sind die zugehörigen Dokumente an neue Besitzer weiterzugeben.

# 1.4.2 Sicherheitshinweise und Schutzmaßnahmen

# Schutzvorrichtungen



# **HINWEIS:**

Entsprechend dem jeweiligen Gefahrpotenzial müssen geeignete Schutzvorrichtungen und persönliche Sicherheitsausstattungen in ausreichender Zahl zur Verfügung stehen und vom Personal genutzt werden.

### Verhalten bei Spülluftausfall

Die Spülluftversorgung dient zum Schutz der am Kanal angebauten optischen Baugruppen vor heißen oder aggressiven Gasen. Sie muss auch bei Anlagenstillstand eingeschaltet bleiben. Fällt die Spülluftversorgung aus, können die optischen Baugruppen in kurzer Zeit zerstört werden.



### **HINWEIS:**

Wenn keine Schnellschlussklappen vorhanden sind:

Der Anwender hat dafür zu sorgen, dass:

- ▶ die Spülluftversorgung sicher und unterbrechungsfrei arbeitet,
- ▶ ein Ausfall sofort erkannt wird (z.B. durch Einsatz von Druckwächtern),
- ▶ die optischen Baugruppen bei Spülluftausfall vom Kanal entfernt und die Kanalöffnung abgedeckt wird (z.B. mit einem Flanschdeckel)

### Vorbeugemaßnahmen zur Betriebssicherheit



### **HINWEIS:**

Der Anwender hat dafür zu sorgen, dass:

- weder Ausfall noch Fehlmessungen zu Schaden verursachenden oder gefährlichen Betriebszuständen führen können,
- ▶ die vorgeschriebenen Wartungs- und Inspektionsarbeiten von qualifiziertem und erfahrenem Personal regelmäßig durchgeführt werden.

Wichtige Hinweise FWE200DH

# Erkennen von Störungen

Jede Veränderung gegenüber dem Normalbetrieb ist ein ernstzunehmender Hinweis auf eine Funktionsbeeinträchtigung. Dazu gehören unter anderem:

- Anzeige von Warnungen
- starkes Driften der Messergebnisse,
- erhöhte Leistungsaufnahme,
- erhöhte Temperatur von Systemteilen,
- das Ansprechen von Überwachungseinrichtungen,
- Geruchs- oder Rauchentwicklung,
- Hohe Verschmutzung.

### Vermeiden von Schäden



### **HINWEIS:**

Zur Vermeidung von Störungen, die ihrerseits mittelbar oder unmittelbar Personen- oder Sachschäden bewirken können, muss der Anwender sicherstellen, dass:

- das zuständige Wartungspersonal jederzeit und schnellstmöglich zur Stelle ist.
- das Wartungspersonal ausreichend qualifiziert ist, um auf Störungen des Messsystems und daraus ggf. resultierenden Betriebsstörungen (z.B. bei Einsatz für Regel- und Steuerungszwecke) korrekt reagieren zu können,
- ► im Zweifelsfall die gestörten Betriebsmittel sofort abgeschaltet werden, ein Abschalten nicht zu mittelbaren Folgestörungen führt.

### **Elektrischer Anschluss**

Das Gerät muss gemäß EN 61010-1 durch einen Trennschalter/Leistungsschalter abgeschaltet werden können.

BETRIEBSANLEITUNG 8029844/YWL2/V2-0/2016-04 Endress+Hauser

# 2 Produktbeschreibung

# 2.1 Systemmerkmale und Einsatzbereiche

Das Messsystem FWE200DH dient zur kontinuierlichen Messung von Staubkonzentrationen bis 200 mg/m³ (typischer Anwendungsbereich) in nassen Gasen (Temperatur unter Taupunkt) mit einer Auflösung bis ca. 0,1 mg/m³. Es ist vielseitig einsetzbar und zeichnet sich durch geringen Installationsaufwand und einfache Handhabung aus.

# 2.1.1 Systemmerkmale und Vorteile

- Absaugung eines Teilgasstromes aus dem Gaskanal
- Trocknen und Überhitzen des nassen Teilgasstromes mit regelbarer elektrischer Heizung für konstante Messgastemperatur, damit Ausschluss von Messfehlern durch vorher vorhandene Tröpfchen
- Gasentnahme und -rückführung mit einer Messgassonde, damit nur ein Montageflansch erforderlich
- Staubgehaltsbestimmung mittels Streulichtmessung für niedrige bis mittlere Staubkonzentrationen
- Kompakter Aufbau des Messsystems, damit einfache Montage und Installation
- Anzeige der Betriebswerte und des Systemstatus auf einem LC-Display
- Durchflussüberwachung mit integrierter Differenzdruckmessung
- Einfache Parametrierung und Bedienung mittels komfortabler Software
- Selbstkontrolle durch automatische Funktionskontrolle (siehe "Automatische Funktionskontrolle", Seite 15) des Streulichtsensors und vielfältige Überwachungsfunktionen wie
  Überspannungen, Unterspannungen, Über- und Untertemperaturen, Druck-, Durchflussüberwachung, Filterwächter zur Erkennung von hoher Filterverschmutzung

### 2.1.2 Einsatzbereiche

- Messung der Staubemission von Kraftwerken nach Rauchgasentschwefelungsanlagen
- Staubmessung nach Nassreinigungsanlagen z.B. von Abfall- und Müllverbrennungsanlagen
- Messung des Staubgehaltes in nasser Abluft bei technologischen Prozessen

# 2.2 Arbeitsweise FWE200DH

# 2.2.1 Funktionsprinzip

12

Das FWE200DH arbeitet als Bypass-System. Aus dem Gaskanal wird über eine Messgassonde ein Teilgasstrom abgesaugt, in einem Thermozyklon überhitzt so dass Wassertropfen und Aerosole verdampfen, und dann einer Messzelle zugeführt. Das Messgas wird in der Messzelle von einem Laserstrahl durchstrahlt und das an den im Gasstrom enthaltenen Partikeln gestreute Licht von einem Empfänger gemessen. Die gemessene Streulichtintensität ist die Basis für die Bestimmung der Staubkonzentration. Anschließend wird das Messgas wieder der Messgassonde zur Rückführung in den Kanal zugeleitet.

Der Gasstrom durch das Messsystem wird durch einen Ejektor gefördert. Der Ejektor wird von einem Gebläse angetrieben.

Ein kleiner Teilstrom aus dem Gebläse wird als Spülluftstrom in die Messzelle geleitet, um die Reinhaltung der optischen Fenster in der Messzelle zu gewährleisten und um zu verhindern, dass Messgas in der Messzelle auskondensiert.

BETRIEBSANLEITUNG 8029844/YWL2/V2-0/2016-04 Endress+Hauser

Mess- und Steuereinheit

Kanal

A DP

Messgassonde

Gebläseeinheit

Abb. 1: Prinzipieller Aufbau FWE200DH

- 1 Grundplatte
- 2 Heizband 1
- 3 Heizband 2
- 4 Thermozyklon
- 5 Steuereinheit
- 6 Messsensor mit Messzelle
- 7 Ejektor
- 8 Entnahmeleitung
- 9 Rückführleitung

- S Bediensoftware SOPAS ET
- P Spannungsversorgung 115 / 230 V AC
- A Ausgangssignal 0 ... 20 mA
- D Statussignale

### 2.2.2 Isokinetikverhalten

Das Messverhalten des FWE200DH ist in einem weiten Bereich unabhängig von Änderungen der Gasgeschwindigkeit im Kanal. Eine isokinetische Absaugung (Absauggeschwindigkeit = Gasgeschwindigkeit) ist deshalb nicht notwendig.

Das Messsystem FWE200DH arbeitet stabil mit einem Volumenstrom zwischen ca. 8....14m³/h im Normzustand. Als Auslegungszustand wird ein Volumenstrom zwischen ca. 12...13m³/h empfohlen. Dieser Auslegungszustand soll durch Anpassung der Drehzahl des Gebläses bei der Inbetriebnahme eingestellt werden.

Es wird empfohlen die Absaugdüse der Messgassonde in Abhängigkeit von der mittleren Gasgeschwindigkeit gemäß der folgenden Tabelle auszuwählen.

Evtl. Fehler durch eine nichtisokinetische Absaugung sind zweitrangig und werden durch Kalibrierung des Messsystems kompensiert (siehe "Messprinzip Streulichtmessung", Seite 14).

Zusätzlich wird bei der Inbetriebnahme die Gebläsesteuerung (siehe "Gebläseeinheit", Seite 27) so eingestellt, dass der Durchfluss im optimalen Bereich liegt. Damit wird ein sicherer Betrieb auch bei wechselnden Gasgeschwindigkeiten gewährleistet.

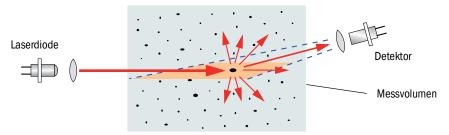
Bei nicht an die Anlagenbedingungen angepasstem Durchfluss könnten folgende Effekte auftreten:

- Durchfluss zu niedrig
  - → in den gasführenden Teilen können sich Partikel ablagern.
- Durchfluss zu hoch, Gas-/Umgebungstemperatur sehr niedrig, Gasnässe sehr hoch
   → die eingestellte Messgastemperatur wird nicht erreicht → Aerosole/Wassertropfen
   verdampfen nicht vollständig (Heizleistung des Thermozyklons ist begrenzt).

| Absaugöffnung Messgassonde | Gasgeschwindigkeit im Kanal in m/s       |  |
|----------------------------|------------------------------------------|--|
| Nenndurchmesser            | dasgescriwindigkeit iiii Kanariii iii/ S |  |
| DN 23                      | 08                                       |  |
| DN 18                      | 6 15                                     |  |
| DN 14                      | 12 25                                    |  |



Falls v<sub>Auslegung</sub> bei Bestellung nicht bekannt ist (z.B. keine Angabe im Technischen Fragebogen), wird die Messgassonde mit dem Standardwert DN 18 geliefert.


# 2.2.3 Messprinzip Streulichtmessung

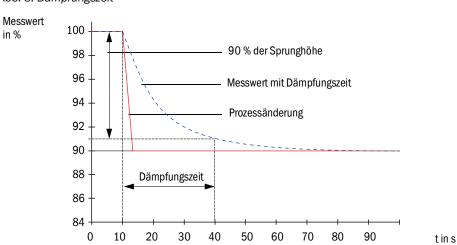
Das FWE200DH arbeitet nach dem Prinzip der Streulichtmessung (Vorwärtsstreuung). Dieses Prinzip wird wegen seiner hohen Empfindlichkeit vor allem bei der Messung kleiner Partikelkonzentrationen angewandt.

Eine Laserdiode strahlt die Staubpartikel im Messgasstrom mit moduliertem Licht im sichtbaren Bereich an (Wellenlänge ca. 650 nm). Das von den Partikeln gestreute Licht wird von einem hochempfindlichen Messempfänger erfasst, elektrisch verstärkt und vom Mikroprozessors in der Elektronik des Messsensors ("DHSP200") verarbeitet. Das Messvolumen im Gaskanal wird durch die Überschneidung von Sendestrahl und Empfangsapertur definiert.

Durch kontinuierliche Überwachung der Sendeleistung werden geringste Helligkeitsänderungen des ausgesandten Lichtstrahl erfasst und bei der Ermittlung des Messsignals berücksichtigt.

Abb. 2: Messprinzip




# Bestimmung der Staubkonzentration

Die gemessene Streulichtintensität SI ist proportional zur Staubkonzentration c. Da die Streulichtintensität aber nicht nur von Anzahl und Größe der Partikel, sondern auch von deren optischen Eigenschaften abhängt, muss das Messsystem für eine exakte Messung der Staubkonzentration durch eine gravimetrische Vergleichsmessung kalibriert werden. Die dabei ermittelten Kalibrierkoeffizienten können direkt in das Messsystem eingegeben werden (verfügbare Kalibrierfunktionen siehe "Erweiterte Kalibrierfunktion", Seite 26, Standardeinstellungen ab Werk siehe "Werksseitige Einstellungen", Seite 53, Eingabe siehe "Kalibrierung für Messung Staubkonzentration", Seite 63).

# 2.2.4 Dämpfungszeit

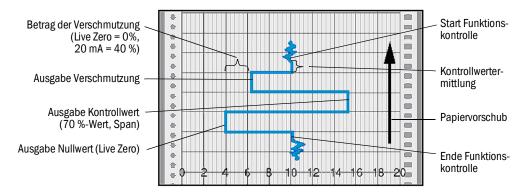
Die Dämpfungszeit ist die Zeit zum Erreichen von 90 % der Sprunghöhe nach einer sprunghaften Änderung des Messsignals. Sie ist zwischen 1 und 600 s frei einstellbar. Mit zunehmender Dämpfungszeit werden kurzzeitige Messwertschwankungen und Störungen immer stärker gedämpft, das Ausgangssignal wird damit immer "ruhiger".

Abb. 3: Dämpfungszeit



# 2.2.5 Automatische Funktionskontrolle

Zur automatischen Funktionsüberprüfung des Messsystems kann ab einem festzulegenden Startzeitpunkt in festen Intervallen eine Funktionskontrolle gestartet werden. Die Einstellung erfolgt über das Bedienprogramm SOPAS ET (siehe "Funktionskontrolle einstellen", Seite 57). Dabei ggf. auftretende, unzulässige Abweichungen vom Normalverhalten werden als Fehler signalisiert. Im Fall einer Gerätestörung kann eine manuell ausgelöste Funktionskontrolle zur Lokalisierung möglicher Fehlerursachen genutzt werden.




Die Funktionskontrolle besteht aus:

 ca. 30 s Messung von Nullwert, Kontrollwert und Verschmutzung der optischen Grenzflächen

• je 90 s (Standardwert) Ausgabe der ermittelten Werte (Zeitdauer ist parametrierbar, siehe "Funktionskontrolle einstellen", Seite 57).

Abb. 4: Ausgabe der Funktionskontrolle auf Schreibstreifen





- Zur Ausgabe der Kontrollwerte auf den Analogausgang muss diese aktiviert sein (siehe "Funktionskontrolle einstellen", Seite 57).
- Während der Ermittlung der Kontrollwerte wird am Analogausgang der zuletzt gemessene Messwert ausgegeben.
- Wenn die Kontrollwerte nicht auf dem Analogausgang ausgegeben werden, wird nach Ablauf der Kontrollwertbestimmung der aktuelle Messwert ausgegeben.
- Während einer Funktionskontrolle ist das Relais 3 eingeschaltet (siehe "Kabel für Digital-, Analog- und Statussignale anschließen", Seite 39). Die Einzelphasen der Funktionskontrolle können separat über weitere Digitalausgänge ausgegeben werden (siehe "Erweiterte Kalibrierfunktion", Seite 26).
- Wenn sich das Messsystem im Zustand "Wartung" befindet, wird keine Funktionskontrolle automatisch gestartet.
- Am LC-Display der Steuereinheit wird während der Funktionskontrolle "Funktionskontrolle" angezeigt.
- Bei Änderung des Startzeitpunktes oder Zyklusintervalls wird eine im Zeitbereich zwischen Parametrierung und neuem Startzeitpunkt liegende Funktionskontrolle noch ausgeführt.
- Die Änderung der Intervallzeit wird ab dem nächstfolgenden Startzeitpunkt wirksam.

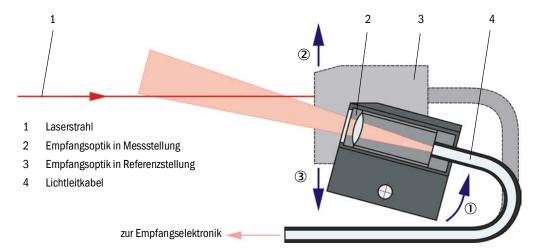
# Nullwertmessung

Zur Nullpunktkontrolle wird die Sendediode abgeschaltet, so dass kein Signal empfangen wird. Eventuelle Driften oder Nullpunktabweichungen im gesamten System (z.B. verursacht durch einen elektronischen Defekt) werden so zuverlässig erkannt. Wenn der "Nullwert" außerhalb des spezifizierten Bereiches liegt, wird ein Fehlersignal generiert.

# **Kontrollwertmessung (Spantest)**

Während der Kontrollwertbestimmung wechselt die Intensität des Sendelichtes zwischen 70 und 100 %. Die empfangene Lichtintensität wird mit dem Vorgabewert (70 %) verglichen. Bei Abweichungen größer ±2 % generiert das Messsystem ein Fehlersignal. Die Fehlermeldung wird wieder aufgehoben, wenn die nächste Funktionskontrolle erfolgreich abläuft. Durch eine hohe Anzahl an Intensitätswechseln, die statistisch ausgewertet werden, wird der Kontrollwert mit hoher Genauigkeit bestimmt.

# Verschmutzungsmessung


Zur Verschmutzungsmessung wird die Empfangsoptik durch den Laserstrahl bewegt und dabei die Transmission gemessen. Dabei wird der gesamte Übertragungsweg von der Lichtquelle über die Empfangsoptik bis zum optischen Sensor ausgemessen und mit dem intern gespeicherten Wert für "saubere Optik" verglichen. Jede Abweichung von dem werkseitig festgelegten Ausgangswert wird kompensiert.

Der dabei ermittelte Messwert wird mit dem bei der Werkseinstellung bestimmten Wert zu einem Korrekturfaktor verrechnet. Aufgetretene Verschmutzungen werden auf diese Weise vollständig kompensiert.

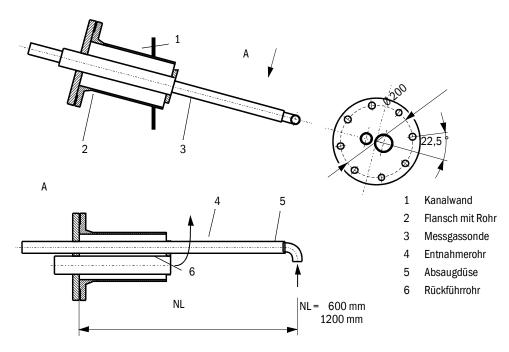
Bei Verschmutzungswerten < 40 % wird am Analogausgang ein der Verschmutzung proportionaler Wert zwischen Live Zero und 20 mA ausgegeben.

Bei Werten > 30 % wird eine Warnungsmeldung, bei Werten ab 40 % wird "Störung" ausgegeben (am Analogausgang der dafür eingestellte Fehlerstrom; siehe "Werksseitige Einstellungen", Seite 53, siehe "Analogausgänge parametrieren", Seite 58).

Abb. 5: Verschmutzungs- und Kontrollwertmessung



# 2.3 Gerätekomponenten


# 2.3.1 Messgassonde

Die Messgassonde dient sowohl der Entnahme als auch der Rückführung des Teilgasstromes. Sie wird an einem bauseits am Gaskanal einzubauenden Flansch mit Rohr (siehe "Flansch mit Rohr", Seite 18) befestigt.

Die Sonden sind standardmäßig in zwei Nennlängen (NL) und den Materialien PVDF (für Gastemperaturen < 120  $^{\circ}$ C) und Hastelloy lieferbar.

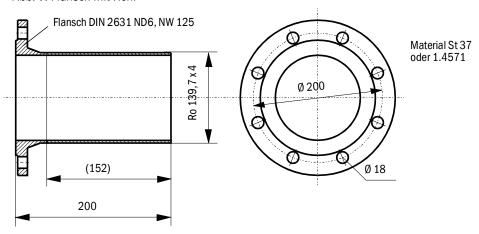

Zur Durchflussanpassung (siehe "Isokinetikverhalten", Seite 14) werden wechselbare Absaugdüsen mit Nenndurchmessern DN 14, DN 18 und DN 23 mitgeliefert.

Abb. 6: Messgassonde



### 2.3.2 Flansch mit Rohr

Abb. 7: Flansch mit Rohr



Auf Wunsch kann der Flansch mit Rohr auch mit anderen Abmessungen und Materialien geliefert werden.

# 2.3.3 Entnahme- und Rückführschlauch

Messgassonde und Mess- und Steuereinheit sind durch flexible Schläuche mit NW32 für Gasentnahme und NW 50 für Gasrückführung verbunden.

Die Standardlänge beträgt ca. 1,2 m.

Eine aktive Beheizung (Option) ist in den meisten Fällen nicht erforderlich (optional lieferbar). Für Einsatz im Freien bei sehr niedrigen Umgebungstemperaturen und längeren Schläuchen wird ein Entnahmeschlauch mit Wärmedämmung empfohlen.

Eine solche Wärmedämmung (Silikonschaum-Schlauch) kann auch vor Ort nachgerüstet werden.

# Empfehlung:

| Umgebungstemperatur | Entnahmeschlauch      |
|---------------------|-----------------------|
| <-20 °C             | mit aktiver Beheizung |
| -20 +20 °C          | mit Wärmedämmung      |

Längere Schläuche haben einen höheren Wartungsaufwand (Beseitigung von Ablagerungen/ Anbackungen) und eine höhere Abkühlung des abgesaugten Teilgasstromes sowie einen Druckverlust zur Folge und sind deshalb nur im Ausnahmefall nach Prüfung der Einsatzbedingungen einsetzbar.

# 2.3.4 Mess- und Steuereinheit

Die Mess- und Steuereinheit umfasst die auf einer Grundplatte (7) aufgebauten Komponenten:

- Thermozyklon (1) zur Überhitzung des Messgases mit Temperaturfühler (2) zur Regelung der Messgastemperatur,
- Messsensor (3) mit Sende- und Empfangselektronik und Messzelle zur Führung des Teilgasstromes durch das optische Messvolumen des Sendestrahles,
- Ejektor (4) zur Förderung des abgesaugten Teilgasstromes,
- Steuereinheit (5).

Produktbeschreibung FWE200DH



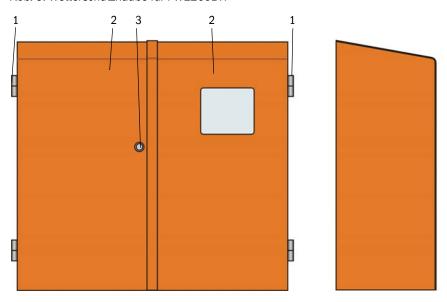
Abb. 8: Mess- und Steuereinheit (ohne Wetterschutzhaube, mit Option Rückspülung und Abdeckung

- 6 Adapter für Entnahmeschlauch (Standard)/ für Anschluss Option Rückspüleinrichtung
- 8 Scharnier für Wetterschutzhaube
- Option Rückspüleinrichtung 9
- Manometer Druckluftanzeige (nur bei Option "Rückspüleinrichtung")
- Entnahmeschlauch 11
- 12 Schlauch vom Ejektor zum Gebläse
- Ablage. Abdeckung unten Option.
- Anschluss Rückführschlauch

Der Messgasdurchfluss wird mit einem Differenzdrucksensor zwischen Ausgang Thermozyklon und Eingang Messzelle überwacht.

Die applikationsabhängigen Anlagen- und Geräteparameter können mit dem Bedienprogramm SOPAS ET eingestellt werden (siehe "Standard-Parametrierung", Seite 53). Funktionsabhängig gibt es dafür drei eigenständige Softwaremodule ("FWE200DH" für Systemfunktionen, "DH SP200" für Messfunktionen und "MCU" für Ein- und Ausgabefunktionen. Die eingestellten Parameter werden auch bei Stromausfall zuverlässig gespeichert.

Im Betriebszustand wird die Mess- und Steuereinheit durch eine zweiteilige Haube abgedeckt, die gleichzeitig als Wetterschutz bei Installation im Freien dient. Die beiden Teile (2) sind in die Scharniere (1) an der Grundplatte eingehängt, können seitlich weggeschwenkt und durch ein Schloss (3) miteinander verriegelt werden.


BETRIEBSANLEITUNG Endress+Hauser 8029844/YWL2/V2-0/2016-04

# Wetterschutzhaube für FWE200DH

Im Betriebszustand wird die Mess- und Steuereinheit durch eine zweiteilige Haube abgedeckt, die auch als Wetterschutz bei Installation im Freien dient.

Die Haube kann bei Betrieb in Räumen weggelassen werden.

Abb. 9: Wetterschutzhaube für FWE200DH



# Typschlüssel

Die jeweilige Ausführung der Mess- und Steuereinheit ist durch einen Typschlüssel gekennzeichnet:

| Parameter                  | Ausführung    | Typschlüssel |   |   |   |
|----------------------------|---------------|--------------|---|---|---|
| raiailletei                |               | FWE200DH-    | X | X | X |
| Option Rückspülein-        | ohne          |              | N |   |   |
| richtung                   | mit           |              | В |   |   |
| Option beheizter Ent-      | ohne          |              |   | N |   |
| nahmeschlauch              | mit           |              |   | Н |   |
| Ontion Interference        | Modbus TCP    |              |   |   | J |
| Option Interfacemo-<br>dul | Ethernet Typ1 |              |   |   | E |
| 441                        | Profibus DP   |              |   |   | Р |

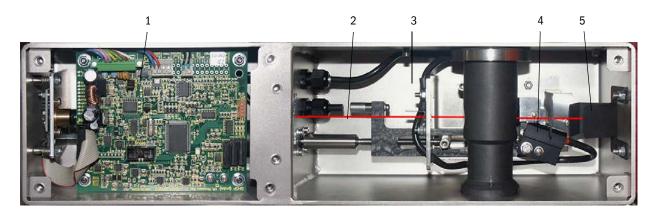
# 2.3.4.1 Thermozyklon

Der Thermozyklon besteht aus einem Gehäuse mit Isolierung, einer Drallkammer mit Einund Austrittstutzen und 2 Heizbändern zur Überhitzung des Teilgasstromes. Der Eintrittsstutzen ist tangential angeordnet, wodurch in der Drallkammer eine Drallströmung erzeugt wird. Eine Düse aus PTFE im Eintrittsstutzen beschleunigt die Strömung. Die Drallkammer ist nach Öffnen einen Abdeckung für Inspektionen und eventuelle Reinigungen problemlos zugängig.

Die Temperaturen der Heizbänder werden von daran angebrachten Temperaturfühlern gemessen und von der Mikroprozessorsteuerung in der Steuereinheit überwacht.

Zusätzlich integrierte Temperatursicherungen schalten die Heizbänder bei Temperaturen größer ca. 425 °C ab. Schäden am Thermozyklon durch Überhitzung werden damit auch bei einem möglichen Ausfall der Elektronik zuverlässig verhindert.

Am Ausgang des Thermozyklons ist ein Temperaturmessfühler als Geber für die Regelung der Messgastemperatur angeordnet.


# 2.3.4.2 Messsensor

Der Messsensor besteht aus zwei in einem Edelstahlgehäuse untergebrachten Modulen:

- Elektronikeinheit (1) mit den optischen und elektronischen Baugruppen zum Senden und Empfangen des Laserstrahls (2) sowie zur Signalverarbeitung und -auswertung,
- Messzelle (3) mit Empfangsoptik (4), Lichtfalle (5) und Düse zur Führung des Messgasstromes.

Die Elektronikeinheit ist über Verbindungskabel für Signalübertragung und Spannungsversorgung (24 V DC) mit der Steuereinheit verbunden.

Abb. 10: Messsensor geöffnet



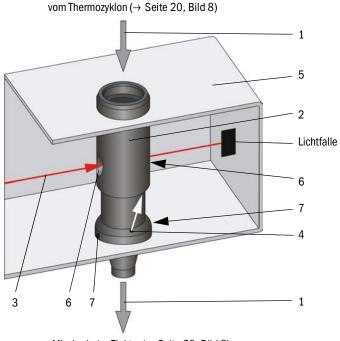



Abb. 11: Messgas- und Spülluftführung

zum Mischrohr im Ejektor (→ Seite 20, Bild 8)

Das Messgas (1) aus dem Thermozyklon strömt durch das Messrohr (2) senkrecht durch den Laserstrahl (3). Das aktive Messvolumen liegt innerhalb des Messrohres. so dass alle Partikel des hindurchströmenden trockenen Messgases vom Laserstrahl erfasst werden. Das vom Empfänger gemessene Streulichtsignal ist damit repräsentativ für den Staubgehalt im Teilgasstrom.

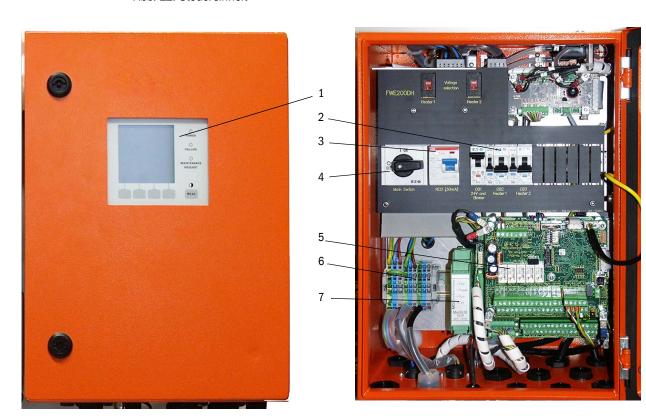
Durch eine kleine Öffnung (4) im Messrohr wird saubere Luft in die Messzelle (5) geblasen und über die Messöffnungen (6) wieder vom Messgas mitgenommen. Da die Spülluftmenge im Verhältnis zum Messgasstrom sehr gering ist, findet keine Vermischung im Messvolumen statt, so dass die Spülluft keinen Einfluss auf das Messverhalten hat.

Durch Kondensationseffekte ggf. auftretendes Kondensat kann durch 2 Bohrungen (7) in der Düse in den Messgasstrom abfließen (wird durch den Unterdruck mitgerissen).

Produktbeschreibung FWE200DH

# 2.3.4.3 Steuereinheit

Die Steuereinheit hat folgende Funktionen:


- An- und Abfahren des FWE200DH
- Temperaturregelung und -überwachung für Heizung Thermozyklon
- Kontrolle Durchfluss Messgas
- Überwachung und Steuerung der Gasförderung (Ein-/Ausschalten der Gebläseeinheit)
- Erfassung und Bewertung aller Statussignale
- Steuerung des Datenverkehrs und Verarbeitung der Daten des über RS485-Interface angeschlossenen Messsensors und Systemsteuerung
- Signalausgabe über Analogausgang (Messwert) und Relaisausgänge (Gerätestatus)
- Signaleingabe über Analog- und Digitaleingänge
- Spannungsversorgung des angeschlossenen Messsensors mittels 24 V-Schaltnetzteil mit Weitbereichseingang
- Kommunikation mit übergeordneten Leitsystemen über optionale Module

Neben der Steuerelektronik enthält die Steuereinheit auch die Anschlusselemente für Thermozyklon, Messsensor und Gebläseeinheit sowie für Analog- und Statussignale.

Messwerte und Statusmeldungen werden an einem LC-Display angezeigt. Es ermöglicht auch die Parametrierung von Grundfunktionen.

Die Steuereinheit ist in einem Stahlblechgehäuse untergebracht.

Abb. 12: Steuereinheit

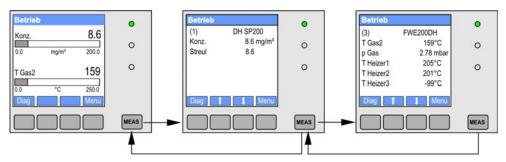


- 1 Display-Modul
- 2 Sicherungen
- 3 FI-Schutzschalter
- 4 Hauptschalter

- 5 Prozessorplatinen für Systemsteuerung ("FWE200DH") und Datenerfassung/verarbeitung und Signalein-/ausgabe ("MCU")
- 6 Klemmenblock für Spannungsversorgung
- 7 Interfacemodul

### Standard-Schnittstellen

- Analogausgänge
  - 3 Ausgänge 0/2/4...22 mA (galvanisch getrennt, aktiv, Auflösung mind. 12 Bit) für Ausgabe von Streulichtintensität (entspricht Staubkonzentration unkalibriert), Staubkonzentration kalibriert und Staubkonzentration normiert
- Analogeingänge
  - 6 Eingänge 0...20 mA (ohne galvanische Trennung, Auflösung mind. 12 Bit) für Anschluss externer Sensoren zur Messung von Gastemperatur, -druck, -feuchte und  $O_2$ -Gehalt für die Berechnung normierter Staubkonzentrationswerte
- Relaisausgänge
  - 9 Wechsler 48 V, 1 A für Ausgabe der Statussignale Betrieb/Störung, Wartung, Funktionskontrolle, Wartungsbedarf, Grenzwert
- Digitaleingänge
  - 8 Eingänge zum Anschluss potenzialfreier Kontakte für Start Funktionskontrolle, Setzen Wartungszustand, Spülluftüberwachung, Auslösung Rückspülung (falls vorhanden siehe "Rückspüleinrichtung", Seite 27) und Aktivierung der zweiten Kalibrierfunktion (Option, siehe "Remote-Einheit", Seite 28)
- Kommunikation
  - USB 1.1 und RS232 (an Klemmen) für Messwertabfrage, Parametrierung und Softwareupdate
  - Interfacemodul Modbus TCP zur Kommunikation mit übergeordneten Leitsystem


# **LC-Display**

# Funktionen:

• Anzeige von Messwerten und Statusinformationen

| Art                                         |                                    | Anzeige von                                                                                                                                                                                              |
|---------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             | Power (grün)                       | Spannungsversorgung i.O.                                                                                                                                                                                 |
| LED                                         | Failure (rot)                      | Funktionsstörung                                                                                                                                                                                         |
|                                             | Maintenance request (gelb)         | Wartungsbedarf                                                                                                                                                                                           |
| LC-Display                                  | Grafikanzeige<br>(Hauptbildschirm) | 2 Messwerten als Balken (z.B. Staubkonzentration oder<br>Streulichtintensität und Messgastemperatur oder Diffe-<br>renzdruck), Auswahl gemäß "Displayeinstellungen mittels<br>SOPAS ET ändern", Seite 84 |
| Textanzeige 8 Diagnosewerten (sie Seite 81) |                                    | 8 Diagnosewerten (siehe "Menüstruktur LC-Display",<br>Seite 81)                                                                                                                                          |

# Bild 13 LC-Display mit Grafik- (links) und Textanzeige (mitte und rechts) (Beispiel)



# Bedientasten für Grundparametrierung

| Taste                                                 | Funktion                                                                                                              |  |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| Meas                                                  | <ul><li>Wechsel von Text- in Grafikanzeige und zurück,</li><li>Anzeige der Kontrasteinstellung (nach 2,5 s)</li></ul> |  |
| Pfeile Auswahl der nächsten/vorherigen Messwert-Seite |                                                                                                                       |  |
| Diag Anzeige von Alarm- oder Fehlermeldungen          |                                                                                                                       |  |
| Menu Anzeige des Hauptmenüs und Wechsel in Untermenüs |                                                                                                                       |  |

Nach Einschalten des Messsystems wird am LC-Display während der Aufwärmzeit die Startphase des FWE200DH angezeigt (siehe "FWE200DH anfahren", Seite 48).

# 2.3.4.4 Erweiterte Kalibrierfunktion

Standardmäßig sind im FWE200DH die folgenden Regressionsfunktionen zur Kalibrierung der Staubkonzentrationsmessung implementiert (siehe "Messprinzip Streulichtmessung", Seite 14, siehe "Kalibrierung für Messung Staubkonzentration", Seite 63):

Polynomial: c = cc2 • SI² + cc1 • SI + cc0
 Exponentiell: c = cc2 • e (cc1 • SI) + cc0
 Logarithmisch: c = cc2 • Ln(cc1 • SI) + cc0
 Power: c = cc2 • SIcc1 + cc0

Davon können zwei voneinander unabhängig verwendet werden (Auswahl und Parametrierung siehe "Kalibrierung für Messung Staubkonzentration", Seite 63).

Mit dem Digitaleingang DI5 kann zwischen den beiden ausgewählten Kalibrierfunktionen umgeschaltet werden. Darüber hinaus können Einzelwerten bei der Funktionskontrolle (siehe "Automatische Funktionskontrolle", Seite 15) ausgegeben werden.

| Digitaleingang | Funktion                                                                   |
|----------------|----------------------------------------------------------------------------|
| DI5            | Umschaltung zwischen Kalibrierfunktion 1 und Kalibrierfunktion 2           |
| DI6            | Ausgabe des zuletzt ermittelten Verschmutzungswertes auf den Analogausgang |
| DI7            | Ausgabe des zuletzt ermittelten Kontrollwertes auf den Analogausgang       |
| DI8            | Ausgabe des zuletzt ermittelten Nullwertes auf den Analogausgang           |

| Relaisausgang | Funktion                                                  |
|---------------|-----------------------------------------------------------|
| 6             | Statussignal für Ausgabe des letzten Verschmutzungswertes |
| 7             | Statussignal für Ausgabe des letzten Kontrollwertes       |
| 8             | Statussignal für Ausgabe des letzten Nullwertes           |
| 9             | nicht belegt                                              |

# **Optionale Interface-Module**

Das standardmäßig eingebaute Modul Modbus TCP kann gegen ein Interfacemodul für Profibus DP VO oder Ethernet (Typ 1) (siehe "Zubehör für Geräteüberprüfung", Seite 111) ausgetauscht werden.

Das Modul wird auf Hutschiene aufgesteckt und über ein zugehöriges Kabel an die Prozessorplatine "MCU" angeschlossen.



Profibus DP-V0 für Übertragung über RS485 nach DIN 19245 Teil 3 sowie IEC 61158.

# 2.3.5 Gebläseeinheit

Die Gebläseeinheit dient zur Messgasförderung über den Ejektor in der Mess- und Steuereinheit. Der Luftanschluss zum Ejektor erfolgt über flexiblen Schlauch NW 25. Aus dem Ejektor wird gleichzeitig in die Messzelle ein Teilstrom zur Reinhaltung der optischen Bauteile geliefert.

Die Gebläsesteuerung mit Frequenzumrichter steuert die Motordrehzahl und damit die Gebläseleistung für einen optimalen Messgasdurchfluss im vorgegeben Nennbereich.

Abb. 14: Gebläseeinheit



- 1 Gebläse
- 2 Schlauch NW 25
- 3 Grundplatte
- 4 Luftfilter mit integriertem Vorfilter
- 5 Gebläsesteuerung

Für den Einsatz im Freien ist eine Wetterschutzhaube lieferbar (siehe "Wetterschutzhaube für Gebläseeinheit", Seite 111).

# 2.3.6 Optionen

# 2.3.6.1 Rückspüleinrichtung

Baugruppe (siehe "Mess- und Steuereinheit (ohne Wetterschutzhaube, mit Option Rückspülung und Abdeckung unten)", Seite 20) zur Rückspülung der Entnahmeleitung (Schlauch und Messgassonde), bestehend aus:

- Magnetventil zum Anschluss von Instrumentenluft,
- Kugelhahn in der Entnahmeleitung zum Absperren des Thermozyklons während des Spülvorganges.

Die Rückspülung wird automatisch während der Funktionskontrolle gestartet. Zusätzlich kann ein Spülvorgang manuell durch Schließen des Digitaleinganges DI4 mit einem externem Schalter ausgelöst werden.

Während des Spülvorganges befindet sich das Messsystem im Zustand "Wartung". Der Spülvorgang wird am LC-Display angezeigt.

Bei späterer Nachrüstung wird diese Option durch ein Codewort freigeschalten (im Lieferumfang enthalten).



Auf Anfrage kann die Option Rückspülung auch für den Anschluss von Wasser als Spülmedium geliefert werden.

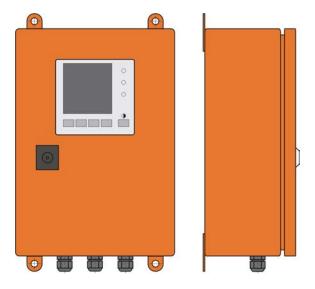
### 2.3.6.2 Beheizter Entnahmeschlauch

In speziellen Einsatzfällen (z.B. sehr niedrige Gastemperatur und hohe Gasfeuchte, sehr niedrige Umgebungstemperaturen, Begrenzung der Heizertemperaturen) kann es zweckmäßig sein, die Entnahmeleitung zusätzlich zu beheizen (siehe "Entnahme- und Rückführschlauch", Seite 19). Der standardmäßig verwendete Entnahmeschlauch kann dazu durch einen fertig konfektionierten Schlauch mit Heizung ersetzt werden. Die Mess- und Steuereinheit muss dafür speziell angepasst sein (Typschlüssel siehe "Mess- und Steuereinheit", Seite 19).

Der Silikonschaumschlauch zur Wärmedämmung kann auch nachträglich über die vorhandene Entnahmeleitung montiert werden.

Die Gastemperatur am Eingang des Thermozyklons wird bei dieser Option durch einen zusätzlichen Temperaturfühler überwacht (Pos. 3 in siehe "Mess- und Steuereinheit (ohne Wetterschutzhaube, mit Option Rückspülung und Abdeckung unten)", Seite 20).

### 2.3.6.3 Remote-Einheit


Modul mit LC-Display zur Messwert- und Statusanzeige, Datenabfrage und Parametrierung, Der Anschluss an die Systemschnittstelle (RS485) in der Steuereinheit erfolgt über ein bauseits zu installierendes Kabel.

Abhängig von der Entfernung zur Mess- und Steuereinheit sind folgende Aderquerschnitte erforderlich:

| max. Kabellänge in m | Aderquerschnitt in mm <sup>2</sup> |  |
|----------------------|------------------------------------|--|
| 120                  | 0,14                               |  |
| 250                  | 0,25                               |  |
| 500                  | 0,5                                |  |
| 1000                 | 1,0                                |  |

Optional kann die Remote-Einheit mit integriertem Netzteil für separate Spannungsversorgung geliefert werden (empfehlenswert bei größeren Entfernungen zur Mess- und Steuereinheit).

Abb. 15: Remote-Einheit



# 2.3.6.4 Abdeckung unten

Dieser Baugruppe dient als zusätzlicher Schutz des Messsystems bei niedrigen Umgebungstemperaturen. Sie wird an die Grundplatte der Mess- und Steuereinheit montiert und schließt die Wetterschutzhaube unten ab.

Abb. 16: Abdeckung unten



# 2.3.6.5 Prüfmittel für Linearitätstest

Die korrekte Messfunktion kann durch einen Linearitätstest überprüft werden (siehe Serviceanleitung). Dazu werden Filtergläser mit definierten Transmissionswerten in den Strahlengang gesetzt und die Werte mit den vom Messsystem gemessenen verglichen. Bei Übereinstimmung innerhalb der zulässigen Toleranz arbeitet das Messsystem korrekt. Die für die Überprüfung benötigten Filtergläser mit Halterung sind einschließlich Tragekoffer lieferbar.

Produktbeschreibung FWE200DH

# 2.4 SOPAS ET (PC-Programm)

SOPAS ET ist eine SICK-Software zum einfachen Bedienen und Parametrieren des FWE200DH.

SOPAS ET läuft auf einem Laptop/PC, der über eine USB-Leitung oder Ethernetschnittstelle (Option) an FWE200DH angeschlossen wird.

Die vorzunehmenden Einstellungen werden durch die vorhandenen Menüs sehr vereinfacht. Darüber hinaus werden weitere Funktionen (z.B. Datenspeicherung, Grafikanzeige) angeboten.

SOPAS ET wird auf der Produkt-CD mitgeliefert.

# 3 Montage und Installation

# 3.1 Projektierung

Die nachfolgende Tabelle gibt eine Übersicht über die notwendigen Projektierungsarbeiten als Voraussetzung für eine problemlose Montage und spätere Gerätefunktion. Sie können diese Tabelle als Checkliste nutzen und die abgearbeiteten Schritte abhaken.

| Aufgabe                                | Anforderungen                                                                                                                                                                                                       |                                                                                                                                                         | Arbeitsschritt                                                                                                                                                                                             | <b>√</b> |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Gerätekompo-<br>nenten festlegen       | Ein- und Auslaufstrecken<br>gemäß DIN EN 13284-1<br>(Einlauf mind. 5x hydrauli-<br>scher Durchmesser d <sub>h</sub> , Aus-<br>lauf mind. 3x d <sub>h</sub> ; Abstand<br>zur Kaminöffnung mind. 5x<br>d <sub>h</sub> | bei runden und quadratischen Kanälen:<br>d <sub>h</sub> = Kanaldurchmesser<br>bei rechteckigen Kanälen:<br>d <sub>h</sub> = 4x Querschnitt durch Umfang | <ul> <li>bei Neuanlagen Vorgaben einhalten,</li> <li>bei bestehenden Anlagen bestmögliche Stelle<br/>auswählen;</li> <li>bei zu kurzen Ein-/Auslaufstrecken: Einlaufstrecke &gt; Auslaufstrecke</li> </ul> |          |
|                                        | homogene Strömungs-verteilung     repräsentative Staubverteilung                                                                                                                                                    | im Bereich der Ein- und Auslaufstrecken<br>möglichst keine Umlenkungen, Quer-<br>schnittveränderungen, Zu- und Ablei-<br>tungen, Klappen, Einbauten     | Falls Bedingungen nicht gewährleistet<br>sind, Strömungsprofil gemäß DIN EN<br>13284-1 bestimmen und bestmögliche<br>Stelle auswählen                                                                      |          |
|                                        | Einbaulage Messgassonde                                                                                                                                                                                             | Einbauwinkel zur Horizontalen 15°; bei<br>waagerecht oder schräg verlaufenden<br>Kanälen auch senkrechter Anbau von<br>oben möglich                     | bestmögliche Stelle auswählen                                                                                                                                                                              |          |
|                                        | Zugänglichkeit, Unfallverhütung                                                                                                                                                                                     | Die Gerätekomponenten müssen<br>bequem und sicher erreichbar sein                                                                                       | ggf. Bühnen oder Podeste vorsehen                                                                                                                                                                          |          |
|                                        | schwingungsfreier Anbau                                                                                                                                                                                             | Beschleunigungen < 1 g                                                                                                                                  | Vibrationen durch geeignete Maßnahmen verhindern/reduzieren                                                                                                                                                |          |
|                                        | Umgebungsbedingungen                                                                                                                                                                                                | Grenzwerte gemäß Techn. Daten (siehe "Technische Daten", Seite 104)                                                                                     | Falls notwendig, Gerätekomponenten einhausen                                                                                                                                                               |          |
|                                        | Ansaugluft für Gebläseein-<br>heit                                                                                                                                                                                  | möglichst wenig Staub, kein Öl, Feuchtigkeit, korrosive Gase                                                                                            | bestmögliche Stelle für Ansaugort wählen<br>erforderliche Spülluftschlauchlänge<br>bestimmen                                                                                                               |          |
| Geräte-kompo-<br>nenten auswäh-<br>len | Kanalinnendurchmesser,<br>Isolierung, Wandstärke                                                                                                                                                                    | Nennlänge und Material der Messgassonde                                                                                                                 | Geeignete Komponente gemäß siehe "Technische Daten", Seite 104 auswählen                                                                                                                                   |          |
|                                        | Gastemperatur                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                            |          |
|                                        | Versorgungsspannung,<br>Kanalinnendruck                                                                                                                                                                             | Typ der Mess- und Steuereinheit und<br>Gebläseeinheit                                                                                                   |                                                                                                                                                                                                            |          |
| war a talan an                         | Zugänglichkeit                                                                                                                                                                                                      | leicht und sicher                                                                                                                                       | ggf. Bühnen oder Podeste vorsehen                                                                                                                                                                          |          |
|                                        | Abstände zur Messebene                                                                                                                                                                                              | keine gegenseitige Beeinflussung von<br>Kalibriersonde und FWE200DH                                                                                     | ausreichenden Abstand zw. Mess- und<br>Kalibrierebene (ca. 500 mm) vorsehen                                                                                                                                |          |
| Spannungsver-<br>sorgung planen        | Betriebsspannung, Leistungsbedarf                                                                                                                                                                                   | gemäßTechn. Daten (siehe "Technische<br>Daten", Seite 104)                                                                                              | ausreichende Kabelquerschnitte und<br>Absicherung planen                                                                                                                                                   |          |



# HINWEIS:

▶ Bei der Auslegung von Halterungen und Festigkeit von Anbaustellen für Mess- und Steuereinheit und Gebläseeinheit die Massen dieser Komponenten berücksichtigen.

# 3.2 Montage

Alle Montagearbeiten sind bauseits auszuführen. Dazu zählen:

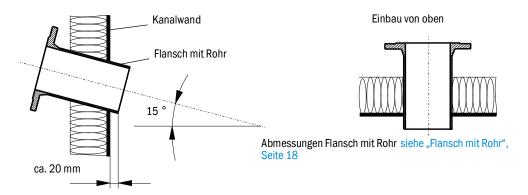
- Flansch mit Rohr einbauen,
- ► Mess- und Steuereinheit montieren,
- Gebläseeinheit montieren.



# WARNUNG:

- Bei allen Montagearbeiten die einschlägigen Sicherheitsbestimmungen sowie die Sicherheitshinweise in Kapitel 1 beachten.
- ► Montagearbeiten an Anlagen mit Gefahrpotenzial (heiße oder aggressive Gase, höherer Kanalinnendruck) nur bei Anlagenstillstand durchführen.
- Geeignete Schutzmaßnahmen gegen mögliche örtliche oder anlagenbedingte Gefahren ergreifen.

### Hilfsmittel

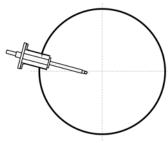

 Silikonfett (für O-Ringe für z.B. Eintrittsdüse, Mischrohr Ejektor und Teflonteile in der Messzelle und Zwischendüse darüber)

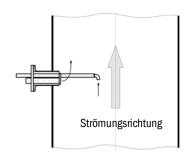
# 3.2.1 Flansch mit Rohr einbauen

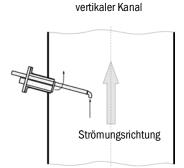
Der Einbau muss so vorgenommen werden, dass entstehendes Kondensat in den Kanal zurückfließen kann (siehe "Einbau des Flansches mit Rohr", Seite 32). Dabei ist die Ausrichtung der Messgassonde gemäß siehe "Einbaurichtung Messgassonde", Seite 33 zu beachten.

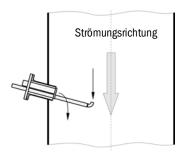
Bei waagerecht oder schräg verlaufenden Kanälen ist auch ein senkrechter Einbau von oben möglich.

Abb. 17: Einbau des Flansches mit Rohr





+**i** 


Falls keine im Lieferumfang vorhandenen Flansche mit Rohr (siehe "Flansch mit Rohr", Seite 107) eingesetzt werden sollen oder können (z.B. an GfK-Kanälen), müssen diese bauseits unter Beachtung der Sondenabmessungen (siehe "Messgassonde", Seite 107 und siehe "Flansch mit Rohr", Seite 107) gefertigt werden.


Abb. 18: Einbaurichtung Messgassonde

horizontaler Kanal









### Durchzuführende Arbeiten

- Anbaustelle ausmessen und Montageort anzeichnen.
- Isolierung (sofern vorhanden) entfernen.
- Passende Öffnung entsprechend Einbaulage in die Kanalwand schneiden; bei Stein- und Betonkaminen ausreichend großes Loch bohren (Rohrdurchmesser Flanschrohr siehe "Flansch mit Rohr", Seite 18).



# **HINWEIS:**

- !► Abgetrennte Teile nicht in den Kanal fallen lassen.
- Flansch mit Rohr in die Öffnung setzen und anschweißen (Stahlkanäle).



- An Stein oder Betonkanälen ggf. Flansch mit Rohr an Ankerplatte anschweißen und diese am Kanal befestigen.
- Bei dünnwandigen Kanälen zusätzlich Knotenbleche anschweißen.
- Flanschöffnung nach dem Anbau abdecken, um den Austritt von Gas zu verhindern.

### 3.2.2 Mess- und Steuereinheit montieren

Bei der Festlegung des Montageorts sind folgende Punkte zu berücksichtigen:

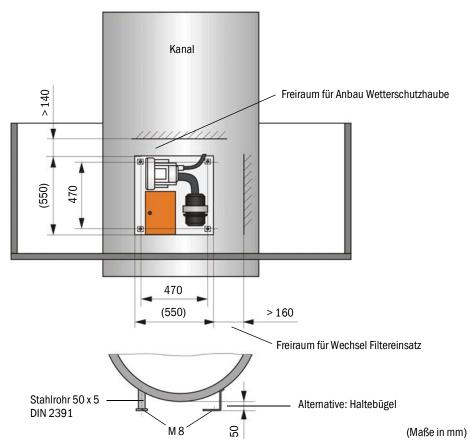
- Für den Anbau der Mess- und Steuereinheit (1) ist eine senkrechte, ebene Fläche an gut zugänglicher und geschützter Stelle mit Abmessungen gemäß Abb. "Montagemaße" erforderlich.
- Die Abstände zur Messgassonde (2) sind einzuhalten.
- Der Anbauort muss möglichst schwingungsarm sein.
- Die Umgebungstemperaturen müssen innerhalb des zulässigen Bereiches liegen (siehe "Technische Daten", Seite 104), mögliche Strahlungswärme ist zu berücksichtigen.
- Für Transport und Anbau der Mess- und Steuereinheit sind geeignete Hebevorrichtungen und ausreichender Freiraum erforderlich (Masse siehe "Technische Daten", Seite 104).

813 150... 200 286 650 63 70 0 722 650 30 Ø 14 24 250 mind. 15° empfohlene 500 ... max. 900 Position < 250 100 alternativ mögliche Position Abstand so groß wie für Sondenmontage notwendig Kanalwand 3 3 = Flansch mit Rohr 1 365 Wetterschutzhaube im aufgeklappten Zustand mind. 700 Freiraum für Service (Maße in mm) mind. 1385

Abb. 19: Montagemaße

# **Durchzuführende Arbeiten**

- ▶ Befestigungspunkte gemäß siehe "Montagemaße", Seite 34 vorbereiten und anbringen.
- ► Mess- und Steuereinheit anbauen.


Die Mess- und Steuereinheit kann auch an ein optional lieferbares Gestell (siehe "Gestell", Seite 110) montiert werden

### 3.2.3 Gebläseeinheit montieren

Bei der Festlegung des Montageorts sind folgende Punkte zu berücksichtigen:

- Es ist eine senkrechte, ebene Fläche an gut zugänglicher und geschützter Stelle mit möglichst sauberer Luft erforderlich.
- Die Entfernung zur Mess- und Steuereinheit darf maximal 10 m betragen.
- Die Ansaugtemperatur muss innerhalb des zulässigen Bereiches liegen (siehe "Technische Daten", Seite 104). In ungünstigen Fällen ist ein Ansaugschlauch oder Rohr an eine Stelle mit besseren Bedingungen zu legen.
- Es muss ausreichend Freiraum für den Wechsel des Filtereinsatzes und zum Anbringen und Abheben der Wetterschutzhaube bei Anbau im Freien vorhanden sein (siehe "Anordnung und Montagemaße Gebläseeinheit (Maße in mm)", Seite 35).
- Für Transport und Anbau der Gebläseeinheit sind geeignete Hebevorrichtungen und ausreichender Freiraum erforderlich (Masse siehe "Technische Daten", Seite 104).

Abb. 20: Anordnung und Montagemaße Gebläseeinheit (Maße in mm)



# Montagearbeiten

- ► Halterung anfertigen (siehe "Anordnung und Montagemaße Gebläseeinheit (Maße in mm)", Seite 35).
- ► Gebläseeinheit mit 4 Schrauben M8 befestigen.
- ▶ Prüfen, ob der Filtereinsatz im Filtergehäuse vorhanden ist; falls notwendig, Filtereinsatz einsetzen.



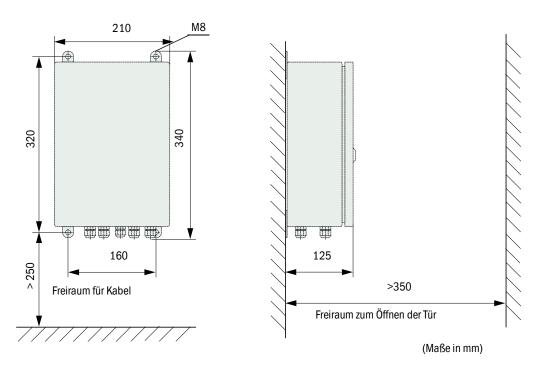
Die Gebläseeinheit kann auch an ein optional lieferbares Gestell (siehe "Gestell", Seite 110) montiert werden

# Wetterschutzhaube für Gebläseeinheit

Die Wetterschutzhaube (siehe "Wetterschutzhaube für Gebläseeinheit", Seite 111) besteht aus Haube und Schlossset.

# Montage:

- ► Schlossstücke aus dem Schlossset auf die Grundplatte montieren
- ► Wetterschutzhaube von oben aufsetzen.
- Halteriegel in die Gegenstücke seitlich einführen, drehen und einrasten lassen.


# 3.2.4 Option Remote-Einheit montieren

Die Remote-Einheit ist an gut zugänglicher und geschützter Stelle zu montieren (siehe "Montagemaße Remote-Einheit", Seite 36). Dabei sind folgende Punkte zu berücksichtigen:

- Umgebungstemperaturbereich gemäß Technischer Daten einhalten; dabei mögliche Strahlungswärme berücksichtigen (ggf. abschirmen).
- Vor direkter Sonneneinstrahlung schützen.
- Möglichst schwingungsarmen Montageort wählen; ggf. Schwingungen dämpfen.
- Ausreichend Freiraum für Kabel und zum Öffnen der Tür berücksichtigen.

# Montagemaße

Abb. 21: Montagemaße Remote-Einheit



Die Remote-Einheit kann bis 1000 m von der Mess- und Steuereinheit entfernt montiert werden. Für einen problemlosen Zugang empfehlen wir daher, diese in einem Kontrollraum (Messwarte o.ä.) einzubauen. Die Kommunikation mit dem Messsystem für Parametrierung oder Erkennung von Störungs- oder Fehlerursachen wird damit erheblich erleichtert.

Beim Anbau im Freien ist es zweckmäßig, einen bauseits zu erstellenden Wetterschutz (Blechdach o. ä.) vorzusehen.

## 3.3 Installation



#### WARNUNG:

- Bei allen Installationsarbeiten die einschlägigen Sicherheitsbestimmungen sowie die Sicherheitshinweise in Kapitel 1 beachten.
- Geeignete Schutzmaßnahmen gegen mögliche örtliche oder anlagenbedingte Gefahren ergreifen.



#### **HINWEIS:**

- Während der Installation muss die Spannungsversorgung zum FWE200DH gemäß EN61010-1 durch einen Trennschalter/Leistungsschalter abgeschaltet werden können.
- Die Versorgung darf nur vom ausführenden Personal unter Beachtung der gültigen Sicherheitsbestimmungen nach Abschluss der Arbeiten bzw. zu Prüfzwecken wieder aktiviert werden.

#### 3.3.1 Allgemeines

#### Voraussetzungen

Vor Beginn der Installationsarbeiten müssen die in "Montage" beschriebenen Montagearbeiten ausgeführt sein.

Zur Spannungsversorgung des FWE200DH muss eine Netzspannung 1phasig

- 230 V AC 50/60 Hz mit Absicherung mind. 10 A oder
- 115 V AC 50/60 Hz mit Absicherung mind. 15 A

vorhanden sein.

#### Installationsarbeiten

Sofern nicht ausdrücklich mit Endress+Hauser oder autorisierten Vertretungen vereinbart, sind alle Installationsarbeiten bauseits auszuführen. Diese bestehen aus:

- Verlegung von Stromversorgungs- und Signalkabeln.
- Installation von Schaltern und Netzsicherungen.
- Anschluss der Gebläseeinheit an die entsprechenden Klemmen in der Steuereinheit der Mess- und Steuereinheit.
- Anschluss der Kabel für Analog- und Statussignale und Digitaleingänge an die Klemmen auf der E/A-Platine in der Steuereinheit.
- Anschluss der Mess- und Steuereinheit an die Netzspannung.



#### **HINWEIS:**

- Nur Kabel verwenden, die für Temperaturen bis 75°C spezifiziert sind (EN 61010-1:2011 5.1.8 Anschlusskästen von Feldgeräten).
- Die Steuereinheit kann aufgrund von Eigenerwärmung bei maximaler Umgebungstemperatur eine Temperatur von > 60°C erreichen.
- Ausreichende Leitungsquerschnitte planen (siehe "Technische Daten", Seite 104).
- Vor Anschluss der Komponenten überprüfen, ob die vorhandene Netzspannung/Frequenz mit der angelieferten Ausführung von Mess- und Steuereinheit und Gebläseeinheit übereinstimmt.

## 3.3.2 Steuereinheit anschließen

▶ Prüfen, ob die Umschalter (1) für Heizerspannung auf die am Installationsort vorhandene Versorgungsspannung eingestellt sind; falls nicht, entsprechend umschalten.

Abb. 22: Schalter für Versorgungsspannung in der Mess- und Steuereinheit

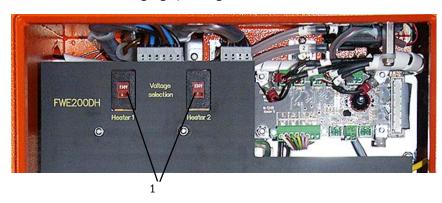
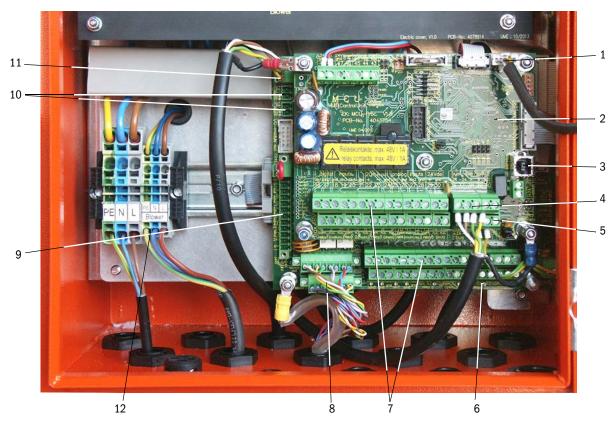
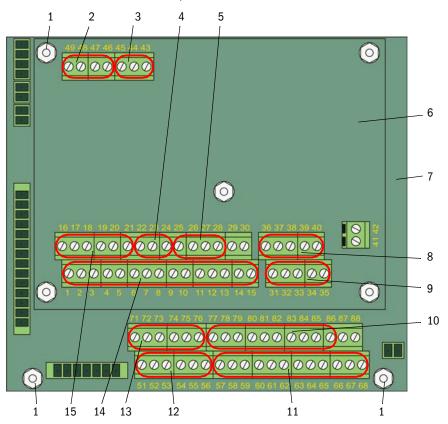




Abb. 23: Anschlüsse der Steuereinheit




- 1 Anschluss für Display-Modul
- Prozessorplatine für Datenerfassung/verarbeitung und Signalein-/ausgabe (MCU)
- 3 USB-Steckverbinder
- 4 Anschlüsse für Messsensor (DHSP200)
- 5 Anschlüsse für Prozessorplatine Systemsteuerung
- 6 Prozessorplatine Systemsteuerung (FWE200DH)
- 7 Anschlüsse für Signalein- und ausgänge
- 8 Anschlüsse für Steuerkabel Gebläsesteuerung
- 9 Anschlüsse für Option Rückspülung
- 10 Anschluss für externe Temperatursensoren
- 11 Anschluss für Remote-Einheit

#### 3.3.2.1 Kabel für Digital-, Analog- und Statussignale anschließen

► Ausgänge für Digital-, Analog- und Statussignale über geeignete Kabel (z.B. LiYCY 4x2x0,5 mm²) gemäß Abb. "Anschlüsse der Prozessorplatinen" und der nachfolgenden Tabellen anschließen.

Abb. 24: Anschlüsse der Prozessorplatinen



- 1 Anschluss für Kabelabschirmung
- 2 Versorgungsspannung 24 V DC
- 3 RS232
- 4 Anschluss für Analogausgang AO1
- 5 Anschlüsse für Analogeingänge Al1 und Al2
- 6 Prozessorplatine für Datenerfassung/verarbeitung und Signalein-/ausgabe (MCU)
- 7 Prozessorplatine Systemsteuerung (FWE200DH)
- 8 Anschlüsse für Messsensor (DHSP200) (werkseitig angeschlossen)
- 9 Anschlüsse für Prozessorplatine Systemsteuerung (FWE200DH) (werkseitig angeschlossen)
- 10 Anschlüsse für Analogeingänge Al3 bis Al6
- 11 Anschlüsse für Relais 6 bis 9 (bei vorhandener Option Erweiterte Kalibrierfunktion, → S. 28, §2.3.6.3)
- 12 Anschlüsse für Digitaleingänge DI5 bis DI8 (bei vorhandener Option Erweiterte Kalibrierfunktion, → S. 28, §2.3.6.3)
- 13 Anschlüsse für Analogausgänge AO2 und AO3
- 14 Anschlüsse für Relais 1 bis 5
- 15 Anschlüsse für Digitaleingänge DI1 bis DI4

# Anschlüsse auf Prozessorplatine für Datenerfassung/verarbeitung und Signalein-/ausgabe (MCU)

| Klemmen-Nr. | Anschluss          | Funktion                                                            |  |  |
|-------------|--------------------|---------------------------------------------------------------------|--|--|
| 1           | com                | Ausgang Relais 1 (Betrieb/Störung)                                  |  |  |
| 2           | n.c. <sup>1)</sup> |                                                                     |  |  |
| 3           | n.o.2)             |                                                                     |  |  |
| 4           | com                | Ausgang Relais 2 (Wartung)                                          |  |  |
| 5           | n.c.1)             |                                                                     |  |  |
| 6           | n.o.2)             |                                                                     |  |  |
| 7           | com                | Ausgang Relais 3 (Funktionskontrolle)                               |  |  |
| 8           | n.c.1)             |                                                                     |  |  |
| 9           | n.o.2)             |                                                                     |  |  |
| 10          | com                | Ausgang Relais 4 (Wartungsbedarf)                                   |  |  |
| 11          | n.c.1)             |                                                                     |  |  |
| 12          | n.o. <sup>2)</sup> |                                                                     |  |  |
| 13          | com                | Ausgang Relais 5 (Grenzwert)                                        |  |  |
| 14          | n.c.1)             |                                                                     |  |  |
| 15          | n.o. <sup>2)</sup> |                                                                     |  |  |
| 16          | d in1              | Digitaleingang DI1 (Start Funktionskontrolle)                       |  |  |
| 17          | d in2              | Digitaleingang DI2 (Setzen Wartungszustand)                         |  |  |
| 18          | gnd                | Masse für DI1 und DI2 (als Schirmanschluss für Signalkabel nutzbar) |  |  |
| 19          | d in3              | Digitaleingang DI3 (Spülluftüberwachung)                            |  |  |
| 20          | d in4              | Digitaleingang DI4 (Auslösen Option Rückspülung falls vorhanden)    |  |  |
| 21          | gnd                | Masse für DI3 und DI4 (als Schirmanschluss für Signalkabel nutzbar) |  |  |
| 22          | +                  | Analogausgang AO1                                                   |  |  |
| 23          | -                  |                                                                     |  |  |
| 24          | gnd                |                                                                     |  |  |
| 25          | a in1              | Analogeingang Al1                                                   |  |  |
| 26          | gnd                |                                                                     |  |  |
| 27          | a in2              | Analogeingang Al2                                                   |  |  |
| 28          | gnd                |                                                                     |  |  |

im stromlosen Zustand geschlossen (normal closed)

2): im stromlosen Zustand geöffnet (normal open)

## Anschlüsse auf Prozessorplatine für Systemsteuerung (FWE200DH)

| S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Klemmen-Nr. | Anschluss          | Funktion                                                            |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|---------------------------------------------------------------------|--|--|--|
| 53 gnd Masse für DI5 und DI6 54 din7 Digitaleingang DI6 (Ausgabe Kontrollwert auf AO) 55 din8 Digitaleingang DI8 (Ausgabe Nontrollwert auf AO) 56 gnd Masse für DI7 und DI8 (als Schirmanschluss für Signalkabel nutzbar) 57 com Ausgang Relais 6 für Ausgabe des letzten Verschmutzungswertes 58 n.c.1) 59 n.o.2) 60 com Ausgang Relais 7 für Ausgabe des letzten Kontrollwertes 61 n.o.2) 63 com Ausgang Relais 8 für Ausgabe des letzten Kontrollwertes 64 n.c.1) 65 n.o.2) 66 com Inicht belegt 67 n.c.1) 68 n.o.2) 71 + Analogausgang AO2 72 - Analogausgang AO2 73 gnd Masse (als Schirmanschluss für Signalkabel nutzbar) 74 + Analogausgang AO3 75 - Analogausgang AI3 78 - Analogeingang AI3 79 gnd Masse für AI3 und AI4 (als Schirmanschluss für Signalkabel nutzbar) 80 + Analogeingang AI4 81 - Analogeingang AI5 83 - Masse für AI5 und AI6 (als Schirmanschluss für Signalkabel nutzbar) 84 gnd Masse für AI5 und AI6 (als Schirmanschluss für Signalkabel nutzbar) 85 + Analogeingang AI6 86 - Analogeingang AI6 | 51          | d in5              | Digitaleingang DI5 (Umschaltung Kalibrierfunktion)                  |  |  |  |
| 54 din7 Digitaleingang DI6 (Ausgabe Kontrollwert auf AO) 55 din8 Digitaleingang DI8 (Ausgabe Nullwert auf AO) 56 gnd Masse für DI7 und DI8 (als Schirmanschluss für Signalkabel nutzbar) 57 com Ausgang Relais 6 für Ausgabe des letzten Verschmutzungswertes 58 n.c.1 59 n.o.2 60 com Ausgang Relais 7 für Ausgabe des letzten Kontrollwertes 61 n.c.1 62 n.o.2 63 com Ausgang Relais 8 für Ausgabe des letzten Nullwertes 64 n.c.1 65 n.o.2 66 com nicht belegt 67 n.c.1 68 n.o.2 71 + Analogausgang AO2 72 - 73 gnd Masse (als Schirmanschluss für Signalkabel nutzbar) 74 + Analogausgang AO3 75 - Masse (als Schirmanschluss für Signalkabel nutzbar) 77 + Analogeingang AI3 78 - Masse (als Schirmanschluss für Signalkabel nutzbar) 80 + Analogeingang AI4 81 - Analogeingang AI5 83 - Masse für AI3 und AI4 (als Schirmanschluss für Signalkabel nutzbar) 85 + Analogeingang AI6 86 - Analogeingang AI6 87 + 24 V D C für externe Spannungsversorgung (max. ca. 500 mA)                                                  | 52          | d in6              | Digitaleingang DI6 (Ausgabe Verschmutzungswert auf AO)              |  |  |  |
| Digitaleingang DI8 (Ausgabe Nullwert auf AO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53          | gnd                | Masse für DI5 und DI6                                               |  |  |  |
| Masse für DI7 und DI8 (als Schirmanschluss für Signalkabel nutzbar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54          | d in7              | Digitaleingang DI6 (Ausgabe Kontrollwert auf AO)                    |  |  |  |
| 57 com 58 n.c.1) 59 n.o.2) 60 com 61 n.c.1) 62 n.o.2) 63 com 64 n.c.1) 65 n.o.2) 66 com 61 n.c.1) 65 n.o.2) 66 n.o.2) 67 n.o.2) 68 n.o.2) 68 n.o.2) 69 n.o.2) 60 com 64 n.c.1) 65 n.o.2) 66 n.o.2) 67 n.o.2) 68 n.o.2) 69 n.o.2) 60 com 64 n.c.1) 65 n.o.2) 66 com 67 n.c.1) 68 n.o.2) 71 + Analogausgang AO2 72 - 73 gnd Masse (als Schirmanschluss für Signalkabel nutzbar) 74 + Analogausgang AO3 75 - 76 gnd Masse (als Schirmanschluss für Signalkabel nutzbar) 77 + Analogeingang AI3 78 - 79 gnd Masse für AI3 und AI4 (als Schirmanschluss für Signalkabel nutzbar) 80 + Analogeingang AI4 81 - 82 + Analogeingang AI5 83 - 84 gnd Masse für AI5 und AI6 (als Schirmanschluss für Signalkabel nutzbar) 85 + Analogeingang AI6 86 - 87 + 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                        | 55          | d in8              | Digitaleingang DI8 (Ausgabe Nullwert auf AO)                        |  |  |  |
| 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56          | gnd                | Masse für DI7 und DI8 (als Schirmanschluss für Signalkabel nutzbar) |  |  |  |
| 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 57          | com                | Ausgang Relais 6 für Ausgabe des letzten Verschmutzungswertes       |  |  |  |
| 60 com 61 n.c.1) 62 n.o.2) 63 com Ausgang Relais 8 für Ausgabe des letzten Kontrollwertes 64 n.c.1) 65 n.o.2) 66 com nicht belegt 67 n.c.1) 68 n.o.2) 71 + Analogausgang AO2 72 - Masse (als Schirmanschluss für Signalkabel nutzbar) 74 + Analogausgang AO3 75 - Masse (als Schirmanschluss für Signalkabel nutzbar) 77 + Analogeingang AI3 78 - Masse für AI3 und AI4 (als Schirmanschluss für Signalkabel nutzbar) 80 + Analogeingang AI4 81 - Analogeingang AI5 83 - Masse für AI5 und AI6 (als Schirmanschluss für Signalkabel nutzbar) 85 + Analogeingang AI6 86 - Analogeingang AI6                                                                                                                                                                                                                                                                                                                                                                                                                                       | 58          | n.c. <sup>1)</sup> |                                                                     |  |  |  |
| 61 n.c.1) 62 n.o.2) 63 com Ausgang Relais 8 für Ausgabe des letzten Nullwertes 64 n.c.1) 65 n.o.2) 66 com nicht belegt 67 n.c.1) 68 n.o.2) 71 + Analogausgang AO2 72 - 73 gnd Masse (als Schirmanschluss für Signalkabel nutzbar) 74 + Analogausgang AO3 75 - 76 gnd Masse (als Schirmanschluss für Signalkabel nutzbar) 77 + Analogeingang AI3 78 - 79 gnd Masse für AI3 und AI4 (als Schirmanschluss für Signalkabel nutzbar) 80 + Analogeingang AI4 81 - Analogeingang AI5 82 + Analogeingang AI5 83 - Masse für AI5 und AI6 (als Schirmanschluss für Signalkabel nutzbar) 85 + Analogeingang AI6 86 - 4 87 + 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                       | 59          | n.o.2)             |                                                                     |  |  |  |
| 61 n.c.1) 62 n.o.2) 63 com Ausgang Relais 8 für Ausgabe des letzten Nullwertes 64 n.c.1) 65 n.o.2) 66 com nicht belegt 67 n.c.1) 68 n.o.2) 71 + Analogausgang AO2 72 - 73 gnd Masse (als Schirmanschluss für Signalkabel nutzbar) 74 + Analogausgang AO3 75 - 76 gnd Masse (als Schirmanschluss für Signalkabel nutzbar) 77 + Analogeingang AI3 78 - 79 gnd Masse für AI3 und AI4 (als Schirmanschluss für Signalkabel nutzbar) 80 + Analogeingang AI4 81 - Analogeingang AI5 82 + Analogeingang AI5 83 - Masse für AI5 und AI6 (als Schirmanschluss für Signalkabel nutzbar) 85 + Analogeingang AI6 86 - 4 87 + 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                       | 60          | com                | Ausgang Relais 7 für Ausgabe des letzten Kontrollwertes             |  |  |  |
| 63 com 64 n.c.¹ 65 n.o.²  66 com 66 n.c.¹  68 n.o.²  71 + Analogausgang AO2  72 -  73 gnd Masse (als Schirmanschluss für Signalkabel nutzbar)  74 + Analogausgang AO3  75 -  76 gnd Masse (als Schirmanschluss für Signalkabel nutzbar)  77 + Analogeingang AI3  78 -  79 gnd Masse für AI3 und AI4 (als Schirmanschluss für Signalkabel nutzbar)  80 + Analogeingang AI4  81 -  82 + Analogeingang AI5  83 -  84 gnd Masse für AI5 und AI6 (als Schirmanschluss für Signalkabel nutzbar)  85 + Analogeingang AI6  86 -  87 + 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                                                                                                          | 61          | n.c. <sup>1)</sup> |                                                                     |  |  |  |
| 64         n.c.¹)           65         n.o.²)           66         com           67         n.c.¹)           68         n.o.²)           71         +           72         -           73         gnd           Masse (als Schirmanschluss für Signalkabel nutzbar)           74         +           75         -           76         gnd           Masse (als Schirmanschluss für Signalkabel nutzbar)           77         +           Analogeingang Al3           79         gnd           Masse für Al3 und Al4 (als Schirmanschluss für Signalkabel nutzbar)           80         +           Analogeingang Al4           81         -           82         +           Analogeingang Al5           83         -           84         gnd           Masse für Al5 und Al6 (als Schirmanschluss für Signalkabel nutzbar)           85         +           Analogeingang Al6           86         -           87         +           24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                               | 62          | n.o.2)             |                                                                     |  |  |  |
| 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63          | com                | Ausgang Relais 8 für Ausgabe des letzten Nullwertes                 |  |  |  |
| 66 com n.c. <sup>1)</sup> 68 n.o. <sup>2)</sup> 71 + Analogausgang AO2  72 - 73 gnd Masse (als Schirmanschluss für Signalkabel nutzbar)  74 + Analogausgang AO3  75 - 76 gnd Masse (als Schirmanschluss für Signalkabel nutzbar)  77 + Analogeingang AI3  78 - 79 gnd Masse für AI3 und AI4 (als Schirmanschluss für Signalkabel nutzbar)  80 + Analogeingang AI4  81 - Analogeingang AI5  82 + Analogeingang AI5  83 - Masse für AI5 und AI6 (als Schirmanschluss für Signalkabel nutzbar)  85 + Analogeingang AI6  86 - 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64          |                    | Transparing Frontier of the Francisco                               |  |  |  |
| 67 n.c. <sup>1)</sup> 68 n.o. <sup>2)</sup> 71 + Analogausgang AO2  72 - 9nd Masse (als Schirmanschluss für Signalkabel nutzbar)  74 + Analogausgang AO3  75 - 76 gnd Masse (als Schirmanschluss für Signalkabel nutzbar)  77 + Analogeingang AI3  78 - 9nd Masse für AI3 und AI4 (als Schirmanschluss für Signalkabel nutzbar)  80 + Analogeingang AI4  81 - Analogeingang AI4  81 - Analogeingang AI5  82 + Analogeingang AI5  83 - 4 Analogeingang AI5  84 gnd Masse für AI5 und AI6 (als Schirmanschluss für Signalkabel nutzbar)  85 + Analogeingang AI6  86 - 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                                                                    | 65          | n.o. <sup>2)</sup> |                                                                     |  |  |  |
| 67 n.c. <sup>1)</sup> 68 n.o. <sup>2)</sup> 71 + Analogausgang AO2  72 - 9nd Masse (als Schirmanschluss für Signalkabel nutzbar)  74 + Analogausgang AO3  75 - 76 gnd Masse (als Schirmanschluss für Signalkabel nutzbar)  77 + Analogeingang AI3  78 - 9nd Masse für AI3 und AI4 (als Schirmanschluss für Signalkabel nutzbar)  80 + Analogeingang AI4  81 - Analogeingang AI4  81 - Analogeingang AI5  82 + Analogeingang AI5  83 - 4 Analogeingang AI5  84 gnd Masse für AI5 und AI6 (als Schirmanschluss für Signalkabel nutzbar)  85 + Analogeingang AI6  86 - 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                                                                    | 66          | com                | nicht belegt                                                        |  |  |  |
| 71 + Analogausgang AO2  72 - 73 gnd Masse (als Schirmanschluss für Signalkabel nutzbar)  74 + Analogausgang AO3  75 - 76 gnd Masse (als Schirmanschluss für Signalkabel nutzbar)  77 + Analogeingang AI3  78 - 79 gnd Masse für AI3 und AI4 (als Schirmanschluss für Signalkabel nutzbar)  80 + Analogeingang AI4  81 - 82 + Analogeingang AI5  82 + Analogeingang AI5  83 - Masse für AI5 und AI6 (als Schirmanschluss für Signalkabel nutzbar)  85 + Analogeingang AI6  86 - 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67          | n.c. <sup>1)</sup> |                                                                     |  |  |  |
| 72 - 73 gnd Masse (als Schirmanschluss für Signalkabel nutzbar)  74 + Analogausgang AO3  75 - 76 gnd Masse (als Schirmanschluss für Signalkabel nutzbar)  77 + Analogeingang AI3  78 - 79 gnd Masse für AI3 und AI4 (als Schirmanschluss für Signalkabel nutzbar)  80 + Analogeingang AI4  81 - 82 + Analogeingang AI5  83 - 84 gnd Masse für AI5 und AI6 (als Schirmanschluss für Signalkabel nutzbar)  85 + Analogeingang AI6  86 - 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 68          | n.o. <sup>2)</sup> |                                                                     |  |  |  |
| 72 - 73 gnd Masse (als Schirmanschluss für Signalkabel nutzbar) 74 + Analogausgang AO3 75 - 76 gnd Masse (als Schirmanschluss für Signalkabel nutzbar) 77 + Analogeingang AI3 78 - 79 gnd Masse für AI3 und AI4 (als Schirmanschluss für Signalkabel nutzbar) 80 + Analogeingang AI4 81 - 82 + Analogeingang AI5 83 - 84 gnd Masse für AI5 und AI6 (als Schirmanschluss für Signalkabel nutzbar) 85 + Analogeingang AI6 86 - 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71          | +                  | Analogausgang AO2                                                   |  |  |  |
| 74 + Analogausgang AO3  75 - 76 gnd Masse (als Schirmanschluss für Signalkabel nutzbar)  77 + Analogeingang AI3  78 - 79 gnd Masse für AI3 und AI4 (als Schirmanschluss für Signalkabel nutzbar)  80 + Analogeingang AI4  81 - 82 + Analogeingang AI5  83 - Masse für AI5 und AI6 (als Schirmanschluss für Signalkabel nutzbar)  84 gnd Masse für AI5 und AI6 (als Schirmanschluss für Signalkabel nutzbar)  85 + Analogeingang AI6  86 - 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72          | -                  |                                                                     |  |  |  |
| 75 - 76 gnd Masse (als Schirmanschluss für Signalkabel nutzbar)  77 + Analogeingang Al3  78 - 79 gnd Masse für Al3 und Al4 (als Schirmanschluss für Signalkabel nutzbar)  80 + Analogeingang Al4  81 - 82 + Analogeingang Al5  83 - 84 gnd Masse für Al5 und Al6 (als Schirmanschluss für Signalkabel nutzbar)  85 + Analogeingang Al6  86 - 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73          | gnd                | Masse (als Schirmanschluss für Signalkabel nutzbar)                 |  |  |  |
| 75 - 9nd Masse (als Schirmanschluss für Signalkabel nutzbar) 77 + Analogeingang Al3 78 - 79 9nd Masse für Al3 und Al4 (als Schirmanschluss für Signalkabel nutzbar) 80 + Analogeingang Al4 81 - 82 + Analogeingang Al5 83 - 84 9nd Masse für Al5 und Al6 (als Schirmanschluss für Signalkabel nutzbar) 85 + Analogeingang Al6 86 - 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74          | +                  | Analogausgang AO3                                                   |  |  |  |
| 77 + Analogeingang Al3  78 - 79 gnd Masse für Al3 und Al4 (als Schirmanschluss für Signalkabel nutzbar)  80 + Analogeingang Al4  81 - 82 + Analogeingang Al5  83 - Masse für Al5 und Al6 (als Schirmanschluss für Signalkabel nutzbar)  85 + Analogeingang Al6  86 - 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75          | -                  |                                                                     |  |  |  |
| 78 - 79 gnd Masse für Al3 und Al4 (als Schirmanschluss für Signalkabel nutzbar) 80 + Analogeingang Al4 81 - 82 + Analogeingang Al5 83 - 84 gnd Masse für Al5 und Al6 (als Schirmanschluss für Signalkabel nutzbar) 85 + Analogeingang Al6 86 - 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 76          | gnd                | Masse (als Schirmanschluss für Signalkabel nutzbar)                 |  |  |  |
| 78 - 79 gnd Masse für Al3 und Al4 (als Schirmanschluss für Signalkabel nutzbar)  80 + Analogeingang Al4  81 - 82 + Analogeingang Al5  83 - 84 gnd Masse für Al5 und Al6 (als Schirmanschluss für Signalkabel nutzbar)  85 + Analogeingang Al6  86 - 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 77          | +                  | Analogeingang Al3                                                   |  |  |  |
| 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 78          | -                  |                                                                     |  |  |  |
| 81 - 82 + Analogeingang AI5 83 - 84 gnd Masse für AI5 und AI6 (als Schirmanschluss für Signalkabel nutzbar) 85 + Analogeingang AI6 86 - 87 + 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 79          | gnd                | Masse für Al3 und Al4 (als Schirmanschluss für Signalkabel nutzbar) |  |  |  |
| 81 - 82 + Analogeingang AI5 83 - 84 gnd Masse für AI5 und AI6 (als Schirmanschluss für Signalkabel nutzbar) 85 + Analogeingang AI6 86 - 87 + 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80          | +                  | Analogeingang AI4                                                   |  |  |  |
| 83 - Masse für Al5 und Al6 (als Schirmanschluss für Signalkabel nutzbar)  85 + Analogeingang Al6  86 - 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 81          | -                  |                                                                     |  |  |  |
| 83 -  84 gnd Masse für Al5 und Al6 (als Schirmanschluss für Signalkabel nutzbar)  85 + Analogeingang Al6  86 -  87 + 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 82          | +                  | Analogeingang Al5                                                   |  |  |  |
| 85 + Analogeingang Al6 86 - 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 83          | -                  |                                                                     |  |  |  |
| 86 - 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 84          | gnd                | Masse für Al5 und Al6 (als Schirmanschluss für Signalkabel nutzbar) |  |  |  |
| 86 - 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85          | +                  | Analogeingang Al6                                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 86          | -                  |                                                                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87          | +                  | 24 V DC für externe Spannungsversorgung (max. ca. 500 mA)           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 88          | -                  |                                                                     |  |  |  |

im stromlosen Zustand geschlossen (normal closed)

2): im stromlosen Zustand geöffnet (normal open)

## 3.3.2.2 Gebläseeinheit und Versorgungsspannung anschließen

▶ Prüfen, ob der Umschalter (1) für Spannungsversorgung auf die am Installationsort vorhandene Versorgungsspannung eingestellt ist; falls nicht, entsprechend umschalten.

Bild 25 Schalter für Versorgungsspannung in der Gebläseeinheit



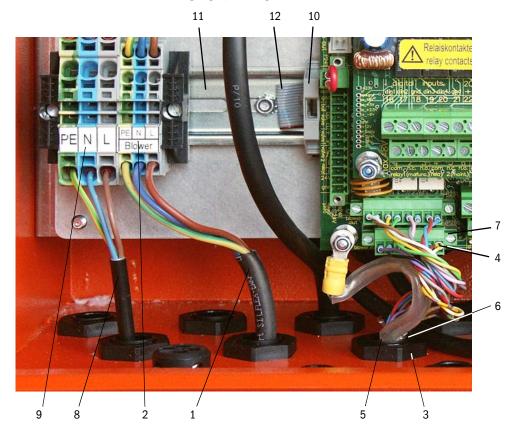



Abb. 26: Gebläseeinheit und Versorgungsspannung anschließen

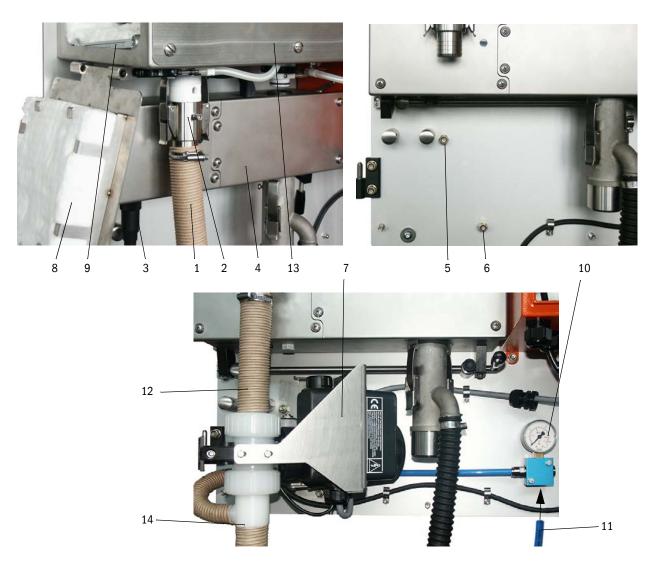
- Netzkabel der Gebläseeinheit (1) an die entsprechenden Klemmen (2 in der Steuereinheit anschließen.
- ► Mutter (3) von der PG-Verschraubung (Bestandteil des Steuerkabels) abschrauben.
- ► Steckverbinder (4) mit Steuerkabel (5) durch die Öffnung in der Steuereinheit (in Abb. "Gebläseeinheit und Versorgungsspannung anschließen" durch die PG-Verschraubung (6) geschlossen) schieben, PG-Verschraubung durch die Öffnung stecken und mit der Mutter verschrauben und Steckverbinder auf den Anschluss (7) auf der Prozessorplatine stecken
- ► Geeignetes 3-adriges Netzkabel (3) mit ausreichendem Querschnitt von der bauseitigen Spannungsversorgung an die entsprechenden Klemmen (9) in der Steuereinheit anschließen.
- Nicht benutzte Kabeldurchführungen mit Blindstopfen verschließen.



#### WARNUNG:

- Vor Zuschalten der Versorgungsspannung unbedingt die Verdrahtung überprüfen.
- ► Verdrahtungsänderungen nur im spannungsfreien Zustand vornehmen.

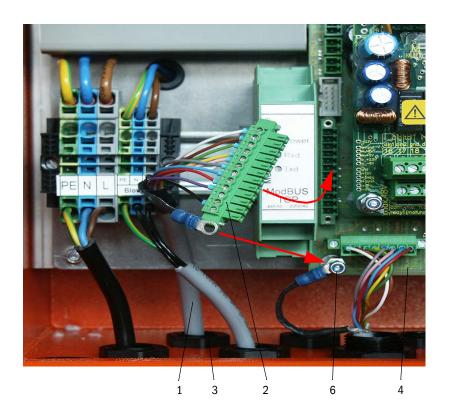
#### 3.3.3 Option Interfacemodul einbauen und anschließen


- ► Sicherung für Bandkabel (10) (siehe "Gebläseeinheit und Versorgungsspannung anschließen", Seite 43) auf der Hutschiene (11) lösen und Steckverbinder des Bandkabels (12) auf das Interfacemodul (siehe "Messsystem", Seite 111) aufstecken.
- ▶ Bauseitiges Netzwerkkabel durch eine freie PG-Verschraubung schieben, am Interfacemodul anschließen und Interfacemodul auf die Hutschiene aufstecken.

## 3.3.4 Option Rückspülung installieren (nur bei separater Bestellung erforderlich)

## Baugruppe an der Mess- und Steuereinheit anbauen

- ► Entnahmeschlauch (1) vom Stutzen des Adapters (2) entfernen, Adapter abnehmen und Verbindungskabel (3) zur Steuereinheit vom Messsensor (4) lösen.
- ▶ Die obere Befestigungsmutter (5) lösen und die untere (6) abnehmen, Baugruppe Rückspülung (7) auf die Bolzen auf der Grundplatte aufsetzen und mit den Muttern befestigen.
  - Zum Lösen/Befestigen der Muttern kann der hinter der Klappe des Thermozyklons (8) befindliche Maulschlüssel SW13 (9) genutzt werden.
- ▶ Drucküberwachung (10) auf der Grundplatte befestigen und bauseitigen Druckluftschlauch (11) am Drucksensor anschließen.
- Schlauchstück (12) vom Kugelhahn auf den Stutzen des Adapters (2) stecken und Adapter wieder am Thermozyklon (13) anbringen.
- ► Entnahmeschlauch (1) an den Stutzen (14) der Baugruppe Rückspülung anschließen.
- ► Verbindungskabel (3) zur Steuereinheit wieder am Messsensor (4) anschließen.


Abb. 27: Baugruppe Rückspülung an der Mess- und Steuereinheit anbauen



## Option Rückspülung anschließen

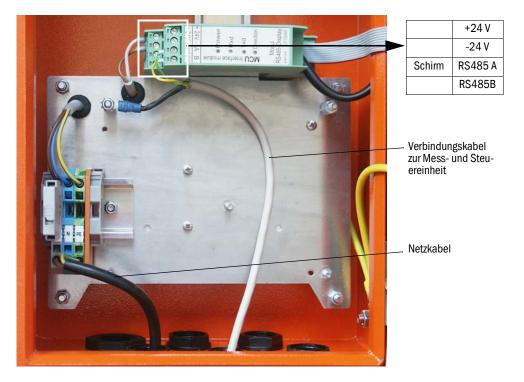
- Adern des Anschlusskabels (1) am Steckverbinder (2) lösen, Kabel durch eine der hinteren PG-Verschraubung (3) ziehen und Adern wieder farbrichtig am Steckverbinder anschließen.
- ► Steckverbinder auf die Prozessorplatine Systemsteuerung (4) stecken und Kabelschuh (5) mit am Stehbolzen (6) anschrauben.
- Aktivierungsschalter (7) in obere Position schalten.

Abb. 28: Option Rückspülung anschließen










## 3.3.5 Option Remote-Einheit anschließen

## Ausführung ohne Netzteil

► Verbindungskabel zur Mess- und Steuereinheit (4-adrig, paarweise verdrillt, mit Schirm) an die Anschlüsse in der Steuereinheit (siehe "Anschlüsse der Steuereinheit", Seite 38) und des Moduls in der Remote-Einheit anschließen.

Abb. 29: Anschlüsse in der Remote-Einheit (Ausführung mit integriertem Weitbereichsnetzteil)



## Ausführung mit integriertem Weitbereichsnetzteil:

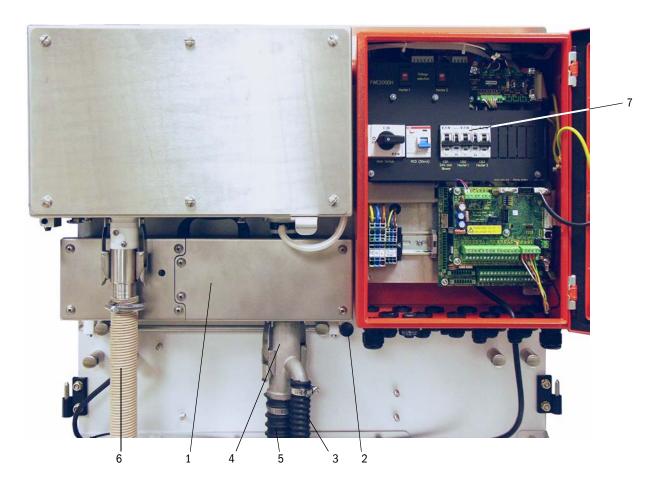
- ► 2-adriges Kabel (paarweise verdrillt, mit Schirm) an die Anschlüsse für RS485 A/B und Schirm in Steuer- und Remote-Einheit anschließen,
- 3-adriges Netzkabel mit ausreichendem Querschnitt an die bauseitige Spannungsversorgung und die entsprechenden Klemmen in der Remote-Einheit anschließen.



#### **HINWEIS:**

- Während der Installation muss die Spannungsversorgung gemäß EN61010-1 durch einen Trennschalter/Leistungsschalter abgeschaltet werden können.
- Die Versorgung darf nur vom ausführenden Personal unter Beachtung der gültigen Sicherheitsbestimmungen nach Abschluss der Arbeiten bzw. zu Prüfzwecken wieder aktiviert werden.

## 4 Inbetriebnahme und Parametrierung

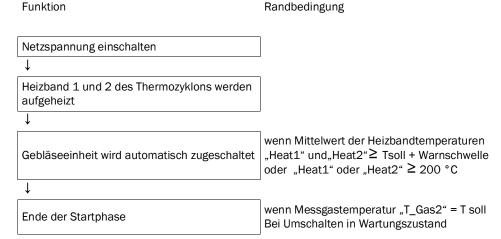

## 4.1 FWE200DH in Betrieb nehmen

Voraussetzung für die Durchführung der nachfolgend beschriebenen Aktivitäten ist die abgeschlossene Montage und Installation von Mess- und Steuereinheit und Gebläseeinheit gemäß Kapitel 3.

#### 4.1.1 Vorbereitungsarbeiten

- ► Prüfen, ob der Messsensor (1) in der Messposition steht (der Arretierungshebel (2) muss in der oberen Position sein, siehe "Mess- und Steuereinheit", Seite 47) und arretiert ist.
- ► Flexiblen Schlauch NW 25 (3) (Bestandteil der Gebläseeinheit) an den Stutzen am Ejektor (4) aufstecken und mit Spannband sichern.
- Schlauch NW50 (5) für Gasrückführung (Lieferumfang) über die Stutzen an Ejektor und Messgassonde schieben und mit Spannband sichern.
- Schlauch NW 32 (6) für Gasentnahme an den Stutzen vom Thermozyklon und an die Messgassonde anschließen.
- ► Tür des Steuerschrankes der Mess- und Steuereinheit öffnen und prüfen, ob alle Sicherungen (7) eingeschaltet sind (falls nicht, einschalten).

Abb. 30: Mess- und Steuereinheit




- ▶ Prüfen, ob die Umschalter für Heizerspannung (siehe "Schalter für Versorgungsspannung in der Mess- und Steuereinheit", Seite 38) und Spannungsversorgung der Gebläseeinheit (siehe "Schalter für Versorgungsspannung in der Gebläseeinheit", Seite 42) auf die am Installationsort vorhandene Versorgungsspannung eingestellt sind; falls nicht, entsprechend umschalten.
- ► Hauptschalter einschalten.

#### 4.1.2 FWE200DH anfahren

Nach Zuschalten der Netzspannung beginnt die Startphase des FWE200DH.

Der Anfahrprozess erfolgt nach folgendem Schema:



Am LC-Display der Steuereinheit werden die aktuellen Messwerte angezeigt (siehe "LC-Display mit Grafik- (links) und Textanzeige (mitte und rechts) (Beispiel)", Seite 25, siehe "Displayeinstellungen mittels SOPAS ET ändern", Seite 84.) Die Startphase wird dabei mit "Initialisierung" anstelle von "Betrieb" signalisiert.

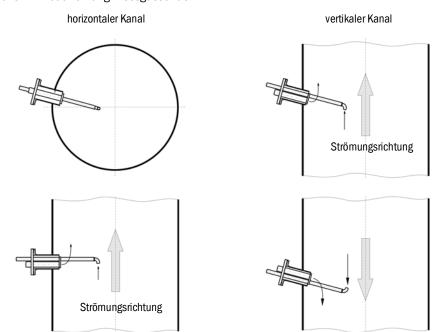
Während der Startphase ist das Relais 4 (Wartung) aktiv. Möglicherweise vorhandene Störungen werden in dieser Zeit nicht am Relais 1 (Betrieb/Störung) signalisiert.

Die Startphase endet, wenn die Messgastemperatur den eingestellten Sollwert erstmalig erreicht (durchschnittliche Dauer ca. 30 min). Wenn dieser Wert nicht erreicht wird (z.B. infolge zu hoher Gasnässe/zu niedriger Gastemperatur im Kanal), wird nach 1 h am LC-Display der Fehler "Aufheizphase" angezeigt (siehe "Messsystem", Seite 100).

Nach Beendigung der Startphase werden Warnungs- und Störungsmeldungen am LC-Display angezeigt (außer Überschreitungen der Toleranzbereiche für die Messgastemperatur [Standardwert für Warnung = Tsoll - 10 K und Tsoll +30 K; Standardwert für Störung = Tsoll - 30 K]) und am Relais 1 ausgegeben.

Die Gebläseeinheit wird abgeschaltet, wenn:

- die Gastemperatur unter den Schwellwert für Störung sinkt,
- der Mittelwert der Temperaturen von Heizband 1 und 2 unter 80°C sinkt
- bei bestimmten Gerätestörungen (Details siehe Servicehandbuch).


## 4.1.3 Messgassonde einbauen



## WARNUNG: Gefahr durch Abgas

- ► Messgassonde an Anlagen mit Gefahrpotenzial (heiße oder aggressive Gase, höherer Kanalinnendruck) nur bei Anlagenstillstand einbauen.
- ► Geeignete Schutzmaßnahmen gegen mögliche örtliche oder anlagenbedingte Gefahren ergreifen.
- ► Prüfen, ob die passende Absaugdüse gemäß Tabelle in "Isokinetikverhalten", Seite 14 am Entnahmerohr eingeschraubt ist; falls nicht, entsprechend korrigieren.
- ► Messgassonde gemäß Abb. "Einbaurichtung Messgassonde" in den Flansch mit Rohr einsetzen und befestigen. Die Entnahmeöffnung der Sonde muss in Strömungsrichtung zeigen (Pfeil auf dem Sondenflansch mit Beschriftung "Flow Direction").

Abb. 31: Einbaurichtung Messgassonde



## 4.2 Grundlagen

## 4.2.1 Allgemeine Hinweise

Voraussetzung für die nachfolgend beschriebenen Arbeiten ist die abgeschlossene Montage und Installation gemäß Kapitel 3.

Inbetriebnahme und Parametrierung bestehen aus:

- Anbau und Anschluss der Sende-/Empfangseinheit,
- Kundenspezifische Parametrierung entsprechend der jeweiligen Erfordernisse.

Wenn das Messsystem zur kontinuierlichen Messung des Staubgehaltes eingesetzt werden soll, muss es für eine exakte Messung durch eine gravimetrische Vergleichsmessung kalibriert werden (siehe "Standard-Parametrierung", Seite 53).

Zur Parametrierung wird das Bedien- und Parametrierprogramm SOPAS ET mitgeliefert. Die vorzunehmenden Einstellungen werden durch die vorhandenen Menüs sehr vereinfacht. Darüber hinaus sind weitere Funktionen (z.B. Datenspeicherung, Grafikanzeige) nutzbar.

#### 4.3 SOPAS ET installieren

- SOPAS ET auf einem Laptop/PC installieren.
- SOPAS ET starten.
- Den Installationshinweisen von SOPAS ET folgen.

#### 4.3.0.1 Passwort für SOPAS ET-Menüs

Bestimmte Gerätefunktionen sind erst nach Eingabe eines Passwortes zugänglich.

| Ben | nutzerebene              | Zugriff auf                                                                                                             |  |
|-----|--------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| 0   | "Bediener"               | Anzeige von Messwerten und Systemzuständen                                                                              |  |
| 1   | "Autorisierter Bediener" | Anzeigen, Abfragen sowie für Inbetriebnahme bzw. Anpassung an                                                           |  |
| 2   | "Behoerde"               | kundenspezifische Anforderungen und Diagnose notwendige Parameter                                                       |  |
| 3   | "Service"                | Anzeigen, Abfragen sowie alle für Serviceaufgaben (z.B. Diagnose und Behebung möglicher Störungen) notwendige Parameter |  |

## 4.3.1 Verbindung zum Gerät über USB-Leitung

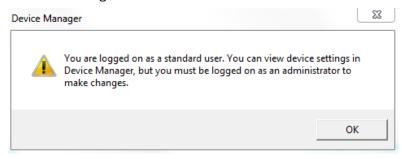
Empfohlenes Vorgehen:

- 1 USB-Leitung an Steuereinheit MCU und Laptop/PC anschließen.
- 2 Gerät einschalten.
- 3 SOPAS ET starten.
- 4 "Sucheinstellungen"
- 5 "Suche anhand von Gerätefamilien"
- 6 Gewünschte MCU anklicken.
- 7 Einstellungen vornehmen:
  - Ethernet Kommunikation (ist immer angeklickt)
  - USB-Kommunikation (ist immer angeklickt)
  - Serielle Kommunikation: Anklicken
- 8 Keine IP-Adressen angeben.
- 9 Es erscheint eine Liste der COM-Ports.

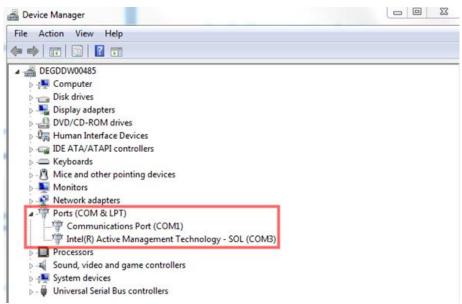
COM-Port des DUSTHUNTER angeben.

Wenn Sie den COM-Port nicht kennen: siehe "DUSTHUNTER COM-Port finden", Seite 51

- 10 Einen Namen für diese Suche vergeben.
- 11 "Fertig stellen"


#### 4.3.1.1 DUSTHUNTER COM-Port finden

Wenn Sie Ihren COM-Port nicht kennen: Sie können den COM-Port mit dem Windows Device Manager finden (Es sind keine Administratorrechte erforderlich).


- 1 Die Verbindung zwischen dem DUSTHUNTER und Ihrem Laptop/PC lösen.
- 2 Eingabe: devmgmt.msc



3 Diese Meldung erscheint:



- 4 "OK"
- 5 Der Device Manager öffnet sich. Siehe: "Ports (COM & LPT)"



6 Verbinden Sie nun die MCU mit dem Laptop/PC. Ein neuer COM-Port erscheint.



Diesen COM-Port für die Kommunikation benutzen.

## 4.3.2 Verbindung zum Gerät über Ethernet (Option)



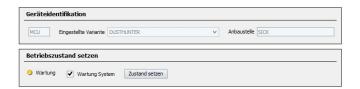
Für eine Verbindung zum Messsystem über Ethernet muss in der MCU das Interface-Modul Ethernet (siehe "Zubehör für Geräteüberprüfung", Seite 111) installiert und parametriert sein.

## Empfohlenes Vorgehen:

- 1 MCU muss ausgeschaltet sein.
- 2 MCU mit Netzwerk verbinden.
- 3 Laptop/PC mit dem gleichen Netzwerk verbinden.
- 4 MCU einschalten.
- 5 SOPAS ET starten
- 6 "Sucheinstellungen"
- 7 "Suche anhand von Gerätefamilien"
- 8 Gewünschte MCU anklicken
- 9 Einstellungen vornehmen:
  - Ethernet Kommunikation (ist immer angeklickt)
  - USB-Kommunikation (ist immer angeklickt)
  - Serielle Kommunikation: Nicht anklicken
- 10 IP-Adressen angeben
  - IP-Adresse: siehe "Ethernet-Modul parametrieren", Seite 78
- 11 Keinen COM-Port anklicken
- 12 Namen für diese Suche vergeben
- 13 "Fertig stellen"

## 4.4 Standard-Parametrierung

## 4.4.1 Werksseitige Einstellungen


| Parameter                                      |                           |                      | Wert                     |                                                                             |  |
|------------------------------------------------|---------------------------|----------------------|--------------------------|-----------------------------------------------------------------------------|--|
| Messgastemperatur                              | sgastemperatur Sollwert   |                      | 160 °C                   |                                                                             |  |
|                                                | Wert für Wa               | arnung               | < 150 °C und > 180 °C    |                                                                             |  |
|                                                | Wert für St               | örung                | 130                      | °C                                                                          |  |
| Differenzdruck (Durch                          | flussüberwa               | achung)              | 0,8                      | hPa                                                                         |  |
| Funktionskontrolle                             |                           |                      |                          | alle 8 h; Ausgabe der Kontrollwerte (je 90 s) auf<br>Standard-Analogausgang |  |
| Analogausgang (AO)                             | Live zero (L              | Z)                   | 4 n                      | nA                                                                          |  |
|                                                | Messbereichsendwert (MBE) |                      | 20 mA                    |                                                                             |  |
|                                                | Strom bei \               | Wartung              | 0,5 mA                   |                                                                             |  |
|                                                | Strom bei S               | Störung              | 21 mA (optional 1 mA)    |                                                                             |  |
| Dämpfungszeit                                  |                           |                      | 60 s für alle Messgrößen | 60 s für alle Messgrößen                                                    |  |
| Messgröße                                      |                           | Ausgabe auf AO       | Wert bei LZ              | Wert bei MBE                                                                |  |
| Staubkonzentration                             |                           | 1                    | 0 mg/m <sup>3</sup>      | 200 mg/m <sup>3</sup>                                                       |  |
| Streulichtintensität                           |                           | 2                    | 0                        | 200                                                                         |  |
| Regressionsfunktion 1                          |                           | Funktionstyp Polynom |                          |                                                                             |  |
| Koeffizientensatz (nur bei Staubkonzentration) |                           |                      | 0.00 / 1.00 / 0.00       |                                                                             |  |
| Regressionsfunktion 2                          |                           |                      | Funktionstyp Polynom     |                                                                             |  |
| Koeffizientensatz (nur bei Staubkonzentration) |                           |                      | 0.00 / 1.00 / 0.00       |                                                                             |  |

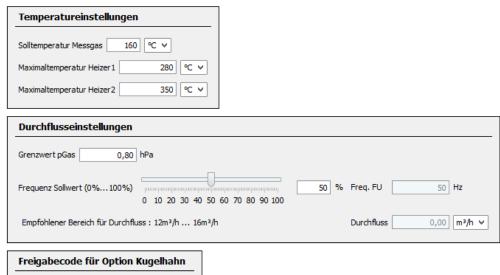
Die zur Änderung dieser Einstellungen notwendigen Schritte sind in den folgenden Abschnitten beschrieben. Dazu müssen sich die Gerätedateien im Fenster "Projektbaum" befinden, das Passwort Ebene 1 eingestellt und der Zustand "Wartung" gesetzt sein.

## 4.4.2 Zustand "Wartung" setzen

► In SOPAS ET: In der jeweiligen Gerätedatei in das Verzeichnis "Wartung/Wartungsbetrieb" wechseln, im Fenster "Betriebszustand setzen" das Kontrollkästchen aktivieren.

Abb. 32: SOPAS ET-Menü: MCU/Wartung/Wartungsbetrieb






"Wartung" kann auch über die Tasten am LD-Display der Steuereinheit (siehe "Menüstruktur", Seite 81) oder durch Anschluss eines externen Schalters an die Klemmen für Dig In2 (17, 18) in der Steuereinheit (siehe "Steuereinheit anschließen", Seite 38) gesetzt werden.

#### 4.4.3 Funktionsparameter ändern

Zur Änderung von Temperatur- und Durchflusseinstellungen ist die Gerätedatei "FWE200DH" zu wählen und das Verzeichnis "Parametrierung / Applikationsparameter" aufzurufen.

Abb. 33: SOPAS ET-Menü: FWE200DH/Parametrierung/Applikationsparameter (Beispiel)



## 4.4.3.1 Temperatureinstellungen ändern

Code 00000000000000000

In bestimmten Fällen kann es notwendig sein, den Sollwert für Messgastemperatur (z.B. bei Säuretaupunkttemperaturen > 160 °C) und/oder Heizertemperatur(en) zu ändern. Dazu sind in der Gruppe "Temperatureinstellungen" (siehe "SOPAS ET-Menü: FWE200DH/Parametrierung/Applikationsparameter (Beispiel)", Seite 55) in den jeweiligen Fenstern die gewünschten Werte einzugeben.

## 4.4.3.2 Grenzwert für Durchfluss festlegen

Der zwischen Thermozyklon und Messzelle gemessene Differenzdruck kann zur Durchflussüberwachung genutzt werden. Durch Eingabe eines Grenzwertes wird bei dessen Unterschreitung eine Meldung ausgegeben. Damit kann verhindert werden, dass der Durchfluss (z.B. in Folge von Ablagerungen im Gasweg) unter den für eine ordnungsgemäße Gerätefunktion notwendigen Wert sinkt, indem rechtzeitig Wartungsmaßnahmen eingeleitet werden.

Das FWE200DH gibt folgende Meldungen aus:

ungültig

| Meldung | Überwachungswert                                                                            | Signalisierung                                                                                                    |
|---------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Warnung | gemessener Differenzdruck<br>kleiner als 1,5-mal Grenzwert<br>(wird geräteintern generiert) | am LC-Display Anzeige von "Warning Eductor air/flow"     Relais "Warnung" schaltet                                |
| Störung | gemessener Differenzdruck<br>kleiner als Grenzwert                                          | <ul> <li>am LC-Display Anzeige von "Malfunction - Eductor air/flow"</li> <li>Relais "Störung" schaltet</li> </ul> |



- Wenn das Gebläse nicht in Betrieb ist, wird der Durchfluss nicht überwacht, d.h. es gibt keine Warnungs- oder Störungsmeldung.
- Während der Startphase (bis Messgas die Solltemperatur erreicht hat bzw. max. 1 h nach Start) ist bei eingegebenem Grenzwert die Überwachung aktiv. Ein zu geringer Durchfluss wird nur am LC-Display angezeigt. Die Relais für Warnung bzw. Störung schalten nicht, da in der Startphase noch das Wartungsrelais aktiv ist.
- Die Hysterese für den Grenzwert beträgt 10 %.

Zur Einstellung ist in der Gruppe "Durchflusseinstellungen" (siehe "SOPAS ET-Menü: FWE200DH/Parametrierung/Applikationsparameter (Beispiel)", Seite 55) im Fenster "Grenzwert pGas" ein Wert eingeben, der ca. 33 % des am LC-Display angezeigten Differenzdruckes nach Durchflussjustage gemäß "Grundlagen", Seite 50 entspricht. Der Gasweg muss dabei frei von Ablagerungen sein.

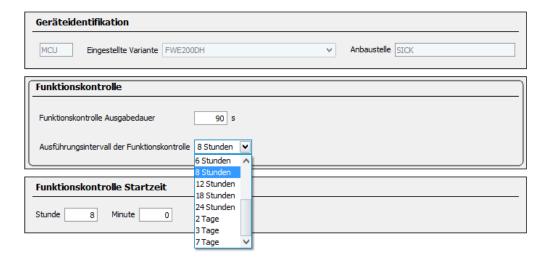
## Empfehlung:

- mittlerer Differenzdruck 1,5 2,0 hPa: Grenzwert 0,7 hPa
- mittlerer Differenzdruck 2,0 2,5 hPa: Grenzwert 0,8 hPa
- mittlerer Differenzdruck 2,5 3,0 hPa: Grenzwert 0,9 hPa

#### 4.4.3.3 Absaugung einstellen

Zur Anpassung der Absaugung an die Anlagenbedingungen sind folgende Schritte notwendig:

- ► Gasweg auf Ablagerungen überprüfen, falls notwendig, reinigen.
- ► In der Gruppe "Durchflusseinstellungen" (siehe "SOPAS ET-Menü: FWE200DH/Parametrierung/Applikationsparameter (Beispiel)", Seite 55) die Frequenz mit dem Schieberegler so einstellen, dass der im Fenster "Durchfluss" angezeigte Wert im empfohlenen Bereich liegt.




Bei sehr niedrigen Gastemperaturen und/oder hoher Gasnässe und/oder niedrigen Umgebungstemperaturen kann der Durchfluss auf den unteren Wert des empfohlenen Bereiches eingestellt werden.

## 4.4.4 Funktionskontrolle einstellen

Zur Änderung der werkseitig eingestellten Werte (siehe "Werksseitige Einstellungen", Seite 53) ist die Gerätedatei "MCU" zu wählen und das Verzeichnis "Justage / Funktionskontrolle automatisch" aufzurufen. Darin können Intervallzeit, Ausgabe der Kontrollwerte auf den Analogausgang und der Startzeitpunkt der automatischen Funktionskontrolle geändert werden.

Abb. 34: SOPAS ET-Menü: MCU/Justage/Funktionskontrolle automatisch (Beispiel für Einstellungen)



| Eingabefeld                                 | Parameter                            | Bemerkung                                                 |
|---------------------------------------------|--------------------------------------|-----------------------------------------------------------|
| Funktionskontrolle<br>Ausgabedauer          | Wert in Sekunden                     | Ausgabedauer der Kontrollwerte.                           |
| Ausführungsinterval<br>I Funktionskontrolle | Zeit zwischen zwei<br>Kontrollzyklen | siehe "Automatische Funktionskontrolle", Seite 15         |
| Funktionskontrolle                          | Stunde                               | Festlegung eines Startzeitpunktes in Stunden und Minuten. |
| Startzeit                                   | Minute                               |                                                           |



Für die Dauer der Kontrollwertermittlung (siehe "Ausgabe der Funktionskontrolle auf Schreibstreifen", Seite 16) wird der zuletzt gemessene Messwert ausgegeben.

## 4.4.5 Analogausgänge parametrieren

Zur Einstellung der Analogausgänge ist das Verzeichnis "Parametrierung / IO Konfiguration / Ausgangsparameter" aufzurufen.



- Default-Werte siehe "Werksseitige Einstellungen", Seite 53
- Zur Ausgabe der Staubkonzentration unter Normbedingungen ("Konzentration i.N. (SL)") sind die Analogeingänge gemäß "Analogeingänge parametrieren" zu parametrieren.

Abb. 35: SOPAS ET-Menü: MCU/Parametrierung/IO Konfiguration/Ausgangsparameter"



| Feld                           |                                   | Parameter                             | Bemerkung                                                                                                        |
|--------------------------------|-----------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Analogaus-                     | Fehlerstrom                       | ja                                    | Der Fehlerstrom wird ausgegeben.                                                                                 |
| gänge - allg.<br>Konfiguration | ausgeben                          | nein                                  | Der Fehlerstrom wird nicht ausgegeben.                                                                           |
|                                | Fehlerstrom                       | Wert < Live Zero (LZ)<br>oder > 20 mA | Im Zustand "Störung" (Fehlerfall) auszugebender mA-Wert (Größe ist abhängig vom angeschlossenen Auswertesystem). |
| Wartungsstrom                  |                                   | Benutzerwert                          | Während "Wartung" wird ein zu definierender Wert ausgegeben                                                      |
|                                |                                   | letzter Messwert                      | Während "Wartung" wird der zuletzt gemessene Wert ausgegeben                                                     |
|                                |                                   | Messwertausgabe                       | Während "Wartung" wird der aktuelle Messwert ausgegeben.                                                         |
|                                | Benutzerwert für<br>Wartungsstrom | Wert möglichst ≠ LZ                   | Im Zustand "Wartung" auszugebender mA-Wert                                                                       |

| Feld                      |                              | Parameter                              | Bemerkung                                                                                |                                                           |  |
|---------------------------|------------------------------|----------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|
| Parameter<br>Analogaus-   | Wert am Analog-<br>ausgang 1 | Konzentration i.B. (SL)                | Staubkonzentration im Betriebszustand (Basis Streulichtintensität)                       | Die ausgewählte Messgröße<br>wird am Analogausgang aus-   |  |
| gang 1                    |                              | Konzentration i.N.tr.<br>02 korr. (SL) | Staubkonzentration im Normzustand (Basis Streulichtintensität)                           | gegeben.                                                  |  |
|                           |                              | SL                                     | Streulichtintensität                                                                     | _                                                         |  |
|                           |                              | T_Gas2                                 | Messgastemperatur                                                                        | =                                                         |  |
|                           |                              | p_Gas                                  | Differenzdruck                                                                           |                                                           |  |
|                           |                              | T_Heater 1                             | Temperatur Heizer 1                                                                      | -                                                         |  |
|                           |                              | T_Heater 2                             | Temperatur Heizer 2                                                                      |                                                           |  |
|                           |                              | T_Heater 3                             | Temperatur Heizer 3                                                                      | -                                                         |  |
|                           |                              | T_Heater 4                             | Temperatur Heizer 4                                                                      |                                                           |  |
|                           | Live Zero                    | Nullpunkt<br>(0, 2 oder 4 mA)          | 2 oder 4 mA auswählen, um sicher zw<br>schaltetem Gerät oder unterbrochene<br>zu können. |                                                           |  |
|                           | Kontrollwerte ausgeben       | inaktiv                                | Die Kontrollwerte (siehe "Automatisch<br>Seite 15) werden nicht auf den Analog           | ne Funktionskontrolle",<br>gausgang ausgegeben.           |  |
|                           |                              | aktiv                                  | Die Kontrollwerte werden auf den Ana                                                     | logausgang ausgegeben.                                    |  |
|                           | Betragswert                  | inaktiv                                | Es wird zwischen negativen und positiven Messwerten unterschieden.                       |                                                           |  |
|                           | ausgeben                     | aktiv                                  | Es wird der Betrag des Messwertes ausgegeben.                                            |                                                           |  |
| Analogaus-<br>gang 1      | unterer Endwert              | Untere Messbereichs-<br>grenze         | physikalischer Wert bei Live Zero                                                        |                                                           |  |
| Skalierung                | oberer Endwert               | Obere Messbereichs-<br>grenze          | physikalischer Wert bei 20 mA                                                            |                                                           |  |
| Grenzwertein-<br>stellung | Messwert                     | Konzentration i.B. (SL)                | Staubkonzentration im Betriebszustand (Basis Streulichtintensität)                       | Auswahl der Messgröße, für<br>die ein Grenzwert überwacht |  |
|                           |                              | Konzentration i.N.tr.<br>02 korr. (SL) | Staubkonzentration im Normzustand (Basis Streulichtintensität)                           | werden soll.                                              |  |
|                           |                              | SL                                     | Streulichtintensität                                                                     | -                                                         |  |
|                           |                              | T_Gas2                                 | Messgastemperatur                                                                        |                                                           |  |
|                           |                              | p_Gas                                  | Differenzdruck                                                                           |                                                           |  |
|                           |                              | T_Heater 1                             | Temperatur Heizer 1                                                                      |                                                           |  |
|                           |                              | T_Heater 2                             | Temperatur Heizer 2                                                                      | =                                                         |  |
|                           |                              | T_Heater 3                             | Temperatur Heizer 3                                                                      |                                                           |  |
|                           |                              | T_Heater 4                             | Temperatur Heizer 4                                                                      | =                                                         |  |
|                           | Hystereseein-                | Prozent                                | Zuordnung der im Feld "Hysterese We                                                      |                                                           |  |
|                           | stellung                     | Absolut                                | Relativ- oder Absolutwert vom festgele                                                   | egten Grenzwert                                           |  |
|                           | Schalten bei                 | Überschreitung                         | Festlegung der Schaltrichtung                                                            |                                                           |  |
|                           |                              | Unterschreitung                        |                                                                                          |                                                           |  |
| Grenzwert                 | Grenzwert                    | Wert                                   | Bei Über-/Unterschreitung des eingeg<br>Grenzwertrelais.                                 | gebenen Wertes schaltet das                               |  |
|                           | Hysterese Wert               | Wert                                   | Festlegung eines Spielraumes für das Rücksetzen des Grenzwertrelais                      |                                                           |  |




Die Felder "Parameter Analogausgang 2(3)" und "Analogausgang 2(3) Skalierung" sind analog zu den Feldern "Parameter Analogausgang 1" und "Analogausgang 1 Skalierung" zu parametrieren.

## 4.4.6 Analogeingänge parametrieren

Zur Einstellung der Analogeingänge ist das Verzeichnis "Parametrierung / IO Konfiguration / Eingangsparameter" aufzurufen.

Abb. 36: SOPAS ET-Menü: MCU/Parametrierung/IO Konfiguration/Eingangsparameter"

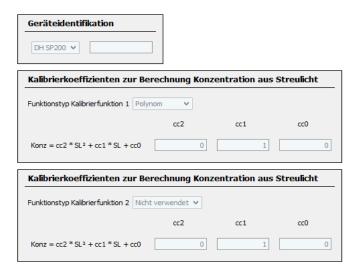


| Feld       | Parameter       | Bemerkung                                                                                                                                                                                                                                                                                                             |
|------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Temperatur | Konstantwert    | Für die Berechnung des normierten Wertes wird ein Festwert verwendet.<br>Dieser Parameter öffnet das Feld "Temperatur Konstantwert" für die Eingabe des<br>Normierungswertes in °C oder K.                                                                                                                            |
|            | Analogeingang 1 | Für die Berechnung des normierten Wertes wird der Wert eines am Analogeingang 1 (Standard-Lieferumfang) angeschlossenen externen Sensors verwendet.  Dieser Parameter öffnet das Feld "Temperatur Analogeingang 1" für die Parametrierung des unteren und oberen Bereichsendwertes und des Wertes für Live Zero.      |
| Druck      | Konstantwert    | Für die Berechnung des normierten Wertes wird ein Festwert verwendet.<br>Dieser Parameter öffnet das Feld "Druck Konstantwert" für die Eingabe des<br>Normierungswertes in mbar (= hPa).                                                                                                                              |
|            | Analogeingang 2 | Für die Berechnung des normierten Wertes wird der Wert eines am Analogeingang 2 (Standard-Lieferumfang) angeschlossenen externen Sensors verwendet.  Dieser Parameter öffnet das Feld "Druck Analogeingang 2" für die Parametrierung des unteren und oberen Bereichsendwertes und des Wertes für Live Zero.           |
| Feuchte    | Konstantwert    | Für die Berechnung des normierten Wertes wird ein Festwert verwendet.<br>Dieser Parameter öffnet das Feld "Feuchte Konstantwert" für die Eingabe des<br>Normierungswertes in %.                                                                                                                                       |
|            | Analogeingang 3 | Für die Berechnung des normierten Wertes wird der Wert eines am Analogeingang 3 (optionales Modul erforderlich) angeschlossenen externen Sensors verwendet.  Dieser Parameter öffnet das Feld "Feuchte Analogeingang 3" für die Parametrierung des unteren und oberen Bereichsendwertes und des Wertes für Live Zero. |
| 02         | Konstantwert    | Für die Berechnung des normierten Wertes wird ein Festwert verwendet.<br>Dieser Parameter öffnet das Feld "O2 Konstantwert" für die Eingabe des Normierungswertes in %.                                                                                                                                               |
|            | Analogeingang 4 | Für die Berechnung des normierten Wertes wird der Wert eines am Analogeingang 4 (optionales Modul erforderlich) angeschlossenen externen Sensors verwendet.  Dieser Parameter öffnet das Feld "O2 Analogeingang 4" für die Parametrierung des unteren und oberen Bereichsendwertes und des Wertes für Live Zero.      |

## 4.4.7 Dämpfungszeit einstellen

Zur Einstellung der Dämpfungszeit ist das Verzeichnis "Parametrierung / Messwertdämpfung" aufzurufen.

Abb. 37: SOPAS ET-Menü: MCU/Parametrierung/Messwertdämpfung




| Feld                        | Parameter | Bemerkung                                                                                                |
|-----------------------------|-----------|----------------------------------------------------------------------------------------------------------|
| Dämpfungs-<br>zeit Sensor 1 | Wert in s | Dämpfungszeit der ausgewählten Messgröße (siehe "Dämpfungszeit",<br>Seite 15)<br>Einstellbereich 1 600 s |

## 4.4.8 Regressionskoeffizienten festlegen

Zur Änderung der werkseitig eingestellten Werte (siehe "Werksseitige Einstellungen", Seite 53) ist die Gerätedatei "DH SP200" zu wählen und das Verzeichnis "Parametrierung / Applikationsparameter" aufzurufen.

Abb. 38: SOPAS ET-Menü: DH SP200/Parametrierung/Applikationsparameter"



In den Fenstern "Kalibrierkoeffizienten zur Berechnung Konzentration aus Streulicht" können zwei unterschiedliche, voneinander unabhängige Funktionen zur Kalibrierung der Staubkonzentrationsmessung (siehe "Kalibrierung für Messung Staubkonzentration", Seite 63) ausgewählt und parametriert werden.

## 4.4.9 Kalibrierung für Messung Staubkonzentration



#### HINWEIS:

- Die hier aufgeführten Schritte dienen zur Vermeidung von Eingabefehlern. Die Durchführung von Vergleichsmessungen erfordert Spezialkenntnisse, die hier nicht im Einzelnen beschrieben sind.
- Die Berechnung der Regressionskoeffizienten cc2, cc1 und cc0 aus den Koeffizienten K2, K1 und K0 gilt nur für die Polynomfunktion.
   Die Koeffizienten anderer Funktionstypen (Option Erweiterte Kalibrierfunktion) müssen gesondert berechnet werden.

Für eine exakte Messung der Staubkonzentration ist der Zusammenhang zwischen der primären Messgröße Streulichtintensität und der tatsächlichen Staubkonzentration im Kanal herzustellen. Dazu ist die Staubkonzentration durch eine gravimetrische Messung gemäß DIN EN 13284-1 zu bestimmen und zu den gleichzeitig vom Messsystem gemessenen Streulichtwerten ins Verhältnis zu setzen.

#### **Durchzuführende Schritte**

- ▶ Die Gerätedatei "MCU" wählen, das Passwort Ebene 1 (siehe "Standard-Parametrierung", Seite 53) eingeben und das Messsystem in "Wartung" setzen (siehe "Zustand "Wartung" setzen", Seite 54).
- ▶ Das Verzeichnis "Parametrierung / IO Konfiguration / Ausgangsparameter" aufrufen (siehe "SOPAS ET-Menü: MCU/Parametrierung/IO Konfiguration/Ausgangsparameter"", Seite 58) und einem der drei verfügbaren Analogausgänge die Messgröße "Streulichtintensität" zuordnen.
- ▶ Den erforderlichen Messbereich für die Staubkonzentration im Betriebszustand abschätzen und in das Feld "Analogausgang 1 (2/3) Skalierung" eingeben, das dem gewählten Analogausgang zur Ausgabe der Streulichtintensität zugeordnet ist.
- ► Zustand "Wartung" deaktivieren.
- ► Gravimetrische Vergleichsmessung gemäß DIN EN 13284-1 durchführen.
- ► Regressionskoeffizienten aus den mA-Werten des Analogausgangs für "Streulichtintensität" und den gravimetrisch gemessenen Staubkonzentrationen i.B. bestimmen.

$$c = K2 \cdot I_{out}^{2} + K1 \cdot I_{out} + K0$$
 (1)

c: Staubkonzentration in mg/m<sup>3</sup>

K2, K1, K0: Regressionskoeffizienten der Funktion  $c = f(I_{out})$ 

I<sub>out</sub>: aktueller Ausgabewert in mA

$$I_{out} = LZ + SI \cdot \frac{20mA - LZ}{MBE}$$
 (2)

SI: gemessene Streulichtintensität

LZ: Live Zero

MBE: festgelegter Messbereichsendwert

(eingegebener Wert für 20 mA; i.a. 2,5 x vorgegebener Grenzwert)

► Regressionskoeffizienten eingeben

Es gibt zwei Möglichkeiten:

- Direkte Eingabe von K2, K1, K0 in einen Messwertrechner

## !

#### HINWEIS:

Die in der Sende-Empfangseinheit eingestellten Regressionskoeffizienten und der in der MCU eingestellte Messbereich dürfen in diesem Fall nicht mehr verändert werden. An der Option LC-Display (sofern verwendet) wird die Staubkonzentration in mg/m³ als unkalibrierter Wert angezeigt.



#### **HINWEIS:**

Die in der Sende-Empfangseinheit eingestellten Regressionskoeffizienten und der in der MCU (Option) eingestellte Messbereich dürfen in diesem Fall nicht mehr verändert werden. Am LC-Display der MCU (Option) wird die Staubkonzentration in mg/m³ als unkalibrierter Wert angezeigt.

Regressionsfunktion des Messsystems verwenden (Einsatz ohne Messwertrechner).
 Hier ist der Bezug zur Streulichtintensität herzustellen. Dazu sind die in das Messsystem einzugebenden Regressionsfaktoren cc2, cc1 und cc0 aus K2, K1 und K0 zu bestimmen.

$$c = cc2 \cdot SL^2 + cc1 \cdot SI + cc0$$
 (3)

Durch Einsetzen von (2) in (1) ergibt sich:

$$c \; = \; K2 \cdot \left(LZ + SI \cdot \frac{20mA - LZ}{MBE}\right)^2 + K1 \cdot \left(LZ + SI \cdot \frac{20mA - LZ}{MBE}\right) + K0$$

Unter Einbeziehung von (3) ergibt sich daraus:

$$cc0 = K2 \cdot LZ^{2} + K1 \cdot LZ + K0$$

$$cc1 = (2 \cdot K2 \cdot LZ + K1) \cdot \left(\frac{20mA - LZ}{MBE}\right)$$

$$cc2 = K2 \cdot \left(\frac{20mA - LZ}{MBE}\right)^{2}$$

Die ermittelten Regressionskoeffizienten cc2, cc1 und cc0 sind anschließend im Verzeichnis "Parametrierung / Applikationsparameter" (siehe "SOPAS ET-Menü: DH SP200/Parametrierung/Applikationsparameter", Seite 62, siehe "Kalibrierung für Messung Staubkonzentration", Seite 63) einzugeben (Sende-Empfangseinheit in Zustand Wartung setzen und Passwort Ebene 1 eingeben; nach Eingabe Sende-Empfangseinheit wieder in Zustand "Messung" setzen).



Der gewählte Messbereich kann bei dieser Verfahrensweise später beliebig umparametriert werden.

## 4.4.10 Datensicherung

Alle für Messwerterfassung, -verarbeitung und Ein-/Ausgabe wesentlichen Parameter sowie aktuelle Messwerte können in SOPAS ET gespeichert und ausgedruckt werden. Damit können eingestellte Geräteparameter bei Bedarf problemlos neu eingegeben oder Gerätedaten und -zustände für Diagnosezwecke registriert werden.

Es gibt folgende Möglichkeiten.

- Speicherung als Projekt
   Außer Geräteparametern können auch Datenmitschnitte gespeichert werden.
- Speicherung als Gerätedatei
   Gespeicherte Parameter können ohne angeschlossenes Gerät bearbeitet und zu einem späteren Zeitpunkt wieder in das Gerät übertragen werden.



Beschreibung siehe SOPAS ET-Hilfemenü und DUSTHUNTER-Serviceanleitung.

Speicherung als Protokoll
 Im Parameterprotokoll werden Gerätedaten und -parameter registriert.

 Zur Analyse der Gerätefunktion und Erkennung möglicher Störungen kann ein Diagnose-protokoll erstellt werden.

#### Beispiel für Parameterprotokoll

Abb. 39: Parameterprotokoll DH SP200 (Beispiel)

#### **Dusthunter - Parameterprotokoll**

Gerätetyp: DH SP200

Anbaustelle:

| Geräteinformation                     |                 |   | Werkskalibrierung   |           |
|---------------------------------------|-----------------|---|---------------------|-----------|
| Geräteversion                         |                 |   | Mess-Verstärkungen  |           |
| Firmwareversion                       |                 |   | ANO-AN1             | 10.2000   |
| Seriennummer                          | 00008700        |   | Relais 1            | 5.7000    |
| Identnummer                           | 00000           |   | Relais 2            | 31,0000   |
| Hardwareversion                       | 1.0             |   | Relais 3            | 700.0000  |
| Firmware Bootloader                   | V00.99.15       |   | Mess-Nullpunkte     |           |
|                                       |                 |   | AN0                 | 0.000450  |
| Installationsparameter                |                 |   | Relais 1            | 0.000250  |
| Busadresse                            | 1               |   | Relais 2            | 0.000050  |
| Messuna Lasertemperatur               | inaktiv         |   | Relais 3            | 0.000010  |
| Koeffizienten Konzentration           |                 |   | Streulicht (MUF)    |           |
| Freigabecode für 2. Kalibrierfunktion | gültig          |   | cc2                 | 0,0000    |
| Kalibrierfunktion 1                   | 5 5             |   | oc1                 | 1,0000    |
| Funktionstyp                          | Polynom         |   | 000                 | 0,0000    |
| cc2                                   | 0,0000          |   | Strom Laser         |           |
| cc1                                   | 1,0000          |   | cc2                 | 0,0000    |
| cc0                                   | 0,0000          |   | cc1                 | 30,3000   |
| Kalibrierfunktion 2                   |                 |   | 000                 | 0,0000    |
| Funktionstyp                          | Nicht verwendet |   | Gerätetemperatur    |           |
| cc2                                   | 0,0000          |   | cc2                 | 0,0000    |
| cc1                                   | 1,0000          |   | cc1                 | 100,0000  |
| cc0                                   | 0,0000          |   | 000                 | -275,1500 |
| - "                                   |                 |   | Motorstrom          |           |
| Geräteparameter                       |                 |   | oc2                 | 0,0000    |
| Werkseinstellungen                    |                 |   | cc1                 | 2000,0000 |
| Reaktionszeit Sensor                  | 1,0             | S | 000                 | -19,5000  |
| Ansprechzeit Diagnosewerte            | 10,0            | s | Versorgungsspannung |           |
|                                       |                 |   | cc2                 | 0,0000    |
|                                       |                 |   | cc1                 | 10,8000   |
|                                       |                 |   | 000                 | 0,0000    |

## Abb. 40: Parameterprotokoll FWE200DH (Beispiel)

## **Dusthunter - Parameterprotokoll**

## Gerätetyp: FWE200DH Anbaustelle:

| Geräteinformation                                  |                                         |              | Werkskalibrierung    |                    |
|----------------------------------------------------|-----------------------------------------|--------------|----------------------|--------------------|
| Geräteversion                                      |                                         |              | T Heizer1            |                    |
| Firmware version                                   |                                         |              | cc2                  | 1,9522             |
| Seriennummer                                       | 00008700                                |              | cc1                  | 76,2318            |
| Identnummer                                        | 00000                                   |              | 000                  | -31,3333           |
| Hardwareversion                                    | 1.0                                     |              | T Heizer2            |                    |
| Firmware Bootloader                                | V00.99.15                               |              | cc2                  | 1,9522<br>76,2318  |
| Konfiguration                                      |                                         |              | œ0                   | -31,3333           |
| Frequenzumrichter                                  | deaktiviert                             |              | T Gas 1              | -31,3333           |
| Nullounktventil                                    | deaktiviert                             |              | cc2                  | 1.9522             |
| Kugelhahn Hardware                                 | deaktiviert                             |              | gc1                  | 76.2318            |
| Kugelhahn Code                                     | ungültig                                |              | cc0                  | -31,3333           |
| Heizer3                                            | deaktiviert                             |              | T Gas 2              |                    |
| Heizer4                                            | deaktiviert                             |              | 002                  | 1,9522             |
| T Gas1                                             | deaktiviert                             |              | cc1                  | 76,2318            |
| Analogeingang (020mA)                              | deaktiviert                             |              | ac0                  | -31,3333           |
| luotallatia uau avauratav                          |                                         |              | TReserve             |                    |
| Installationsparameter                             |                                         |              | oc2                  | 1,9522             |
| Solltemperatur Messgas                             | 160                                     | °C           | cc1                  | 76,2318            |
| Maximaltemperatur Heizer1                          | 280                                     | °C           | cc0                  | -31,3333           |
| Maximaltemperatur Heizer2                          | 350<br>0.80                             | °C<br>hPa    | pGas<br>cc2          | 0.0000             |
| Grenzwert pGas<br>Freguenz Sollwert(0%100%)        | 0, a0<br>50                             | nra<br>%     | cc2<br>cc1           | 3,5000             |
| Frequenz Soliweπ(0%100%)<br>Frequenz FU            | 50.0                                    | %<br>Hz      | m0                   | -0.8500            |
| Prequenz PO<br>Durchfluss                          | 0.00                                    | nz<br>m³/h   | pBaro                | -0,0000            |
| Freigabecode Option Kugelhahn                      | 000000000000000000                      | 111 711      | m2                   | 0.0000             |
| reigabecode Option ragemann                        | 000000000000000000000000000000000000000 |              | cc1                  | 144,0000           |
| Geräteparameter                                    |                                         |              | gc0                  | 633.0000           |
| Leistungsstellwert Notbetrieb                      | 10                                      | %            | T Case               |                    |
| Ansprechzeit Messwerte                             | 1.0                                     | s            | 002                  | 0,0000             |
| Heizer1                                            |                                         |              | oc1                  | 100,0000           |
| Aktivierung                                        | aktiviert                               |              | cc0                  | -275,1500          |
| Zulässige Maximaltemperatur                        | 280                                     | °C           | T Heizer3            |                    |
| Festwertaktivierung                                | deaktiviert                             |              | α2                   | 1,9522             |
| Festwert                                           | 0                                       | °C           | oc1                  | 76,2318            |
| Maximale Heizleistung                              | 700                                     | W            | cc0                  | -31,3333           |
| Heizer2                                            |                                         |              | T Heizer4            | 4 0500             |
| Aktivierung                                        | aktiviert<br>350                        | °C           | α:2<br>α:1           | 1,9522<br>76.2318  |
| Zufässige Maximaltemperatur<br>Festwertaktivierung | deaktiviert                             | -            | cc0                  | -31,3333           |
| restwertaktiwerung<br>Festwert                     | авакілівт<br>О                          | °C           | U E/A-Modul          | -31,3333           |
| restwert<br>Maximale Heizleistuna                  | 700                                     | w            | cc2                  | 0.0000             |
| Heizer3                                            | 700                                     | **           | cc1                  | 1,0000             |
| Aktivieruna                                        | deaktiviert                             |              | 900                  | 0,0000             |
| Heizer4                                            | G G G G G G G G G G G G G G G G G G G   |              | U 12V                | 0,000              |
| Aktivierung                                        | deaktiviert                             |              | cc2                  | 0,0000             |
| Regelung Messgas                                   |                                         |              | cc1                  | 5,7000             |
| Regelgröße Heizer1 und Heizer2                     | T Gas2                                  |              | ac0                  | 0,0000             |
| Solltemperatur                                     | 160                                     | °C           | U_24V                |                    |
| Untere Fehlerschwelle                              | -30K                                    |              | cc2                  | 0,0000             |
| Untere Wamschwelle                                 | -10K                                    |              | oc1                  | 11,1000            |
| Obere Warnschwelle                                 | +30K                                    |              | cc0                  | 0,0000             |
| Obere Fehlerschwelle                               | ohne                                    |              | Gebläsespannung      |                    |
| Regelbereichsendwert                               | 250                                     | °C           | cc2<br>cc1           | 0,0000<br>110.0000 |
| Konstanten Durchflussberechnung                    | 4040.00                                 | hPa          | œ0                   | 0.0000             |
| Luftdruck<br>Dichte                                | 1013,00                                 | nPa<br>kg/m³ | Analogeingang (20mA) | 0,0000             |
| Dichte<br>Blende                                   | 1.293<br>150.0                          | kg/m³<br>mm² | cc2                  | 0.0000             |
| Parameter Sondenspülung                            | 150.0                                   | mm-          | cc2                  | 5,0000             |
| Parameter Sondenspulung<br>Ventil 1 öffnen         | 2                                       | 8            | cc0                  | 0.0000             |
| Wartezeit Umschalten Ventile                       | 10                                      | s            | Analogausgang (FU)   | 0,0000             |
| Ventil 2 öffnen                                    | 2                                       | s            | c2                   | 0.0000             |
| Wartezeit Beenden Sondenspülung                    | 10                                      | s            | cc1                  | 172.6500           |
|                                                    |                                         |              |                      |                    |

## 4.4.11 Messbetrieb starten

Nach Eingabe/Änderung von Parametern ist das Messsystem in den Zustand "Messung" zu setzen.

Dazu den Zustand "Wartung" aufheben: "Wartung Sensor" wegklicken.

Abb. 41: SOPAS ET-Menü: MCU/Wartung/Wartungsbetrieb



Die Standard-Inbetriebnahme ist damit abgeschlossen.

## 4.5 Interface-Module parametrieren

Standardmäßig wird das Messsystem mit einem Interfacemodul Modbus TCP ausgeliefert. Im Bedarfsfall kann es gegen ein Interfacemodul für Profibus DP VO oder Ethernet (Typ 1) (siehe "Zubehör für Geräteüberprüfung", Seite 111) ausgetauscht werden.

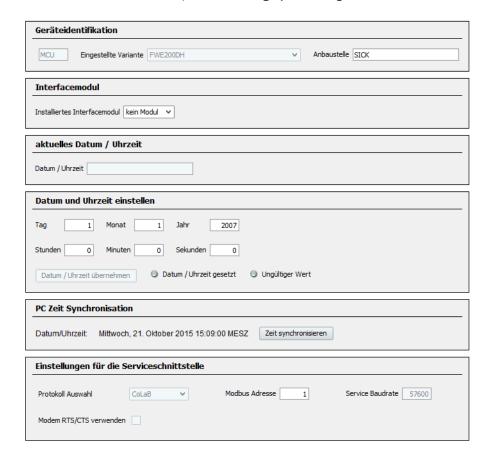
+**i** 

Für das Modul Profibus DP sind GSD-Datei und Messwertbelegung auf Nachfrage verfügbar.

#### 4.5.1 Modul Modbus TCP



Detailinformationen zur Kommunikation über Modbus finden Sie in den Dokumenten der "Modbus Organization" (www.modbus.org) wie z.B.:


- MODBUS Messaging on TCP/IP Implementation Guide
- MODBUS APPLICATION PROTOCOL SPECIFICATION
- MODBUS over serial line specification and implementation guide

Die Zuordnung der Register wird als separates Dokument zum Modul mitgeliefert.

## 4.5.1.1 MCU-Einstellungen überprüfen

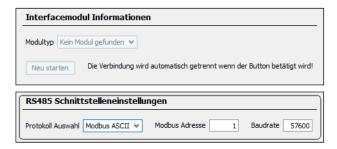

- ► MCU mit Programm SOPAS ET verbinden, die Gerätedatei "MCU" wählen, Passwort Ebene 1 eingeben (siehe "Standard-Parametrierung", Seite 53) und Messsystem in den Zustand "Wartung" setzen (siehe "Zustand "Wartung" setzen", Seite 54).
- ▶ In das Verzeichnis "Parametrierung / Systemkonfiguration" wechseln und im Feld "Interfacemodul /Installiertes Interfacemodul" prüfen, ob der Modultyp auf "RS485" eingestellt ist.

Abb. 42: SOPAS ET-Menü: MCU/Parametrierung/Systemkonfiguration"



► In das Verzeichnis "Parametrierung / I/O Konfiguration / Interfacemodul" wechseln und im Feld "RS485 Schnittstelleneinstellungen" prüfen, ob die Schnittstelle gemäß Abb. "SOPAS ET-Menü: MCU/Parametrierung/IO Konfiguration/Interfacemodul" eingestellt ist.

Abb. 43: SOPAS ET-Menü: MCU/Parametrierung/IO Konfiguration/Interfacemodul



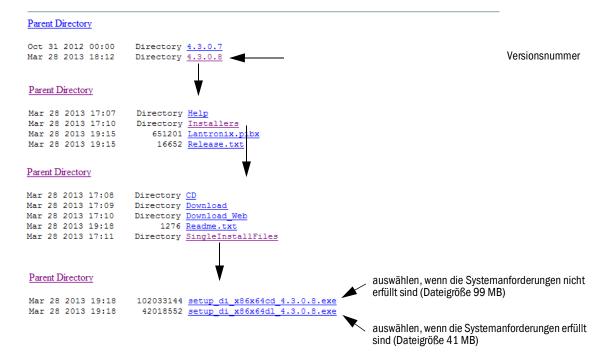
## 4.5.1.2 Konfigurationsprogramm installieren

Zur Einstellung der kundenseitigen Anforderungen muss ein separates Konfigurationsprogramm installiert werden.



Für die Installation von Software sind Administratorrechte notwendig.

## Systemanforderungen


- Betriebssystem: MS-Windows XP oder höher
- Programm NET Framework 4.0
- Programm Windows Installer 3.1

## Konfigurationsprogramm installieren

- Laptop/PC mit Internet verbinden und "ftp://ftp.lantronix.com/pub/DeviceInstaller/Lantronix/4.3/" eingeben.
- Das aktuelle Konfigurationsprogramm herunterladen.

Abb. 44: Konfigurationsprogramm herunterladen

## FTP Listing of /pub/DeviceInstaller/Lantronix/4.3/ at ftp.lantronix.com



#### 4.5.1.3 Modbus-Modul in das Netzwerk einbinden

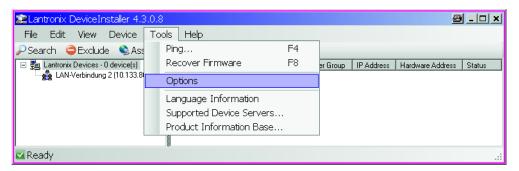

► Das Programm "DeviceInstaller" starten.

Abb. 45: "DeviceInstaller" starten



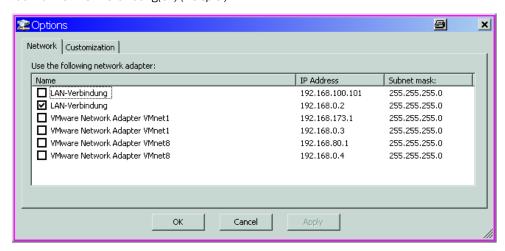

- Einige Sekunden warten während das Programm nach installierten Komponenten sucht.
- ► Das Menü "Tools/Options" wählen.

Abb. 46: Menü "Tools/Options"



► Falls mehrere Netzwerke vorhanden sind, das Netzwerkinterface auswählen, mit dem das Modbus-Modul verbunden ist.

Abb. 47: Netzwerkverbindung(en) (Beispiel)



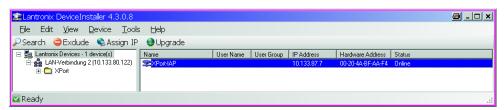

▶ Das Menü "Device/Search" wählen und nach dem Modbus-Modul suchen.

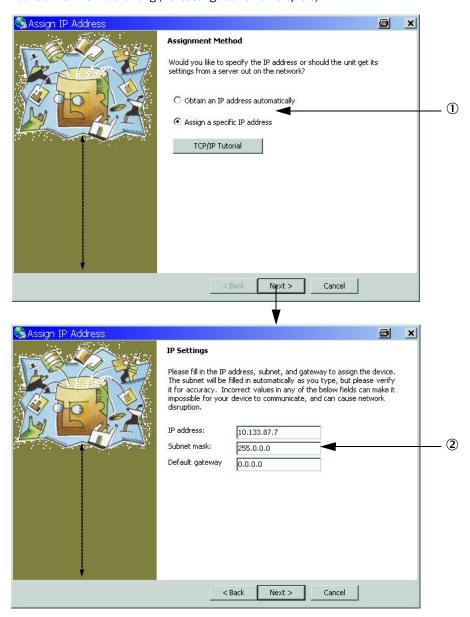
Abb. 48: Nach angeschlossenen Komponenten suchen



- Falls kein Modul gefunden wird, die Netzwerkverbindung überprüfen und erneut suchen.
- ► Das gefundene Modul anwählen.

Abb. 49: Modul wählen




## !

## WICHTIG:

Das Modul nur im rechten Fenster auswählen, nicht aber in der Baumstruktur auf der linken Seite.

► Menü "Assign IP" anklicken und die folgenden Schritte ausführen.

Abb. 50: Netzwerkzuordnung (Adressangaben sind Beispiele)



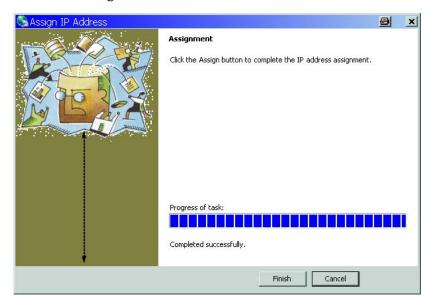

| Schritt | Bemerkung                                                                                                                   |
|---------|-----------------------------------------------------------------------------------------------------------------------------|
| 1       | Die jeweilige Einstellung in Abhängigkeit von der gewünschten Adresszuordnung wählen (automatische oder manuelle Zuordnung) |
| 2       | Bei manueller Zuordnung hier die erforderlichen Netzwerkverbindungsdaten eintragen.                                         |

Abb. 51: Adresseinstellungen festlegen

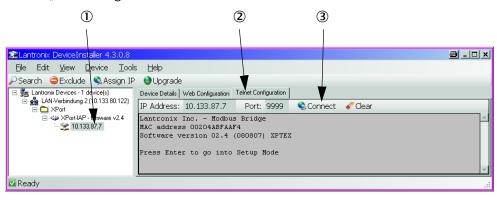


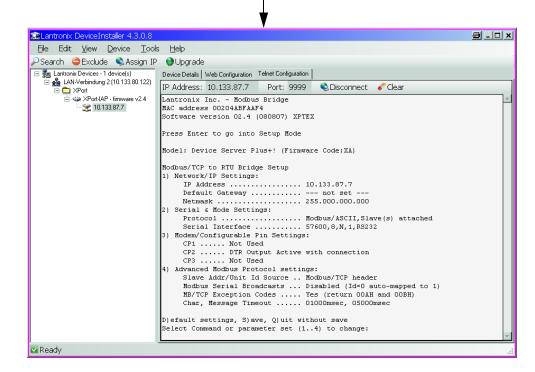
► Zuordnung abschließen, dabei etwas warten, während das Modul konfiguriert wird, anschließend auf "Finish" klicken.

Abb. 52: Zuordnung abschließen



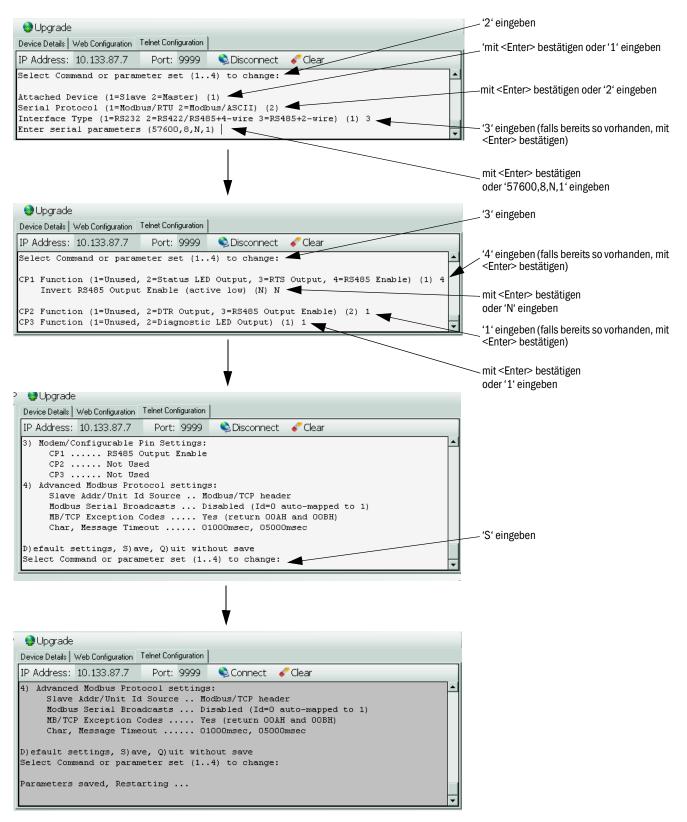
#### 4.5.1.4 Modbus-Modul konfigurieren


Nach Bestätigung der Adresszuordnung mit "Finish" erscheint das folgende Fenster:


Abb. 53: "Telnet Configuration"



▶ Nacheinander die Schritte (1) bis (3) ausführen und mit <Enter> bestätigen.


Abb. 54: "Telnet Configuration"





• Mit den folgenden Eingaben die seriellen und Modbus-Einstellungen festlegen.

Abb. 55: Serielle und Modbus-Einstellungen



Das Modbus-Modul TCP ist damit konfiguriert.

# 4.5.1.5 Funktionsfähigkeit überprüfen

► Unter "Eingabeaufforderung" ("Start → Programme → Zubehör") nach ,ping' die IP-Adresse eingeben und die Modul-Antwort überprüfen.

Abb. 56: Korrekte Antwort vom Modbus-Modul

### 4.5.2 Ethernet-Modul parametrieren



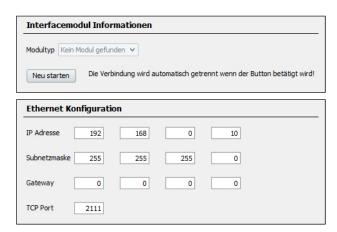
#### WICHTIG:

Bei Kommunikation über Ethernet besteht die Gefahr des unerwünschten Zugriffs auf das Messsystem.

 Das Messsystem nur hinter einer geeigneten Schutzeinrichtung (z.B. Firewall) betreiben.



Das Interface-Modul Ethernet Typ 2 (siehe "Zubehör für Geräteüberprüfung", Seite 111) kann nicht mit dem Programm SOPAS ET parametriert werden. Dafür wird eine spezielle Software mit Beschreibung mitgeliefert


Standardeinstellung: 192.168.0.10

Auf Wunsch ist eine vorgegebene IP-Adresse eingestellt.

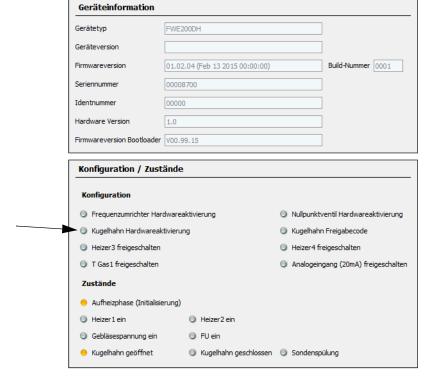
Zum Ändern der Einstellungen:

- ▶ In das Verzeichnis "Parametrierung / IO Konfiguration / Interfacemodul" wechseln.
- ▶ Die gewünschte Netzwerkkonfiguration einstellen und im Feld "Interfacemodul Informationen" die Schaltfläche "Neu starten" betätigen.

Abb. 57: SOPAS ET-Menü: MCU/Parametrierung/IO Konfiguration/Interfacemodul



### 4.6 Option Rückspülung aktivieren


Bei nachträglichem Einbau muss dieser Option durch Eingabe eines Codewortes aktiviert werden. Dazu sind folgende Schritte notwendig:

- ▶ Die Gerätedatei "FWE200DH" wählen, Messsystem in den Zustand "Wartung" setzen und Passwort Ebene 1 eingeben.
- ► Im Verzeichnis "Parametrierung / Applikationsparameter" im Feld "Freigabecode für Option Kugelhahn" das mitgelieferte Codewort eingeben.
- ▶ In das Verzeichnis "Diagnose / Geräte-Info" wechseln und im Feld "Konfiguration / Zustände überprüfen, ob die Anzeige " Kugelhahn Hardwareaktivierung" aktiv ist (falls nicht, gemäß siehe "Option Rückspülung installieren (nur bei separater Bestellung erforderlich)", Seite 44 aktivieren).

Abb. 58: SOPAS ET Menü: FWE200DH/Parametrierung/Applikationsparameter (Beispiel)



Abb. 59: SOPAS ET Menü: FWE200DH/Diagnose/Geräteinfo



# 4.7 Bedienung/Parametrierung über LC-Display

# 4.7.1 Allgemeine Hinweise zur Nutzung

Die Anzeige- und Bedienoberfläche des LC-Displays enthält die in Abb. "Funktionselemente LC-Display" dargestellten Funktionselemente.

Abb. 60: Funktionselemente LC-Display

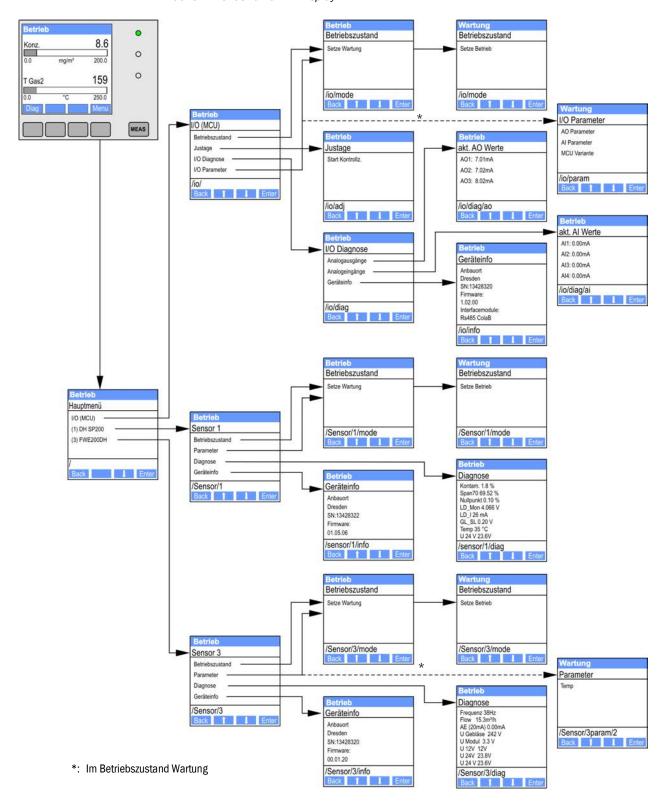


- ① Status-LED
- ② Bedientasten
- 3 aktuelle Tastenfunktion
- 5 Statuszeile

# Tastenfunktionen

Die jeweilige Funktion hängt vom aktuell ausgewählten Menü ab. Es ist nur die über einer Taste angezeigte Funktion verfügbar.

| Taste   | Funktion                                                                                                                                                                           |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diag    | Anzeige von Diagnoseinformationen (Warnungen und Fehler bei Start aus dem Hauptmenu, Sensorinformationen bei Start aus dem Diagnosemenü siehe "Menüstruktur LC-Display", Seite 81) |
| Back    | Wechsel in das übergeordnete Menü                                                                                                                                                  |
| Pfeil ↑ | Scrollen nach oben                                                                                                                                                                 |
| Pfeil ↓ | Scrollen nach unten                                                                                                                                                                |
| Enter   | Ausführung der mit einer Pfeiltaste ausgewählten Aktion (Wechsel in ein Untermenü, Bestätigung des gewählten Parameters bei Parametrierung)                                        |
| Start   | Startet eine Aktion                                                                                                                                                                |
| Save    | Speichert einen geänderten Parameter                                                                                                                                               |
| Meas    | Wechsel von Text- in Grafikanzeige<br>Anzeige der Kontrasteinstellung (nach 2,5 s)                                                                                                 |

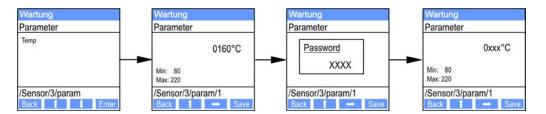

#### 4.7.2 Passwort und Bedienebenen

Bestimmte Gerätefunktionen sind erst nach Eingabe eines Passwortes zugänglich.

| Benutzerebene |                        | Zugriff auf                                                                                                                                                     |  |
|---------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0             | Bediener               | Anzeige von Messwerten und Systemzuständen.<br>Kein Passwort erforderlich.                                                                                      |  |
| 1             | Autorisierter Bediener | Anzeigen, Abfragen sowie für Inbetriebnahme bzw. Anpassung an kundenspezifische Anforderungen und Diagnose notwendige Parameter Voreingestelltes Passwort: 1234 |  |

### 4.7.3 Menüstruktur

Abb. 61: Menüstruktur LC-Display




### 4.7.4 Parametrierung

### 4.7.4.1 Messgastemperatur

- ► Systemsteuerung (FWE200DH) in "Wartung" setzen (siehe "Menüstruktur LC-Display", Seite 81) und das Untermenü "Parameter" aktivieren.
- ▶ Den einzustellenden Parameter wählen und das Default-Passwort "1234" eingeben.
- Den ermittelten Koeffizienten (siehe "Standard-Parametrierung", Seite 53) mit den Tasten "^" und/oder "→" einstellen und mit "Save" in das Gerät schreiben (2x bestätigen).

Abb. 62: Messgastemperatur ändern



# 4.7.4.2 Analogaus-/-eingänge

- ► Steuereinheit (MCU) in Zustand "Wartung" setzen (siehe "Menüstruktur LC-Display", Seite 81) und das Untermenü "I/O Parameter" aktivieren.
- Den einzustellenden Parameter w\u00e4hlen und das Default-Passwort "1234" mit den Tasten "^" (scrollt von 0 bis 9) und/oder "→" (bewegt den Cursor nach rechts) eingeben.
- Den gewünschten Wert mit den Tasten "^" und/oder "→" einstellen und mit "Save" in das Gerät schreiben (2x bestätigen).

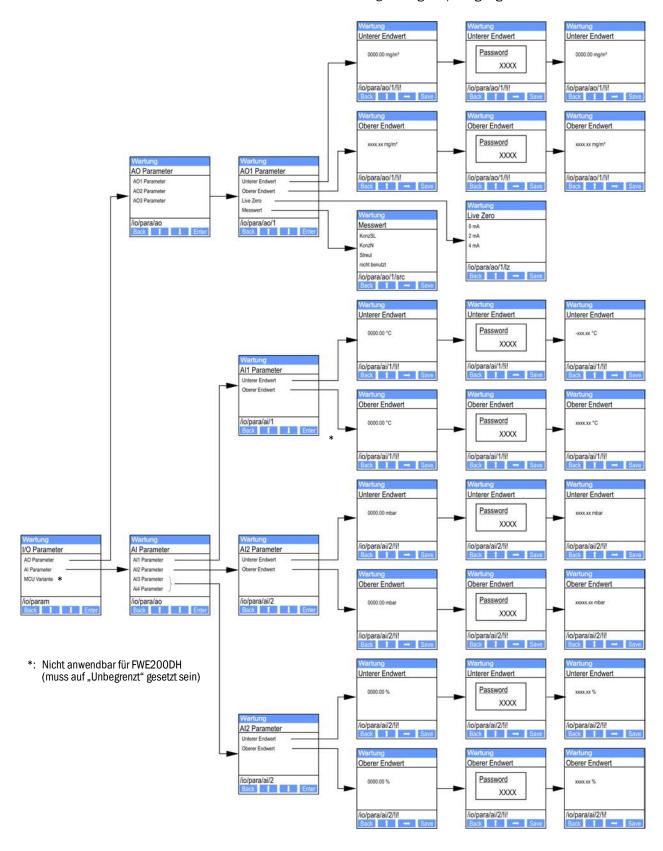
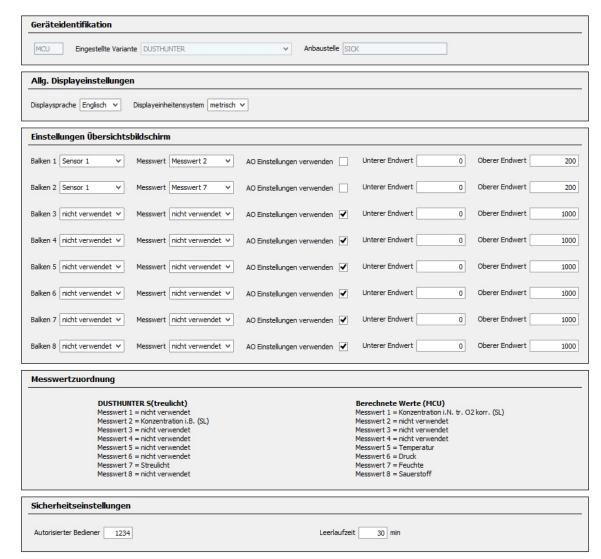




Abb. 63: Menüstruktur für Parametrierung Analogaus-/-eingänge

# 4.7.5 Displayeinstellungen mittels SOPAS ET ändern

Zur Änderung der werksseitigen Einstellungen ist SOPAS ET mit der "MCU" zu verbinden (siehe "Verbindung zum Gerät über USB-Leitung", Seite 50), Passwort Ebene 1 einzugeben und das Verzeichnis "Parametrierung / Displayeinstellungen" aufzurufen.

Abb. 64: SOPAS ET-Menü: MCU/Parametrierung/Displayeinstellungen



| Fenster               | Eingabefeld                | Bedeutung                                                                                                                                                                          |  |
|-----------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Allg. Displayeinstel- | Displaysprache             | Am LC-Display angezeigte Sprachversion                                                                                                                                             |  |
| lungen                | Displayeinheitensystem     | Im Display verwendetes Einheitensystem                                                                                                                                             |  |
| Einstellungen Über-   | Balken 1 bis 8             | Sensoradresse für den ersten Messwertbalken der Grafikanzeige                                                                                                                      |  |
| sichtsbildschirm      | Messwert                   | Messwertindex für den jeweiligen Messwertbalken                                                                                                                                    |  |
|                       | AO Einstellungen verwenden | Bei Aktivierung wird der Messwertbalken wie der zugehörige Analogausgang<br>skaliert. Falls dieses Auswahlbox inaktiv gesetzt wird, sind die Grenzwerte sepa-<br>rat zu definieren |  |
|                       | unterer Endwert            | Werte für separate Skalierung des Messwertbalkens unabhängig vom Analog-                                                                                                           |  |
|                       | obererer Endwert           | ausgang                                                                                                                                                                            |  |

Die Messwertzuordnung ist in dem unteren Feld aufgelistet.

# 5 Wartung

# 5.1 Allgemeines

# 5.1.1 Wartungsintervalle

Wartungsintervalle sind vom Anlagenbetreiber festzulegen. Der zeitliche Abstand ist von den konkreten Betriebsparametern wie Gastemperatur und -feuchte, Staubgehalt und Staubbeschaffenheit, Anlagenfahrweise und Umgebungsbedingungen abhängig. Deswegen können hier nur allgemeine Empfehlungen gegeben werden (Basiswartung).

Im Rahmen der praktischen Funktionsprüfungen zur Erlangung der QAL1-Zertifizierung wurde vom TÜV ein Mindestwartungsintervall von 3 Monaten festgelegt (Erweiterte Wartung).

Die durchgeführten Arbeiten sind vom Betreiber in einem Wartungshandbuch zu dokumentieren. Folgende Wartungsarbeiten werden empfohlen:

| Art der Wartung    | Durchzuführende Arbeiten                                               |  |  |
|--------------------|------------------------------------------------------------------------|--|--|
|                    | Sichtkontrolle                                                         |  |  |
|                    | Düsen im Eintrittstutzen des Thermozyklons überprüfen/reinigen         |  |  |
| Basiswartung       | Ejektor überprüfen/reinigen                                            |  |  |
|                    | Saugdüse überprüfen/reinigen                                           |  |  |
|                    | Zwischendüse überprüfen/reinigen                                       |  |  |
|                    | Messgassonde überprüfen/reinigen                                       |  |  |
|                    | Entnahme- und Rückführschlauch überprüfen/reinigen                     |  |  |
| Erweiterte Wartung | Drallkammer (im Thermozyklon) überprüfen/reinigen                      |  |  |
|                    | Optischen Grenzflächen im Streulichtsensor DHSP200 überprüfen/reinigen |  |  |
|                    | Filtereinsatz der Gebläseeinheit überprüfen/reinigen                   |  |  |

# 5.1.2 Wartungsvertrag

Turnusmäßige Wartungsarbeiten können vom Anlagenbetreiber durchgeführt werden. Hierfür darf nur qualifiziertes Personal nach Kapitel 1 beauftragt werden. Auf Wunsch können sämtliche Wartungsarbeiten auch vom Endress+Hauser Service oder von autorisierten Servicestützpunkten übernommen werden. Endress+Hauser bietet kostengünstige Wartungsund Reparaturverträge an. Im Rahmen dieser Vereinbarungen übernimmt Endress+Hauser alle Wartungs- und Instandhaltungsarbeiten. Reparaturen werden von Spezialisten soweit möglich vor Ort durchgeführt.

### 5.1.3 Benötigte Hilfsmittel

- Wasser
- Reinigungstücher (fusselfrei)
- Optiktuch, Wattestäbchen
- Maulschlüssel SW 7, 8, 13 und 19
- Innensechskantschlüssel SW 7
- Silikonfett (für O-Ringe für z.B. Eintrittsdüse, Mischrohr Ejektor und Teflonteile in der Messzelle und Zwischendüse darüber)
- Schraubendreher mit Kreuzschlitz (mittlerer Größe) und Schlitzschraubendreher (klein).


Wartung FWE200DH

### 5.1.4 Wartungszustand setzen

Vor der Ausführung von Wartungsarbeiten ist das Messsystem mit den folgenden Schritten in den Zustand "Wartung" zu setzen.

- ► Messsystem über das USB-Kabel mit dem Laptop/PC verbinden und das Programm SOPAS ET starten.
- ▶ Mit der MCU verbinden (siehe "Verbindung zum Gerät über USB-Leitung", Seite 50).
- ► Passwort Ebene 1 eingeben (siehe "Passwort und Bedienebenen", Seite 80)
- ▶ Das Messsystem in Zustand "Wartung" setzen: "Wartung Sensor" anklicken)

Abb. 65: SOPAS ET-Menü: MCU/Wartung/Wartungsbetrieb





- "Wartung" kann auch über die Tasten am LD-Display der Steuereinheit (siehe "Menüstruktur", Seite 81) oder durch Anschluss eines externen Schalters an die Klemmen für Dig In2 (17, 18) in der Steuereinheit (siehe "Steuereinheit anschließen", Seite 38) gesetzt werden.
- Während "Wartung" wird keine automatische Funktionskontrolle ausgeführt.
- Am Analogausgang wird der für "Wartung" eingestellte Wert ausgegeben (siehe "Analogausgänge parametrieren", Seite 58). Das gilt auch bei Vorhandensein einer Störung (Signalisierung am Relaisausgang).
- Wenn der Zustand "Wartung" nur über das Programm SOPAS ET gesetzt ist, wird dieser Zustand bei Spannungsausfall wieder zurückgesetzt. Nach Zuschalten der Betriebsspannung geht das Messsystem automatisch in "Messung".

Nach Abschluss der Arbeiten ist der Messbetrieb wieder aufzunehmen (das Kontrollkästchen "Wartung System" im Fenster "Betriebszustand setzen" deaktivieren und die Schaltfläche "Zustand setzen" betätigen).

# 5.2 Wartungsarbeiten



#### **HINWEIS:**

Während der Ausführung von Wartungsarbeiten muss die Spannungsversorgung zum FWE200DH gemäß EN61010-1 durch einen Trennschalter/Leistungsschalter abgeschaltet werden können.

 Die Versorgung darf nur vom ausführenden Personal unter Beachtung der gültigen Sicherheitsbestimmungen nach Abschluss der Arbeiten bzw. zu Prüfzwecken wieder aktiviert werden.



#### WARNUNG: Gefahr durch chemische Verbindungen

Beim Reinigen von gasführenden Teilen (Schläuche, Düsen usw.) mit Wasser können sich durch Auflösen von Ablagerungen Säuren oder Basen bilden.

- Geeignete Schutzmaßnahmen ergreifen und geeignete Schutzvorrichtungen verwenden.
- Bei allen Arbeiten die einschlägigen Sicherheitsbestimmungen sowie die Sicherheitshinweise (siehe "Verantwortung des Anwenders", Seite 9) beachten.

#### 5.2.1 Vorbereitungsarbeiten

Messgassonde ausbauen und Montageöffnung mit Blindflansch verschließen.



#### WARNUNG: Gefahr durch Gas und heiße Teile

Beim Aus- und Einbau der Messgassonde sowie von gasführenden Teilen können heiße und/oder aggressive Gase austreten.

- Geeignete Schutzmaßnahmen ergreifen und geeignete Schutzvorrichtungen verwenden.
- Bei allen Arbeiten die einschlägigen Sicherheitsbestimmungen sowie die Sicherheitshinweise (siehe "Verantwortung des Anwenders", Seite 9) beachten.
- Messgassonde an Anlagen mit Gefahrpotenzial (höherer Kanalinnendruck, heiße oder aggressive Gase) nur bei Anlagenstillstand aus- oder einbauen.
- ► Sicherungen für Heizband 1 und 2 in der Steuereinheit ausschalten.

  Die Gebläseeinheit schaltet ab, wenn der Mittelwert von beiden Heizertemperaturen unter der Warnschwelle der Solltemperatur liegt (default: 160°C 10K = 150°C), spätestens bei Temperaturen < 80°C.
- ► Hauptschalter in der Steuereinheit ausschalten und warten, bis heiße Teile ausreichend abgekühlt sind.

Abb. 66: Hauptschalter und Sicherungen in der Steuereinheit

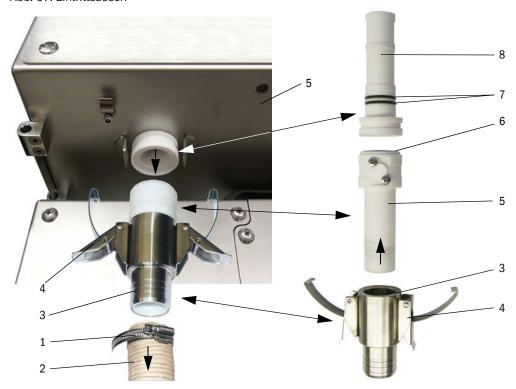


- 1 Hauptschalter
- 2 FI-Schutzschalter
- 3 Sicherung für Heizband 1
- 4 Sicherung für Heizband 2

Wartung FWE200DH

#### 5.2.2 Sichtkontrolle

- ► Alle Schlauchverbindungen auf festen Sitz und Dichtheit überprüfen.
- ▶ Durchfluss mittels des Differenzdruckes kontrollieren (muss zur Anzeige am LC-Display als Messwert ausgewählt sein, siehe "SOPAS ET-Menü: MCU/Parametrierung/Displayeinstellungen", Seite 84).

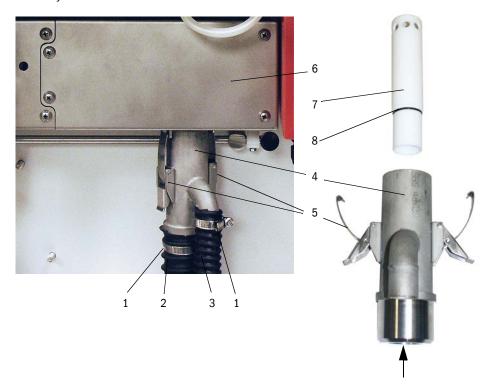

Der Wert muss bei laufendem Gebläse im Bereich von 1 bis 4 mbar liegen. Wenn das nicht der Fall ist:

- ► alle gasführenden Teile auf Ablagerungen überprüfen und bei Erfordernis reinigen (siehe folgende Abschnitte).
- Laufgeräusch des Gebläses überprüfen (muss im üblichen Frequenzspektrum liegen); verstärktes Geräusch kündigt einen möglichen Gebläseausfall an.
  - ► Messsystem außer Betrieb setzen (siehe "Messsystem außer Betrieb setzen", Seite 96) und anschließend Gebläseeinheit überprüfen.

# 5.2.3 Eintrittsdüsen am Thermozyklon reinigen

- ► Spannband (1) lösen und Entnahmeschlauch (2) vom Stutzen des Adapters (3) abziehen.
- ► Spannverschlüsse (4) des Adapters vorsichtig lösen und Adapter abnehmen.
- Düse (5) aus dem Adapter herausziehen und O-Ring (6) abnehmen
- ► Eintrittsdüse (8) aus dem Thermozyklon herausziehen und O-Ringe (7) abnehmen.
  - +i Die Eintrittsdüse kann u.U. sehr festsitzen.
- Düsen und O-Ringe mit Wasser reinigen. Feste Ablagerungen (sofern vorhanden) vorsichtig mit geeignetem Hilfsmittel entfernen, die Düsen dabei nicht beschädigen.
  - Bei starker Abnutzung oder Beschädigung die Düsen und/oder O-Ringe durch neue Teile ersetzen.
- ► O-Ringe wieder anbringen und die beiden an der Eintrittsdüse mit Hochvakuumfett einfetten, Düsen einsetzen, Adapter anbringen und befestigen.
  - Den Adapter zentrisch auf die Eintrittsdüse setzen und beide Spannverschlüsse gleichzeitig anziehen.
- ► Entnahmeschlauch auf den Stutzen des Adapters schieben und mit Spannband befestigen.
- Messgassonde einbauen.
- Falls ausgeschaltet, Sicherungen für Heizbänder einschalten und FWE200DH anfahren.

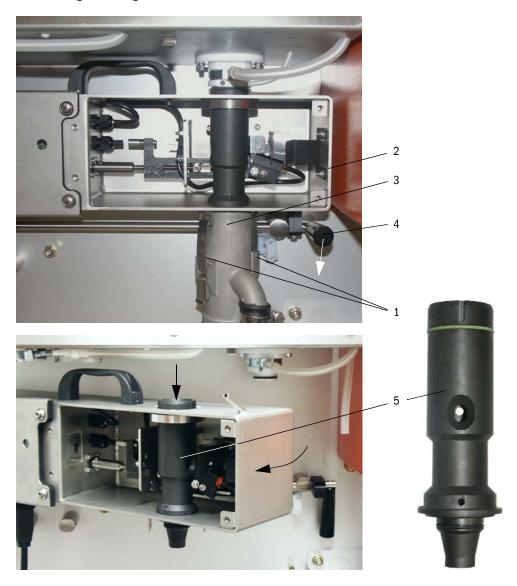
Abb. 67: Eintrittsdüsen




Wartung FWE200DH

### 5.2.4 Ejektor reinigen

- ► Spannbänder (1) von Rückführschlauch (2) und Schlauch zur Gebläseeinheit (3) am Ejektor (4) lösen und Schläuche abziehen.
- ► Spannverschlüsse (5) an der Messzelle (6) lösen und Ejektor abnehmen.
- ► Mischrohr (7) aus dem Ejektorgehäuse (8) herausdrücken.
- ► Mischrohr, O-Ring und Ejektorgehäuse mit Wasser reinigen.
  Teile auf Abnutzung oder Beschädigung überprüfen und bei Notwendigkeit durch neue Teile ersetzen.
- ► Ejektor in umgekehrter Reihenfolge wieder zusammenbauen und an der Messzelle montieren.
- ► Schläuche anschließen und mit Spannbändern sichern.
- ► Messgassonde einbauen.
- ► Falls ausgeschaltet, Sicherungen für Heizbänder einschalten und FWE200DH anfahren.


Abb. 68: Ejektor

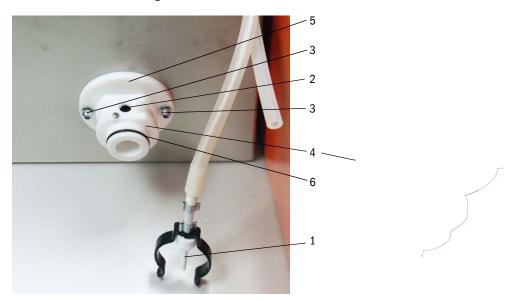


# 5.2.5 Saugdüse reinigen

- ► Spannverschlüsse (1) an der Messzelle (2) lösen und Ejektor (3) abnehmen.
- ► Hebel (4) für Arretierung des Messsensors nach unten drücken und Messsensor nach links herausschwenken.
- ► Saugdüse (5) nach unten drücken (z.B. durch leichten Schlag mit der Handfläche), abnehmen und mit Wasser reinigen.
- ► O-Ringe mit Silikonfett einfetten.
- ► Ejektor anbringen und befestigen.
- ► Messsensor wieder zusammenbauen und arretieren.
- ► Messgassonde einbauen.
- Falls ausgeschaltet, Sicherungen für Heizbänder einschalten und FWE200DH anfahren.

Abb. 69: Saugdüse reinigen




Wartung FWE200DH

### 5.2.6 Zwischendüse reinigen

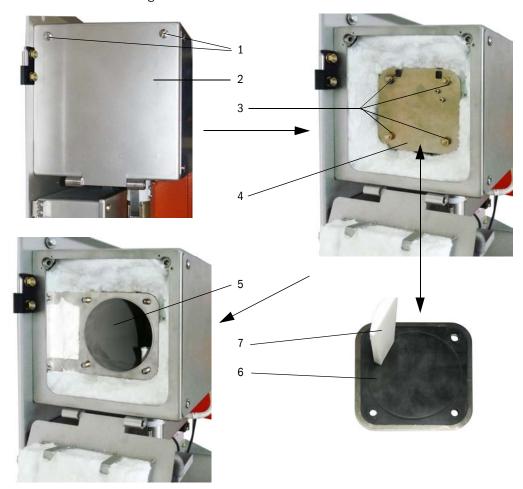
► Schlauch für Differenzdruckmessung vom Stutzen abziehen (siehe "Saugdüse reinigen", Seite 91).

- ► Hebel für Arretierung des Messsensors nach unten drücken und Messsensor nach links herausschwenken.
- ► Messgasfühler (1) aus der Bohrung (2) herausziehen
- ▶ Befestigungsmuttern (3) lösen, Zwischendüse (4) drehen, aus der Halterung (5) herausnehmen und mit Wasser reinigen.
- ► 0-Ring (6) überprüfen und bei Bedarf durch neuen ersetzen.
- ► O-Ringe mit Silikonfett einfetten.
- ► Zwischendüse wieder einbauen, Messsensor wieder zurück schwenken und arretieren.
- ► Messgassonde einbauen.
- Falls ausgeschaltet, Sicherungen für Heizbänder einschalten und FWE200DH anfahren.

Abb. 70: Zwischendüse reinigen



# 5.2.7 Messgassonde, Entnahme- und Rückführschlauch reinigen


- Spannbänder von Entnahme- und Rückführschlauch an beiden Enden lösen und Schläuche abziehen.
- Schläuche und Messgassonde mit Wasser reinigen. Abgenutzte bzw. defekte Schläuche durch neue ersetzen (Entnahmeschlauch Best.-Nr. 5313673, Rückführschlauch Best.-Nr. 5328761).
- Schläuche anschließen und mit Spannbändern sichern.
- ► Messgassonde einbauen.
- Falls ausgeschaltet, Sicherungen für Heizbänder einschalten und FWE200DH anfahren.

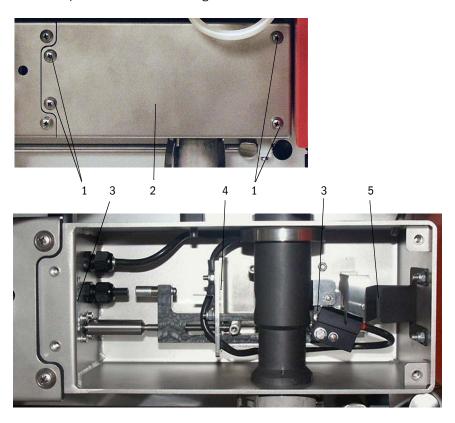
### 5.2.8 Drallkammer reinigen

- ► Befestigungsverschlüsse (1) der Abdeckung (2) lösen und Abdeckung nach unten klappen.
- ▶ Befestigungsmuttern (3) des Deckels (4) der Drallkammer (5) lösen und Deckel mit Dichtung (6) abnehmen.
- ► Drallkammer innen mit Wasser reinigen.

  Vorhandene Ablagerungen vorsichtig mit geeigneten Hilfsmitteln entfernen. Bei starker Abnutzung oder Beschädigung die Drallkammer durch eine neue ersetzen (siehe Servicehandbuch).
- ▶ Dichtung und Prallplatte (7) überprüfen und ggf. austauschen.
- ► Thermozyklon wieder zusammenbauen.
- ► Messgassonde einbauen.
- ► Falls ausgeschaltet, Sicherungen für Heizbänder einschalten und FWE200DH anfahren.

Abb. 71: Drallkammer reinigen




Wartung FWE200DH

### 5.2.9 Optische Grenzflächen reinigen

Die optischen Grenzflächen sind dann zu reinigen, wenn Ablagerungen erkennbar sind oder die maximal zulässige Verschmutzung erreicht ist (Grenzwert 30 % für Warnung, 40 % für Störung). Der aktuelle Verschmutzungswert kann am LC-Display oder im Programm SOPAS ET abgelesen werden.

- Verschlussschrauben (1) für Abdeckung (2) der Messzelle lösen und Abdeckung abnehmen.
- ► Glasflächen (3) und Blenden (4) vorsichtig mit Wattestäbchen reinigen, falls notwendig auch die Lichtfalle (5).

Abb. 72: Optische Grenzflächen reinigen

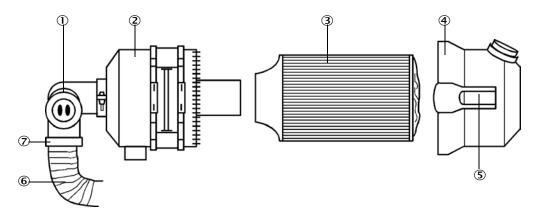


+i

Größere Verschmutzungswerte (über ca. 10 %), die auch durch mehrfache Reinigung nicht reduziert werden können, deuten auf Abnutzung der optischen Grenzflächen. Bei Werten bis ca. 10 % hat das aber keinen Einfluss auf Messverhalten und genauigkeit.

- Dichtung für Abdeckung überprüfen und ggf. austauschen.
- ► Messgassonde einbauen.
- Falls ausgeschaltet, Sicherungen für Heizbänder einschalten und FWE200DH anfahren.

FWE200DH Wartung


# 5.2.10 Filtereinsatz der Gebläseeinheit überprüfen / austauschen

Abhängig vom Verschmutzungsgrad der angesaugten Umgebungsluft muss der Filtereinsatz in vom Betreiber festzulegenden Abständen auf Verschmutzung überprüft werden. Der Filtereinsatz ist zu tauschen, wenn:

- starke Verschmutzungen sichtbar sind (Belag auf der Filteroberfläche),
- die Spülluftmenge gegenüber dem Betrieb mit einem neuen Filter merklich reduziert ist.

#### **Durchzuführende Arbeiten**

Abb. 73: Austausch Filtereinsatz



- ① Unterdruckwächter
- 2 Filtergehäuse
- 3 Filtereinsatz
- 4 Filtergehäusedeckel

- Schnappverschluss
- 6 Spülluftschlauch
- Spannband
- ► Das Gebläse kurzzeitig ausschalten.
- Filtergehäuse (2) außen reinigen.
- ► Spannband (7) lösen und Spülluftschlauch (6) an einer sauberen Stelle festklemmen.



#### WICHTIG

- ▶ Das Schlauchende so legen, dass keine Fremdkörper angesaugt werden können (Zerstörungsgefahr für das Gebläse), aber nicht verschließen! Während dieser Zeit gelangt ungefilterte Spülluft zu den Spülluftstutzen.
- ► Schnappverschlüsse (5) zusammendrücken und Filtergehäusedeckel (4) abnehmen.
- Filtereinsatz (3) durch drehend-ziehende Bewegung entfernen.
- ▶ Filtergehäuse und Filtergehäusedeckel innen mit Lappen und Pinsel reinigen.



## WICHTIG:

- Zum nassen Reinigen nur wassergetränkte Lappen verwenden, anschließend Teile gut abtrocknen.
- ► Neuen Filtereinsatz durch drehend-drückende Bewegung einsetzen. Ersatzteil: Filtereinsatz Micro-Topelement C11 100, Best.-Nr. 5306091
- Filtergehäusedeckel aufsetzen und Schnappverschlüsse einrasten, dabei Ausrichtung zum Gehäuse beachten.
- ► Spülluftschlauch wieder am Filterausgang mit Schlauchschelle befestigen.
- Das Gebläse wieder einschalten.

Wartung FWE200DH

# 5.3 Messsystem außer Betrieb setzen

Bei kurzfristigem Anlagenstillstand sollte das FWE200DH weiter betrieben werden. Bei längerer Stilllegung der Anlage (ab ca. 1 Woche) empfehlen wir, das FWE200DH außer Betrieb zu setzen.



#### HINWEIS:

Bei Ausfall der Gebläseeinheit ist das FWE200DH umgehend außer Betrieb zu setzen.



### WARNUNG: Gefahr durch Gas und heiße Teile

- Bei der Demontage die einschlägigen Sicherheitsbestimmungen sowie die Sicherheitshinweise in Kapitel 1 beachten.
- Geeignete Schutzmaßnahmen gegen mögliche örtliche oder anlagenbedingte Gefahren ergreifen.
- Schalter, die aus Sicherheitsgründen nicht mehr eingeschaltet werden dürfen, durch Schild und Einschaltsperren sichern.

#### Durchzuführende Arbeiten

Messgassonde aus dem Gaskanal ausbauen.



#### WARNUNG: Gefahr durch Gas und heiße Teile

- Messgassonde an Anlagen mit Gefahrpotenzial (höherer Kanalinnendruck, heiße oder aggressive Gase) nur bei Anlagenstillstand abbauen.
- ► Montageöffnung mit Blindflansch verschließen.
- Schlauchverbindungen an der Messgassonde lösen.
- ► Hauptschalter ausschalten.
- Nach Abkühlen aller heißen Teile Mess- und Steuereinheit und Gebläseeinheit abbauen und alle Komponenten an einem sauberen, trockenen Ort einlagern.
- ► Steckverbinder mit geeigneten Hilfsmitteln vor Schmutz und Nässe schützen.

# 6 Störungs- und Fehlerbehandlung

# 6.1 Allgemeines

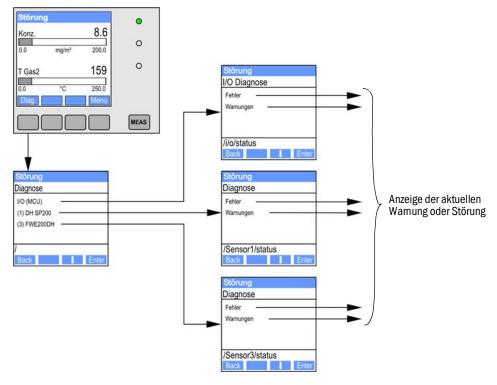
Warnungsmeldungen werden ausgegeben, wenn intern gesetzte Limits für einzelne Gerätefunktionen/-bestandteile erreicht oder überschritten werden, die zu fehlerhaften Messwerten oder einem baldigen Ausfall des Messsystems führen können.



Warnungsmeldungen bedeuten noch keine Fehlfunktion des Messsystems. Am Analogausgang wird weiter der aktuelle Messwert ausgegeben.



Detaillierte Beschreibung der Meldungen und Möglichkeiten zur Behebung siehe Servicehandbuch.


# 6.1.1 Anzeige von Warnungs- und Störungsmeldungen

Warnungen oder Gerätestörungen werden signalisiert durch:

- Statusrelais (siehe "Kabel für Digital-, Analog- und Statussignale anschließen", Seite 39).
- LC-Display der Mess- und Steuereinheit
  In der Statuszeile (siehe "Allgemeine Hinweise zur Nutzung", Seite 80) "Wartungsbedarf"
  bzw. "Störung" angezeigt. Außerdem leuchtet die jeweilige LED ("MAINTENANCE
  REQUEST" bei Warnung, "FAILURE" bei Störung).

Nach Betätigen der Taste "Diag" werden im Menü "Diagnose" nach Auswahl des Gerätes ("DH SP200", "FWE200DH", "MCU") mögliche Ursachen als Kurzinformation angezeigt.

# Bild 74 Anzeige am LC-Display

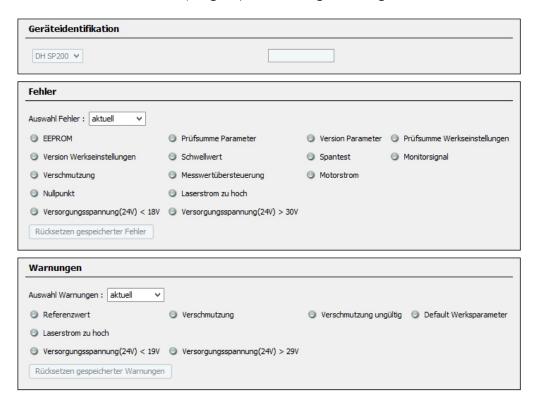


Im Programm SOPAS ET
 Detaillierte Informationen über den aktuellen Gerätezustand liefert das Verzeichnis "Diagnose / Fehlermeldungen/Warnungen".

#### 6.1.2 Funktionsstörungen

| Symptom                        | Mögliche Ursache                                                                                                                                                                                                                    | Maßnahme                                                                                                                                                                     |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Keine Anzeige<br>am LC-Display | <ul> <li>Hauptschalter und/oder Sicherungen ausgeschaltet</li> <li>fehlende Netzspannung</li> <li>Sicherung defekt</li> <li>Verbindungskabel zum Display nicht angeschlossen oder beschädigt</li> <li>Defekte Baugruppen</li> </ul> | <ul> <li>▶ Spannungsversorgung überprüfen.</li> <li>▶ Verbindungskabel überprüfen.</li> <li>▶ Sicherung wechseln.</li> <li>▶ Endress+Hauser Service kontaktieren.</li> </ul> |
| Analogausgang<br>auf Live Zero | <ul><li>Gerät ist in Zustand "Wartung"<br/>gesetzt.</li><li>Gerät hat Funktionsstörung(en).</li></ul>                                                                                                                               | <ul> <li>Gerätestatus prüfen</li> <li>Messbereich zu groß gewählt.</li> <li>Endress+Hauser Service kontaktieren.</li> </ul>                                                  |

# 6.2 Warnungs- und Störungsmeldungen im Programm SOPAS ET


Zur Anzeige ist das Messsystem mit dem Programm SOPAS ET zu verbinden und die Gerätedatei "DH SP200"; FWE200DH" bzw. "MCU" zu starten.

Die Bedeutung der einzelnen Meldungen wird durch Bewegen des Mauszeigers auf die jeweilige Anzeige in einem separaten Fenster näher beschrieben. Bei Klicken auf die Anzeige erscheint bei einigen Meldungen unter "Kontexthilfe" eine kurze Beschreibung möglicher Ursachen und Behebung.

Durch Auswahl von "aktuell" oder "gespeichert" im Fenster "Auswahl Fehler" bzw. "Auswahl Warnung" können momentan anliegende oder früher aufgetretene und im Fehlerspeicher erfasste Warnungs- oder Störungsmeldungen angezeigt werden.

#### 6.2.1 Messsensor

Abb. 75: SOPAS ET-Menü: SP200/Diagnose/Fehlermeldungen-Warnungen"



Die nachfolgend aufgeführten Störungen können u.U. vor Ort behoben werden.

| Meldung       | Bedeutung                                                                                                             | Mögliche Ursache                                                                                  | Maßnahme                                                                                                                                                                                                                                                             |
|---------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verschmutzung | Aktuelle<br>Empfangsintensität liegt<br>unter dem zulässigen<br>Grenzwert (siehe<br>"Technische Daten",<br>Seite 104) | <ul> <li>Ablagerungen auf den opti-<br/>schen Grenzflächen</li> <li>Unsaubere Spülluft</li> </ul> | <ul> <li>Optische Grenzflächen reinigen (siehe "Optische Grenzflächen reinigen", Seite 94).</li> <li>Spülluftfilter überprüfen (siehe "Filtereinsatz der Gebläseeinheit überprüfen / austauschen", Seite 95)</li> <li>Endress+Hauser Service kontaktieren</li> </ul> |
|               | Abweichung vom Sollwert > ±2 %.                                                                                       | Schlagartig geänderte<br>Messbedingungen während<br>der Bestimmung der<br>Kontrollwerte           | <ul> <li>Funktionskontrolle wiederholen.</li> <li>Endress+Hauser Service kontaktieren.</li> </ul>                                                                                                                                                                    |

# 6.2.2 Messsystem

Abb. 76: SOPAS ET-Menü: FWE200DH/Diagnose/Fehlermeldungen-Warnungen"



Die nachfolgend aufgeführten Störungen können u.U. vor Ort behoben werden.

### Warnungsmeldungen

| Meldung                                          | Bedeutung/Mögliche Ursache                                                 | Maßnahme                                                                                                                                                                                                                        |  |
|--------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Defaultwerte gesetzt                             | Messsystem auf<br>Auslieferungsparameter eingestellt                       | ► Messsystem gemäß der Anforderungen parametrieren.                                                                                                                                                                             |  |
| Testbetrieb aktiviert                            | Automatische Heizungsregelung<br>und Gebläsesteuerung sind<br>deaktiviert. | ► System in Messbetrieb setzen.                                                                                                                                                                                                 |  |
| CB2 Sicherung Heizer 1<br>CB3 Sicherung Heizer 2 | Grenzwert ist überschritten.                                               | <ul> <li>Gaswege reinigen (siehe "Wartungsarbeiten", Seite 87).</li> <li>Parametrierung überprüfen/korrigieren (siehe "Grenzwert für Durchfluss festlegen", Seite 55).</li> <li>Endress+Hauser Service kontaktieren.</li> </ul> |  |

# Störungsmeldungen

| Meldung                                                  | Bedeutung/Mögliche Ursache                                                                                                                 | Maßnahme                                                                                                                                                                                                                        |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blower unit nicht angeschlossen                          | Gebläseeinheit ist nicht oder nicht richtig<br>angeschlossen (siehe "Gebläseeinheit<br>und Versorgungsspannung<br>anschließen", Seite 42). | <ul> <li>Anschluss überprüfen und korrigieren.</li> <li>Endress+Hauser Service kontaktieren.</li> </ul>                                                                                                                         |
| Aufheizphase > 1<br>Stunde                               | Sollwert der Messgastemperatur wird nicht erreicht (Messgastemperatur zu hoch in Relation zu Gasnässe und Gastemperatur).                  | <ul> <li>Sollwert der Messgastemperatur reduzieren.</li> <li>Applikationsbedingungen überprüfen</li> </ul>                                                                                                                      |
| Grenzwert Drucküberwachung Grenzwert ist unterschritten. |                                                                                                                                            | <ul> <li>Gaswege reinigen (siehe "Wartungsarbeiten", Seite 87).</li> <li>Parametrierung überprüfen/korrigieren (siehe "Grenzwert für Durchfluss festlegen", Seite 55).</li> <li>Endress+Hauser Service kontaktieren.</li> </ul> |

### 6.2.3 Steuereinheit

Abb. 77: SOPAS ET-Menü: MCU/Diagnose/ Fehlermeldungen-Warnungen"



Die nachfolgend aufgeführten Störungen können u.U. vor Ort behoben werden.

# Warnungsmeldungen

| Meldung                   | Bedeutung                                                     | Mögliche Ursache                                                                             | Maßnahme                                                                                                                                                                         |
|---------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kein Sensor<br>gefunden   | Messsensor und/oder<br>Systemsteuerung wurde nicht<br>erkannt | Kommunikationspro-<br>bleme auf der RS485-Lei-<br>tung     Versorgungsspannungspro-<br>bleme | <ul> <li>Systemeinstellungen überprüfen.</li> <li>Verbindungskabel überprüfen.</li> <li>Spannungsversorgung überprüfen.</li> <li>Endress+Hauser Service kontaktieren.</li> </ul> |
| Systemtest aktiv          | MCU befindet sich im Testmodus.                               |                                                                                              | <ul><li>Zustand "Systemtest" deaktivie-<br/>ren (Verzeichnis "Wartung")</li></ul>                                                                                                |
| Interfacemodul<br>inaktiv | Interfacemodul nicht parametrie                               | rt                                                                                           | ➤ Interfacemodul parametrieren<br>(siehe "Ethernet-Modul parametrieren", Seite 78).                                                                                              |

# Störungsmeldungen

| Meldung                               | Bedeutung                                                             |                                                                                                                                      | Maßnahme                                                                                                                    |
|---------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| I/O Bereichsüber-/<br>unterschreitung | Der Analogaus-/<br>eingangsstrombereich ist über-/<br>unterschritten. | <ul> <li>Messwert über eingestelltem Bereich</li> <li>Parametrierfehler</li> <li>Bürde entspricht nicht der Spezifikation</li> </ul> | <ul> <li>Ein-/Ausgangsbereichswerte mit<br/>Multimeter überprüfen.</li> <li>Endress+Hauser Service kontaktieren.</li> </ul> |

# Konfigurationsfehler

| Meldung             | Bedeutung                                                                                           | Mögliche Ursache                                                                        | Maßnahme                                                                                                                                              |
|---------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| AO Konfiguration    | Die Anzahl von verfügbaren und<br>parametrierten<br>Analogausgängen stimmt nicht<br>überein.        | <ul><li>AO nicht parametriert</li><li>Anschlussfehler</li><li>Modulausfall</li></ul>    | <ul> <li>Parametrierung überprüfen<br/>(siehe "Analogausgänge parametrieren", Seite 58).</li> <li>Endress+Hauser Service kontaktieren.</li> </ul>     |
| Al Konfiguration    | Die Anzahl von verfügbaren und parametrierten Analogeingängen stimmt nicht überein.                 |                                                                                         | <ul> <li>Parametrierung überprüfen<br/>(siehe "Analogeingänge parametrieren", Seite 60).</li> <li>Endress+Hauser Service kontaktieren.</li> </ul>     |
| DO Konfiguration    | Nicht relevant für FWE200DH                                                                         |                                                                                         |                                                                                                                                                       |
| DI Konfiguration    |                                                                                                     |                                                                                         |                                                                                                                                                       |
| Sensorkonfiguration | Die Anzahl der verfügbaren<br>Sensoren stimmt nicht mit der<br>Zahl der angeschlossenen<br>überein. | Sensorausfall     Kommunikationspro-<br>bleme auf der RS485-Lei-<br>tung                | <ul> <li>Messsensor/Systemsteuerung<br/>überprüfen.</li> <li>Verbindungskabel überprüfen.</li> <li>Endress+Hauser Service kontaktieren</li> </ul>     |
| Interfacemodul      | keine Kommunikation über<br>Interfacemodul                                                          | <ul><li>Modul nicht parametriert</li><li>Anschlussfehler</li><li>Modulausfall</li></ul> | <ul> <li>Parametrierung überprüfen (siehe<br/>"Ethernet-Modul parametrieren",<br/>Seite 78).</li> <li>Endress+Hauser Service kontaktieren.</li> </ul> |

Endress+Hauser

#### **Spezifikationen** 7

#### 7.1 **Technische Daten**

| Messparameter                  |                                                                                                                                 |  |  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|
| Messgröße                      | Streulichtintensität nach gravimetrischer Vergleichsmessung Ausgabe der Staubkonzentration in mg/m³                             |  |  |
| Messbereich (frei einstellbar) | kleinster Bereich: 0 5 mg/m³ größter Bereich: 200 mg/m³ höhere auf Anfrage, dazwischen frei parametrierbar                      |  |  |
| Messgenauigkeit                | ±2 % vom Messbereichsendwert                                                                                                    |  |  |
| Ansprechzeit                   | 0,1 600 s; frei wählbar                                                                                                         |  |  |
| Applikationsdaten              |                                                                                                                                 |  |  |
| Gastemperatur im Kanal         | max. 120 °C für PVDF-Sonden max. 220 °C für Hastelloy-Sonden (höhere auf Anfrage)                                               |  |  |
| Gastemperatur in der Messzelle | einstellbar (standardmäßig 160 °C)                                                                                              |  |  |
| Kanalinnendruck                | ± 20 hPa                                                                                                                        |  |  |
| Gasnässe                       | max. 10 g Wasser je m³ (Masseanteil 1%) als flüssiger Anteil ohne Wasserdampf (höhere auf Anfrage)                              |  |  |
| Gasgeschwindigkeit             | 5 30 m/s (Weitere auf Anfrage)                                                                                                  |  |  |
| Umgebungstemperatur            | -20 +50 °C sonst Einhausung erforderlich<br>-20 +45 °C Ansaugtemperatur für Spülluft<br>Erweiterte Bereiche auf Anfrage         |  |  |
| Funktionsüberprüfung           |                                                                                                                                 |  |  |
| Automatischer Selbsttest       | Linearität, Drift, Alterung, Verschmutzung<br>Verschmutzungsgrenzwerte: ab 30 % Warnung; ab 40 % Störung                        |  |  |
| manuelle Linearitätsprüfung    | mittels Referenzfilter (Prüfmittel für Linearitätstest)                                                                         |  |  |
| Anzeigen                       |                                                                                                                                 |  |  |
| LC-Display am Steuerschrank    | Für Anzeige von Messwerten und Systemzustand                                                                                    |  |  |
| Ausgangssignale                |                                                                                                                                 |  |  |
| Analogausgänge                 | 3 Ausgänge 0/2/4 22 mA, max. Bürde 750 $\Omega$ ; galvanisch getrennt;                                                          |  |  |
| Relaisausgänge                 | 5 potenzialfreie Ausgänge (Wechsler) für Statussignale; Belastbarkeit 48 V, 1 A<br>Weitere auf Anfrage                          |  |  |
| Eingangssignale                |                                                                                                                                 |  |  |
| Analogeingänge                 | 6 Eingänge 0 20 mA (Standard, ohne galvanische Trennung); Genauigkeit $\pm$ 0,1 mA                                              |  |  |
| Digitaleingänge                | 8 Eingänge für Anschluss potenzialfreier Kontakte (siehe "Kabel für Digital-, Analog- und Statussignale anschließen", Seite 39) |  |  |
| Kommunikations-Schnittstellen  |                                                                                                                                 |  |  |
| USB 1.1                        | Für Messwertabfrage, Parametrierung und Softwareupdate via PC/Laptop mittels<br>Bedienprogramm                                  |  |  |
| RS485                          | Für Anschluss Option Remote-Einheit                                                                                             |  |  |
| Interface-Modul                | Für Kommunikation mit übergeordneten Leitsystem, standardmäßig Modbus TCP, alternativ Profibus DP, Ethernet                     |  |  |
| Energieversorgung              |                                                                                                                                 |  |  |
| Spannungsversorgung            | 115 / 230 V AC, 50 / 60Hz                                                                                                       |  |  |
| Leistungsverbrauch             | Typ. 0,8 1 kW, max. 1,7 kW (Standardausführung ohne Option beheizter Entnahmeschlauch                                           |  |  |
| Abmessungen (B x H x T), Masse |                                                                                                                                 |  |  |
| Mess- und Steuereinheit        | ca. 820 x 730 x 300 mm; ca. 65 kg                                                                                               |  |  |
| Messgassonde                   | Länge 730 mm (NL 600 mm); 1330 mm (NL 1200 mm); max. 15 kg                                                                      |  |  |
| Gebläseeinheit                 | 550 mm x 550 mm x 258 mm; mit Wetterschutzhaube 605 mm x 550 mm x 350 mm; ca. 16                                                |  |  |
| Sonstiges                      |                                                                                                                                 |  |  |

FWE200DH Spezifikationen

| Schutzart           | IP 54 (Elektronikgehäuse IP 65)                                                                                                   |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Laser               | Laserklasse 1 im Betriebszustand, Laserklasse 2 im geöffneten Zustand;<br>Leistung < 1 mW; Wellenlänge zwischen 640 nm und 660 nm |
| Gebläse-Fördermenge | ca. 15 20 m³/h (Normzustand)                                                                                                      |

Spezifikationen FWE200DH

#### Konformitäten

Das Gerät entspricht in seiner technischen Ausführung folgenden EG-Richtlinien und EN-Normen:

- EG-Richtlinie: NSP (Niederspannungsrichtlinie)
- EG-Richtlinie: EMV (Elektromagnetische Verträglichkeit)

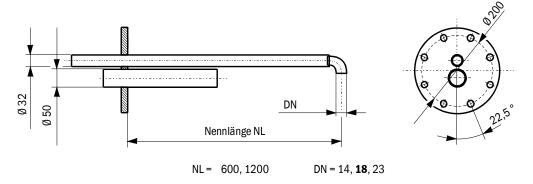
#### Angewandte EN-Normen:

- EN 61010-1, Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Labor-
- EN 61326, Elektrische Betriebsmittel für Messtechnik, Leittechnik, Laboreinsatz EMV -Anforderung
- EN 14181, Emissionen aus stationären Quellen

#### **Elektrischer Schutz**

- Isolierung: Schutzklasse 1 gemäß EN 61010-1.
- Isolationskoordination: Messkategorie II gemäß EN61010-1.
- Verschmutzung: Das Gerät arbeitet sicher in einer Umgebung bis zum Verschmutzungsgrad 2 gemäß EN 61010-1 (übliche, nicht leitfähige Verschmutzung und vorübergehende Leitfähigkeit durch gelegentlich auftretende Betauung).
- Elektrische Energie: Das Leitungsnetz zur Netzspannungsversorgung des Systems muss entsprechend den einschlägigen Vorschriften installiert und abgesichert sein.

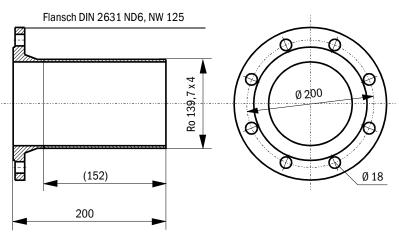
#### Zulassungen


Das Messsystem ist eignungsgeprüft gemäß EN 15267.

# 7.2 Abmessungen, Bestellnummern

Alle Maße sind in mm angegeben.

# 7.2.1 Messgassonde

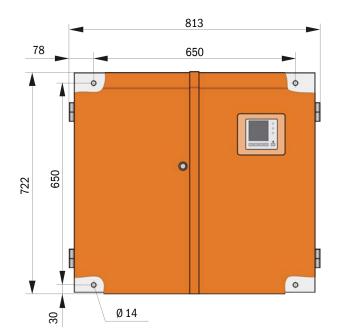

Abb. 78: Messgassonde

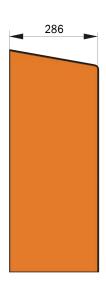


| Bezeichnung                   | Bestellnummer |
|-------------------------------|---------------|
| Messgassonde NL 600 PVDF      | 2074811       |
| Messgassonde NL1200 PVDF      | 2075029       |
| Messgassonde NL 600 Hastelloy | 2075038       |
| Messgassonde NL1200 Hastelloy | 2075039       |

# 7.2.2 Flansch mit Rohr

Abb. 79: Flansch mit Rohr





| Bezeichnung                | Material | Bestellnummer |
|----------------------------|----------|---------------|
| Flansch mit Rohr D139ST200 | St37     | 7047616       |
| Flansch mit Rohr D139SS200 | 1.4571   | 7047641       |

Spezifikationen FWE200DH

# 7.2.3 Mess- und Steuereinheit

Abb. 80: Mess- und Steuereinheit



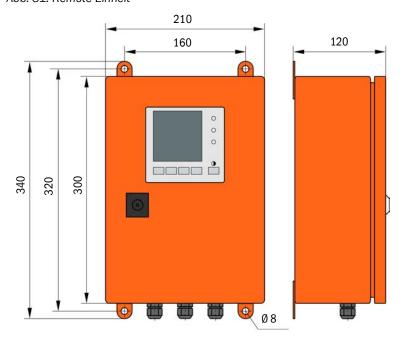


| Bezeichnung                          | Bestellnummer |
|--------------------------------------|---------------|
| Mess- und Steuereinheit FWE200DH-NNJ | 1066190       |
| Mess- und Steuereinheit FWE200DH-NNE | 1068441       |
| Mess- und Steuereinheit FWE200DH-NNP | 1069950       |
| Mess- und Steuereinheit FWE200DH-BNJ | 1068461       |
| Mess- und Steuereinheit FWE200DH-BNE | 1069591       |
| Mess- und Steuereinheit FWE200DH-BNP | 1069592       |
| Mess- und Steuereinheit FWE200DH-NHJ | 1069593       |
| Mess- und Steuereinheit FWE200DH-NHE | 1069594       |
| Mess- und Steuereinheit FWE200DH-NHP | 1069595       |
| Mess- und Steuereinheit FWE200DH-BHJ | 1069596       |
| Mess- und Steuereinheit FWE200DH-BHE | 1069597       |
| Mess- und Steuereinheit FWE200DH-BHP | 1069598       |

Typschlüssel: siehe "Typschlüssel", Seite 21

### 7.2.4 Gebläseeinheit

# Gebläseeinheit

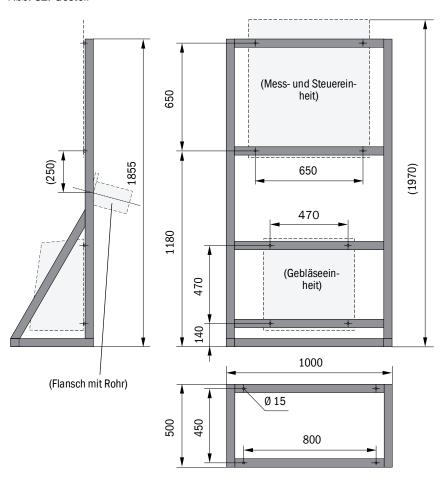

| Bezeichnung                                                             | Bestellnummer |
|-------------------------------------------------------------------------|---------------|
| Gebläseeinheit mit Gebläse 2BH1100, Filter, Spülluftschlauch Länge 10 m | 1067951       |

FWE200DH Spezifikationen

# 7.3 Optionen

# 7.3.1 Remote-Einheit

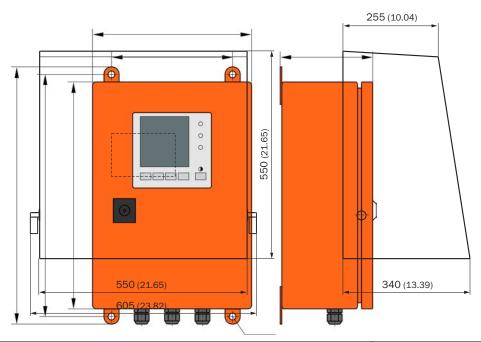
Abb. 81: Remote-Einheit




| Bezeichnung                                          | Bestellnummer |
|------------------------------------------------------|---------------|
| Remote-Einheit                                       | 2075567       |
| Remote-Einheit mit integriertem Weitbereichsnetzteil | 2075568       |

Spezifikationen FWE200DH

# 7.3.2 Gestell


Abb. 82: Gestell



| Bezeichnung | Bestellnummer |
|-------------|---------------|
| Gestell     | 7047617       |

# 7.3.3 Wetterschutzhaube für Gebläseeinheit

Abb. 83: Wetterschutzhaube für Gebläseeinheit



| Bezeichnung                           | Bestellnummer |
|---------------------------------------|---------------|
| Wetterschutzhaube für Spüllufteinheit | 5306108       |

# 7.3.4 Messsystem

| Bezeichnung                                               | Bestellnummer |
|-----------------------------------------------------------|---------------|
| Option Rückspüleinrichtung                                | 2073682       |
| Abdeckung unten                                           | 2074595       |
| Option beheizter Entnahmeschlauch Länge 4 m (3 m beheizt) | 2075575       |

# 7.3.5 Interfacemodule

| Bezeichnung                    | Bestellnummer |
|--------------------------------|---------------|
| Modul Interface Profibus DP V0 | 2040961       |
| Modul Interface Ethernet Typ 1 | 2040965       |

# 7.3.6 Zubehör für Geräteüberprüfung

| Bezeichnung                             | Bestellnummer |
|-----------------------------------------|---------------|
| Prüfmittel für Linearitätstest FWE200DH | 2072204       |

Spezifikationen FWE200DH

#### 7.4 Verbrauchsteile für 2-jährigen Betrieb

#### 7.4.1 Messsensor

| Bezeichnung | Anzahl | Bestellnummer |
|-------------|--------|---------------|
| Optiktuch   | 4      | 4003353       |

#### 7.4.2 Gebläseeinheit

| Bezeichnung                         | Anzahl | Bestellnummer |
|-------------------------------------|--------|---------------|
| Filtereinsatz Europiclon 3000 I/min | 4      | 5306090       |

FWE200DH Anhang

# 8 Anhang

# 8.1 Standardeinstellungen FWE200DH

Die Protokolle der Parametereinstellungen bei Auslieferung (werksseitige Einstellungen, siehe "Werksseitige Einstellungen", Seite 53) sind Bestandteil der zum Messsystem mitgelieferten Systemdokumentation und werden deshalb in dieser Betriebsanleitung nicht separat aufgeführt.

8029844/YWL2/V2-0/2016-04 www.addresses.endress.com

