Technical Information **Dosimass**

Coriolis flowmeter

Mass flowmeter with hygienic design, highest repeatability and a compact transmitter

Application

- Measuring principle operates independently of physical fluid properties such as viscosity or density
- Measurement of liquids with the most diverse properties for demanding batching and dosing applications

Device properties

- Wetted materials CIP, SIP cleanable
- Hygienic approvals 3-A and EHEDG available
- Fullfilling global Food Contact Materials, EU, US, CN
- Robust, compact transmitter housing
- Pulse/frequency/switch output, IO-Link, Modbus RS485
- Excellent and easily cleanable transmitter

Your benefits

- High process safety highest measuring accuracy for different media in shortest filling time
- Fewer process measuring points multivariable measurement (flow, density, temperature)
- Space-saving installation no in-/outlet run needs
- Versatile and time-saving wiring plug connector
- Fast commissioning pre-configured devices
- Automatic recovery of data for servicing

Table of contents

About this document	I .	1	
Function and system design Measuring principle Measuring system Equipment architecture Dependability	. 4 5 6	Pressure-temperature ratings	30 32 32 32 32
Input		5	33
Measured variable	. 7		34 34 39
Input signal	8 9	Weight	43 43
Output	9	Process connections	
Low flow cut off	11 12 12	Local operation	45 45
TI -5	13 13 13	Remote operation	45 45
Supply voltage	18 18 18	CE mark	46 46 46
Power supply failure	18 18	Ex approval	46 46 47
Cable specification	19	Pressure Equipment Directive External standards and guidelines	47 48
Maximum measurement error	20 20 21	Additional certification	
Repeatability	22 22 22	-	48
Influence of medium temperature	22 22	Device-specific accessories	49 49
Design fundamentals			49 49
Orientation	23 24 26	Standard documentation	49 50
Special mounting instructions	26	Registered trademarks	50
Environment Ambient temperature range Storage temperature Degree of protection Vibration-resistance and shock-resistance Internal cleaning Electromagnetic compatibility (EMC)	29 29 29 29 29 29 30 30		

2

About this document

Symbols Electrical symbols

Symbol	Meaning
===	Direct current
~	Alternating current
$\overline{\sim}$	Direct current and alternating current
=	Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.
	Potential equalization connection (PE: protective earth) Ground terminals that must be connected to ground prior to establishing any other connections.
	The ground terminals are located on the interior and exterior of the device: Interior ground terminal: potential equalization is connected to the supply network. Exterior ground terminal: device is connected to the plant grounding system.

Symbols for certain types of information

Symbol	Meaning
✓	Permitted Procedures, processes or actions that are permitted.
✓ ✓	Preferred Procedures, processes or actions that are preferred.
×	Forbidden Procedures, processes or actions that are forbidden.
i	Tip Indicates additional information.
<u> </u>	Reference to documentation
A=	Reference to page
	Reference to graphic
	Visual inspection

Symbols in graphics

Symbol	Meaning
1, 2, 3,	Item numbers
1., 2., 3.,	Series of steps
A, B, C,	Views
A-A, B-B, C-C,	Sections
EX	Hazardous area
×	Safe area (non-hazardous area)
≋➡	Flow direction

Function and system design

Measuring principle

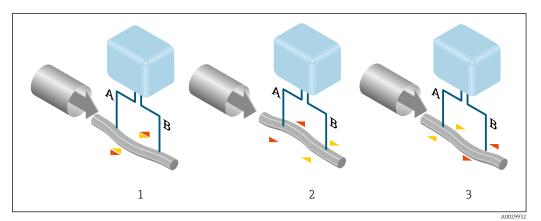
The measuring principle is based on the controlled generation of Coriolis forces. These forces are always present in a system when both translational and rotational movements are superimposed.

 $F_c = 2 \cdot \Delta m (v \cdot \omega)$

 F_c = Coriolis force

 $\Delta m = moving mass$

 ω = rotational velocity

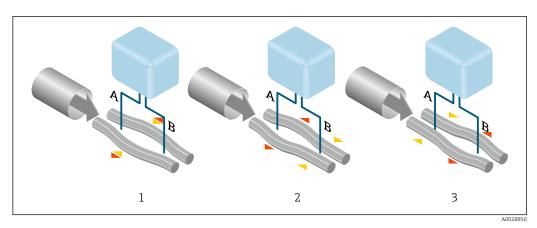

v = radial velocity in rotating or oscillating system

The amplitude of the Coriolis force depends on the moving mass Δm , its velocity v in the system and thus on the mass flow. Instead of a constant rotational velocity ω , the sensor uses oscillation.

Dosimass DN 1 to 4 ($\frac{1}{24}$ to $\frac{1}{8}$ ") measuring principle

In the sensor, an oscillation is produced in the measuring tube. The Coriolis forces produced at the measuring tube cause a phase shift in the tube oscillations (see illustration):

- If there is zero flow (i.e. when the fluid stands still), the oscillation measured at points A and B has the same phase (no phase shift) (1).
- Mass flow causes deceleration of the oscillation at the inlet of the tubes (2) and acceleration at the outlet (3).


 \blacksquare 1 Dosimass DN 1 to 4 ($\frac{1}{24}$ to $\frac{1}{8}$ ") measuring principle

The phase shift (A-B) increases with increasing mass flow. Electrodynamic sensors register the tube oscillations at the inlet and outlet. System balance is created by exciting an eccentrically arranged swinging mass to antiphase oscillation. The measuring principle operates independently of temperature, pressure, viscosity, conductivity and flow profile.

Dosimass DN 8 to 40 ($\frac{3}{8}$ to 1 $\frac{1}{2}$ ") measuring principle

In the sensor, two parallel measuring tubes containing flowing fluid oscillate in antiphase, acting like a tuning fork. The Coriolis forces produced at the measuring tubes cause a phase shift in the tube oscillations (see illustration):

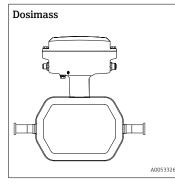
- At zero flow (when the fluid is at a standstill) the two tubes oscillate in phase (1).
- Mass flow causes deceleration of the oscillation at the inlet of the tubes (2) and acceleration at the outlet (3).

 \blacksquare 2 Dosimass DN 8 to 40 ($\frac{3}{8}$ to 1 $\frac{1}{2}$ ") measuring principle

The phase shift (A-B) increases with increasing mass flow. Electrodynamic sensors register the tube oscillations at the inlet and outlet. System balance is ensured by the antiphase oscillation of the two measuring tubes. The measuring principle operates independently of temperature, pressure, viscosity, conductivity and flow profile.

Density measurement

The measuring tube is continuously excited at its resonance frequency. A change in the mass and thus the density of the oscillating system (comprising measuring tube and fluid) results in a corresponding, automatic adjustment in the oscillation frequency. The resonance frequency is thus a function of the medium density. The microprocessor utilizes this relationship to obtain a density signal.


Temperature measurement

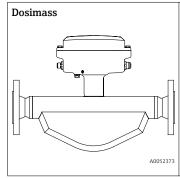
The temperature of the measuring tube is determined in order to calculate the compensation factor due to temperature effects. This signal corresponds to the process temperature and is also available as an output signal.

Measuring system

The device consists of a transmitter and a sensor.

Dosimass DN 1 to 4 ($\frac{1}{24}$ to $\frac{1}{8}$ ")

Transmitter


- Materials:
 - Transmitter housing: stainless steel, 1.4409 (CF3M)
- Housing seal: HNBR
- Configuration:

Via operating tools (e.g. FieldCare)

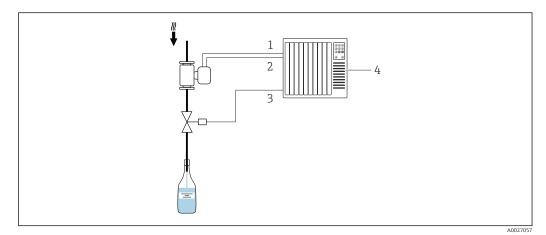
Sensor

- Range of nominal diameter: DN 1 ($\frac{1}{24}$), 2 ($\frac{1}{12}$), 4 ($\frac{1}{8}$)
- Materials:
 - Sensor housing: stainless steel, 1.4404 (316/316L)
 - Measuring tube: stainless steel, 1.4335 (316/316L)
 - Process connections: stainless steel, 1.4435 (316L)

Dosimass DN 8 to 40 (3/8 to 1 1/2")

Transmitter

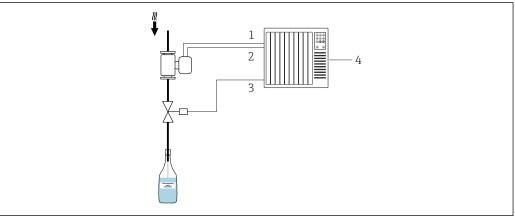
- Materials:
 - Transmitter housing: stainless steel, 1.4409 (CF3M)
- Housing seal: HNBR
- Configuration:


Via operating tools (e.g. FieldCare)

Sensor

- Range of nominal diameter: DN 8 ($\frac{3}{8}$ "), 15 ($\frac{1}{2}$ "), 25 (1"), 40 (1 $\frac{1}{2}$ ")
- Materials:
- Sensor housing: stainless steel, 1.4301 (304)
- Measuring tube: stainless steel, 1.4539 (904L)
- Process connections: stainless steel, 1.4404 (316/316L)

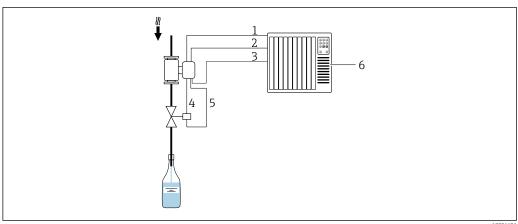
Equipment architecture


Device version: Two pulse/frequency/switch outputs

■ 3 Options for integration into a system for batching processes

- 1 Pulse/frequency/switch output 1
- 2 Pulse/frequency/switch output 2
- 3 Control of valve (by automation system)
- 4 Control system (e.g. PLC)

Device version: IO-Link, a pulse/frequency/switch output



A0027057

 \blacksquare 4 Options for integration into a system for batching processes

- 1 Pulse/frequency/switch output
- 2 IO-Link
- 3 Control of valve (by automation system)
- 4 Control system (e.g. PLC)

Device version: Modbus RS485, two switch outputs (batch), a status output and a status input

- **₽** 5 Options for integration into a system for batching processes
- MODBUS RS485: Measured value (to the automation system)
- 2 Status output/status input
- Status input: Control of batching process (by the automation system)
- $Switch\ output\ (batch): Valve\ activation,\ level\ 1$
- Switch output (batch): Valve activation, level 2
- Control system (e.g. PLC)

Dependability

IT security

The manufacturer warranty is valid only if the product is installed and used as described in the Operating Instructions. The product is equipped with security mechanisms to protect it against any inadvertent changes to the settings.

IT security measures, which provide additional protection for the product and associated data transfer, must be implemented by the operators themselves in line with their security standards.

Input

Measured variable

Direct measured variables

- Mass flow
- Density
- Temperature

Calculated measured variables

Volume flow

Measuring range

Flow values in SI units

DN	Measuring range full scale values $\dot{m}_{min(F)}$ to $\dot{m}_{max(F)}$
[mm]	[kg/h]
1	0 to 20
2	0 to 100
4	0 to 450
8	0 to 2 000
15	0 to 6 500
25	0 to 18000
40	0 to 45 000

Flow values in US units

DN	Measuring range full scale values $\dot{m}_{min(F)}$ to $\dot{m}_{max(F)}$
[in]	[lb/min]
1/24	0 to 0.735
1/12	0 to 3.675
1/8	0 to 16.54
3/8	0 to 73.50
1/2	0 to 238.9
1	0 to 661.5
1 1/2	0 to 1654

To calculate the measuring range, use the Applicator $\Rightarrow \triangleq 49$ sizing tool

Recommended measuring range

Flow limit \rightarrow \triangleq 32

Operable flow range

Over 1000:1.

Flow rates above the preset full scale value do not override the electronics unit, with the result that the totalizer values are registered correctly.

Input signal

- The batching process is controlled by the automation system via the status input or via the fieldbus interface (Modbus) of the device.

Status input via connection A/B

Maximum input values	■ DC -3 to 30 V ■ 5 mA
Response time	Configurable: 10 to 200 ms
Input signal level	 Low signal: DC -3 to 5 V High signal: DC 15 to 30 V
Assignable functions	 Off Start batching process Start and stop batching process Reset totalizer 1 to 3 separately Reset all totalizers Flow override

Status output via connection A/B

Maximum input values	■ DC 30 V ■ 6 mA
Response time	Configurable: 10 to 200 ms
Input signal level	Low signal: DC 0 to 1.5 VHigh signal: DC 10 to 30 V
Assignable functions	 Off Start batching process Start and stop batching process Reset totalizer 1 to 3 separately Reset all totalizers Flow override

Output

Output signal

Pulse/frequency/switch output

Function	Can be set to: Pulse Quantity-proportional pulse with pulse width to be configured. Automatic pulse Quantity-proportional pulse with on/off ratio of 1:1 Frequency Flow-proportional frequency output with 1:1 on/off ratio Switch Contact for displaying a status
Version	 Option AA: 2 pulse/frequency/switch outputs Passive, high-side Option FA: IO-Link, 1 pulse/frequency/switch output Active, high-side
Maximum output values	 Option AA: 2 pulse/frequency/switch outputs DC 30 V 30 mA Option FA: IO-Link, 1 pulse/frequency/switch output DC 30 V 100 mA
Voltage drop	 Option AA: 2 pulse/frequency/switch outputs At 25 mA: ≤ DC 3 V Option FA: IO-Link, 1 pulse/frequency/switch output At 100 mA: ≤ DC 3 V
Pulse output	
Pulse width	Configurable: 0.05 to 2 000 ms
Maximum pulse rate	10 000 Impulse/s
Pulse value	Configurable
Assignable measured variables	Mass flowVolume flow
Frequency output	
Output frequency	Configurable: 0 to 10 000 Hz
Damping	Configurable: 0 to 999.9 s
Pulse/pause ratio	1:1
Assignable measured variables	 Mass flow Volume flow Density Temperature Exciter current Oscillation frequency Oscillation amplitude Frequency fluctuation Oscillation damping Fluctuation Signal asymmetry
Switch output	
Switching behavior	Binary, conductive or non-conductive

Number of switching cycles	Unlimited
Assignable functions	 Off On Diagnostic behavior Alarm Alarm and warning Warning Limit value Mass flow Volume flow Density Temperature Totalizer 1-3 Oscillation damper Flow direction monitoring Status Partially filled pipe detection Low flow cut off

IO-Link

Physical interface	According to Standard IEC 61131-9
Signal	IO-Link digital communication signal, 3-wire
IO-Link version	1.1
IO-Link SSP version	Identification and Diagnosis, Measuring and Switching Sensor (as per SSP 4.3.4)
IO-Link device port	IO-Link port class A

The pin assignment deviates from the IO-Link standard to enable compatibility with previous device versions and installations.

Modbus RS485

Physical interface	RS485 according to Standard EIA/TIA-485-A
--------------------	---

Switch output (batch: valve control)

Only available for device version with Modbus RS485 \rightarrow $\stackrel{\triangle}{=}$ 13.

Switch output (batch)	Switch output (batch)				
Version	Active, high-side				
Maximum output values	■ DC 30 V ■ 500 mA				
Switching behavior	Binary, conductive or non-conductive				
Number of switching cycles	Unlimited				
Assignable functions	OpenClosedBatching				

Status output

Status output				
Version	Active, high-side			
Maximum output values	■ DC 30 V ■ 100 mA			
Voltage drop	At 100 mA: ≤ DC 3 V			
Switching behavior	tching behavior Binary, conductive or non-conductive			
Number of switching cycles	Unlimited			
Assignable functions	 Off Batching process status (batch) Batching process status (batch), output 1 Batching process status (batch), output 2 			

Signal on alarm

Depending on the interface, failure information is displayed as follows.

Pulse/frequency/switch output

Pulse output				
Failure mode Choose from: Actual value No pulses				
Frequency output				
Failure mode	Choose from: Actual value O Hz Definable value between: 0 to 10 000 Hz			
Switch output				
Failure mode	Choose from: Current status Open Closed			

IO-Link

Operating mode	Digital transmission of all failure information		
Device status	Readable via cyclical and acyclical data transmission		

Modbus RS485

Failure mode	Choose from:
	 NaN value instead of current value
	Last valid value

Low flow cut off

The switch points for low flow cut off are user-selectable.

Galvanic isolation

- Device version: 2 pulse/frequency/switch outputs (Order code for "Output, input": option AA)
 - Pulse/frequency/switch outputs galvanically isolated from supply potential.
 - Pulse/frequency/switch outputs not galvanically isolated from each other.
- Device version: IO-Link, 1 pulse/frequency/switch output (Order code for "Output, input": option FA)

Pulse/frequency/switch outputs on supply potential.

- Device version: Modbus RS485, 2 switch outputs (batch), 1 status output, 1 status input (Order code for "Output, input": option MD)
 - Switch outputs (batch) on supply potential.
 - Status output on supply potential.
 - Status input galvanically isolated (connection C/D) or on supply potential (connection A/B)

Protocol-specific data

IO-Link

IO-Link specification	Version 1.1.3			
Device ID	0x947401 (9729281)			
Manufacturer ID	0x0011 (17)			
Smart Sensor Profile 2nd Edition	Supports Identification and DiagnosisDigital Measuring and Switching Sensor (as per SSP type 4.3.4)			
Smart Sensor Profile Type	Measuring profile type 4.3.4 Measuring and Switching Sensor, floating point, 4 channel			
SIO	Yes			
IO-Link transmission rate	COM3; 230.4 kBd			
Minimum period	1.5 ms			
Process data width input/output	18 bytes/2 bytes (as per SSP 4.3.4)			
OnRequestdata PreOp/Op	8 bytes/2 bytes			
Data storage	Yes			
Block configuration	Yes			
Device operational	The device is operational 3 seconds after the supply voltage is applied			
System integration	Input cyclic process data Mass flow [kg/s] Density [kg/m³] Totalizer 1 [kg] Temperature [°C]			
	Output cyclic process data Control signal channel - Volume flow Control signal channel - Density Control signal channel - Temperature Control signal channel - Totalizer 1 Flow override Totalizer 1 - Hold Totalizer 1 - Reset + totalize Totalizer 1 - Reset + hold Totalizer 1 - Totalize			

Device description

In order to integrate field devices into a digital communication system, the IO-Link system needs a description of the device parameters, such as output data, input data, data format, data volume and supported transmission rate.

The data are included in the device description (IODD) that are provided to the IO-Link master during commissioning of the communication system.

The IODD can be downloaded as follows:

- www.endress.com
- https://ioddfinder.io-link.com

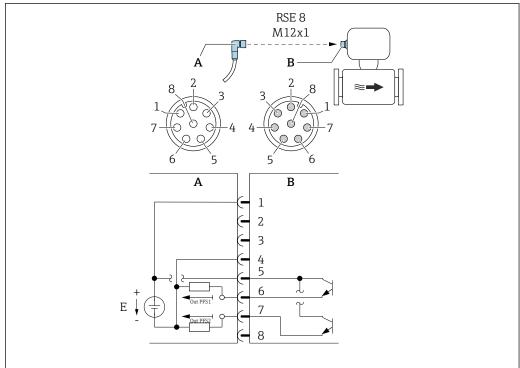
Modbus RS485

Protocol	Modbus Applications Protocol Specification V1.1		
Device type	Slave		
Slave address range	1 to 247		
Broadcast address range	0		
Function codes	 03: Read holding register 04: Read input register 06: Write single registers 08: Diagnostics 16: Write multiple registers 23: Read/write multiple registers 43: Read device identification 		
Broadcast messages	Supported by the following function codes: O6: Write single registers 16: Write multiple registers 23: Read/write multiple registers		
Supported baud rate	 1200 BAUD 2400 BAUD 4800 BAUD 9600 BAUD 19200 BAUD 38400 BAUD 57600 BAUD 115200 BAUD 230400 BAUD 		
Data transfer mode	RTU		
Data access	Each device parameter can be accessed via Modbus RS485. For Modbus register information → 50		

Power supply

Terminal assignment

Connection is solely by means of device plug.


There are different device versions available:

Order code for "Output, input"	Device plug
Option AA: 2 pulse/frequency/switch outputs	→ 🗎 13
Option FA: IO-Link, 1 pulse/frequency/switch output	→ 🖺 14
Option MD: Modbus RS485, 2 switch outputs (batch), 1 status output, 1 status input	→ 🖺 15

Available device plugs

Device version: 2 pulse/frequency/switch outputs

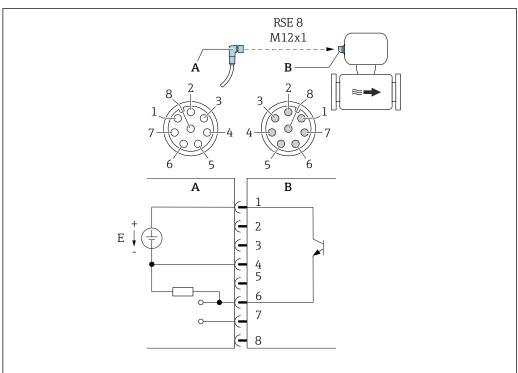
Order code for "Output, input": option AA: 2 pulse/frequency/switch outputs

A005487

■ 6 Connection to device

- A Coupling: Supply voltage, pulse/freq./switch output
- B Connector: Supply voltage, pulse/freq./switch output
- E PELV or SELV power supply
- 1 to Pin assignment

8


Pin assignment

Connection: Coupling (A) – Connector (B)				
Pin	Assignm	Assignment		
1	L+	Supply voltage		
2	+	Service interface RX		
3	+	Service interface TX		
4	L-	Supply voltage		
5	+	Pulse/frequency/switch output 1 and 2		
6	-	Pulse/frequency/switch output 1		
7	-	Pulse/frequency/switch output 2		
8	-	Service interface GND		

Device version: IO-Link, 1 pulse/frequency/switch output

Order code for "Output, input", option FA:

- IO-Link
- 1 pulse/frequency/switch output

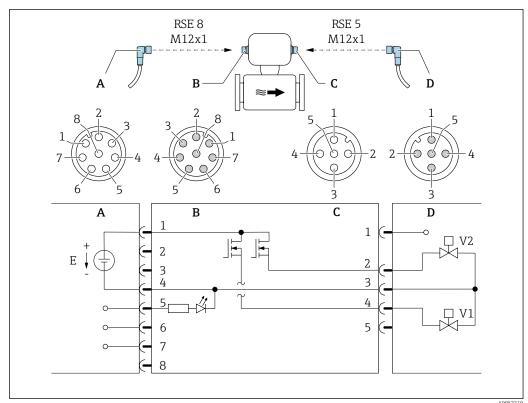
4005224

- 7 Connection to device
- A Coupling: Supply voltage, pulse/freq./switch output
- B Connector: Supply voltage, pulse/freq./switch output
- E PELV or SELV power supply
- 1 to Pin assignment

8

Pin assignment

Connection: Coupling (A) – Connector (B)				
Pin	Assignn	Assignment		
1	L+	Supply voltage		
2	+	Service interface RX		
3	+	Service interface TX		
4	L-	Supply voltage		
5		Not used		
6	-	Pulse/frequency/switch output DQ		
7	_	IO-Link communication signal C/Q		
8	-	Service interface GND		

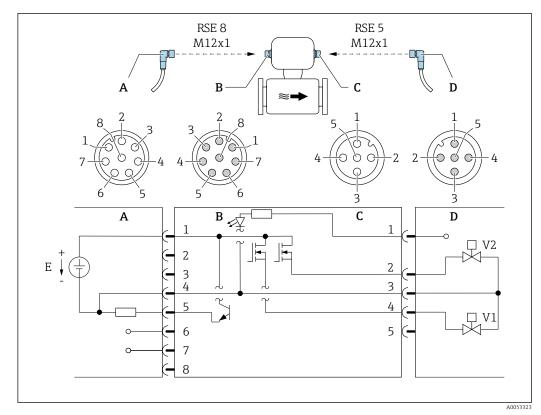

- The pin assignment deviates from the IO-Link standard to enable compatibility with previous device versions and installations.

Device version: Modbus RS485, 2 switch outputs (batch), 1 status output, 1 status input

Order code for "Output, input", option MD:

- Modbus RS485
- 2 switch outputs (batch)
- 1 status output
- 1 status input

Version 1: Status input via connection A/B


₽8 Connection to device

- Α
- Coupling: Supply voltage, Modbus RS485, status input Connector: Supply voltage, Modbus RS485, status input В
- С Coupling: Switch output (batch)
- D Connector: Switch output (batch)
 E PELV or SELV power supply
 V1 Valve (batch), level 1
 V2 Valve (batch), level 2

- 1 to Pin assignment

8

Version 2: Status output via connection A/B

Connection to device

- A Coupling: Supply voltage, Modbus RS485, status output
- B Connector: Supply voltage, Modbus RS485, status output
- C Coupling: Switch output (batch), status input
- Connector: Switch output (batch), status input
- E PELV or SELV power supply
- V1 Valve (batch), level 1
- V2 Valve (batch), level 2 1 to Pin assignment
- 8

Pin assignment

Connection: Coupling (A) – Connector (B)		Connection: Coupling (C) – Connector (D)			
Pin Assignment		Pin	Assignment		
1	L+	Supply voltage	1	+	Status input
2	+	Service interface RX	2	+	Switch output (batch) 2
3	+	Service interface TX	3	-	Switch output (batch) 1 and 2, status input
4	L-	Supply voltage	4	+	Switch output (batch) 1
5	+	Status output/Status input 1)	5		Not used
6	+	Modbus RS485			
7	-	Modbus RS485			
8	-	Service interface GND			

1) The functionality of status input and status output is not possible at the same time.

Supply voltage

DC 24 V (nominal voltage: DC 18 to 30 V)

- The power unit must be safety-approved (e.g. PELV, SELV).
- The maximum short-circuit current must not exceed 50 A.

Power consumption

2.5 W (no outputs)

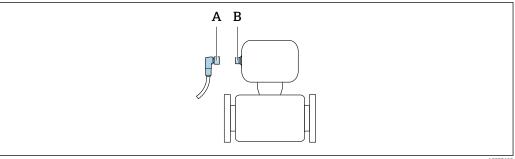
Current consumption

Order code for "Output, input"	Maximum current consumption
Option AA: 2 pulse/frequency/switch outputs	100 mA
Option FA: IO-Link, 1 pulse/frequency/switch output	$100 \text{ mA} + 100 \text{ mA}^{1)}$ at supply voltage $\ge 21 \text{ V}$
Option MD: Modbus RS485, 2 switch outputs (batch), 1 status output, 1 status input	100 mA + 1100 mA ²⁾

- 1) If pulse/frequency/switch output is used
- 2) Per switch output used (batch) 500 mA, status output 100 mA

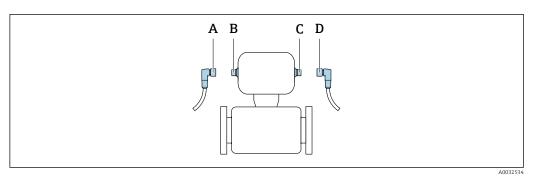
Switch-on current

- Option AA: 2 pulse/frequency/switch outputs Max. 1.2 A (< 15 ms)
- Option FA: IO-Link, 1 pulse/frequency/switch output Max. 400 mA (< 20 ms)
- Option MD: Modbus RS485, 2 switch outputs (batch), 1 status output, 1 status input Max. 1.2 A (< 15 ms)


Power supply failure

- Totalizers stop at the last value measured.
- Configuration is retained in the device memory.
- Error messages (incl. total operated hours) are stored.

Electrical connection

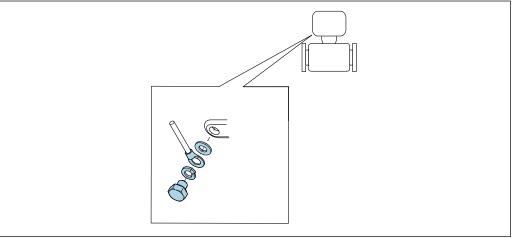

Connection is solely by means of device pluq.

Device version: 2 pulse/frequency/switch outputs and IO-Link, 1 pulse/frequency/switch output

- Coupling Α
- Connector

Device version: Modbus RS485, 2 switch outputs (batch), 1 status output, 1 status input

A, C Coupling


B, D Connector

There are different device versions available:

Order code for "Output, input"	Device plug
Option AA: 2 pulse/frequency/switch outputs	→ 🖺 13
Option FA: IO-Link, 1 pulse/frequency/switch output	→ 🖺 14
Option MD: Modbus RS485, 2 switch outputs (batch), 1 status output, 1 status input	→ 🖺 15

Grounding

Grounding is by means of a cable socket.

Ensuring

No special measures for potential equalization are required.

Cable specification

Permitted temperature range

- The installation guidelines that apply in the country of installation must be observed.
- The cables must be suitable for the minimum and maximum temperatures to be expected.

Signal cable

- Cables are not included in the scope of delivery.
- Please note the following with regard to cable loading:
 - Voltage drop due to the cable length and cable type.
 - Valve performance.

Pulse/frequency/switch output

Standard installation cable is sufficient.

IO-Link

Unshielded cable with 3 (or 4) conductors.

See https://io-link.com"IO-Link System Description"

Switch output (batch), status output and status input

Standard installation cable is sufficient.

Modbus RS485

- The electrical connection of the shield to the device housing must be properly implemented (e.g. using a knurled nut).
- Please note the following with regard to cable loading:
 - Voltage drop due to the cable length and cable type.
 - Valve performance.

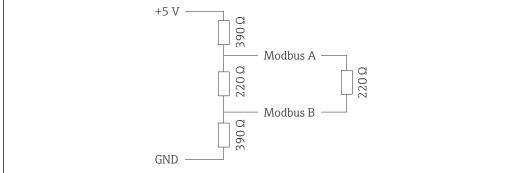
Total length of cable in the Modbus network \leq 50 m

Use a shielded cable.

Example:

Terminated device plug with cable: Lumberg RKWTH 8-299/10

Total length of cable in the Modbus network > 50 m


Use shielded twisted pair cable for RS485 applications.

Example:

- Cable: Belden item no. 9842 (for 4-wire version, the same cable can be used for the power supply)
- Terminated device plug: Lumberg RKCS 8/9 (shieldable version)

Terminating resistor

The Modbus RS485 network must be terminated with a terminating resistor and polarization.

A002499

Performance characteristics

Reference operating conditions

- Error limits based on ISO 11631
- Water
 - +15 to +45 °C (+59 to +113 °F)
 - 2 to 6 bar (29 to 87 psi)
- Data as indicated in the calibration protocol
- Accuracy based on accredited calibration rigs according to ISO 17025

Installation

- Measuring device is grounded.
- The sensor is centered in the pipe.

Maximum measurement error

o.r. = of reading; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = medium temperature

Base accuracy

Mass flow and volume flow (liquids)

±0.15 %

Density (liquids)

Under reference conditions	Field density adjustment	Standard density calibration
[g/cm³]	[g/cm³]	[g/cm³]
±0.0005 g/cm³	±0.0005 g/cm³	±0.0025 g/cm³

Temperature

 $\pm 0.5 \,^{\circ}\text{C} \pm 0.005 \cdot \text{T} \,^{\circ}\text{C} \, (\pm 0.9 \,^{\circ}\text{F} \pm 0.003 \cdot (\text{T} - 32) \,^{\circ}\text{F})$

Zero point stability

DN		Zero point stability	
[mm]	[in]	[kg/h]	[lb/min]
1	1/24	0.0005	0.000018
2	1/12	0.0025	0.00009
4	1/8	0.0100	0.00036
8	3/8	0.20	0.007
15	1/2	0.65	0.024
25	1	1.80	0.066
40	1 1/2	4.50	0.165

Flow values

Flow values as turndown parameters depending on nominal diameter. \\

SI units

DN	1:1	1:10	1:20	1:50	1:100	1:500
[mm]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]
1	20	2	1	0.4	0.2	0.04
2	100	10	5	2	1	0.2
4	450	45	22.5	9	4.5	0.9
8	2 000	200	100	40	20	4
15	6 500	650	325	130	65	13
25	18 000	1800	900	360	180	36
40	45 000	4500	2 250	900	450	90

US units

DN	1:1	1:10	1:20	1:50	1:100	1:500
[in]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]
1/24	0.735	0.074	0.037	0.015	0.007	0.001
1/12	3.675	0.368	0.184	0.074	0.037	0.007
1/8	16.54	1.654	0.827	0.331	0.165	0.033
3/8	73.50	7.350	3.675	1.470	0.735	0.147
1/2	238.9	23.89	11.95	4.778	2.389	0.478
1	661.5	66.15	33.08	13.23	6.615	1.323
1 1/2	1654	165.4	82.70	33.08	16.54	3.308

Accuracy of outputs

i

The output accuracy must be factored into the measurement error if analog outputs are used; but can be ignored for fieldbus outputs (IO-Link and Modbus RS485).

The outputs have the following base accuracy specifications.

Pulse/frequency output

o.r. = of reading

Temperature accuracy	Max. ±50 ppm o.r. (over the entire ambient temperature range)
----------------------	---

Repeatability

Base repeatability

Dosing time [s]	Standard deviation [%]
0.75 s < t _a < 1.5 s	0.2
1.5 s < t _a < 3 s	0.1
3 s < t _a	0.05

Density (liquids)

 $\pm 0.00025 \text{ g/cm}^3$

Temperature

 $\pm 0.25 \ ^{\circ}\text{C} \pm 0.0025 \cdot \text{T} \ ^{\circ}\text{C} \ (\pm 0.45 \ ^{\circ}\text{F} \pm 0.0015 \cdot (\text{T}-32) \ ^{\circ}\text{F})$

Response time

The response time depends on the configuration (damping).

Influence of ambient temperature

Pulse/frequency output

Temperature coefficient	No additional effect. Included in accuracy.

Influence of medium temperature

Mass flow

If there is a differential between the temperature during zero adjustment and the process temperature, the typical measurement error of the sensor is ± 0.0002 % of the full scale value/°C (± 0.0001 % of the full scale value/°F).

Temperature

 $\pm 0.005 \cdot \text{T} \,^{\circ}\text{C} \, (\pm 0.005 \cdot (\text{T} - 32) \,^{\circ}\text{F})$

Influence of medium pressure

 $\label{lem:continuous} A \ difference \ between \ the \ calibration \ pressure \ and \ process \ pressure \ does \ not \ affect \ accuracy.$

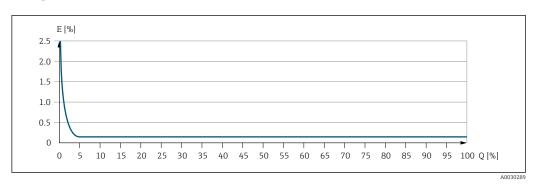
Design fundamentals

o.r. = of reading, o.f.s. = of full scale value

BaseAccu = base accuracy in % o.r., BaseRepeat = base repeatability in % o.r.

22

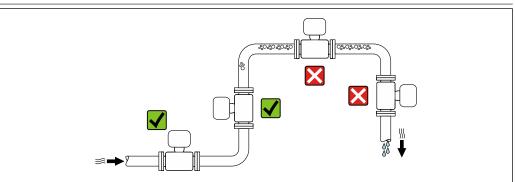
MeasValue = measured value; ZeroPoint = zero point stability


Calculation of the maximum measured error as a function of the flow rate

Flow rate	Maximum measured error in % o.r.
$\geq \frac{\text{ZeroPoint}}{\text{BaseAccu}} \cdot 100$	± BaseAccu
A0021332	10002555
$< \frac{\text{ZeroPoint}}{\text{BaseAccu}} \cdot 100$	$\pm \frac{\text{ZeroPoint}}{\text{MeasValue}} \cdot 100$
A0021333	A0021334

Calculation of the maximum repeatability as a function of the flow rate

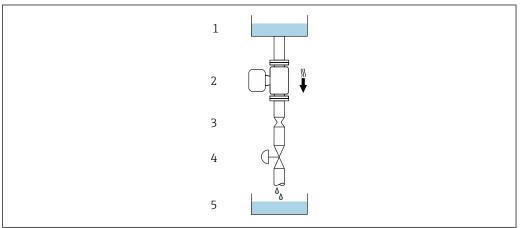
Flow rate	Maximum repeatability in % o.r.
$\geq \frac{\frac{1}{2} \cdot \text{ZeroPoint}}{\text{BaseRepeat}} \cdot 100$	± BaseRepeat
A0021335	
$<\frac{\frac{1}{2} \cdot ZeroPoint}{BaseRepeat} \cdot 100$	± ½ · ZeroPoint MeasValue · 100
A0021336	A0021337


Example of maximum measurement error

- Е Maximum measurement error in % o.r. (example)
- Flow rate in % of maximum full scale value

Mounting

Installation point


To prevent measuring errors arising from accumulation of gas bubbles in the measuring pipe, avoid

- Highest point of a pipeline.
- Directly upstream of a free pipe outlet in a down pipe.

the following mounting locations in the piping:

Installation in down pipes

However, the following installation suggestion allows for installation in an open vertical pipeline. Pipe restrictions or the use of an orifice with a smaller cross-section than the nominal diameter prevent the sensor running empty while measurement is in progress.

A00287

 \blacksquare 10 Installation in a down pipe (e.g. for batching applications)

- 1 Supply tank
- 2 Sensor
- 3 Orifice plate, pipe restriction
- 4 Valve
- 5 Filling vessel

DN		Ø orifice plate, pipe restriction	
[mm]	[in]	[mm]	[in]
1	1/24	0.8	0.03
2	1/12	1.5	0.06
4	1/8	3.0	0.12
8	3/8	6	0.24
15	1/2	10	0.40
25	1	14	0.55
40	1 ½	22	0.87

Orientation

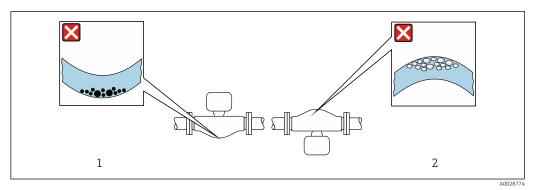
The direction of the arrow on the sensor nameplate helps you to install the sensor according to the flow direction (direction of medium flow through the piping).

Recommended orientation for DN 1 to 4 ($\frac{1}{24}$ to $\frac{1}{8}$ ")

	Recommendation		
A	Vertical orientation	†	√ √ ¹⁾
		A0015591	
В	Horizontal orientation, transmitter at top	A0015589	√ 2)

	Orientation						
С	Horizontal orientation, transmitter at bottom	A0015590	₩ 3)				
D	Horizontal orientation, transmitter at side	A0015592	\checkmark				

- 1) This orientation is recommended to ensure self-draining.
- 2) Applications with low process temperatures may reduce the ambient temperature. To maintain the minimum ambient temperature for the transmitter, this orientation is recommended.
- 3) Applications with high process temperatures may increase the ambient temperature. To maintain the maximum ambient temperature for the transmitter, this orientation is recommended.

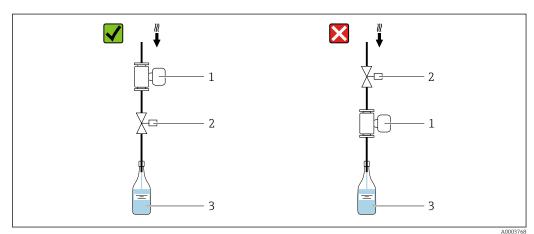

Recommended orientation for DN 8 to 40 ($\frac{3}{8}$ to $1\frac{1}{2}$ ")

	Orientation						
A	Vertical orientation	A0015591	√ √ 1)				
В	Horizontal orientation, transmitter at top	A0015589	√ √ 2)				
С	Horizontal orientation, transmitter at bottom	A0015590	✓ ✓ ³⁾				
D	Horizontal orientation, transmitter at side	A0015592	×				

- 1) This orientation is recommended to ensure self-draining.
- Applications with low process temperatures may reduce the ambient temperature. To maintain the minimum ambient temperature for the transmitter, this orientation is recommended.
- 3) Applications with high process temperatures may increase the ambient temperature. To maintain the maximum ambient temperature for the transmitter, this orientation is recommended.

Horizontal orientation for DN 8 to 40 (3/8 to 11/2")

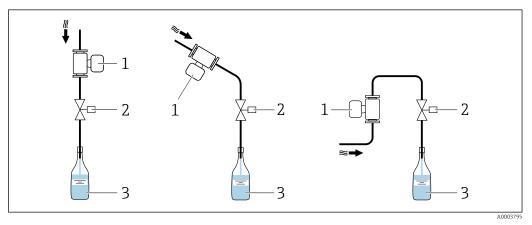
If a sensor is installed horizontally with a curved measuring tube, match the position of the sensor to the fluid properties.


 \blacksquare 11 Orientation of sensor with curved measuring tube

- 1 Avoid this orientation for fluids with entrained solids: Risk of solids accumulating
- 2 Avoid this orientation for outgassing fluids: Risk of gas accumulating

Valves

Never install the sensor downstream from a filling valve. If the sensor is completely empty this corrupts the measured value.


Correct measurement is possible only if the piping is completely filled. Perform sample fillings before commencing filling in production.

- Measuring device
- 2 Filling valve
- 3 Vessel

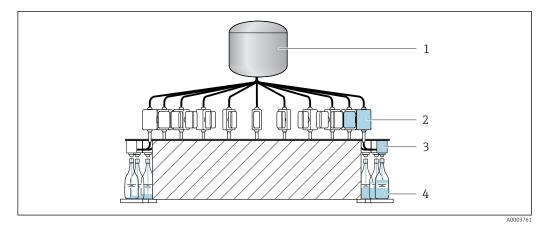
Filling systems

The pipe system must be completely full to ensure optimum measurement.

■ 12 Filling system

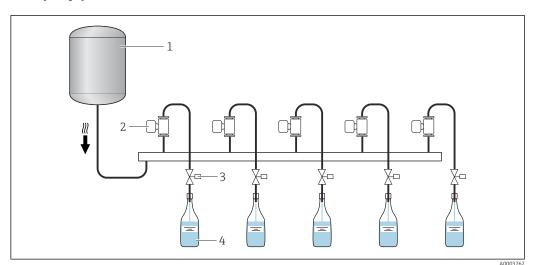
- 1 Measuring device
- 2 Filling valve
- 3 Vessel

Inlet and outlet runs


No special precautions need to be taken for fittings that create turbulence, such as valves, elbows or T-pieces, as long as no cavitation occurs .

Special mounting instructions

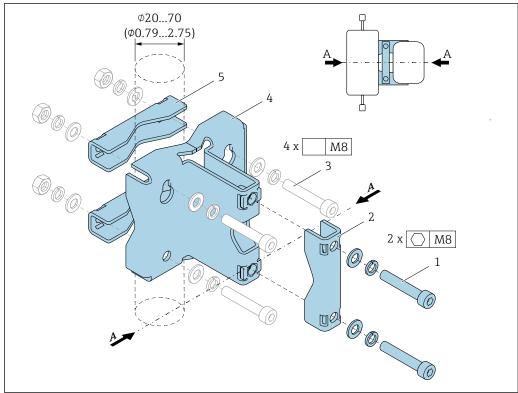
Information for filling systems


Correct measurement is only possible if the pipe is completely full. We therefore recommend that some test batches be carried out prior to production batching.

Circular filling system

- Tank
- 2 Measuring instrument
- 3 4 Filling valve Vessel

Linear filling system



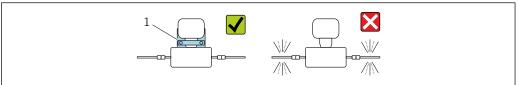
- Tank
- 2 Measuring instrument
- 3 Filling valve
- Vessel

Hygienic compatibility

Sensor holder DN 1 to 4 ($\frac{1}{24}$ to $\frac{1}{8}$ ")

- The appropriate sensor holder must be used for all applications with increased safety or load requirements and for sensors with clamp process connections.

A003647


- 1 2 x Allen screw M8 x 50, washer and spring washer A4
- 2 1 x clamp (measuring instrument neck)
- 3 4 x securing screw for wall, tabletop or pipe mounting (not supplied)
- 4 1 x base profile
- 5 2 x clamp (pipe mounting)
- A Measuring instrument central line

▲ WARNING

Strain on pipes!

Excessive strain on an unsupported pipe can cause the pipe to break.

▶ Install the sensor in a sufficiently supported pipe. In addition to the use of the sensor holder, for maximum mechanical stability the sensor can also be supported on the inlet and outlet sides onsite at the installation location with the use of pipe clamps, for example.

A003649

1 Sensor holder Order number: 71392563

The following mounting versions are recommended for the installation:

Lubricate all threaded joints prior to mounting. The screws for wall, tabletop or pipe mounting are not supplied with the device and must be chosen to suit the individual installation position.

Wall mounting

Screw the sensor holder to the wall with four screws. Two of the four holes to secure the holder are designed to hook into the screws.

Mounting on a table

Screw the sensor holder onto the tabletop with four screws.

Pipe mounting

Secure the sensor holder to the pipe with two clamps.

WARNING

Failure to comply with the specifications for vibration and shock resistance can damage the measuring instrument!

▶ During operation, transportation and storage, ensure compliance with the specifications for maximum vibration and shock resistance → 🖺 29.

Zero adjustment

The **Sensor adjustment** submenu contains parameters required for zero adjustment.

NOTICE

All Dosimass measuring instruments are calibrated in accordance with state-of-the-art technology. Calibration takes place under reference conditions .

Zero adjustment is therefore not required for the Dosimass as a general rule.

- Experience shows that a zero adjustment is advisable only in special cases.
- ▶ When maximum measurement accuracy is required and flow rates are very low.
- Under extreme process or operating conditions (e.g. very high process temperatures or very highviscosity fluids).

Environment

Ambient temperature range	Transmitter	-40 to +60 °C (-40 to +140 °F)				
	Sensor	-40 to +60 °C (-40 to +140 °F)				
Storage temperature	-40 to +80 °C (−40 to +176	5°F), preferably at +20°C (+68°F)				
Degree of protection	Standard: IP67, Type 4X enclosure, suitable for pollution degree 4					
Vibration-resistance and	Vibration sinusoidal, in accordance with IEC 60068-2-6					
shock-resistance	 2 to 8.4 Hz, 3.5 mm peak 8.4 to 2 000 Hz, 1 g peak 					
	Vibration broad-band random, according to IEC 60068-2-64					
	 10 to 200 Hz, 0.003 g²/Hz 200 to 2 000 Hz, 0.001 g²/Hz Total: 1.54 g rms 					
	Shock half-sine, according to IEC 60068-2-27					
	6 ms 30 g					
	Rough handling shocks according to IEC 60068-2-31					

Internal cleaning

- CIP cleaning
- SIP cleaning

Options

Oil- and grease-free version for wetted parts, without declaration Order code for "Service", option HA 1)

Observe the maximum medium temperatures $\rightarrow \implies 30$

Electromagnetic compatibility (EMC)

As per IEC/EN 61326

Details are provided in the Declaration of Conformity.

This unit is not intended for use in residential environments and cannot guarantee adequate protection of the radio reception in such environments.

Process

Medium temperature range

Sensor

-40 to +130 °C (-40 to +266 °F)

+150 °C (+302 °F) for a maximum of 60 min for CIP and SIP processes

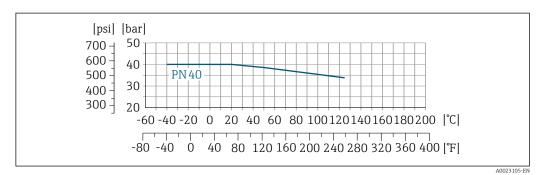
Seals

No internal seals

Medium pressure range

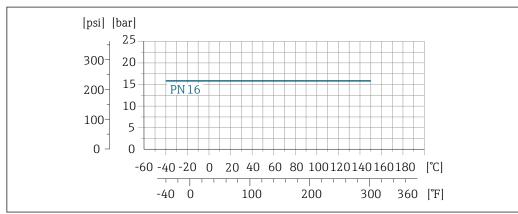
Max. 40 bar (580 psi), depending on the process connection

Medium density


DN		$ ho_{ m max}$	
[mm]	[in]	[kg/m³]	
1	1/24	3 150	
2	1/12	3 100	
4	1/8	3 100	
8	³ / ₈	4 548	
15	1/2	4 900	
25	1	4270	
40	1 ½	4700	

Pressure-temperature ratings

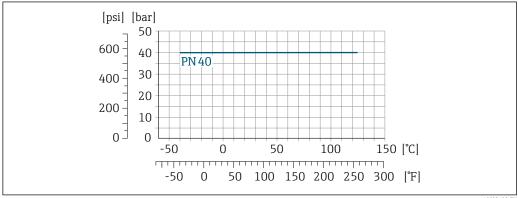
The following pressure/temperature diagrams apply to all pressure-bearing parts of the device and not just the process connection. The diagrams show the maximum permissible medium pressure depending on the specific medium temperature.


¹⁾ The cleaning refers to the measuring instrument only. Any accessories supplied are not cleaned.

Process connection: flange similar to EN 1092-1 (DIN 2501/DIN 2512 N), flange similar to EN 1092-1 (DIN 2501)

■ 13 Process connection material: stainless steel 1.4404 (316/316L)

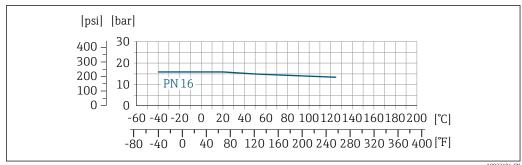
Process connection: 1" clamp similar to DIN 32676


A0028940-EN

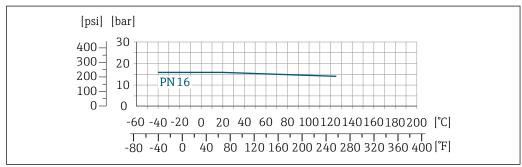
■ 14 Process connection material: stainless steel 1.4404 (316/316L)

Process connection: Tri-Clamp

The load limit is defined exclusively by the material properties of the Tri-Clamp clamp used. This clamp is not included in the scope of delivery.


Process connection: thread similar to DIN 11864-1, Form A

A0023108-EN


■ 15 Process connection material: stainless steel 1.4404 (316/316L)

Process connection: thread similar to DIN 11851

■ 16 Process connection material: stainless steel 1.4404 (316/316L) A0023106-EN

Process connection: thread similar to ISO 2853

■ 17 Process connection material: stainless steel 1.4404 (316/316L)

A0023112-EN

Sensor housing

The sensor housing is filled with dry nitrogen gas and protects the electronics and mechanics inside.

- The housing does not have a pressure rating classification.
- Reference value for the pressure loading capacity of the sensor housing: 16 bar (232 psi)

Flow limit

Select the nominal diameter by optimizing between the required flow range and permissible pressure loss.

- For an overview of the full scale values for the measuring range, see the "Measuring range" section $\rightarrow \blacksquare 7$
- The minimum recommended full scale value is approx. 1/20 of the maximum full scale value
- In most applications, 20 to 50 % of the maximum full scale value can be considered ideal
- A low full scale value must be selected for abrasive media (such as liquids with entrained solids): flow velocity < 1 m/s (< 3 ft/s).
- To calculate the flow limit, use the *Applicator* sizing tool $\rightarrow \triangleq 49$

Pressure loss

To calculate the pressure loss, use the *Applicator* sizing tool $\rightarrow \triangleq 49$

Heating

Some fluids require suitable measures to avoid loss of heat at the sensor.

Heating options

- Electrical heating, e.g. with electric band heaters ²⁾
- Via pipes carrying hot water or steam
- Via heating jackets

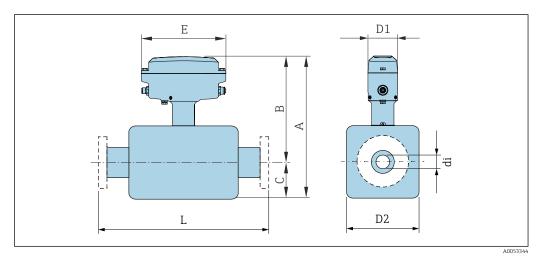
²⁾ The use of parallel electric band heaters is generally recommended (bidirectional electricity flow). Particular considerations must be made if a single-wire heating cable is to be used. Additional information is provided in the document EA01339D "Installation instructions for electrical trace heating systems"

NOTICE

Danger of overheating when heating

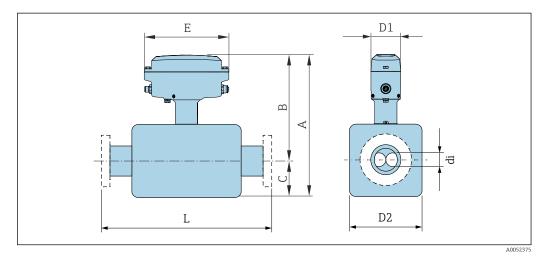
- ► Ensure that the temperature at the lower end of the transmitter housing does not exceed 80 °C (176 °F).
- ► Ensure that sufficient convection takes place at the transmitter neck.
- Ensure that a sufficiently large area of the transmitter neck remains exposed. The uncovered part serves as a radiator and protects the electronics from overheating and excessive cooling.

Vibrations


The high oscillation frequency of the measuring tubes ensures that the correct operation of the measuring system is not influenced by plant vibrations.

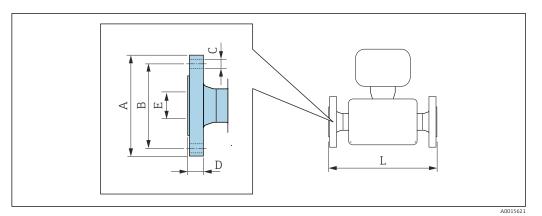
Mechanical construction

Dimensions in SI units


Compact version

Order code for "Housing", option B "Compact, stainless", DN 1 to 4 ($^1\!\!/_{\!\!24}$ to $^1\!\!/_{\!\!8}")$

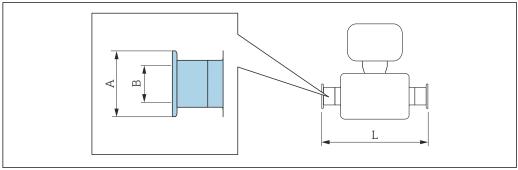
DN [mm]	A [mm]	B [mm]	C [mm]	D1 [mm]	D2 [mm]	E [mm]	di [mm]	L [mm]
1	230	176	54	60	34	171	1.1	192
2	272	198	74	60	48	171	2.5	269
4	303	213	90	60	51	171	3.9	315


Order code for "Housing", option B "Compact, stainless", DN 8 to 40 ($^3\!\!/_8$ to 1 $^1\!\!/_2$ ")

DN [mm]	A [mm]	B [mm]	C [mm]	D1 [mm]	D2 [mm]	E [mm]	di [mm]	L [mm]
8	247	158	90	60	45	171	5.35	1)
15	258	158	101	60	45	171	8.3	1)
25	257	155	102	60	51	171	12	1)
40	282	161	121	60	65	171	17.6	1)

1) Depends on the particular process connection

Fixed flange



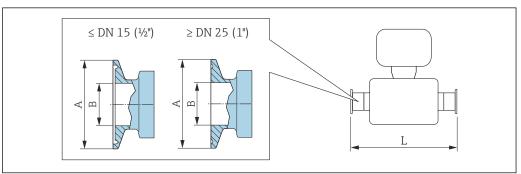
Length tolerance for dimension L in mm: +1.5 / -2.0

Flange similar to EN 1092-1 (DIN 2501 / DIN 2512N): PN 40 1.4404 (316/316L): order code for "Process connection", option D2S								
DN A B C D E L [mm] [mm] [mm] [mm] [mm]								
8	95	65	4 × Ø 14	16	17.3	232		
15	95	65	4 × Ø 14	16	17.3	279		
25	115	85	4 × Ø 14	18	28.5	329		
40	150	110	4 × Ø 14	18	43.1	445		

Flange similar to EN 1092-1 (DIN 2501): PN 40 (with DN 25 flanges) 1.4404 (316/316L): order code for "Process connection", option R2S							
DN A B C D E L [mm] [mm] [mm] [mm] [mm]							
8	95	65	4 × Ø 14	16	17.3	198.4	
15	95	65	4 × Ø 14	16	17.3	198.4	

Clamp connection

A0015625


Length tolerance for dimension L in mm: +1.5 / -2.0

1" clamp according to DIN 32676 1.4404 (316/316L): order code for "Process connection", option KDW Α L [mm] [mm] [mm] [mm] 8 34.0 16 229 15 34.0 16 273 25 50.5 26 324

3-A version (Ra \leq 0.38 μm/15 μin) available:

Order code for "Measuring tube mat., wetted surface", option BF, SK in combination with order code for "Additional approval", option LP

Tri-clamp

A0052377

Length tolerance for dimension L in mm: +1.5 / -2.0

½" Tri-Clamp

1.4435 (316L): order code for "Process connection", option FBW

Suitable for piping according to DIN 11866 series C

DN [mm]	A [mm]	B [mm]	L [mm]
1	25	9.4	192
2	25	9.4	269
4	25	9.4	315

3-A version available (Ra $\leq 0.76~\mu m/30~\mu in,$ Ra $\leq 0.38~\mu m/15~\mu in):$

Order code for "Measuring tube mat., wetted surface", option BB, BF in combination with order code for "Additional approval", option LP

1/2" Tri-Clamp BS4825-3

1.4404 (316/316L): order code for "Process connection", option FDW

Suitable for piping according to DIN 11866 series C

DN [mm]	A [mm]	B [mm]	L [mm]
8	25	9.5	229
15	25	9.5	273

3-A version available (Ra \leq 0.76 μ m/30 μ in, Ra \leq 0.38 μ m/15 μ in):

Order code for "Measuring tube mat., wetted surface", option BB, BF, SJ, SK in combination with order code for "Additional approval", option LP

3/4" Tri-Clamp

1.4404 (316/316L): order code for "Process connection", optionFWW

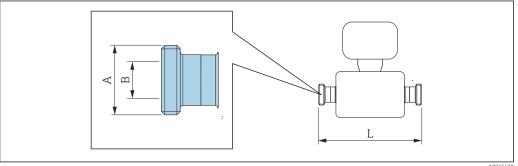
Suitable for piping according to DIN 11866 series C

DN [mm]	A [mm]	B [mm]	L [mm]
8	25.0	15.75	229
15	25.0	15.75	273

³⁻A version available (Ra $\leq 0.76~\mu m/30~\mu in$, Ra $\leq 0.38~\mu m/15~\mu in$):

Order code for "Measuring tube mat., wetted surface", option BB, BF, SJ, SK in combination with order code for "Additional approval", option LP

1" Tri-Clamp


1.4404 (316/316L): order code for "Process connection", option FTS Suitable for piping according to DIN 11866 series C

DN [mm]			L [mm]	
8	50.4	22.1	229	
15	50.4	22.1	273	
25	50.4	22.1	324	
40	50.4	34.8	456	

³⁻A version available (Ra $\leq 0.76~\mu m/30~\mu in$, Ra $\leq 0.38~\mu m/15~\mu in$):

Order code for "Measuring tube mat., wetted surface", option BB, BF, SJ, SK in combination with order code for "Additional approval", option LP

Threaded adapter

A0015628

i

Length tolerance for dimension L in mm: +1.5 / -2.0

Threaded adapter as per DIN 11864-1 Form A

1.4404 (316/316L): order code for "Process connection", option FLW

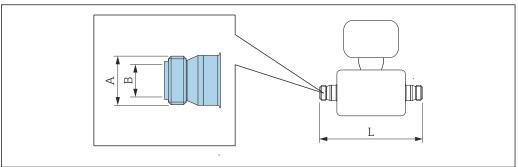
Suitable for piping according to DIN 11866 series A

Suitable for piping according to DIIV 11866 series A						
DN [mm]	A [mm]	B [mm]	L [mm]			
8	Rd 28 × 1/8"	10	229			
15	Rd 34 × ⅓"	16	273			
25	Rd 52 × 1/6"	26	324			
40	Rd 65 × 1/6"	38	456			

³⁻A version available (Ra $\leq 0.76~\mu m/30~\mu in,$ Ra $\leq 0.38~\mu m/15~\mu in):$

Order code for "Measuring tube mat., wetted surface", option BB, BF, SJ, SK in combination with order code for "Additional approval", option LP

Threaded adapter as per DIN 11851


1.4404 (316/316L): order code for "Process connection", option FMW

Suitable for piping according to DIN 11866 series A

DN [mm]	A [mm]	B [mm]	L [mm]		
8	Rd 34 × 1/8"	16	229		
15	Rd 34 × ⅓"	16	273		
25	Rd 52 × 1/6"	26	324		
40	Rd 65 × 1/6"	38	456		

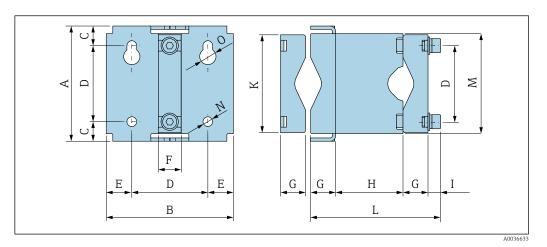
3-A version available (Ra \leq 0.76 μ m/30 μ in, Ra \leq 0.38 μ m/15 μ in):

Order code for "Measuring tube mat., wetted surface", option BB, BF, SJ, SK in combination with order code for "Additional approval", option LP

A0015623

Length tolerance for dimension L in mm: +1.5 / -2.0

Threaded adapter as per ISO 2853 1.4404 (316/316L): order code for "Process connection", option JSF Suitable for piping according to ISO 2037					
DN [mm]	A 1) [mm]	B [mm]	L [mm]		
8	37.13	22.6	229		
15	37.13	22.6	273		
25	37.13	22.6	324		
40	50.68	35.6	456		


3-A version available (Ra $\leq 0.76~\mu m/30~\mu in,$ Ra $\leq 0.38~\mu m/15~\mu in):$

Order code for "Measuring tube mat., wetted surface", option BB, BF, SJ, SK in combination with order code for "Additional approval", option LP

1) Max. thread diameter according to ISO 2853 Annex A

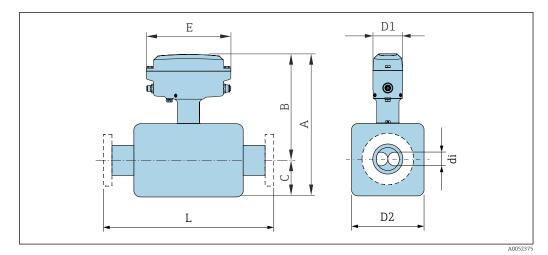
Accessories

Sensor holder

A	B	C	D	E	F	G
[mm]						
106	117	18	70	23.5	21	23

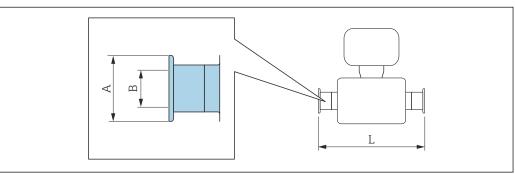
H	I	K	L	M	N	0
[mm]						
62	12	90	120	92	9	

Dimensions in US units


Compact version

Order code for "Housing", option B "Compact, stainless", DN 1 to 4 ($\frac{1}{24}$ to $\frac{1}{8}$ ")

DN [in]	A [in]	B [in]	C [in]	D1 [in]	D2 [in]	E [in]	di [in]	L [in]
1/24	9.06	6.93	2.13	2.36	1.34	6.73	0.04	7.56
1/12	10.71	7.80	2.91	2.36	1.89	6.73	0.08	10.59
1/8	11.93	8.39	3.54	2.36	2.01	6.73	0.12	12.40

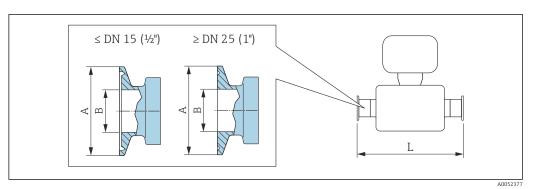

Order code for "Housing", option B "Compact, stainless", DN 8 to 40 ($^3\!\!/_8$ to 1 $^1\!\!/_2$ ")

DN [in]	A [in]	B [in]	C [in]	D1 [in]	D2 [in]	E [in]	di [in]	L [in]
3/8	9.72	6.22	3.54	2.36	1.77	6.73	0.20	1)
1/2	10.16	6.22	3.98	2.36	1.77	6.73	0.31	1)
1	10.12	6.10	4.02	2.36	2.01	6.73	0.47	1)
1 ½	11.10	6.34	4.76	2.36	2.56	6.73	0.67	1)

1) Depends on the particular process connection

Clamp connection

A0015625


Length tolerance for dimension L in inch: +0.06 / -0.08

1" clamp according to DIN 32676 1.4404 (316/316L): order code for "Process connection", option KDW						
DN [in]	A [in]	B [in]	L [in]			
3/8	1.34	0.63	9.01			
1/2	1.34	0.63	10.75			
1	1.99	1.02	12.76			

3-A version (Ra $\leq 0.38~\mu m/15~\mu in)$ available:

Order code for "Measuring tube mat., wetted surface", option BF, SK in combination with order code for "Additional approval", option LP $\,$

Tri-clamp

Length tolerance for dimension L in inch: +0.06 / -0.08

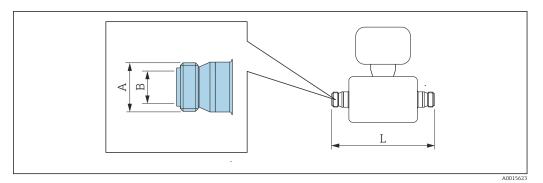
1/2" Tri-Clamp 1.4435 (316L): order code for "Process connection", option FBW Suitable for piping according to DIN 11866 series C					
DN [in]	A [in]	B [in]	L [in]		
1/24	0.98	0.37	7.56		
1/12	0.98	0.37	10.6		
1/8	0.98	0.37	12.4		

3-A version available (Ra \leq 0.76 µm/30 µin, Ra \leq 0.38 µm/15 µin):

Order code for "Measuring tube mat., wetted surface", option BB, BF in combination with order code for "Additional approval", option LP $\,$

1/2" Tri-Clamp BS4825-3 1.4404 (316/316L): order code for "Process connection", option FDW Suitable for piping according to DIN 11866 series C					
DN [in]	A [in]	B [in]	L [in]		
3/8	0.98	0.37	9.02		
1/2	0.98	0.37	10.80		

3-A version available (Ra \leq 0.76 µm/30 µin, Ra \leq 0.38 µm/15 µin):


Order code for "Measuring tube mat., wetted surface", option BB, BF, SJ, SK in combination with order code for "Additional approval", option LP

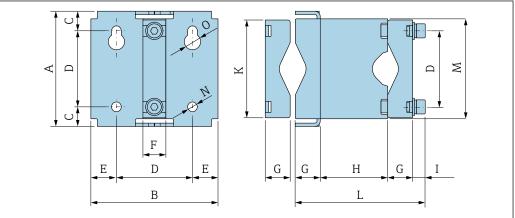
34" Tri-Clamp 1.4404 (316/316L): order code for "Process connection", optionFWW Suitable for piping according to DIN 11866 series C			
DN [in]	A [in]	B [in]	L [in]
3/8	0.98	0.62	9.02
1/2	0.98	0.62	10.80

3-A version available (Ra $\leq 0.76~\mu m/30~\mu in,$ Ra $\leq 0.38~\mu m/15~\mu in):$

Order code for "Measuring tube mat., wetted surface", option BB, BF, SJ, SK in combination with order code for "Additional approval", option LP

Threaded adapter

Length tolerance for dimension L in inch: +0.06 / -0.08


Threaded adapter as per ISO 2853 1.4404 (316/316L): order code for "Process connection", option JSF Suitable for piping according to ISO 2037				
DN [in]	A ¹⁾ [in]	B [in]	L [in]	
3/8	1.46	0.89	9.02	
1/2	1.46	0.89	10.80	
1	1.46	0.89	12.80	
1 ½	1.97	1.38	17.95	

³⁻A version available (Ra $\leq 0.76~\mu m/30~\mu in$, Ra $\leq 0.38~\mu m/15~\mu in$): Order code for "Measuring tube mat., wetted surface", option BB, BF, SJ, SK in combination with order code for "Additional approval", option LP

1) Max. thread diameter according to ISO 2853 Annex A

Accessories

Sensor holder

10036633

A	B	C	D	E	F	G
[in]						
4.17	4.61	0.71	2.76	0.93	0.83	

H	I	K	L	M	N	0
[in]						
2.44	0.47	3.54	4.72	3.62	0.35	

Weight

Weight in SI units

DN [mm]	Weight [kg]
1	3.7
2	5.3
4	7.1
8	3.6
15	3.9
25	4.4
40	6.6

Weight in US units

DN [in]	Weight [lbs]
1/24	8.2
1/12	11.7
1/8	15.7
3/8	7.9
1/2	8.6
1	9.7
1 ½	14.6

Materials

Transmitter housing

- Acid and alkali-resistant outer surface
- Stainless steel, 1.4409 (CF3M)

Device plug

Electrical connection	Material
M12x1 plug	 Socket: Polyamide contact support Connector: Contact support made of thermoplastic polyurethane (TPU-GF) Contacts: Gold-plated brass

Sensor housing

Acid and alkali-resistant outer surface

DN 1 to 4 mm ($\frac{1}{24}$ to $\frac{1}{8}$ ")

Stainless steel, 1.4404 (316/316L)

DN 8 to 40 mm ($\frac{3}{8}$ to 1 $\frac{1}{2}$ ")

Stainless steel 1.4301 (304)

Measuring tubes

DN 1 to 4 mm ($\frac{1}{24}$ to $\frac{1}{8}$ ")

Stainless steel, 1.4435 (316/316L)

DN 8 to 40 mm ($\frac{3}{8}$ to 1 $\frac{1}{2}$ ")

Stainless steel, 1.4539 (904L)

Process connections

DN 1 to 4 mm ($\frac{1}{24}$ to $\frac{1}{8}$ ")

½" Tri-Clamp:

Stainless steel, 1.4435 (316L)

DN 8 to 40 mm (3/8 to 1 1/2")

All process connections:

Stainless steel, 1.4404 (316/316L)

Available process connections → 🖺 44

Seals

Welded process connections without internal seals

Accessories

Sensor holder

Stainless steel, 1.4404 (316L)

Process connections

Fixed flange

- EN 1092-1 (DIN 2501 / DIN 2512N)
- EN 1092-1 (DIN 2501)

Clamp connections

1" clamp according to DIN 32676

Tri-Clamp

- ½" Tri-Clamp
- ½" Tri-Clamp BS4825-3
- ¾" Tri-Clamp
- 1" Tri-Clamp

Threaded adapter

- DIN 11864-1 Form A
- DIN 11851
- ISO 2853

Surface roughness

All data refer to parts in contact with the medium.

The following surface roughness categories can be ordered:

Category	Method	Option(s) order code "Measuring tube mat., wetted surface"
Not polished	-	SA
Ra \leq 0.76 μ m (30 μ in) ¹⁾	Mechanically polished ²⁾	ВВ
Ra ≤ 0.76 μm (30 μin) ¹⁾	Mechanically polished, welds in as welded condition	SJ
Ra \leq 0.38 μ m (15 μ in) ¹⁾	Mechanically polished ²⁾	BF
Ra \leq 0.38 μm (15 μin) ¹⁾	Mechanically polished, welds in as welded condition	SK

- 1) Ra according to ISO 21920
- 2) Excludes inaccessible weld seams between pipe and manifold

Operability

Languages

Can be operated in the following languages:

Via "FieldCare", "DeviceCare" operating tool: English, German, French, Spanish, Italian, Chinese, Japanese

Local operation

This device cannot be operated locally using a display or operating elements.

IO-Link

The device-specific parameters are configured via IO-Link. There are specific configuration or operating programs from different manufacturers available to the user for this purpose. The device description file (IODD) is provided for the device.

IO-Link operating concept

Operator-oriented menu structure for user-specific tasks. Efficient diagnostic behavior increases measurement availability:

- Diagnostic messages
- Remedial measures
- Simulation options

IODD download

Two options to download the IODD:

- www.endress.com/download
- https://ioddfinder.io-link.com/

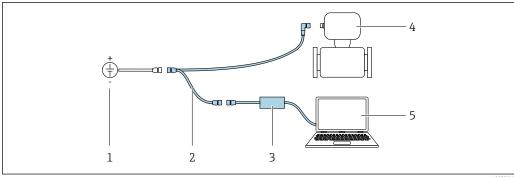
www.endress.com/download

- 1. Select "Device drivers".
- 2. Select the "IO Device Description (IODD)" entry under "Type".
- 3. Select "Product root".
- 4. Click "Search".
 - ► A list of search results is displayed.

Select the appropriate version and download.

https://ioddfinder.io-link.com/

- 1. Enter "Endress" as the manufacturer and select.
- 2. Select product name.
 - ► A list of search results is displayed.


Select the appropriate version and download.

Remote operation

Using service adapter and Commubox FXA291

Operation and configuration can be performed using the Endress+Hauser FieldCare or DeviceCare service and configuration software.

The device is connected to the USB port of the computer via the service adapter and Commubox FXA291.

- Supply voltage 24 V DC
- 2 Service adapter
- 3 Commubox FXA291
- Dosimass
- Computer with "FieldCare" or "DeviceCare" operating tool
- The service adapter, cable and Commubox FXA291 are not included in the delivery. These components can be ordered as accessories $\rightarrow \triangleq 48$.

Certificates and approvals

Current certificates and approvals for the product are available at www.endress.com on the relevant product page:

- 1. Select the product using the filters and search field.
- 2. Open the product page.
- Select Downloads.

CE mark

The device meets the legal requirements of the applicable EU Directives. These are listed in the corresponding EU Declaration of Conformity along with the standards applied.

Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.

UKCA marking

The device meets the legal requirements of the applicable UK regulations (Statutory Instruments). These are listed in the UKCA Declaration of Conformity along with the designated standards. By selecting the order option for UKCA marking, Endress+Hauser confirms a successful evaluation and testing of the device by affixing the UKCA mark.

Contact address Endress+Hauser UK:

Endress+Hauser Ltd.

Floats Road

Manchester M23 9NF

United Kingdom

www.uk.endress.com

RCM marking

The measuring system meets the EMC requirements of the "Australian Communications and Media Authority (ACMA)".

Ex approval

The measuring device is certified for use in hazardous areas and the relevant safety instructions are provided in the separate "Safety Instructions" (XA) document. Reference is made to this document on the nameplate.

The separate Ex documentation (XA) containing all the relevant explosion protection data is available from your Endress+Hauser sales center.

ATEX, IECEx

Currently, the following versions for use in hazardous areas are available:

Ех ес

Category (ATEX)	Type of protection
II3G	Ex ec IIC T5 to T1 Gc

cULus

Currently, the following versions for use in hazardous areas are available:

Class I Division 2 Groups ABCD

Hygienic compatibility

- 3-A approval
 - Only measuring instruments with the order code for "Additional approval", option LP "3A" have 3-A approval.
 - The 3-A approval refers to the measuring instrument.
 - When installing the measuring instrument, ensure that no liquid can accumulate on the outside of the measuring instrument.
 - Accessories (e.g. sensor retainer) must be installed in accordance with the 3-A Standard.
 Each accessory can be cleaned. Disassembly may be necessary under certain circumstances.
- EHEDG-tested 3)

Only devices with the order code for "Additional approval", option LT "EHEDG" have been tested and meet the requirements of the EHEDG.

To meet the requirements for EHEDG certification, the device must be used with process connections in accordance with the EHEDG position paper entitled "Easy cleanable Pipe couplings and Process connections" (www.ehedg.org).

To meet the requirements for EHEDG certification, the device must be installed in a position that ensures drainability.

■ Food Contact Materials Regulation (EC) 1935/2004

Pharmaceutical compatibility

- FDA 21 CFR 177
- USP <87>
- USP <88> Class VI 121 °C
- TSE/BSE Certificate of Suitability
- cGMP

Devices with the order code for "Test, certificate", option JG "Conformity with cGMP-derived requirements, declaration" comply with the requirements of cGMP with regard to the surfaces of parts in contact with the medium, design, FDA 21 CFR material conformity, USP Class VI tests and TSE/BSE conformity.

A serial number-specific declaration is generated.

Pressure Equipment Directive

The measuring devices can be ordered with or without PED or PESR. If a device with PED or PESR is required, this must be ordered explicitly. For devices with nominal diameters less than or equal to DN 25 (1"), this is neither possible nor necessary. A UK order option must be selected for PESR under the order code for "Approvals".

³⁾ DN 8 to 40 (3/8 to 1 1/2")

- With the marking
 - a) PED/G1/x (x = category) or
 - b) PESR/G1/x (x = category)

on the sensor nameplate, $\rm \bar{E}ndress+Hauser$ confirms compliance with the "Essential Safety Requirements"

- a) specified in Annex I of the Pressure Equipment Directive 2014/68/EU or
- b) Schedule 2 of Statutory Instruments 2016 No. 1105.
- Devices bearing this marking (PED or PESR) are suitable for the following types of medium:
 - Media in Group 1 and 2 with a vapor pressure greater than, or smaller and equal to 0.5 bar (7.3 psi)
 - Unstable gases
- Devices not bearing this marking (without PED or PESR) are designed and manufactured according
 to sound engineering practice. They meet the requirements of
 - a) Art. 4 Para. 3 of the Pressure Equipment Directive 2014/68/EU or
 - b) Part 1, Para. 8 of Statutory Instruments 2016 No. 1105.

The scope of application is indicated

- a) in diagrams 6 to 9 in Annex II of the Pressure Equipment Directive 2014/68/EU or
- b) Schedule 3, Para. 2 of Statutory Instruments 2016 No. 1105.

External standards and guidelines

■ EN 60529

Degrees of protection provided by enclosures (IP code)

■ EN 61010-1

Safety requirements for electrical equipment for measurement, control and laboratory use

■ EN 61326-1/-2-3

EMC requirements for electrical equipment for measurement, control and laboratory use

• CAN/CSA C22.2 No. 61010-1-12

Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use, Part 1: General Requirements

ANSI/ISA-61010-1 (82.02.01)

Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use – Part 1: General Requirements

Additional certification

CRN approval

Some device versions have CRN approval. A CRN-approved process connection with a CSA approval must be ordered for a CRN-approved device.

Ordering information

Detailed ordering information is available from your nearest sales organization www.addresses.endress.com or in the Product Configurator at www.endress.com:

- 1. Select the product using the filters and search field.
- 2. Open the product page.
- 3. Select **Configuration**.

Pr

Product Configurator - the tool for individual product configuration

- Up-to-the-minute configuration data
- Depending on the device: direct input of information specific to the measuring point, such as the measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop

Accessories

Various accessories, which can be ordered with the device or subsequently from Endress+Hauser, are available for the device. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

Device-specific accessories

Accessories	Description	
Sensor holder	For wall, tabletop and pipe mounting.	
	Order number: 71392563	
	Installation Instructions EA01195D	

Communication-specific accessories

Accessory	Description
FieldCare	FDT-based plant asset management tool from Endress+Hauser. It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.
	Operating Instructions BA00027S and BA00059S
DeviceCare	Tool to connect and configure Endress+Hauser field devices.
	Innovation brochure IN01047S
Commubox FXA291	Connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) and the USB port of a computer or laptop.
	Technical Information TI00405C
Adapter connection	Adapter connections for installation on other electrical connections: Adapter FXA291 (order number: 71035809)

Service-specific accessories

Accessories	Description
Applicator	Software for selecting and sizing Endress+Hauser measuring instruments: Choice of measuring instruments for industrial requirements Calculation of all the necessary data for identifying the optimum flowmeter: e.g. nominal diameter, pressure loss, flow velocity and measurement accuracy. Graphic display of the calculation results Determination of the partial order code, administration, documentation and access to all project-related data and parameters over the entire life cycle of a project. Applicator is available: Via the Internet: https://portal.endress.com/webapp/applicator
Commubox FXA291	Connects Endress+Hauser field devices with a CDI interface (= Endress +Hauser Common Data Interface) and the USB port of a computer or laptop. Technical Information TI00405C

Documentation

For an overview of the scope of the associated Technical Documentation, refer to the following:

- *Device Viewer* (www.endress.com/deviceviewer): Enter the serial number from the nameplate
- *Endress+Hauser Operations app*: Enter serial number from nameplate or scan matrix code on nameplate.

Standard documentation

Additional information on semi-standard options is available in the associated Special Documentation in the TSP database.

Brief Operating Instructions

Measuring instrument	Documentation code
Dosimass	KA01688D

Operating Instructions

Measuring instrument	Documentation code		
	Pulse/frequency/status output Option AA	IO-Link Option FA	Modbus RS485 Option MD
Dosimass	BA02346D	BA02330D	BA02347D

Description of Device Parameters

Measuring instrument	Documentation code		
	Pulse/frequency/status output Option AA	IO-Link Option FA	Modbus RS485 Option MD
Dosimass	GP01219D	GP01216D	GP01220D

Supplementary devicedependent documentation

Safety instructions

Contents	Documentation code
ATEX Ex ec	XA03257D
UL Class I, Division 2	XA03263D
UKEX Ex ec	XA03264D

Special documentation

Contents	Documentation code
IO-Link	SD03250D

Registered trademarks

Modbus®

Registered trademark of SCHNEIDER AUTOMATION, INC.

♦ IO-Link[®]

Is a registered trademark. It may only be used in conjunction with products and services by members of the IO-Link Community or by non-members who hold an appropriate license. For more specific guidelines on use, refer to the IO-Link Community rules on: www.io-link.com.

TRI-CLAMP®

Registered trademark of Ladish & Co., Inc., Kenosha, USA

www.addresses.endress.com