Technische Information **Dosimass**

Coriolis-Durchflussmessgerät

Massedurchflussmessgerät in Hygieneausführung mit höchster Wiederholbarkeit und kompaktem Transmitter

Anwendungsbereich

- Messprinzip arbeitet unabhängig von physikalischen Messstoffeigenschaften wie Viskosität und Dichte
- Messung von Flüssigkeiten mit verschiedensten Eigenschaften in Abfüll- und Dosierandwendungen

Geräteeigenschaften

- Mediumsberührende Materialen CIP/SIP-reinigbar
- Hygienische Zulassungen 3-A und EHEDG erhältlich
- Erfüllt globale Food Contact Materials EU, US, CN
- Robustes, kompaktes Messumformergehäuse
- Impuls-/Frequenz-/Schaltausgang, IO-Link, Modbus RS485
- Exzellent und einfach zu reinigender Messumformer

Ihre Vorteile

- Hohe Prozesssicherheit höchste Messgenauigkeit für verschiedene Messstoffe bei kürzesten Abfüllzeiten
- Weniger Prozessmessstellen multivariable Messung (Durchfluss, Dichte, Temperatur)
- Platzsparende Montage keine Ein-/Auslaufstrecken
- Flexible und zeitsparende Verdrahtung Steckeranschluss
- Schnelle Inbetriebnahme vorkonfigurierte Geräte
- Automatische Datenwiederherstellung im Servicefall

Inhaltsverzeichnis

Hinweise zum Dokument		Messstofftemperaturbereich	30 30 30
Arbeitsweise und Systemaufbau Messprinzip Messeinrichtung Gerätearchitektur Verlässlichkeit	5 6		30 30 32 32 32 32 33
Eingang Messgröße Messbereich Messdynamik Eingangssignal	. 7 . 7 . 8	Konstruktiver Aufbau Abmessungen in SI-Einheiten Abmessungen in US-Einheiten Gewicht Werkstoffe	34 39 43
Ausgang	9 11	Prozessanschlüsse	
Schleichmengenunterdrückung	11 11 12	3	
EnergieversorgungKlemmenbelegungVerfügbare Gerätestecker	13	Fernbedienung	
Versorgungsspannung	18 18 18	CE-Kennzeichnung	46 46 46 46
Versorgungsausfall	18 18 19 19	Ex-Zulassung	46 47 47 47
Leistungsmerkmale	20 20 21	Externe Normen und Richtlinien	48 48
Wiederholbarkeit	22 22		48
Einfluss Umgebungstemperatur	22 22	Zubehör Gerätespezifisches Zubehör Kommunikationsspezifisches Zubehör Servicespezifisches Zubehör	49 49
Montage	23 24 26	Dokumentation Standarddokumentation Geräteabhängige Zusatzdokumentation Eingetragene Marken	49 50
Umgebung . Umgebungstemperaturbereich . Lagerungstemperatur . Schutzart . Vibrationsfestigkeit und Schockfestigkeit . Innenreinigung . Elektromagnetische Verträglichkeit (EMV) .	29 29 29 29	gg	- •

Hinweise zum Dokument

Symbole

Elektrische Symbole

Symbol	Bedeutung
	Gleichstrom
~	Wechselstrom
$\overline{}$	Gleich- und Wechselstrom
士	Erdanschluss Eine geerdete Klemme, die vom Gesichtspunkt des Benutzers über ein Erdungssystem geerdet ist.
	Anschluss Potenzialausgleich (PE: Protective earth) Erdungsklemmen, die geerdet werden müssen, bevor andere Anschlüsse hergestellt werden dürfen.
	Die Erdungsklemmen befinden sich innen und außen am Gerät: Innere Erdungsklemme: Anschluss Potenzialausgleich wird mit dem Versorgungsnetz verbunden. Äußere Erdungsklemme: Gerät wird mit dem Erdungssystem der Anlage verbunden.

Symbole für Informationstypen

Symbol	Bedeutung
✓	Erlaubt Abläufe, Prozesse oder Handlungen, die erlaubt sind.
✓ ✓	Zu bevorzugen Abläufe, Prozesse oder Handlungen, die zu bevorzugen sind.
×	Verboten Abläufe, Prozesse oder Handlungen, die verboten sind.
i	Tipp Kennzeichnet zusätzliche Informationen.
	Verweis auf Dokumentation
	Verweis auf Seite
	Verweis auf Abbildung
	Sichtkontrolle

Symbole in Grafiken

Symbol	Bedeutung
1, 2, 3,	Positionsnummern
1., 2., 3.,	Handlungsschritte
A, B, C,	Ansichten
A-A, B-B, C-C,	Schnitte
<u>/EX</u>	Explosionsgefährdeter Bereich
×	Sicherer Bereich (nicht explosionsgefährdeter Bereich)
≋➡	Durchflussrichtung

Arbeitsweise und Systemaufbau

Messprinzip

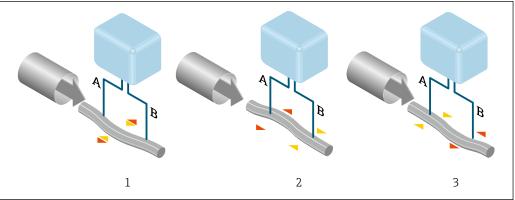
Das Messprinzip basiert auf der kontrollierten Erzeugung von Corioliskräften. Diese Kräfte treten in einem System immer dann auf, wenn sich gleichzeitig translatorische (geradlinige) und rotatorische (drehende) Bewegungen überlagern.

 $F_c = 2 \cdot \Delta m (v \cdot \omega)$

 $F_c = Corioliskraft$

 $\Delta m = bewegte Masse$

 ω = Drehgeschwindigkeit


v = Radialgeschwindigkeit im rotierenden bzw. schwingenden System

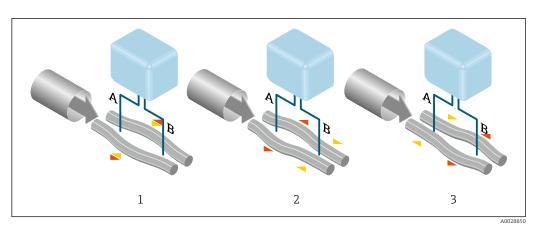
Die Größe der Corioliskraft hängt von der bewegten Masse Δm , deren Geschwindigkeit v im System und somit vom Massefluss ab. Anstelle einer konstanten Drehgeschwindigkeit w tritt beim Messaufnehmer eine Oszillation auf.

Messprinzip Dosimass DN 1 ... 4 ($\frac{1}{24}$... $\frac{1}{8}$ ")

Beim Messaufnehmer wird das Messrohr in Schwingung gebracht. Die am Messrohr erzeugten Corioliskräfte bewirken eine Phasenverschiebung der Rohrschwingung (siehe Abbildung):

- Bei Nulldurchfluss (Stillstand des Messstoffs) ist die an den Punkten A und B abgegriffene Schwingung gleichphasig (ohne Phasendifferenz) (1).
- Bei Massefluss wird die Rohrschwingung einlaufseitig verzögert (2) und auslaufseitig beschleunigt (3).

A002993


• 1 Messprinzip Dosimass DN 1 ... 4 ($\frac{1}{24}$... $\frac{1}{8}$ ")

Je größer der Massefluss ist, desto größer ist auch die Phasendifferenz (A-B). Mittels elektrodynamischer Sensoren wird die Rohrschwingung ein- und auslaufseitig abgegriffen. Die Systembalance wird durch die gegenphasige Schwingung einer exzentrisch angeordnete Pendelmasse erreicht. Das Messprinzip arbeitet grundsätzlich unabhängig von Temperatur, Druck, Viskosität, Leitfähigkeit und Durchflussprofil.

Messprinzip Dosimass DN 8 ... 40 (3/8 ... 1 1/2")

Beim Messaufnehmer werden dabei zwei vom Messstoff durchströmte, parallele Messrohre in Gegenphase zur Schwingung gebracht und bilden eine Art "Stimmgabel". Die an den Messrohren erzeugten Corioliskräfte bewirken eine Phasenverschiebung der Rohrschwingung (siehe Abbildung):

- Bei Nulldurchfluss (Stillstand des Messstoffs) schwingen beide Rohre in Phase (1).
- Bei Massefluss wird die Rohrschwingung einlaufseitig verzögert (2) und auslaufseitig beschleunigt (3).

■ 2 Messprinzip Dosimass DN 8 ... 40 (3/8 ... 1 1/2")

Je größer der Massefluss ist, desto größer ist auch die Phasendifferenz (A-B). Mittels elektrodynamischer Sensoren wird die Rohrschwingung ein- und auslaufseitig abgegriffen. Die Systembalance wird durch die gegenphasige Schwingung der beiden Messrohre erreicht. Das Messprinzip arbeitet grundsätzlich unabhängig von Temperatur, Druck, Viskosität, Leitfähigkeit und Durchflussprofil.

Dichtemessung

Das Messrohr wird immer in seiner Resonanzfrequenz angeregt. Sobald sich die Masse und damit die Dichte des schwingenden Systems (Messrohr und Messstoff) ändert, regelt sich die Erregerfrequenz automatisch wieder nach. Die Resonanzfrequenz ist somit eine Funktion der Messstoffdichte. Aufgrund dieser Abhängigkeit lässt sich mit Hilfe des Mikroprozessors ein Dichtesignal gewinnen.


Temperaturmessung

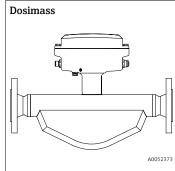
Zur rechnerischen Kompensation von Temperatureffekten wird die Temperatur am Messrohr erfasst. Dieses Signal entspricht der Prozesstemperatur und steht auch als Ausgangssignal zur Verfügung.

Messeinrichtung

Das Gerät besteht aus Messumformer und Messaufnehmer.

Dosimass DN 1 ... 4 ($\frac{1}{24}$... $\frac{1}{8}$ ")

Messumformer


- Werkstoffe:
 - Messumformergehäuse: Rostfreier Stahl, 1.4409 (CF3M)
- Gehäusedichtung: HNBR
- Konfiguration:

Via Bedientools (z.B. FieldCare)

Messaufnehmer

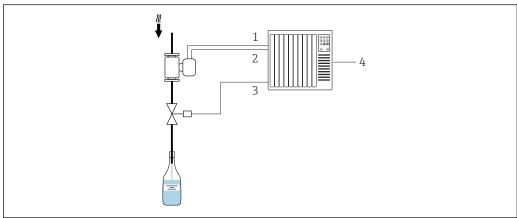
- Nennweitenbereich: DN 1 ($\frac{1}{24}$), 2 ($\frac{1}{12}$), 4 ($\frac{1}{8}$)
- Werkstoffe:
 - Messaufnehmergehäuse: Rostfreier Stahl, 1.4404 (316/316L)
 - Messrohr: Rostfreier Stahl, 1.4335 (316/316L)
 - Prozessanschlüsse: Rostfreier Stahl, 1.4435 (316L)

Dosimass DN 8 ... 40 (3/8 ... 1 1/2")

Messumformer

- Werkstoffe:
 - Messumformergehäuse: Rostfreier Stahl, 1.4409 (CF3M)
- Gehäusedichtung: HNBR
- Konfiguration:

Via Bedientools (z.B. FieldCare)

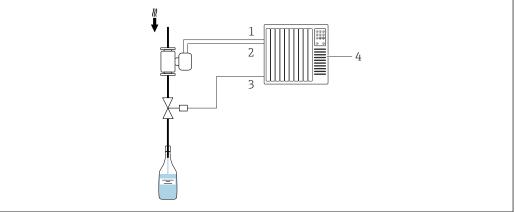

Messaufnehmer

- Nennweitenbereich: DN 8 (3/8"), 15 (1/2"), 25 (1"), 40 (1 1/2")
- Werkstoffe:
- Messaufnehmergehäuse: Rostfreier Stahl, 1.4301 (304)
- Messrohr: Rostfreier Stahl, 1.4539 (904L)
- Prozessanschlüsse: Rostfreier Stahl 1.4404 (316/316L)

Gerätearchitektur

Geräteausführung: Zwei Impuls-/Frequenz-/Schaltausgänge

i

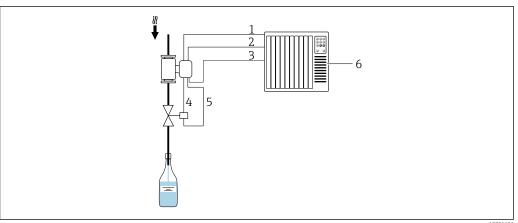


A00270

- 3 Möglichkeiten für die Einbindung in ein System für Abfüllvorgänge
- 1 Impuls-/Frequenz-/Schaltausgang 1
- 2 Impuls-/Frequenz-/Schaltausgang 2
- *3 Ansteuerung Ventil (vom Automatisierungssystem)*
- 4 Automatisierungssystem (z.B. SPS)

Geräteausführung: IO-Link, einen Impuls-/Frequenz-/Schaltausgang

Die Geräteausführung mit IO-Link verfügt über einen Impuls-/Frequenz-/Schaltausgang $\rightarrow \cong 13$.



A0027057

- \blacksquare 4 Möglichkeiten für die Einbindung in ein System für Abfüllvorgänge
- 1 Impuls-/Frequenz-/Schaltausgang
- 2 IO-Link
- 3 Ansteuerung Ventil (vom Automatisierungssystem)
- 4 Automatisierungssystem (z.B. SPS)

Geräteausführung: Modbus RS485, zwei Schaltausgänge (Batch), einen Statusausgang und einen Statuseingang

Geräteausführungen mit MODBUS RS485 verfügen über zwei Schaltausgänge (Batch) zur Ventilansteuerung für die Steuerung von Abfüllvorgängen → 🖺 13.

- **₽** 5 Möglichkeiten für die Einbindung in ein System für Abfüllvorgänge
- MODBUS RS485: Messwert (an das Automatisierungssystem) 1
- 2 Statusausgang/Statuseingang
- 3 Statuseingang: Steuerung Abfüllvorgang (vom Automatisierungssystem)
- 4 Schaltausgang~(Batch): Ansteuerung~Ventil,~Stufe~1
- Schaltausgang (Batch): Ansteuerung Ventil, Stufe 2
- Automatisierungssystem (z.B. SPS)

Verlässlichkeit

IT-Sicherheit

Eine Gewährleistung seitens des Herstellers ist nur gegeben, wenn das Produkt gemäß der Betriebsanleitung installiert und eingesetzt wird. Das Produkt verfügt über Sicherheitsmechanismen, um es gegen versehentliche Veränderung der Einstellungen zu schützen.

IT-Sicherheitsmaßnahmen gemäß dem Sicherheitsstandard des Betreibers, die das Produkt und dessen Datentransfer zusätzlich schützen, sind vom Betreiber selbst zu implementieren.

Eingang

Messgröße

Direkte Messgrößen

- Massefluss
- Dichte
- Temperatur

Berechnete Messgrößen

Volumenfluss

Messbereich

Durchflusswerte in SI-Einheiten

DN	Messbereich-Endwerte $\dot{m}_{min(F)}$ $\dot{m}_{max(F)}$
[mm]	[kg/h]
1	0 20
2	0 100
4	0 450
8	0 2 000
15	0 6500
25	0 18 000
40	0 45 000

Durchflusswerte in US-Einheiten

DN	Messbereich-Endwerte $\dot{m}_{min(F)}$ $\dot{m}_{max(F)}$
[in]	[lb/min]
1/24	0 0,735
1/12	0 3,675
1/8	0 16,54
3/8	0 73,50
1/2	0 238,9
1	0 661,5
1 ½	0 1654

Zur Berechnung des Messbereichs: Produktauswahlhilfe Applicator → 🖺 49

Empfohlener Messbereich

Durchflussgrenze → 🖺 32

Messdynamik

Über 1000:1.

Durchflüsse oberhalb des eingestellten Endwerts übersteuern die Elektronik nicht, so dass die aufsummierte Durchflussmenge korrekt erfasst wird.

Eingangssignal

- Nur bei Geräteausführungen mit der Kommunikationsart Modbus RS485 verfügbar → 🗎 13.
- Der Abfüllvorgang wird vom Automatisierungssystem über den Statuseingang oder über das Feldbusinterface (Modbus) des Geräts gesteuert.

Statuseingang über Anschluss A/B

Maximale Eingangswerte	■ DC -3 30 V ■ 5 mA
Ansprechzeit	Einstellbar: 10 200 ms
Eingangssignalpegel	■ Low-Signal: DC −3 5 V ■ High-Signal: DC 15 30 V
Zuordenbare Funktionen	 Aus Start Abfüllvorgang (Batch) Start und Stopp Abfüllvorgang (Batch) Summenzähler 1 3 separat zurücksetzen Alle Summenzähler zurücksetzen Messwertunterdrückung

Statusausgang über Anschluss A/B

Maximale Eingangswerte	■ DC 30 V ■ 6 mA
Ansprechzeit	Einstellbar: 10 200 ms
Eingangssignalpegel	Low-Signal: DC 0 1,5 VHigh-Signal: DC 10 30 V
Zuordenbare Funktionen	 Aus Start Abfüllvorgang (Batch) Start und Stopp Abfüllvorgang (Batch) Summenzähler 1 3 separat zurücksetzen Alle Summenzähler zurücksetzen Messwertunterdrückung

8

Ausgang

Ausgangs signal

Impuls-/Frequenz-/Schaltausgang

Funktion	Wahlweise einstellbar: Impuls Mengenproportionaler Impuls mit einzustellender Impulsbreite. Automatischer Impuls Mengenproportionaler Impuls mit Impuls-Pausenverhältnis 1:1 Frequenz Durchflussproportionaler Frequenzausgang mit Impuls-Pausenverhältnis 1:1 Schalter Kontakt zum Anzeigen eines Status
Ausführung	 Option AA: 2 Impuls-/Frequenz-/Schaltausgänge Passiv, High-Side Option FA: IO-Link, 1 Impuls-/Frequenz-/Schaltausgang Aktiv, High-Side
Maximale Ausgangswerte	 Option AA: 2 Impuls-/Frequenz-/Schaltausgänge DC 30 V 30 mA Option FA: IO-Link, 1 Impuls-/Frequenz-/Schaltausgang DC 30 V 100 mA
Spannungsabfall	 Option AA: 2 Impuls-/Frequenz-/Schaltausgänge Bei 25 mA: ≤ DC 3 V Option FA: IO-Link, 1 Impuls-/Frequenz-/Schaltausgang Bei 100 mA: ≤ DC 3 V
Impulsausgang	
Impulsbreite	Einstellbar: 0,05 2 000 ms
Maximale Impulsrate	10 000 Impulse/s
Impulswertigkeit	Einstellbar
Zuordenbare Messgrößen	MasseflussVolumenfluss
Frequenzausgang	
Ausgangsfrequenz	Einstellbar: 0 10 000 Hz
Dämpfung	Einstellbar: 0 999,9 s
Impuls-Pausen-Verhältnis	1:1
Zuordenbare Messgrößen	 Massefluss Volumenfluss Dichte Temperatur Erregerstrom Schwingfrequenz Schwingamplitude Frequenzschwankung Schwingungsdämpfung Schwankung Signalasymmetrie
Schaltausgang	
Schaltverhalten	Binär, leitend oder nicht leitend

Anzahl Schaltzyklen	Unbegrenzt
Zuordenbare Funktionen	 Aus An Diagnoseverhalten Alarm Alarm und Warnung Warnung Grenzwert Massefluss Volumenfluss Dichte Temperatur Summenzähler 1-3 Schwingungsdämpfer Überwachung Durchflussrichtung Status Überwachung teilgefülltes Rohr Schleichmengenunterdrückung

IO-Link

Physikalische Schnittstelle	In Anlehnung an Standard IEC 61131-9
Signal	Digitales Kommunikationssignal IO-Link, 3-Draht
IO-Link Version	1.1
IO-Link SSP Version	Identification and Diagnosis, Measuring and Switching Sensor (nach SSP 4.3.4)
IO-Link Device Port	IO-Link Port Class A

Die Pinbelegung weicht vom IO-Link Standard ab, um die Kompatibilität mit früheren Geräteversionen und Installationen zu ermöglichen.

Modbus RS485

Physikalische Schnittstelle	RS485 gemäß Standard EIA/TIA-485-A
-----------------------------	------------------------------------

Schaltausgang (Batch: Ansteuerung Ventil)

Nur bei Geräteausführung mit Modbus RS485 verfügbar → 🖺 13.

Schaltausgang (Batch)		
Ausführung	Aktiv, High-Side	
Maximale Ausgangswerte	■ DC 30 V ■ 500 mA	
Schaltverhalten	Binär, leitend oder nicht leitend	
Anzahl Schaltzyklen	Unbegrenzt	
Zuordenbare Funktionen	OffenGeschlossenAbfüllen	

Statusausgang

Statusausgang	
Ausführung	Aktiv, High-Side

Maximale Ausgangswerte	■ DC 30 V ■ 100 mA
Spannungsabfall	Bei 100 mA: ≤ DC 3 V
Schaltverhalten	Binär, leitend oder nicht leitend
Anzahl Schaltzyklen	Unbegrenzt
Zuordenbare Funktionen	 Aus Status Abfüllvorgang (Batch) Status Abfüllvorgang (Batch) Ausgang 1 Status Abfüllvorgang (Batch) Ausgang 2

Ausfallsignal

Ausfallinformationen werden abhängig von der Schnittstelle wie folgt dargestellt.

Impuls-/Frequenz-/Schaltausgang

Impulsausgang	
Fehlerverhalten	Wählbar: ■ Aktueller Wert ■ Keine Impulse
Frequenzausgang	
Fehlerverhalten	Wählbar: Aktueller Wert O Hz Definierbarer Wert zwischen: 0 10 000 Hz
Schaltausgang	
Fehlerverhalten	Wählbar: Aktueller Status Offen Geschlossen

IO-Link

Betriebsmodus	Digitale Übertragung aller Ausfallinformationen
Gerätestatus	Auslesbar über zyklische und azyklische Datenübertragung

Modbus RS485

Fehlerverhalten	Wählbar:
	■ NaN-Wert anstelle des aktuellen Wertes
	■ Letzter gültiger Wert

Schleichmengenunterdrückung

Die Schaltpunkte für die Schleichmengenunterdrückung sind frei wählbar.

Galvanische Trennung

- Geräteausführung: 2 Impuls-/Frequenz-/Schaltausgänge (Bestellmerkmal "Ausgang, Eingang": Option AA)
 - Impuls-/Frequenz-/Schaltausgänge vom Versorgungspotenzial galvanisch getrennt.
 - Impuls-/Frequenz-/Schaltausgänge voneinander nicht galvanisch getrennt.
- Geräteausführung: IO-Link, 1 Impuls-/Frequenz-/Schaltausgänge (Bestellmerkmal "Ausgang, Eingang": Option FA)
- Impuls-/Frequenz-/Schaltausgänge auf Versorgungspotenzial.
- Geräteausführung: Modbus RS485, 2 Schaltausgänge (Batch), 1 Statusausgang, 1 Statuseingang (Bestellmerkmal "Ausgang, Eingang": Option MD)
 - Schaltausgänge (Batch) auf Versorgungspotenzial.
 - Statusausgang auf Versorgungspotenzial.
 - Statuseingang galvanisch getrennt (Anschluss C/D) oder auf Versorgungspotential (Anschluss A/B)

Protokollspezifische Daten

IO-Link

IO-Link Spezifikation	Version 1.1.3
Geräte-ID	0x947401 (9729281)
Hersteller-ID	0x0011 (17)
Smart Sensor Profile 2nd Edition	Unterstützt Identification and Diagnosis Digital Measuring and Switching Sensor (nach SSP type 4.3.4)
Smart Sensor Profil Typ	Measuring profile type 4.3.4 Measuring and Switching Sensor, floating point, 4 channel
SIO Modus	Ja
Geschwindigkeit	COM3; 230,4 kBd
Minimale Zykluszeit	1,5 ms
Prozessdatenbreite Input/ Output	18 Byte/2 Byte (nach SSP 4.3.4)
OnRequestdata PreOp/Op	8 Byte/2 Byte
Data Storage	Ja
Block Parametrierung	Ja
Betriebsbereitschaft	3 s nach Anlegen der Versorgungsspannung ist das Gerät betriebsbereit
Systemintegration	Zyklische Prozessdaten Input Massefluss [kg/s] Dichte [kg/m³] Summenzähler 1 [kg] Temperatur [°C]
	Zyklische Prozessdaten Output Control signal channel - Volume flow Control signal channel - Density Control signal channel - Temperature Control signal channel - Totalizer 1 Flow override Totalizer 1 - Hold Totalizer 1 - Reset + totalize Totalizer 1 - Reset + hold Totalizer 1 - Totalize

Gerätebeschreibung

Das IO-Link-System benötigt eine Beschreibung der Geräteparameter wie Ausgangsdaten, Eingangsdaten, Datenformat, Datenmenge und unterstützte Übertragungsrate, um Feldgeräte in ein digitales Kommunikationssystem einzubinden.

Diese Daten sind in der Gerätebeschreibung (IODD) enthalten, die während der Inbetriebnahme des Kommunikationssystems dem IO-Link-Master zur Verfügung gestellt werden.

Die IODD kann folgendermaßen heruntergeladen werden:

- www.endress.com
- https://ioddfinder.io-link.com

Modbus RS485

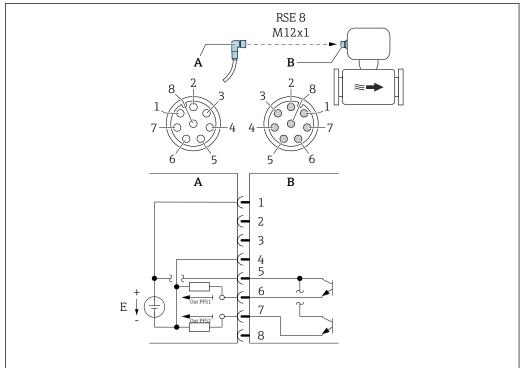
Protokoll	Modbus Applications Protocol Specification V1.1
Gerätetyp	Slave
Slave-Adressbereich	1 247
Broadcast-Adressbereich	0

Funktionscodes	 03: Read holding register 04: Read input register 06: Write single registers 08: Diagnostics 16: Write multiple registers 23: Read/write multiple registers 43: Read Device Identification
Broadcast-Messages	Unterstützt von folgenden Funktionscodes: O6: Write single registers 16: Write multiple registers 23: Read/write multiple registers
Unterstützte Baudrate	 1200 BAUD 2400 BAUD 4800 BAUD 9600 BAUD 19200 BAUD 38400 BAUD 57600 BAUD 115200 BAUD 230400 BAUD
Modus Datenübertragung	RTU
Datenzugriff	Auf jeden Geräteparameter kann via Modbus RS485 zugegriffen werden. Zu den Modbus-Registerinformationen → 50

Energieversorgung

Klemmenbelegung

Der Anschluss erfolgt ausschließlich über Gerätestecker.


Es sind verschiedene Geräteausführungen verfügbar:

Bestellmerkmal "Ausgang, Eingang"	Gerätestecker
Option AA: 2 Impuls-/Frequenz-/Schaltausgänge	→ 🗎 13
Option FA: IO-Link, 1 Impuls-/Frequenz-/Schaltausgang	→ 🗎 14
Option MD: Modbus RS485, 2 Schaltausgänge (Batch), 1 Statusausgang, 1 Statuseingang	→ 🖺 15

Verfügbare Gerätestecker

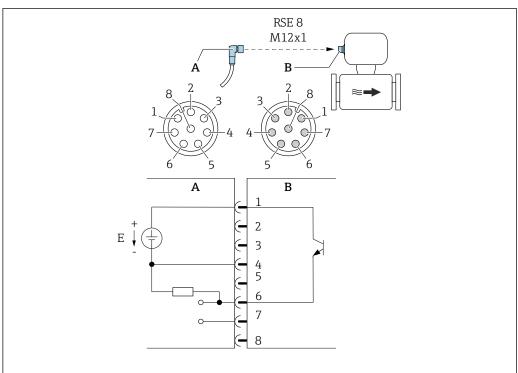
Geräteausführung: 2 Impuls-/Frequenz-/Schaltausgänge

Bestellmerkmal "Ausgang, Eingang", Option AA: 2 Impuls-/Frequenz-/Schaltausgänge

A005487

- 6 Anschluss am Gerät
- A Kupplung: Versorgungsspannung, Imp.-/Freq.-/Schaltausgang
- B Stecker: Versorgungsspannung, Imp.-/Freq.-/Schaltausgang
- E PELV- oder SELV-Spannungsversorgung
- 1...8 Pinbelegung

Pinbelegung


	Anschluss: Kupplung (A) – Stecker (B)		
Pin	Belegung		
1	L+	Versorgungsspannung	
2	+	Service-Schnittstelle RX	
3	+	Service-Schnittstelle TX	
4	L-	Versorgungsspannung	
5	+	Impuls-/Frequenz-/Schaltausgang 1 und 2	
6	-	Impuls-/Frequenz-/Schaltausgang 1	
7	_	Impuls-/Frequenz-/Schaltausgang 2	
8	_	Service-Schnittstelle GND	

Kabelspezifikation beachten → 🖺 19.

Geräteausführung: IO-Link, 1 Impuls-/Frequenz-/Schaltausgang

Bestellmerkmal "Ausgang, Eingang", Option FA:

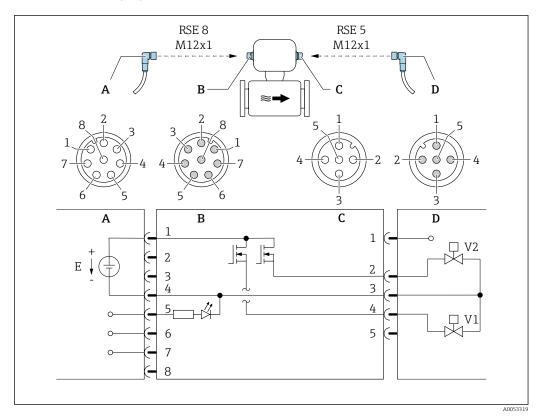
- IO-Link
- 1 Impuls-/Frequenz-/Schaltausgang

......

- 7 Anschluss am Gerät
- A Kupplung: Versorgungsspannung, Imp.-/Freq.-/Schaltausgang
- B Stecker: Versorgungsspannung, Imp.-/Freq.-/Schaltausgang
- E PELV- oder SELV-Spannungsversorgung
- 1...8 Pinbelegung

Pinbelegung

Anschluss: Kupplung (A) – Stecker (B)		
Pin	Belegung	
1	L+	Versorgungsspannung
2	+	Service-Schnittstelle RX
3	+	Service-Schnittstelle TX
4	L-	Versorgungsspannung
5		Nicht belegt
6	_	Impuls-/Frequenz-/Schaltausgang DQ
7	-	IO-Link Kommunikationssignal C/Q
8	-	Service-Schnittstelle GND


- Die Pinbelegung weicht vom IO-Link Standard ab, um die Kompatibilität mit früheren Geräteversionen und Installationen zu ermöglichen.

Geräteausführung: Modbus RS485, 2 Schaltausgänge (Batch), 1 Statusausgang, 1 Statuseingang

Bestellmerkmal "Ausgang, Eingang", Option MD:

- Modbus RS485
- 2 Schaltausgänge (Batch)
- 1 Statusausgang
- 1 Statuseingang

Variante 1: Statuseingang über Anschluss A/B

₽8 Anschluss am Gerät

- Kupplung: Versorgungsspannung, Modbus RS485, Statuseingang Stecker: Versorgungsspannung, Modbus RS485, Statuseingang Α
- В
- Kupplung: Schaltausgang (Batch) Stecker: Schaltausgang (Batch) С
- D
- E PELV- oder SELV-Spannungsversorgung
 V1 Ventil (Batch), Stufe 1
 V2 Ventil (Batch), Stufe 2

- 1...8 Pinbelegung

RSE 5 RSE 8 M12x1 M12x1 В С Α В U V2 2 2 3 3 4 5 6 7 8

Variante 2: Statusausgang über Anschluss A/B

■ 9 Anschluss am Gerät

- A Kupplung: Versorgungsspannung, Modbus RS485, Statusausgang
- B Stecker: Versorgungsspannung, Modbus RS485, Statusausgang
- C Kupplung: Schaltausgang (Batch), Statuseingang
- D Stecker: Schaltausgang (Batch), Statuseingang
- E PELV- oder SELV-Spannungsversorgung
- V1 Ventil (Batch), Stufe 1
- V2 Ventil (Batch), Stufe 2
- 1...8 Pinbelegung

Pinbelegung

Anschluss: Kupplung (A) – Stecker (B)			Anschluss: Kupplung (C) – Stecker (D)			
Pin	Pin Belegung		Pin	Belegung		
1	L+	Versorgungsspannung	1	+	Statuseingang	
2	+	Service-Schnittstelle RX	2	+	Schaltausgang (Batch) 2	
3	+	Service-Schnittstelle TX	3	-	Schaltausgang (Batch) 1 und 2, Statuseingang	
4	L-	Versorgungsspannung	4	+ Schaltausgang (Batch) 1		
5	+	Statusausgang/Statuseingang 1)	5	Nicht belegt		
6	+	Modbus RS485				
7	-	Modbus RS485				
8	-	Service-Schnittstelle GND				

1) Die Funktionalität des Statuseingangs und des Statusausgangs ist nicht gleichzeitig möglich.

Kabelspezifikation beachten → 🗎 19.

Versorgungsspannung

DC 24 V (Nennspannung: DC 18 ... 30 V)

- Das Netzteil muss sicherheitstechnisch geprüft sein (z.B. PELV, SELV).
- Der maximale Kurzschlussstrom darf 50 Å nicht überschreiten.

Leistungsaufnahme

2,5 W (ohne Ausgänge)

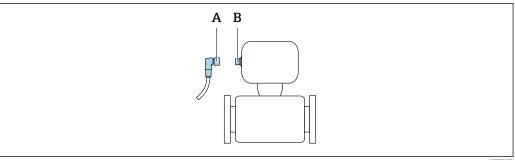
Stromaufnahme

Bestellmerkmal "Ausgang, Eingang"	Maximale Stromaufnahme	
Option AA: 2 Impuls-/Frequenz-/Schaltausgänge	100 mA	
Option FA: IO-Link, 1 Impuls-/Frequenz-/Schaltausgang	$100 \text{ mA} + 100 \text{ mA}^{-1}$ bei Versorgungsspannung $\geq 21 \text{ V}$	
Option MD: Modbus RS485, 2 Schaltausgänge (Batch), 1 Statusausgang, 1 Statuseingang	100 mA + 1100 mA ²⁾	

- 1) Bei verwendeten Impuls-/Frequenz-/Schaltausgang
- 2) Pro verwendeten Schaltausgang (Batch) 500 mA, Statusausgang 100 mA

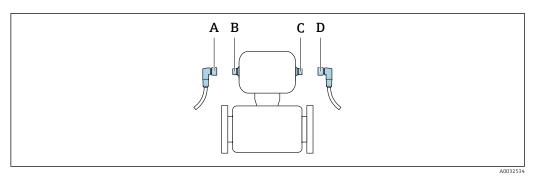
Einschaltstrom

- Option AA: 2 Impuls-/Frequenz-/Schaltausgänge max. 1,2 A (< 15 ms)
- Option FA: IO-Link, 1 Impuls-/Frequenz-/Schaltausgang max. 400 mA (< 20 ms)
- Option MD: Modbus RS485, 2 Schaltausgänge (Batch), 1 Statusausgang, 1 Statuseingang max. 1,2 A (< 15 ms)


Versorgungsausfall

- Summenzähler bleiben auf dem zuletzt ermittelten Wert stehen.
- Konfiguration bleibt im Gerätespeicher erhalten.
- Fehlermeldungen inklusive Stand des Betriebsstundenzählers werden abgespeichert.

Elektrischer Anschluss

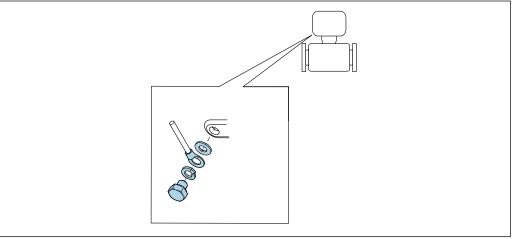

Der Anschluss erfolgt ausschließlich über Gerätestecker.

Geräteausführung: 2 Impuls-/Frequenz-/Schaltausgänge und IO-Link, 1 Impuls-/Frequenz-/ Schaltausgang

- Kupplung Α
- Stecker

Geräteausführung: Modbus RS485, 2 Schaltausgänge (Batch), 1 Statusausgang, 1 Statuseingang

A, C Kupplung


B, D Stecker

Es sind verschiedene Geräteausführungen verfügbar:

Bestellmerkmal "Ausgang, Eingang"	Gerätestecker
Option AA: 2 Impuls-/Frequenz-/Schaltausgänge	→ 🖺 13
Option FA: IO-Link, 1 Impuls-/Frequenz-/Schaltausgang	→ 🖺 14
Option MD: Modbus RS485, 2 Schaltausgänge (Batch), 1 Statusausgang, 1 Statuseingang	→ 🖺 15

Erdung

Die Erdung erfolgt über einen Kabelschuh.

Potenzialausgleich

Spezielle Maßnahmen für den Potenzialausgleich sind nicht erforderlich.

Kabelspezifikation

Zulässiger Temperaturbereich

- Die im jeweiligen Land geltenden Installationsrichtlinien sind zu beachten.
- Die Kabel müssen für die zu erwartenden Minimal- und Maximaltemperaturen geeignet sein.

Signalkabel

- Kabel sind nicht Teil des Lieferumfangs.
- Für die Belastung des Kabels sind zu beachten:
 - Der Spannungsabfall aufgrund der Kabellänge und des Kabeltyps.
 - Die Leistung der Ventile.

Impuls-/Frequenz-/Schaltausgang

Normales Installationskabel ausreichend.

IO-Link

Ungeschirmte Leitung mit 3 (oder 4) Adern.

Siehe https://io-link.com "IO-Link System Description"

Schaltausgang (Batch), Statusausgang und Statuseingang

Normales Installationskabel ausreichend.

Modbus RS485

- Eine gute elektrische Verbindung der Abschirmung auf das Gehäuse des Geräts ist zu gewährleisten (z.B. über Rändelmutter).
- Für die Belastung des Kabels sind zu beachten:
 - Der Spannungsabfall aufgrund der Kabellänge und des Kabeltyps.
 - Die Leistung der Ventile.

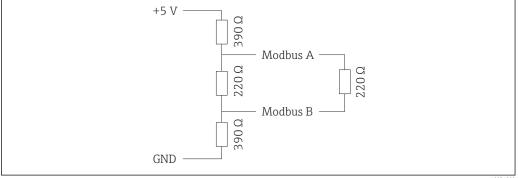
Gesamtlänge des Kabels im Modbus-Netzwerk ≤ 50 m

Geschirmtes Kabel verwenden.

Beispiel:

Konfektionierter Gerätestecker mit Kabel: Lumberg RKWTH 8-299/10

Gesamtlänge des Kabels im Modbus-Netzwerk > 50 m


Geschirmtes Kabel mit paarweise verdrillten Adern für RS485-Applikationen verwenden.

Beispiel:

- Kabel: Belden Art. No. 9842 (bei 4-adriger Ausführung kann die Energieversorgung kann über das gleiche Kabel erfolgen)
- Konfektionierbarer Gerätestecker: Lumberg RKCS 8/9 (schirmbare Ausführung)

Abschlusswiderstand

Das Modbus-RS485 Netzwerk muss mit einer Terminierung und Polarisation abgeschlossen werden.

Leistungsmerkmale

Referenzbedingungen

- Fehlergrenzen in Anlehnung an ISO 11631
- Wasser
 - +15 ... +45 °C (+59 ... +113 °F)
 - 2 ... 6 bar (29 ... 87 psi)
- Angaben gemäß Kalibrierprotokoll
- Angaben zur Messabweichung basierend auf akkreditierten Kalibrieranlagen gemäß ISO 17025

- Messgerät ist geerdet.
- Der Messaufnehmer ist zentriert in die Rohrleitung eingebaut.
- Zum Erhalt der Fehlermesswerte: Produktauswahlhilfe *Applicator* → 🖺 49

Maximale Messabweichung

v.M. = vom Messwert; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = Messstofftemperatur

Grundgenauigkeit

Masse- und Volumenfluss (Flüssigkeiten)

±0,15 %

Dichte (Flüssigkeiten)

Unter Referenzbedingungen	Felddichtekalibrierung	Standarddichtekalibrierung
[g/cm³]	[g/cm³]	[g/cm³]
±0,0005 g/cm ³	±0,0005 g/cm³	±0,0025 g/cm ³

Temperatur

 $\pm 0.5 \,^{\circ}\text{C} \pm 0.005 \cdot \text{T} \,^{\circ}\text{C} \, (\pm 0.9 \,^{\circ}\text{F} \pm 0.003 \cdot (\text{T} - 32) \,^{\circ}\text{F})$

Nullpunktstabilität

D	N	Nullpunktstabilität		
[mm]	[in]	[kg/h]	[lb/min]	
1	1/24	0,0005	0,000018	
2	1/12	0,0025	0,00009	
4	1/8	0,0100	0,00036	
8	3/8	0,20	0,007	
15	1/2	0,65	0,024	
25	1	1,80	0,066	
40	1 ½	4,50	0,165	

Durchflusswerte

Durchflusswerte als Turndown-Kennzahlen abhängig von der Nennweite.

SI-Einheiten

DN	1:1	1:10	1:20	1:50	1:100	1:500
[mm]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]
1	20	2	1	0,4	0,2	0,04
2	100	10	5	2	1	0,2
4	450	45	22,5	9	4,5	0,9
8	2 000	200	100	40	20	4
15	6 500	650	325	130	65	13
25	18 000	1800	900	360	180	36
40	45 000	4500	2 250	900	450	90

US-Einheiten

DN	1:1	1:10	1:20	1:50	1:100	1:500
[in]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]
1/24	0,735	0,074	0,037	0,015	0,007	0,001
1/12	3,675	0,368	0,184	0,074	0,037	0,007
1/8	16,54	1,654	0,827	0,331	0,165	0,033
3/8	73,50	7,350	3,675	1,470	0,735	0,147
1/2	238,9	23,89	11,95	4,778	2,389	0,478
1	661,5	66,15	33,08	13,23	6,615	1,323
1 ½	1654	165,4	82,70	33,08	16,54	3,308

Genauigkeit der Ausgänge

Bei analogen Ausgängen muss die Ausgangsgenauigkeit für die Messabweichung mit betrachtet werden; bei Feldbus-Ausgängen (IO-Link und Modbus RS485) hingegen nicht.

Die Ausgänge weisen die folgende Grundgenauigkeit auf:

Impuls-/Frequenzausgang

v.M. = vom Messwert

Temperatur-Genauigkeit Max. ±50 ppm v.M. (über den kompletten Umgebungstemperaturbereich)	
--	--

Wiederholbarkeit

Grund-Wiederholbarkeit

Dosierzeit [s]	Standardabweichung [%]
0,75 s < t _a < 1,5 s	0,2
1,5 s < t _a < 3 s	0,1
3 s < t _a	0,05

Dichte (Flüssigkeiten)

 $\pm 0,00025 \text{ g/cm}^3$

Temperatur

 ± 0.25 °C ± 0.0025 · T °C (± 0.45 °F ± 0.0015 · (T-32) °F)

Reaktionszeit

Die Reaktionszeit ist abhängig von der Parametrierung (Dämpfung).

Einfluss Umgebungstemperatur

Impuls-/Frequenzausgang

Temperaturkoeffizient	Kein zusätzlicher Effekt. In Genauigkeit enthalten.

Einfluss Messstofftemperatur

Massefluss

Bei einer Temperaturdifferenz zwischen der Temperatur beim Nullpunktabgleich und der Prozesstemperatur, beträgt die Messabweichung der Messaufnehmer typisch $\pm 0,0002$ % vom Endwert/°C ($\pm 0,0001$ % vom Endwert/°F).

Temperatur

 $\pm 0.005 \cdot \text{T} \,^{\circ}\text{C} \, (\pm 0.005 \cdot (\text{T} - 32) \,^{\circ}\text{F})$

Einfluss Messstoffdruck

Eine Druckdifferenz zwischen Kalibrierdruck und Prozessdruck hat keinen Einfluss auf die Messgenauigkeit.

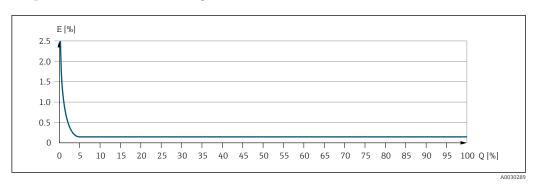
Berechnungsgrundlagen

v.M. = vom Messwert, v.E. = vom Endwert

BaseAccu = Grundgenauigkeit in % v.M., BaseRepeat = Grund-Wiederholbarkeit in % v.M.

22

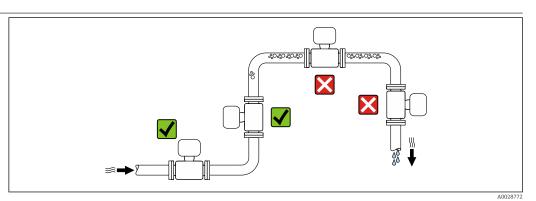
 $MeasValue = Messwert; ZeroPoint = Nullpunktstabilit \"{a}t$


Berechnung der maximalen Messabweichung in Abhängigkeit von der Durchflussrate

Durchflussrate	maximale Messabweichung in % v.M.
$\geq \frac{\text{ZeroPoint}}{\text{BaseAccu}} \cdot 100$	± BaseAccu
A0021332	10002555
< ZeroPoint · 100	$\pm \frac{\text{ZeroPoint}}{\text{MeasValue}} \cdot 100$
A0021333	A0021334

Berechnung der maximalen Wiederholbarkeit in Abhängigkeit von der Durchflussrate

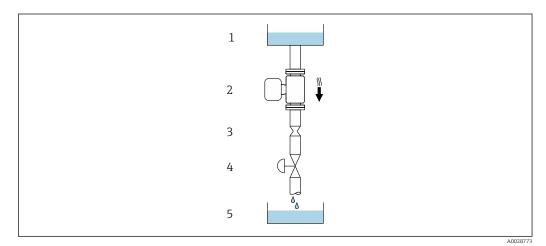
Durchflussrate	maximale Wiederholbarkeit in % v.M.
$\geq \frac{\frac{1}{2} \cdot \text{ZeroPoint}}{\text{BaseRepeat}} \cdot 100$	± BaseRepeat
A0021335	
$<\frac{\frac{1}{2} \cdot \text{ZeroPoint}}{\text{BaseRepeat}} \cdot 100$	$\pm \frac{1}{2} \cdot \frac{\text{ZeroPoint}}{\text{MeasValue}} \cdot 100$
A0021336	A0021337


Beispiel maximale Messabweichung

- Е Maximale Messabweichung in % v.M. (Beispiel)
- Durchflussrate in % vom maximalen Endwert

Montage

Montageort



Um Messfehler aufgrund von Gasblasenansammlungen im Messrohr zu vermeiden, folgende Einbauorte in der Rohrleitung vermeiden:

- Einbau am höchsten Punkt der Leitung
- Einbau unmittelbar vor einem freien Rohrauslauf in einer Fallleitung

Bei einer Fallleitung

Folgender Installationsvorschlag ermöglicht dennoch den Einbau in eine offene Fallleitung. Rohrverengungen oder die Verwendung einer Blende mit kleinerem Querschnitt als die Nennweite verhindern das Leerlaufen des Messaufnehmers während der Messung.

■ 10 Einbau in eine Fallleitung (z.B. bei Abfüllanwendungen)

- 1 Vorratstank
- 2 Messaufnehmer
- 3 Blende, Rohrverengung
- 4 Ventil
- 5 Abfüllbehälter

D	N	Ø Blende, Rohrverengung		
[mm]	[in]	[mm]	[in]	
1	1/24	0,8	0,03	
2	1/12	1,5	0,06	
4	1/8	3,0	0,12	
8	3/8	6	0,24	
15	1/2	10	0,40	
25	1	14	0,55	
40	1 1/2	22	0,87	

Einbaulage

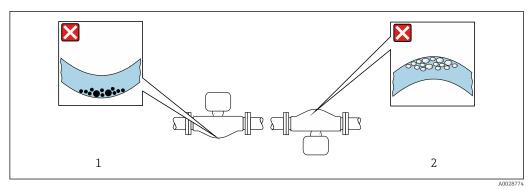
Die Pfeilrichtung auf dem Messaufnehmer-Typenschild hilft, den Messaufnehmer entsprechend der Durchflussrichtung einzubauen (Fließrichtung des Messstoffs durch die Rohrleitung).

Empfohlene Einbaulage für DN 1 ... 4 ($\frac{1}{24}$... $\frac{1}{8}$ ")

	Einbaulage					
A	Vertikale Einbaulage	A0015591	√ √ 1)			
В	Horizontale Einbaulage Messumformer oben	A0015589	✓ ²⁾			

	Einbaulage					
С	Horizontale Einbaulage Messumformer unten	A0015590	☑ 3)			
D	Horizontale Einbaulage Messumformer seitlich	A0015592	\checkmark			

- 1) Um die Selbstentleerung zu gewährleisten, wird diese Einbaulage empfohlen.
- Anwendungen mit tiefen Prozesstemperaturen können die Umgebungstemperatur senken. Um die minimale Umgebungstemperatur für den Messumformer einzuhalten, wird diese Einbaulage empfohlen.
- 3) Anwendungen mit hohen Prozesstemperaturen können die Umgebungstemperatur erhöhen. Um die maximale Umgebungstemperatur für den Messumformer einzuhalten, wird diese Einbaulage empfohlen.

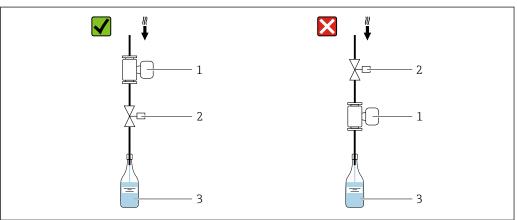

Empfohlene Einbaulage für DN 8 ... 40 (3/8 ... 1 1/2")

	Einbaulag		
	Empfehlung		
A	Vertikale Einbaulage	A0015591	√ √ 1)
В	Horizontale Einbaulage Messumformer oben	A0015589	√ √ ²⁾
С	Horizontale Einbaulage Messumformer unten	A0015590	√ √ ³⁾
D	Horizontale Einbaulage Messumformer seitlich	A0015592	×

- 1) Um die Selbstentleerung zu gewährleisten, wird diese Einbaulage empfohlen.
- Anwendungen mit tiefen Prozesstemperaturen können die Umgebungstemperatur senken. Um die minimale Umgebungstemperatur für den Messumformer einzuhalten, wird diese Einbaulage empfohlen.
- 3) Anwendungen mit hohen Prozesstemperaturen können die Umgebungstemperatur erhöhen. Um die maximale Umgebungstemperatur für den Messumformer einzuhalten, wird diese Einbaulage empfohlen.

Horizontale Einbaulage für DN 8 ... 40 (3/8 ... 1 1/2")

Wenn ein Messaufnehmer mit gebogenem Messrohr horizontal eingebaut wird: Messaufnehmerposition auf die Messstoffeigenschaften abstimmen.

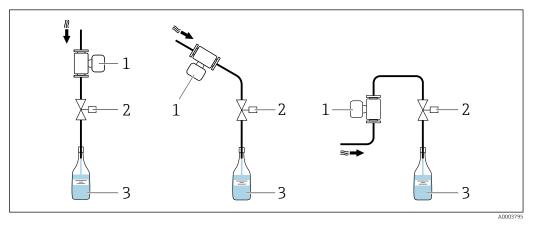

■ 11 Einbaulage Messaufnehmer mit gebogenem Messrohr

- $1 \hspace{0.5cm} \textit{Vermeiden bei feststoffbeladenen Messstoffen: Gefahr von Feststoffansammlungen} \\$
- 2 Vermeiden bei ausgasenden Messstoffen: Gefahr von Gasansammlungen

Ventile

Den Messaufnehmer nicht nach einem Abfüllventil einbauen. Eine vollständige Leerung des Messaufnehmers verursacht eine hohe Verfälschung des Messwerts.

Eine korrekte Messung ist nur bei vollständig gefüllter Rohrleitung möglich. Vor dem produktiven Abfüllen Probefüllungen durchführen.



A00037

- Messgerät
- 2 Abfüllventil
- 3 Behälter

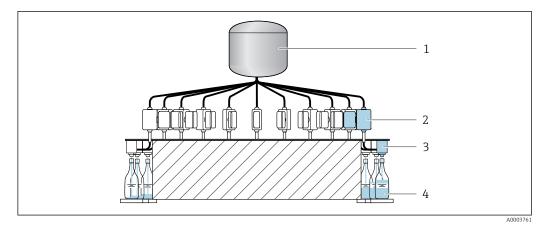
Füllanlagen

Ein vollständig gefülltes Rohrsystem ist für eine optimale Messung erforderlich.

■ 12 Füllanlage

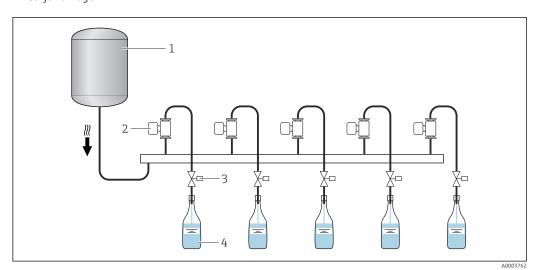
- 1 Messgerät
- 2 Abfüllventil
- 3 Behälter

Ein- und Auslaufstrecken


Bei der Montage muss keine Rücksicht auf Turbulenz erzeugende Armaturen wie Ventile, Krümmer oder T-Stücke genommen werden, solange keine Kavitationseffekte entstehen .

Spezielle Montagehinweise

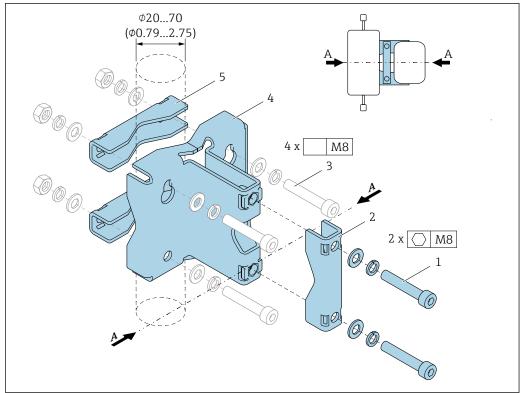
Hinweise für Füllanlagen


Eine korrekte Messung ist nur bei vollständig gefüllter Rohrleitung möglich. Wir empfehlen deshalb, vor dem produktiven Abfüllen Probefüllungen vorzunehmen.

Rundfüllanlage

- Tank
- 2
- Messgerät Abfüllventil Behälter 3 4

Linearfüllanlage


- Tank
- 2 Messgerät
- Abfüllventil Behälter 3

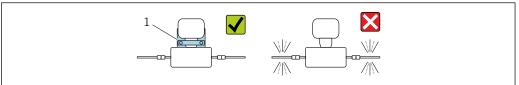
Lebensmitteltauglichkeit

Bei Installation in hygienischen Anwendungen: Hinweise im Kapitel "Zertifikate und Zulassungen/Lebensmitteltauglichkeit" beachten $\rightarrow \ \cong \ 47$

Sensorhalterung DN 1 ... 4 ($\frac{1}{24}$... $\frac{1}{8}$ ")

- Für alle Anwendungen mit erhöhten Sicherheits- oder Belastungsanforderungen und bei Messaufnehmern mit Clamp-Prozessanschlüssen ist die entsprechende Sensorhalterung zu verwenden.

A003647


- 1 2 x Innensechskantschraube M8 x 50, Unterlegscheibe und Federring A4
- 2 1 x Klemmbügel (Hals Messgerät)
- 3 4 x Befestigungsschraube für Wand-, Tisch- oder Rohrmontage (Nicht im Lieferumfang enthalten)
- 4 1 x Grundprofil
- 5 2 x Klemmbügel (Rohrmontage)
- A Zentrallinie Messgerät

A WARNUNG

Belastung der Rohrleitung!

Zu hohe Belastung einer nicht gestützten Rohrleitung kann zu einem Rohrbruch führen.

Messaufnehmer in ausreichend gestützte Rohrleitung einbauen. Für eine maximale mechanische Stabilität kann der Messaufnehmer neben der Sensorhalterung kundenseitig zusätzlich ein- und auslaufseitig gestützt werden, z.B. durch die Verwendung von Rohrschellen.

A003649

1 Sensorhalterung Bestellnummer: 71392563

Für den Einbau werden nachfolgende Montagevarianten empfohlen:

Alle Schraubverbindungen vor Montage fetten. Schrauben für Wand-, Tisch oder Rohrmontage befinden sich nicht im Lieferumfang und müssen entsprechend der Einbausituation ausgewählt werden.

Wandmontage

Die Sensorhalterung mit vier Schrauben an die Wand schrauben. Zwei der vier Befestigungslöcher sind zum Einhängen in die Schrauben ausgeführt.

Tischmontage

Die Sensorhalterung mit vier Schrauben auf die Tischfläche schrauben.

Rohrmontage

Die Sensorhalterung mit zwei Klemmbügeln am Rohr festschrauben.

A WARNUNG

Beschädigung des Messgeräts durch Nichteinhaltung der Angaben zur Vibrations- und Schockfestigkeit!

► Im Betrieb sowie bei Transport und Lagerung sicherstellen, dass die Angaben zur max. Vibrations- und Schockfestigkeit → 🖺 29 eingehalten werden.

Nullpunktabgleich

Das Untermenü Sensorabgleich enthält Parameter, die für den Nullpunktabgleich benötigt werden.

Detaillierte Informationen zu "Untermenü **Sensorabgleich**": Geräteparameter → 🖺 50

HINWEIS

Alle Dosimass-Messgeräte werden nach dem neusten Stand der Technik kalibriert. Die Kalibrierung erfolgt unter Referenzbedingungen.

Ein Nullpunktabgleich ist deshalb bei Dosimass grundsätzlich nicht erforderlich.

- ▶ Ein Nullpunktabgleich ist erfahrungsgemäß nur in speziellen Fällen empfehlenswert.
- ▶ Bei höchsten Ansprüchen an die Messgenauigkeit und sehr geringen Durchflussmengen.
- ► Bei extremen Prozess- oder Betriebsbedingungen, z.B. bei sehr hohen Prozesstemperaturen oder sehr hoher Viskosität des Messstoffes.

Detaillierte Angaben zu den Referenzbedingungen → 🖺 20

Umgebung

Umgebungstemperaturbe- reich	Messumformer	-40 +60 °C (-40 +140 °F)			
	Messaufnehmer	-40 +60 °C (−40 +140 °F)			
Lagerungstemperatur	–40 +80 °C (–40 +176 °F), vorzugsweise bei +20 °C (+68 °F)				
Schutzart	Standardmäßig: IP67, Type 4X enclosure, geeignet für Verschmutzungsgrad 4				
-					
Vibrationsfestigkeit und Schockfestigkeit	Schwingen sinusförmig in Anlehnung an IEC 60068-2-6				
	 2 8,4 Hz, 3,5 mm peak 8 4 2000 Hz 1 g peak 				

■ 8,4 ... 2 000 Hz, 1 g peak

Schwingen Breitbandrauschen in Anlehnung an IEC 60068-2-64

- 10 ... 200 Hz, 0,003 g²/Hz
- 200 ... 2 000 Hz, 0,001 g²/Hz
- Total: 1,54 g rms

Schocks Halbsinus in Anlehnung an IEC 60068-2-27

6 ms 30 g

Stoß durch raue Handhabung in Anlehnung an IEC 60068-2-31

Innenreinigung

- CIP-Reinigung
- SIP-Reinigung

Optionen

Öl- und fettfreie Ausführung für mediumberührende Teile, ohne Erklärung Bestellmerkmal "Dienstleistung", Option HA ¹⁾

Elektromagnetische Verträglichkeit (EMV)

Nach IEC/EN 61326

Details sind in der Konformitätserklärung ersichtlich.

Diese Einrichtung ist nicht dafür vorgesehen, in Wohnbereichen verwendet zu werden, und kann einen angemessenen Schutz des Funkempfangs in solchen Umgebungen nicht sicherstellen.

Prozess

Messstofftemperaturbereich

Messaufnehmer

-40 ... +130 °C (-40 ... +266 °F)

Reinigung

+150 °C (+302 °F) max. 60 min für CIP- und SIP-Prozesse

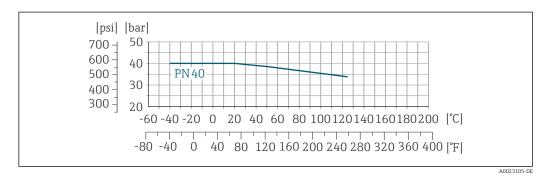
Dichtungen

Keine innen liegenden Dichtungen

Messstoffdruckbereich

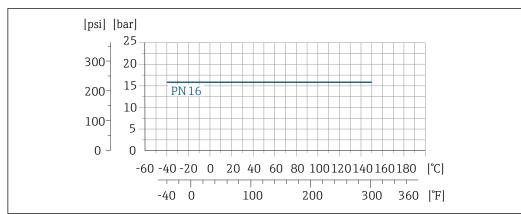
max. 40 bar (580 psi), abhängig vom Prozessanschluss

Messstoffdichte


DN		$ ho_{ m max}$
[mm]	[in]	[kg/m³]
1	1/24	3 150
2	1/12	3 100
4	1/8	3 100
8	3/8	4 548
15	1/2	4900
25	1	4270
40	1 ½	4700

Druck-Temperatur-Kurven

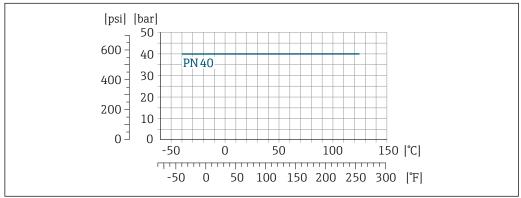
Die folgenden Druck-Temperatur-Kurven beziehen sich auf alle drucktragenden Teile des Geräts und nicht nur auf den Prozessanschluss. Die Kurven zeigen den maximal erlaubten Messstoffdruck in Abhängigkeit von der jeweiligen Messstofftemperatur.


¹⁾ Die Reinigung bezieht sich nur auf das Messgerät. Gegebenenfalls mitgelieferte Zubehörartikel werden nicht gereinigt.

Prozessanschluss: Flansch in Anlehnung an EN 1092-1 (DIN 2501 / DIN 2512N), Flansch in Anlehnung an EN 1092-1 (DIN 2501)

■ 13 Werkstoff Prozessanschluss: Rostfreier Stahl 1.4404 (316/316L)

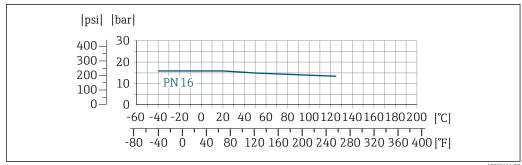
Prozessanschluss: 1"-Clamp in Anlehnung an DIN 32676


A0028940-DE

■ 14 Werkstoff Prozessanschluss: Rostfreier Stahl, 1.4404 (316/316L)

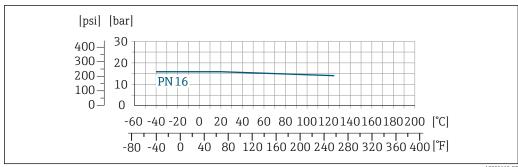
Prozessanschluss: Tri-Clamp

Die Werkstoffbelastungsgrenze wird ausschließlich durch die Werkstoffeigenschaften des verwendeten Tri-Clamp-Klemmbügels bestimmt. Dieser Klemmbügel ist im Lieferumfang nicht enthalten.


Prozessanschluss: Gewindestutzen in Anlehnung an DIN 11864-1 Form A

A0023108-D

■ 15 Werkstoff Prozessanschluss: Rostfreier Stahl 1.4404 (316/316L)


Prozessanschluss: Gewindestutzen in Anlehnung an DIN 11851

■ 16 Werkstoff Prozessanschluss: Rostfreier Stahl 1.4404 (316/316L)

A0023106-DE

Prozessanschluss: Gewindestutzen in Anlehnung an ISO 2853

■ 17 Werkstoff Prozessanschluss: Rostfreier Stahl 1.4404 (316/316L)

Gehäuse Messaufnehmer

Das Messaufnehmergehäuse ist mit trockenem Stickstoff gefüllt und schützt die innenliegende Elektronik und Mechanik.

- Das Gehäuse verfügt nicht über eine Nenndruckklassifizierung.
- Richtwert für die Druckbelastbarkeit des Messaufnehmergehäuses: 16 bar (232 psi)

Durchflussgrenze

Die geeignete Nennweite wird ermittelt, indem zwischen dem Durchfluss und dem zulässigen Druckabfall optimiert wird.

- Zur Übersicht der Messbereich-Endwerte: Kapitel "Messbereich" → 🖺 7
- Der minimal empfohlene Endwert beträgt ca. 1/20 des maximalen Endwerts
- Für die häufigsten Anwendungen sind 20 ... 50 % des maximalen Endwerts als ideal anzusehen
- Bei abrasiven Medien (z.B. feststoffbeladenen Flüssigkeiten) ist ein tiefer Endwert zu wählen: Strömungsgeschwindigkeit < 1 m/s (< 3 ft/s).
- Zur Berechnung der Durchflussgrenze: Produktauswahlhilfe *Applicator* → 🖺 49

Druckverlust

Zur Berechnung des Druckverlusts: Produktauswahlhilfe *Applicator* → 🖺 49

Beheizung

Bei einigen Messstoffen muss darauf geachtet werden, dass im Bereich des Messaufnehmers kein Wärmeverlust stattfindet.

Beheizungsmöglichkeiten

- Elektrisch, z.B. mit Heizbändern ²⁾
- Über heißwasser- oder dampfführende Rohre
- Über Heizmäntel

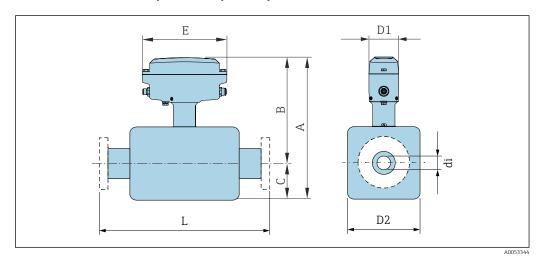
Es wird allgemein empfohlen, parallele Heizbänder zu verwenden (bidirektionaler Stromfluss). Dabei sind besondere Überlegungen anzustellen, 2) wenn ein einadriges Heizkabel verwendet werden soll. Weitere Informationen finden Sie im Dokument EA01339D "Installationsanleitung für elektrische Begleitheizungssysteme"

HINWEIS

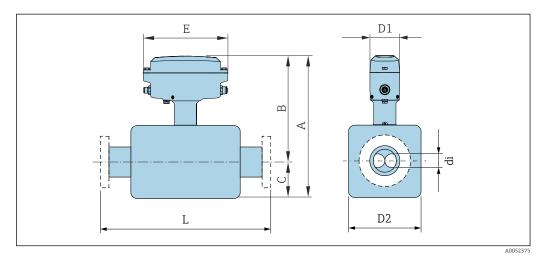
Gefahr der Überhitzung bei Beheizung

- Sicherstellen, dass die Temperatur am unteren Ende des Messumformergehäuses nicht höher ist als 80 $^{\circ}$ C (176 $^{\circ}$ F).
- Gewährleisten, dass am Messumformerhals eine genügend grosse Konvektion vorhanden ist.
- Sicherstellen, dass eine genügend große Oberfläche des Messumformerhalses frei bleibt. Der nicht abgedeckte Teil dient der Wärmeabfuhr und schützt die Messelektronik vor Überhitzung und Unterkühlung.

Vibrationen

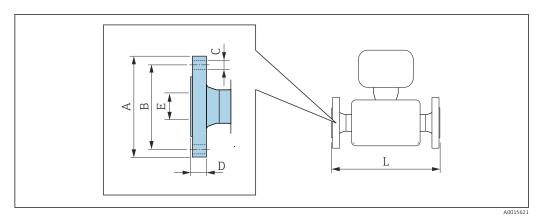

Anlagenvibrationen haben aufgrund hoher Messrohr-Schwingfrequenz keinen Einfluss auf die Funktionstüchtigkeit des Messsystems.

Konstruktiver Aufbau


Abmessungen in SI-Einheiten

Kompaktausführung

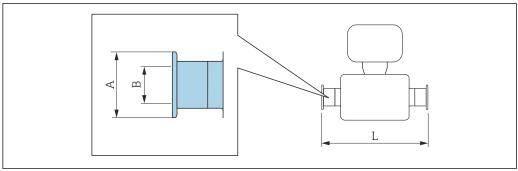
Bestellmerkmal "Gehäuse", Option B "Kompakt, rostfrei", DN 1 ... 4 ($\frac{1}{24}$... $\frac{1}{8}$ ")


DN D2 D1 [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] 1 230 176 54 60 34 171 1,1 192 2 272 198 74 60 48 171 2,5 269 303 213 90 60 51 171 3,9 315 4

DN [mm]	A [mm]	B [mm]	C [mm]	D1 [mm]	D2 [mm]	E [mm]	di [mm]	L [mm]
8	247	158	90	60	45	171	5,35	1)
15	258	158	101	60	45	171	8,3	1)
25	257	155	102	60	51	171	12	1)
40	282	161	121	60	65	171	17,6	1)

1) Abhängig vom jeweiligen Prozessanschluss

Festflansch

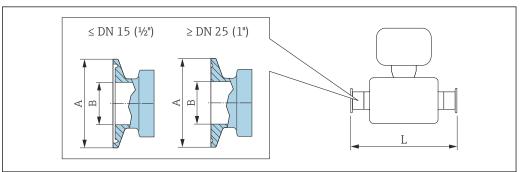


Längentoleranz Maß L in mm: +1,5 / -2,0

Flansch in Anlehnung an EN 1092-1 (DIN 2501 / DIN 2512N): PN 40 1.4404 (316/316L): Bestellmerkmal "Prozessanschluss", Option D2S							
DN A B C D E L [mm] [mm] [mm] [mm] [mm]							
8	95	65	4 × Ø 14	16	17,3	232	
15	95	65	4 × Ø 14	16	17,3	279	
25	115	85	4 × Ø 14	18	28,5	329	
40	150	110	4 × Ø 14	18	43,1	445	

Flansch in Anlehnung an EN 1092-1 (DIN 2501): PN 40 (mit DN 25-Flanschen) 1.4404 (316/316L): Bestellmerkmal "Prozessanschluss", Option R2S						
DN [mm]						
8	95	65	4 × Ø 14	16	17,3	198,4
15	95	65	4 × Ø 14	16	17,3	198,4

Klemmverbindung


A0015625

Längentoleranz Maß L in mm: +1,5 / -2,0

1"-Clamp nach DIN 32676 1.4404 (316/316L): Bestellmerkmal "Prozessanschluss", Option KDW Α L [mm] [mm] [mm] [mm] 8 34,0 229 16 15 34,0 16 273 25 50,5 26 324

Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BF, SK in Kombination mit Bestellmerkmal "Weitere Zulassung", Option LP

Tri-Clamp

A0052377

Längentoleranz Maß L in mm: +1,5 / -2,0

½"-Tri-Clamp

1.4435 (316L): Bestellmerkmal "Prozessanschluss", Option FBW Passend zu Rohrleitung nach DIN 11866 Reihe C

DN	A	В	L
DN [mm]	[mm]	[mm]	[mm]
1	25	9,4	192
2	25	9,4	269
4	25	9,4	315

3-A-Ausführung (Ra $\leq 0.76~\mu m/30~\mu in,\, Ra \leq 0.38~\mu m/15~\mu in)$ lieferbar:

Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF in Kombination mit Bestellmerkmal "Weitere Zulassung", Option LP

1/2"-Tri-Clamp BS4825-3

1.4404 (316/316L): Bestellmerkmal "Prozessanschluss", Option FDW

Passend zu Rohrleitung nach DIN 11866 Reihe C

DN [mm]	A [mm]	B [mm]	L [mm]
8	25	9,5	229
15	25	9,5	273

3-A-Ausführung (Ra \leq 0,76 µm/30 µin, Ra \leq 0,38 µm/15 µin) lieferbar:

Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF, SJ, SK in Kombination mit Bestellmerkmal "Weitere Zulassung", Option LP

³⁻A-Ausführung (Ra ≤ 0,38 μm/15 μin) lieferbar:

3/4"-Tri-Clamp

1.4404 (316/316L): Bestellmerkmal "Prozessanschluss", Option FWW

Passend zu Rohrleitung nach DIN 11866 Reihe C

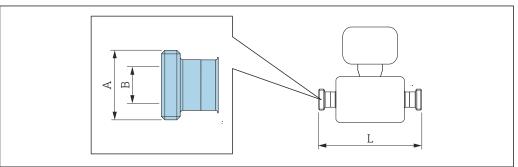
DN A [mm]		B [mm]	L [mm]	
8	25,0	15,75	229	
15	25,0	15,75	273	

3-A-Ausführung (Ra \leq 0,76 μ m/30 μ in, Ra \leq 0,38 μ m/15 μ in) lieferbar:

Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF, SJ, SK in Kombination mit Bestellmerkmal "Weitere Zulassung", Option LP

1"-Tri-Clamp

1.4404 (316/316L): Bestellmerkmal "Prozessanschluss", Option FTS


Passend zu Rohrleitung nach DIN 11866 Reihe C

DN [mm]		A [mm]	B [mm]	L [mm]	
	8	50,4	22,1	229	
	15	50,4	22,1	273	
	25	50,4	22,1	324	
	40	50,4	34,8	456	

3-A-Ausführung (Ra \leq 0,76 μ m/30 μ in, Ra \leq 0,38 μ m/15 μ in) lieferbar:

Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF, SJ, SK in Kombination mit Bestellmerkmal "Weitere Zulassung", Option LP

Gewindestutzen

Längentoleranz Maß L in mm: +1,5 / -2,0

Gewindestutzen nach DIN 11864-1 Form A

1.4404 (316/316L): Bestellmerkmal "Prozessanschluss", Option FLW

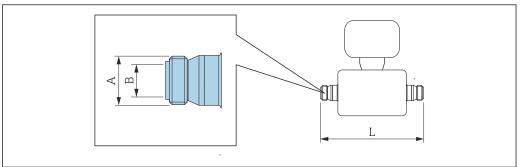
Passend zu Rohrleitung DIN 11866 Reihe A

Passena za kom tettang DIN 11000 ketne A						
DN [mm]	A B [mm]		L [mm]			
8	Rd 28 × ⅓"	10	229			
15	Rd 34 × ⅓"	16	273			
25	Rd 52 × 1/6"	26	324			
40	Rd 65 × 1/6"	38	456			

3-A-Ausführung (Ra \leq 0,76 μ m/30 μ in, Ra \leq 0,38 μ m/15 μ in) lieferbar:

Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF, SJ, SK in Kombination mit Bestellmerkmal "Weitere Zulassung", Option LP

Gewindestutzen nach DIN 11851


1.4404 (316/316L): Bestellmerkmal "Prozessanschluss", Option FMW

Passend zu Rohrleitung DIN 11866 Reihe A

DN [mm]	A [mm]	B [mm]	L [mm]
8	Rd 34 × 1/8"	16	229
15	Rd 34 × 1/8"	16	273
25	Rd 52 × 1/6"	26	324
40	Rd 65 × 1/6"	38	456

3-A-Ausführung (Ra ≤ 0,76 μ m/30 μ in, Ra ≤ 0,38 μ m/15 μ in) lieferbar:

Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF, SJ, SK in Kombination mit Bestellmerkmal "Weitere Zulassung", Option LP

A0015623

i

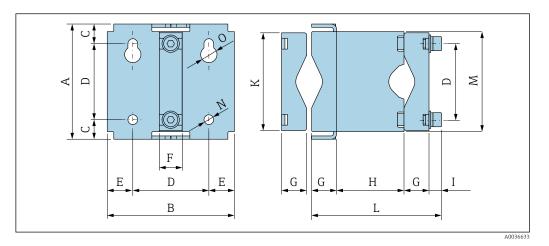
Längentoleranz Maß L in mm: +1,5 / -2,0

Gewindestutzen nach ISO 2853
1 4404 (316/316I). Rostollmorks

1.4404 (316/316L): Bestellmerkmal "Prozessanschluss", Option JSF

Passend zu Rohrleitung ISO 2037

DN [mm]	A 1) [mm]	B [mm]	L [mm]	
8	37,13	22,6	229	
15	37,13	22,6	273	
25	37,13	22,6	324	
40	50,68	35,6	456	

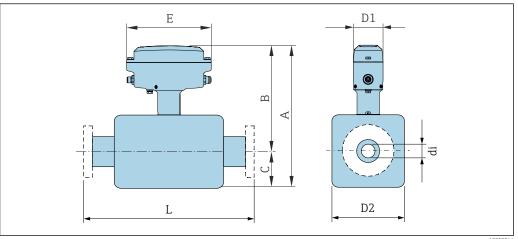

3-A-Ausführung (Ra $\leq 0.76~\mu m/30~\mu in,~Ra \leq 0.38~\mu m/15~\mu in)$ lieferbar:

Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF, SJ, SK in Kombination mit Bestellmerkmal "Weitere Zulassung", Option LP

1) Gewindedurchmesser max. nach ISO 2853 Annex A

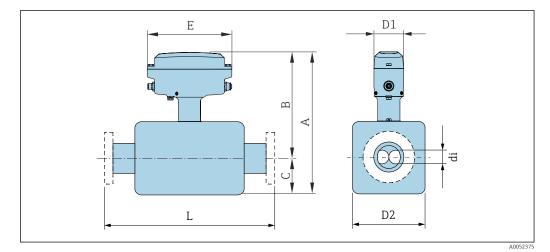
Zubehör

Sensorhalterung


A	B	C	D	E	F	G
[mm]						
106	117	18	70	23,5	21	23

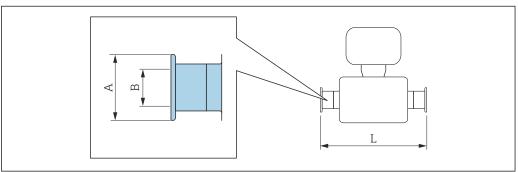
H	I	K	L	M	N	0
[mm]						
62	12	90	120	92	9	

Abmessungen in US-Einheiten


Kompaktausführung

Bestellmerkmal "Gehäuse", Option B "Kompakt, rostfrei", DN 1 ... 4 ($\frac{1}{24}$... $\frac{1}{8}$ ")

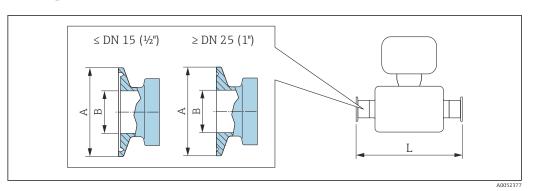
DN [in]	A [in]	B [in]	C [in]	D1 [in]	D2 [in]	E [in]	di [in]	L [in]
1/24	9,06	6,93	2,13	2,36	1,34	6,73	0,04	7,56
1/12	10,71	7,80	2,91	2,36	1,89	6,73	0,08	10,59
1/8	11,93	8,39	3,54	2,36	2,01	6,73	0,12	12,40


Bestellmerkmal "Gehäuse", Option B "Kompakt, rostfrei", DN 8 ... 40 (3 /8 ... 1 1 /2")

DN [in]	A [in]	B [in]	C [in]	D1 [in]	D2 [in]	E [in]	di [in]	L [in]
3/8	9,72	6,22	3,54	2,36	1,77	6,73	0,20	1)
1/2	10,16	6,22	3,98	2,36	1,77	6,73	0,31	1)
1	10,12	6,10	4,02	2,36	2,01	6,73	0,47	1)
1 1/2	11,10	6,34	4,76	2,36	2,56	6,73	0,67	1)

1) Abhängig vom jeweiligen Prozessanschluss

Klemmverbindung


A0015625

Längentoleranz Maß L in inch: +0.06 / -0.08

1"-Clamp nach DIN 32676 1.4404 (316/316L): Bestellmerkmal "Prozessanschluss", Option KDW						
DN [in]	A [in]	B [in]	L [in]			
3/8	1,34	0,63	9,01			
1/2	1,34	0,63	10,75			
1	1,99	1,02	12,76			

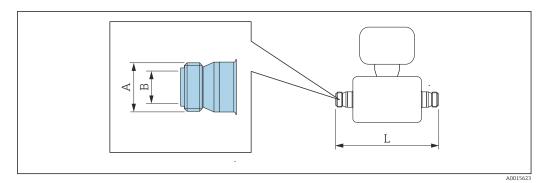
3-A-Ausführung (Ra \leq 0,38 µm/15 µin) lieferbar: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BF, SK in Kombination mit Bestellmerkmal "Weitere Zulassung", Option LP

Tri-Clamp

Längentoleranz Maß L in inch: +0,06 / -0,08

1.4435 (316L): Bestellmerkmal "Prozessanschluss", Option FBW Passend zu Rohrleitung nach DIN 11866 Reihe C							
DN [in]	A [in]	B [in]	L [in]				
1/24	0,98	0,37	7,56				
1/12	0,98	0,37	10,6				
1/8	0,98	0,37	12,4				

3-A-Ausführung (Ra \leq 0,76 µm/30 µin, Ra \leq 0,38 µm/15 µin) lieferbar: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF in Kombination mit Bestellmerkmal "Weitere Zulassung", Option LP


½"-Tri-Clamp BS4825-3 1.4404 (316/316L): Bestellmerkmal "Prozessanschluss", Option FDW Passend zu Rohrleitung nach DIN 11866 Reihe C			
DN [in]	A [in]	B [in]	L [in]
3/8	0,98	0,37	9,02
1/2	0,98	0,37	10,80

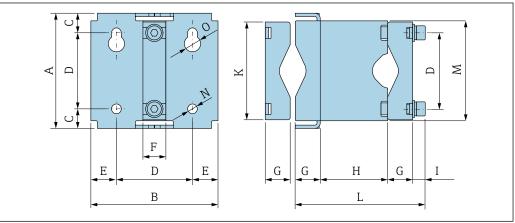
3-A-Ausführung (Ra \leq 0,76 µm/30 µin, Ra \leq 0,38 µm/15 µin) lieferbar: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF, SJ, SK in Kombination mit Bestellmerkmal "Weitere Zulassung", Option LP

¾"-Tri-Clamp 1.4404 (316/316L): Bestellmerkmal "Prozessanschluss", Option FWW Passend zu Rohrleitung nach DIN 11866 Reihe C			
DN [in]	A [in]	B [in]	L [in]
3/8	0,98	0,62	9,02
1/2	0,98	0,62	10,80

3-A-Ausführung (Ra \leq 0,76 µm/30 µin, Ra \leq 0,38 µm/15 µin) lieferbar: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF, SJ, SK in Kombination mit Bestellmerkmal "Weitere Zulassung", Option LP

Gewindestutzen

Längentoleranz Maß L in inch: +0,06 / -0,08


Gewindestutzen nach ISO 2853 1.4404 (316/316L): Bestellmerkmal "Prozessanschluss", Option JSF Passend zu Rohrleitung ISO 2037				
DN [in]	A ¹⁾ [in]	B [in]	L [in]	
3/8	1,46	0,89	9,02	
1/2	1,46	0,89	10,80	
1	1,46	0,89	12,80	
1 ½	1,97	1,38	17,95	

3-A-Ausführung (Ra \leq 0,76 µm/30 µin, Ra \leq 0,38 µm/15 µin) lieferbar: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF, SJ, SK in Kombination mit Bestellmerkmal "Weitere Zulassung", Option LP

1) Gewindedurchmesser max. nach ISO 2853 Annex A

Zubehör

Sensorhalterung

10036633

A	B	C	D	E	F	G
[in]						
4,17	4,61	0,71	2,76	0,93	0,83	

H	I	K	L	M	N	0
[in]						
2,44	0,47	3,54	4,72	3,62	0,35	

Gewicht

Gewicht in SI-Einheiten

DN [mm]	Gewicht [kg]
1	3,7
2	5,3
4	7,1
8	3,6
15	3,9
25	4,4
40	6,6

Gewicht in US-Einheiten

DN [in]	Gewicht [lbs]
1/24	8,2
1/12	11,7
1/8	15,7
3/8	7,9
1/2	8,6
1	9,7
1 ½	14,6

Werkstoffe

Gehäuse Messumformer

- Säuren- und laugenbeständige Außenoberfläche
- Rostfreier Stahl, 1.4409 (CF3M)

Gerätestecker

Elektrischer Anschluss	Werkstoff
Stecker M12x1	 Buchse: Kontaktträger aus Polyamid Stecker: Kontaktträger aus thermoplastischem Polyurethan (TPU-GF) Kontakte: Messing vergoldet

Gehäuse Messaufnehmer

Säuren- und laugenbeständige Außenoberfläche

DN 1 ... 4 mm ($\frac{1}{24}$... $\frac{1}{8}$ ")

Rostfreier Stahl, 1.4404 (316/316L)

DN 8 ... 40 mm (3/8 ... 1 1/2")

Rostfreier Stahl, 1.4301 (304)

Messrohre

DN 1 ... 4 mm ($\frac{1}{24}$... $\frac{1}{8}$ ") Rostfreier Stahl, 1.4435 (316/316L)

DN 8 ... 40 mm (3/8 ... 1 1/2")

Rostfreier Stahl, 1.4539 (904L)

Prozessanschlüsse

DN 1 ... 4 mm (1/24 ... 1/8")

½"-Tri-Clamp:

Rostfreier Stahl, 1.4435 (316L)

DN 8 ... 40 mm (3/8 ... 1 1/2")

Alle Prozessanschlüsse:

Rostfreier Stahl, 1.4404 (316/316L)

Verfügbare Prozessanschlüsse → 🖺 44

Dichtungen

Geschweißte Prozessanschlüsse ohne innenliegende Dichtungen

Zubehör

Sensorhalterung

Rostfreier Stahl, 1.4404 (316L)

Prozessanschlüsse

Festflansch

- EN 1092-1 (DIN 2501 / DIN 2512N)
- EN 1092-1 (DIN 2501)

Klemmverbindungen

1"-Clamp nach DIN 32676

Tri-Clamp

- ½"-Tri-Clamp
- $\frac{1}{2}$ "-Tri-Clamp BS4825-3
- ¾"-Tri-Clamp
- 1"-Tri-Clamp

Gewindestutzen

- DIN 11864-1 Form A
- DIN 11851
- ISO 2853

Werkstoffe der Prozessanschlüsse $\rightarrow \stackrel{\triangle}{=} 44$

Oberflächenrauheit

Alle Angaben beziehen sich auf messstoffberührende Teile.

Folgende Oberflächenrauheitskategorien sind bestellbar:

Kategorie	Methode	Option(en) Bestellmerkmal "Messrohr Mat., Oberfläche medi- umberührt"
Nicht poliert	-	SA
Ra \leq 0,76 μ m (30 μ in) ¹⁾	Mechanisch poliert ²⁾	BB
Ra ≤ 0,76 μm (30 μin) ¹⁾	Mechanisch poliert, Schweißnähte unbehandelt	SJ
Ra ≤ 0,38 μm (15 μin) ¹⁾	Mechanisch poliert ²⁾	BF
Ra \leq 0,38 μm (15 μin) ¹⁾	Mechanisch poliert, Schweißnähte unbehandelt	SK

- 1) Ra nach ISO 21920
- 2) Ausgeschlossen unzugängliche Schweißnähte zwischen Rohr und Verteiler

Anzeige und Bedienoberfläche

Sprachen

Bedienung in folgenden Landessprachen möglich:

Via Bedientool "FieldCare", "DeviceCare": Englisch, Deutsch, Französisch, Spanisch, Italienisch, Chinesisch, Japanisch

Vor-Ort-Bedienung

Das Gerät besitzt keine Vor-Ort-Bedienung mit Anzeige- oder Bedienelementen.

IO-Link

Die Konfiguration der gerätespezifischen Parameter erfolgt über IO-Link. Dafür stehen dem Benutzer spezielle, von unterschiedlichen Herstellern angebotene Konfigurations- oder Betriebsprogramme zur Verfügung. Die Gerätebeschreibungsdatei (IODD) wird für das Gerät bereitgestellt.

IO-Link-Bedienkonzept

Nutzerorientierte Menüstruktur für anwenderspezifische Aufgaben. Effizientes Diagnoseverhalten erhöht die Verfügbarkeit der Messung:

- Diagnosemeldungen
- Behebungsmaßnahmen
- Simulationsmöglichkeiten

IODD-Download

Zwei Möglichkeiten des IODD-Downloads:

- www.endress.com/download
- https://ioddfinder.io-link.com/

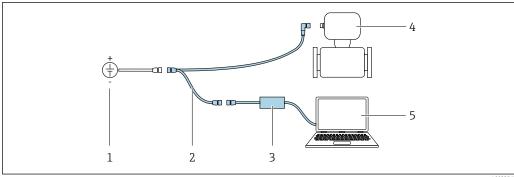
www.endress.com/download

- 1. "Geräte Treiber" auswählen.
- 2. Unter "Typ" den Eintrag "IO Device Description (IODD)" auswählen.
- 3. "Produktwurzel" auswählen.
- 4. Auf "Suche" klicken.
 - Trefferliste wird angezeigt.

Passende Version auswählen und herunterladen.

https://ioddfinder.io-link.com/

- 1. "Endress" als Hersteller eingeben und auswählen.
- 2. Produktname auswählen.
 - Trefferliste wird angezeigt.


Passende Version auswählen und herunterladen.

Fernbedienung

Via Service-Adapter und Commubox FXA291

Die Bedienung und Parametrierung kann über die Endress+Hauser Service- und Konfigurationssoftware FieldCare oder DeviceCare erfolgen.

Der Anschluss vom Gerät erfolgt via Service-Adapter und Commubox FXA291 an die USB-Schnittstelle des Computers.

- Versorgungsspannung 24 V DC
- Service-Adapter 2
- 3 Commubox FXA291
- Dosimass
- Computer mit Bedientool "FieldCare" oder "DeviceCare"
- Service-Adapter, Kabel und Commubox FXA291 sind nicht Teil des Lieferumfangs. Diese Komponenten sind als Zubehör bestellbar → 🖺 48.

Zertifikate und Zulassungen

Aktuelle Zertifikate und Zulassungen zum Produkt stehen unter www.endress.com auf der jeweiligen Produktseite zur Verfügung:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- Produktseite öffnen.
- Downloads auswählen.

CE-Kennzeichnung

Das Gerät erfüllt die gesetzlichen Anforderungen der anwendbaren EU-Richtlinien. Diese sind zusammen mit den angewandten Normen in der entsprechenden EU-Konformitätserklärung aufgeführt.

Endress+Hauser bestätigt die erfolgreiche Prüfung des Geräts mit der Anbringung der CE-Kennzeichnung.

UKCA-Kennzeichnung

Das Gerät erfüllt die gesetzlichen Anforderungen der anwendbaren UK-Rechtsverordnungen (Statutory Instruments). Diese sind zusammen mit den zugewiesenen Normen in der entsprechenden UKCA-Konformitätserklärung aufgeführt. Durch Selektion der Bestelloption zur UKCA-Kennzeichnung bestätigt Endress+Hauser die erfolgreiche Prüfung und Bewertung des Geräts mit der Anbringung der UKCA-Kennzeichnung.

Kontaktadresse Endress+Hauser UK: Endress+Hauser Ltd. Floats Road Manchester M23 9NF United Kingdom

www.uk.endress.com

RCM-Kennzeichnung

Das Messsystem stimmt überein mit den EMV-Anforderungen der Behörde "Australian Communications and Media Authority (ACMA)".

Ex-Zulassung

Das Messgerät ist zum Einsatz im explosionsgefährdeten Bereich zertifiziert und die zu beachtenden Sicherheitshinweise im separaten Dokument "Safety Instructions" (XA) beigefügt. Dieses ist auf dem Typenschild referenziert.

Die separate Ex-Dokumentation (XA) mit allen relevanten Daten zum Explosionsschutz ist bei Ihrer Endress+Hauser Vertriebszentrale erhältlich.

ATEX, IECEx

Aktuell sind die folgenden Ex-Ausführungen lieferbar:

Ех ес

Kategorie (ATEX)	Zündschutzart
II3G	Ex ec IIC T5T1 Gc

cULus

Aktuell sind die folgenden Ex-Ausführungen lieferbar:

Class I Division 2 Groups ABCD

Lebensmitteltauglichkeit

- 3-A-Zulassung
 - Nur Messgeräte mit dem Bestellmerkmal "Weitere Zulassung", Option LP "3A" verfügen über eine 3-A-Zulassung.
 - Die 3-A-Zulassung bezieht sich auf das Messgerät.
 - Bei der Installation des Messgeräts darauf achten, dass sich außen am Messgerät keine Flüssigkeitsansammlung bilden kann.
 - Die Installation von Zubehör (z.B Sensorhalterung) muss gemäß 3-A-Norm erfolgen.
 Jedes Zubehör ist reinigbar. Demontage unter Umständen notwendig.
- EHEDG-geprüft ³⁾

Nur Geräte mit dem Bestellmerkmal "Weitere Zulassung", Option LT "EHEDG" wurden geprüft und erfüllen die EHEDG-Anforderungen.

Um die Anforderungen an die EHEDG-Zertifizierung zu erfüllen, muss das Gerät mit Prozessanschlüssen gemäß des EHEDG-Positionspapiers 'Easy cleanable Pipe couplings and Process connections' eingesetzt werden (www.ehedg.org).

Um die Anforderungen an die EHEDG-Zertifizierung zu erfüllen, muss das Gerät in einer Ausrichtung installiert werden, welche Entleerbarkeit gewährleistet.

• Food Contact Materials Regulation (EC) 1935/2004

Spezielle Montagehinweise beachten → 🖺 26

Pharmatauglichkeit

- FDA 21 CFR 177
- USP <87>
- USP <88> Class VI 121 °C
- TSE/BSE Eignungs-Zertifikat
- cGMF

Geräte mit Bestellmerkmal "Test, Zeugnis", Option JG "Konformität zu cGMP abgeleiteten Anforderungen, Erklärung" sind konform gemäß den Anforderungen von cGMP in Bezug auf Oberflächen von mediumsberührten Teilen, Design, FDA 21 CFR-Materialkonformität, USP Class VI-Tests und TSE/BSE-Konformität.

Eine seriennummernspezifische Erklärung wird erstellt.

Druckgerätezulassung

Die Messgeräte sind mit oder ohne PED oder PESR bestellbar. Wenn ein Gerät mit PED oder PESR benötigt wird, muss dies explizit bestellt werden. Bei Geräten mit Nennweiten kleiner oder gleich DN 25 (1") ist dies weder möglich noch erforderlich. Für PESR ist unter Bestellmerkmal "Zulassungen" zwingend eine UK-Bestelloption zu wählen.

3) DN 8 ... 40 (3/8 ... 1 1/2")

- Mit der Kennzeichnung
 - a) PED/G1/x (x = Kategorie) oder
 - b) PESR/G1/x (x = Kategorie)

auf dem Messaufnehmer-Typenschild bestätigt Endress+Hauser die Konformität mit den "Grundlegenden Sicherheitsanforderungen"

- a) des Anhangs I der Druckgeräterichtlinie 2014/68/EU oder
- b) des Schedule 2 der Statutory Instruments 2016 no. 1105.
- Geräte mit dieser Kennzeichnung (mit PED oder PESR) sind geeignet für folgende Messstoffarten:
 - Fluide der Gruppe 1 und 2 mit einem Dampfdruck von größer oder kleiner gleich 0,5 bar (7,3 psi)
 - Instabile Gase
- Geräte ohne diese Kennzeichnung (ohne PED oder PESR) sind nach guter Ingenieurspraxis ausgelegt und hergestellt. Sie entsprechen den Anforderungen von
 - a) Art. 4 Abs. 3 der Druckgeräterichtlinie 2014/68/EU oder
 - b) Part 1, Abs. 8 der Statutory Instruments 2016 no. 1105.

Ihr Einsatzbereich ist

- a) in den Diagrammen 6 bis 9 im Anhang II der Druckgeräterichtlinie 2014/68/EU oder
- b) im Schedule 3, Abs. 2 der Statutory Instruments 2016 no. 1105 dargestellt.

Externe Normen und Richtlinien

■ EN 60529

Schutzarten durch Gehäuse (IP-Code)

■ EN 61010-1

Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte

■ EN 61326-1/-2-3

EMV-Anforderungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte

• CAN/CSA C22.2 No. 61010-1-12

Safety Requirements for Electrical Equipment for Measurements, Control and Laboratory Use, Part 1: General Requirements

ANSI/ISA-61010-1 (82.02.01)

Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use – Part 1: General Requirements

Weitere Zertifizierungen

CRN-Zulassung

Für einige Gerätevarianten gibt es eine CRN-Zulassung. Für ein CRN-zugelassenes Gerät muss ein CRN-zugelassener Prozessanschluss mit einer CSA-Zulassung bestellt werden.

Bestellinformationen

Ausführliche Bestellinformationen sind bei der nächstgelegenen Vertriebsorganisation www.addresses.endress.com oder im Produktkonfigurator unter www.endress.com auswählbar:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- 3. **Konfiguration** auswählen.

Produktkonfigurator - das Tool für individuelle Produktkonfiguration

- Tagesaktuelle Konfigurationsdaten
- Je nach Gerät: Direkte Eingabe von messstellenspezifischen Angaben wie Messbereich oder Bediensprache
- Automatische Überprüfung von Ausschlusskriterien
- Automatische Erzeugung des Bestellcodes mit seiner Aufschlüsselung im PDF- oder Excel-Ausgabeformat
- Direkte Bestellmöglichkeit im Endress+Hauser Onlineshop

Zubehör

Für das Gerät sind verschiedene Zubehörteile lieferbar, die bei Endress+Hauser mit dem Gerät bestellt oder nachbestellt werden können. Ausführliche Angaben zum betreffenden Bestellcode sind bei Ihrer Endress+Hauser Vertriebszentrale erhältlich oder auf der Produktseite der Endress+Hauser Webseite: www.endress.com.

Gerätespezifisches Zubehör

Zubehör	Beschreibung
Sensorhalterung	Für Wand-, Tisch- und Rohrmontage.
	Bestellnummer: 71392563
	Einbauanleitung EA01195D

Kommunikationsspezifisches Zubehör

Zubehör	Beschreibung
FieldCare	FDT-basiertes Anlagen-Asset-Management-Tool von Endress+Hauser. Es kann alle intelligenten Feldeinrichtungen in Ihrer Anlage konfigurieren und unterstützt Sie bei deren Verwaltung. Durch Verwendung von Statusinformationen stellt es darüber hinaus ein einfaches, aber wirkungsvolles Mittel dar, deren Zustand zu kontrollieren. Betriebsanleitung BA00027S und BA00059S
DeviceCare	Tool zum Verbinden und Konfigurieren von Endress+Hauser Feldgeräten. Innovation-Broschüre IN01047S
Commubox FXA291	Verbindet Endress+Hauser Feldgeräte mit CDI-Schnittstelle (= Endress+Hauser Common Data Interface) und der USB-Schnittstelle eines Computers oder Laptops. Technische Information TI00405C
Adapteranschluss	Adapteranschlüsse für den Einbau auf andere elektrische Anschlüsse: Adapter FXA291 (Bestellnummer: 71035809)

Servicespezifisches Zubehör

Zubehör	Beschreibung
Applicator	Software für die Auswahl und Auslegung von Endress+Hauser Messgeräten: Auswahl von Messgeräten mit industriespezifischen Anforderungen Berechnung aller notwendigen Daten zur Bestimmung des optimalen Durchflussmessgeräts: z.B. Nennweite, Druckabfall, Fließgeschwindigkeit und Messgenauigkeiten. Grafische Darstellung von Berechnungsergebnissen Ermittlung des partiellen Bestellcodes Verwaltung, Dokumentation und Abrufbarkeit aller projektrelevanter Daten und Parameter über die gesamte Lebensdauer eines Projekts. Applicator ist verfügbar:
	Über das Internet: https://portal.endress.com/webapp/applicator
Commubox FXA291	Verbindet Endress+Hauser Feldgeräte mit CDI-Schnittstelle (= Endress+Hauser Common Data Interface) und der USB-Schnittstelle eines Computers oder Laptops. Technische Information TI00405C

Dokumentation

Eine Übersicht zum Umfang der zugehörigen Technischen Dokumentation bieten:

- Device Viewer (www.endress.com/deviceviewer): Seriennummer vom Typenschild eingeben
- Endress+Hauser Operations App: Seriennummer vom Typenschild eingeben oder Matrixcode auf dem Typenschild einscannen

Standard dokumentation

Ergänzende Informationen zu Semistandard-Optionen sind in der zugehörigen Sonderdokumentation in der TSP-Datenbank verfügbar.

Kurzanleitung

Messgerät	Dokumentationscode
Dosimass	KA01688D

Betriebsanleitung

Messgerät	Dokumentationscode		
	Impuls-, Frequenz-, Statusaus- gang Option AA	IO-Link Option FA	Modbus RS485 Option MD
Dosimass	BA02346D	BA02330D	BA02347D

Beschreibung Geräteparameter

Messgerät	Dokumentationscode		
	Impuls-, Frequenz-, Statusaus- gang Option AA	IO-Link Option FA	Modbus RS485 Option MD
Dosimass	GP01219D	GP01216D	GP01220D

Geräteabhängige Zusatzdokumentation

Sicherheitshinweise

Inhalt	Dokumentationscode
ATEX Ex ec	XA03257D
UL Class I, Division 2	XA03263D
UKEX Ex ec	XA03264D

Sonderdokumentation

Inhalt	Dokumentationscode
IO-Link	SD03250D

Eingetragene Marken

Modbus[®]

Eingetragene Marke der SCHNEIDER AUTOMATION, INC.

♦ IO-Link[®]

Ist ein eingetragenes Warenzeichen. In Verbindung mit Produkten und Dienstleistungen darf es grundsätzlich nur von Mitgliedern der IO-Link-Firmengemeinschaft und von Nicht-Mitgliedern, die eine entsprechende Lizenz erworben haben, verwendet werden. Genauere Hinwiese zur Nutzung finden Sie in den Regeln der IO-Link Community unter: www.io-link.com.

TRI-CLAMP®

Eingetragene Marke der Firma Ladish & Co., Inc., Kenosha, USA

www.addresses.endress.com