
# Technical Information Micropilot FMR63B HART

Free-space radar



## Application

- Continuous, non-contact level measurement of liquids in hygienic applications
- Process connections: For hygiene applications (e.g.: Tri-Clamp or M24 adapter concept)
- Maximum measuring range: 80 m (262 ft)
- Temperature: -40 to +200 °C (-40 to +392 °F)
- Pressure: -1 to +25 bar (-14.5 to +363 psi)
- Accuracy: ±1 mm (±0.04 in)

## Your benefits

- PTFE or PEEK antenna for hygienic requirements
- Reliable measurement thanks to strong signal focusing, even with multiple internal fixtures
- Easy, guided commissioning with intuitive user interface
- Bluetooth®wireless technology for commissioning, operation and maintenance
- SIL2 as per IEC 61508, SIL3 for homogeneous redundancy
- Longer calibration cycles with Radar Accuracy Index







# Table of contents

| Important document information                                                                                                                                                                                                    |                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Function and system design         Measuring principle         Reliability                                                                                                                                                        | . 5                                                                                            |
| Input       Measured variable         Measuring range       Measuring range         Operating frequency       Transmission power                                                                                                  | . 6                                                                                            |
| Output                                                                                                                                                                                                                            | <ol> <li>13</li> <li>15</li> <li>16</li> <li>16</li> <li>17</li> <li>18</li> </ol>             |
| Power supply                                                                                                                                                                                                                      | <ol> <li>18</li> <li>21</li> <li>22</li> <li>24</li> <li>24</li> <li>25</li> <li>25</li> </ol> |
| Performance characteristics         Reference operating conditions         Measured value resolution         Maximum measured error         Response time         Influence of ambient temperature         Influence of gas phase | 26<br>26<br>26<br>26<br>27<br>27<br>27                                                         |
| Mounting location                                                                                                                                                                                                                 | 28<br>28<br>29<br>32<br>34                                                                     |
| Environment                                                                                                                                                                                                                       | <b>35</b><br>35<br>45<br>45<br>46<br>46<br>46<br>46                                            |

| Process                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>46</b><br>46<br>49                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Mechanical construction                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>49</b><br>63<br>63                                                                        |
| Display and user interface                                                                                                                                                                                                                                                                                                                                                                                                                  | 69<br>70<br>70<br>70<br>71<br>71<br>71                                                       |
| Certificates and approvals                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>71</b><br>71<br>71<br>71<br>72<br>72                                                      |
| Pressure equipment with permitted pressure is         200 bar (2 900 psi)         Radio approval         EN 302372 radio standard         FCC         Industry Canada         Other standards and guidelines                                                                                                                                                                                                                                | 72<br>72<br>72<br>72<br>72<br>73                                                             |
| Ordering information<br>Calibration<br>Service<br>Test, certificate, declaration<br>Identification                                                                                                                                                                                                                                                                                                                                          | <b>73</b><br>73<br>74<br>74<br>74                                                            |
| Application packages            Heartbeat Technology                                                                                                                                                                                                                                                                                                                                                                                        | <b>75</b><br>75                                                                              |
| Accessories .<br>Weather protection cover: 316L, XW112 .<br>Weather protection cover, plastic, XW111 .<br>M12 plug-in jack .<br>Remote display FHX50B .<br>Gas-tight feedthrough .<br>Process adapter, M24 .<br>Commubox FXA195 HART .<br>HART loop converter HMX50 .<br>FieldPort SWA50 .<br>Wireless HART adapter SWA70 .<br>Fieldgate FXA42 .<br>Field Xpert SMT70 .<br>DeviceCare SFE100 .<br>FieldCare SFE500 .<br>Memograph M RSG45 . | 76<br>77<br>78<br>79<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80 |

| RN42                  | 81 |
|-----------------------|----|
| Documentation         | 81 |
| Registered trademarks | 81 |

# Important document information

#### Symbols

# Safety symbols

# A DANGER

This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

#### **WARNING**

This symbol alerts you to a potentially dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

#### **A** CAUTION

This symbol alerts you to a potentially dangerous situation. Failure to avoid this situation can result in minor or medium injury.

#### NOTICE

This symbol alerts you to a potentially harmful situation. Failure to avoid this situation can result in damage to the product or something in its vicinity.

#### **Electrical symbols**



Direct current

 $\sim$ 

Alternating current

Direct current and alternating current

ı.

#### Ground connection

A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.



### Protective earth (PE)

Ground terminals that must be connected to ground prior to establishing any other connections.

- The ground terminals are located on the inside and outside of the device.
- Inner ground terminal; protective earth is connected to the mains supply.
- Outer ground terminal; device is connected to the plant grounding system.

#### Symbols for certain types of information and graphics

Permitted

Procedures, processes or actions that are permitted

**Procedures,** processes or actions that are preferred

### 🔀 Forbidden

Procedures, processes or actions that are forbidden

#### 🚹 Tip

Indicates additional information

#### 

Reference to documentation

# 

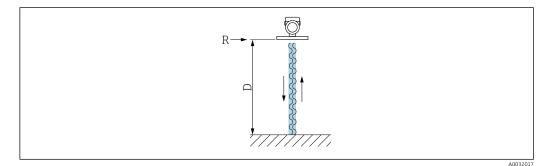
Reference to graphic

**1, 2, 3, ...** Item numbers

**A, B, C, ...** Views

🔊 Hazardous area Indicates the hazardous area

X Safe area (non-hazardous area) Indicates the non-hazardous area

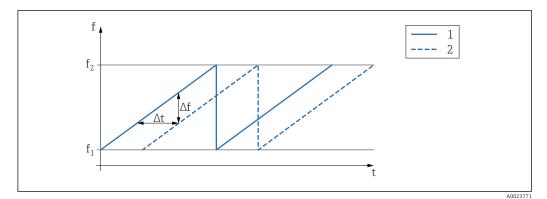

| Graphic conventions | 📭 🔹 Installation, explosion and electrical connection drawings are presented in simplified format             |
|---------------------|---------------------------------------------------------------------------------------------------------------|
|                     | Devices, assemblies, components and dimensional drawings are presented in reduced-line                        |
|                     | format                                                                                                        |
|                     | <ul> <li>Dimensional drawings are not to-scale representations; the dimensions indicated are</li> </ul>       |
|                     | rounded off to 2 decimal places                                                                               |
|                     | <ul> <li>Unless otherwise described, flanges are presented with sealing surface form EN1091-1, B2;</li> </ul> |

 Unless otherwise described, flanges are presented with sealing surface form EN1091-1, B2; ASME B16.5, RF; JIS B2220, RF

# Function and system design

#### Measuring principle

The Micropilot is a "downward-looking" measuring system, operating based on the frequency modulated continuous wave method (FMCW). The antenna emits an electromagnetic wave at a continuously varying frequency. This wave is reflected by the product and received again by the antenna.




I FMCW principle: transmission and reflection of the continuous wave

*R Reference point of measurement* 

*D Distance between reference point and product surface* 

The frequency of this wave is modulated in the form of a sawtooth signal between two limit frequencies  $f_1$  and  $f_2$ :



FMCW principle: result of frequency modulation

1 Transmitted signal

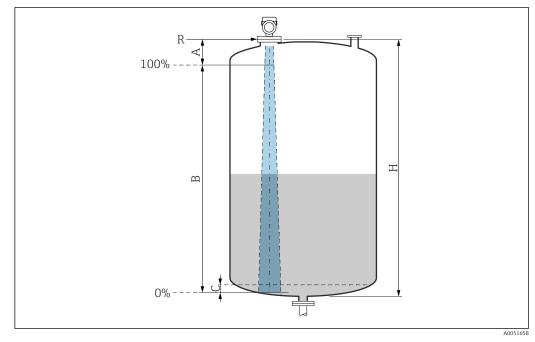
2 Received signal

This results in the following difference frequency at any time between the transmitted signal and the received signal:

 $\Delta f = k \Delta t$ 

where  $\Delta t$  is the run time and *k* is the specified increase in frequency modulation.

 $\Delta t$  is given by the distance *D* between the reference point *R* and the product surface:


|                   | $D = (c \Delta t) / 2$                                                                                                                                                                                                                   |                                                              |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|
|                   | where $c$ is the speed of propagation of the wave.                                                                                                                                                                                       |                                                              |  |
|                   | In summary, <i>D</i> can be calculated from the measure determine the content of the tank or silo.                                                                                                                                       | red difference frequency $\Delta f. D$ is then used to       |  |
| eliability        | IT security                                                                                                                                                                                                                              |                                                              |  |
|                   | The manufacturer warranty is valid only if the product is installed and used as described in the Operating Instructions. The product is equipped with security mechanisms to protect it against any inadvertent changes to the settings. |                                                              |  |
|                   | IT security measures, which provide additional pr<br>transfer, must be implemented by the operators t                                                                                                                                    |                                                              |  |
|                   | Input                                                                                                                                                                                                                                    |                                                              |  |
| leasured variable | The measured variable is the distance between the is calculated based on "E", the empty distance entered                                                                                                                                 | ne reference point and the product surface. The lev<br>ered. |  |
| Aeasuring range   | The measuring range starts at the point where the beam hits the tank floor. Levels below this poin cannot be measured, particularly in the case of spherical bases or conical outlets.                                                   |                                                              |  |
|                   | Maximum measuring range                                                                                                                                                                                                                  |                                                              |  |
|                   | The maximum measuring range depends on the                                                                                                                                                                                               | antenna size and design.                                     |  |
|                   | Antenna                                                                                                                                                                                                                                  | Maximum measuring range                                      |  |
|                   | Integrated, PEEK, 20 mm (0.75 in)                                                                                                                                                                                                        | 10 m (32.8 ft)                                               |  |
|                   | PTFE-cladded, flush mount 50 mm (2 in)                                                                                                                                                                                                   | 50 m (164 ft)                                                |  |
|                   | PTFE-cladded, flush mount 80 mm (3 in)                                                                                                                                                                                                   | 80 m (262 ft)                                                |  |
|                   | 1 11 L claudeu, musir mount oo min (5 m)                                                                                                                                                                                                 | 00 m (202 m)                                                 |  |
|                   | PEEK-cladded, flush mount 20 mm (0.75 in)                                                                                                                                                                                                | 10 m (32.8 ft)                                               |  |

# Usable measuring range

The usable measuring range depends on the antenna size, the medium's reflective properties, the installation position and any possible interference reflections.

In principle, measurement is possible up to the tip of the antenna.

To avoid any material damage from corrosive or aggressive media or deposit buildup on the antenna, the end of the measuring range should be selected 10 mm (0.4 in) before the tip of the antenna.



■ 3 Usable measuring range

- A Length of antenna + 10 mm (0.4 in)
- B Usable measuring range
- C 50 to 80 mm (1.97 to 3.15 in); medium  $\varepsilon r < 2$
- H Vessel height
- *R* Reference point of measurement, varies depending on the antenna system

**I** For further information on the reference point, see  $\rightarrow \cong$  Mechanical construction.

In the case of media with a low dielectric constant,  $\varepsilon r < 2$ , the tank floor may be visible through the medium at very low levels (lower than level C). Reduced accuracy must be expected in this range. If this is not acceptable, the zero point should be positioned at a distance C above the tank floor in these applications  $\rightarrow$   $\mathbb{R}$ Usable measuring range.

The media groups and the possible measuring range are described as a function of the application and media group in the following section. If the dielectric constant of the medium is not known, to ensure a reliable measurement assume the medium belongs to group B.

# Media groups

- A0 ( $\epsilon_r$  1.2 to 1.4)
- e.g. n-butane, liquid nitrogen, liquid hydrogen
- **A** (ε<sub>r</sub> 1.4 to 1.9)
- Non-conductive liquids, e.g. liquefied gas
- B (ε<sub>r</sub> 1.9 to 4) Non-conductive liquids, e.g. gasoline, oil, toluene, etc.
- C (ε<sub>r</sub> 4 to 10)
  - e.g. concentrated acid, organic solvents, ester, aniline, etc.
- D (ε<sub>r</sub> >10)
  - Conductive liquids, aqueous solutions, diluted acids, bases and alcohol

# Measurement of the following media with absorbing gas phase

For example:

- Ammonia
- Acetone
- Methylene chloride
- Methyl ethyl ketone
- Propylene oxide
- VCM (vinyl chloride monomer)

To measure absorbing gases, either use a guided radar, measuring devices with another measuring frequency or another measuring principle.

If measurements must be performed in one of these media, please contact Endress+Hauser.

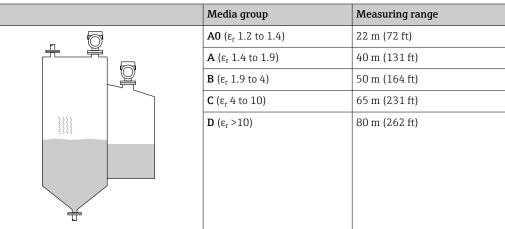
For the relative permittivity values ( $\epsilon_r$  values) of many media commonly used in industry, please refer to:

- Relative permittivity (ε<sub>r</sub> value), Compendium CP01076F
- The Endress+Hauser "DC Values app" (available for Android and iOS)

*Measurement in storage container* 

#### Storage vessel - measuring conditions

Calm medium surface (e.g. bottom filling, filling via immersion tube or rare filling from above)


Integrated antenna, PEEK, 20 mm (0.75 in) in storage vessel

| Media group                           | Measuring range |
|---------------------------------------|-----------------|
| <b>A0</b> (ε <sub>r</sub> 1.2 to 1.4) | 1.5 m (5 ft)    |
| A ( $\epsilon_r$ 1.4 to 1.9)          | 2.5 m (8 ft)    |
| <b>B</b> (ε <sub>r</sub> 1.9 to 4)    | 5 m (16 ft)     |
| <b>C</b> (ε <sub>r</sub> 4 to 10)     | 8 m (26 ft)     |
| <b>D</b> (ε <sub>r</sub> >10)         | 10 m (33 ft)    |
|                                       |                 |

| Media group                           | Measuring range |
|---------------------------------------|-----------------|
| <b>A0</b> (ε <sub>r</sub> 1.2 to 1.4) | 7 m (23 ft)     |
| <b>Α</b> (ε <sub>r</sub> 1.4 to 1.9)  | 12 m (39 ft)    |
| <b>Β</b> (ε <sub>r</sub> 1.9 to 4)    | 23 m (75 ft)    |
| <b>C</b> (ε <sub>r</sub> 4 to 10)     | 40 m (131 ft)   |
| <b>D</b> (ε <sub>r</sub> >10)         | 50 m (164 ft)   |
|                                       |                 |

| Antenna | PTFF cladded | flush mount   | 50  mm (2  in) | ) in storage vessel |
|---------|--------------|---------------|----------------|---------------------|
| лиенни, | FILL Cluudeu | jiusni mouni, | 20 mm (2 m     | j in storage vessel |





Antenna, PTFE-cladded, flush mount, 20 mm (0.75 in) in the storage container

| Media group                           | Measuring range |
|---------------------------------------|-----------------|
| <b>A0</b> (ε <sub>r</sub> 1.2 to 1.4) | 1.5 m (5 ft)    |
| <b>A</b> (ε <sub>r</sub> 1.4 to 1.9)  | 2.5 m (8 ft)    |
| <b>Β</b> (ε <sub>r</sub> 1.9 to 4)    | 5 m (16 ft)     |
| <b>C</b> (ε <sub>r</sub> 4 to 10)     | 8 m (26 ft)     |
| <b>D</b> (ε <sub>r</sub> >10)         | 10 m (33 ft)    |
|                                       |                 |

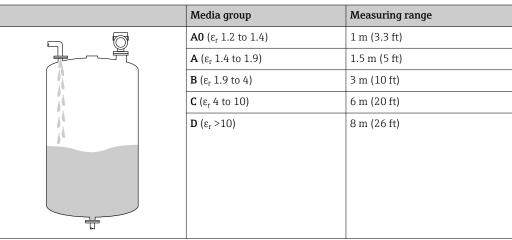
| Media group                                           | Measuring range |
|-------------------------------------------------------|-----------------|
| <b>A0</b> (ε <sub>r</sub> 1.2 to 1.4)                 | 3 m (10 ft)     |
| <b>A</b> (ε <sub>r</sub> 1.4 to 1.9)                  | 6 m (20 ft)     |
| ${f B}$ ( $\epsilon_r$ 1.9 to 4)                      | 11 m (36 ft)    |
| $\boldsymbol{C}$ ( $\boldsymbol{\epsilon}_r$ 4 to 10) | 15 m (49 ft)    |
| <b>D</b> (ε <sub>r</sub> >10)                         | 22 m (72 ft)    |
|                                                       |                 |

Antenna, PTFE-cladded, flush mount, 40 mm (1.5 in) in the storage container

Measurement in the buffer vessel

**Buffer vessel - measuring conditions** Moving medium surface (e.g. permanent free filling from above, mixing jets)

Integrated antenna, PEEK, 20 mm (0.75 in) in buffer vessel


|   | Media group                           | Measuring range |
|---|---------------------------------------|-----------------|
|   | <b>A0</b> (ε <sub>r</sub> 1.2 to 1.4) | 1 m (3.3 ft)    |
|   | <b>A</b> (ε <sub>r</sub> 1.4 to 1.9)  | 1.5 m (5 ft)    |
|   | <b>B</b> (ε <sub>r</sub> 1.9 to 4)    | 3 m (10 ft)     |
|   | <b>C</b> (ε <sub>r</sub> 4 to 10)     | 6 m (20 ft)     |
|   | <b>D</b> (ε <sub>r</sub> >10)         | 8 m (26 ft)     |
| 1 |                                       |                 |
|   |                                       |                 |
|   |                                       |                 |
|   |                                       |                 |

# Antenna, PTFE cladded flush mount, 50 mm (2 in) in buffer vessel

|                       | Media group                        | Measuring range |
|-----------------------|------------------------------------|-----------------|
|                       | A0 ( $\epsilon_r$ 1.2 to 1.4)      | 4 m (13 ft)     |
|                       | A ( $\epsilon_r$ 1.4 to 1.9)       | 7 m (23 ft)     |
|                       | <b>B</b> (ε <sub>r</sub> 1.9 to 4) | 13 m (43 ft)    |
|                       | <b>C</b> (ε <sub>r</sub> 4 to 10)  | 28 m (92 ft)    |
|                       | <b>D</b> (ε <sub>r</sub> >10)      | 44 m (144 ft)   |
| <i>N</i> <sup>4</sup> |                                    |                 |
|                       |                                    |                 |
|                       |                                    |                 |
|                       |                                    |                 |
| <b>T</b>              |                                    |                 |

|   | Media group                           | Measuring range |
|---|---------------------------------------|-----------------|
|   | <b>A0</b> (ε <sub>r</sub> 1.2 to 1.4) | 12 m (39 ft)    |
|   | <b>A</b> (ε <sub>r</sub> 1.4 to 1.9)  | 23 m (75 ft)    |
|   | <b>B</b> (ε <sub>r</sub> 1.9 to 4)    | 45 m (148 ft)   |
|   | <b>C</b> (ε <sub>r</sub> 4 to 10)     | 60 m (197 ft)   |
|   | <b>D</b> (ε <sub>r</sub> >10)         | 70 m (230 ft)   |
| 1 |                                       |                 |
|   |                                       |                 |
|   |                                       |                 |
|   |                                       |                 |
|   |                                       |                 |

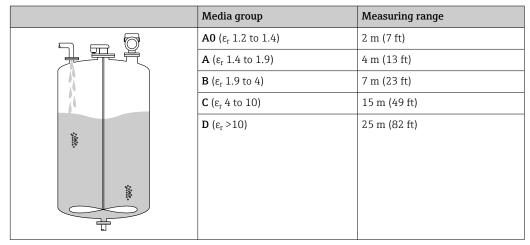
Antenna, PTFE-cladded, flush mount, 20 mm (0.75 in) in the buffer vessel



Antenna, PTFE-cladded, flush mount, 40 mm (1.5 in) in the buffer vessel

|    | Media group                           | Measuring range |
|----|---------------------------------------|-----------------|
|    | <b>A0</b> (ε <sub>r</sub> 1.2 to 1.4) | 1.5 m (5 ft)    |
|    | <b>A</b> (ε <sub>r</sub> 1.4 to 1.9)  | 3 m (10 ft)     |
| 10 | <b>Β</b> (ε <sub>r</sub> 1.9 to 4)    | 6 m (20 ft)     |
|    | <b>C</b> (ε <sub>r</sub> 4 to 10)     | 13 m (43 ft)    |
|    | <b>D</b> (ε <sub>r</sub> >10)         | 20 m (66 ft)    |
|    |                                       |                 |
|    |                                       |                 |
|    |                                       |                 |
|    |                                       |                 |
|    |                                       |                 |

Measurement in the vessel with agitator


Vessel with agitator - measuring conditions

Turbulent medium surface (e.g. from filling from above, stirrers and baffles)

|     | Media group                          | Measuring range |
|-----|--------------------------------------|-----------------|
|     | <b>A</b> (ε <sub>r</sub> 1.4 to 1.9) | 1 m (3.3 ft)    |
|     | <b>B</b> (ε <sub>r</sub> 1.9 to 4)   | 1.5 m (5 ft)    |
| 10  | <b>C</b> (ε <sub>r</sub> 4 to 10)    | 3 m (10 ft)     |
|     | <b>D</b> (ε <sub>r</sub> >10)        | 5 m (16 ft)     |
| *** |                                      |                 |
|     |                                      |                 |

Integrated antenna, PEEK, 20 mm (0.75 in) in vessel with agitator

Antenna, PTFE cladded flush mount, 50 mm (2 in) in vessel with agitator



Antenna, PTFE cladded flush mount, 80 mm (3 in) in vessel with agitator

|   | Media group                           | Measuring range |
|---|---------------------------------------|-----------------|
|   | <b>A0</b> (ε <sub>r</sub> 1.2 to 1.4) | 7 m (23 ft)     |
|   | <b>Α</b> (ε <sub>r</sub> 1.4 to 1.9)  | 13 m (43 ft)    |
|   | <b>B</b> (ε <sub>r</sub> 1.9 to 4)    | 25 m (82 ft)    |
|   | <b>C</b> (ε <sub>r</sub> 4 to 10)     | 50 m (164 ft)   |
| * | <b>D</b> (ε <sub>r</sub> >10)         | 60 m (197 ft)   |
|   |                                       |                 |

| Media group                          | Measuring range |
|--------------------------------------|-----------------|
| <b>A</b> (ε <sub>r</sub> 1.4 to 1.9) | 1 m (3.3 ft)    |
| <b>Β</b> (ε <sub>r</sub> 1.9 to 4)   | 1.5 m (5 ft)    |
| <b>C</b> (ε <sub>r</sub> 4 to 10)    | 3 m (10 ft)     |
| <b>D</b> (ε <sub>r</sub> >10)        | 5 m (16 ft)     |

| Antenna, PTFE-cladded, fl | flush mount, 20 mm | (0.75 in) in the | container with agitator |
|---------------------------|--------------------|------------------|-------------------------|
|---------------------------|--------------------|------------------|-------------------------|

Antenna, PTFE-cladded, flush mount, 40 mm (1.5 in) in the container with agitator

|   | Media group                           | Measuring range |
|---|---------------------------------------|-----------------|
|   | <b>A0</b> (ε <sub>r</sub> 1.2 to 1.4) | 1 m (3.3 ft)    |
|   | <b>A</b> (ε <sub>r</sub> 1.4 to 1.9)  | 1.5 m (5 ft)    |
|   | <b>B</b> (ε <sub>r</sub> 1.9 to 4)    | 3 m (10 ft)     |
|   | <b>C</b> (ε <sub>r</sub> 4 to 10)     | 7 m (23 ft)     |
| * | <b>D</b> (ε <sub>r</sub> >10)         | 11 m (36 ft)    |
|   |                                       |                 |

| Operating frequency Approx. 80 GHz |                                                                                                  |
|------------------------------------|--------------------------------------------------------------------------------------------------|
|                                    | Up to 8 devices can be installed in a tank without the devices mutually influencing one another. |
| Transmission power                 | <ul> <li>Peak power: &lt;1.5 mW</li> <li>Average output power: &lt;70 µW</li> </ul>              |

# Output

| Output signal | HART                                                                                                                    |
|---------------|-------------------------------------------------------------------------------------------------------------------------|
|               | <b>Signal coding:</b><br>FSK ±0.5 mA over current signal                                                                |
|               | <b>Data transmission rate:</b><br>1 200 Bit/s                                                                           |
|               | <b>Galvanic isolation:</b><br>Yes                                                                                       |
|               | <b>Current output 1, 4 to 20 mA passive</b><br>4 to 20 mA with superimposed digital communication protocol HART, 2-wire |

Current output 1 offers three operating modes for selection:

- 4.0 to 20.5 mA
- NAMUR NE 43: 3.8 to 20.5 mA (factory setting)
- US mode: 3.9 to 20.8 mA

**1** 

Current output 1 is always assigned to the level measured value.

#### Current output 2, 4 to 20 mA passive (optional)

Current output 2 is available as an option.

Current output 2 offers three operating modes for selection:

- 4.0 to 20.5 mA
- NAMUR NE 43: 3.8 to 20.5 mA (factory setting)
- US mode: 3.9 to 20.8 mA

Current output 2 can be assigned to the following device variables:

- Level linearized
- Distance
- Terminal voltage
- Electronics temperature
- Sensor temperature
- Absolute echo amplitude
- Relative echo amplitude
- Area of incoupling
- Percent of range
- Loop current
- Terminal current
- Buildup index parameter, optional (Guidance → Heartbeat Technology → Buildup detection → Configuration → Buildup index)
- Buildup detection on current output 2? parameter, optional (Guidance → Heartbeat Technology → Buildup detection → Diagnostic settings → Buildup detection on current output 2?) Note: If "Yes" is selected here, the previous setting of "Output settings" will be overwritten.
- Foam index parameter, optional (Guidance  $\rightarrow$  Heartbeat Technology  $\rightarrow$  Foam detection  $\rightarrow$  Configuration  $\rightarrow$  Foam index)
- Foam detection on current output 2? parameter, optional (Guidance → Heartbeat Technology → Foam detection → Diagnostic settings → Foam detection on current output 2?) Note: If "Yes" is selected here, the previous setting of "Output settings" will be overwritten.
- Loop diagnostics on current output 2? parameter, optional (Guidance → Heartbeat Technology → Loop diagnostics → Activate/Deactivate → Loop diagnostics on current output 2?) Note: If "Yes" is selected here, the previous setting of "Output settings" will be overwritten.

#### Switching output (optional)

The switching output is available as an option.

- Function:
- Open collector switching output
- Switching behavior:

Binary (conductive or non-conductive), switches when the programmable switch-on point/switch-off point is reached

- Failure mode:
- Non-conductive
- Electrical connection data:
  - U = 16 to 35  $\,V_{DC},\,I$  = 0 to 40  $\,$  mA
- Internal resistor:
- R<sub>I</sub> < 880 Ω

The voltage drop at this internal resistor must be taken into account when planning the configuration. For example, the resulting voltage at a connected relay must be sufficient to switch the relay.

**1** For optimum interference immunity, we recommend to connect an external resistor (internal resistance of the relay or pull-up resistor) of  $< 1 \text{ k}\Omega$ .

- Insulation voltages:
- Floating, insulation voltage 1350  $\,V_{DC}$  in relation to power supply and 500  $\,V_{AC}$  in relation to ground
- Switching point: User-programmable, separate for switch-on point and switch-off point

- Switching delay:
  - User-programmable in the 0 to 100 s range, separate for switch-on point and switch-off point  $\$
- Scan rate:
  - Corresponds to the measuring cycle
- Number of switch cycles: Unlimited

The switching output can be assigned to the following device variables:

- Level linearized
- Distance
- Terminal voltage
- Electronics temperature
- Sensor temperature
- Relative echo amplitude
- Area of incoupling
- Buildup index parameter, optional (Guidance → Heartbeat Technology → Buildup detection → Configuration → Buildup index)
- Buildup detection on switch output? parameter, optional (Guidance → Heartbeat Technology → Buildup detection → Diagnostic settings → Buildup detection on switch output?) Note: If "Yes" is selected here, the previous setting of "Output settings" will be overwritten.
- Foam index parameter, optional (Guidance  $\rightarrow$  Heartbeat Technology  $\rightarrow$  Foam detection  $\rightarrow$  Configuration  $\rightarrow$  Foam index)
- Foam detection on switch output? parameter, optional (Guidance → Heartbeat Technology → Foam detection → Diagnostic settings → Foam detection on switch output?) Note: If "Yes" is selected here, the previous setting of "Output settings" will be overwritten.
- Loop diagnostics on switch output? parameter, optional (Guidance → Heartbeat Technology → Loop diagnostics → Activate/Deactivate → Loop diagnostics on switch output?) Note: If "Yes" is selected here, the previous setting of "Output settings" will be overwritten.

Signal on alarm

#### **Current output**

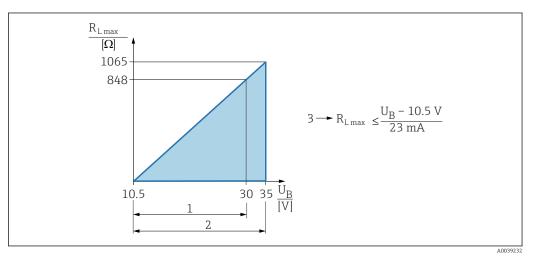
Failure mode (according to NAMUR Recommendation NE 43):

Minimum alarm (= factory setting): 3.6 mA

- Maximum alarm: 22 mA
- Failure mode with user-configurable value: 3.59 to 22.5 mA

#### Local display

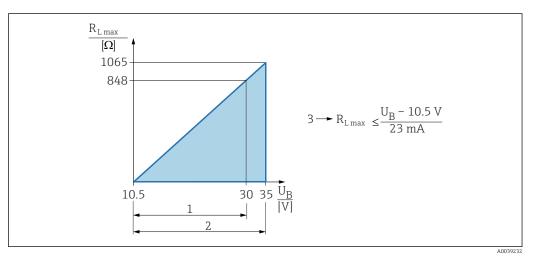
Status signal (according to NAMUR Recommendation NE 107): Plain text display


#### Operating tool via service interface (CDI)

Status signal (according to NAMUR Recommendation NE 107): Plain text display

#### Operating tool via HART communication

Status signal (according to NAMUR Recommendation NE 107): Plain text display


## 4 to 20 mA passive, HART



- 1 Power supply 10.5 to 30 VDC Ex i
- 2 Power supply 10.5 to 35 VDC, for other types of protection and non-certified device versions
- *3 R<sub>Lmax</sub> maximum load resistance*
- $U_{\rm B}$  Supply voltage

Deration via handheld terminal or PC with operating program: take minimum communication resistance of 250 Ω into consideration.

#### 4 to 20 mA passive, current output 2 (optional)



- 1 Power supply 10.5 to 30 VDC Ex i
- 2 Power supply 10.5 to 35 VDC, for other types of protection and non-certified device versions
- 3 R<sub>Lmax</sub> maximum load resistance
- $U_B$  Supply voltage

Linearization

The linearization function of the device allows the conversion of the measured value into any unit of length, weight, flow or volume.

#### Pre-programmed linearization curves

Linearization tables for calculating the volume in the following vessels are preprogrammed into the device:

- Pyramid bottom
- Conical bottom
- Angled bottom
- Horizontal cylinder
- Sphere

Other linearization tables of up to 32 value pairs can be entered manually.

## Protocol-specific data

# HART Manufacturer ID:

17 (0x11{hex}) Device type ID:

0x11C1 Device revision:

1

HART specification:

DD version:

1

# Device description files (DTM, DD)

Information and files available at:

- www.endress.com
- On the product page for the device: Documents/Software  $\rightarrow$  Device drivers
- www.fieldcommgroup.org

## HART load:

Min. 250 Ω

HART device variables

The following measured values are assigned to the device variables at the factory:

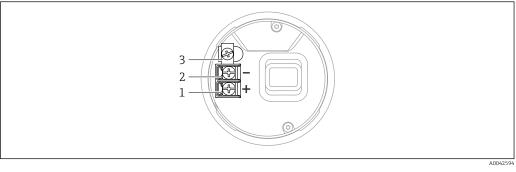
| Device variable                                             | Measured value          |
|-------------------------------------------------------------|-------------------------|
| Assign PV<br>(The PV is always applied to current output 1) | Level linearized        |
| Assign SV                                                   | Distance                |
| Assign TV                                                   | Absolute echo amplitude |
| Assign QV                                                   | Relative echo amplitude |

Choice of HART device variables

- Level linearized
- Distance
- Terminal voltage
- Electronics temperature
- Sensor temperature
- Absolute echo amplitude
- Relative echo amplitude
- Area of incoupling
- Percent of range
- Loop current
- Terminal current
- Buildup index parameter, optional (Guidance → Heartbeat Technology → Buildup detection → Configuration → Buildup index)
- Buildup detection parameter, optional (Guidance → Heartbeat Technology → Buildup detection → Configuration → Buildup detection)
- Foam index parameter, optional (Guidance → Heartbeat Technology → Foam detection → Configuration → Foam index)
- Foam detection parameter, optional (Guidance → Heartbeat Technology → Foam detection → Configuration → Foam detection)
- Loop diagnostics parameter, optional (Diagnostics → Heartbeat Technology → Loop diagnostics)

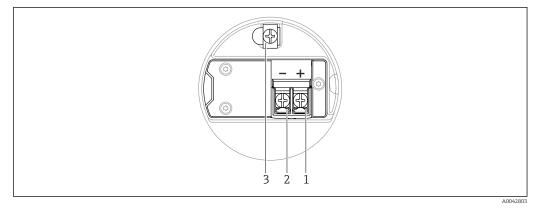
Supported functions

- Burst mode
- Additional transmitter status
- Device locking


# Wireless HART data

Minimum start-up voltage: 10.5 V Start-up current: < 3.6 mA Starting time: < 15 s Minimum operating voltage: 10.5 V Multidrop current: 4 mA Time to establish connection: < 30 s

# Power supply


Terminal assignment

Single compartment housing

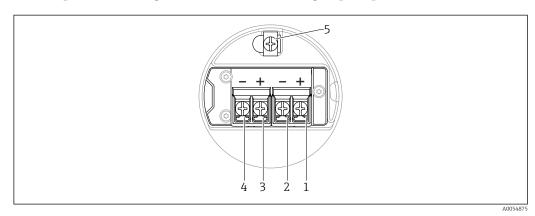


- 1 Positive terminal
- 2 Negative terminal
- 3 Internal ground terminal

#### Dual compartment housing; 4 to 20 mA HART

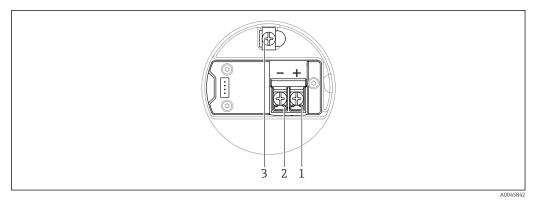


■ 5 Terminal assignment in connection compartment; 4 to 20 mA HART; dual compartment housing


- 1 Plus terminal 4 to 20 mA HART
- 2 Minus terminal 4 to 20 mA HART
- 3 Internal ground terminal

# 

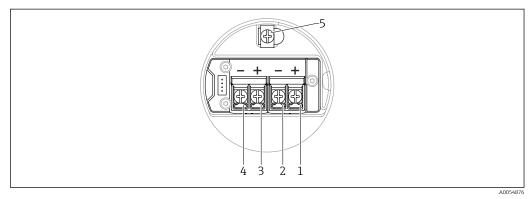
#### Dual compartment housing; 4 to 20 mA HART + 4 to 20 mA analog (optional)


- 6 Terminal assignment in connection compartment; 4 to 20 mA HART + 4 to 20 mA analog; dual compartment housing
- 1 Plus terminal 4 to 20 mA HART (current output 1)
- 2 Minus terminal 4 to 20 mA HART (current output 1)
- 3 Plus terminal 4 to 20 mA analog (current output 2)
- 4 Minus terminal 4 to 20 mA analog (current output 2)
- 5 Internal ground terminal

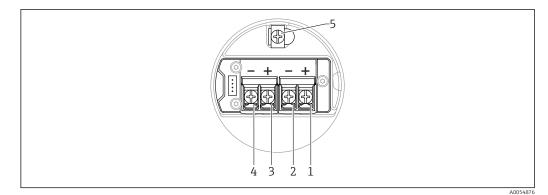
#### Dual compartment housing; 4 to 20 mA HART, switching output (optional)



- Terminal assignment in connection compartment; 4 to 20 mA HART, switching output, dual compartment housing
- 1 Plus terminal 4 to 20 mA HART (current output 1)
- 2 Minus terminal 4 to 20 mA HART (current output 1)
- 3 Plus terminal switching output (open collector)
- 4 Minus terminal switching output (open collector)
- 5 Internal ground terminal


# Dual compartment housing L-shaped; 4 to 20 mA HART




8 Terminal assignment in connection compartment; 4 to 20 mA HART; dual compartment housing Lshaped

- 1 Plus terminal 4 to 20 mA HART
- 2 Minus terminal 4 to 20 mA HART
- 3 Internal ground terminal

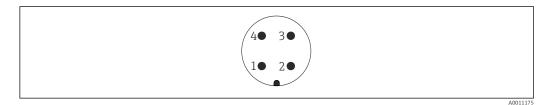
# Dual compartment housing L-shaped; 4 to 20 mA HART + 4 to 20 mA analog (optional)



- Image: Provide the second s
- 1 Plus terminal 4 to 20 mA HART (current output 1)
- 2 Minus terminal 4 to 20 mA HART (current output 1)
- 3 Plus terminal 4 to 20 mA analog (current output 2)
- 4 Minus terminal 4 to 20 mA analog (current output 2)
- 5 Internal ground terminal



#### Dual compartment housing L-shaped; 4 to 20 mA HART, switching output (optional)


- In Terminal assignment in connection compartment; 4 to 20 mA HART, switching output; dual compartment housing L-shaped
- 1 Plus terminal 4 to 20 mA HART (current output 1)
- 2 Minus terminal 4 to 20 mA HART (current output 1)
- *3 Plus terminal switching output (open collector)*
- 4 Minus terminal switching output (open collector)
- 5 Internal ground terminal

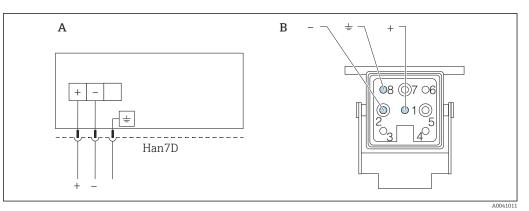
Available device plugs

In the case of devices with a plug, it is not necessary to open the housing for connection purposes.

Use the enclosed seals to prevent the penetration of moisture into the device.

#### Devices with M12 plug




- 11 View of the plug-in connection on the device
- 1 Signal +

•

- 2 Not used
- 3 Signal –
- 4 Ground

Various M12 plug sockets are available as accessories for devices with M12 plugs.

### Measuring instruments with Harting plug Han7D



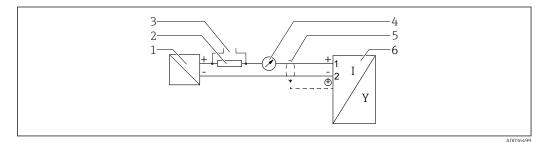
- A Electrical connection for devices with Harting plug Han7D
- *B* View of the plug connection on the device
- Brown
- ≟ Green-yellow
- + Blue

# Material

- CuZn
- Gold-plated plug-in jack and plug contacts

Supply voltage

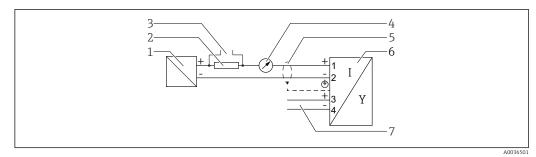
The supply voltage depends on the device approval type selected.


| Non-hazardous, Ex d, Ex e | 10.5 to 35 V <sub>DC</sub> |
|---------------------------|----------------------------|
| Ex i                      | 10.5 to 30 V <sub>DC</sub> |
| Nominal current           | 4 to 20 mA                 |
| Power consumption         | 0.9 W max.                 |

The power unit must be safety-approved (e.g. PELV, SELV, Class 2) and must comply with the relevant protocol specifications.

A suitable circuit breaker must be provided for the device in accordance with IEC/EN 61010-1.

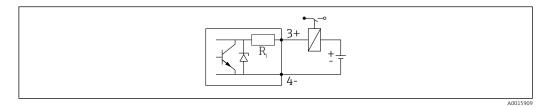
# **Electrical connection**


# Function diagram 4 to 20 mA HART



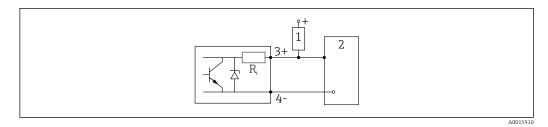
■ 12 Function diagram 4 to 20 mA HART

- 1 Active barrier for power supply; observe terminal voltage
- 2 Resistor for HART communication ( $\geq 250 \Omega$ ); observe maximum load
- 3 Connection for Commubox FXA195 or FieldXpert (via VIATOR Bluetooth modem)
- 4 Analog display unit; observe maximum load
- 5 Cable screen; observe cable specification
- 6 Measuring instrument


#### Function diagram 4 to 20 mA HART, switching output (optional)



#### 🖻 13 Function diagram 4 to 20 mA HART, switching output

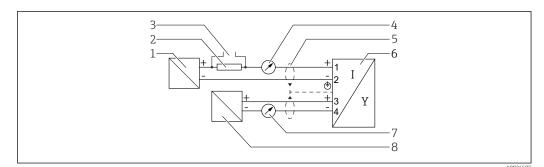

- 1 Active barrier for power supply; observe terminal voltage
- Resistor for HART communication ( $\geq 250 \Omega$ ); observe maximum load
- 2 3 Connection for Commubox FXA195 or FieldXpert (via VIATOR Bluetooth modem)
- 4 Analog display unit; observe maximum load
- 5 Cable screen; observe cable specification
- 6 Measuring instrument
- 7 Switching output (open collector)

#### Connection example of relay



🖸 14 Connection example of relay

Connection example for the digital input

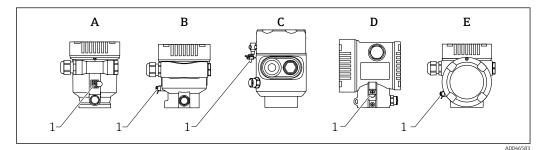



🖻 15 Connection example for the digital input

Pull-up resistor 1

2 Digital input

## Function diagram 4 to 20 mA HART + 4 to 20 mA analog (optional)




📧 16 Function diagram 4 to 20 mA HART + 4 to 20 mA analog

- 1 Active barrier for power supply, current output 1; observe terminal voltage
- 2 Resistor for HART communication ( $\geq 250 \Omega$ ); observe maximum load
- 3 Connection for Commubox FXA195 or FieldXpert (via VIATOR Bluetooth modem)
- 4 Analog display unit; observe maximum load
- 5 Cable screen; observe cable specification
- 6 Measuring instrument
- 7 Analog display unit; observe maximum load
- 8 Active barrier for power supply, current output 2; observe terminal voltage

#### Potential equalization

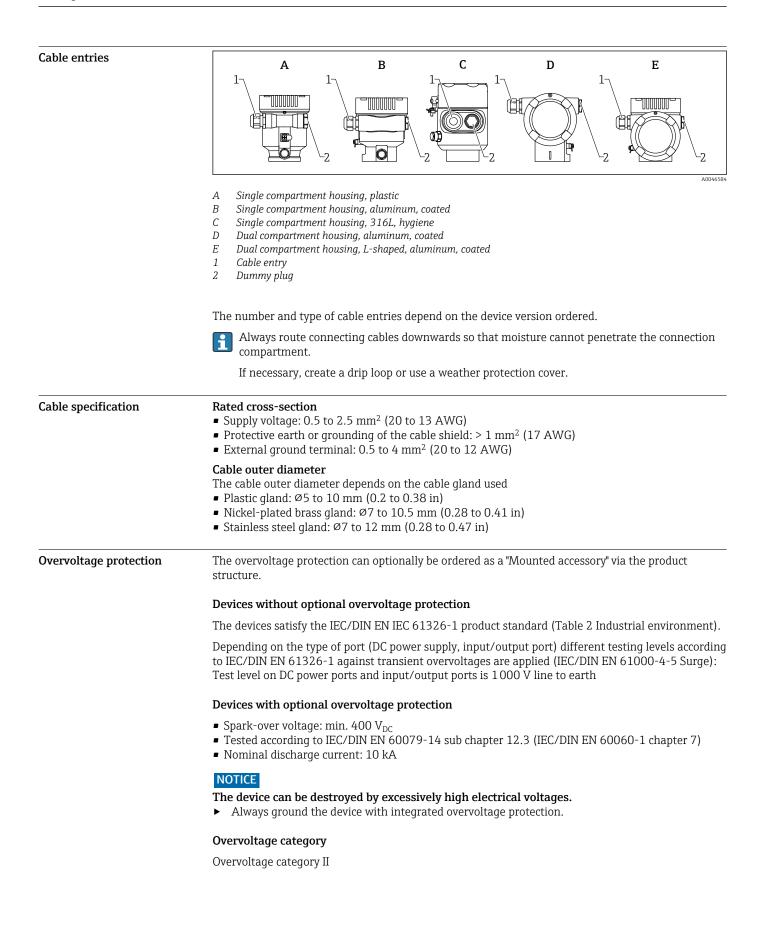
The protective ground on the device must not be connected. If necessary, the potential matching line can be connected to the outer ground terminal of the housing before the device is connected.



- *A Single compartment housing, plastic*
- *B* Single compartment housing, aluminum, coated
- *C* Single compartment housing, 316L, hygiene (Ex device)
- D Dual compartment housing, aluminum, coated
- *E* Dual compartment housing, *L*-shaped, aluminum, coated
- *1 Ground terminal for connecting the potential matching line*

## **WARNING**

Ignitable sparks or impermissible high surface temperatures. Explosion hazard!

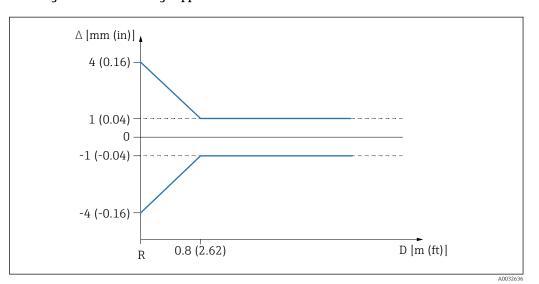

 Please refer to the separate documentation on applications in hazardous areas for the safety instructions.

For optimum electromagnetic compatibility:

- Keep potential matching line as short as possible
  - Observe minimum cross-section of 2.5 mm<sup>2</sup> (14 AWG)

Terminals

- Supply voltage and inner ground terminal Clamping range: 0.5 to 2.5 mm<sup>2</sup> (20 to 14 AWG)
- External ground terminal
- Clamping range: 0.5 to 4 mm<sup>2</sup> (20 to 12 AWG)




# Performance characteristics

| Reference operating conditions | <ul> <li>Temperature = +24 °C (+75 °F) ±5 °C (±9 °F)</li> <li>Pressure = 960 mbar abs. (14 psia) ±100 mbar (±1.45 psi)</li> <li>Humidity = 60 % ±15 %</li> <li>Reflector: metal plate with diameter ≥ 1 m (40 in)</li> <li>No major interference reflections inside the signal beam</li> </ul> |  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Measured value resolution      | Dead band according to DIN EN IEC 61298-2 / DIN EN IEC 60770-1:<br>• Digital: 1 mm<br>• Analog: 1 μA                                                                                                                                                                                           |  |
| Maximum measured error         | Reference accuracy                                                                                                                                                                                                                                                                             |  |
|                                | <ul> <li>Accuracy</li> <li>The accuracy is the sum of the non-linearity, non-repeatability and hysteresis.</li> <li>Measuring distance up to 0.8 m (2.62 ft): max. ±4 mm (±0.16 in)</li> <li>Measuring distance &gt; 0.8 m (2.62 ft): ±1 mm (±0.04 in)</li> </ul>                              |  |
|                                | Non-repeatability<br>Non-repeatability is already included in the accuracy.<br>≤ 1 mm (0.04 in)                                                                                                                                                                                                |  |
|                                | If conditions deviate from the reference operating conditions, the offset/zero point that results from the installation conditions can be up to ±4 mm (±0.16 in). This additional offset/zero point can be eliminated by entering a correction ( <b>Level correction</b> parameter) during     |  |

Differing values in near-range applications

commissioning.



■ 17 Maximum measured error in near-range applications

- △ Maximum measured error
- *R Reference point of the distance measurement*
- D Distance from reference point of antenna

**Response time** 

According to DIN EN IEC 61298-2 / DIN EN IEC 60770-1, the step response time is the time following an abrupt change in the input signal up until the changed output signal has adopted 90 % of the steady-state value for the first time.

The response time for the 4 to 20 mA HART output can be configured.

The following step response times apply (in accordance with DIN EN IEC 61298-2/DIN EN IEC 60770-1) when damping is switched off:

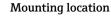
- Pulse frequency  $\geq$  5/s (cycle time  $\leq$  200 ms) at U= 10.5 to 35 V, I= 4 to 20 mA and T<sub>amb</sub>= -50 to +80 °C (-58 to +176 °F)
- Step response time < 1 s</li>

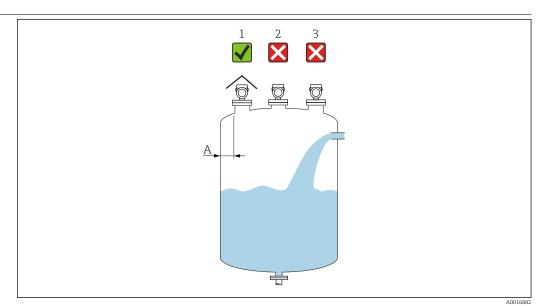
| Influence of ambient<br>temperature | The 4 to 20 mA HART output changes due to the effect of the ambient temperature with respect to the reference temperature.                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     | The measurements are performed according to DIN EN IEC 61298-3 / DIN EN IEC 60770-1<br>• Digital output (HART)<br>Average $T_c = 2 \text{ mm}/10 \text{ K}$<br>• Analog (current output 1)<br>• Zero point (4 mA): average $T_c = 0.02 \%/10 \text{ K}$<br>• Span (20 mA): average $T_c = 0.05 \%/10 \text{ K}$<br>• Analog (current output 2); (optional)<br>• Zero point (4 mA): average $T_c = 0.08 \%/10 \text{ K}$<br>• Span (20 mA): average $T_c = 0.08 \%/10 \text{ K}$ |

# Influence of gas phase

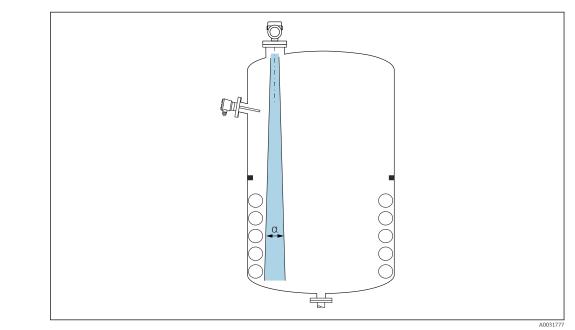
High pressure reduces the speed of propagation of the measuring signals in the gas or vapor above the medium. This effect depends on the type of gas phase and its temperature. This results in a systematic measured error that increases with increasing distance between the reference point of the measurement (flange) and the surface of the product.

The following table shows the systematic measured error for some typical gases and vapors in relation to the distance.


| Gas phase               | Temperature       | Pressure <sup>1)</sup> |                  |                  |
|-------------------------|-------------------|------------------------|------------------|------------------|
|                         |                   | 1 bar (14.5 psi)       | 10 bar (145 psi) | 25 bar (362 psi) |
| Air                     | +20 °C (+68 °F)   | 0.00 %                 | +0.22 %          | +0.58 %          |
| Nitrogen                | +200 °C (+392 °F) | -0.01 %                | +0.13 %          | +0.36 %          |
|                         | +400 °C (+752 °F) | -0.02 %                | +0.08 %          | +0.29 %          |
| Hydrogen                | +20 °C (+68 °F)   | -0.01 %                | +0.10 %          | +0.25 %          |
|                         | +200 °C (+392 °F) | -0.02 %                | +0.05 %          | +0.17 %          |
|                         | +400 °C (+752 °F) | -0.02 %                | +0.03 %          | +0.11 %          |
| Water (saturated steam) | +100 °C (+212 °F) | +0.02 %                | -                | -                |
|                         | +180 °C (+356 °F) | -                      | +2.10 %          | -                |
|                         | +263 °C (+505 °F) | -                      | -                | +4.15 %          |
|                         | +310 °C (+590 °F) | -                      | -                | -                |
|                         | +364 °C (+687 °F) | -                      | -                | -                |


Measured error for some typical gases and vapors

1) A positive value means that the distance measured is too great

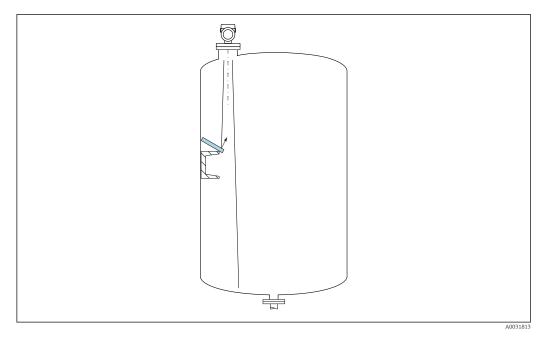

With a known, constant pressure, it is possible to compensate for this measured error with a linearization, for example.

# Installation





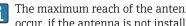
- A Recommended distance from wall to nozzle outer edge  $\sim 1/6$  of the vessel diameter. However, the device must not under any circumstances be mounted closer than 15 cm (5.91 in) to the tank wall.
- 1 Use of a weather protection cover; protection from direct sunlight or rain
- 2 Installation in the center, interference can cause signal loss
- 3 Do not install above the filling curtain




Avoid internal fittings (level switches, temperature sensors, struts, vacuum rings, heating coils, baffles etc.) inside the signal beam. Pay attention to the beam angle  $\alpha$ .

# Orientation

# Internal vessel fittings


#### Avoiding interference echoes



Metal deflector plates, installed at an angle to scatter the radar signals, help prevent interference echoes.

#### Vertical alignment of antenna axis

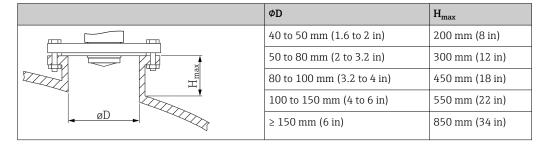
Align the antenna so that it is perpendicular to the product surface.



The maximum reach of the antenna can be reduced, or additional interference signals can occur, if the antenna is not installed perpendicular to the product.

#### Radial alignment of the antenna

Based on the directional characteristic, radial alignment of the antenna is not necessary.


#### Installation instructions

# Integrated antenna, PEEK 20 mm (0.75 in)

Information about the mounting nozzle

The maximum nozzle length  $H_{max}$  depends on the nozzle diameter *D*.

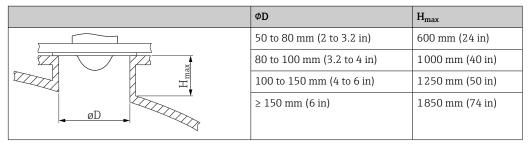
Maximum nozzle length  $H_{max}$  as a function of the nozzle diameter D





In the case of longer nozzles, reduced measuring performance must be expected.

Please note the following:


- The end of the nozzle must be smooth and free from burrs.
- The edge of the nozzle should be rounded.
- Mapping must be performed.
- Please contact the manufacturer's support department for applications with nozzles that are higher than indicated in the table.

## Antenna, PTFE cladded, flush mount 50 mm (2 in)

Information about the mounting nozzle

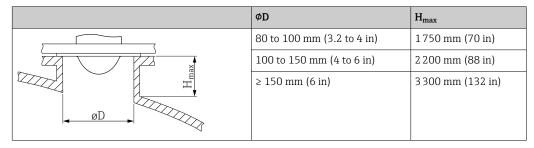
The maximum nozzle length  $H_{max}$  depends on the nozzle diameter *D*.

The maximum length of the nozzle  $H_{max}$  depends on the nozzle diameter D



In the case of longer nozzles, reduced measuring performance must be expected. -

Please note the following:


- The end of the nozzle must be smooth and free from burrs.
- The edge of the nozzle should be rounded.
- Mapping must be performed.
- Please contact the manufacturer's support department for applications with nozzles that are higher than indicated in the table.

#### Antenna, PTFE cladded, flush mount 80 mm (3 in)

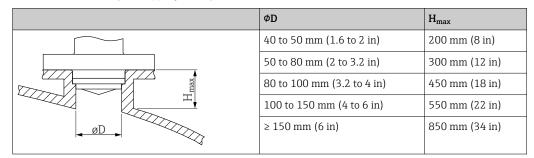
Information about the mounting nozzle

The maximum nozzle length  $H_{max}$  depends on the nozzle diameter *D*.

The maximum length of the nozzle  $H_{max}$  depends on the nozzle diameter D



In the case of longer nozzles, reduced measuring performance must be expected.


Please note the following:

- The end of the nozzle must be smooth and free from burrs.
- The edge of the nozzle should be rounded.
- Mapping must be performed.
- Please contact the manufacturer's support department for applications with nozzles that are higher than indicated in the table.

## Antenna, PEEK-cladded, 20 mm (0.75 in) flush mount with NEUMO Bio Control D25

Information about the mounting nozzle

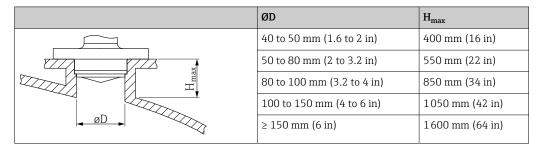
The maximum nozzle length  $H_{max}$  depends on the nozzle diameter *D*.



Maximum nozzle length  $H_{max}$  depending on the nozzle diameter D

In the case of longer nozzles, reduced measuring performance must be expected.

Please note the following:


- The end of the nozzle must be smooth and free from burrs.
- The edge of the nozzle should be rounded.
- Mapping must be performed.
- Please contact the manufacturer's support department for applications with nozzles that are higher than indicated in the table.

#### Antenna, PEEK-cladded, 40 mm (1.5 in) flush mount with NEUMO Bio Control D50

Information about the mounting nozzle

The maximum nozzle length  $H_{max}$  depends on the nozzle diameter *D*.

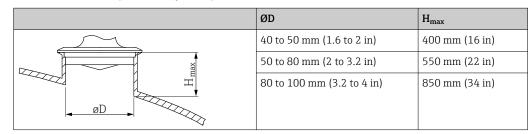
Maximum nozzle length  $H_{max}$  depending on the nozzle diameter D



i

In the case of longer nozzles, reduced measuring performance must be expected.

Please note the following:


- The end of the nozzle must be smooth and free from burrs.
- The edge of the nozzle should be rounded.
- Mapping must be performed.
- Please contact the manufacturer's support department for applications with nozzles that are higher than indicated in the table.

#### Antenna, PEEK-cladded, 40 mm (1.5 in) flush mount with Varivent N tube

Information about the mounting nozzle

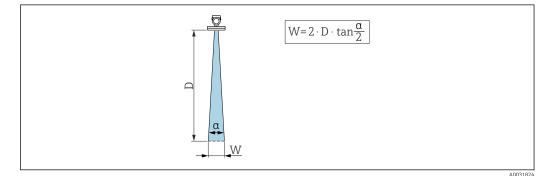
The maximum nozzle length  $H_{max}$  depends on the nozzle diameter *D*.

#### Maximum nozzle length $H_{max}$ depending on the nozzle diameter D



| ØD                        | H <sub>max</sub> |
|---------------------------|------------------|
| 100 to 150 mm (4 to 6 in) | 1050 mm (42 in)  |
| ≥ 150 mm (6 in)           | 1600 mm (64 in)  |

F Ir


In the case of longer nozzles, reduced measuring performance must be expected.

Please note the following:

- The end of the nozzle must be smooth and free from burrs.
- The edge of the nozzle should be rounded.
- Mapping must be performed.
- Please contact the manufacturer's support department for applications with nozzles that are higher than indicated in the table.

Emitting angle

The beam angle is defined as the angle  $\alpha$  where the energy density of the radar waves reaches half the value of the maximum energy density (3 dB width). Microwaves are also emitted outside the signal beam and can be reflected off interfering installations.



 $\blacksquare$  18 Relationship between beam angle  $\alpha$ , distance D and beamwidth diameter W

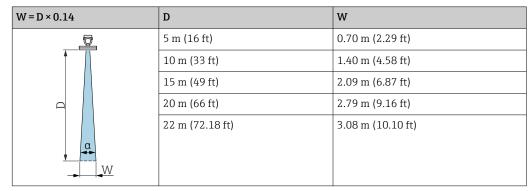
The beamwidth diameter W depends on the beam angle  $\alpha$  and the distance D.

Integrated antenna, PEEK 20 mm (0.75 in), a 14  $^\circ$ 

| W = D × 0.26 | D            | W                |
|--------------|--------------|------------------|
| Ō            | 5 m (16 ft)  | 1.23 m (4.04 ft) |
|              | 10 m (33 ft) | 2.46 m (8.07 ft) |

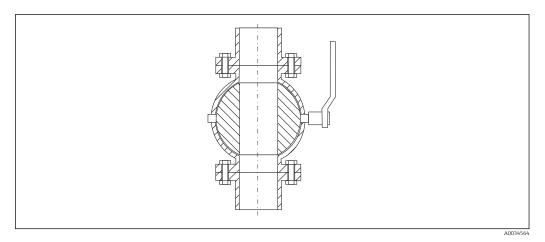
| $W = D \times 0.12$ | D             | W                 |
|---------------------|---------------|-------------------|
|                     | 5 m (16 ft)   | 0.61 m (2.00 ft)  |
| Ø                   | 10 m (33 ft)  | 1.22 m (4.00 ft)  |
|                     | 15 m (49 ft)  | 1.83 m (6.00 ft)  |
|                     | 20 m (66 ft)  | 2.44 m (8.01 ft)  |
|                     | 25 m (82 ft)  | 3.05 m (10.01 ft) |
|                     | 30 m (98 ft)  | 3.66 m (12.01 ft) |
| α                   | 35 m (115 ft) | 4.27 m (14.01 ft) |
| V V                 | 40 m (131 ft) | 4.88 m (16.01 ft) |
|                     | 45 m (148 ft) | 5.50 m (18.04 ft) |
|                     | 50 m (164 ft) | 6.11 m (20.05 ft) |

Antenna, PTFE cladded, flush mount 50 mm (2 in), a 7  $^\circ$ 


Antenna, PTFE cladded, flush mount 80 mm (3 in), a 3  $^\circ$ 

| W=D×0.05 | D             | W                 |
|----------|---------------|-------------------|
|          | 5 m (16 ft)   | 0.25 m (0.82 ft)  |
|          | 10 m (33 ft)  | 0.50 m (1.64 ft)  |
|          | 15 m (49 ft)  | 0.75 m (2.46 ft)  |
|          | 20 m (66 ft)  | 1.00 m (3.28 ft)  |
| Î Î Î    | 25 m (82 ft)  | 1.25 m (4.10 ft)  |
|          | 30 m (98 ft)  | 1.50 m (4.92 ft)  |
|          | 35 m (115 ft) | 1.75 m (5.74 ft)  |
|          | 40 m (131 ft) | 2.00 m (6.56 ft)  |
| a        | 45 m (148 ft) | 2.25 m (7.38 ft)  |
| -W       | 50 m (164 ft) | 2.50 m (8.20 ft)  |
|          | 60 m (197 ft) | 3.00 m (9.84 ft)  |
|          | 70 m (230 ft) | 3.50 m (11.48 ft) |
|          | 80 m (262 ft) | 4.00 m (13.12 ft) |

Antenna, PEEK-cladded, 20 mm (0.75 in), a 14  $^\circ$ 


| W = D × 0.26 | D            | W                |
|--------------|--------------|------------------|
| Ø            | 5 m (16 ft)  | 1.23 m (4.04 ft) |
|              | 10 m (33 ft) | 2.46 m (8.07 ft) |

Antenna, PEEK-cladded, 40 mm (1.5 in),  $\alpha = 8^{\circ}$ 



# Special mounting instructions

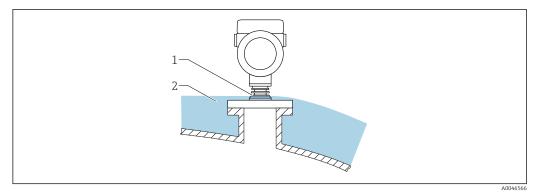
# Measurement through a ball valve



- Measurements can be performed through an open full bore ball valve without any problems.
- At the transitions, no gap exceeding 1 mm (0.04 in) may be left.
- Opening diameter of ball valve must always correspond to the pipe diameter; avoid edges and constrictions.

#### External measurement through plastic cover or dielectric windows

- Dielectric constant of medium:  $\epsilon_r \ge 10$
- The distance from the tip of the antenna to the tank should be approx. 100 mm (4 in).
- Avoid installation positions where condensate or buildup can form between the antenna and the vessel
- In the case of outdoor installations, ensure that the area between the antenna and the tank is protected from the weather
- Do not install any fittings or attachments between the antenna and the tank that could reflect the signal


The thickness of the tank ceiling or the dielectric window depends on the  $\epsilon_{\rm r}$  of the material.

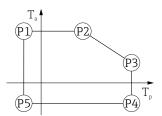
The material thickness can be a full multiple of the optimum thickness (table); it is important to note, however, that the microwave transparency decreases significantly with increasing material thickness.

| Material                    | Optimum material thickness |
|-----------------------------|----------------------------|
| PE; ε <sub>r</sub> 2.3      | 1.25 mm (0.049 in)         |
| PTFE; ε <sub>r</sub> 2.1    | 1.30 mm (0.051 in)         |
| PP; ε <sub>r</sub> 2.3      | 1.25 mm (0.049 in)         |
| Perspex; ε <sub>r</sub> 3.1 | 1.10 mm (0.043 in)         |

### *Optimum material thickness*

### Container with heat insulation




If process temperatures are high, the device should be included in the usual container insulation system (2) to prevent the electronics from heating as a result of thermal radiation or convection. The rib structure (1) must not be insulated.

# Environment

| Ambient temperature range  | <ul> <li>The following values apply up to a process temperature of +85 °C (+185 °F). At higher process temperatures, the permitted ambient temperature is reduced.</li> <li>Without LCD display: <ul> <li>Standard: -40 to +85 °C (-40 to +185 °F)</li> <li>Optionally available: -50 to +85 °C (-58 to +185 °F) with restricted operating life and performance</li> <li>Optionally available: -60 to +85 °C (-76 to +185 °F) with restricted operating life and performance; below -50 °C (-58 °F): devices can be damaged permanently</li> </ul> </li> <li>With LCD display: -40 to +85 °C (-40 to +185 °F) with limitations in optical properties such as display speed and contrast for example. Can be used without limitations up to -20 to +60 °C (-4 to +140 °F)</li> </ul> |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | <ul> <li>Restriction of the ambient temperature</li> <li>In the case of devices with current output 2 or switching output, the permitted ambient temperature limit is reduced by 5 K due to the higher operating temperature of the electronics.</li> <li>If operating outdoors in strong sunlight: <ul> <li>Mount the device in the shade.</li> <li>Avoid direct sunlight, particularly in warm climatic regions.</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                           |
|                            | <ul> <li>Use a weather protection cover (see accessories).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ambient temperature limits | The permitted ambient temperature $(T_a)$ depends on the selected housing material (Product Configurator $\rightarrow$ Housing; Material $\rightarrow$ ) and the selected process temperature range (Product Configurator $\rightarrow$ Application $\rightarrow$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | In the event of temperature (T <sub>p</sub> ) at the process connection, the permitted ambient temperature (T <sub>a</sub> ) is reduced.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            | The following information only takes functional aspects into consideration. Additional restrictions may apply for certified device versions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

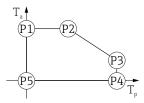
#### **Plastic housing**

Plastic housing; process temperature -10 to +150 °C (+14 to +302 °F)



A0032024

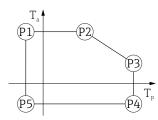
A0048826


A0032024

If Plastic housing; process temperature −10 to +150 °C (+14 to +302 °F)

 $\begin{array}{rcl} P1 &=& T_p; \ -10\ ^\circ C\ (+14\ ^\circ F) &| & T_a; \ +76\ ^\circ C\ (+169\ ^\circ F) \\ P2 &=& T_p; \ +76\ ^\circ C\ (+169\ ^\circ F) &| & T_a; \ +76\ ^\circ C\ (+169\ ^\circ F) \\ P3 &=& T_p; \ +150\ ^\circ C\ (+302\ ^\circ F) &| & T_a; \ +25\ ^\circ C\ (+77\ ^\circ F) \\ P4 &=& T_p; \ +150\ ^\circ C\ (+302\ ^\circ F) &| & T_a; \ -10\ ^\circ C\ (+14\ ^\circ F) \\ P5 &=& T_p; \ -10\ ^\circ C\ (+14\ ^\circ F) &| & T_a; \ -10\ ^\circ C\ (+14\ ^\circ F) \end{array}$ 

The selected process temperature range is restricted from -10 to +150 °C (+14 to +302 °F) to 0 to +150 °C (+32 to +302 °F) in devices with a plastic housing and CSA C/US approval.

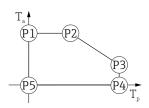

Process temperature restricted to 0 to +150  $^\circ C$  (+32 to +302  $^\circ F) for CSA C/US approval and plastic housing$ 



■ 20 Plastic housing; process temperature 0 to +150 °C (+32 to +302 °F) for CSA C/US approval

 $\begin{array}{rcl} P1 &=& T_p; \ 0 \ ^\circ C \ (+32 \ ^\circ F) &\mid & T_a; \ +76 \ ^\circ C \ (+169 \ ^\circ F) \\ P2 &=& T_p; \ +76 \ ^\circ C \ (+169 \ ^\circ F) &\mid & T_a; \ +76 \ ^\circ C \ (+169 \ ^\circ F) \\ P3 &=& T_p; \ +150 \ ^\circ C \ (+302 \ ^\circ F) &\mid & T_a; \ +25 \ ^\circ C \ (+77 \ ^\circ F) \\ P4 &=& T_p; \ +150 \ ^\circ C \ (+302 \ ^\circ F) &\mid & T_a; \ 0 \ ^\circ C \ (+32 \ ^\circ F) \\ P5 &=& T_n; \ 0 \ ^\circ C \ (+32 \ ^\circ F) &\mid & T_a; \ 0 \ ^\circ C \ (+32 \ ^\circ F) \\ \end{array}$ 

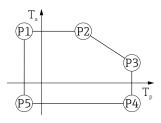
Plastic housing; process temperature −10 to +200 °C (+14 to +392 °F)




■ 21 Plastic housing; process temperature -10 to +200 °C (+14 to +392 °F)

```
\begin{array}{rcl} P1 & = & T_p: & -10\ ^\circ C\ (+14\ ^\circ F) & | & T_a: & +76\ ^\circ C\ (+169\ ^\circ F) \\ P2 & = & T_p: & +76\ ^\circ C\ (+169\ ^\circ F) & | & T_a: & +76\ ^\circ C\ (+169\ ^\circ F) \\ P3 & = & T_p: & +200\ ^\circ C\ (+392\ ^\circ F) & | & T_a: & +27\ ^\circ C\ (+81\ ^\circ F) \\ P4 & = & T_p: & +200\ ^\circ C\ (+392\ ^\circ F) & | & T_a: & -10\ ^\circ C\ (+14\ ^\circ F) \\ P5 & = & T_p: & -10\ ^\circ C\ (+14\ ^\circ F) & | & T_a: & -10\ ^\circ C\ (+14\ ^\circ F) \end{array}
```

The selected process temperature range is restricted from –10 to +200 °C (+14 to +392 °F) to 0 to +200 °C (+32 to +392 °F) in devices with a plastic housing and CSA C/US approval.


Process temperature restricted to 0 to +200  $^\circ C$  (+32 to +392  $^\circ F) for CSA C/US approval and plastic housing$ 

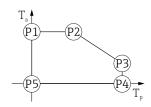


■ 22 Plastic housing; process temperature 0 to +200 °C (+32 to +392 °F) for CSA C/US approval

 $\begin{array}{rcl} P1 &=& T_p; \ 0 \ ^\circ C \ (+32 \ ^\circ F) &\mid & T_a; \ +76 \ ^\circ C \ (+169 \ ^\circ F) \\ P2 &=& T_p; \ +76 \ ^\circ C \ (+169 \ ^\circ F) &\mid & T_a; \ +76 \ ^\circ C \ (+169 \ ^\circ F) \\ P3 &=& T_p; \ +200 \ ^\circ C \ (+392 \ ^\circ F) &\mid & T_a; \ +27 \ ^\circ C \ (+81 \ ^\circ F) \\ P4 &=& T_p; \ +200 \ ^\circ C \ (+392 \ ^\circ F) &\mid & T_a; \ 0 \ ^\circ C \ (+32 \ ^\circ F) \\ P5 &=& T_p; \ 0 \ ^\circ C \ (+32 \ ^\circ F) &\mid & T_a; \ 0 \ ^\circ C \ (+32 \ ^\circ F) \\ \end{array}$ 

Plastic housing; process temperature -20 to +150 °C (-4 to +302 °F)




A0032024

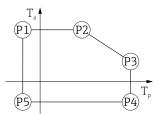
A0048826

■ 23 Plastic housing; process temperature -20 to +150 °C (-4 to +302 °F)

In the case of devices with a plastic housing and CSA C/US approval, the selected process temperature of −20 to +150 °C (−4 to +302 °F) is limited to 0 to +150 °C (+32 to +302 °F).

Restriction to a process temperature of 0 to +150  $^\circ C$  (+32 to +302  $^\circ F) with CSA C/US approval and plastic housing$ 



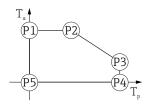

₪ 24 Plastic housing; process temperature 0 to +150 °C (+32 to +302 °F) with CSA C/US approval

 $\begin{array}{rcl} P1 & = & T_p: \ 0 \ ^{\circ} C \ (+32 \ ^{\circ} F) & | & T_a: \ +76 \ ^{\circ} C \ (+169 \ ^{\circ} F) \\ P2 & = & T_p: \ +76 \ ^{\circ} C \ (+169 \ ^{\circ} F) & | & T_a: \ +76 \ ^{\circ} C \ (+169 \ ^{\circ} F) \\ P3 & = & T_p: \ +150 \ ^{\circ} C \ (+302 \ ^{\circ} F) & | & T_a: \ +25 \ ^{\circ} C \ (+77 \ ^{\circ} F) \\ P4 & = & T_p: \ +150 \ ^{\circ} C \ (+302 \ ^{\circ} F) & | & T_a: \ 0 \ ^{\circ} C \ (+32 \ ^{\circ} F) \\ P5 & = & T_p: \ 0 \ ^{\circ} C \ (+32 \ ^{\circ} F) & | & T_a: \ 0 \ ^{\circ} C \ (+32 \ ^{\circ} F) \end{array}$ 

A0032024

A0048826

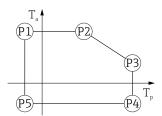
*Plastic housing; process temperature −20 to +200 °C (−4 to +392 °F)* 




■ 25 Plastic housing; process temperature –20 to +200 °C (–4 to +392 °F)

 $\begin{array}{rcl} P1 &=& T_p; \ -20\ ^\circ C\ (-4\ ^\circ F) &\mid \ T_a; \ +76\ ^\circ C\ (+169\ ^\circ F) \\ P2 &=& T_p; \ +76\ ^\circ C\ (+169\ ^\circ F) &\mid \ T_a; \ +76\ ^\circ C\ (+169\ ^\circ F) \\ P3 &=& T_p; \ +200\ ^\circ C\ (+392\ ^\circ F) &\mid \ T_a; \ +27\ ^\circ C\ (+81\ ^\circ F) \\ P4 &=& T_p; \ +200\ ^\circ C\ (+392\ ^\circ F) &\mid \ T_a; \ -20\ ^\circ C\ (-4\ ^\circ F) \\ P5 &=& T_p; \ -20\ ^\circ C\ (-4\ ^\circ F) &\mid \ T_a; \ -20\ ^\circ C\ (-4\ ^\circ F) \end{array}$ 

In the case of devices with a plastic housing and CSA C/US approval, the selected process temperature of –20 to +200 °C (–4 to +392 °F) is limited to 0 to +200 °C (+32 to +392 °F).

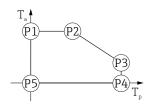

Restriction to a process temperature of 0 to +200  $^{\circ}$ C (+32 to +392  $^{\circ}$ F) with CSA C/US approval and plastic housing



■ 26 Plastic housing; process temperature 0 to +200 °C (+32 to +392 °F) with CSA C/US approval

 $\begin{array}{rcl} P1 &=& T_{p} \colon \ 0 \ \ ^{\circ} C \ (+32 \ \ ^{\circ} F) &\mid & T_{a} \colon +76 \ \ ^{\circ} C \ (+169 \ \ ^{\circ} F) \\ P2 &=& T_{p} \colon +76 \ \ ^{\circ} C \ (+169 \ \ ^{\circ} F) &\mid & T_{a} \colon +76 \ \ ^{\circ} C \ (+169 \ \ ^{\circ} F) \\ P3 &=& T_{p} \colon +200 \ \ ^{\circ} C \ (+392 \ \ ^{\circ} F) &\mid & T_{a} \colon +27 \ \ ^{\circ} C \ (+81 \ \ ^{\circ} F) \\ P4 &=& T_{p} \colon +200 \ \ ^{\circ} C \ (+392 \ \ ^{\circ} F) &\mid & T_{a} \colon \ 0 \ \ ^{\circ} C \ (+32 \ \ ^{\circ} F) \\ P5 &=& T_{p} \colon 0 \ \ ^{\circ} C \ (+32 \ \ ^{\circ} F) &\mid & T_{a} \colon 0 \ \ ^{\circ} C \ (+32 \ \ ^{\circ} F) \\ \end{array}$ 

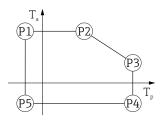
Plastic housing; process temperature -40 to +150 °C (-40 to +302 °F)




-

 $\blacksquare$  27 Plastic housing; process temperature -40 to +150 °C (-40 to +302 °F)

In the case of devices with a plastic housing and CSA C/US approval, the selected process temperature of -40 to +150 °C (-40 to +302 °F) is limited to 0 to +150 °C (+32 to +302 °F).

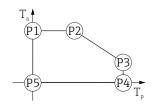

Restriction to a process temperature of 0 to +150  $^\circ C$  (+32 to +302  $^\circ F) with CSA C/US approval and plastic housing$ 



■ 28 Plastic housing; process temperature 0 to +150 °C (+32 to +302 °F) with CSA C/US approval

 $\begin{array}{rcl} P1 &=& T_p; \ 0 \ ^{\circ} C \ (+32 \ ^{\circ} F) &\mid & T_a; \ +76 \ ^{\circ} C \ (+169 \ ^{\circ} F) \\ P2 &=& T_p; \ +76 \ ^{\circ} C \ (+169 \ ^{\circ} F) &\mid & T_a; \ +76 \ ^{\circ} C \ (+169 \ ^{\circ} F) \\ P3 &=& T_p; \ +150 \ ^{\circ} C \ (+302 \ ^{\circ} F) &\mid & T_a; \ +25 \ ^{\circ} C \ (+77 \ ^{\circ} F) \\ P4 &=& T_p; \ +150 \ ^{\circ} C \ (+302 \ ^{\circ} F) &\mid & T_a; \ 0 \ ^{\circ} C \ (+32 \ ^{\circ} F) \\ P5 &=& T_p; \ 0 \ ^{\circ} C \ (+32 \ ^{\circ} F) &\mid & T_a; \ 0 \ ^{\circ} C \ (+32 \ ^{\circ} F) \end{array}$ 

*Plastic housing; process temperature −40 to +200 °C (−40 to +392 °F)* 




■ 29 Plastic housing; process temperature -40 to +200 °C (-40 to +392 °F)

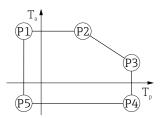
 $\begin{array}{rcl} P1 & = & T_p; \ -40\ ^\circ C\ (-40\ ^\circ F) & | & T_a; \ +76\ ^\circ C\ (+169\ ^\circ F) \\ P2 & = & T_p; \ +76\ ^\circ C\ (+169\ ^\circ F) & | & T_a; \ +76\ ^\circ C\ (+169\ ^\circ F) \\ P3 & = & T_p; \ +200\ ^\circ C\ (+392\ ^\circ F) & | & T_a; \ +27\ ^\circ C\ (+81\ ^\circ F) \\ P4 & = & T_p; \ +200\ ^\circ C\ (+392\ ^\circ F) & | & T_a; \ -40\ ^\circ C\ (-40\ ^\circ F) \\ P5 & = & T_p; \ -40\ ^\circ C\ (-40\ ^\circ F) & | & T_a; \ -40\ ^\circ C\ (-40\ ^\circ F) \end{array}$ 

In the case of devices with a plastic housing and CSA C/US approval, the selected process temperature of -40 to +200 °C (-40 to +392 °F) is limited to 0 to +200 °C (+32 to +392 °F).

Restriction to a process temperature of 0 to +200  $^\circ C$  (+32 to +392  $^\circ F) with CSA C/US approval and plastic housing$ 



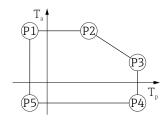
₪ 30 Plastic housing; process temperature 0 to +200 °C (+32 to +392 °F) with CSA C/US approval


 $\begin{array}{rcl} P1 & = & T_p: \ 0 \ ^{\circ} C \ (+32 \ ^{\circ} F) & | & T_a: \ +76 \ ^{\circ} C \ (+169 \ ^{\circ} F) \\ P2 & = & T_p: \ +76 \ ^{\circ} C \ (+169 \ ^{\circ} F) & | & T_a: \ +76 \ ^{\circ} C \ (+169 \ ^{\circ} F) \\ P3 & = & T_p: \ +200 \ ^{\circ} C \ (+392 \ ^{\circ} F) & | & T_a: \ +27 \ ^{\circ} C \ (+81 \ ^{\circ} F) \\ P4 & = & T_p: \ +200 \ ^{\circ} C \ (+392 \ ^{\circ} F) & | & T_a: \ 0 \ ^{\circ} C \ (+32 \ ^{\circ} F) \\ P5 & = & T_p: \ 0 \ ^{\circ} C \ (+32 \ ^{\circ} F) & | & T_a: \ 0 \ ^{\circ} C \ (+32 \ ^{\circ} F) \end{array}$ 

A0048826

A0048826

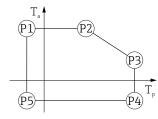
#### Aluminum housing, coated


Aluminum housing; process temperature –10 to +150 °C (+14 to +302 °F)



■ 31 Aluminum housing, coated; process temperature –10 to +150 °C (+14 to +302 °F)

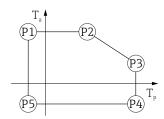
 $\begin{array}{rcl} P1 &=& T_p; \ -10\ ^\circ C\ (+14\ ^\circ F) &| & T_a; \ +79\ ^\circ C\ (+174\ ^\circ F) \\ P2 &=& T_p; \ +79\ ^\circ C\ (+174\ ^\circ F) &| & T_a; \ +79\ ^\circ C\ (+174\ ^\circ F) \\ P3 &=& T_p; \ +150\ ^\circ C\ (+302\ ^\circ F) &| & T_a; \ +53\ ^\circ C\ (+127\ ^\circ F) \\ P4 &=& T_p; \ +150\ ^\circ C\ (+302\ ^\circ F) &| & T_a; \ -10\ ^\circ C\ (+14\ ^\circ F) \\ P5 &=& T_p; \ -10\ ^\circ C\ (+14\ ^\circ F) &| & T_a; \ -10\ ^\circ C\ (+14\ ^\circ F) \end{array}$ 

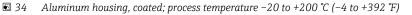

Aluminum housing; process temperature -10 to +200 °C (+14 to +392 °F)



■ 32 Aluminum housing, coated; process temperature -10 to +200 °C (+14 to +392 °F)

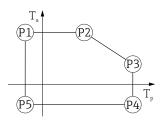
 $\begin{array}{rcl} P1 &=& T_{p} \colon -10\ ^{\circ} \mathrm{C}\ (+14\ ^{\circ} \mathrm{F}) &\mid & T_{a} \colon +79\ ^{\circ} \mathrm{C}\ (+174\ ^{\circ} \mathrm{F}) \\ P2 &=& T_{p} \colon +79\ ^{\circ} \mathrm{C}\ (+174\ ^{\circ} \mathrm{F}) &\mid & T_{a} \colon +79\ ^{\circ} \mathrm{C}\ (+174\ ^{\circ} \mathrm{F}) \\ P3 &=& T_{p} \colon +200\ ^{\circ} \mathrm{C}\ (+392\ ^{\circ} \mathrm{F}) &\mid & T_{a} \colon +47\ ^{\circ} \mathrm{C}\ (+117\ ^{\circ} \mathrm{F}) \\ P4 &=& T_{p} \colon +200\ ^{\circ} \mathrm{C}\ (+392\ ^{\circ} \mathrm{F}) &\mid & T_{a} \colon -10\ ^{\circ} \mathrm{C}\ (+14\ ^{\circ} \mathrm{F}) \\ P5 &=& T_{p} \colon -10\ ^{\circ} \mathrm{C}\ (+14\ ^{\circ} \mathrm{F}) &\mid & T_{a} \colon -10\ ^{\circ} \mathrm{C}\ (+14\ ^{\circ} \mathrm{F}) \end{array}$ 


Aluminum housing; process temperature −20 to +150 °C (−4 to +302 °F)




■ 33 Aluminum housing, coated; process temperature -20 to +150 °C (-4 to +302 °F)

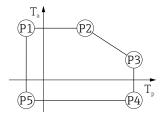
 $\begin{array}{rcl} P1 & = & T_{p}: \; -20 \; ^{\circ} \mathrm{C} \; (-4 \; ^{\circ} \mathrm{F}) & \mid & T_{a}: \; +79 \; ^{\circ} \mathrm{C} \; (+174 \; ^{\circ} \mathrm{F}) \\ P2 & = & T_{p}: \; +79 \; ^{\circ} \mathrm{C} \; (+174 \; ^{\circ} \mathrm{F}) & \mid & T_{a}: \; +79 \; ^{\circ} \mathrm{C} \; (+174 \; ^{\circ} \mathrm{F}) \\ P3 & = & T_{p}: \; +150 \; ^{\circ} \mathrm{C} \; (+302 \; ^{\circ} \mathrm{F}) & \mid & T_{a}: \; +53 \; ^{\circ} \mathrm{C} \; (+127 \; ^{\circ} \mathrm{F}) \\ P4 & = & T_{p}: \; +150 \; ^{\circ} \mathrm{C} \; (+302 \; ^{\circ} \mathrm{F}) & \mid & T_{a}: \; -20 \; ^{\circ} \mathrm{C} \; (-4 \; ^{\circ} \mathrm{F}) \\ P5 & = & T_{p}: \; -20 \; ^{\circ} \mathrm{C} \; (-4 \; ^{\circ} \mathrm{F}) & \mid & T_{a}: \; -20 \; ^{\circ} \mathrm{C} \; (-4 \; ^{\circ} \mathrm{F}) \end{array}$ 


Aluminum housing; process temperature -20 to +200 °C (-4 to +392 °F)





 $\begin{array}{rcl} P1 & = & T_p; \ -20\ ^\circ C\ (-4\ ^\circ F) & | & T_a; \ +79\ ^\circ C\ (+174\ ^\circ F) \\ P2 & = & T_p; \ +79\ ^\circ C\ (+174\ ^\circ F) & | & T_a; \ +79\ ^\circ C\ (+174\ ^\circ F) \\ P3 & = & T_p; \ +200\ ^\circ C\ (+392\ ^\circ F) & | & T_a; \ +47\ ^\circ C\ (+117\ ^\circ F) \\ P4 & = & T_p; \ +200\ ^\circ C\ (+392\ ^\circ F) & | & T_a; \ -20\ ^\circ C\ (-4\ ^\circ F) \\ P5 & = & T_p; \ -20\ ^\circ C\ (-4\ ^\circ F) & | & T_a; \ -20\ ^\circ C\ (-4\ ^\circ F) \end{array}$ 


Aluminum housing; process temperature −40 to +150 °C (−40 to +302 °F)



☑ 35 Aluminum housing, coated; process temperature −40 to +150 °C (−40 to +302 °F)

 $\begin{array}{rcl} P1 &=& T_p: \ -40 \ ^\circ C \ (-40 \ ^\circ F) &\mid & T_a: \ +79 \ ^\circ C \ (+174 \ ^\circ F) \\ P2 &=& T_p: \ +79 \ ^\circ C \ (+174 \ ^\circ F) &\mid & T_a: \ +79 \ ^\circ C \ (+174 \ ^\circ F) \\ P3 &=& T_p: \ +150 \ ^\circ C \ (+302 \ ^\circ F) &\mid & T_a: \ +53 \ ^\circ C \ (+127 \ ^\circ F) \\ P4 &=& T_p: \ +150 \ ^\circ C \ (+302 \ ^\circ F) &\mid & T_a: \ -40 \ ^\circ C \ (-40 \ ^\circ F) \\ P5 &=& T_p: \ -40 \ ^\circ C \ (-40 \ ^\circ F) &\mid & T_a: \ -40 \ ^\circ C \ (-40 \ ^\circ F) \end{array}$ 

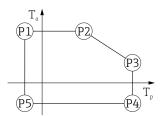
Aluminum housing; process temperature −40 to +200 °C (−40 to +392 °F)



A0032024

A0032024

A0032024

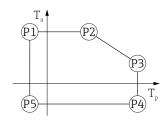

☑ 36 Aluminum housing, coated; process temperature −40 to +200 °C (−40 to +392 °F)

 $\begin{array}{rcl} P1 & = & T_p: \; -40 \; ^{\circ} \text{C} \; (-40 \; ^{\circ} \text{F}) & | & T_a: \; +79 \; ^{\circ} \text{C} \; (+174 \; ^{\circ} \text{F}) \\ P2 & = & T_p: \; +79 \; ^{\circ} \text{C} \; (+174 \; ^{\circ} \text{F}) & | & T_a: \; +79 \; ^{\circ} \text{C} \; (+174 \; ^{\circ} \text{F}) \end{array}$ 

- $P3 = T_p: +200 \ ^{\circ}C (+392 \ ^{\circ}F) | T_a: +47 \ ^{\circ}C (+117 \ ^{\circ}F)$
- $P4 = T_{p}^{P} + 200 \ ^{\circ}C (+392 \ ^{\circ}F) | T_{a}^{2} 40 \ ^{\circ}C (-40 \ ^{\circ}F)$
- $P5 = T_p: -40 \ ^{\circ}C \ (-40 \ ^{\circ}F) | T_a: -40 \ ^{\circ}C \ (-40 \ ^{\circ}F)$

## 316L housing

316L housing; process temperature -10 to +150 °C (+14 to +302 °F)



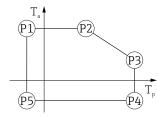

A0032024

■ 37 316L housing; process temperature –10 to +150 °C (+14 to +302 °F)

 $\begin{array}{rcl} P1 & = & T_p: \; -10 \; {}^\circ\!\!{}^\circ\!\!{}^\circ} (\; +14 \; {}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ}) \; | & T_a: \; +77 \; {}^\circ\!\!{}^\circ\!\!{}^\circ} (\; +171 \; {}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{}^\circ\!\!{$ 

316L housing; process temperature -10 to +200 °C (+14 to +392 °F)

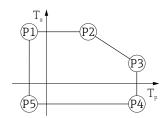



A0032024

A0032024

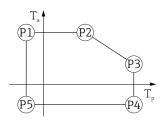
■ 38 316L housing; process temperature -10 to +200 °C (+14 to +392 °F)

 $\begin{array}{rcl} P1 &=& T_p: \ -10\ ^\circ C\ (+14\ ^\circ F) &\mid & T_a: \ +77\ ^\circ C\ (+171\ ^\circ F) \\ P2 &=& T_p: \ +77\ ^\circ C\ (+171\ ^\circ F) &\mid & T_a: \ +77\ ^\circ C\ (+171\ ^\circ F) \\ P3 &=& T_p: \ +200\ ^\circ C\ (+392\ ^\circ F) &\mid & T_a: \ +38\ ^\circ C\ (+100\ ^\circ F) \\ P4 &=& T_p: \ +200\ ^\circ C\ (+392\ ^\circ F) &\mid & T_a: \ -10\ ^\circ C\ (+14\ ^\circ F) \\ P5 &=& T_p: \ -10\ ^\circ C\ (+14\ ^\circ F) &\mid & T_a: \ -10\ ^\circ C\ (+14\ ^\circ F) \end{array}$ 


316L housing; process temperature -20 to  $+150 \degree$  (-4 to  $+302 \degree$ F)

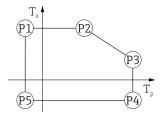


 $\blacksquare$  39 316L housing; process temperature –20 to +150 °C (–4 to +302 °F)


 $\begin{array}{rcl} P1 & = & T_p; \ -20\ ^\circ C\ (-4\ ^\circ F) & | & T_a; \ +77\ ^\circ C\ (+171\ ^\circ F) \\ P2 & = & T_p; \ +77\ ^\circ C\ (+171\ ^\circ F) & | & T_a; \ +77\ ^\circ C\ (+171\ ^\circ F) \\ P3 & = & T_p; \ +150\ ^\circ C\ (+302\ ^\circ F) & | & T_a; \ +43\ ^\circ C\ (+109\ ^\circ F) \\ P4 & = & T_p; \ +150\ ^\circ C\ (+302\ ^\circ F) & | & T_a; \ -20\ ^\circ C\ (-4\ ^\circ F) \\ P5 & = & T_p; \ -20\ ^\circ C\ (-4\ ^\circ F) & | & T_a; \ -20\ ^\circ C\ (-4\ ^\circ F) \end{array}$ 

316L housing; process temperature -20 to +200 °C (-4 to +392 °F)




 $\begin{array}{rcl} P1 & = & T_p; \ -20\ \mbox{°C}\ (-4\ \mbox{°F}) & | & T_a; \ +77\ \mbox{°C}\ (+171\ \mbox{°F}) \\ P2 & = & T_p; \ +77\ \mbox{°C}\ (+171\ \mbox{°F}) & | & T_a; \ +77\ \mbox{°C}\ (+171\ \mbox{°F}) \\ P3 & = & T_p; \ +200\ \mbox{°C}\ (+392\ \mbox{°F}) & | & T_a; \ +38\ \mbox{°C}\ (+100\ \mbox{°F}) \\ P4 & = & T_p; \ +200\ \mbox{°C}\ (+392\ \mbox{°F}) & | & T_a; \ -20\ \mbox{°C}\ (-4\ \mbox{°F}) \\ P5 & = & T_p; \ -20\ \mbox{°C}\ (-4\ \mbox{°F}) & | & T_a; \ -20\ \mbox{°C}\ (-4\ \mbox{°F}) \\ \end{array}$ 

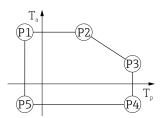
316L housing; process temperature -40 to +150 °C (-40 to +302 °F)



 $\begin{array}{rcl} P1 & = & T_{p} \colon -40 \ ^{\circ}C \ (-40 \ ^{\circ}F) & \mid & T_{a} \colon +77 \ ^{\circ}C \ (+171 \ ^{\circ}F) \\ P2 & = & T_{p} \colon +77 \ ^{\circ}C \ (+171 \ ^{\circ}F) & \mid & T_{a} \colon +77 \ ^{\circ}C \ (+171 \ ^{\circ}F) \\ P3 & = & T_{p} \colon +150 \ ^{\circ}C \ (+302 \ ^{\circ}F) & \mid & T_{a} \colon +43 \ ^{\circ}C \ (+109 \ ^{\circ}F) \\ P4 & = & T_{p} \colon +150 \ ^{\circ}C \ (+302 \ ^{\circ}F) & \mid & T_{a} \colon -40 \ ^{\circ}C \ (-40 \ ^{\circ}F) \\ P5 & = & T_{p} \colon -40 \ ^{\circ}C \ (-40 \ ^{\circ}F) & \mid & T_{a} \colon -40 \ ^{\circ}C \ (-40 \ ^{\circ}F) \end{array}$ 

316L housing; process temperature -40 to +200 °C (-40 to +392 °F)




- $\begin{array}{rcl} P1 &=& T_p; \ -40\ ^\circ C\ (-40\ ^\circ F) &\mid & T_a; \ +77\ ^\circ C\ (+171\ ^\circ F) \\ P2 &=& T_p; \ +77\ ^\circ C\ (+171\ ^\circ F) &\mid & T_a; \ +77\ ^\circ C\ (+171\ ^\circ F) \\ P3 &=& T_p; \ +200\ ^\circ C\ (+392\ ^\circ F) &\mid & T_a; \ +38\ ^\circ C\ (+100\ ^\circ F) \end{array}$
- $P4 = T_p: +200 \ ^{\circ}C \ (+392 \ ^{\circ}F) | T_a: -40 \ ^{\circ}C \ (-40 \ ^{\circ}F)$
- $P5 = T_p: -40 \ ^{\circ}C \ (-40 \ ^{\circ}F) | T_a: -40 \ ^{\circ}C \ (-40 \ ^{\circ}F)$

A0032024

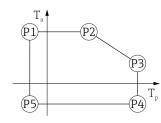
A0032024

#### 316L housing, hygiene

316L housing, hygiene; process temperature -10 to +150 °C (+14 to +302 °F)

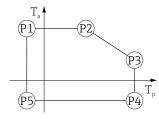


A0032024

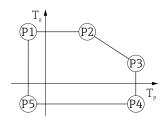

A0032024

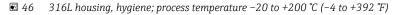
A0032024

■ 43 316L housing, hygiene; process temperature -10 to +150 °C (+14 to +302 °F)

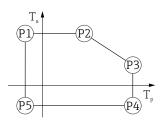

 $\begin{array}{rcl} P1 &=& T_p; \ -10\ ^\circ C\ (+14\ ^\circ F) &| & T_a; \ +76\ ^\circ C\ (+169\ ^\circ F) \\ P2 &=& T_p; \ +76\ ^\circ C\ (+169\ ^\circ F) &| & T_a; \ +76\ ^\circ C\ (+169\ ^\circ F) \\ P3 &=& T_p; \ +150\ ^\circ C\ (+302\ ^\circ F) &| & T_a; \ +41\ ^\circ C\ (+106\ ^\circ F) \\ P4 &=& T_p; \ +150\ ^\circ C\ (+302\ ^\circ F) &| & T_a; \ -10\ ^\circ C\ (+14\ ^\circ F) \\ P5 &=& T_p; \ -10\ ^\circ C\ (+14\ ^\circ F) &| & T_a; \ -10\ ^\circ C\ (+14\ ^\circ F) \end{array}$ 

316L housing, hygiene; process temperature –10 to +200 °C (+14 to +392 °F)





 $\begin{array}{rcl} P1 &=& T_p; \ -10\ ^\circ C\ (+14\ ^\circ F) &\mid & T_a; \ +76\ ^\circ C\ (+169\ ^\circ F) \\ P2 &=& T_p; \ +76\ ^\circ C\ (+169\ ^\circ F) &\mid & T_a; \ +76\ ^\circ C\ (+169\ ^\circ F) \\ P3 &=& T_p; \ +200\ ^\circ C\ (+392\ ^\circ F) &\mid & T_a; \ +32\ ^\circ C\ (+90\ ^\circ F) \\ P4 &=& T_p; \ +200\ ^\circ C\ (+392\ ^\circ F) &\mid & T_a; \ -10\ ^\circ C\ (+14\ ^\circ F) \\ P5 &=& T_p; \ -10\ ^\circ C\ (+14\ ^\circ F) &\mid & T_a; \ -10\ ^\circ C\ (+14\ ^\circ F) \end{array}$ 

316L housing, hygiene; process temperature -20 to +150 °C (-4 to +302 °F)




316L housing, hygiene; process temperature -20 to +200 °C (-4 to +392 °F)






316L housing, hygiene; process temperature -40 to +150 °C (-40 to +302 °F)



☑ 47 316L housing, hygiene; process temperature range: -40 to +150 °C (-40 to +302 °F)

 $\begin{array}{rcl} P1 &=& T_p; \ -40\ ^\circ C\ (-40\ ^\circ F) &| & T_a; \ +76\ ^\circ C\ (+169\ ^\circ F) \\ P2 &=& T_p; \ +76\ ^\circ C\ (+169\ ^\circ F) &| & T_a; \ +76\ ^\circ C\ (+169\ ^\circ F) \\ P3 &=& T_p; \ +150\ ^\circ C\ (+302\ ^\circ F) &| & T_a; \ +41\ ^\circ C\ (+106\ ^\circ F) \\ P4 &=& T_p; \ +150\ ^\circ C\ (+302\ ^\circ F) &| & T_a; \ -40\ ^\circ C\ (-40\ ^\circ F) \\ P5 &=& T_p; \ -40\ ^\circ C\ (-40\ ^\circ F) &| & T_a; \ -40\ ^\circ C\ (-40\ ^\circ F) \end{array}$ 

316L housing, hygiene; process temperature -40 to +200 °C (-40 to +392 °F)



☑ 48 316L housing, hygiene; process temperature -40 to +200 °C (-40 to +392 °F)

 $\begin{array}{rcl} P1 &=& T_{p}: \ -40\ ^{\circ}\text{C}\ (-40\ ^{\circ}\text{F}) &\mid & T_{a}: \ +76\ ^{\circ}\text{C}\ (+169\ ^{\circ}\text{F}) \\ P2 &=& T_{p}: \ +76\ ^{\circ}\text{C}\ (+169\ ^{\circ}\text{F}) &\mid & T_{a}: \ +76\ ^{\circ}\text{C}\ (+169\ ^{\circ}\text{F}) \\ P3 &=& T_{p}: \ +200\ ^{\circ}\text{C}\ (+392\ ^{\circ}\text{F}) &\mid & T_{a}: \ +32\ ^{\circ}\text{C}\ (+90\ ^{\circ}\text{F}) \\ P4 &=& T_{p}: \ +200\ ^{\circ}\text{C}\ (+392\ ^{\circ}\text{F}) &\mid & T_{a}: \ -40\ ^{\circ}\text{C}\ (-40\ ^{\circ}\text{F}) \\ P5 &=& T_{p}: \ -40\ ^{\circ}\text{C}\ (-40\ ^{\circ}\text{F}) &\mid & T_{a}: \ -40\ ^{\circ}\text{C}\ (-40\ ^{\circ}\text{F}) \end{array}$ 

| Storage temperature | <ul> <li>Without LCD display: -40 to +90 °C (-40 to +194 °F)</li> <li>With LCD display: -40 to +85 °C (-40 to +185 °F)</li> </ul> |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Climate class       | DIN EN 60068-2-38 (test Z/AD)                                                                                                     |

A0032024

A0032024

| Installation height as per<br>IEC61010-1 Ed.3 | <ul> <li>Generally up to 2 000 m (6 600 ft) above sea level</li> <li>Over 2 000 m (6 600 ft) under the following conditions:</li> <li>Supply voltage &lt; 35 V<sub>DC</sub></li> <li>Power supply, overvoltage category 1</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Degree of protection                          | Testing according to IEC 60529 and NEMA 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                               | Housing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                               | IP66/68, NEMA Type 4X/6P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                               | IP68 test condition: 1.83 m under water for 24 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                               | Cable entries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                               | <ul> <li>M20 coupling, plastic, IP66/68 NEMA Type 4X/6P</li> <li>M20 coupling, nickel-plated brass, IP66/68 NEMA Type 4X/6P</li> <li>M20 coupling, 316L, IP66/68 NEMA Type 4X/6P</li> <li>M20 coupling, hygiene, IP66/68/69 NEMA Type 4X/6P</li> <li>M20 thread, IP66/68 NEMA Type 4X/6P</li> <li>G ½ thread, IP66/68 NEMA Type 4X/6P</li> <li>If the G ½ thread is selected, the device is provided with an M20 thread as standard and a M20 to G ½ adapter is included, along with the associated documentation</li> <li>NPT ½ thread , IP66/68 NEMA Type 4X/6P</li> <li>HAN7D plug, 90 degrees, IP65 NEMA Type 4X</li> <li>M12 plug</li> <li>When housing is closed and connecting cable is plugged in: IP66/67 NEMA Type 4X</li> <li>When housing is open or connecting cable is not plugged in: IP20, NEMA Type 1</li> </ul> |
|                                               | <ul> <li>NOTICE</li> <li>M12 plug and HAN7D plug: incorrect mounting can invalidate the IP protection class!</li> <li>The degree of protection only applies if the connecting cable used is plugged in and screwed tight.</li> <li>The degree of protection only applies if the connecting cable used is specified according to IP67 NEMA Type 4X.</li> <li>The protection classes are only maintained if the dummy cap is used or the cable is connected.</li> </ul>                                                                                                                                                                                                                                                                                                                                                             |
| Vibration resistance                          | DIN EN 60068-2-64 / IEC 60068-2-64 for 5 to 2 000 Hz: 1.25 (m/s <sup>2</sup> ) <sup>2</sup> /Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Electromagnetic<br>compatibility (EMC)        | <ul> <li>Electromagnetic compatibility as per EN 61326 series and NAMUR recommendation EMC (NE21</li> <li>With regard to the safety function (SIL), the requirements of EN 61326-3-x are satisfied</li> <li>Maximum measured error during EMC testing: &lt; 0.5 % of the span.</li> <li>For more details refer to the EU Declaration of Conformity.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## Process

| Process pressure range | <b>A</b> WARNING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | The maximum pressure for the device depends on the lowest-rated component with regard to pressure (components are: process connection, optional mounted parts or accessories).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        | Only operate the device within the specified limits for the components!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        | <ul> <li>MWP (Maximum Working Pressure): The MWP is specified on the nameplate. This value refers to a reference temperature of +20 °C (+68 °F) and may be applied to the device for an unlimited time. Note temperature dependence of MWP. For flanges, refer to the following standards for the permitted pressure values at higher temperatures: EN 1092-1 (with regard to their stability/ temperature property, the materials 1.4435 and 1.4404 are grouped together under EN 1092-1; the chemical composition of the two materials can be identical), ASME B16.5, JIS B2220 (the latest version of the standard applies in each case). MWP data that deviate from this are provided in the relevant sections of the Technical Information.</li> <li>The Pressure Equipment Directive (2014/68/EU) uses the abbreviation PS. This corresponds to the maximum working pressure (MWP) of the device.</li> </ul> |

The following tables show the dependencies between the seal material, process temperature  $(T_p)$ and process pressure range for each process connection that can be selected for the antenna used.

## Integrated antenna, PEEK, 20 mm (0.75 in)

### M24 process connection thread

|       | Seal                       | T <sub>p</sub>                  | Process pressure range          |
|-------|----------------------------|---------------------------------|---------------------------------|
|       | FKM Viton                  | -10 to +150 °C (+14 to +302 °F) | -1 to 20 bar (-14.5 to 290 psi) |
|       | FKM Viton                  | -10 to +200 °C (+14 to +392 °F) | -1 to 20 bar (-14.5 to 290 psi) |
|       | EPDM                       | -40 to +150 °C (-40 to +302 °F) | -1 to 20 bar (-14.5 to 290 psi) |
|       | FFKM Kalrez                | -20 to +150 °C (-4 to +302 °F)  | -1 to 20 bar (-14.5 to 290 psi) |
| A0048 | <sup>D27</sup> FFKM Kalrez | -20 to +200 °C (-4 to +392 °F)  | -1 to 20 bar (-14.5 to 290 psi) |



The pressure range may be further restricted in the event of a CRN approval.

## Antenna cladded flush mount, PTFE, 50 mm (2 in)

Process connection, Tri-Clamp DN51 (2") ISO2852

|          | Seal         | T <sub>p</sub>                  | Process pressure range          |
|----------|--------------|---------------------------------|---------------------------------|
|          | PTFE-cladded | −40 to +150 °C (−40 to +302 °F) | -1 to 16 bar (-14.5 to 232 psi) |
|          | PTFE-cladded | -40 to +200 °C (-40 to +392 °F) | -1 to 16 bar (-14.5 to 232 psi) |
| A0047838 |              |                                 |                                 |

#### Process connection, Tri-Clamp DN70-76.1 (3") ISO2852

|          | Seal         | T <sub>p</sub>                  | Process pressure range          |
|----------|--------------|---------------------------------|---------------------------------|
|          | PTFE-cladded | −40 to +150 °C (−40 to +302 °F) | -1 to 14 bar (-14.5 to 203 psi) |
|          | PTFE-cladded | -40 to +200 °C (-40 to +392 °F) | -1 to 14 bar (-14.5 to 203 psi) |
| A0047838 |              |                                 |                                 |

#### Process connection, slotted nut, DIN11851 DN50 PN25

|          | Seal         | T <sub>p</sub>                  | Process pressure range            |
|----------|--------------|---------------------------------|-----------------------------------|
|          | PTFE-cladded | -40 to +150 °C (-40 to +302 °F) | -1 to 25 bar (-14.5 to 362.6 psi) |
|          | PTFE-cladded | -40 to +200 °C (-40 to +392 °F) | -1 to 25 bar (-14.5 to 362.6 psi) |
| A0050063 |              |                                 |                                   |



The pressure range may be further restricted in the event of a CRN approval.

## Antenna cladded flush mount, PTFE, 80 mm (3 in)

Process connection, Tri-Clamp DN101.6 (4") ISO2852

|          | Seal         | T <sub>p</sub>                  | Process pressure range          |
|----------|--------------|---------------------------------|---------------------------------|
|          | PTFE-cladded | −40 to +150 °C (−40 to +302 °F) | -1 to 14 bar (-14.5 to 203 psi) |
|          | PTFE-cladded | -40 to +200 °C (-40 to +392 °F) | -1 to 14 bar (-14.5 to 203 psi) |
|          |              |                                 |                                 |
|          |              |                                 |                                 |
| A0047826 |              |                                 |                                 |

## Process connection, slotted nut, DIN11851 DN80 PN25

|          | Seal         | T <sub>p</sub>                  | Process pressure range            |
|----------|--------------|---------------------------------|-----------------------------------|
|          | PTFE-cladded | -40 to +150 °C (-40 to +302 °F) | -1 to 25 bar (-14.5 to 362.6 psi) |
|          | PTFE-cladded | -40 to +200 °C (-40 to +392 °F) | -1 to 25 bar (-14.5 to 362.6 psi) |
| A0047825 |              |                                 |                                   |

The pressure range may be further restricted in the event of a CRN approval.

## Antenna cladded flush mount, PEEK, 20 mm (0.75 in)

Process connection, NEUMO BioControl D25 PN16

|          | Seal         | T <sub>p</sub>                 | Process pressure range          |
|----------|--------------|--------------------------------|---------------------------------|
|          | PEEK-cladded | -20 to +150 °C (-4 to +302 °F) | -1 to 16 bar (-14.5 to 232 psi) |
|          | PEEK-cladded | -20 to +200 °C (-4 to +392 °F) | -1 to 16 bar (-14.5 to 232 psi) |
| A0054988 |              |                                |                                 |

The pressure range may be further restricted in the event of a CRN approval.

## Antenna cladded flush mount, PEEK, 40 mm (1.5 in)

Process connection, NEUMO BioControl D50 PN16

|          | Seal         | T <sub>p</sub>                 | Process pressure range          |
|----------|--------------|--------------------------------|---------------------------------|
|          | PEEK-cladded | -20 to +150 °C (-4 to +302 °F) | -1 to 16 bar (-14.5 to 232 psi) |
|          | PEEK-cladded | -20 to +200 °C (-4 to +392 °F) | -1 to 16 bar (-14.5 to 232 psi) |
| A0054992 |              |                                |                                 |

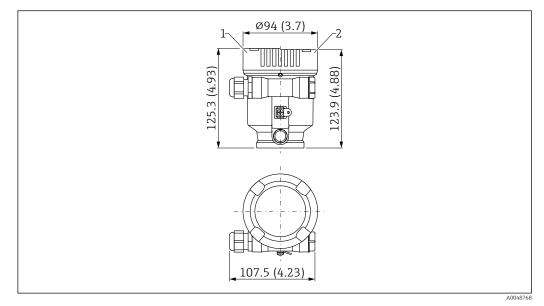
|          | Seal         | T <sub>p</sub>                 | Process pressure range          |
|----------|--------------|--------------------------------|---------------------------------|
|          | PEEK-cladded | –20 to +150 °C (–4 to +302 °F) | -1 to 20 bar (-14.5 to 290 psi) |
|          | PEEK-cladded | –20 to +200 °C (–4 to +392 °F) | –1 to 20 bar (–14.5 to 290 psi) |
| A0054984 |              |                                |                                 |

Process connection, Varivent N tube DN65-162 PN20



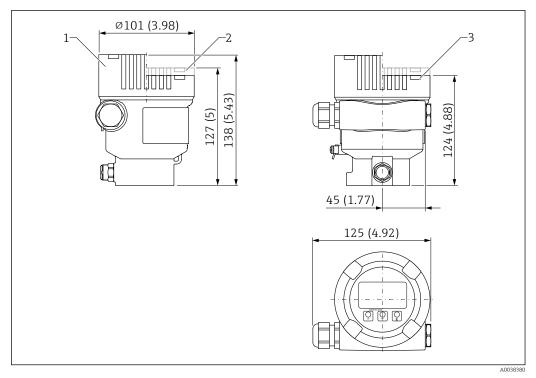
Dielectric constant

# $\begin{array}{l} \mbox{For liquids} \\ \epsilon_r \geq \ 1.2 \end{array}$


Contact Endress+Hauser for applications with lower dielectric constants than indicated.

## Mechanical construction

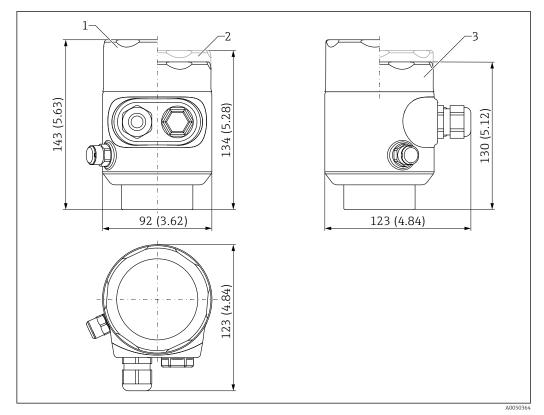
Dimensions


The dimensions of the individual components must be added together for the total dimensions.

## Single compartment housing, plastic

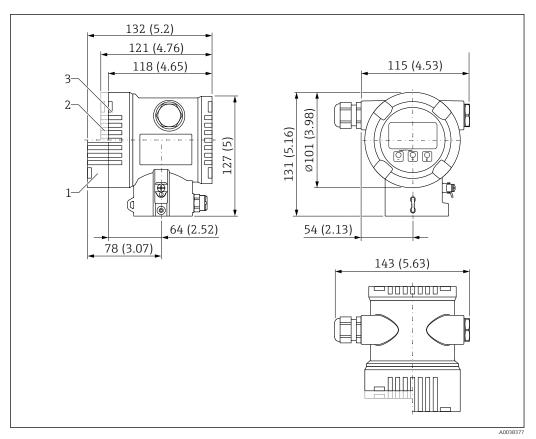


- Immensions; single compartment housing, plastic; incl. M20 coupling and plug, plastic. Unit of measurement mm (in)
- 1 Height with cover comprising plastic sight glass
- 2 Height with cover without sight glass

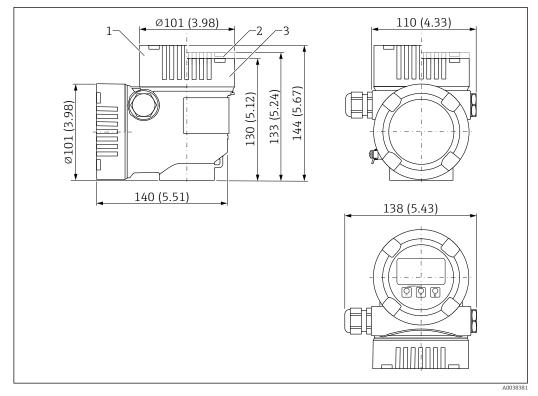

## Single compartment housing, aluminum, coated



🛃 50 Dimensions; single compartment housing, aluminum, coated; incl. M20 coupling and plug, plastic. Unit of measurement mm (in)


- Height with cover comprising glass sight glass (devices for Ex d/XP, dust Ex) 1
- Height with cover comprising plastic sight glass Cover without sight glass 2
- 3

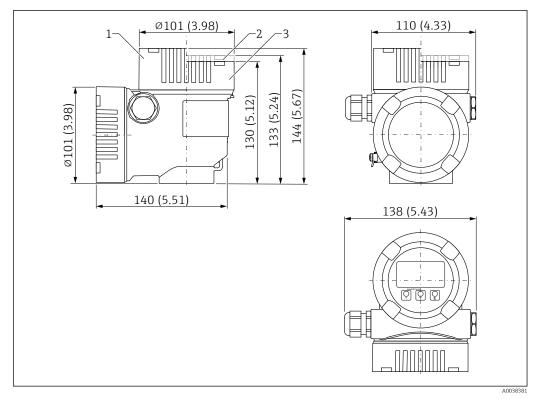
## Single compartment housing, 316L, hygiene




- Dimensions; single compartment housing, 316 L, hygiene; incl. M20 coupling and plug, plastic. Unit of 🖻 51 measurement mm (in)
- 1 Height with cover comprising glass sight glass (dust ignition-proof)
- Height with cover comprising plastic sight glass Cover without sight glass 2 3

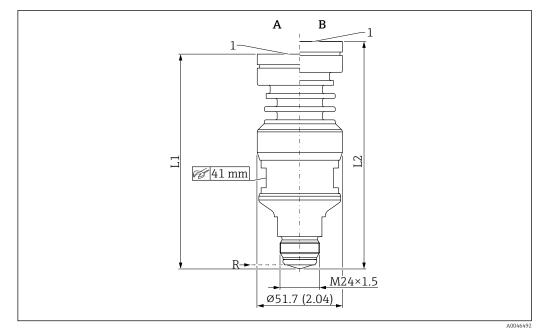
## Dual compartment housing, aluminum, coated




- Dimensions; dual compartment housing, aluminum, coated; incl. M20 coupling and plug, plastic. Unit of measurement mm (in)
- 1 Height with cover comprising glass sight glass (devices for Ex d/XP, dust Ex)
- 2 Height with cover comprising plastic sight glass
- 3 Cover without sight glass



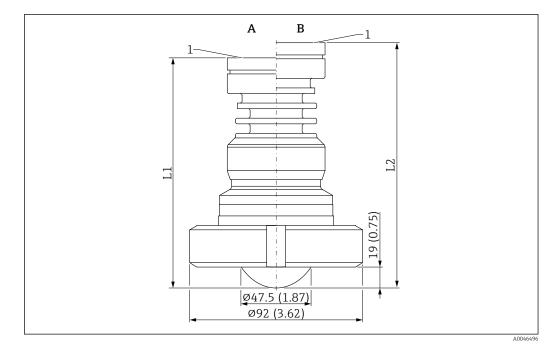
### Dual compartment housing, L-shaped, aluminum, coated


- 53 Dimensions; dual compartment housing L-shaped, aluminum, coated; incl. M20 coupling and plug, plastic. Unit of measurement mm (in)
- 1 Height with cover comprising glass sight glass (devices for Ex d/XP, dust Ex)
- 2 Height with cover comprising plastic sight glass
- 3 Cover without sight glass

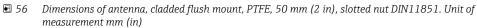
Dual compartment housing, L-shaped, 316L



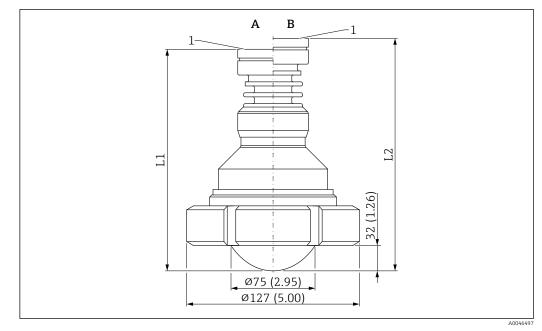
🛃 54 Dimensions; dual compartment housing L-shaped, 316L; incl. M20 coupling and plug, plastic. Unit of measurement mm (in)


- Height with cover comprising glass sight glass (devices for Ex d/XP, dust Ex) Height with cover comprising plastic sight glass 1
- 2
- 3 Cover without sight glass



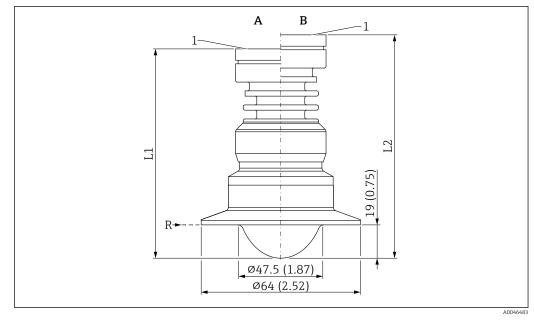

## Integrated antenna, PEEK, 20 mm (0.75 in) with M24 process connection thread

- 🛃 55 Dimensions of integrated antenna, PEEK, 20 mm (0.75 in) with M24 process connection thread. Unit of measurement mm (in)
- Process temperature version ≤150 °C (302 °F) Α
- Process temperature version ≤200 °C (392 °F) В
- R Reference point for the measurement
- Lower edge of housing 1
- L1
   127 mm (5.00 in); version with Ex d or XP approval +5 mm (+0.20 in)

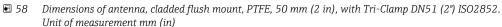

   L2
   139 mm (5.47 in); version with Ex d or XP approval +5 mm (+0.20 in)



## Antenna, cladded flush mount, PTFE, 50 mm (2 in), slotted nut DIN11851




- A Process temperature version ≤150 °C (302 °F)
- B Process temperature version ≤200 °C (392 °F)
- *R Reference point of measurement*
- 1 Bottom edge of housing
- L1 118 mm (4.65 in); version with Ex d or XP approval +5 mm (+0.20 in)
- L2 130 mm (5.12 in); version with Ex d or XP approval +5 mm (+0.20 in)



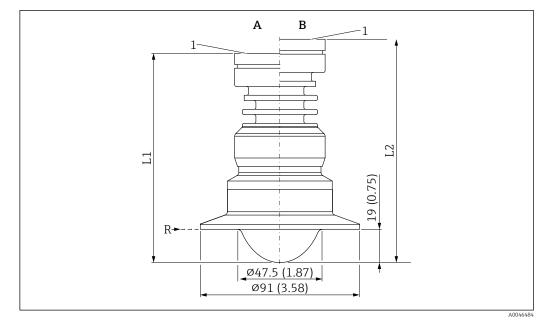

## Antenna, cladded flush mount, PTFE, 80 mm (3 in), slotted nut DIN11851

- E 57 Dimensions of antenna, cladded flush mount, PTFE, 80 mm (3 in), slotted nut DIN11851. Unit of measurement mm (in)
- A Process temperature version  $\leq$  150 °C (302 °F)
- B Process temperature version  $\leq 200$  °C (392 °F)
- R Reference point of measurement
- 1 Bottom edge of housing
- L1 159 mm (6.26 in); version with Ex d or XP approval +5 mm (+0.20 in)
- L2 171 mm (6.73 in); version with Ex d or XP approval +5 mm (+0.20 in)



## Antenna, cladded flush mount, PTFE, 50 mm (2 in), with Tri-Clamp DN51 (2") ISO2852




- A Process temperature version ≤150 °C (302 °F)
- B Process temperature version ≤200 °C (392 °F)
- *R Reference point of the measurement*
- 1 Lower edge of housing

1

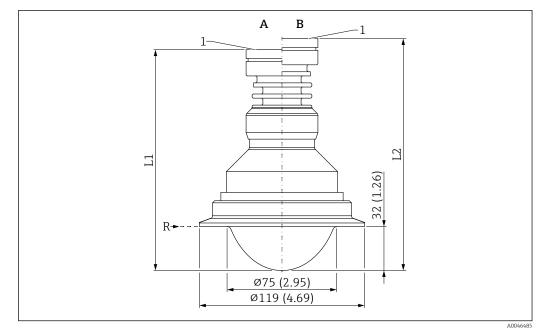
- L1 116 mm (4.57 in); version with Ex d or XP approval +5 mm (+0.20 in)
- L2 128 mm (5.04 in); version with Ex d or XP approval +5 mm (+0.20 in)

Process connection suitable for

DN51 nominal diameter and pipe inner diameter 48.6 mm (1.91 in)



## Antenna, cladded flush mount, PTFE, 50 mm (2 in), with Tri-Clamp DN70-76.1 (3") ISO2852


- Immediate Solution Soluti Solution Solution Solution Solution Solution Solution S
- A Process temperature version ≤150 °C (302 °F)
- B Process temperature version ≤200 °C (392 °F)
- *R Reference point of measurement*
- 1 Bottom edge of housing

-

- L1 116 mm (4.57 in); version with Ex d or XP approval +5 mm (+0.20 in)
- L2 128 mm (5.04 in); version with Ex d or XP approval +5 mm (+0.20 in)

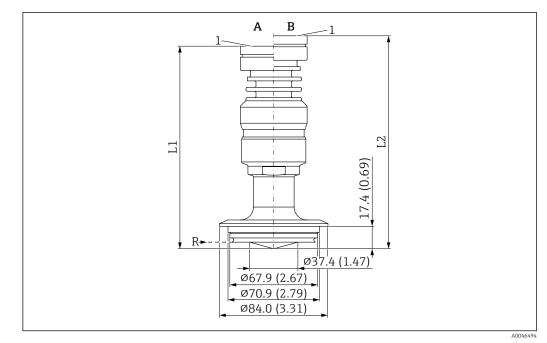
Process connection suitable for

- DN70 nominal diameter with pipe inner diameter 66.8 mm (2.63 in)
- DN76.1 nominal diameter with pipe inner diameter 72.9 mm (2.87 in)



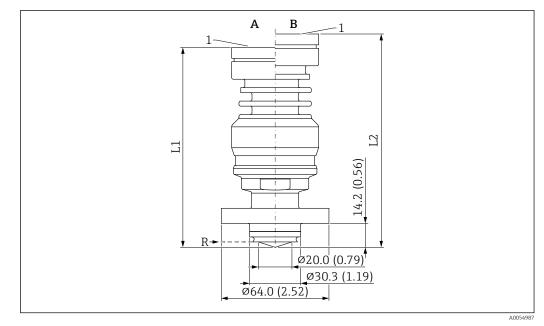
## Antenna, cladded flush mount, PTFE, 80 mm (3 in), with Tri-Clamp DN101.6 (4") ISO2852

Image: Book of antenna, cladded flush mount, PTFE, 80 mm (3 in), with Tri-Clamp DN101.6 (4") ISO2852. Unit of measurement mm (in)

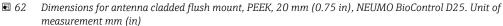

- A Process temperature version ≤150 °C (302 °F)
- B Process temperature version ≤200 °C (392 °F)
- *R Reference point of measurement*
- 1 Bottom edge of housing

H

- L1 155 mm (6.10 in); version with Ex d or XP approval +5 mm (+0.20 in)
- L2 167 mm (6.57 in); version with Ex d or XP approval +5 mm (+0.20 in)

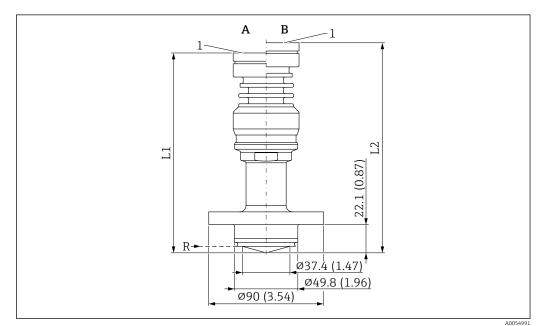

Process connection suitable for

DN101.6 nominal diameter with pipe inner diameter 97.6 mm (3.84 in)




#### Antenna cladded flush mount, PEEK, 40 mm (1.5 in), Varivent N tube DN65-162

- E 61 Dimensions for antenna cladded flush mount, PEEK, 40 mm (1.5 in) Varivent N tube DN65-162. Unit of measurement mm (in)
- A Process temperature version ≤150 °C (302 °F)
- B Process temperature version ≤200 °C (392 °F)
- *R Reference point for the measurement*
- 1 Lower edge of housing
- L1 153 mm (6.02 in); version with Ex d or XP approval+5 mm (+0.20 in)
- L2 165 mm (6.49 in); version with Ex d or XP approval+5 mm (+0.20 in)




#### Antenna cladded flush mount, PEEK, 20 mm (0.75 in), NEUMO BioControl D25



- A Process temperature version ≤150 °C (302 °F)
- B Process temperature version  $\leq 200 \ ^{\circ}C (392 \ ^{\circ}F)$
- *R Reference point for the measurement*
- 1 Lower edge of housing
- L1 115 mm (4.52 in); version with Ex d or XP approval+5 mm (+0.20 in)
- L2 127 mm (4.99 in); version with Ex d or XP approval+5 mm (+0.20 in)

## Antenna cladded flush mount, PEEK, 40 mm (1.5 in), NEUMO BioControl D50



E 63 Dimensions for antenna cladded flush mount, PEEK, 40 mm (1.5 in), NEUMO BioControl D50. Unit of measurement mm (in)

- A Process temperature version ≤150 °C (302 °F)
- B Process temperature version ≤200 °C (392 °F)
- *R Reference point for the measurement*
- 1 Lower edge of housing
- L1 157 mm (6.02 in); version with Ex d or XP approval+5 mm (+0.20 in)
- L2 165 mm (6.49 in); version with Ex d or XP approval+5 mm (+0.20 in)

| Weight    | The weights of the individual components must be added together for the total weight.                                                                                                                                                                                                                                                                                                        |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Housing                                                                                                                                                                                                                                                                                                                                                                                      |
|           | Weight including electronics and display.                                                                                                                                                                                                                                                                                                                                                    |
|           | <ul> <li>Single compartment housing</li> <li>Plastic: 0.5 kg (1.10 lb)</li> <li>Aluminum: 1.2 kg (2.65 lb)</li> <li>316L hygiene: 1.2 kg (2.65 lb)</li> </ul>                                                                                                                                                                                                                                |
|           | <b>Dual compartment housing</b><br>Aluminum: 1.4 kg (3.09 lb)                                                                                                                                                                                                                                                                                                                                |
|           | <ul> <li>Dual compartment housing, L-shaped</li> <li>Aluminum: 1.7 kg (3.75 lb)</li> <li>Stainless steel: 4.5 kg (9.9 lb)</li> </ul>                                                                                                                                                                                                                                                         |
|           | Antenna and process connection adapter                                                                                                                                                                                                                                                                                                                                                       |
|           | The flange weight (316/316L) depends on the selected standard and sealing surface.                                                                                                                                                                                                                                                                                                           |
|           | Details -> TI00426F or in the relevant standard                                                                                                                                                                                                                                                                                                                                              |
|           | The heaviest version is indicated for the antenna weights                                                                                                                                                                                                                                                                                                                                    |
|           | Integrated antenna, PEEK, 20 mm (0.75 in) with M24 process connection thread 1.30 kg (2.87 lb)                                                                                                                                                                                                                                                                                               |
|           | Antenna cladded flush mount, PTFE, 50 mm (2 in)with DIN11851 DN50 1.80 kg (3.97 lb) including nut                                                                                                                                                                                                                                                                                            |
|           | Antenna cladded flush mount, PTFE, 80 mm (3 in)with DIN11851 DN80<br>3.60 kg (7.94 lb) including nut                                                                                                                                                                                                                                                                                         |
|           | <b>Antenna cladded flush mount, PTFE, 50 mm (2 in), with Tri-Clamp ISO2852</b> 1.40 kg (3.09 lb)                                                                                                                                                                                                                                                                                             |
|           | <b>Antenna cladded flush mount, PTFE, 80 mm (3 in), with Tri-Clamp ISO2852</b> 2.70 kg (5.95 lb)                                                                                                                                                                                                                                                                                             |
|           | <b>Antenna cladded flush mount, PEEK, 40 mm (1.5 in) Varivent N tube DN65-162</b><br>1.70 kg (3.75 lb)                                                                                                                                                                                                                                                                                       |
|           | <b>Antenna cladded flush mount, PEEK, 20 mm (0.75 in), NEUMO BioControl D25</b> 1.20 kg (2.65 lb)                                                                                                                                                                                                                                                                                            |
|           | <b>Antenna cladded flush mount, PEEK, 40 mm (1.5 in), NEUMO BioControl D50</b> 1.70 kg (3.75 lb)                                                                                                                                                                                                                                                                                             |
| Materials | Materials not in contact with process                                                                                                                                                                                                                                                                                                                                                        |
|           | Single compartment housing, plastic                                                                                                                                                                                                                                                                                                                                                          |
|           | <ul> <li>Housing: PBT/PC</li> <li>Dummy cover: PBT/PC</li> <li>Cover with sight glass: PBT/PC and PC</li> <li>Cover seal: EPDM</li> <li>Potential equalization: 316L</li> <li>Seal under potential equalization: EPDM</li> <li>Plug: PBT-GF30-FR</li> <li>Seal on plug: EPDM</li> <li>Nameplate: plastic foil</li> <li>TAG plate: plastic foil, metal or provided by the customer</li> </ul> |
|           | The cable entry (material: Stainless steel, nickel-plated brass, plastic) can be ordered via the "Electrical connection" product structure.                                                                                                                                                                                                                                                  |

Single compartment housing, aluminum, coated

- Housing: aluminum EN AC 43400
- Housing coating, cover: polyester
- EN AC-43400 aluminum cover with Lexan 943A PC sight glass EN AC-443400 aluminum cover with borosilicate sight glass; dust-Ex for Ex d/XP

- Dummy cover: aluminum EN AC 43400
- Cover sealing materials: HNBR
- Cover sealing materials: FVMQ (in low temperature version only)
- Plug: PBT-GF30-FR or aluminum
- Plug sealing material: EPDM
- Nameplate: plastic foil
- TAG plate: plastic foil, stainless steel or provided by the customer

The cable entry (material: Stainless steel, nickel-plated brass, plastic) can be ordered via the "Electrical connection" product structure.

Single compartment housing, 316L, hygienic

- Housing: stainless steel 316 L (1.4404)
- Dummy cover: stainless steel 316 L (1.4404)
- Cover stainless steel 316 L (1.4404) with PC Lexan 943A sight glass Cover stainless steel 316 L (1.4404) with borosilicate sight glass; can optionally be ordered as a mounted accessory

For dust ignition-proof applications, the sight glass is always made of borosilicate.

- Cover sealing materials: VMQ
- Plug: PBT-GF30-FR or stainless steel
- Plug sealing material: EPDM
- Nameplate: stainless steel housing labeled directly
- TAG plate: plastic foil, stainless steel or provided by the customer

The cable entry (material: Stainless steel, nickel-plated brass, plastic) can be ordered via the "Electrical connection" product structure.

Dual compartment housing, aluminum, coated

- Housing: aluminum EN AC 43400
- Housing coating, cover: polyester
- EN AC-43400 aluminum cover with Lexan 943A PC sight glass EN AC-443400 aluminum cover with borosilicate sight glass; dust-Ex for Ex d/XP
- Dummy cover: aluminum EN AC 43400
- Cover sealing materials: HNBR
- Cover sealing materials: FVMQ (in low temperature version only)
- Plug: PBT-GF30-FR or aluminum
- Plug sealing material: EPDM
- Nameplate: plastic foil
- TAG plate: plastic foil, stainless steel or provided by the customer

The cable entry (material: Stainless steel, nickel-plated brass, plastic) can be ordered via the "Electrical connection" product structure.

Dual compartment housing; 316L

- Housing: stainless steel AISI 316L (1.4409)
   Stainless steel (ASTM A351 : CF3M (cast equivalent to AISI 316L material)/DIN EN 10213 : 1.4409)
- Dummy cover: stainless steel AISI 316L (1.4409)
- Cover: stainless steel AISI 316L (1.4409) with borosilicate sight glass
- Cover sealing materials: HNBR
- Cover sealing materials: FVMQ (in low temperature version only)
- Plug: stainless steel
- Plug sealing material: EPDM
- Nameplate: stainless steel
- TAG plate: plastic foil, stainless steel or provided by the customer

The cable entry (material: Stainless steel, nickel-plated brass, plastic) can be ordered via the "Electrical connection" product structure.

Dual compartment housing, L-shaped, aluminum, coated

- Housing: aluminum EN AC 43400
- Housing coating, cover: polyester
- EN AC-43400 aluminum cover with Lexan 943A PC sight glass
- EN AC-443400 aluminum cover with borosilicate sight glass; dust-Ex for Ex d/XP
- Dummy cover: aluminum EN AC 43400

- Cover sealing materials: FVMQ (in low temperature version only)
- Plug: PBT-GF30-FR or aluminum
- Plug sealing material: EPDM
- Nameplate: plastic foil
- TAG plate: plastic foil, stainless steel or provided by the customer

The cable entry (material: Stainless steel, nickel-plated brass, plastic) can be ordered via the "Electrical connection" product structure.

## Dual compartment housing, L-shaped, 316L

- Housing: stainless steel AISI 316L (1.4409)
   Stainless steel (ASTM A351 : CF3M (cast equivalent to AISI 316L material)/DIN EN 10213 : 1.4409)
- Dummy cover: stainless steel AISI 316L (1.4409)
- Cover: stainless steel AISI 316L (1.4409) with borosilicate sight glass
- Cover sealing materials: HNBR
- Cover sealing materials: FVMQ (in low temperature version only)
- Plug: stainless steel
- Plug sealing material: EPDM
- Nameplate: stainless steel housing labeled directly
- TAG plate: plastic foil, stainless steel or provided by the customer

The cable entry (material: Stainless steel, nickel-plated brass, plastic) can be ordered via the "Electrical connection" product structure.

#### Cable entry

## Coupling M20, plastic

- Material: PA
- Seal on cable gland: EPDM
- Dummy plug: plastic

## Coupling M20, nickel-plated brass

- Material: nickel-plated brass
- Seal on cable gland: EPDM
- Dummy plug: plastic

## Coupling M20, 316L

- Material: 316L
- Seal on cable gland: EPDM
- Dummy plug: plastic

## M20 coupling, 316 L, hygiene

- Material: 316L
- Seal on cable gland: EPDM

#### M20 thread

The device is supplied with M20 thread as standard. Transport plug: LD-PE

## Thread G ½

The device is supplied as standard with an M20 thread and an enclosed adapter to G  $\frac{1}{2}$  including documentation (aluminum housing, 316L housing, hygienic housing) or with a mounted adapter to G  $\frac{1}{2}$  (plastic housing).

- Adapter made of PA66-GF or aluminum or 316L (depends on housing version ordered)
- Transport plug: LD-PE

#### NPT ½ thread

The device is supplied as standard with an NPT  $\frac{1}{2}$  thread (aluminum housing, 316L housing) or with a mounted adapter to NPT  $\frac{1}{2}$  (plastic housing, hygienic housing).

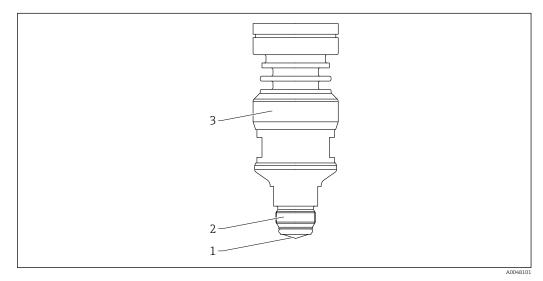
- Adapter made of PA66-GF or 316L (depends on housing version ordered)
- Transport plug: LD-PE

#### M20 coupling, blue plastic

#### Material: PA, blue

- Seal on cable gland: EPDM
- Dummy plug: plastic

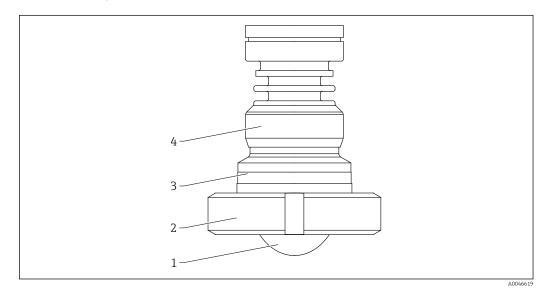
#### M12 plug


- Material: nickel-plated CuZn or 316L (depends on housing version ordered)
- Transport cap: LD-PE

## HAN7D plug

Material: aluminum, die-cast zinc, steel

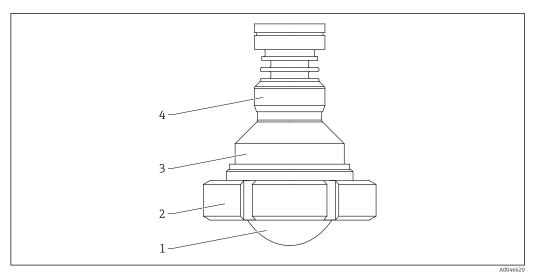
## Materials in contact with the medium


Integrated antenna, PEEK, 20 mm (0.75 in) with M24 process connection thread



64 Material; integrated antenna, PEEK, 20 mm (0.75 in) with M24 process connection thread

- 1 Antenna: PEEK, seal material can be selected (order option)
- 2 Process connection thread M24 M24: 316L (1.4404)
- *3 Housing adapter: 316L (1.4404)*


Antenna cladded flush mount, PTFE, 50 mm (2 in), slotted nut DIN11851

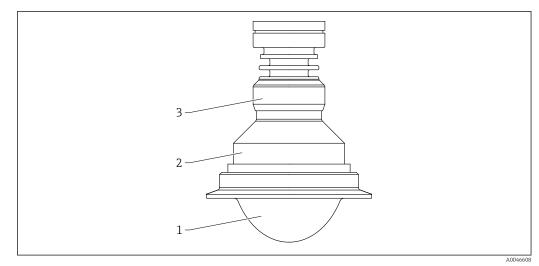


65 Material; antenna cladded flush mount, PTFE, 50 mm (2 in), slotted nut DIN11851

- 1 Antenna: PTFE, PTFE-cladding seal material
- 2 DIN11851 nut: 304L (1.4307)
- 3 Antenna adapter: 316L (1.4404)
- 4 Housing adapter: 316L (1.4404)





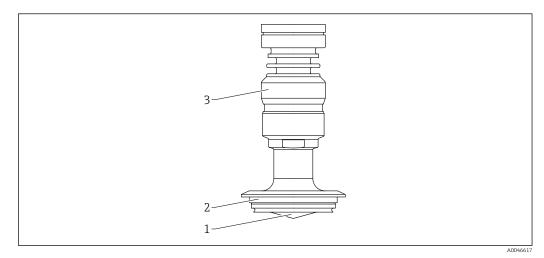

🖻 66 Material; antenna cladded flush mount, 80 mm (3 in), nut DIN11851. Unit of measurement mm (in)

- 1 Antenna: PTFE, PTFE-cladding seal material
- 2 DIN11851 nut: 304L (1.4307)
- 3 Antenna adapter: 316L (1.4404)
- 4 Housing adapter: 316L (1.4404)

Antenna cladded flush mount, PTFE, 50 mm (2 in), with Tri-Clamp ISO2852

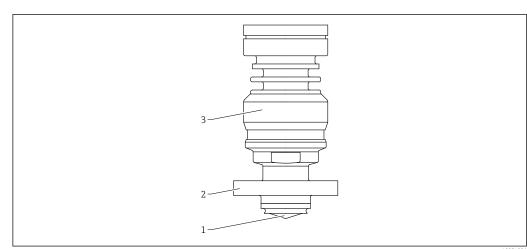


- 67 Material; antenna cladded flush mount, PTFE, 50 mm (2 in), with Tri-Clamp ISO2852. Unit of measurement mm (in)
- 1 Antenna: PTFE, PTFE-cladding seal material
- 2 Antenna adapter: 316L (1.4404)
- 3 Housing adapter: 316L (1.4404)




Antenna cladded flush mount, PTFE, 80 mm (3 in), with Tri-Clamp ISO2852

🛃 68 Material; antenna cladded flush mount, PTFE, 80 mm (3 in), with Tri-Clamp ISO2852

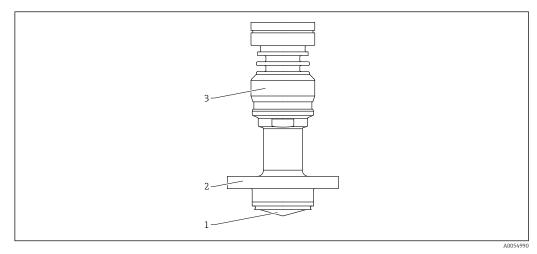

- Antenna: PTFE, PTFE-cladding seal material 1
- Antenna adapter: 316L (1.4404) Housing adapter: 316L (1.4404) 2
- 3

## Antenna cladded flush mount, PEEK, 40 mm (1.5 in)Varivent N tube DN65-162



Material; antenna cladded flush mount, PEEK, 40 mm (1.5 in), Varivent N tube DN65-162 🖻 69

- 1 Antenna: PEEK, sealing material PEEK-cladding
- Process connection: 316L / 1.4404 2
- 3 Housing adapter: 316L / 1.4404




### Antenna cladded flush mount, PEEK, 20 mm (0.75 in), NEUMO BioControl D25

270 Material; antenna cladded flush mount, PEEK, 20 mm (0.75 in), NEUMO BioControl D25

- 1 Antenna: PEEK, sealing material PEEK-cladding
- 2 Process connection: 316L / 1.4404
- 3 Housing adapter: 316L / 1.4404

#### Antenna cladded flush mount, PEEK, 40 mm (1.5 in), NEUMO BioControl D50



71 Material; antenna cladded flush mount, PEEK, 40 mm (1.5 in), NEUMO BioControl D50

- 1 Antenna: PEEK, sealing material PEEK-cladding
- 2 Process connection: 316L / 1.4404
- *Housing adapter: 316L / 1.4404*

## Display and user interface

#### **Operating concept**

- Guidance
- Diagnostics
- Application
- System

## Fast and safe commissioning

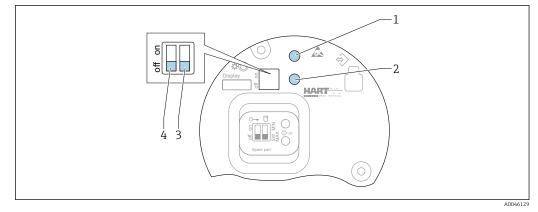
- Interactive wizard with graphical user interface for guided commissioning in FieldCare, DeviceCare or DTM, AMS and PDM-based third-party tools or SmartBlue
- Menu guidance with short explanations of the individual parameter functions
- Standardized operation at the device and in the operating tools

Operator-oriented menu structure for user-specific tasks

## Integrated HistoROM data memory

- Adoption of data configuration when electronics modules are replaced
- Up to 100 event messages recorded in the device

## Efficient diagnostic behavior increases measurement availability


- Remedial measures are integrated in plain text
- Diverse simulation options
- Bluetooth (optionally integrated in local display)
- Quick and easy setup with SmartBlue app or PC with DeviceCare, version 1.07.05 and higher, or FieldXpert SMT70
- No additional tools or adapters required
- Encrypted single point-to-point data transmission (tested by Fraunhofer Institute) and passwordprotected communication via *Bluetooth*<sup>®</sup> wireless technology

LanguagesThe operating language of the local display (optional) can be selected via the Product Configurator.If no particular operating language has been selected, the local display is delivered from the factory<br/>with English.

The operating language can be changed subsequently via the **Language** parameter.

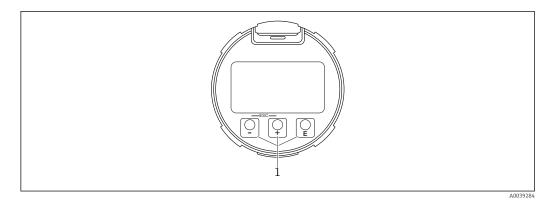
#### Local operation

## Operating keys and DIP switches on the HART electronic insert



☑ 72 Operating keys and DIP switches on the HART electronic insert

- 1 Operating key for reset password (for Bluetooth login and Maintenance user role)
- 1+2 Operating keys for device reset (as-delivered state)
- 2 Operating key II (only for factory reset)
- 3 DIP switch for alarm current
- 4 DIP switch for locking and unlocking the device


The setting of the DIP switches on the electronic insert has priority over the settings made via other operation methods (e.g. FieldCare/DeviceCare).

## Local display

## Device display (optional)

Functions:

- Display of measured values and fault and notice messages
- Background lighting, which switches from green to red in the event of an error
- The device display can be removed for easier operation



■ 73 Graphic display with optical operating keys (1)

| Remote operation          | Via HART protocol                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | Via service interface (CDI)                                                                                                                                                                                                                                                                                                                                                              |
|                           | Operation via Bluetooth <sup>®</sup> wireless technology (optional)                                                                                                                                                                                                                                                                                                                      |
|                           | <ul> <li>Prerequisite</li> <li>Measuring device with display including Bluetooth</li> <li>Smartphone or tablet with Endress+Hauser SmartBlue app or PC with DeviceCare from version 1.07.05 or FieldXpert SMT70</li> </ul>                                                                                                                                                               |
|                           | The connection has a range of up to 25 m (82 ft). The range can vary depending on environmental conditions such as attachments, walls or ceilings.                                                                                                                                                                                                                                       |
|                           | The operating keys on the display are locked as soon as the device is connected via Bluetooth.                                                                                                                                                                                                                                                                                           |
| System integration        | HART                                                                                                                                                                                                                                                                                                                                                                                     |
|                           | Version 7                                                                                                                                                                                                                                                                                                                                                                                |
| Supported operating tools | Smartphone or tablet with Endress+Hauser SmartBlue app, DeviceCare from version 1.07.05, FieldCare, DTM, AMS and PDM                                                                                                                                                                                                                                                                     |
|                           | Certificates and approvals                                                                                                                                                                                                                                                                                                                                                               |
|                           | Current certificates and approvals for the product are available at <a href="https://www.endress.com">www.endress.com</a> on the relevant product page:                                                                                                                                                                                                                                  |
|                           | 1. Select the product using the filters and search field.                                                                                                                                                                                                                                                                                                                                |
|                           | 2. Open the product page.                                                                                                                                                                                                                                                                                                                                                                |
|                           | 3. Select Downloads.                                                                                                                                                                                                                                                                                                                                                                     |
| CE mark                   | The measuring system meets the legal requirements of the applicable EU directives. These are listed in the corresponding EU Declaration of Conformity together with the standards applied.                                                                                                                                                                                               |
|                           | The manufacturer confirms successful testing of the device by affixing to it the CE mark.                                                                                                                                                                                                                                                                                                |
| ASME BPE                  | The measuring system was developed for life sciences applications. Options can be selected that meet the requirements of the ASME BPE (Bioprocessing Equipment) standard.                                                                                                                                                                                                                |
| RCM marking               | The supplied product or measuring system meets the ACMA (Australian Communications and Media<br>Authority) requirements for network integrity, interoperability, performance characteristics as well<br>as health and safety regulations. Here, especially the regulatory arrangements for electromagnetic<br>compatibility are met. The products bear the RCM marking on the nameplate. |

|                                                                       | A029561                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                       | 10(100)                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ex approvals                                                          | Additional safety instructions must be followed for use in hazardous areas. Please refer to the separate "Safety Instructions" (XA) document included in the delivery. Reference to the applicable XA can be found on the nameplate.                                                                                                                                                                       |
|                                                                       | Explosion-protected smartphones and tablets                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       | If used in hazardous areas, mobile end devices with an Ex approval must be used.                                                                                                                                                                                                                                                                                                                           |
| Functional safety                                                     | Use for level monitoring (MIN, MAX, range) up to SIL 3 (homogeneous or diverse redundancy),<br>independently evaluated by TÜV Rheinland in accordance with IEC 61508, refer to the "Functional<br>Safety Manual" for information.                                                                                                                                                                          |
| Pressure equipment with<br>permitted pressure ≤<br>200 bar (2900 psi) | Pressure instruments with a process connection that does not have a pressurized housing do not fall within the scope of the Pressure Equipment Directive, irrespective of the maximum allowable pressure.                                                                                                                                                                                                  |
|                                                                       | Reasons:                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                       | According to Article 2, point 5 of EU Directive 2014/68/EU, pressure accessories are defined as "devices with an operational function and having pressure-bearing housings".                                                                                                                                                                                                                               |
|                                                                       | If a pressure instrument does not have a pressure-bearing housing (no identifiable pressure chamber of its own), there is no pressure accessory present within the meaning of the Directive.                                                                                                                                                                                                               |
| Radio approval                                                        | Displays with Bluetooth LE have radio licenses according to CE and FCC. The relevant certification information and labels are provided on display.                                                                                                                                                                                                                                                         |
| EN 302372 radio standard                                              | The devices comply with the TLPR (Tanks Level Probing Radar) radio standard EN 302372 and are permitted for use in closed vessels. Points a to f in Annex E of EN 302372 must be observed for the installation.                                                                                                                                                                                            |
| FCC                                                                   | This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.                                                                                                                        |
|                                                                       | [Any] changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.                                                                                                                                                                                                                                                    |
|                                                                       | The devices are compliant with the FCC Code of Federal Regulations, CFR 47, Part 15, Sections 15.205, 15.207, 15.209.                                                                                                                                                                                                                                                                                      |
| Industry Canada                                                       | Canada CNR-Gen Section 7.1.3                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                       | This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) This device may not interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.                                                                                                           |
|                                                                       | Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts<br>de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas<br>produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique<br>subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. |
|                                                                       | [Any] changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.                                                                                                                                                                                                                                                    |

|                                | <ul> <li>The installation of the LPR/TLPR device shall be done by trained installers, in strict compliance with the manufacturer's instructions.</li> <li>The use of this device is on a "no-interference, no-protection" basis. That is, the user shall accept operations of high-powered radar in the same frequency band which may interfere with or damage this device. However, devices found to interfere with primary licensing operations will be required to be removed at the user's expense.</li> <li>This device shall be installed and operated in a completely enclosed container to prevent RF emissions, which can otherwise interfere with aeronautical navigation.</li> <li>The installer/user of this device shall ensure that it is at least 10 km from the Dominion Astrophysical Radio Observatory (DRAO) near Penticton, British Columbia. The coordinates of the DRAO are latitude 49°19'15" N and longitude 119°37'12" W. For devices not meeting this 10 km separation (e.g., those in the Okanagan Valley, British Columbia,) the installer/user must coordinate with, and obtain the written concurrence of, the Director of the DRAO before the equipment can be installed or operated. The Director of the DRAO may be contacted at 250-497-2300 (tel.) or 250-497-2355 (fax). (Alternatively, the Manager, Regulatory Standards Industry Canada, may be contacted.)</li> </ul> |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Other standards and guidelines | <ul> <li>EN 60529<br/>Degrees of protection provided by enclosures (IP code)</li> <li>EN 61010-1<br/>Safety requirements for electrical equipment for measurement, control and laboratory use</li> <li>IEC/EN 61326<br/>Emission in accordance with Class A requirements A; Electromagnetic compatibility (EMC requirements)</li> <li>NAMUR NE 21<br/>Electromagnetic compatibility (EMC) of industrial process and laboratory control equipment</li> <li>NAMUR NE 43<br/>Standardization of the signal level for the breakdown information of digital transmitters with analog output signal</li> <li>NAMUR NE 53<br/>Software of field devices and signal-processing devices with digital electronics</li> <li>NAMUR NE 107<br/>Status categorization in accordance with NE 107</li> <li>NAMUR NE 131<br/>Requirements for field devices for standard applications</li> <li>IEC 61508<br/>Functional safety of safety-related electric/electronic/programmable electronic systems</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | <ul> <li><b>Detailed ordering information is available from your nearest sales organization www.addresses.endress.com or in the Product Configurator at www.endress.com:</b></li> <li>Select the product using the filters and search field.</li> <li>Open the product page.</li> <li>Select Configurator.</li> <li><b>Product Configurator - the tool for individual product configuraton</b></li> <li>Up-to-the-minute configuration data</li> <li>Depending on the device: direct input of information specific to the measuring point, such as the measuring range or operating language.</li> <li>Automatic creation of the order code and its breakdown in PDF or Excel output format</li> <li>Ability to order directly in the Endress+Hauser Online Shop</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Calibration                    | <b>Factory calibration certificate</b><br>The calibration points are spread evenly over the measuring range (0 to 100 %). The Empty calibration <b>E</b> and Full calibration <b>F</b> must be specified to define the measuring range. If this information is missing, antenna-dependent default values are used instead.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|                                | R<br>R<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                | <ul> <li>Reference point of measurement</li> <li>Minimum distance between reference point R and 100% mark</li> <li>Empty calibration</li> <li>F Full calibration</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                | Measuring range restrictionsThe following restrictions must be considered when selecting E and F:• Minimum distance between reference point R and 100% mark $A \ge 400 \text{ mm (16 in)}$ • Minimum span $F \ge 45 \text{ mm (1.77 in)}$ • Maximum value for Empty calibration $E \ge 450 \text{ mm (17.72 in)}$ (maximum 50 m (164 ft))• Calibration takes place under reference conditions .• The selected values for Empty calibration and Full calibration are only used to create the                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                | factory calibration certificate. Afterwards, the values are reset to the default values specific for the antenna. If values other than the default values are required, they must be ordered as a customized empty/full calibration.<br>Product Configurator $\rightarrow$ Optional $\rightarrow$ Service $\rightarrow$ <b>Customized empty/full calibration</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Service                        | <ul> <li>The following services, among others, can be selected using the Product Configurator.</li> <li>Cleaned of oil+grease (wetted)</li> <li>PWIS-free (paint-wetting impairment substances) <ul> <li>The plastic protective cover is excluded from the PWIS cleaning</li> <li>ANSI Safety Red coating, coated housing cover</li> <li>Set damping</li> <li>Set HART burst mode PV</li> <li>Set max. alarm current</li> <li>Bluetooth communication is disabled on delivery</li> <li>Customized empty/full calibration</li> <li>Product documentation on paper</li> <li>As an option, test reports, declarations and material test certificates can be ordered as a paper printout using the feature Service, formatProduct documentation on paper. The required documents can be selected under the feature Test, certificate, declaration and are then included with the device on delivery.</li> </ul> </li> </ul> |  |
| Test, certificate, declaration | All test reports, declarations and inspection certificates are provided electronically in the <i>Device Viewer</i> :<br>Enter the serial number from the nameplate (www.endress.com/deviceviewer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Identification                 | Measuring point (TAG)<br>The device can be ordered with a tag name.<br>Location of tag name<br>In the additional specification, select:<br>Stainless steel tag plate<br>Paper adhesive label<br>TAG provided by customer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

- RFID TAG
- RFID TAG + stainless steel tag plate
- RFID TAG + paper adhesive label
- RFID TAG + TAG provided by customer
- IEC 61406 stainless steel TAG
- IEC 61406 stainless steel TAG + NFC TAG
- IEC 61406 stainless steel TAG, stainless steel TAG
- IEC 61406 stainless steel TAG + NFC, stainless steel TAG
- IEC 61406 stainless steel TAG, plate provided
- IEC 61406 stainless steel TAG + NFC, plate provided

#### Definition of the tag name

In the additional specification, specify:

3 lines with a maximum of 18 characters per line

The specified tag name appears on the selected plate and/or on the RFID tag.

#### Presentation in the SmartBlue app

The first 32 characters of the tag name

The tag name can always be changed specifically for the measuring point via Bluetooth.

#### Display in electronic nameplate (ENP)

The first 32 characters of the tag name

For further information, please refer to SD01502F, SD02796P

Available in the Download Area of the Endress+Hauser website (www.endress.com/downloads).

# **Application packages**

# Heartbeat TechnologyThe Heartbeat Verification + Monitoring application package offers diagnostic functionality through<br/>continuous self-monitoring, the transmission of additional measured variables to an external<br/>Condition Monitoring system and the in-situ verification of devices in the application.<br/>The application package can be ordered together with the device or can be activated subsequently<br/>with an activation code. Detailed information on the order code is available via the Endress+Hauser<br/>website www.endress.com or from your local Endress+Hauser Sales Center.Heartbeat Verification<br/>Heartbeat Verification is carried out on request and supplements self-monitoring, which is<br/>performed continuously, by carrying out further tests. During verification, the system checks whether<br/>the device components comply with the factory specifications. Both the sensor and the electronics<br/>modules are included in the tests.<br/>Heartbeat Verification confirms the device function on request within the specified measuring

tolerance with a total test coverage TTC (Total Test Coverage) in percent.

Heartbeat Verification meets the requirements for metrological traceability in accordance with ISO 9001 (ISO 9001:2015 Section 7.1.5.2).

The result of the verification is either Passed or Failed. The verification data are saved in the device and optionally archived on a PC with the FieldCare asset management software or in the Netilion Library. Based on this data, a verification report is generated automatically to ensure that traceable documentation of the verification results is available.

## Heartbeat Monitoring

Several Heartbeat Monitoring wizards are available. Furthermore, additional monitoring parameters can be displayed and used for predictive maintenance or application optimization.

#### "Loop diagnostics" wizard

Using this wizard, changes in the current-voltage loop characteristics (baseline) can be used to detect unwanted installation anomalies such as creep currents caused by terminal corrosion or a deteriorating power supply that can lead to an incorrect 4-20 mA measured value.

#### Areas of application

- Detection of changes in the measuring circuit resistance due to anomalies Examples: Contact resistance or leakage currents in wiring, terminals or grounding due to corrosion and/or moisture
- Detection of faulty power supply

#### "Foam detection" wizard

This wizard configures the automatic foam detection.

Foam detection can be linked to an output variable or status information e.g. to control a sprinkler used to dissolve the foam. It is also possible to monitor the foam increase in a so called foam index. The foam index can also be linked to an output variable and can be shown on the display.

#### Preparation:

The Foam monitoring initialization should only be done without or less foam.

#### Areas of application

- Measurement in liquids
- Reliable detection of foam on the medium

#### "Buildup detection" wizard

This wizard configures the build-up detection.

#### Basic idea:

The build-up detection can, for example, be linked to a compressed-air system to clean the antenna. With the build-up monitoring the maintenance cycles can be optimized.

#### Preparation:

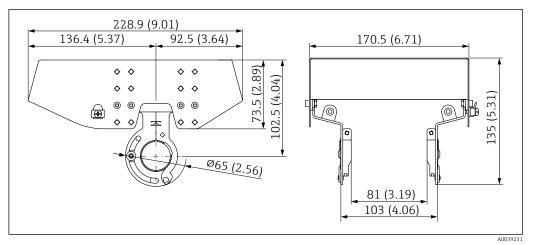
The build-up monitoring initialization should only be done without or less build-up.

#### Areas of application

- Measurement in liquids and solids
- Reliable detection of buildup on the antenna

#### **Detailed description**




Special Documentation SD02953F

# Accessories

The accessories currently available for the product can be selected at www.endress.com:

- 1. Select the product using the filters and search field.
- 2. Open the product page.
- 3. Select **Spare parts & Accessories**.

| Weather protection cover:<br>316L, XW112 | <b>r:</b> The weather protection cover can be ordered together with the device via the "Accessory encloproduct structure.                                                 |  |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                          | It is used to protect against direct sunlight, precipitation and ice.                                                                                                     |  |
|                                          | Weather protection cover 316L is suitable for the dual compartment housing made of aluminum or 316L. The delivery includes the holder for direct mounting on the housing. |  |



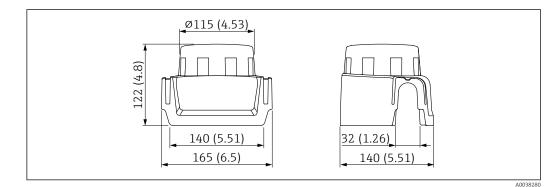
☑ 74 Dimensions of weather protection cover, 316 L, XW112. Unit of measurement mm (in)

#### Material

- Weather protection cover: 316L
- Clamping screw: A4
- Holder: 316L

## Accessory order code:

71438303

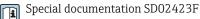

Special documentation SD02424F

Weather protection cover, plastic, XW111

The weather protection cover can be ordered together with the device via the "Accessory enclosed" product structure.

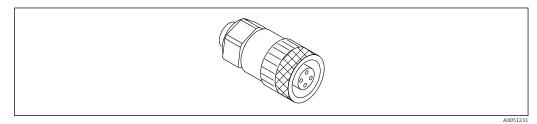
It is used to protect against direct sunlight, precipitation and ice.

The plastic weather protection cover is suitable for the single compartment housing made of aluminum. The delivery includes the holder for direct mounting on the housing.




275 Dimensions of weather protection cover, plastic, XW111. Unit of measurement mm (in)

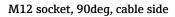
# Material

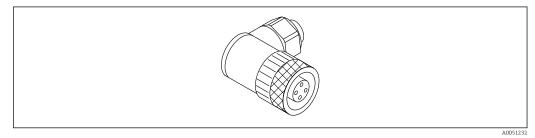

Plastic

Accessory order code: 71438291



# M12 plug-in jack


M12 socket, cable side

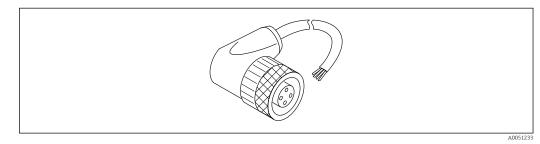



☑ 76 M12 socket, cable side

- Material:
  - Body: PBT
  - Union nut: nickel-plated die-cast zinc
  - Seal: NBR
- Degree of protection (fully locked): IP67
- Pg coupling: Pg7
- Order code: 52006263

Special documentation SD02586F

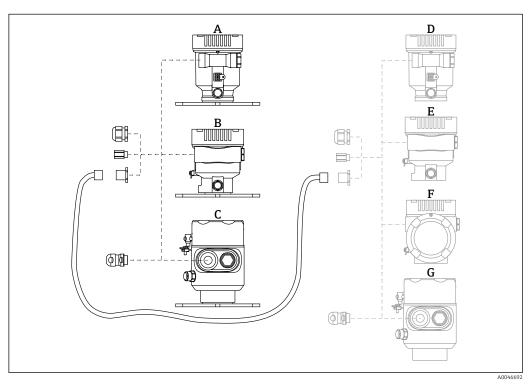





🖻 77 M12 socket, angled

- Material:
  - Body: PBT
  - Union nut: nickel-plated die-cast zinc
  - Seal: NBR
- Degree of protection (fully locked): IP67
- Pg coupling: Pg7
- Order code: 71114212

Special documentation SD02586F


# M12 socket, 100deg, 5 m (16 ft) cable



🖻 78 M12 socket, 100deg, 5 m (16 ft) cable

|                       | <ul> <li>M12 socket material: <ul> <li>Body: TPU</li> <li>Union nut: nickel-plated die-cast zinc</li> </ul> </li> <li>Cable material: <ul> <li>PVC</li> </ul> </li> <li>Cable colors</li> <li>1 = BN = brown</li> <li>2 = WH = white</li> <li>3 = BU = blue</li> <li>4 = BK = black</li> </ul> <li>Order code: 52010285</li> <li>Special documentation SD02586F</li> |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Remote display FHX50B | The remote display is ordered via the Product Configurator.                                                                                                                                                                                                                                                                                                          |

If the remote display is to be used, the device version  $\ensuremath{\textbf{Prepared}}$  for display FHX50B must be ordered.

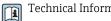


- A Single compartment housing, plastic, remote display
- *B* Single compartment housing, aluminum, remote display
- *C* Single-compartment housing, 316L hygiene, remote display
- *D* Device side, single compartment housing, plastic, prepared for FHX50B display
- *E* Device side, single compartment housing, aluminum, prepared for FHX50B display
- *F* Device side, dual compartment housing, L-shaped, prepared for FHX50B display
- *G* Device side, single compartment housing, 316 L hygiene, prepared for FHX50B display

## Single compartment housing material, remote display

- Aluminum
- Plastic

# Degree of protection:


- IP68 / NEMA 6P
- IP66 / NEMA 4x

# Connecting cable:

- Connecting cable (option) up to 30 m (98 ft)
- Standard cable supplied by customer up to 60 m (197 ft) Recommendation: EtherLine<sup>®</sup>-P CAT.5e from LAPP.

|                                | Specification of customer-supplied connecting cable Push-in CAGE CLAMP® connection technology, push actuation <ul> <li>Conductor cross-section:</li> <li>Solid conductor 0.2 to 0.75 mm² (24 to 18 AWG)</li> <li>Fine-stranded conductor 0.2 to 0.75 mm² (24 to 18 AWG)</li> <li>Fine-stranded conductor; with insulated ferrule 0.25 to 0.34 mm²</li> <li>Fine-stranded conductor; without insulated ferrule 0.25 to 0.34 mm²</li> <li>Stripping length 7 to 9 mm (0.28 to 0.35 in)</li> <li>Outer diameter: 6 to 10 mm (0.24 to 0.4 in)</li> <li>Maximum cable length: 60 m (197 ft)</li> </ul> Ambient temperature: <ul> <li>-40 to +80 °C (-40 to +176 °F)</li> <li>Option: -50 to +80 °C (-58 to +176 °F)</li> </ul> Special documentation SD02991F |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gas-tight feedthrough          | Chemically inert glass feedthrough, which prevents gases from entering the electronics housing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                | Can optionally be ordered as "Accessory mounted" via the product structure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Process adapter, M24           | For details, refer to TI00426F/00/EN "Weld-in adapters, process adapters and flanges".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Commubox FXA195 HART           | For intrinsically safe HART communication with FieldCare via the USB interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                | Technical Information TI00404F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| HART loop converter HMX50      | Is used to evaluate and convert dynamic HART process variables to analog current signals or limit values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | Order number:<br>71063562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | Technical Information TI00429F and Operating Instructions BA00371F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FieldPort SWA50                | Intelligent Bluetooth® and/or WirelessHART adapter for all HART field devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | Technical Information TI01468S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Wireless HART adapter<br>SWA70 | The WirelessHART adapter is used for the wireless connection of field devices. It can be easily integrated into field devices and existing infrastructures, offers data protection and transmission safety and can be operated in parallel with other wireless networks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                | Operating Instructions BA00061S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Fieldgate FXA42                | Fieldgates enable communication between connected 4 to 20 mA, Modbus RS485 and Modbus TCP devices and SupplyCare Hosting or SupplyCare Enterprise. The signals are transmitted either via Ethernet TCP/IP, WLAN or cellular radio (UMTS). Advanced automation capabilities are available, such as an integrated Web-PLC, OpenVPN and other functions.                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                | Technical Information TI01297S and Operating Instructions BA01778S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Field Xpert SMT70              | Universal, high-performance tablet PC for device configuration in Ex Zone 2 and non-Ex areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                | Technical Information TI01342S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DeviceCare SFE100              | Configuration tool for HART, PROFIBUS and FOUNDATION Fieldbus field devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                | Technical Information TI01134S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FieldCare SFE500               | FDT-based plant asset management tool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.



Technical Information TI00028S

| Memograph M RSG45 | The Advanced Data Manager is a flexible and powerful system for organizing process values.                                                                                            |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | The Memograph M is used for electronic acquisition, display, recording, analysis, remote transmission and archiving of analog and digital input signals as well as calculated values. |
|                   | Technical Information TI01180R and Operating Instructions BA01338R                                                                                                                    |
| RN42              | Single-channel active barrier with wide-range power supply for safe electrical isolation of 4 to 20 mA standard signal circuits, HART transparent.                                    |
|                   | Technical Information TI01584K and Operating Instructions BA02090K                                                                                                                    |

# **Documentation**

The following document types are available in the Downloads area of the Endress+Hauser website (www.endress.com/downloads), depending on the device version:

| Document type                                           | Purpose and content of the document                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Technical Information (TI)                              | <b>Planning aid for your device</b><br>The document contains all the technical data on the device and provides<br>an overview of the accessories and other products that can be ordered for<br>the device.                                                                                                                                 |
| Brief Operating Instructions (KA)                       | <b>Guide that takes you quickly to the 1st measured value</b><br>The Brief Operating Instructions contain all the essential information<br>from incoming acceptance to initial commissioning.                                                                                                                                              |
| Operating Instructions (BA)                             | Your reference document<br>The Operating Instructions contain all the information that is required in<br>various phases of the life cycle of the device: from product identification,<br>incoming acceptance and storage, to mounting, connection, operation<br>and commissioning through to troubleshooting, maintenance and<br>disposal. |
| Description of Device Parameters<br>(GP)                | <b>Reference for your parameters</b><br>The document provides a detailed explanation of each individual<br>parameter. The description is aimed at those who work with the device<br>over the entire life cycle and perform specific configurations.                                                                                        |
| Safety instructions (XA)                                | Depending on the approval, safety instructions for electrical equipment in hazardous areas are also supplied with the device. These are an integral part of the Operating Instructions.<br>The nameplate indicates which Safety Instructions (XA) apply to the device.                                                                     |
| Supplementary device-dependent<br>documentation (SD/FY) | Always comply strictly with the instructions in the relevant<br>supplementary documentation. The supplementary documentation is a<br>constituent part of the device documentation.                                                                                                                                                         |

# **Registered trademarks**

## HART®

Registered trademark of the FieldComm Group, Austin, Texas, USA

# Bluetooth®

The Bluetooth® word mark and logos are registered trademarks owned by the Bluetooth SIG, Inc. and any use of such marks by Endress+Hauser is under license. Other trademarks and trade names are those of their respective owners.

## Apple®

Apple, the Apple logo, iPhone, and iPod touch are trademarks of Apple Inc., registered in the U.S. and other countries. App Store is a service mark of Apple Inc.

# Android®

Android, Google Play and the Google Play logo are trademarks of Google Inc.

# KALREZ<sup>®</sup>, VITON<sup>®</sup>

Registered trademarks of DuPont Performance Elastomers L.L.C., Wilmington, DE USA

# TRI-CLAMP®

Registered trademark of Ladish & Co., Inc., Kenosha, USA



www.addresses.endress.com

