Safety Instructions **Micropilot FMR56/57**

4-20 mA HART

ATEX, IECEx: Ex ta IIIC T₂₀₀ xx°C Da

Ex ta/tb IIIC T85°C Da/Db

Micropilot FMR56/57

4-20 mA HART

Table of contents

Associated documentation	4
Supplementary documentation	4
Certificates and declarations	4
Manufacturer address	4
Other standards	5
Extended order code	5
Safety instructions: General	9
Safety instructions: Specific conditions of use	9
Safety instructions: Installation	1
Temperature tables	2
Connection data	4

Associated documentation

All documentation is available on the Internet:

www.endress.com/Deviceviewer

(enter the serial number from the nameplate).

If not yet available, a translation into EU languages can be ordered

To commission the device, please observe the Operating Instructions pertaining to the device:

BA01048F

Supplementary documentation

Explosion protection brochure: CP00021Z

The explosion protection brochure is available on the Internet: www.endress.com/Downloads

Certificates and declarations

EU Declaration of Conformity

Declaration Number:

EU 00954

The EU Declaration of Conformity is available on the Internet: www.endress.com/Downloads

EU type-examination certificate

Certificate number:

PTB 12 ATEX 2018 X

List of applied standards: See EU Declaration of Conformity.

IEC Declaration of Conformity

Certificate number:

IECEx PTB 12.0044 X

Affixing the certificate number certifies conformity with the following standards (depending on the device version):

■ IEC 60079-0:2017

■ IEC 60079-11:2011

■ IEC 60079-31:2013

Manufacturer address

Endress+Hauser SE+Co. KG

Hauptstraße 1

79689 Maulburg, Germany

Address of the manufacturing plant: See nameplate.

Other standards

Among other things, the following standards shall be observed in their current version for proper installation:

- IEC/EN 60079-14: "Explosive atmospheres Part 14: Electrical installations design, selection and erection"
- EN 1127-1: "Explosive atmospheres Explosion prevention and protection - Part 1: Basic concepts and methodology"

Extended order code

The extended order code is indicated on the nameplate, which is affixed to the device in such a way that it is clearly visible. Additional information about the nameplate is provided in the associated Operating Instructions.

Structure of the extended order code

FMR5x	-	******	+	A*B*C*D*E*F*G*
(Device		(Basic		(Optional
type)		specifications)		specifications)

* = Placeholder

At this position, an option (number or letter) selected from the specification is displayed instead of the placeholders.

Basic specifications

The features that are absolutely essential for the device (mandatory features) are specified in the basic specifications. The number of positions depends on the number of features available.

The selected option of a feature can consist of several positions.

Optional specifications

The optional specifications describe additional features for the device (optional features). The number of positions depends on the number of features available. The features have a 2-digit structure to aid identification (e.g. JA). The first digit (ID) stands for the feature group and consists of a number or a letter (e.g. J = Test, Certificate). The second digit constitutes the value that stands for the feature within the group (e.g. A = 3.1 material (wetted parts), inspection certificate).

More detailed information about the device is provided in the following tables. These tables describe the individual positions and IDs in the extended order code which are relevant to hazardous locations.

Extended order code: Micropilot

The following specifications reproduce an extract from the product structure and are used to assign:

- This documentation to the device (using the extended order code on the nameplate).
- The device options cited in the document.

Device type

FMR56, FMR57

Basic specifications

Position 1, 2 (Approval)			
Selected option		Description	
FMR5x	BE 1)	ATEX II 1 D Ex ta IIIC T ₂₀₀ xx°C Da	
	BF ²⁾	ATEX II 1/2 D Ex ta/tb IIIC T85°C Da/Db	
	IE 3)	IECEX Ex ta IIIC T ₂₀₀ xx°C Da	
	IF 4)	IECEx Ex ta/tb IIIC T85°C Da/Db	

- 1) The designation changes in connection with Position 4 = M, N: II 1 D Ex ta [ia Da] IIIC T_{200} xx°C Da
- 2) The designation changes in connection with Position 4 = M, N: II 1/2 D Ex ta/tb [ia Da] IIIC T85°C Da/Db
- 3) The designation changes in connection with Position 4 = M, N: Ex ta [ia Da] IIIC T₂₀₀ xx°C Da
- 4) The designation changes in connection with Position 4 = M, N: Ex ta/tb [ia Da] IIIC T85 $^{\circ}$ C Da/Db

Position 3 (Position 3 (Power Supply, Output)			
Selected option		Description		
FMR5x	Α	2-wire, 4-20 mA HART		
	В	2-wire, 4-20 mA HART, switch output (PFS)		
	С	2-wire, 4-20 mA HART, 420 mA		
	K 1)	4-wire, 90-253 VAC; 4-20 mA HART		
	L 1)	4-wire, 10,4-48 VDC; 4-20 mA HART		

1) Only in connection with Position 1, 2 = BF, IF

Position 4 (Display, Operation)			
Selected option		Description	
FMR5x	Α	Without, via communication	
	С	SD02, 4-line, push buttons + data backup function	
	Е	SD03, 4-line, illum., touch control + data backup function	
	M 1)	Prepared for display FHX50 + custom connection	
	N 1)	Prepared for display FHX50 + NPT1/2"	

1) FHX50 is approved according to DEK12.0046X or DEKRA 12ATEX0151X.

Position 5 (Housing)			
Selected option		Description	
FMR57	В	GT18 dual compartment, 316L	
FMR5x	С	GT20 dual compartment, Alu coated	

Position 6 (Electrical Connection)			
Selected option		Description	
FMR5x	Α	Gland M20, IP66/68 NEMA4X/6P	
	В	Thread M20, IP66/68 NEMA4X/6P	
	С	Thread G1/2, IP66/68 NEMA4X/6P	
	D	Thread NPT1/2, IP66/68 NEMA4X/6P	

Position 7	Position 7, 8 (Antenna)			
Selected option		Description		
FMR56	BN	Horn 80 mm/3", PP cladded, -4080°C		
	BR	Horn 100 mm/4", PP cladded, -4080°C		
FMR57	Bx	Horn (different sizes)		
	Fx	Parabolic (different sizes)		
1 1	wn in the te	emperature tables obliows:		

Position 9, 10 (Seal)			
Selected option		Description	
FMR57	A6	Viton GLT, -40200°C	
	D4	Graphite, -40400°C (HT)	
	n in the te	imperature tables allows:	

Position 1	Position 11-13 (Process Connection)			
Selected o	ption	Description		
FMR56	UAE	Mounting bracket		
	XR0	Connection, without flange/mounting bracket		
	XxG	Slip on flange (different sizes)		
FMR57	Axx Cxx Kxx	Flange (different sizes)		
	RxJ	Thread, 316L		
	XxJ	Align. device (different sizes)		
	XxJ Align. device (different sizes) Shown in the temperature tables exemplary as follows:			

Position 14 (Air Purge Connection)		
Selected option		Description
FMR57	1	G1/4
	2	NPT1/4

Optional specifications

ID Nx, Ox (A	ID Nx, Ox (Accessory Mounted)				
Selected op	tion	Description			
FMR5x	NF 1)	Bluetooth			
FMR57	OP OT	Antenna extension (different sizes)			
	OW	Horn protection, PTFE, no air purge possible			

1) Only in connection with Position 4 = C, E

Safety instructions: General

- The device is intended to be used in explosive atmospheres as defined in the scope of IEC 60079-0 or equivalent national standards. If no potentially explosive atmospheres are present or if additional protective measures have been taken: The device may be operated according to the manufacturer's specifications.
- Staff must meet the following conditions for mounting, electrical installation, commissioning and maintenance of the device:
 - Be suitably qualified for their role and the tasks they perform
 - Be trained in explosion protection
 - Be familiar with national regulations
- Install the device according to the manufacturer's instructions and national regulations.
- Do not operate the device outside the specified electrical, thermal and mechanical parameters.
- Only use the device in media to which the wetted materials have sufficient durability.
- Avoid electrostatic charging:
 - Of plastic surfaces (e.g. enclosure, sensor element, special varnishing, attached additional plates, ...)
 - Of isolated capacities (e.g. isolated metallic plates)
- Alterations to the device can affect the explosion protection and must be carried out by staff authorized to perform such work by Endress+Hauser.
- Refer to the temperature tables for the relationship between the permitted ambient temperature for the sensor and/or transmitter, depending on the range of application and the temperature class.

Safety instructions: Specific conditions of use Permitted ambient temperature range at the electronics enclosure: –40 °C \leq T_a \leq +80 °C

- Observe the information in the temperature tables.
- In the case of process connections made of polymeric material or with polymeric coatings, avoid electrostatic charging of the plastic surfaces.
- To avoid electrostatic charging: Do not rub surfaces with a dry cloth.
- In the event of additional or alternative special varnishing on the enclosure or other metal parts or for adhesive plates:
 - Observe the danger of electrostatic charging and discharge.
 - Do not install in the vicinity of processes (≤ 0.5 m) generating strong electrostatic charges.

Basic specification, Position 1, 2 = BF, IF

- The probe must not be subjected to abrasive or corrosive medium that may adversely affect the partition for the zone separation.
- The zone partition wall of the device is a dust-tight feed through made of stainless-steel adapter and glass conductor bushing.

Sensor	Zone partition wall material	Wall thickness	Diameter	
FMR5x	Stainless-steel adapter	6 mm 10 mm		
	Glass conductor bushing	2.6 mm	2.4 mm	
	Welding seam	> 0.2 mm	-	

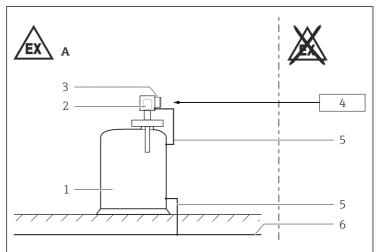
Device type FMR56

An antenna coated with non-conductive material can be used if avoiding electrostatic charging (e.g. through friction, cleaning, maintenance, strong medium flow).

Device type FMR57 and Optional specification, ID Nx, Ox = OW An antenna coated with non-conductive material can be used if avoiding electrostatic charging (e.g. through friction, cleaning, maintenance, strong medium flow).

Device type FMR57 and Basic specification, Position 11-13 = XxJ

- Changing the position of the alignment device must be impossible:
 - After the alignment of the antenna via the pivot bracket
 - $\, \blacksquare \,$ After tightening of the clamping flange
 - After setting the damping ring (torque 15 Nm)
- Degree of protection IP67 must be fulfilled.


Device type FMR57 and Basic specification, Position 14 = 1, 2

- If equipment with Ga/Gb or Da/Db is required: In the closed state the minimum degree of protection of the installation must be IP67.
- After removing the air purge connection: Lock the opening with a suitable plug.
 - Torque: 6-7 Nm
 - For Da/Db: thread engagement > 5 turns
- Degree of protection IP67 must be fulfilled.

Device type FMR57 and Optional specification, ID Nx, Ox = OM, ON, OR, OS, OP, OT

Avoid contact between sensor and tank wall. Take into account tank fittings and flow conditions (avoid sparks caused by impact and friction).

Safety instructions: Installation

A0025537

- A Zone 20, Zone 21
- 1 Tank; Zone 20, Zone 21
- 2 Electronics compartment Ex ia; Electronic insert
- 3 Connection compartment Ex tb
- 4 Power supply
- 5 Potential equalization line
- 6 Potential equalization
- After aligning (rotating) the enclosure, retighten the fixing screw (see Operating Instructions).
- Install the device to exclude any mechanical damage or friction during the application. Pay particular attention to flow conditions and tank fittings.
- Only use certified cable entries or sealing plugs. The metal sealing plugs supplied meet this requirement.
- Before operation:
 - Screw in the cover all the way.
 - Tighten the securing clamp on the cover.

 After mounting and connecting the antenna, ingress protection of the enclosure must be at least IP65.

- Perform the following to achieve the degree of protection:
 - Screw the cover tight.
 - Mount the cable entry correctly.
- Continuous service temperature of the connecting cable: -40 °C to $\geq +85$ °C; in accordance with the range of service temperature taking into account additional influences of the process conditions ($T_{a,min}$), ($T_{a,max} + 20$ K).

Basic specification, Position 3 = KConnect the protective ground to the device.

Basic specification, Position 4 = N

Observe the requirements according to IEC/EN 60079-14 for conduit systems and the wiring and installation instructions of the suitable Safety Instructions (XA). In addition, observe national regulations and standards for conduit systems.

Intrinsic safety

- The device can be connected to the Endress+Hauser FXA291 service tool: refer to the Operating Instructions.
- The device can be equipped with the Bluetooth® module: refer to the Operating Instructions and specifications in the "Bluetooth® module" chapter.

Bluetooth® module

Optional specification, ID Nx, Ox = NF

- With Bluetooth® module installed: Use of external hardware not allowed (e.g. external display, service interface).
- The intrinsically safe input power circuit of the Bluetooth® module is isolated from ground.

Temperature tables

- → Safety Instructions: XA02404F
- The safety instructions for temperature tables are available on the Internet: www.endress.com/Downloads
- Basic specification, Position 1, 2 = BF, IF in connection with Basic specification, Position 3 = B

 Deratings are based on a power consumption of 1 W (PFS);

 → 🖺 18.

Explanation of how to use the temperature tables

Unless otherwise indicated, the positions always refer to the basic specification.

Basic specification, Position 1, 2 = BE, IE

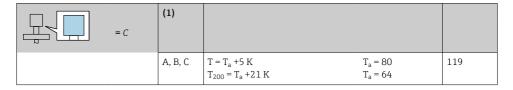
1st column: Position 5 = A, B, ...

2nd column: Position 3 = A, B, ...

• (1): 1 channel used

• (2): 2 channels used

3rd column: Calculation of temperature values and maximum permissible ambient temperature in $^{\circ}\text{C}$


4th column: Maximum surface temperature in °C

Example table

 T_a : Ambient temperature in ${}^{\circ}C$

T₂₀₀: Deposited material with a layer of 200 mm

Basic specification, Position 1, 2 = BF, IF

1st column: Position 5 = A, B, ...

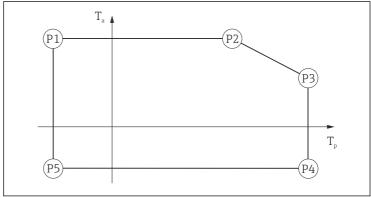
2nd column: Position 3 = A, B, ...

■ (1): 1 channel used

• (2): 2 channels used

3rd column: Process temperature

Column P1 to P5: Position (temperature value) on the axes of the derating


■ T_a: Ambient temperature in °C

■ T_n: Process temperature in °C

Example table

	(1)		P1		P2		Р3		P4		P5	
= C			T _p	Ta	T _p	Ta						
	A, B, C	135	-40	80	80	80	135	67	135	-40	-40	-40
		200	-40	80	80	80	200	52	200	-40	-40	-40

Example diagrams of possible deratings

10033052

Connection data

Cable entry: Connection compartment

Ex ta, Ex tb

Cable gland: Basic specification, Position 6 = A

Basic specification, Position 5 = B, C

preferably for Position 5 = B

Thread	Clamping range	Material	Sealing insert	O-ring
M20x1,5	ø 7 to 12 mm	1.4404	NBR	EPDM (ø 17x2)

preferably for Position 5 = C

Thread	Clamping range	Material	Sealing insert	O-ring
M20x1,5	ø 8 to 10.5 mm	Ms, nickel-plated	Silicone	EPDM (ø 17x2)

- The tightening torque refers to cable glands installed by the manufacturer:
 - Recommended: 3.5 Nm
 - Maximum: 10 Nm
- This value may be different depending on the type of cable.
 However, the maximum value must not be exceeded.

> • Only suitable for fixed installation. The operator must pay attention to a suitable strain relief of the cable.

- The cable glands are suitable for a low risk of mechanical danger (4 Joule) and must be mounted in a protected position if larger impact energy levels are expected.
- To maintain the ingress protection of the enclosure: Install the enclosure cover, cable glands and blind plugs correctly.

Cable entry: Electronics compartment

Cable gland: *Basic specification*, *Position* 4 = M

Basic specification, Position 5 = B, C

preferably for Position 5 = B

Thread	Clamping range	Material	Sealing insert	O-ring
M16x1,5	ø 5 to 10 mm	1.4404	PA/NBR	NBR (ø 13x2)

preferably for Position 5 = C

Thread	Clamping range	Material	Sealing insert	O-ring
M16x1,5	ø 5 to 10 mm	Ms, nickel-plated	PA/NBR	NBR (ø 13x2)

- The tightening torque refers to cable glands installed by the manufacturer:
 - Recommended: 3.5 Nm
 - Maximum: 5 Nm
 - This value may be different depending on the type of cable. However, the maximum value must not be exceeded.
- Only suitable for fixed installation. The operator must pay attention to a suitable strain relief of the cable.
- The cable glands are suitable for a low risk of mechanical danger (4 Joule) and must be mounted in a protected position if larger impact energy levels are expected.
- To maintain the ingress protection of the enclosure: Install the enclosure cover, cable glands and blind plugs correctly.

Terminals: Connection compartment

Optional specification, ID Nx, Ox = NFWhen using the Bluetooth® module: No changes to the connection values.

Ex ta

Basic specification, Position 3 = A

Terminal 1 (+), 2 (-)	
Power supply 1)	
$\begin{aligned} &U_N = 35 \ V_{DC} \\ &U_m = 250 \ V \\ &I_{Fault} = 54 \ mA \end{aligned}$	

1) Observe "Power limitation 4 to 20 mA"

Basic specification, Position 3 = B

Terminal 1 (+), 2 (-)	Terminal 3 (+), 4 (-)
Power supply 1)	Switch output (PFS) ²⁾
$\begin{aligned} &U_{N}=35\ V_{DC}\\ &U_{m}=250\ V\\ &I_{Fault}=54\ mA \end{aligned}$	$U_{N} = 35 V_{DC}$ $U_{m} = 250 V$

- 1) Observe "Power limitation 4 to 20 mA"
- 2) Observe "Power limitation Switch output (PFS)"

Basic specification, Position 3 = C

Terminal 1 (+), 2 (-)	Terminal 3 (+), 4 (-)
Power supply 1)	Output 4 to 20 mA ¹⁾
$ \begin{aligned} &U_N = 30 \ V_{DC} \\ &U_m = 250 \ V \\ &I_{Fault} = 54 \ mA \end{aligned} $	$U_{N} = 30 V_{DC}$ $U_{m} = 250 V$ $I_{Fault} = 54 mA$

1) Observe "Power limitation 4 to 20 mA"

Power limitation 4 to 20 mA

Basic specification, Position 3 = A, B, C

The power consumption of each 4 to 20 mA channel has to be limited to a defined value.

This is achieved by:

- using a power supply with power limitation:
 - $I_{max} = 54 \text{ mA} \text{ and } 15.74 \text{ V}$
 - Basic specification, Position 3 = A, B: $U \le 35$ V
 - Basic specification, Position 3 = C: $U \le 30 \text{ V}$
- monitoring the current and cutting off the supply when 22 mA are exceeded.
- reducing the maximum voltage at the terminals of the device depending on U_N and each channel used (by using a suitable power supply, a limiting resistor or both).
- The limiting resistor is installed outside the device and may be a load/communication resistor or a relay coil. When using it, pay attention to correct load and temperature effects.

Table for minimum external resistors necessary to limit the power consumption in dependence on the supply source:

Power load	0.85 W
Terminal voltage U	15.74 V
I _{Fault}	0.054 A

U _N [V]	R _V min
35	356.7 Ω
34	338.1 Ω
33	319.6 Ω
32	301.1 Ω
31	282.6 Ω
30	264.1 Ω
29	245.5 Ω
28	227.0 Ω
27	208.5 Ω
26	190.0 Ω
25	171.5 Ω
24	152.9 Ω
23	134.4 Ω
22	115.9 Ω
21	97.4 Ω
20	78.9 Ω

U _N [V]	R _V min
19	60.4 Ω
18	41.8 Ω
17	23.3 Ω
16	4.8 Ω
15	0 Ω

Power limitation Switch output (PFS)

Basic specification, Position 3 = B

To limit the temperature rise it is necessary to limit the power consumption of the Switch output (PFS).

This is achieved by:

- using a supply voltage by consideration of Ri_{Fault} and terminal voltage U = 19.5 V.
- using a power supply with power limitation:
 - $I_{max} = 51.3 \text{ mA} \text{ and } 19.5 \text{ V}$
 - Basic specification, Position 3 = B: U ≤ 35 V
- using an external resistor.
- reducing the maximum voltage at the terminals of the device depending on U_N and the channel used (by using a suitable power supply, a limiting resistor or both).
- The limiting resistor is installed outside the device and may be a load/communication resistor or a relay coil. When using it, pay attention to correct load and temperature effects.

Table of external resistors depending on power load and supply voltage:

Power load	1.0 W
Terminal voltage U	19.5 V
I _{Fault}	0.0513 A
Ri _{Fault}	380.3 Ω

U _N [V]	R _V min
35	302 Ω
34	283 Ω
33	263 Ω
32	244 Ω
31	224 Ω
30	205 Ω
29	185 Ω
28	166 Ω
27	146 Ω
26	127 Ω
25	107 Ω
24	88 Ω
23	68 Ω
22	49 Ω
21	29 Ω
20	10 Ω
19	ΟΩ

Ex tb

Basic specification, Position 3 = A

Terminal 1 (+), 2 (-) $Power supply \\ U_N = 35 \ V_{DC} \\ U_m = 250 \ V \\ I_{max} = 22 \ mA$

Basic specification, Position 3 = B

The power consumption of I/O modules with passive PFS output can be limited for certain applications.

- Recommended: Power consumption = 1 W. This is obtained for a supply voltage at the terminals of 27 V_{DC}.
- For higher supply voltages (U_{max}) : Insert a serial resistance (R_V) in order to limit the power consumption, see table below.

Table for the PFS serial resistance (R_V) :

Power consumption	1.0 W
Total power consumption	1.88 W
Internal resistance R _I	760 Ω

U _{max} [V]	R _V min
35	205 Ω
34	177 Ω
33	150 Ω
32	122 Ω
31	95 Ω
30	67 Ω
29	39 Ω
28	12 Ω
27	0 Ω

For values associated with a higher or lower internal power consumption please contact Endress+Hauser.

Terminal 1 (+), 2 (-)	Terminal 3 (+), 4 (-)
Power supply	Switch output (PFS)
$\begin{aligned} &U_{N}=35\ V_{DC}\\ &U_{m}=250\ V\\ &I_{max}=22\ mA \end{aligned}$	$\begin{array}{l} U_N = 35 \ V_{DC} \\ U_m = 250 \ V \end{array}$

Basic specification, Position 3 = C

Terminal 1 (+), 2 (-)	Terminal 3 (+), 4 (-)
Power supply	Output 4 to 20 mA
$\begin{array}{l} U_N = 30 \ V_{DC} \\ U_m = 250 \ V \\ I_{max} = 22 \ mA \end{array}$	$\begin{aligned} &U_{N}=30\ V_{DC}\\ &U_{m}=250\ V\\ &I_{max}=22\ mA \end{aligned}$

Basic specification, Position 3 = K

Terminal 1 (+), 2 (-)	Terminal 3 (+), 4 (-)
Power supply	Output 4 to 20 mA
$\begin{array}{l} U_{N} = 253 \; V_{AC}; 50/60 \; Hz \\ U_{m} = 250 \; V \\ I_{N} = 25 \; mA \\ I_{max} = 160 \; mA \end{array}$	$\begin{array}{l} U_N = 22 \ V_{DC} \\ U_m = 250 \ V \\ I_{max} = 22 \ mA \end{array} \label{eq:uN}$

Basic specification, Position 3 = L

Terminal 1 (+), 2 (-)	Terminal 3 (+), 4 (-)
Power supply	Output 4 to 20 mA
$\begin{array}{l} U_N = 48 \ V_{DC} \\ U_m = 250 \ V \\ I_N = 112 \ mA \\ I_{max} = 300 \ mA \end{array} \label{eq:un}$	$\begin{array}{l} U_{N} = 22 \; V_{DC} \\ U_{m} = 250 \; V \\ I_{max} = 22 \; mA \end{array}$

Terminals: Electronics compartment

Ex ia

Service interface (CDI)

Taking the following values into consideration, the device can be connected to the certified Endress+Hauser FXA291 service tool or a similar interface:

Service interfac	ce												
U_i = 7.3 V effective inner inductance L_i = negligible effective inner capacitance C_i = negligible													
$U_0 = 7.3 \text{ V}$ $I_0 = 100 \text{ mA}$ $P_0 = 160 \text{ mW}$													
L_o (mH) =	5.00	2.00	1.00	0.50	0.20	0.15	0.10	0.05	0.02	0.01	0.005	0.002	0.001
$C_o (\mu F)^{1} =$	0.73	1.20	1.60	2.00	2.60	-	3.20	4.00	5.50	7.30	10.00	12.70	12.70
$C_o (\mu F)^{2} =$	-	0.49	0.90	1.40	-	2.00	-	-	-	-	-	-	-

- 1) Values according to PTB "ispark" program
- 2) Values according to IEC/EN 60079-25, Annex C or equivalent national standards

www.addresses.endress.com