Safety Instructions

Micropilot FMR50/51/52/53/54

PROFIBUS PA, FOUNDATION Fieldbus

ATEX, IECEx: Ex ia IIC T6 Ga/Gb

Ex ia/db [ia Ga] IIC T6 Ga/Gb

Solutions

Micropilot FMR50/51/52/53/54

PROFIBUS PA, FOUNDATION Fieldbus

Table of contents

Associated documentation	4
Supplementary documentation	4
General notes: Combined approval	4
Certificates and declarations	5
Manufacturer address	6
Other standards	6
Extended order code	6
Safety instructions: General	11
Safety instructions: Specific conditions of use	11
Safety instructions: Installation	13
Safety instructions: Zone 0	17
Temperature tables	18
Connection data	19

Associated documentation

All documentation is available on the Internet:

www.endress.com/Deviceviewer

(enter the serial number from the nameplate).

If not yet available, a translation into EU languages can be ordered

To commission the device, please observe the Operating Instructions pertaining to the device:

PROFIBUS PA

- BA01124F (FMR50)
- BA01125F (FMR51, FMR52)
- BA01126F (FMR53, FMR54)

FOUNDATION Fieldbus

- BA01120F (FMR50)
- BA01121F (FMR51, FMR52)
- BA01122F (FMR53, FMR54)

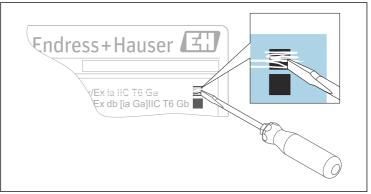
Supplementary documentation

Explosion protection brochure: CP00021Z

The explosion protection brochure is available on the Internet: www.endress.com/Downloads

General notes:

The device is suitable for installation with explosion protection "Intrinsic **Combined approval** safety Ex ia" or "Flameproof enclosure Ex db".


- Before initial commissioning, specify the type of protection.
- It is not permitted to change the type of protection after initial commissioning as this can jeopardize the explosion protection.

For aluminum enclosures:

Void out the explosion protection that is not used on the nameplate.

For stainless steel enclosures:

Using a striking tool, mark the explosion protection used, or void out the explosion protection that is not used.

A0033253

i

Depending on the type of protection used: Observe the safety instructions for installation with explosion protection "Intrinsic safety Ex ia" or "Flameproof enclosure Ex db".

Certificates and declarations

EU Declaration of Conformity

Declaration Number:

EU 00954

The EU Declaration of Conformity is available on the Internet: www.endress.com/Downloads

EU type-examination certificate

Certificate number:

PTB 12 ATEX 2018 X

List of applied standards: See EU Declaration of Conformity.

IEC Declaration of Conformity

Certificate number:

IECEx PTB 12.0044 X

Affixing the certificate number certifies conformity with the following standards (depending on the device version):

■ IEC 60079-0:2017

■ IEC 60079-1:2014

■ IEC 60079-11:2011 ■ IEC 60079-26:2021

Manufacturer address

Endress+Hauser SE+Co. KG Hauptstraße 1 79689 Maulburg, Germany

Address of the manufacturing plant: See nameplate.

Other standards

Among other things, the following standards shall be observed in their current version for proper installation:

- IEC/EN 60079-14: "Explosive atmospheres Part 14: Electrical installations design, selection and erection"
- EN 1127-1: "Explosive atmospheres Explosion prevention and protection Part 1: Basic concepts and methodology"

Extended order code

The extended order code is indicated on the nameplate, which is affixed to the device in such a way that it is clearly visible. Additional information about the nameplate is provided in the associated Operating Instructions.

Structure of the extended order code

FMR5x	-	*****	+	A*B*C*D*E*F*G*
(Device		(Basic		(Optional
type)		specifications)		specifications)

* = Placeholder

At this position, an option (number or letter) selected from the specification is displayed instead of the placeholders.

Basic specifications

The features that are absolutely essential for the device (mandatory features) are specified in the basic specifications. The number of positions depends on the number of features available.

The selected option of a feature can consist of several positions.

Optional specifications

The optional specifications describe additional features for the device (optional features). The number of positions depends on the number of features available. The features have a 2-digit structure to aid identification (e.g. JA). The first digit (ID) stands for the feature group and consists of a number or a letter (e.g. J = Test, Certificate). The second digit constitutes the value that stands for the feature within the group (e.g. A = 3.1 material (wetted parts), inspection certificate).

More detailed information about the device is provided in the following tables. These tables describe the individual positions and IDs in the extended order code which are relevant to hazardous locations.

Extended order code: Micropilot

The following specifications reproduce an extract from the product structure and are used to assign:

- This documentation to the device (using the extended order code on the nameplate).
- The device options cited in the document.

Device type

FMR50, FMR51, FMR52, FMR53, FMR54

Basic specifications

Position 1, 2 (Approval)			
Selected option		Description	
FMR5x	B4	ATEX II 1/2 G Ex ia IIC T6T1 Ga/Gb ATEX II 1/2 G Ex ia/db [ia Ga] IIC T6T1 Ga/Gb	
	I4	IECEX Ex ia IIC T6T1 Ga/Gb IECEX Ex ia/db [ia Ga] IIC T6T1 Ga/Gb	

Position 3 (Power Supply, Output)			
Selected option		Description	
FMR5x	Е	2-wire, FOUNDATION Fieldbus, switch output (PFS)	
	G	2-wire, PROFIBUS PA, switch output (PFS)	

Position 4 (Display, Operation)			
Selected option		Description	
FMR5x	A	Without, via communication	
	С	SD02, 4-line, push buttons + data backup function	
	Е	SD03, 4-line, illum., touch control + data backup function	
	L 1)	Prepared for display FHX50 + M12 connection	
	M 1)	Prepared for display FHX50 + custom connection	
	N 1)	Prepared for display FHX50 + NPT1/2"	

1) FHX50 is approved according to DEK12.0046X or DEKRA 12ATEX0151X.

Position 5 (Housing)			
Selected option		Description	
FMR51-54	В	GT18 dual compartment, 316L	
FMR5x	С	GT20 dual compartment, Alu coated	

Position 7, 8	Position 7, 8 (Antenna)			
Selected opt	ion	Description		
FMR50	BN	Horn 80 mm/3", PP cladded, -4080°C		
	BR	Horn 100 mm/4", PP cladded, -4080°C		
FMR51	Bx	Horn (different sizes)		
FMR52	ВО	Horn 50 mm/2", -196200°C, flush mount		
	BP	Horn 80 mm/3", -196200°C, flush mount		
FMR53	Сх	Rod (different sizes)		
FMR54	Ax	Without Horn		
	Bx	Horn (different sizes)		
	Dx	Planar (different sizes)		
Shown in the temperature tables exemplary as follows:				

Position 9, 10 (Seal)			
Selected option		Description	
FMR51	A5	Viton GLT, -40150°C	
	C1	Kalrez, -20150℃	
	D2	Graphite, -196450°C (HT)	
	D3	Graphite, -40250°C (XT)	

Position 9,	Position 9, 10 (Seal)			
Selected option		Description		
FMR54	A7	Viton, -20150°C (Planar)		
	A8	Viton, -40200°C		
	B4	EPDM, -40150°C		
	C2	Kalrez, -20200°C, conductive media max. 150°C		
	D1	Graphite, -196280°C (XT)		
	D2	Graphite, -196400°C (HT)		
Shown in the temperature tables exemplary as follows:				

Position 11-	Position 11-13 (Process Connection)			
Selected option		Description		
FMR51-54	Axx Cxx Kxx	Flange (different sizes)		
FMR50	GGF RGF	Thread, PVDF		
	UAE	Mounting bracket		
	XR0	Connection, without flange/mounting bracket		
	XxG	Slip on flange (different sizes)		
FMR51	Pxx	Flange (different sizes)		
	Rxx	Thread		
	Txx	Tri-Clamp		
FMR52	Mxx	Slotted-nut		
	Txx	Tri-Clamp		

Position 11	Position 11-13 (Process Connection)			
Selected option		Description		
FMR53	RxJ	Thread, 316L		
	RxF	Thread, PVDF		
Tel	vn in the to	emperature tables ollows:		

Optional specifications

ID Jx (Test, Certificate)							
Selected option	Description						
FMR51 ¹⁾ JN FMR52 FMR54 ²⁾	Ambient temperature transmitter –50°C						

- Only in connection with Position 9, 10 = D2Only in connection with Position 9, 10 = D1, D22)

ID Nx, Ox (ID Nx, Ox (Accessory Mounted)								
Selected op	tion	Description							
FMR51	OM OU OV	Antenna extension (different sizes)							
	OW	Horn protection, PTFE, no airpurge possible							
FMR54	OM ON OR OS	Antenna extension (different sizes)							

Safety instructions: General

- The device is intended to be used in explosive atmospheres as defined in the scope of IEC 60079-0 or equivalent national standards. If no potentially explosive atmospheres are present or if additional protective measures have been taken: The device may be operated according to the manufacturer's specifications.
- Staff must meet the following conditions for mounting, electrical installation, commissioning and maintenance of the device:
 - Be suitably qualified for their role and the tasks they perform
 - Be trained in explosion protection
 - Be familiar with national regulations
- Install the device according to the manufacturer's instructions and national regulations.
- Do not operate the device outside the specified electrical, thermal and mechanical parameters.
- Only use the device in media to which the wetted materials have sufficient durability.
- Avoid electrostatic charging:
 - Of plastic surfaces (e.g. enclosure, sensor element, special varnishing, attached additional plates, ...)
 - Of isolated capacities (e.g. isolated metallic plates)
- Alterations to the device can affect the explosion protection and must be carried out by staff authorized to perform such work by Endress+Hauser.
- Refer to the temperature tables for the relationship between the permitted ambient temperature for the sensor and/or transmitter, depending on the range of application and the temperature class.

Safety instructions: Specific conditions of use Permitted ambient temperature range at the electronics enclosure: –40 $^{\circ}\text{C} \leq T_a \leq +80 \,^{\circ}\text{C}$

Optional specification, ID Jx = JN

Permitted ambient temperature range at the electronics enclosure:

 $-50 \,^{\circ}\text{C} \le T_{a} \le +80 \,^{\circ}\text{C}$

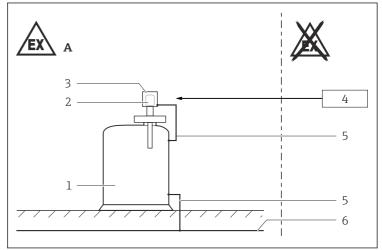
- Observe the information in the temperature tables.
- In the case of process connections made of polymeric material or with polymeric coatings, avoid electrostatic charging of the plastic surfaces.
- To avoid electrostatic charging: Do not rub surfaces with a dry cloth.

- In the event of additional or alternative special varnishing on the enclosure or other metal parts or for adhesive plates:
 - Observe the danger of electrostatic charging and discharge.
 - Do not install in the vicinity of processes (≤ 0.5 m) generating strong electrostatic charges.
- The probe must not be subjected to abrasive or corrosive medium that may adversely affect the partition for the zone separation.
- The zone partition wall of the device is a gas-tight feed through made of stainless-steel adapter and glass conductor bushing.

Sensor	Zone partition wall material	Wall thickness	Diameter	
FMR50-52	Stainless-steel adapter	6 mm	10 mm	
	Glass conductor bushing	2.6 mm	2.4 mm	
	Welding seam	> 0.2 mm	-	
FMR53	Stainless-steel adapter	14 mm	25 mm	
FMR54	Glass conductor bushing	4.8 mm	6.3 mm	
	Welding seam	> 0.2 mm	-	

Device type FMR50, FMR52, FMR53, FMR54 (planar, enamel) An antenna coated with non-conductive material can be used if avoiding electrostatic charging (e.g. through friction, cleaning, maintenance, strong medium flow).

Device type FMR51 and Optional specification, ID Nx, Ox = OW An antenna coated with non-conductive material can be used if avoiding electrostatic charging (e.g. through friction, cleaning, maintenance, strong medium flow).


Device type FMR51, FMR54 and Optional specification, ID Nx, Ox = OM, ON, OS, OU, OV

Avoid contact between sensor and tank wall. Take into account tank fittings and flow conditions (avoid sparks caused by impact and friction).

Safety instructions: Installation

Explosion protection "Intrinsic safety Ex ia"

A0025536

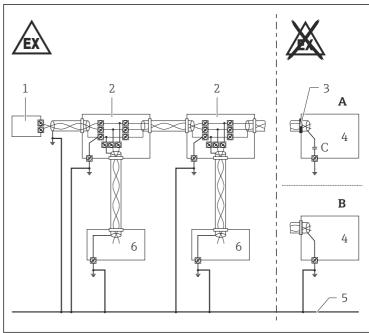
- A Zone 1
- 1 Tank: Zone 0. Zone 1
- 2 Electronic insert
- 3 Enclosure
- 4 Certified associated apparatus
- 5 Potential equalization line
- 6 Potential equalization
- After aligning (rotating) the enclosure, retighten the fixing screw (see Operating Instructions).
- Install the device to exclude any mechanical damage or friction during the application. Pay particular attention to flow conditions and tank fittings.
- Continuous service temperature of the connecting cable: -40 °C to $\ge +85$ °C; in accordance with the range of service temperature taking into account additional influences of the process conditions $(T_{a,min})$, $(T_{a,max} + 20 \text{ K})$.

Optional specification, ID Jx = JN

Continuous service temperature of the connecting cable:

-50 °C to \geq +85 °C; in accordance with the range of service temperature taking into account additional influences of the process conditions ($T_{a,min}$), ($T_{a,max}$ +20 K).

Basic specification, Position 4 = N


Observe the requirements according to IEC/EN 60079-14 for conduit systems and the wiring and installation instructions of the suitable Safety Instructions (XA). In addition, observe national regulations and standards for conduit systems.

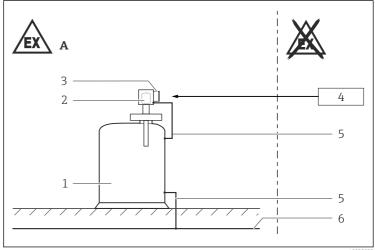
Intrinsic safety

- The device is only suitable for connection to certified, intrinsically safe equipment with explosion protection Ex ia / Ex ib.
- The intrinsically safe input power circuit of the device is isolated from ground. If the device is only equipped with one input, the dielectric strength of the input is at least $500~V_{rms}$. If the device is equipped with more than one input, the dielectric strength of each individual input to ground is at least $500~V_{rms}$, and the dielectric strength of the inputs vis-à-vis one another is also at least $500~V_{rms}$.
- Observe the pertinent guidelines when interconnecting intrinsically safe circuits.
- The device can be connected to the Endress+Hauser FXA291 service tool: refer to the Operating Instructions and specifications in the "Overvoltage protection" chapter.
- When the intrinsically safe Ex ia circuits of the device are connected to certified intrinsically safe circuits of Category Ex ib for Equipment Groups IIC or IIB, the type of protection changes to Ex ib [ia] IIC or Ex ib [ia] IIB. Regardless of the power supply, all the internal circuits correspond to Ex ia IIC type of protection (e.g. service interface, external display, sensor).

Potential equalization

- Integrate the device into the local potential equalization.
- Grounding the screen, see the following figure.

A002235


- A Version 1: Use small capacitors (e.g. 1 nF, 1500 V dielectric strength, ceramic). Total capacitance connected to the screen may not exceed 10 nF.
- B Version 2
- 1 Terminating resistor
- 2 Distributor/T box
- 3 Screen insulated
- 4 Supply unit/Segment coupler
- 5 Potential equalization (secured in high degree)
- 6 Field device

Overvoltage protection

- If an overvoltage protection against atmospheric over voltages is required: no other circuits may leave the enclosure during normal operation without additional measures.
- For installations which require overvoltage protection to comply with national regulations or standards, install the device using overvoltage protection (e.g. HAW56x from Endress+Hauser).
- Observe the safety instructions of the overvoltage protection.

Explosion protection "Flameproof enclosure Ex db"

A002553

- A Zone 1
- 1 Tank; Zone 0, Zone 1
- 2 Electronics compartment Ex ia; Electronic insert
- 3 Connection compartment Ex db
- 4 Power supply
- 5 Potential equalization line
- 6 Potential equalization
- After aligning (rotating) the enclosure, retighten the fixing screw (see Operating Instructions).
- Install the device to exclude any mechanical damage or friction during the application. Pay particular attention to flow conditions and tank fittings.
- In potentially explosive atmospheres:
 - Do not disconnect the electrical connection of the power supply circuit when energized.
 - Do not open the connection compartment cover.
- Only use certified cable entries suitable for the application. Observe national regulations and standards. Accordingly, the connection terminal does not include any ignition sources.
- When operating the transmitter enclosure at an ambient temperature under -20 °C, use appropriate cables and cable entries permitted for this application.
- When connecting through a conduit entry approved for this purpose, mount the associated sealing unit directly at the enclosure.

- Seal unused entry glands with approved sealing plugs that correspond to the type of protection. The plastic transport sealing plug does not meet this requirement and must therefore be replaced during installation.
- Before operation:
 - Screw in the cover all the way.
 - Tighten the securing clamp on the cover.
- Continuous service temperature of the connecting cable:
 -40 °C to ≥ +85 °C; in accordance with the range of service temperature taking into account additional influences of the process conditions (T_{a min}), (T_{a max} +20 K).
- Flameproof equipment with G threaded holes is not intended for new installations, but only for replacing equipment in existing installations. Use of this equipment shall comply with the local installation requirements.

Optional specification, ID Jx = JN

Continuous service temperature of the connecting cable:

-50 °C to ≥ +85 °C; in accordance with the range of service temperature taking into account additional influences of the process conditions ($T_{a,min}$), ($T_{a,max}$ +20 K).

Basic specification, Position 4 = N

Observe the requirements according to IEC/EN 60079-14 for conduit systems and the wiring and installation instructions of the suitable Safety Instructions (XA). In addition, observe national regulations and standards for conduit systems.

Intrinsic safety

The device can be connected to the Endress+Hauser FXA291 service tool: refer to the Operating Instructions.

Potential equalization

Integrate the device into the local potential equalization.

Safety instructions: Zone 0

Explosion protection "Intrinsic safety Ex ia"

- Associated devices with galvanic isolation between the intrinsically safe and non-intrinsically safe circuits are preferred.
- If there is a risk of dangerous potential differences within Zone 0 (e.g. through the occurrence of atmospheric electricity), implement suitable measures for intrinsically safe circuits in Zone 0.

Temperature tables

- → Safety Instructions: XA02411F
- The safety instructions for temperature tables are available on the Internet: www.endress.com/Downloads
- Observe the permitted temperature range at the antenna.
- Deratings are based on a power consumption of 1 W (PFS); $\rightarrow \cong 20$.

Explanation of how to use the temperature tables

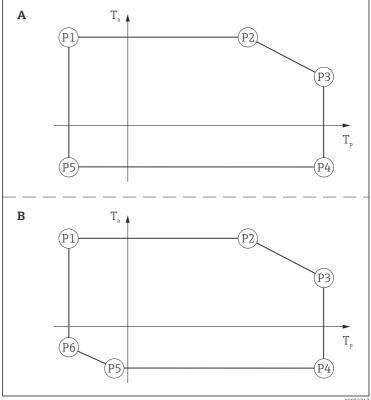
Unless otherwise indicated, the positions always refer to the basic specification.

1st column: Position 5 = A, B, ...

2nd column: Position 3 = A, B, ...

(1): 1 channel used(2): 2 channels used

3rd column: Temperature classes T6 (85 °C) to T1 (450 °C)


Column P1 to P6: Position (temperature value) on the axes of the derating

- ullet T_a : Ambient temperature in ${}^{\circ}$ C
- T_p: Process temperature in °C
- Column P6 is only relevant for version B of the derating.

Example table

	(1)		P1		P2		Р3		P4		P5		P6	
= C			T _p	Ta	T _p	Ta	T _p	Ta						
	E, G	T6	-40	60	60	60	85	54	85	-40	-40	-40	-	-
		T5	-40	75	75	75	100	69	100	-40	-40	-40	-	-
		T4	-40	80	80	80	135	68	135	-40	-40	-40	-	-

Example diagrams of possible deratings

A0022717

Connection data

Ex ia

Explosion protection "Intrinsic safety Ex ia"

Power supply and signal circuit with protection type: intrinsic safety $\mbox{\it Ex}$ ia IIC, $\mbox{\it Ex}$ ia IIB.

Terminal 1 (+), 2 (-)		Terminal 3 (+), 4 (-)					
FISCO	Entity	Switch output (PFS)					
$U_i = 17.5 \text{ V}$ $I_i = 550 \text{ mA}$ $P_i = 5.5 \text{ W}$	$U_i = 30 \text{ V}$ $I_i = 300 \text{ mA}$ $P_i = 1.2 \text{ W}$	U _i = 30 V I _i = 300 mA P _i = 1 W					
effective inner inducta effective inner capacit	• •	effective inner inductance L_i = 0 effective inner capacitance C_i = 6 nF					

Service interface (CDI)

Taking the following values into consideration, the device can be connected to the certified Endress+Hauser FXA291 service tool or a similar interface:

Service interface

 $U_i = 7.3 \text{ V}$

effective inner inductance L_i = negligible effective inner capacitance C_i = negligible

 $U_0 = 7.3 \text{ V}$

 $I_0 = 100 \text{ mA}$

 $P_0 = 160 \text{ mW}$

0													
L_o (mH) =	5.00	2.00	1.00	0.50	0.20	0.15	0.10	0.05	0.02	0.01	0.005	0.002	0.001
$C_o (\mu F)^{1)} =$	0.73	1.20	1.60	2.00	2.60	-	3.20	4.00	5.50	7.30	10.00	12.70	12.70
C _o (µF) ²⁾ =	-	0.49	0.90	1.40	-	2.00	-	-	-	-	-	-	-

- Values according to PTB "ispark" program
- 2) Values according to IEC/EN 60079-25, Annex C or equivalent national standards

Connection compartment Ex db

Explosion protection "Flameproof enclosure Ex db"

The power consumption of I/O modules with passive PFS output can be limited for certain applications.

- Recommended: Power consumption = 1 W. This is obtained for a supply voltage at the terminals of 27 V_{DC}.
- For higher supply voltages (U_{max}): Insert a serial resistance (R_V) in order to limit the power consumption, see table below.

Table for the PFS serial resistance (R_V):

Power consumption	1.0 W
Total power consumption	1.88 W
Internal resistance R _I	760 Ω

U _{max} [V]	R _V min
35	205 Ω
34	177 Ω
33	150 Ω
32	122 Ω
31	95 Ω
30	67 Ω
29	39 Ω
28	12 Ω
27	ΟΩ

i

For values associated with a higher or lower internal power consumption please contact Endress+Hauser.

Tern	ninal 1 (+), 2 (-)	Terminal 3 (+), 4 (-)
Powe	er supply	Switch output (PFS)
U _N = U _m =	32 V _{DC} 250 V	$U_{N} = 35 V_{DC}$ $U_{m} = 250 V$

Electronics compartment Ex ia

Service interface (CDI)

Taking the following values into consideration, the device can be connected to the certified Endress+Hauser FXA291 service tool or a similar interface:

Service interfac	Service interface												
$U_i = 7.3 \; V$ effective inner inductance $L_i = negligible$ effective inner capacitance $C_i = negligible$													
$U_o = 7.3 \text{ V}$ $I_o = 100 \text{ mA}$ $P_o = 160 \text{ mW}$	$I_0 = 100 \text{ mA}$												
L _o (mH) =	5.00	2.00	1.00	0.50	0.20	0.15	0.10	0.05	0.02	0.01	0.005	0.002	0.001
C _o (µF) 1) =	0.73	1.20	1.60	2.00	2.60	-	3.20	4.00	5.50	7.30	10.00	12.70	12.70
$C_o (\mu F)^{(2)} =$	-	0.49	0.90	1.40	-	2.00	-	-	-	-	-	-	-

- 1) Values according to PTB "ispark" program
- 2) Values according to IEC/EN 60079-25, Annex C or equivalent national standards

www.addresses.endress.com