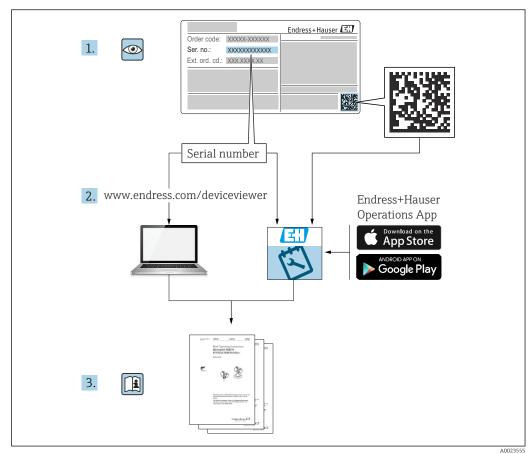
Services

01.00.zz (Фирменное ПО прибора)

Инструкция по эксплуатации Micropilot FMR66B PROFINET через Ethernet-APL

Бесконтактный радарный уровнемер



- Убедитесь в том, что документ хранится в безопасном месте и всегда доступен при работе с прибором
- В целях предотвращения опасности для персонала и имущества внимательно ознакомьтесь с разделом «Основные указания по технике безопасности», а также со всеми другими указаниями по технике безопасности, содержащимися в документе и имеющими отношение к рабочим процедурам

Изготовитель сохраняет за собой право на изменение технических характеристик без предварительного уведомления. Актуальную информацию и обновления настоящего руководства по эксплуатации можно получить в региональной торговой организации Endress+Hauser.

Содержание

1	Информация об этом документе 6		5.3.2 Антенна с покрытием из PTFE с защитой от конденсата	
1.1 1.2 1.3 1.4	Назначение документа 6 Символы 6 1.2.1 Символы техники безопасности 6 1.2.2 Описание информационных символов и рисунков 6 Список аббревиатур 7 Документация 7	5.4	50 мм (2 дюйм)	19 20 20 22
1.5	Зарегистрированные товарные знаки 8	6	Электрическое подключение	23
2	Основные указания по технике	6.1	Требования, предъявляемые к	
2.1 2.2 2.3 2.4 2.5	безопасности 9 Требования к работе персонала 9 Назначение 9 Техника безопасности на рабочем месте 10 Эксплуатационная безопасность 10 Безопасность изделия 10	6.2	подключению	23 23 24 25
2.6 2.7	IT-безопасность 10 ИТ-безопасность прибора 11 2.7.1 Защита от записи на основе пароля 11 2.7.2 Доступ через веб-сервер 12		6.2.3 Защита от перенапряжения	25 26 27 28
3	Описание изделия 13	6.3	* J	28
3.1	Конструкция изделия	6.4	6.3.1 Кабельные вводы	
4	Приемка и идентификация	7	Опции управления	30
	изделия	7.1	Обзор опций управления	30
4.1	Приемка14	7.2	Кнопки управления и DIP-переключатели	
4.2	Идентификация изделия 14 4.2.1 Заводская табличка 14 4.2.2 Адрес изготовителя 15	7.3	на электронной вставке	
4.3	Хранение и транспортировка 15 4.3.1 Условия хранения 15	7.4	авторизация	30
	4.3.2 Транспортировка изделия до точки измерения		местного дисплея	
5	Монтаж		беспроводной связи Bluetooth®	32
5.1 5.2	Общие инструкции	7.5	(опционально)	32
	5.2.1 Внутренние элементы резервуара 16			33
	5.2.2 Предотвращение эхо-помех		7.5.2 Предварительные условия	35
	вертикали		7.5.4 Пользовательский интерфейс7.5.5 Деактивация веб-сервера7.5.6 Выход из системы	36 37 38
	5.2.5 Способы оптимизации	7.6	7.5.0 выход из системы	טכ
5.3	Монтаж прибора		управляющей программы	38 39
			<u></u>	-

7.7 7.8	FieldCare 4 7.7.1 Диапазон функций 4 DeviceCare 4		Диагностическое сообщение	55
7.0	7.8.1 Совокупность функций 4		дисплее	55
8	Системная интеграция 4	1	отображаемая в управляющей программе	55
3.1	Обзор файлов описания прибора		11.3.3 Сигнал состояния	56
3.2	8.1.2 Управляющие программы 4 Основной файл прибора (GSD) 4	1 11.4	текстовое описание события	
J.2	8.2.1 Имя основного файла прибора (GSD)		исправленияВызов	57
3.3	Циклическая передача данных 4	115	Адаптация диагностической информации .	
	8.3.1 Обзор модулей	¹³ 11.6	Список диагностических событий	
	8.3.2 Описание модулей 4 8.3.3 Кодировка данных статуса 4		Журнал событий	
	8.3.4 Конфигурация при запуске 4	I	11.7.1 Журнал событий	
3.4	Резервирование системы S2 4		11.7.2 Фильтрация журнала событий	
	1 1	11.8	Сброс параметров прибора	
9	Ввод в эксплуатацию 4		11.8.1 Сброс пароля с помощью	02
9.1	Предварительные условия 4		управляющей программы	62
9.2 9.3	Монтаж и функциональная проверка 4 Установление соединения с помощью ПО	I	11.8.2 Сброс параметров прибора с помощью управляющей	
	FieldCare и DeviceCare49.3.1По протоколу PROFINET4	17	программы	62
	9.3.2 Через сервисный интерфейс (CDI) 4		помощью кнопок на электронной вставке	62
	9.3.3 Аппаратные настройки 4	11.9	Информация о приборе	
	9.3.4 Настройка параметров связи посредством программного обеспечения 4	11.10	Изменения программного обеспечения	
9.4	Настройка языка управления 4		Техническое обслуживание	63
	9.4.1 Локальный дисплей 4	12.1	-	
	9.4.3 Веб-сервер 4	₽9 ₽9	12.1.1 Очистка поверхностей, не контактирующих с	0.1
9.5	1 1 1	50	технологической средой	64
	9.5.1 Измерение уровня сыпучих сред 5 9.5.2 Ввод в эксплуатацию с помощью мастера 5	50	12.1.2 Очистка поверхностей, контактирующих с	
9.6		in l	технологической средой	
9.7		51		
10	Управление 52	2 13	Ремонт	
10.1	1	13.1	Общая информация	
) <u> </u>	13.1.1 Принцип ремонта	65
10.2 10.3	Чтение измеренных значений 5	52	13.1.2 Ремонт приборов во	
10.2 10.3		52	13.1.2 Ремонт приборов во взрывозащищенном исполнении	65
10.3	Чтение измеренных значений	52 52 13.2	13.1.2 Ремонт приборов во взрывозащищенном исполнении	65 65
	Чтение измеренных значений	13.2 13.3	13.1.2 Ремонт приборов во взрывозащищенном исполнении	65 65 65
10.3 11	Чтение измеренных значений	32 13.2 13.3 3 13.4	13.1.2 Ремонт приборов во взрывозащищенном исполнении	65 65 65 66
10.3	Чтение измеренных значений 5 Адаптация прибора к условиям процесса 5 Диагностика и устранение 5 Неисправностей 5 Общие сведения об устранении	32 13.2 13.3 3 13.4 13.5	13.1.2 Ремонт приборов во взрывозащищенном исполнении	65 65 65 66
10.3 11	Чтение измеренных значений 5 Адаптация прибора к условиям процесса 5 Диагностика и устранение 5 Неисправностей 5 Общие сведения об устранении 5 неисправностей 5	13.2 13.3 3 13.4 13.5	13.1.2 Ремонт приборов во взрывозащищенном исполнении	65 65 66 66 66
10.3 11	Чтение измеренных значений 5 Адаптация прибора к условиям процесса 5 Диагностика и устранение 5 Неисправностей 5 Общие сведения об устранении 5 11.1.1 Ошибки общего характера 5	13.2 13.3 13.4 13.5	13.1.2 Ремонт приборов во взрывозащищенном исполнении	65 65 66 66 66
10.3 11 11.1	Чтение измеренных значений 5 Адаптация прибора к условиям процесса 5 Диагностика и устранение 5 Неисправностей 5 Общие сведения об устранении 5 неисправностей 5	13.2 13.3 3 13.4 13.5 13.5	13.1.2 Ремонт приборов во взрывозащищенном исполнении	65 65 66 66 66

14.2	Козыре	ек для защиты от атмосферных	
	воздей	ствий, пластмассовый, XW111	67
14.3	Регули	руемое уплотнение фланца	68
	14.3.1	Регулируемое уплотнение DN80	68
	14.3.2	Регулируемое уплотнение DN100	69
	14.3.3	Регулируемое уплотнение DN150	69
	14.3.4	Регулируемое уплотнение ASME	
		3"/JIS 80A	69
	14.3.5	Регулируемое уплотнение ASME 4".	70
	14.3.6	Регулируемое уплотнение ASME	
		6"/JIS 150A	70
14.4		руемый монтажный	
		гейн, FMR6xB	71
		Размеры	72
		Объем поставки	73
14.5		ельный разъем М12	73
		Разъем М12, со стороны кабеля	73
	14.5.2	, 1,1,	
		кабеля	73
	14.5.3	Разъем М12, 100 град., кабель	
		5 м (16 фут)	74
14.6		ной дисплей FHX50B	74
14.7		ичное уплотнение	76
14.8		pert SMT70	76
14.9		Care SFE100	76
14.10	FieldCa	re SFE500	76
15	Техни	ические данные	77
15.1	Вхол.		77
15.2		• • • • • • • • • • • • • • • • • • • •	78
15.3		я окружающей среды	80
15.4		етры технологического процесса	85
	I		-
Алфа	авитні	ый указатель	88

1 Информация об этом документе

1.1 Назначение документа

Настоящее руководство по эксплуатации содержит информацию, необходимую на различных стадиях срока службы прибора: начиная с идентификации изделия, приемки и хранения, монтажа, подключения, ввода в эксплуатацию, эксплуатации и завершая устранением неисправностей, техническим обслуживанием и утилизацией.

1.2 Символы

1.2.1 Символы техники безопасности

Λ ΟΠΑCΗΟ

Этот символ предупреждает об опасной ситуации. Если не предотвратить такую ситуацию, она приведет к серьезной или смертельной травме.

№ ОСТОРОЖНО

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к серьезной или смертельной травме.

№ ВНИМАНИЕ

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к травме легкой или средней степени тяжести.

УВЕЛОМЛЕНИЕ

Этот символ указывает на информацию о процедуре и на другие действия, которые не приводят к травмам.

1.2.2 Описание информационных символов и рисунков

√ Разрешено

Обозначает разрешенные процедуры, процессы или действия.

Х Запрещено

Обозначает запрещенные процедуры, процессы или действия.

Рекомендация

Указывает на дополнительную информацию.

Ссылка на документацию

Ссылка на страницу

Ссылка на рисунок.

Указание, обязательное для соблюдения

1., 2., 3.

Серия шагов

Результат шага

1, 2, 3, ...

Номера пунктов

A, B, C, ...

Виды

1.3 Список аббревиатур

МРД

Максимальное рабочее давление Значение МРД указано на заводской табличке.

$\varepsilon_{\rm r}$ (значение Dk)

Относительная диэлектрическая проницаемость

плк

Программируемый логический контроллер (ПЛК)

CDI

Единый интерфейс данных

1.4 Документация

Общие сведения о сопутствующей технической документации можно получить следующими способами.

- Программа *Device Viewer*www.endress.com/deviceviewer: введите серийный номер с заводской таблички.
- *Приложение Endress+Hauser Operations*: введите серийный номер с заводской таблички или просканируйте матричный штрих-код на заводской табличке.

В разделе "Документация" (Downloads) на веб-сайте компании Endress+Hauser (www.endress.com/downloads) размещены документы следующих типов:

Тип документа	Назначение и содержание документа
Техническое описание (TI)	Информация о технических характеристиках и комплектации прибора для планирования его применения В документе содержатся все технические характеристики прибора, а также обзор его вспомогательных компонентов и дополнительного оборудования.
Краткое руководство по эксплуатации (КА)	Информация по быстрой подготовке прибора к эксплуатации В кратком руководстве по эксплуатации содержится наиболее важная информация от приемки прибора до его ввода в эксплуатацию.
Руководство по эксплуатации (BA)	Справочный документ Руководство по эксплуатации содержит всю информацию, которая требуется на различных этапах жизненного цикла прибора: от идентификации изделия, приемки, хранения, монтажа, подключения, эксплуатации и ввода в эксплуатацию до устранения неисправностей, технического обслуживания и утилизации.
Описание параметров прибора (GP)	Справочник по параметрам Документ содержит подробное пояснение по каждому отдельному параметру. Документ предназначен для лиц, работающих с прибором на протяжении всего срока службы и выполняющих его настройку.
Указания по технике безопасности (XA)	При наличии определенного сертификата к прибору также прилагаются правила техники безопасности для электрооборудования, предназначенного для эксплуатации во взрывоопасных зонах. Данные указания являются неотъемлемой частью руководства по эксплуатации. Заводская табличка с указаниями по технике безопасности (ХА), относящимися к прибору.
Сопроводительная документация для конкретного прибора (SD/FY)	Строго соблюдайте инструкции, приведенные в соответствующей сопроводительной документации. Сопроводительная документация является составной частью документации, прилагаемой к прибору.

1.5 Зарегистрированные товарные знаки

PROFINET®

Зарегистрированный товарный знак организации пользователей PROFIBUS, Карлсруэ, Германия.

Bluetooth®

Тестовый символ и логотипы $Bluetooth^{@}$ являются зарегистрированными товарными знаками, принадлежащими Bluetooth SIG, Inc., и любое использование таких знаков компанией Endress+Hauser осуществляется по лицензии. Другие товарные знаки и торговые наименования принадлежат соответствующим владельцам.

Apple[®]

Apple, логотип Apple, iPhone и iPod touch являются товарными знаками компании Apple Inc., зарегистрированными в США и других странах. App Store – знак обслуживания Apple Inc.

Android®

Android, Google Play и логотип Google Play – товарные знаки Google Inc.

KALREZ®, VITON®

Зарегистрированные товарные знаки DuPont Performance Elastomers L.L.C., Уилмингтон, США

2 Основные указания по технике безопасности

2.1 Требования к работе персонала

Требования к персоналу, выполняющему монтаж, ввод в эксплуатацию, диагностику и техобслуживание:

- Обученные квалифицированные специалисты должны иметь соответствующую квалификацию для выполнения конкретных функций и задач.
- ▶ Получить разрешение на выполнение данных работ от руководства предприятия.
- ▶ Ознакомиться с нормами федерального/национального законодательства.
- ► Перед началом работы внимательно ознакомиться с инструкциями, представленными в руководстве, с дополнительной документацией, а также с сертификатами (в зависимости от цели применения).
- ▶ Следовать инструкциям и соблюдать основные условия.

Обслуживающий персонал должен соответствовать следующим требованиям:

- ► Получить инструктаж и разрешение у руководства предприятия в соответствии с требованиями выполняемой задачи.
- Следовать инструкциям, представленным в данном руководстве.

2.2 Назначение

Область применения и технологическая среда

Измерительный прибор, описанный в настоящем руководстве по эксплуатации, предназначен для непрерывного измерения уровня сыпучих материалов неконтактным способом. Поскольку рабочая частота прибора составляет около 80 ГГц, максимальная пиковая мощность излучения — менее 1,5 мВт, а средняя выходная мощность — менее 70 мкВт, прибор можно устанавливать снаружи закрытых металлических емкостей (например, над грудами вещества). Эксплуатация не представляет какой бы то ни было угрозы ни людям, ни животным.

При соблюдении предельных значений, указанных в разделе «Технические характеристики», и условий, указанных в руководствах и дополнительной документации, измерительный прибор можно использовать только для выполнения следующих измерений:

- ▶ измеряемые переменные процесса: уровень, расстояние, мощность сигнала;
- рассчитываемые переменные процесса: объем или масса в сосуде любой формы.

Чтобы обеспечить нахождение измерительного прибора в исправном состоянии во время эксплуатации, необходимо соблюдать следующие условия:

- ► Используйте измерительный прибор только с теми средами, в отношении которых смачиваемые части прибора обладают достаточной стойкостью.
- ► Соблюдайте предельные значения, указанные в разделе «Технические характеристики».

Использование не по назначению

Изготовитель не несет ответственности за повреждения, вызванные неправильным использованием или использованием прибора не по назначению.

Избегайте механических повреждений.

► Не прикасайтесь к поверхностям прибора (например, для очистки) твердыми или заостренными предметами.

Пояснение по поводу сложных ситуаций

► Сведения о специальных жидкостях, в том числе жидкостях для очистки: специалисты Endress+Hauser готовы предоставить всю необходимую информацию, касающуюся устойчивости к коррозии материалов, находящихся в

контакте с жидкостями, но не несут какой-либо ответственности и не предоставляют каких бы то ни было гарантий.

Остаточные риски

За счет теплопередачи от выполняемого процесса, а также вследствие рассеивания мощности электронных компонентов корпус электроники и встроенные компоненты (например дисплей, главный модуль электроники и электронный модуль ввода / вывода) могут нагреться до 80°C (176°F). Во время работы датчик может нагреваться до температуры, близкой к температуре среды.

Опасность ожогов при соприкосновении с поверхностями!

► При повышенной температуре жидкости следует обеспечить защиту от прикосновения для предотвращения ожогов.

2.3 Техника безопасности на рабочем месте

При работе с прибором следует соблюдать следующие правила.

- ▶ В соответствии с федеральным/национальным законодательством персонал должен использовать средства индивидуальной защиты.
- ▶ Подключение прибора выполняется при отключенном сетевом напряжении.

2.4 Эксплуатационная безопасность

Повреждение прибора!

- ► Эксплуатация прибора должна осуществляться, только когда он находится в исправном рабочем состоянии и не представляет угрозу безопасности.
- ▶ Ответственность за бесперебойную работу прибора несет оператор.

Модификация прибора

Несанкционированное изменение конструкции прибора запрещено и может представлять непредвиденную опасность!

 Если модификация все же необходима, обратитесь за консультацией к изготовителю.

Ремонт

Для обеспечения постоянной эксплуатационной безопасности и надежности необходимо соблюдать следующие правила:

- ▶ Ремонт прибора возможен только при наличии специального разрешения.
- ▶ Соблюдайте федеральные/национальные нормы, касающиеся ремонта электрических приборов.
- Допускается использование только оригинальных аксессуаров и запасных частей.

2.5 Безопасность изделия

Описываемый прибор разработан в соответствии со сложившейся инженерной практикой, отвечает современным требованиям безопасности, прошел испытания и поставляется с завода в безопасном для эксплуатации состоянии.

Он соответствует общим стандартам безопасности и требованиям законодательства. Кроме того, прибор соответствует директивам ЕС, которые перечислены в составленной для него декларации соответствия требованиям ЕС. Изготовитель подтверждает это нанесением на прибор маркировки СЕ.

2.6 IT-безопасность

Гарантия изготовителя действует только в том случае, если изделие установлено и используется в соответствии с руководством по эксплуатации. Изделие оснащено

механизмами безопасности для защиты от любого непреднамеренного изменения настроек.

Меры ИТ-безопасности, которые обеспечивают дополнительную защиту изделия и связанной с ним передачи данных, должны быть реализованы самим оператором в соответствии с действующими в его компании стандартами безопасности.

2.7 ИТ-безопасность прибора

В приборе реализованы специальные функции для поддержки защитных мер, принимаемых оператором. Эти функции доступны для настройки пользователем и при правильном применении обеспечивают повышенную эксплуатационную безопасность. Обзор наиболее важных функций приведен в следующем разделе:

- Защита от записи с помощью аппаратного переключателя
- Код доступа для изменения роли пользователя (при работе через дисплей, Bluetooth или FieldCare, DeviceCare, инструменты управления активами (например, AMS, PDM и веб-сервер)

Функция/интерфейс	Заводская настройка	Рекомендации
Код доступа (относится также ко входу в систему веб-сервера и подключению к ПО FieldCare)	Не активирован (0000)	При вводе в эксплуатацию необходимо указать индивидуальный код доступа
Веб-сервер	Активирован	Индивидуально, по результатам оценки риска
Сервисный интерфейс (CDI)	Активирован	Индивидуально, по результатам оценки риска
Защита от записи с помощью аппаратного переключателя	Не активирована	Индивидуально, по результатам оценки риска

2.7.1 Защита от записи на основе пароля

Ограничение доступа для записи к параметрам прибора реализовано при помощи различных паролей.

Ограничить доступ для записи к параметрам прибора можно с помощью локального дисплея, веб-браузера или управляющей программы (например, FieldCare, DeviceCare). Авторизация доступа однозначно регулируется посредством индивидуального пользовательского кода доступа.

Пользовательский код доступа

Ограничить доступ для записи к параметрам прибора через локальный дисплей, веббраузер или управляющую программу (например, FieldCare, DeviceCare) можно ограничить с помощью редактируемого, устанавливаемого пользователем кода доступа.

При поставке прибор не имеет кода доступа, что соответствует значению *0000* (открыт).

Общие указания по использованию паролей и кодов

- Перед вводом в эксплуатацию: измените код доступа после получения прибора
- При настройке и использовании кода доступа соблюдайте общие правила составления безопасного пароля
- Пользователь обязан распоряжаться и пользоваться кодом доступа с должной осторожностью
- Более подробную информацию см. здесь: → Сброс параметров прибора

2.7.2 Доступ через веб-сервер

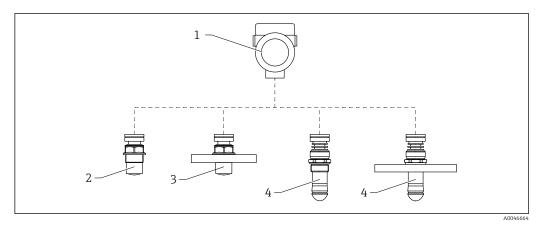
Благодаря встроенному веб-серверу эксплуатацию и настройку прибора можно осуществлять с помощью веб-браузера и PROFINET с Ethernet-APL. Помимо значений измеряемой величины отображается информация о состоянии прибора, которая может использоваться для отслеживания его работоспособности. Кроме того, доступно управление данными прибора и настройка сетевых параметров.

Для подключения к PROFINET с Ethernet-APL необходим доступ к сети.

Поддерживаемые функции

Обмен данными между устройством управления (например, ноутбуком) и измерительным прибором:

- Экспорт значений параметров (PDF-файл, создание документации по конфигурации точки измерения)
- Экспорт протокола проверки Heartbeat Technology (PDF-файл, доступен только с пакетом прикладных программ Heartbeat Verification)
- Загрузка драйвера (GSDML) для системной интеграции

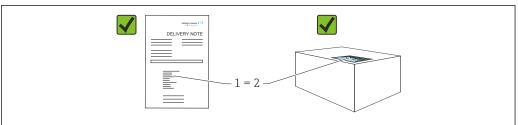

В поставляемых приборах веб-сервер активирован. При необходимости веб-сервер можно деактивировать с помощью опции параметр **Функциональность веб-сервера** (например, после ввода в эксплуатацию).

Информацию о приборе и его состоянии на странице входа в систему можно скрыть. За счет этого предотвращается несанкционированный доступ к этой информации.

📵 Описание параметров прибора.

3 Описание изделия

3.1 Конструкция изделия



📵 1 Конструкция прибора Micropilot FMR66B

- 1 Корпус электроники
- 2 Герметизированная антенна, PVDF, 40 мм (1,5 дюйм), резьбовое присоединение к процессу
- Герметизированная антенна, PVDF, 40 мм (1,5 дюйм), фланцевое присоединение к процессу
- 4 Антенна с защитой от конденсата 50 мм (2 дюйм), резьбовое присоединение к процессу
- 5 Антенна с защитой от конденсата 50 мм (2 дюйм), фланцевое присоединение к процессу

4 Приемка и идентификация изделия

4.1 Приемка

A0016870

Во время приемки необходимо проверить соблюдение следующих условий.

- Совпадает ли код заказа, указанный в накладной (1), с кодом заказа, который указан на наклейке изделия (2)?
- Не поврежден ли товар?
- Соответствует ли информация, указанная на заводской табличке, с данными заказа и накладной?
- Имеется ли в наличии документация?
- Если применимо (см. заводскую табличку): имеются ли указания по технике безопасности (XA)?
- Если одно из этих условий не выполнено, обратитесь в торговую организацию компании-изготовителя.

4.2 Идентификация изделия

Существуют следующие варианты идентификации изделия:

- данные, указанные на заводской табличке;
- расширенный код заказа с разбивкой по характеристикам изделия, указанный в накладной.
- ► Программа *Device Viewer*(www.endress.com/deviceviewer): введите серийный номер с заводской таблички.
 - ▶ Отображается вся информация о приборе.
- ▶ Приложение Endress+Hauser Operations: ввод серийного номера с заводской таблички или сканирование двухмерного штрих-кода с заводской таблички.
 - ▶ Отображается вся информация о приборе.

4.2.1 Заводская табличка

Вы получили правильное устройство?

На заводской табличке приведены следующие сведения о приборе:

- Информация об изготовителе, обозначение прибора
- Код заказа
- Расширенный код заказа
- Серийный номер
- Обозначение (TAG) (опция)
- Технические характеристики, например сетевое напряжение, потребление тока, температура окружающей среды, сведения о передаче данных (опция)
- Степень защиты
- Сертификаты с соответствующими символами
- Ссылка на правила техники безопасности (ХА) (опция)

• Сравните данные на заводской табличке с данными заказа.

4.2.2 Адрес изготовителя

Endress+Hauser SE+Co. KG Hauptstraße 1 79689 Maulburg, Германия

Место изготовления: см. заводскую табличку.

4.3 Хранение и транспортировка

4.3.1 Условия хранения

- Используйте оригинальную упаковку
- Храните измерительный прибор в чистом сухом помещении. Примите меры по защите от ударных повреждений

Диапазон температуры хранения

См. техническое описание.

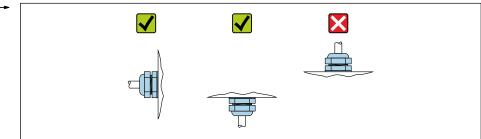
4.3.2 Транспортировка изделия до точки измерения

▲ ОСТОРОЖНО

Неправильная транспортировка!

Корпус или датчик могут быть повреждены или оторваны. Опасность несчастного случая!

- ► Транспортировать измерительный прибор к точке измерения следует в оригинальной упаковке или захватив его за присоединение к процессу.
- ► Всегда закрепляйте подъемное оборудование (стропы, проушины и т. п.) за присоединение к процессу и никогда не поднимайте прибор за корпус или датчик. Обращайте внимание на расположение центра тяжести прибора, чтобы прибор не наклонялся и не мог неожиданно соскользнуть.

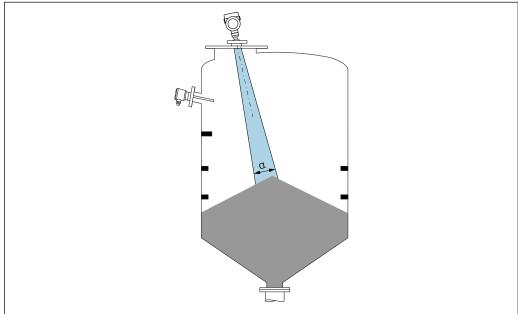

5 Монтаж

5.1 Общие инструкции

▲ ОСТОРОЖНО

Потеря степени защиты в случае распаковки прибора во влажной среде

- ▶ Устанавливайте прибор исключительно в сухом месте!
- 1. Смонтируйте прибор или поверните корпус так, чтобы кабельные вводы не были направлены вверх.

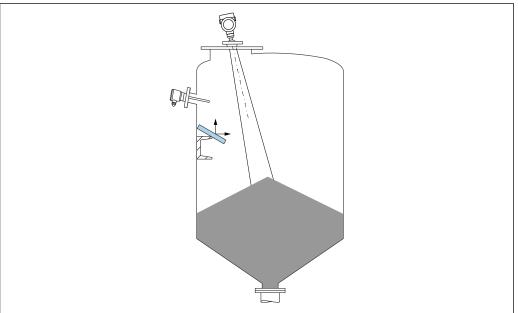


A002926

- 2. В обязательном порядке плотно затягивайте крышку корпуса и кабельные вводы.
- 3. Затягивайте контргайки кабельных вводов.
- 4. При прокладывании кабеля необходимо предусмотреть провисающую петлю для стока воды.

5.2 Требования, предъявляемые к монтажу

5.2.1 Внутренние элементы резервуара



A0031814

Избегайте установки внутренних устройств (датчиков уровня, датчиков температуры, стержней, вакуумных колец, теплообменников, перегородок и т. п.) в зоне распространения сигнального луча. Учитывайте угол расхождения луча α.

16

5.2.2 Предотвращение эхо-помех

Установленные под углом металлические отражатели для рассеивания сигнального луча способствуют предотвращению эхо-помех.

5.2.3 Выравнивание оси антенны по вертикали

Сориентируйте антенну перпендикулярно поверхности среды.

Если направление передачи антенны не перпендикулярно измеряемой среде (или при наличии дополнительных интерференционных сигналов), максимальная зона действия луча антенны может быть уменьшена.

5.2.4 Выравнивание оси конуса радиолуча антенны

Учитывая характер направленности, радиальное выравнивание антенны не обязательно.

5.2.5 Способы оптимизации

Маскирование помех

Процесс измерения можно оптимизировать путем электронного подавления эхопомех.

См. параметр Подтвердить расстояние.

5.3 Монтаж прибора

5.3.1 Герметичная антенна, PVDF 40 мм (1,5 дюйм)

Информация о резьбовых соединениях

- При вворачивании используйте только болт с шестигранной головкой.
- Инструмент: рожковый гаечный ключ 50 мм
- Максимально допустимый момент затяжки: 30 Нм (22 фунт сила фут)

Информация о монтажном штуцере

Зависимость максимально допустимой длины штуцера $H_{\text{макс.}}$ от диаметра штуцера D.

Зависимость максимально допустимой длины штуцера $H_{\text{макс.}}$ от диаметра штуцера (D)

	ΦD	H _{Makc.}
	50 до 80 мм (2 до 3,2 дюйм)	600 мм (24 дюйм)
	80 до 100 мм (3,2 до 4 дюйм)	1000 мм (24 дюйм)
× ×	100 до 150 мм (4 до 6 дюйм)	1250 мм (50 дюйм)
Hmax	≥ 150 мм (6 дюйм)	1850 мм (74 дюйм)
øD.		

👔 При большей длине штуцера следует ожидать ухудшения точности измерений.

Учитывайте следующие обстоятельства.

- Конец штуцера должен быть гладким, без заусенцев.
- Край штуцера должен быть закругленным.
- Необходимо выполнить маскирование помех.
- Если высота штуцера превышает указанное в таблице значение, обратитесь в службу поддержки компании-изготовителя.

5.3.2 Антенна с покрытием из PTFE с защитой от конденсата 50 мм (2 дюйм)

Информация о резьбовых соединениях

- Заворачивайте прибор только за шестигранный участок.
- Инструмент: рожковый гаечный ключ 55 мм
- Максимально допустимый момент затяжки: 50 Нм (36 фунт сила фут)

Информация о монтажном патрубке

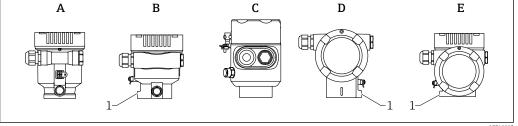
Зависимость максимально допустимой длины штуцера $H_{\text{макс}}$ от диаметра штуцера D.

Н_{макс.} 50 до 80 мм (2 до 3,2 дюйм) 750 мм (30 дюйм) 80 до 100 мм (3,2 до 4 дюйм) 1150 мм (46 дюйм) 100 до 150 мм (4 до 6 дюйм) 1450 мм (58 дюйм) ≥ 150 мм (6 дюйм) 2200 мм (88 дюйм)

Максимальная длина патрубка $H_{\text{макс.}}$ зависит от диаметра патрубка D

При большей длине штуцера следует ожидать ухудшения точности измерений.

Учитывайте следующие обстоятельства.


- Конец штуцера должен быть гладким, без заусенцев.
- Край штуцера должен быть закругленным.
- Необходимо выполнить маскирование помех.
- Если высота штуцера превышает указанное в таблице значение, обратитесь в службу поддержки компании-изготовителя.

5.3.3 Поворот корпуса

Корпус можно развернуть на угол до 380°, ослабив стопорный винт.

Преимущества

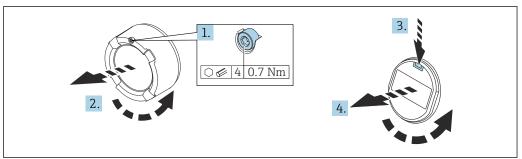
- Простой монтаж благодаря оптимальному выравниванию корпуса
- Простота доступа к прибору при эксплуатации
- Оптимальная читаемость показаний на локальном дисплее (опционально)

- Α Пластмассовый корпус с одним отсеком (без стопорного винта)
- Алюминиевый корпус с одним отсеком
- CКорпус с одним отсеком, 316L, гигиенический (без стопорного винта)
- Корпус с двумя отсеками
- Ε Корпус с двумя отсеками, L-образная форма
- Стопорный винт

УВЕДОМЛЕНИЕ

Корпус невозможно отвернуть полностью.

- Ослабьте наружный стопорный винт не более чем на 1,5 оборота. Если винт вывернуть слишком далеко или полностью (за пределы точки входа резьбы), мелкие детали (контрдиск) могут ослабнуть и выпасть.
- Затяните крепежный винт (с шестигранным гнездом 4 мм (0,16 дюйм)) моментом не более 3,5 Hm (2,58 фунт сила фут) \pm 0,3 Hm (0,22 фунт сила фут).

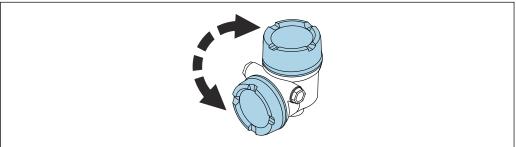

5.3.4 Поворот дисплея

▲ ОСТОРОЖНО

Электропитание включено!

Опасность поражения электрическим током и/или взрыва!

▶ Прежде чем открывать измерительный прибор, выключите электропитание.

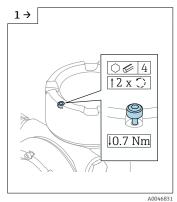


A0038224

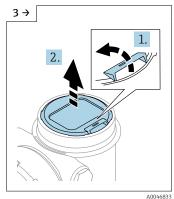
- 1. Если имеется: ослабьте винт фиксатора крышки отсека электроники с помощью шестигранного ключа.
- 2. Отверните крышку отсека электроники от корпуса преобразователя и проверьте уплотнение крышки.
- 3. Отожмите блокировочный механизм и снимите дисплей.
- 4. Поверните дисплей в необходимое положение (не более 4 × 90 град в каждом направлении). Поместите дисплей в отсек электроники в необходимом положении и вдавите до щелчка. Заверните крышку отсека электроники на корпус преобразователя. Если имеется: затяните фиксатор крышки шестигранным ключом 0,7 Нм (0,52 фунт сила фут) ±0,2 Нм (0,15 фунт сила фут).

5.3.5 Изменение положения установки дисплейного модуля

В случае использования корпуса с двумя отсеками L-образной формы монтажное положение дисплея можно изменить.

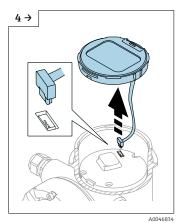

A0048401

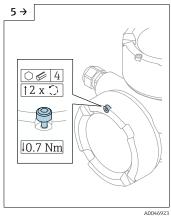
▲ ОСТОРОЖНО


Электропитание включено!

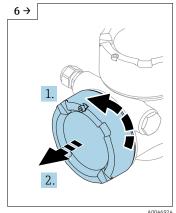
Опасность поражения электрическим током и (или) взрыва!

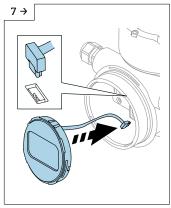
▶ Прежде чем открывать измерительный прибор, выключите электропитание.

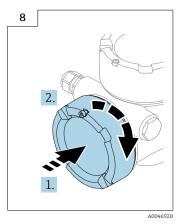

2. A0046332


 Если установлено: ослабьте винт замка крышки дисплея с помощью шестигранного ключа.

 Открутите крышку дисплея и проверьте уплотнение крышки.


 Нажмите на механизм разблокировки, снимите модуль дисплея.


Отсоедините разъем.


 Если установлено: ослабьте винт замка крышки клеммного отсека с помощью шестигранного ключа.

• Открутите крышку клеммного отсека, проверьте уплотнение крышки. Прикрутите эту крышку к отсеку электронного модуля, а не к крышке дисплея. Если установлено: затяните замок крышки с помощью шестигранного ключа

 Плотно прикрутите крышку дисплея к корпусу. Если установлено: затяните замок крышки с помощью шестигранного ключа 0,7 Нм (0,52 фунт сила фут).

дисплея в клеммный отсек.
Установите модуль дисплея в

нужное положение до щелчка.

5.3.6 Закрывание крышек корпуса

УВЕДОМЛЕНИЕ

Резьба и корпус повреждены в результате загрязнения!

- ▶ Удалите загрязнение (например, песок) с резьбы крышки и корпуса.
- ► Если при закрывании крышки ощущается сопротивление, проверьте резьбу на наличие загрязнений и очистите ее.

🚹 Резьба корпуса

На резьбу отсека для электроники и клеммного отсека может быть нанесено антифрикционное покрытие.

Следующее указание относится ко всем материалам корпуса:

№ Не смазывайте резьбу корпуса.

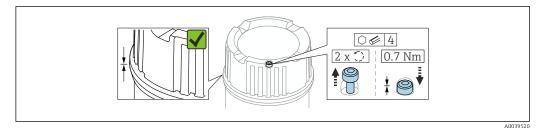
5.4 Проверка после монтажа

Не поврежден	подист ил	(внешний	осмотр)?

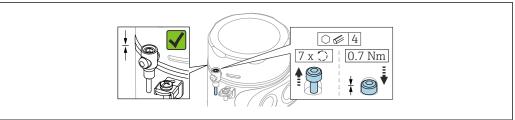
- □ Соответствуют ли норме идентификация и маркировка точки измерения (внешний осмотр)?
- \square В достаточной ли мере измерительный прибор защищен от воздействия осадков и солнечного света?
- □ Плотно ли затянуты крепежный винт и фиксирующий зажим?
- □ Соответствует ли измерительный прибор техническим условиям точки измерения? Примеры технических условий приведены ниже.
- □ Рабочая температура
- □ Рабочее давление
- □ Температура окружающей среды
- □ Диапазон измерения

6 Электрическое подключение

6.1 Требования, предъявляемые к подключению


6.1.1 Крышка с крепежным винтом

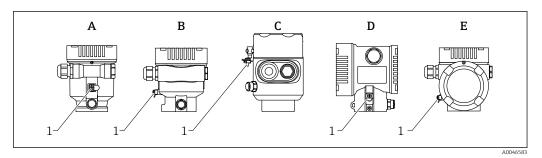
В приборах, предназначенных для использования во взрывоопасных зонах с определенной степенью взрывозащиты, крышка фиксируется крепежным винтом.


УВЕДОМЛЕНИЕ

Если стопорный винт расположен ненадлежащим образом, надежная герметизация крышки не будет обеспечена.

- Откройте крышку: ослабьте стопорный винт крышки не более чем на 2 оборота, чтобы винт не выпал. Установите крышку и проверьте уплотнение крышки.
- Закройте крышку: плотно заверните крышку на корпус и убедитесь в том, что стопорный винт расположен должным образом. Между крышкой и корпусом не должно быть зазора.

🗗 2 Крышка с крепежным винтом



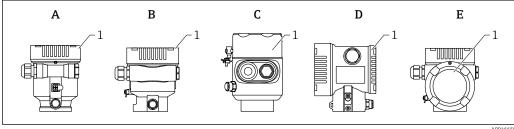
A0050983

🗷 3 Крышка с крепежным винтом; гигиеничный корпус (только для пылевэрывозащиты)

6.1.2 Выравнивание потенциалов

Запрещается подключать защитное заземление на приборе. При необходимости линия выравнивания потенциалов может быть подключена к внешней клемме заземления корпуса до подключения прибора.

- А Корпус с одним отсеком, пластик
- В Корпус с одним отсеком, алюминий с покрытием
- C Корпус с одним отсеком, 316L, гигиеническое исполнение (приборы, предназначенные для использования во взрывоопасных зонах)
- D Корпус с двумя отсеками, алюминий с покрытием
- Е Корпус с двумя отсеками L-образной формы, алюминий с покрытием
- 1 Клемма заземления для подключения линии выравнивания потенциалов


▲ ОСТОРОЖНО

Искрообразование или недопустимо высокая температура поверхности.

Опасность взрыва!

- ► Указания по технике безопасности при использовании прибора во взрывоопасных зонах приведены в отдельной документации.
- Пля обеспечения оптимальной электромагнитной совместимости выполните следующие условия:
 - Обеспечьте минимально возможную длину линии выравнивания потенциалов
 - Соблюдайте минимальные требования к поперечному сечению 2,5 мм² (14 AWG)

6.2 Подключение прибора

A004665

- А Корпус с одним отсеком, пластик
- В Корпус с одним отсеком, алюминий с покрытием
- С Корпус с одним отсеком, 316L, гигиеническое исполнение
- D Корпус с двумя отсеками, алюминий с покрытием
- Е Корпус с двумя отсеками L-образной формы, алюминий с покрытием
- 1 Крышка клеммного отсека
- Приборы с корпусом с одним отсеком из стали 316L в гигиеническом исполнении и резьбовым соединением для кабелепровода должны подключаться как концевые приборы; можно использовать только один кабельный ввод.
- 📮 Резьба корпуса

На резьбу отсека для электроники и клеммного отсека может быть нанесено антифрикционное покрытие.

Следующее указание относится ко всем материалам корпуса:

№ Не смазывайте резьбу корпуса.

6.2.1 Сетевое напряжение

Эффективность APL класса A (9,6 до 15 В пост. тока 540 мВт)

Устанавливаемый на приборе выключатель APL должен быть испытан на соответствие требованиям безопасности (например, PELV, SELV, класс 2) и соответствовать спецификациям протокола.

6.2.2 Спецификация кабелей

Номинальная площадь поперечного сечения

- Сетевое напряжение
 0,5 до 2,5 мм² (20 до 13 AWG)
- Заземление экрана кабеля > 1 мм² (17 AWG)
- Наружная клемма заземления 0,5 до 4 мм² (20 до 12 AWG)

Наружный диаметр кабеля

Наружный диаметр кабеля зависит от используемой кабельной муфты

- Соединение (пластик):
 - Ø5 до 10 мм (0,2 до 0,38 дюйм)
- Соединение (никелированная латунь):
 Ø7 до 10,5 мм (0,28 до 0,41 дюйм)
- Соединение (нержавеющая сталь):
 Ø7 до 12 мм (0,28 до 0,47 дюйм)

PROFINET c Ethernet-APL

Стандартным типом кабеля для сегментов APL является кабель цифровой шины типа A, MAU типа 1 и 3 (указан в стандарте MЭК 61158-2). Этот кабель соответствует требованиям обеспечения искробезопасности при эксплуатации согласно стандарту МЭК TS 60079-47, а также может использоваться в условиях, не требующих обеспечения искробезопасности.

Тип кабеля	A
Емкость кабеля	45 до 200 nF/km
Сопротивление контура	15 до 150 Ом/км
Индуктивность кабеля	0,4 до 1 мГн/км

Более подробные сведения представлены в руководстве по проектированию систем Ethernet-APL (https://www.ethernet-apl.org).

6.2.3 Защита от перенапряжения

Защиту от перенапряжения можно по желанию заказать с помощью кода заказа "Установленные принадлежности" в спецификации изделия.

Приборы без дополнительной защиты от перенапряжения

Приборы соответствуют производственному стандарту IEC/DIN EN IEC 61326-1 (таблица 2 "Промышленная среда").

В зависимости от типа порта (источник питания постоянного тока, порт ввода / вывода) применяются различные уровни испытаний в соответствии со стандартом IEC/DIN EN 61326-1 в отношении переходных перенапряжений (IEC/DIN EN 61000-4-5 Surge):

Испытательный уровень на портах питания постоянного тока и портах ввода / вывода составляет 1000 В между фазой и землей.

Приборы с дополнительной защитой от перенапряжения

- Напряжение пробоя: не менее 400 В пост. тока.
- Испытание выполнено согласно стандарту IEC/DIN EN 60079-14, подпункт 12.3 (IEC/DIN EN 60060-1, глава 7).
- Номинальный ток разряда: 10 кА.

УВЕДОМЛЕНИЕ

Прибор может быть разрушен чрезмерно высоким электрическим напряжением.

▶ Всегда заземляйте прибор с помощью встроенной защиты от перенапряжения.

Категория перенапряжения

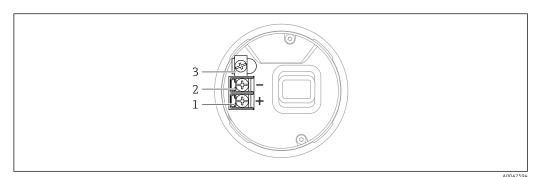
Категория перенапряжения II

6.2.4 Проводка

▲ ОСТОРОЖНО

Возможно наличие электропитания!

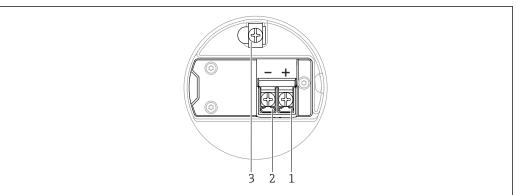
Опасность поражения электрическим током и/или взрыва!


- ► Если прибор используется во взрывоопасной зоне, необходимо обеспечить его соответствие национальным стандартам и требованиям, которые приведены в документации по технике безопасности (ХА). Необходимо использовать штатные кабельные муфты.
- ► Сетевое напряжение должно соответствовать параметрам, указанным на заводской табличке.
- ▶ Подключение прибора выполняется при отключенном питании.
- ► При необходимости линия выравнивания потенциалов может быть подключена к внешней клемме заземления прибора до линии электроснабжения.
- ► Согласно стандарту IUEC/EN 61010 прибор должен быть оснащен автоматическим выключателем.
- ► Кабели должны быть надлежащим образом изолированы с учетом напряжения питания и категории перенапряжения.
- ► Соединительные кабели должны обеспечивать достаточную температурную стабильность с учетом температуры окружающей среды.
- ▶ Эксплуатируйте измерительный прибор только с закрытыми крышками.

Подключите прибор в следующем порядке:

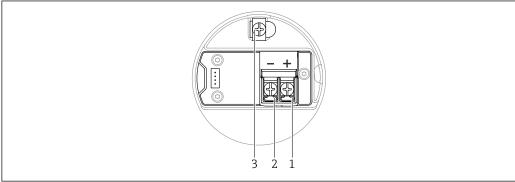
- 1. Разблокируйте фиксатор крышки (при наличии).
- 2. Выкрутите крышку.
- 3. Проведите кабели через кабельные муфты или кабельные вводы.
- 4. Подключите кабели.
- 5. Затяните кабельные муфты или кабельные вводы, чтобы обеспечить их герметичность. Закрепите ввод в корпус контргайкой.
- 6. Плотно затяните крышку соединительного отсека.
- 7. Если имеется: затяните фиксатор крышки шестигранным ключом 0,7 Нм (0,52 фунт сила фут)±0,2 Нм (0,15 фунт сила фут).

6.2.5 Назначение клемм


Корпус с одним отсеком

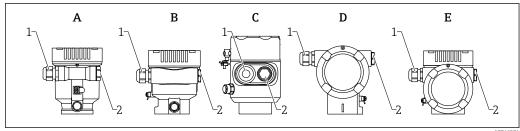
🗷 4 Клеммы подключения и клемма заземления в клеммном отсеке, корпус с одним отсеком

- 1 Положительная клемма
- 2 Отрицательная клемма
- 3 Внутренняя клемма заземления


Корпус с двумя отсеками

A0042803

- 5 Соединительные клеммы и клемма заземления в клеммном отсеке
- 1 Плюсовая клемма
- 2 Минусовая клемма
- 3 Внутренняя клемма заземления


Корпус с двумя отсеками L-образной формы

A0045842

- \blacksquare 6 Соединительные клеммы и клемма заземления в клеммном отсеке
- 1 Плюсовая клемма
- 2 Минусовая клемма
- 3 Внутренняя клемма заземления

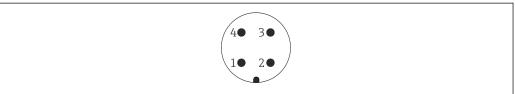
6.2.6 Кабельные вводы

A0

- А Корпус с одним отсеком, пластик
- В Корпус с одним отсеком, алюминий с покрытием
- С Корпус с одним отсеком, 316L, гигиеническое исполнение
- D Корпус с двумя отсеками, алюминий с покрытием
- E Корпус с двумя отсеками L-образной формы, алюминий с покрытием
- 1 Кабельный ввод
- 2 Заглушка

Количество и тип кабельных вводов зависят от заказанного исполнения прибора.

Обязательно направляйте соединительные кабели вниз, чтобы влага не проникала в клеммный отсек.


При необходимости сформируйте провисающую петлю для отвода влаги или используйте защитный козырек от непогоды.

6.2.7 Разъемы, предусмотренные для прибора

Если прибор оснащен разъемом, то вскрывать корпус для подключения не требуется.

Используйте прилагаемые уплотнения, чтобы предотвратить проникновение влаги внутрь прибора.

Приборы с разъемом М12

A0011175

- 🗷 7 Внешний вид разъема на приборе
- 1 Сигнал APL -
- 2 Cигнал APL +
- 3 Экранирование
- 4 Нет назначения

В качестве аксессуаров можно заказать различные гнезда M12 для приборов с разъемом M12.

6.3 Обеспечение требуемой степени защиты

6.3.1 Кабельные вводы

- Соединение M20, пластик, IP66/68 NEMA, тип 4X/6P
- Соединение M20, никелированная латунь, IP66/68 NEMA, тип 4X/6P
- Соединение M20, 316L, IP66/68 NEMA, тип 4X/6P

28

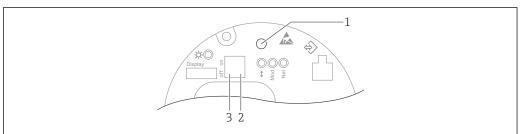
- Резьба M20, IP66/68 NEMA, тип 4X/6P
- Резьба G1/2, IP66/68 NEMA, тип 4X/6Р
 Если выбрана резьба G1/2, прибор в стандартной комплектации поставляется с резьбой M20; при этом в комплект поставки входит переходник на G1/2 вместе с сопроводительной документацией
- Резьба NPT 1/2, IP66/68 NEMA, тип 4X/6P
- Заглушка для защиты при транспортировке: IP22, NEMA, тип 2
- Разъем M12
 - Если корпус закрыт, а соединительный кабель подключен: IP66/67, NEMA, тип 4X
 - Если корпус открыт или соединительный кабель не подключен: IP20, NEMA, тип 1

УВЕДОМЛЕНИЕ

Разъем M12: утрата соответствия классу защиты IP вследствие ненадлежащего монтажа!

- ► Степень защиты относится только к такому состоянию, при котором соединительный кабель подключен, а уплотнение плотно затянуто.
- ► Степень защиты действует только в том случае, если соединительный кабель соответствует классу защиты IP67 NEMA, тип 4X.
- ► Классы защиты IP действуют только при наличии защитной заглушки или подсоединенного кабеля.

6.4 Проверка после подключения


	Прибор и кабели не повреждены (внешнии осмотр)?
	Используемые кабели соответствуют предъявляемым требованиям?
	Оснащены ли кабели средствами снятия натяжения в достаточной мере?
	Кабельные уплотнения установлены, плотно затянуты и герметичны?
	Соответствует ли сетевое напряжение техническим требованиям, указанным на одской табличке?
□ F	Нет ли обратной полярности, соблюдено ли назначение клемм?
	Крышка затянута должным образом?
	Фиксатор крышки затянут должным образом?

7 Опции управления

7.1 Обзор опций управления

- Управление с помощью кнопок управления и DIP-переключателей на электронной вставке
- Управление с помощью сенсорных кнопок управления на дисплее прибора (опционально)
- Управление через беспроводную технологию Bluetooth® (при наличии опционального дисплея прибора с модулем Bluetooth) посредством приложения SmartBlue, коммуникатора FieldXpert или ПО DeviceCare
- Управление через веб-сервер
- Управление с помощью управляющей программы (Endress+Hauser FieldCare/ DeviceCare) или FDI Hosts (напр., PDM)

7.2 Кнопки управления и DIP-переключатели на электронной вставке

A004606

- 🛮 8 Кнопки управления и DIP-переключатели на электронной вставке Ethernet-APL
- 1 Кнопка управления для запуска функций Сброс пароля и Сброс параметров прибора
- 2 DIP-переключатель для установки IP-адреса услуги
- 3 DIP-переключатель для блокирования и разблокирования прибора

Настройка, выполняемая DIP-переключателями на электронной вставке, приоритетна по сравнению с настройкой, выполняемой другими средствами управления (например, ПО FieldCare/DeviceCare).

7.3 Структура и функции меню управления

Различия между структурами меню управления локального дисплея и управляющих программ Endress+Hauser FieldCare или DeviceCare можно суммировать следующим образом:

Локальный дисплей пригоден для настройки в простых условиях применения.

Управляющие программы (FieldCare, DeviceCare, SmartBlue, AMS, PDM и пр.) можно использовать для настройки параметров в самых разнообразных обстоятельствах.

В более сложных условиях применения настройка возможна с помощью веб-сервера.

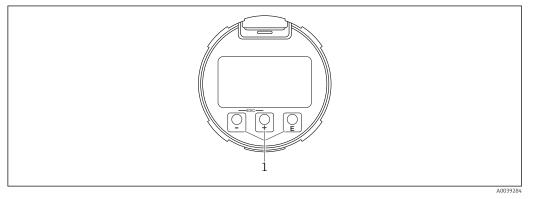
Мастер настройки помогает пользователю ввести прибор в эксплуатацию в различных условиях применения. Пользователь получает рекомендации на различных этапах настройки.

7.3.1 Уровни доступа и соответствующая авторизация

Если для прибора задан определенный код доступа, то для пользователей двух уровней доступа, **Оператор** и **Техническое обслуживание** (на момент поставки

прибора), предусмотрены разные варианты доступа к параметрам для записи. Этот код доступа защищает настройку прибора от несанкционированного доступа.

При вводе недействительного кода доступа пользователь получает права доступа, соответствующие уровню **Оператор**.


7.4 Доступ к меню управления посредством местного дисплея

7.4.1 Дисплей прибора (опционально)

Воздействовать на оптические кнопки управления можно сквозь крышку. Вскрывать прибор для этого не требуется.

Функции

- Отображение измеренных значений, а также сообщений о неисправностях и уведомительных сообщений
- При обнаружении ошибки цвет подсветки дисплея меняется с зеленого на красный.
- Чтобы упростить управление, дисплей прибора можно снять.
- Подсветка включается или выключается в зависимости от сетевого напряжения и потребляемого тока.
- По заказу дисплей прибора может быть оснащен беспроводным интерфейсом Bluetooth®.

🗷 9 Графический дисплей с оптическими кнопками управления (1)

- Кнопка ±
 - Переход вниз в списке выбора
 - Редактирование числовых значений или символов в пределах функции
- Кнопка 🖃
 - Переход вверх в списке выбора
 - Редактирование числовых значений или символов в пределах функции
- Кнопка
 - Переход от основного окна к главному меню
 - Подтверждение ввода
 - Переход к следующему пункту
 - Выбор пункта меню и активация режима редактирования
 - Блокирование/разблокирование работы дисплея
 - Нажмите и удерживайте кнопку ©, чтобы просмотреть краткое описание выбранного параметра (если оно есть)
- - Выход из режима редактирования параметра без сохранения измененного значения
 - Меню на уровне выбора: при одновременном нажатии кнопок происходит переход на один уровень выше в структуре меню.
 - Чтобы вернуться на более высокий уровень меню, нажмите кнопки одновременно и удерживайте их.

7.4.2 Управление через технологию беспроводной связи Bluetooth® (опционально)

Предварительные условия

- Прибор с дисплеем, оснащенным модулем Bluetooth
- Смартфон или планшет с приложением SmartBlue, разработанным компанией Endress+Hauser, или ПК с установленным ПО DeviceCare версии 1.07.05 или более поздней либо коммуникатор FieldXpert SMT70

Соединение имеет диапазон до 25 м (82 фут). Диапазон может варьироваться в зависимости от условий окружающей обстановки, таких как крепления, стены или потолки.

Кнопки управления на дисплее блокируются при подключении к прибору через интерфейс Bluetooth.

Мигающий символ Bluetooth указывает на то, что подключение по технологии Bluetooth доступно.

🚹 Обратите внимание на следующее.

Если дисплей с модулем Bluetooth снят с одного прибора и установлен на другой прибор:

- все данные для входа в систему сохраняются на дисплее с модулем Bluetooth, но не в приборе;
- пароль, измененный пользователем, также сохраняется в дисплее с модулем Bluetooth.

Управление посредством приложения SmartBlue

Управлять прибором и настраивать его можно с помощью приложения SmartBlue.

- Для этого необходимо загрузить на мобильное устройство приложение SmartBlue.
- Информация о совместимости приложения SmartBlue с мобильными устройствами приведена в Apple App Store (устройства на базе IOS) или Google Play Store (устройства на базе Android).
- Неправильная эксплуатация не допущенными к ней лицами предотвращается благодаря шифрованию связи и парольной защите шифрования.
- Функция Bluetooth® может быть отключена после первоначальной настройки прибора.

A0033202

🛮 10 🛮 QR-код для бесплатного приложения Endress+Hauser SmartBlue

Загрузка и установка:

- 1. Отсканируйте QR-код или введите строку **SmartBlue** в поле поиска в Apple App Store (iOS) или Google Play Store (Android).
- 2. Установите и запустите приложение SmartBlue.
- 3. Для устройств на базе Android: включите функцию отслеживания местоположения (GPS) (не требуется для устройств на базе iOS).
- 4. Выберите устройство, готовое к приему, из отображаемого списка устройств.

Войдите в систему:

- 1. Введите имя пользователя: admin.
- 2. Введите исходный пароль: серийный номер прибора.
- 3. Смените пароль после первого входа.

🎦 Примечания по паролю и коду сброса

- Если заданный пользователем пароль утерян, доступ можно восстановить с помощью кода сброса. Код сброса представляет собой серийный номер прибора в обратном порядке. После ввода кода сброса исходный пароль снова становится действительным.
- Как и пароль, код сброса также можно изменить.
- Если заданный пользователем код сброса утерян, пароль больше нельзя будет сбросить через приложение SmartBlue. В данном случае обратитесь в сервисный центр Endress+Hauser.

7.5 Доступ к меню управления посредством веббраузера

7.5.1 Совокупность функций

Эксплуатацию и настройку прибора можно осуществлять с помощью веб-браузера благодаря наличию встроенного веб-сервера. Структура меню управления аналогична структуре меню локального дисплея. Помимо измеряемых значений отображается информация о состоянии прибора, что позволяет отслеживать его состояние. Кроме того, доступно управление данными прибора и настройка сетевых параметров.

7.5.2 Предварительные условия

Программное обеспечение ПК

Рекомендуемые операционные системы

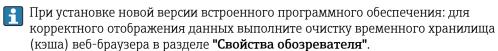
- Microsoft Windows 7 или более поздняя версия.
- Мобильные операционные системы:
 - iOS
 - Android
- 🚹 Поддерживается Microsoft Windows XP.

Поддерживаемые веб-браузеры

- Microsoft Internet Explorer 8 или более поздняя версия
- Microsoft Edge
- Mozilla Firefox
- Google Chrome
- Safari

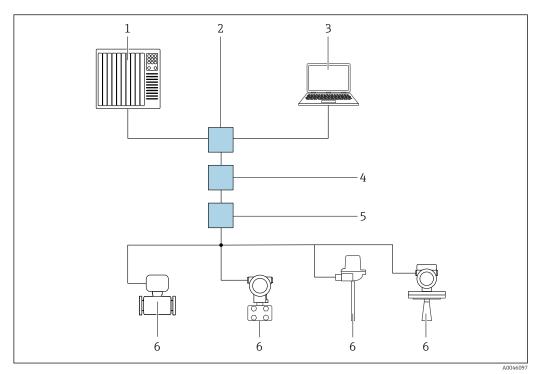
Настройки ПК

Права пользователя


Для настройки параметров TCP/IP и прокси-сервера (для изменения IP-адреса, маски подсети и пр.) необходимы соответствующие права пользователя (например, права администратора).

Настройка прокси-сервера в параметрах веб-браузера

В настройках веб-браузера необходимо **деактивировать** функцию *Use proxy server for LAN (Использовать прокси-сервер для ЛВС)*.


JavaScript

JavaScript необходимо активировать.

7.5.3 Установление соединения

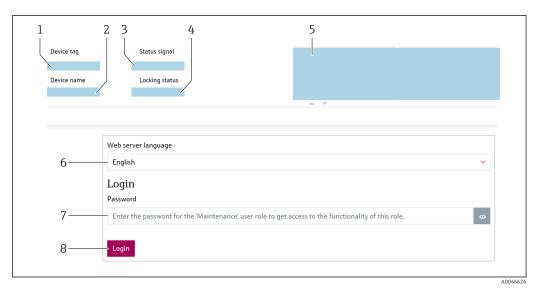
По сети PROFINET с Ethernet-APL

🖪 11 💮 Варианты дистанционного управления через сеть PROFINET с Ethernet-APL: топология «звезда»

- 1 Система автоматизации, например Simatic S7 (Siemens)
- 2 Коммутатор Ethernet
- 3 Компьютер с веб-браузером (напр., Microsoft Edge) для доступа к встроенному веб-серверу прибора или компьютер с управляющей программой (напр., FieldCare, DeviceCare, SIMATIC PDM), с интерфейсом связи iDTM Profinet
- 4 Выключатель электропитания APL (опционально)
- 5 Полевой коммутатор APL
- 6 Полевой прибор APL

Откройте веб-сайт через компьютер в сети. ІР-адрес прибора должен быть известен.

ІР-адрес может быть выделен прибору различными способами.


- Протокол динамического конфигурирования (DCP), заводская настройка
 Система автоматизации (например, Siemens S7) автоматически выделяет IP-адрес прибору
- Программная адресация
 - IP-адрес вводится через параметр IP-адреса
- DIP-переключатель прибора
 - В этом случае у прибора будет IP-адрес 192.168.1.212
 - **!** IP-адрес назначается только после перезагрузки.
 - IP-адрес теперь можно использовать для установления соединения с сетью

По умолчанию в приборе используется протокол динамического конфигурирования (DCP). Система автоматизации (например, Siemens S7) автоматически выделяет IP-адрес для прибора.

Запуск веб-браузера и вход в систему

- 1. Запустите веб-браузер на компьютере.
- 2. Введите ІР-адрес прибора в адресную строку веб-браузера

▶ Появится страница входа в систему.

🖪 12 🛮 Вход через веб-браузер

- 1 Обозначение прибора
- 2 Название прибора
- 3 Сигнал состояния
- 4 Статус блокировки
- 5 Текущие измер. значения
- 6 Выберите язык
- 7 Введите параметр "Пароль"
- 8 Вход
- 1. Выберите предпочитаемый параметр **Language** для веб-браузера.
- 2. Введите параметр Пароль (по умолчанию: 0000).
- 3. Подтвердите ввод кнопкой Вход .

7.5.4 Пользовательский интерфейс

🛮 13 Пример пользовательского интерфейса

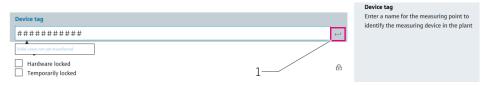
- 1 Заголовок
- 2 Рабочая область
- 3 Область навигации

Заголовок

В заголовке отображается следующая информация:

- Обозначение прибора
- Название прибора
- Сигнал состояния
- Статус блокировки
- Текущие измер. значения

Область навигации


Если выбрать функцию на панели функций, в области навигации появятся подменю этой функции. После этого можно выполнять навигацию по меню.

Рабочая область

В зависимости от выбранной функции и соответствующих подменю в этой области можно выполнять различные действия, такие как:

- Настройка параметров
- Считывание измеренных значений
- Вызов справки

Принятие значения

■ 14 Пример кнопки Enter (ввод)

1 Кнопка Enter в управляющей программе

Введенное значение закрепляется только после нажатия кнопки (или клавиши) Enter (1).

7.5.5 Деактивация веб-сервера

Веб-сервер измерительного прибора можно включать и выключать по мере необходимости с помощью параметр **Функциональность веб-сервера**.

Навигация

Меню "Система" → Возможность подключения → Раздел фаз

Обзор и краткое описание параметров

Параметр	Описание	Выбор
Функциональность веб-сервера	Включить и выключить веб-сервер, выключить HTML.	ДеактивироватьАктивировать

Перечень функций параметр "Функциональность веб-сервера"

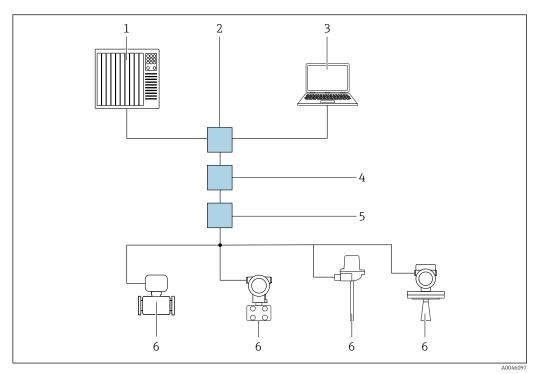
Опция	Описание
Деактивировать	Веб-сервер полностью выключен.Порт 80 блокирован.
Активировать	 Доступна полная функциональность веб-сервера. Используется JavaScript. Пароль передается в зашифрованном виде. Любое изменение пароля также передается в зашифрованном виде.

Активация веб-сервера

Если веб-сервер деактивирован, его можно активировать только с помощью параметра параметр **Функциональность веб-сервера** и с использованием следующих способов управления:

- Через локальный дисплей
- С помощью управляющей программы FieldCare
- С помощью управляющей программы DeviceCare
- С помощью загрузочной записи PROFINET

7.5.6 Выход из системы


- 1. В строке функций выберите **Logout** (выйти из системы).
 - └ Появится начальная страница с полем входа в систему.
- 2. Закройте веб-браузер.
- После того как связь с веб-сервером установлена через стандартный IP-адрес 192.168.1.212, необходимо выполнить сброс DIP-переключателя (перевести из положения **ON** в положение **OFF**). После перезагрузки заданный IP-адрес прибора снова активируется для сетевого соединения.

7.6 Доступ к меню управления с помощью управляющей программы

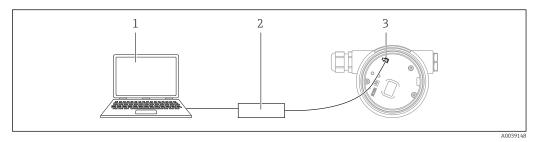
Структура меню управления в управляющей программе аналогична структуре меню местного дисплея. Однако диапазон функций отличается.

7.6.1 Подключение управляющей программы

По сети PROFINET с Ethernet-APL

🖪 15 💮 Варианты дистанционного управления через сеть PROFINET с Ethernet-APL: топология «звезда»

- 1 Система автоматизации, например Simatic S7 (Siemens)
- 2 Коммутатор Ethernet
- 3 Компьютер с веб-браузером (напр., Microsoft Edge) для доступа к встроенному веб-серверу прибора или компьютер с управляющей программой (напр., FieldCare, DeviceCare, SIMATIC PDM), с интерфейсом связи iDTM Profinet
- 4 Выключатель электропитания APL (опционально)
- 5 Полевой коммутатор APL
- 6 Полевой прибор APL


Откройте веб-сайт через компьютер в сети. IP-адрес прибора должен быть известен.

ІР-адрес может быть выделен прибору различными способами.

- Протокол динамического конфигурирования (DCP), заводская настройка
 Система автоматизации (например, Siemens S7) автоматически выделяет IP-адрес прибору
- Программная адресация
 - IP-адрес вводится через параметр IP-адреса
- DIP-переключатель прибора
 - В этом случае у прибора будет IP-адрес 192.168.1.212
 - **!** IP-адрес назначается только после перезагрузки.
 - IP-адрес теперь можно использовать для установления соединения с сетью

По умолчанию в приборе используется протокол динамического конфигурирования (DCP). Система автоматизации (например, Siemens S7) автоматически выделяет IPадрес для прибора.

Сервисный интерфейс

- 1 Компьютер с управляющей программой FieldCare/DeviceCare
- 2 Commubox FXA291
- 3 Сервисный интерфейс (CDI) прибора (единый интерфейс доступа к данным Endress+Hauser)
- Для обновления (прошивки) ПО прибора на прибор необходимо подать электропитание через клеммы питания.

7.7 FieldCare

7.7.1 Диапазон функций

Средство управления производственными активами на основе технологии FDT, разработанное специалистами Endress+Hauser. С помощью ПО FieldCare можно настраивать все интеллектуальные полевые приборы в системе и управлять ими. За счет использования информации о состоянии ПО FieldCare также является простым, но эффективным способом проверки состояния и исправности приборов.

Средства доступа:

- Сервисный интерфейс CDI
- Интерфейс PROFINET

Типичные функции:

- Настройка параметров преобразователя
- Загрузка/выгрузка и сохранение данных прибора
- Протоколирование точки измерения
- Визуализация архива измеренных значений (линейного регистратора) и журнала событий
- Более подробные сведения о ПО FieldCare см. в руководствах по эксплуатации ВА00027S и ВА00059S

7.8 DeviceCare

7.8.1 Совокупность функций

Инструмент для подключения и конфигурирования полевых приборов Endress +Hauser.

Быстрее всего можно настроить полевые приборы Endress+Hauser с помощью специальной программы DeviceCare. В сочетании с диспетчерами типовых приборов (DTM) ПО DeviceCare представляет собой удобное решение комплексного характера.

👔 Более подробные сведения см. в буклете «Инновации» (IN01047S).

8 Системная интеграция

8.1 Обзор файлов описания прибора

8.1.1 Сведения о текущей версии прибора

Версия прошивки	01.00.zz	 На титульном листе руководства по эксплуатации На заводской табличке преобразователя Система → Информация → Версия прошивки
Параметр Версия прошивки: дата выпуска	04.2023	-
ID производителя	ID: 0x11	Руководство $ ightarrow$ Ввод в работу $ ightarrow$ Идентификация прибора $ ightarrow$ ID производителя
Device ID	ID: A1C1	Руководство → Ввод в работу → Идентификация прибора → Device ID На заводской табличке преобразователя
Идент. прибора, профиль 4	B321	На заводской табличке преобразователя
Версия прибора	1	На заводской табличке преобразователя
Версия PROFINET	2.4x	-
РА версия профиля	4.0x	Применение → PROFINET → Информация → PA версия профиля

8.1.2 Управляющие программы

В таблице ниже приведен список подходящих файлов описания прибора для каждой конкретной программы, а также информация об источнике, из которого можно получить этот файл.

Управляющая программа, работающая через Сервисный интерфейс (CDI)	Способ получения файлов описания прибора
FieldCare	 www.endress.com → раздел Downloads (документация) Компакт-диск (обратитесь в региональное торговое представительство Endress+Hauser) DVD-диск (обратитесь в региональное торговое представительство Endress+Hauser)
DeviceCare	 www.endress.com → раздел Downloads (документация) Компакт-диск (обратитесь в региональное торговое представительство Endress+Hauser) DVD-диск (обратитесь в региональное торговое представительство Endress+Hauser)
SMT70	С помощью функции обновления портативного терминала
AMS Device Manager (Emerson Process Management)	www.endress.com → раздел Downloads (документация)
SIMATIC PDM (Siemens)	www.endress.com → раздел Downloads (документация)

8.2 Основной файл прибора (GSD)

Для интеграции полевых приборов в шинную систему PROFIBUS с Ethernet-APL требуется описание параметров приборов, таких как выходные данные, входные данные, формат данных и объем данных.

Эти данные находятся в основном файле прибора (GSD), который предоставляется системе автоматизации при вводе системы связи в эксплуатацию. Кроме того, можно интегрировать растровые изображения приборов, которые отображаются в виде значков в структуре сети.

Основной файл прибора (GSD) имеет формат XML и создается на языке разметки GSDML.

Загрузка основного файла прибора (GSD)

- Через веб-сервер: навигация Система → Device drivers
- С помощью www.endress.com/download

8.2.1 Имя основного файла прибора (GSD)

Пример имени основного файла прибора:

GSDML-V2.43-EH-Micropilot-202304dd.xml (dd = дата выпуска)

GSDML	наык описания	
V2.43	ерсия технических параметров PROFINET	
ЕН	Endress+Hauser	
Micropilot	емейство приборов	
20230422	Цата выпуска (год, месяц, день)	
.xml	Расширение файла (файл XML)	

8.3 Циклическая передача данных

8.3.1 Обзор модулей

На следующем рисунке изображены модули, которые можно использовать в приборе для циклического обмена данными. Циклический обмен данными осуществляется с помощью системы автоматизации.

Применение \rightarrow PROFINET \rightarrow Аналоговый вход \rightarrow Аналоговый вход 1 до 11 \rightarrow Назначить переменную процесса

Прибор		Направление	Сметома управления
Модуль	Гнездо	потока данных	Система управления
Аналоговый вход Уровень	1	→	
Аналоговый вход Расстояние	2	→	
Аналоговый вход объём	3	→	
Аналоговый вход Температура датчика	20	→	
Аналоговый вход Температура электроники	21	→	
Аналоговый вход Абсолютная амплитуда отражённого сигнала	22	→	
Аналоговый вход Относительная амплитуда эхо-сигнала	23	→	PROFINET
Аналоговый вход Процент диапазона	24	→	PROFINEI
Аналоговый вход (область поступления сигнала)	25	→	
Аналоговый вход Коэф-т налипаний	26	→	
Аналоговый вход Коэф-т пены	27	→	
Двоичный вход Heartbeat Technology	80	→	
Двоичный вход (налипание/пена)	81	→	
Двоичный выход Heartbeat Technology	210	+	

8.3.2 Описание модулей

Структура данных описана с точки зрения системы автоматизации:

- Входные данные: отправляются с прибора в систему автоматизации
- Выходные данные: отправляются из системы автоматизации на прибор

Модуль: Аналоговый вход

Передача входных переменных с прибора в систему автоматизации:

С помощью модулей Аналоговый вход осуществляется циклическая передача выбранных входных переменных, включая сигналы состояния, с прибора в систему автоматизации. Входная переменная представлена в первых четырех байтах в форме числа с плавающей запятой согласно стандарту IEEE 754. Пятый байт содержит информацию о состоянии входной переменной. Модуль Аналоговый вход, Уровень, в гнезде 1, содержится в Уровень РА PROFILE GSD; остальные модули Аналоговый вход могут использоваться только в GSD изготовителя.

Модуль: Двоичный выход

С помощью модуля Двоичный выход возможно циклическое получение дискретных выходных значений от системы автоматизации. В приборе реализована схема 8-битного типа согласно профилю PA PROFILE 4.0x. Из них 1 бит используется для подачи прибору сигнала о необходимости запуска функции Heartbeat Verification.

Бит	Функция	Описание
0	Начать проверку	Запуск проверки
1-7	-	-

Модуль: Двоичный вход

С помощью модуля Двоичный вход возможна циклическая отправка дискретных значений в систему автоматизации. Статус Heartbeat Verification передается на прибор:

Модуль: Двоичный вход Heartbeat Technology, гнездо 80

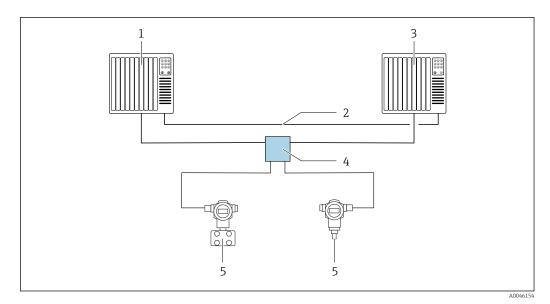
Бит	Функция	Описание
0	Параметр Статус опция Не выполнено	Проверка не выполнена
1	Параметр Статус опция Не пройдено	Прибор не прошел проверку. Результаты минимум одной группы тестов не соответствуют требованиям.
2	Параметр Статус опция Занят	Выполняется проверка
3	Параметр Статусопция Готово	Проверка выполнена
4	Параметр Результаты проверки опция Не пройдено	Прибор не прошел проверку. Результаты минимум одной группы тестов не соответствуют требованиям.
5	Параметр Результаты проверки опция Пройдено	Проверка прибора завершилась успешно. Результаты всех групп тестов соответствуют требованиям.
6	Проверка завершится с результатом Passed (пройдено) даже в том случае, если одна группа тестов завершится с результатом Failed (не пройдено), а остальные группы—с результатом Passed.	
7	Параметр Результаты проверки опция Не выполнено	Проверка не выполнена

Модуль: Двоичный вход, диагностика датчика, гнездо 81

Бит	Функция	Описание
0	Налипание на датчике	На датчике обнаружено налипание материала
1	Образование пены	Обнаружено образование пены
2-7	-	

8.3.3 Кодировка данных статуса

Статус	Кодировка (шестнадцатеричная)	Расшифровка
НЕПРИГОДНО: аварийный сигнал о необходимости технического обслуживания	0x24	Измеренное значение отсутствует, так как произошла ошибка прибора.
НЕПРИГОДНО: связано с технологическим процессом	0x28	Измеренное значение отсутствует, так как условия технологического процесса выходят за рамки технических возможностей прибора.
НЕПРИГОДНО: функциональная проверка	0x3C	Выполняется функциональная проверка (напр., очистка или калибровка)
НЕИЗВЕСТНО – исходное значение	0x4F	Предварительно определенное значение выводится до тех пор, пока снова не станет доступным достоверное измеренное значение или пока не будут выполнены корректирующие меры, изменяющие это состояние.
НЕИЗВЕСТНО: требуется техническое обслуживание	0x68	Обнаружен ненормальный износ. Вскоре понадобится техническое обслуживание, чтобы сохранить работоспособность прибора. Измеренное значение может быть неверным. Использование измеренного значения зависит от применения.


Статус	Кодировка (шестнадцатеричная)	Расшифровка
НЕИЗВЕСТНО: связано с технологическим процессом	0x78	Условия технологического процесса выходят за рамки технических возможностей прибора. Это может негативно повлиять на качество и точность измеренного значения. Использование измеренного значения зависит от применения.
ПРИГОДНО: ОК	0x80	Ошибки не найдены.
ПРИГОДНО: требуется техническое обслуживание	0xA8	Измеренное значение действительно. Настоятельно рекомендуется выполнить обслуживание прибора в ближайшем будущем.
ПРИГОДНО: функциональная проверка	0xBC	Измеренное значение действительно. Прибор выполняет внутреннюю функциональную проверку. Функциональная проверка не оказывает какого-либо заметного эффекта на процесс.

8.3.4 Конфигурация при запуске

Конфигурация при запуске	Система автоматизации принимает конфигурацию наиболее важных параметров прибора.
(NSU)	■ Раздел фаз:
	■ Работа дисплея
	• Функциональность веб-сервера
	Aктивация Bluetooth
	■ Сервис (UART-CDI)
	• Системные единицы измерения:
	Единица измерения уровня
	 Единица измерения объема
	 Единицы измерения температуры
	■ Применение:
	• Максимальное значение
	■ Высота заужения
	■ Тип продукта
	 Калибровка заполненной емкости
	 Калибровка пустой емкости
	• Диаметр
	■ Настройки диагностики:
	Реакция системы на поступление диагностической информации различных типов
	• Аналоговые входы:
	Демпфирование

8.4 Резервирование системы S2

Для непрерывных технологических процессов необходима предусматривающая резервирование компоновка с двумя системами автоматизации. В случае отказа одной системы вторая система обеспечивает непрерывную бесперебойную работу. Прибор поддерживает резервирование системы типа S2 и пригоден для одновременного обмена данными с обеими системами автоматизации.

🗷 16 Пример компоновки резервируемой системы (S2): топология «звезда»

- 1 Система автоматизации 1
- 2 Синхронизация систем автоматизации
- 3 Система автоматизации 2
- 4 Полевой коммутатор Ethernet-APL
- 5 Прибор

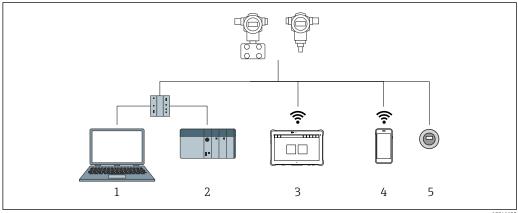
Все приборы в сети должны поддерживать резервирование системы категории S2.

9 Ввод в эксплуатацию

В любой конфигурационной программе предусмотрен ассистент по вводу в эксплуатацию, который сопровождает пользователя при настройке наиболее важных параметров конфигурации (меню Руководство мастер Ввод в работу).

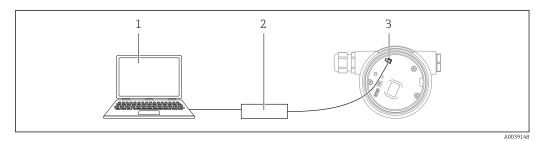
Предварительные условия 9.1

Диапазон измерения и единица измерения, используемая для передачи измеряемого значения, соответствуют техническим характеристикам, которые указаны на заводской табличке.


9.2 Монтаж и функциональная проверка

Перед вводом измерительной точки в эксплуатацию убедитесь в том, что были выполнены проверки после монтажа и подключения.

- 🖺 Проверка после монтажа
- Проверка после подключения


9.3 Установление соединения с помощью ПО FieldCare и DeviceCare

9.3.1 По протоколу PROFINET

- **■** 17 Варианты дистанционного управления по протоколу PROFINET
- Компьютер с веб-браузером или управляющей программой (например, DeviceCare)
- 2 Система автоматизации
- 3 Field Xpert SMT70
- Мобильный портативный терминал
- Местное управление посредством дисплея

9.3.2 Через сервисный интерфейс (CDI)

- 1 Компьютер с управляющей программой FieldCare/DeviceCare
- 2 Commuhox
- 3 Сервисный интерфейс (CDI) прибора (единый интерфейс доступа к данным Endress+Hauser)

9.3.3 Аппаратные настройки

Настройка названия прибора

Быстрая идентификация точки измерения в пределах предприятия выполняется на основе параметр **Обозначение прибора** и параметр **PROFINET название устройства**. параметр **Обозначение прибора**, который указан на заводе или записан при оформлении заказа, можно изменить в меню управления.

Настройка параметр "Обозначение прибора" с помощью меню управления

Параметр **Обозначение прибора** можно скорректировать посредством меню управления или с помощью системы автоматизации.

Система → Управление прибором

Настройка параметр "PROFINET название устройства" с помощью меню управления Применение ightarrow PROFINET ightarrow Конфигурация

Настройка параметр "PROFINET название устройства" с помощью системы автоматизации

Параметр **PROFINET название устройства** можно скорректировать индивидуально с помощью системы автоматизации.

При назначении параметр **PROFINET название устройства** с помощью системы автоматизации:

указывайте название прибора строчными буквами.

Активация IP-адреса по умолчанию

Активация IP-адреса по умолчанию с помощью DIP-переключателя

IP-адрес прибора по умолчанию (192.168.1.212) можно установить с помощью DIP-переключателей.

- 1. Переведите DIP-переключатель № 2 на электронной вставке из положения **OFF** в положение **ON**.
- 2. Подключите прибор к источнику питания.
 - ▶ IP-адрес по умолчанию вступает в силу после перезапуска прибора.

9.3.4 Настройка параметров связи посредством программного обеспечения

- ІР-адрес
- Subnet mask
- Шлюз по умолчанию

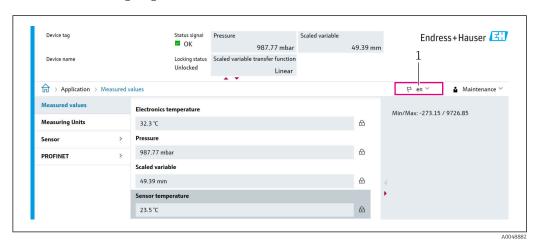
Навигация: Система → Возможность подключения → Ethernet

9.4 Настройка языка управления

9.4.1 Локальный дисплей

Настройка языка управления

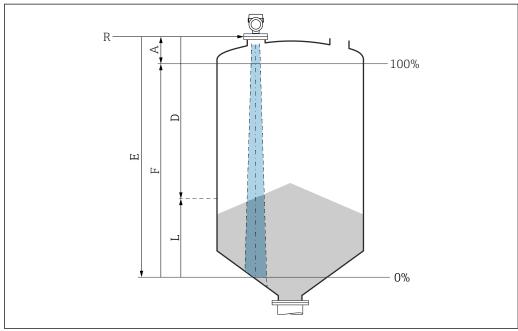
- 📔 Прежде чем настраивать язык управления, следует разблокировать дисплей.
- 1. Нажмите кнопку 🗉 и удерживайте ее не менее 2 с.
 - ┕ Отображается диалоговое окно.
- 2. Разблокируйте работу дисплея.
- 3. Выберите параметр **Language** в главном меню.
- 4. Нажмите кнопку 🗉.
- 5. Выберите необходимый язык кнопкой ± или 🖃.
- 6. Нажмите кнопку **E**.
- Управление через дисплей блокируется автоматически (исключение: мастер **Режим безопасности**):
 - Через 1 мин, если при активной основной странице не нажата ни одна кнопка
 - Через 10 мин, если при активном меню управления не нажата ни одна кнопка


9.4.2 Управляющая программа

Установите язык отображения

Система \rightarrow Дисплей \rightarrow Language

Выбор в меню параметр **Language**; Видимость зависит от опций заказа или настроек прибора


9.4.3 Веб-сервер

1 Настройка языка

9.5 Настройка прибора

9.5.1 Измерение уровня сыпучих сред

A001693

🗷 18 Параметры конфигурации для измерения уровня сыпучих сред

- R Контрольная точка измерения
- А Длина антенны + 10 мм (0,4 дюйм)
- D Расстояние
- L Уровень
- Е Параметр "Калибровка пустой емкости" (= 0%)
- F Параметр "Калибровка заполненной емкости" (= 100%)

9.5.2 Ввод в эксплуатацию с помощью мастера

В ПО FieldCare, DeviceCare, SmartBlue и на дисплее предусмотрен мастер **Ввод в работу** для сопровождения пользователя на начальном этапе ввода в эксплуатацию.

Выполните эту настройку, чтобы ввести прибор в эксплуатацию. Для каждого параметра введите необходимое значение или выберите соответствующую опцию.

ПРИМЕЧАНИЕ

Если выйти из мастера до завершения настройки всех необходимых параметров, прибор может перейти в неопределенное состояние!

В этом случае рекомендуется сбросить настройки до значений по умолчанию.

9.6 Запись графика Эхо-кривая

🚹 Эхо-кривая сохраняется только в соответствующей управляющей программе.

Запись текущего графика Эхо-кривая в качестве контрольной эхо-кривой для последующего использования в диагностических целях.

После настройки измерения рекомендуется записать текущий график Эхо-кривая в качестве контрольного графика.

Параметр **Сохранить эталонную кривую** в подменю **Эхо-кривая** используется для записи графика Эхо-кривая.

Диагностика \rightarrow Эхо-кривая \rightarrow Сохранить эталонную кривую

▶ В параметр Сохранить эталонную кривую активируйте опция Эталонная кривая вручную

9.7 Подменю "Моделирование"

Моделирование переменной процесса, импульсного выходного сигнала или диагностического события.

10 Управление

10.1 Считывание статуса блокировки прибора

Отображение активной защиты от записи:

- В меню параметр Статус блокировки
 Навигация на локальном дисплее: на верхнем уровне управления
 Навигация в управляющей программе: Система → Управление прибором
- В управляющей программе; заголовок

10.2 Чтение измеренных значений

Многие измеренные значения можно считывать в заголовке веб-сервера.

Все измеренные значения можно считывать в подменю Измеренное значение.

Навигация

Меню "Применение" → Измеренные значения

10.3 Адаптация прибора к условиям процесса

Для этой цели предусмотрены следующие меню.

- Базовые настройки в меню Руководство
- Расширенные настройки в следующих разделах.
 - Меню Диагностика
 - Меню Применение
 - Меню Система

11 Диагностика и устранение неисправностей

11.1 Общие сведения об устранении неисправностей

11.1.1 Ошибки общего характера

Прибор не отвечает

- Возможная причина: сетевое напряжение не соответствует техническим требованиям, указанным на заводской табличке Способ устранения неисправности: подключите прибор к источнику питания регламентированного напряжения
- Возможная причина: отсутствует контакт соединительных кабелей с клеммами
 Способ устранения неисправности: проверьте и при необходимости восстановите
 электрический контакт между кабелями и клеммами

Значения на дисплее не видны

 Возможная причина: слишком большая или слишком маленькая яркость дисплея Способ устранения:

Отрегулируйте контрастность с помощью параметра параметр **Контрастность писплея**

Путь навигации: Система → Дисплей → Контрастность дисплея

- Возможная причина: неправильное подключение разъема кабеля дисплея Способ устранения неисправности: подключите разъем правильно
- Возможная причина: неисправен дисплей
 Способ устранения неисправности: замените дисплей

При запуске прибора или подключении дисплея отображается сообщение Communication error (ошибка связи)

- Возможная причина: влияние электромагнитных помех
 Способ устранения неисправности: проверьте заземление прибора
- Возможная причина: ошибка подключения или неисправность разъема дисплея Способ устранения неисправности: замените дисплей

Не работает связь через интерфейс CDI

Возможная причина: ошибочная настройка СОМ-порта компьютера Способ устранения неисправности: проверьте параметры СОМ-порта компьютера и при необходимости исправьте их

Прибор выполняет измерение недостоверно

Возможная причина: ошибочная настройка параметров Способ устранения неисправности: проверьте и исправьте настройку параметров

11.2 Ошибка – управление с помощью приложения SmartBlue

Управление с помощью приложения SmartBlue возможно только на приборах, оснащенных дисплеем с Bluetooth (поставляется опционально).

Прибор не отображается в списке активных устройств

- Возможная причина: отсутствует соединение через интерфейс Bluetooth Способ устранения неисправности: включите интерфейс Bluetooth на полевом приборе и/или на смартфоне/планшете с помощью дисплея или программного обеспечения
- Возможная причина: превышен радиус действия сигнала Bluetooth Способ устранения неисправности: уменьшите расстояние между полевым прибором и смартфоном/планшетом
 - Радиус действия подключения до 25 м (82 фут).
 - Радиус действия при наличии взаимной видимости 10 м (33 фут).
- Возможная причина: геопозиционирование не включено на устройстве Android или не разрешено для приложения SmartBlue.
 - Способ устранения неисправности: включите/отключите службу геолокации на устройстве Android для приложения SmartBlue.
- Дисплей не оснащен модулем Bluetooth.
- Не подключен модуль Historom.

Прибор числится в списке активных устройств, однако подключение установить не удается

- Возможная причина: прибор уже соединен с другим смартфоном/планшетом по технологии Bluetooth
 - Допускается только одно соединение типа «точка-точка» Способ устранения неисправности: отсоедините смартфон/планшет от другого
- устройства

 Возможная причина: ошибочный ввод имени пользователя и пароля
 Способ устранения неисправности: стандартное имя пользователя admin, а

паролем является серийный номер прибора, указанный на его заводской табличке

(только если пароль не был изменен пользователем ранее) Если пароль забыт, обратитесь в сервисный центр Endress+Hauser (www.addresses.endress.com)

He удается установить соединение посредством приложения SmartBlue

- Возможная причина: введен недействительный пароль Способ устранения неисправности: введите действительный пароль, учитывая регистр символов
- Возможная причина: забыт пароль
 Способ устранения неисправности: обратитесь в сервисный центр Endress+Hauser
 (www.addresses.endress.com)

Невозможно войти в систему через приложение SmartBlue

- Возможная причина: прибор вводится в работу впервые
 Способ устранения неисправности: введите имя пользователя (admin) и пароль (серийный номер прибора) с учетом регистра символов
- Возможная причина: электрический ток и напряжение не соответствуют требованиям.
 - Способ устранения неисправности: увеличьте сетевое напряжение

Невозможно управлять прибором посредством приложения SmartBlue

- Возможная причина: введен недействительный пароль Способ устранения неисправности: введите действительный пароль, учитывая регистр символов
- Возможная причина: забыт пароль
 Способ устранения неисправности: обратитесь в сервисный центр Endress+Hauser
 (www.addresses.endress.com)
- Возможная причина: у пользователя, для которого выбрана опция Оператор, нет надлежащей авторизации
 - Способ устранения неисправности: Система \rightarrow Администрирование пользователей \rightarrow Уровень доступа пользователя Измените на опция **Техническое обслуживание**

11.3 Диагностическое сообщение

Неисправность, обнаруженная системой самоконтроля прибора, отображается в виде диагностического сообщения, чередующегося с измеренным значением.

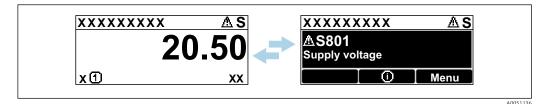
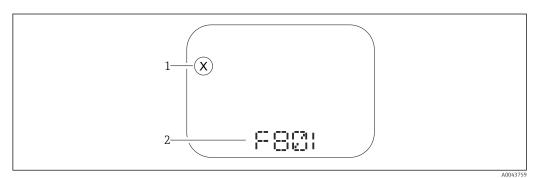



图 19 🛮 Диагностическое сообщение, чередующееся с измеренным значением

Если одновременно происходят два или более диагностических события, отображается только диагностическое сообщение с наивысшим приоритетом.

11.3.1 Диагностическая информация, отображаемая на локальном дисплее

🗗 20 Дисплей с сегментами без кнопок

- 1 Символ состояния, обозначающий уровень события
- 2 Символ состояния с диагностическим событием

A0043103

🛮 21 — Графический дисплей с кнопками

- 1 Сигнал состояния
- 2 Символ состояния с диагностическим событием и предшествующий символ, обозначающий уровень события
- 3 Текст сообщения о событии

11.3.2 Диагностическая информация, отображаемая в управляющей программе

Если в приборе произошло диагностическое событие, то в верхней левой области состояния управляющей программы отображается сигнал состояния вместе с соответствующим символом уровня события согласно рекомендациям NAMUR NE 107.

Нажмите на сигнал состояния, чтобы просмотреть подробные сведения о нем.

Диагностические сообщения из списка ожидания можно также отобразить с помощью опции параметр **Диагностика активна**.

Сообщения о диагностических событиях и меры по устранению неисправностей могут быть распечатаны с помощью опции подменю **Перечень сообщений диагностики**.

11.3.3 Сигнал состояния

F

Отказ (F)

Произошла ошибка прибора. Измеренное значение недействительно.

(

Проверка функций (С)

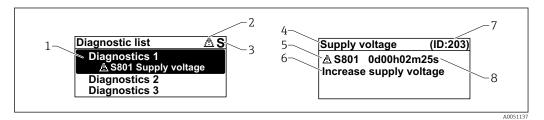
Прибор находится в сервисном режиме (например, во время моделирования).

S

Не соответствует спецификации (S)

Управление прибором:

- За пределами спецификации (например, во время запуска или очистки)
- За пределами параметров настройки, заданных пользователем (например, частота датчика выходит за пределы настроенного диапазона)


M

Требуется техническое обслуживание (М)

Требуется техническое обслуживание. Измеренное значение остается действительным.

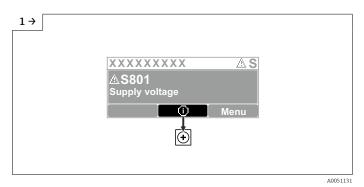
11.3.4 Диагностическое событие и текстовое описание события

Неисправность можно выявить при помощи диагностического события. Текст сообщения о событии помогает получить информацию о неисправности. Кроме того, перед описанием диагностического события отображается соответствующий символ состояния.

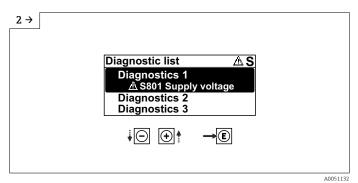
- 1 Диагностическое сообщение
- 2 Символ уровня события
- 3 Сигнал состояния
- 4 Краткое описание
- Б Символ уровня события, сигнал состояния, диагностический номер
- 6 Рекомендуемые меры
- 7 Сервисный идентификатор
- 8 Время события

Символ уровня события

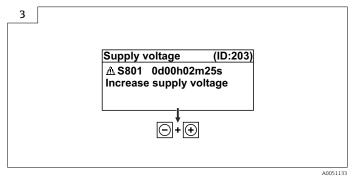
😵 Состояние выдачи аварийного сигнала


Измерение прервано. Сигнальные выходы переходят в определенное аварийное состояние. Выдается диагностическое сообщение.

△ Состояние выдачи предупреждения


Измерение продолжается. Выдается диагностическое сообщение.

11.4 Информация о способах исправленияВызов


11.4.1 Графический дисплей с кнопками

▶ Откройте меню подменю Перечень сообщений диагностики

▶ Выберите диагностическое событие и подтвердите

▶ Информация о способах исправленияЗакрытие

11.4.2 Меню управления

С помощью параметра подменю **Диагностический лист** можно просмотреть диагностические сообщения в очереди на обработку (до 5). Если количество необработанных сообщений превышает 5, на дисплей выводятся сообщения с наивысшим приоритетом.

Путь навигации

Диагностика → Перечень сообщений диагностики

Диагностические сообщения из списка ожидания можно также отобразить с помощью опции параметр **Диагностика активна**.

Навигация: Диагностика → Диагностика активна

11.5 Адаптация диагностической информации

Уровень события можно настроить:

Навигация: Диагностика → Настройки диагностики → Конфигурация

11.6 Список диагностических событий

Если Информация о способах исправления отображается **Contact the Service Department** (свяжитесь с сервисной службой) (www.addresses.endress.com), подготовьте **service ID** (сервисный идентификатор).

Количество диагностик	Краткий текст	Действия по восстановлению	Сигнал статуса [заводские]	Характеристики диагностики [заводские]
Диагностика	датчика			
062	Сбой соединения датчика	Проверьте соединение сенсора	F	Alarm
151	Сбой электроники датчика	Перезапустите прибор Обратитесь в сервисную службу	F	Alarm
168	Обнаружены налипания	1. Проверьте условия процесса 2. Увеличьте давление системы	М	Warning ¹⁾
Диагностика	электроники			
232	Дефект внутренних часов	Заменить главный блок электроники	M	Warning
242	Несовместимая прошивка	Проверьте программное обеспечение Перепрограммируйте или замените основной электронный модуль	F	Alarm
252	Несовместимый модуль	Проверить, правильный ли блок электроники подключен Заменить модуль электроники	F	Alarm
270	Неисправность основного электрон.модуля	Заменить главный блок электроники	F	Alarm
272	Неисправность блока основной электроники	Перезапустите прибор Обратитесь в сервисную службу	F	Alarm
273	Неисправность основного электрон.модуля	Заменить главный блок электроники	F	Alarm
282	Некорректное хранение данных	Перезапустите прибор	F	Alarm
283	Несовместимость содержимого памяти	Перезапустите прибор Обратитесь в сервисную службу	F	Alarm
287	Несовместимость содержимого памяти	Перезапустите прибор Обратитесь в сервисную службу	М	Warning
331	Сбой обновления прошивки	1. Обновите прошивку прибора 2. Перезагрузите прибор	М	Warning

Количество диагностик	Краткий текст	Действия по восстановлению	Сигнал статуса [заводские]	Характеристики диагностики [заводские]
388	Электроника и HistoROM неисправны	Перезапустите устройство Замените электронику и HistoROM Свяжитесь с сервисом	F	Alarm
Диагностика	конфигурации		!	'
410	Сбой передачи данных	1. Повторите передачу данных 2. Проверьте присоединение	F	Alarm
412	Обработка загрузки	Выполняется загрузка, пожалуйста, подождите	S	Warning
435	Ошибка линеаризации	Проверьте таблицу линеаризации	F	Alarm
436	Некоррект.Дата/ Время	Проверить настройки даты и времени.	M	Warning 1)
437	Конфигурация несовместима	1. Обновите прошивку 2. Выполните сброс до заводских настроек	F	Alarm
438	Массив данных отличается	Проверьте файл с массивом данных Проверьте параметризацию устройства Скачайте файл с новой параметризацией устройства	M	Warning
484	Моделир. режима неисправности активиров.	Деактивировать моделирование	С	Alarm
485	Моделирование переменной процесса	Деактивировать моделирование	С	Warning
495	Моделирование диагност. событий активно	Деактивировать моделирование	S	Warning
538	Неправильная конфигурация датчика	Проверьте настройки датчика Проверьте настройки прибора	F	Alarm
585	Моделир. расстояние до уровня продукта	Деактивировать моделирование	С	Warning
586	Записать карту помех	Запись маскирования, пожалуйста, подождите.	С	Warning
Диагностика 1	процесса			
801	Слишком низкое напряжение питания	Напряжение питания слишком низкое, увеличьте напряжение питания	S	Warning
802	Слишком высокое напряжение питания	Уменьшите напряжение питания	S	Warning
825	Температура электроники	Проверьте температуру окружающей среды Проверьте рабочую температуру	S	Warning
826	Температура датчика вне диапазона	Проверьте температуру окружающей среды Проверьте рабочую температуру	S	Warning

Количество диагностик	Краткий текст	Действия по восстановлению	Сигнал статуса [заводские]	Характеристики диагностики [заводские]
941	Эхо сигнал потерян	Проверьте параметр "Значение DC"	S	Warning 1)
942	На безопасном расстоянии	Проверьте уровень Проверьте безопасное расстояние Сбросьте удержание тревоги	S	Warning ¹⁾
952	Обнаружена пена	1. Проверьте условия процесса 2. Увеличьте давление системы	S	Warning 1)
968	Достигнут предел изм. уровня	1. Проверьте уровень 2. Проверьте предельные параметры	S	Warning

Параметры диагностики могут быть изменены.

11.7 Журнал событий

11.7.1 Журнал событий

В подменю подменю **Журнал событий** можно просмотреть хронологический обзор сообщений о произошедших событиях. Это подменю доступно только при использовании локального дисплея с кнопками. При управлении посредством FieldCare перечень событий можно просмотреть с помощью функции Event List / HistoROM (Перечень событий/HistoROM) программы FieldCare.

Навигация:

Диагностика \rightarrow Журнал событий \rightarrow Перечень событий

В хронологическом порядке могут отображаться до 100 сообщений о событиях.

Журнал событий содержит записи о следующих событиях:

- Диагностические события
- Информационные события

Кроме времени наступления события (исчисляемого в часах работы прибора), с каждым событием связывается символ, который указывает состояние события (происходит ли в данный момент):

- Диагностическое событие
 - : наступление события
 - 🕒: окончание события
- Информационное событие
 - €: наступление события

Вызов и закрытие мер по устранению ошибок

- 1. Нажмите E.
 - □ Появится сообщение с описанием мер по устранению выбранного диагностического события.
- 2. Одновременно нажмите □ и ±.
 - └ Сообщение о рекомендуемых мерах закроется.

11.7.2 Фильтрация журнала событий

С помощью фильтров можно определить категорию сообщений о событиях для отображения в разделе подменю **Перечень событий**.

Навигация: Диагностика → Журнал событий

Категории фильтра

- Bce
- Отказ (F)
- Проверка функций (С)
- Не соответствует спецификации (S)
- Требуется техническое обслуживание (M)
- Информация

11.7.3 Обзор информационных событий

Номер данных	Наименование данных
I1000	(Прибор ОК)
I1079	Датчик изменён
I1089	Питание включено
I1090	Сброс конфигурации
I1091	Конфигурация изменена
I11036	Дата / время установлены
I11074	Проверка прибора активна
I1110	Переключатель защиты от записи изменен
I1151	Сброс истории
I1154	Сброс измер напряжения клемм мин/макс
I1155	Сброс измерения температуры электроники
I1157	Журнал событий ошибок
I1256	Дисплей: статус доступа изменен
I1264	Безопасная последовательность прервана!
I1335	Прошивка изменена
I1397	Fieldbus: статус доступа изменен
I1398	CDI: статус доступа изменен
I1440	Главный модуль электроники изменен
I1444	Проверка прибора успешно завершена
I1445	Проверка прибора не выполнена
I1461	Ошибка проверки датчика
I1512	Началась загрузка
I1513	Загрузка завершена
I1514	Загрузка началась
I1515	Загрузка завершена
I1551	Исправлена ошибка назначения
I1552	Не выполнено: поверка гл.электрон.
I1554	Последовательность безопасности начата
I1555	Последовательность безопасн.подтверждена
I1556	Безопасный режим выкл
I1663	Питание выкл
I1666	Часы синхронизованы
I1712	Получен новый флеш-файл
I1956	Сброс

11.8 Сброс параметров прибора

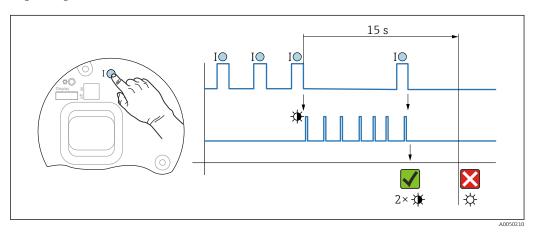
11.8.1 Сброс пароля с помощью управляющей программы

Введите код для сброса текущего пароля Техническое обслуживание. Код предоставляется местной службой поддержки.

Навигация: Система ightarrow Администрирование пользователей ightarrow Сброс пароля

ПОдробные сведения о параметре параметр **Сброс пароля** см. в документе «Описание параметров прибора».

11.8.2 Сброс параметров прибора с помощью управляющей программы

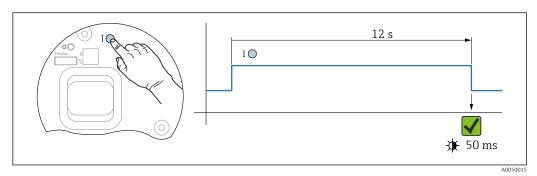

Сбросить конфигурацию прибора - полностью или частично - к определенному состоянию

Навигация: Система → Управление прибором → Сброс параметров прибора

Подробные сведения о параметре параметр Сброс параметров прибора см. в документе «Описание параметров прибора».

11.8.3 Сброс параметров прибора с помощью кнопок на электронной вставке

Сброс пароля


🗷 22 Последовательность сброса пароля

Удаление/сброс пароля

- 1. Нажмите управляющую кнопку **I** три раза.
 - 🕒 Функция сброса пароля запущена, светодиод мигает.
- 2. Нажмите управляющую кнопку I один раз и удерживайте ее в течение 15 с.
 - 🛏 Пароль сбрасывается, светодиод кратковременно мигает.

Если управляющая кнопка **I** не нажата в течение 15 с, действие отменяется и светодиод больше не горит.

Сброс параметров прибора на заводские настройки

🗷 23 Последовательность сброса на заводские настройки

Сбросьте параметры прибора на заводские настройки

- ► Нажмите управляющую кнопку **I** и удерживайте ее не менее 12 с.

11.9 Информация о приборе

Вся информация о приборе содержится здесь: подменю Информация.

Навигация: Система → Информация

Подробные сведения о параметре подменю **Информация** см. в документе «Описание параметров прибора».

11.10 Изменения программного обеспечения

Версию программного обеспечения для прибора можно явно указать в структуре оформления заказа. Это позволяет обеспечить совместимость версии ПО при интеграции с существующей или планируемой системой.

Версия 01.00.00

- Исходное ПО
- Действительно с 01.05.2023

12 Техническое обслуживание

Специальное техническое обслуживание не требуется.

12.1 Очистка

12.1.1 Очистка поверхностей, не контактирующих с технологической средой

- Рекомендация: используйте безворсовую ткань, сухую или слегка смоченную водой.
- Не используйте острые предметы или агрессивные чистящие средства, способные разъедать поверхности (например, экраны и корпуса) и уплотнительные материалы.
- Не используйте пар высокого давления.
- Учитывайте степень защиты прибора.
- Используемое чистящее средство должно быть совместимым с материалами конфигурации прибора. Не используйте чистящие средства с концентрированными минеральными кислотами, основаниями или органическими растворителями.

12.1.2 Очистка поверхностей, контактирующих с технологической средой

В отношении очистки и стерилизации на месте (CIP/SIP) необходимо учитывать следующие моменты.

- Используйте только те чистящие средства, к которым материалы, находящиеся в контакте с окружающей средой, обладают достаточной стойкостью.
- Не превышайте максимально допустимую температуру технологической среды.

12.2 Уплотнения

Технологические уплотнения, которыми уплотняется присоединение к процессу прибора, необходимо периодически заменять. Периодичность замены уплотнений зависит от частоты выполнения циклов очистки, температуры очистки и температуры среды.

13 Ремонт

13.1 Общая информация

13.1.1 Принцип ремонта

Принцип ремонта компании Endress+Hauser

- Приборы имеют модульную конструкцию
- Ремонт может осуществляться сервисным центром Endress+Hauser или специалистами заказчика, прошедшими соответствующее обучение
- Запасные части объединены в логические комплекты и снабжены соответствующими руководствами по замене
- Сведения об обслуживании и запасных частях можно получить в региональном торговом представительстве Endress+Hauser.

13.1.2 Ремонт приборов во взрывозащищенном исполнении

▲ ОСТОРОЖНО

Ненадлежащий ремонт может поставить под угрозу электробезопасность! Опасность взрыва!

- ► В соответствии с национальным законодательством ремонт приборов с сертификатами взрывозащиты может осуществляться только специализированным персоналом или специалистами сервисного центра производителя.
- ► Требуется соблюдение действующих отраслевых стандартов и национального законодательства в отношении взрывоопасных зон, указаний по технике безопасности и сертификатов.
- ▶ Используйте только фирменные запасные части производителя.
- ▶ Учитывайте обозначение прибора, указанное на заводской табличке. Для замены могут использоваться только аналогичные детали.
- ▶ Выполняйте ремонт в соответствии с инструкциями.
- Вносить изменения в конструкцию сертифицированного прибора и модифицировать его до уровня иного сертифицированного исполнения могут только специалисты сервисного центра производителя.

13.2 Запасные части

Запасные части, доступные в настоящее время для продукта, см. в Интернете по адресу: https://www.endress.com/deviceviewer (→ Введите серийный номер)

13.3 Замена

№ ВНИМАНИЕ

Если прибор используется в системе обеспечения безопасности, то выполнять загрузку и выгрузку данных для него запрещено.

► После замены всего прибора или электронного модуля параметры можно снова загрузить в прибор через интерфейс связи. Для этого следует предварительно выгрузить данные в компьютер с помощью ПО FieldCare/DeviceCare.

13.3.1 HistoROM

Выполнять калибровку прибора заново после замены дисплея или электроники преобразователя не обязательно.

🚹 Запасные части поставляются без модуля HistoROM.

После замены электроники преобразователя снимите модуль HistoROM и подключите его к новому компоненту.

13.4 Возврат

Требования, предъявляемые к безопасному возврату прибора, могут варьироваться в зависимости от типа прибора и национального законодательства.

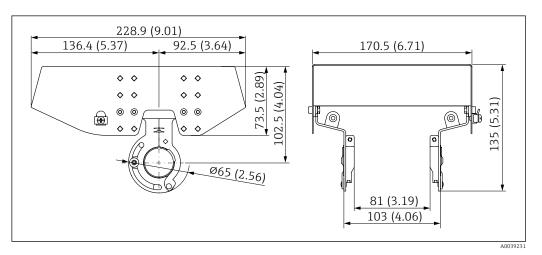
- 1. Подробнее см. на сайте: https://www.endress.com/support/return-material

 □ Выберите регион.
- 2. При возврате прибора упаковывайте его таким образом, чтобы он был надежно защищен от внешних воздействий. Наибольшую степень защиты обеспечивает оригинальная упаковка.

13.5 Утилизация

Если этого требует Директива 2012/19 EC об отходах электрического и электронного оборудования (WEEE),

изделия маркируются указанным символом, с тем чтобы свести к минимуму возможность утил как несортированных коммунальных отходов. Не утилизируйте изделия с такой маркировкой как несортированные коммунальные отходы. Вместо этого верните их изготовителю для утилизации в соответствии с действующими правилами.


14 Принадлежности

14.1 Козырек для защиты от атмосферных воздействий: сталь 316L, XW112

Защитный козырек от погодных явлений можно заказать вместе с прибором (позиция спецификации «Прилагаемые аксессуары»).

Применяется для защиты от прямых солнечных лучей, атмосферных осадков и льда.

Козырек для защиты от атмосферных воздействий из стали 316L предназначен для защиты двухкамерного корпуса, изготовленного из алюминия или стали 316L. В комплект поставки входит держатель для прямого монтажа на корпус.

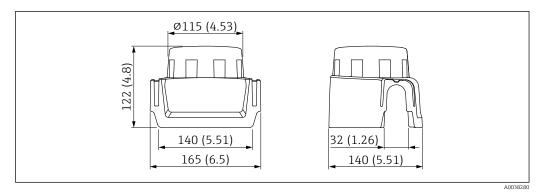
24 Размеры козырька для защиты от атмосферных воздействий: сталь 316L, XW112. Единица измерения мм (дюйм)

Материал

- Козырек для защиты от атмосферных воздействий: сталь 316L
- Зажимной винт: А4
- Держатель: сталь 316L

Код заказа аксессуара:

71438303


Специальная документация SD02424F

14.2 Козырек для защиты от атмосферных воздействий, пластмассовый, XW111

Защитный козырек от погодных явлений можно заказать вместе с прибором (позиция спецификации «Прилагаемые аксессуары»).

Применяется для защиты от прямых солнечных лучей, атмосферных осадков и льда.

Пластмассовый козырек для защиты от атмосферных воздействий для корпуса с одним отсеком из алюминия. В комплект поставки входит держатель для прямого монтажа на корпус.

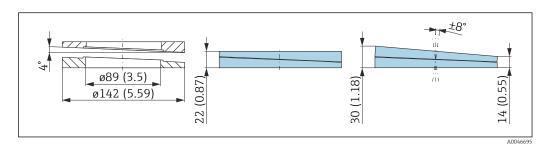
Размеры козырька для защиты от атмосферных воздействий, пластмассовый, XW111. Единица измерения мм (дюйм)

Материал

Пластик

Код заказа аксессуара:

71438291


Специальная документация SD02423F

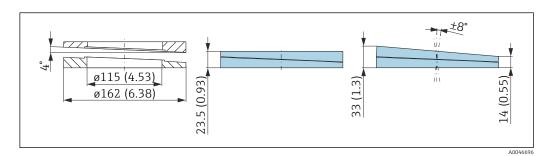
14.3 Регулируемое уплотнение фланца

Регулируемое уплотнение фланца позволяет совместить датчик с поверхностью продукта. Уплотнение можно заказать отдельно или вместе с прибором через позицию спецификации «Прилагаемые аксессуары».

14.3.1 Регулируемое уплотнение DN80

Регулируемое уплотнение DN80 подходит для фланцев EN DN80 PN10/PN40

Технические характеристики


- Материал: EPDM
- Рекомендуемый размер винта: М14
- Рекомендуемая длина винта: 100 мм (3,9 дюйм)
- Рабочее давление: −0,1 до 0,1 бар (−1,45 до 1,45 фунт/кв. дюйм)
- Рабочая температура: −40 до +80 °C (−40 до +176 °F)

Информация о заказе

- Уплотнение фланца можно заказать вместе с прибором в разделе «Прилагаемые аксессуары».
- Код заказа: 71074263

14.3.2 Регулируемое уплотнение DN100

Регулируемое уплотнение DN100 подходит для фланцев EN DN100 PN10/PN16

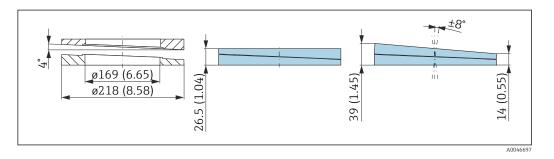
Технические характеристики

■ Материал: EPDM

• Рекомендуемый размер винта: М14

• Рекомендуемая длина винта: 100 мм (3,9 дюйм)

Рабочее давление: −0,1 до 0,1 бар (−1,45 до 1,45 фунт/кв. дюйм)


■ Рабочая температура: -40 до +80 °C (-40 до +176 °F)

Информация о заказе

- Уплотнение фланца можно заказать вместе с прибором в разделе «Прилагаемые аксессуары».
- Код заказа: 71074264

14.3.3 Регулируемое уплотнение DN150

Регулируемое уплотнение DN150 совместимо с фланцами EN DN150 PN10/PN19

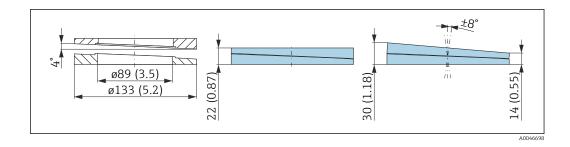
Технические характеристики

■ Материал: EPDM

Рекомендуемый размер винта: M18

■ Рекомендуемая длина винта: 110 мм (4,3 дюйм)

Рабочее давление: −0,1 до 0,1 бар (−1,45 до 1,45 фунт/кв. дюйм)


Рабочая температура: −40 до +80 °C (−40 до +176 °F)

Информация для оформления заказа

- Фланцевое уплотнение можно заказать вместе с прибором через позицию спецификации «Прилагаемые аксессуары».
- Код заказа: 71074265

14.3.4 Регулируемое уплотнение ASME 3"/JIS 80A

Регулируемое уплотнение, ASME 3"/ JIS 80A подходит для фланцев ASME 3" 150 lbs и JIS 80A 10K

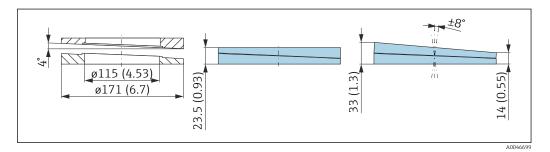
Технические характеристики

■ Материал: EPDM

• Рекомендуемый размер винта: М14

• Рекомендуемая длина винта: 100 мм (3,9 дюйм)

Рабочее давление: −0,1 до 0,1 бар (−1,45 до 1,45 фунт/кв. дюйм)


Рабочая температура: -40 до +80 °С (-40 до +176 °F)

Информация о заказе

- Уплотнение фланца можно заказать вместе с прибором в разделе «Прилагаемые аксессуары».
- Код заказа: 71249070

14.3.5 Регулируемое уплотнение ASME 4"

Регулируемое уплотнение ASME 4" подходит для фланцев ASME 4" 150 lbs

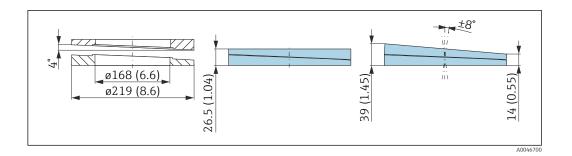
Технические характеристики

■ Материал: EPDM

• Рекомендуемый размер винта: М14

■ Рекомендуемая длина винта: 100 мм (3,9 дюйм)

Рабочее давление: −0,1 до 0,1 бар (−1,45 до 1,45 фунт/кв. дюйм)


■ Рабочая температура: -40 до +80 °C (-40 до +176 °F)

Информация о заказе

- Уплотнение фланца можно заказать вместе с прибором в разделе «Прилагаемые аксессуары».
- Код заказа: 71249072

14.3.6 Регулируемое уплотнение ASME 6"/JIS 150A

Регулируемое уплотнение ASME 6"/ JIS 150A подходит для фланцев ASME 6" 150 lbs и JIS 150A 10K

Технические характеристики

■ Материал: EPDM

• Рекомендуемый размер винта: М18

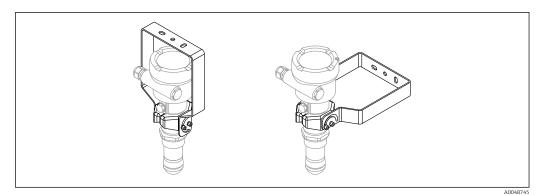
• Рекомендуемая длина винта: 100 мм (3,9 дюйм)

Рабочее давление: −0,1 до 0,1 бар (−1,45 до 1,45 фунт/кв. дюйм)

Рабочая температура: −40 до +80 °C (−40 до +176 °F)

Информация о заказе

- Уплотнение фланца можно заказать вместе с прибором в разделе «Прилагаемые аксессуары».
- Код заказа: 71249073


14.4 Регулируемый монтажный кронштейн, FMR6xB

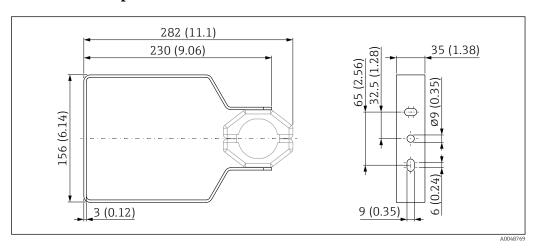
Прибор можно устанавливать на стену или потолок с помощью монтажного кронштейна.

Положение прибора можно отрегулировать относительно поверхности продукта (рабочей среды) с помощью функции поворота.

Монтажный кронштейн можно заказать вместе с прибором в разделе «Прилагаемые аксессуары».

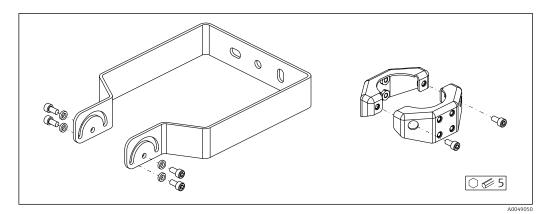
Подходит для прибора с пластмассовым корпусом с одним отсеком, с алюминиевым корпусом с одним отсеком или с алюминиевым корпусом L-образной формы с двумя отсеками, каждый в сочетании с герметичной антенной, с антенной 40 мм (1,5 дюйм) из материала PVDF или с антенной 50 мм (2 дюйм) с защитой от конденсата с резьбовым присоединением к процессу.

🖲 26 🛮 Регулируемый монтажный кронштейн FMR6xB; потолочный или настенный монтаж


Монтажный кронштейн **не** имеет проводящего соединения с корпусом преобразователя. Во избежание электростатического разряда кронштейн должен быть вставлен в местную коробку уравнивания потенциалов.

Крепите только к прочным материалам (например, к металлу, кирпичу, бетону) с помощью пригодных для этой цели крепежных приспособлений (предоставляются заказчиком).

Код заказа аксессуара:


71597288

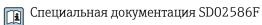
14.4.1 Размеры

🖻 27 Размеры; регулируемый монтажный кронштейн FMR6xB. Единица измерения мм (дюйм)

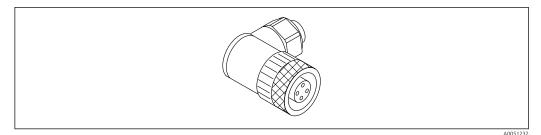
14.4.2 Объем поставки

🛮 28 Объем поставки; регулируемый монтажный кронштейн FMR6xB

- 1 монтажный кронштейн, 316L (1.4404)
- 2 держателя, 316L (1.4404)
- 6 винтов, А4
- 4 стопорные шайбы, А4


14.5 Штепсельный разъем М12

14.5.1 Разъем М12, со стороны кабеля



■ 29 Разъем M12, со стороны кабеля

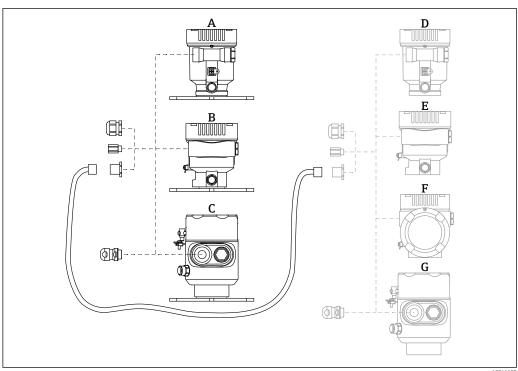
- Материал:
 - Корпус: РВТ
 - Соединительная гайка: литой цинк с никелевым покрытием
 - Уплотнение: NBR
- Степень защиты (полная герметичность): IP67
- Соединение Pg: Pg7
- Код заказа: 52006263


14.5.2 Разъем М12, 90 град., со стороны кабеля

🖪 30 Разъем М12, угловой

- Материал:
 - Корпус: РВТ
 - Соединительная гайка: литой цинк с никелевым покрытием
 - Уплотнение: NBR
- Степень защиты (полная герметичность): IP67
- Соединение Рq: Рq7 ■ Код заказа: 71114212
- 👔 Специальная документация SD02586F

14.5.3 Разъем М12, 100 град., кабель 5 м (16 фут)


Разъем М12, 100 град., кабель 5 м (16 фут)

- Материал разъема M12:
 - Корпус: ТРИ
 - Соединительная гайка: литой цинк с никелевым покрытием
- Материал кабеля:
 - ПВХ
- Кабель Li Y YM 4×0,34 мм² (20 AWG)
- Цвета проводов в кабеле
 - 1 = BN = коричневый
 - 2 = WH = белый
 - 3 = BU = синий
 - 4 = ВК = черный
- Код заказа: 52010285
- Специальная документация SD02586F

14.6 Выносной дисплей FHX50B

Выносной дисплей следует заказывать через Product Configurator (конфигуратор изделия).

Если предполагается использование выносного дисплея, то необходимо заказывать прибор в исполнении «Подготовлен для дисплея FHX50B».

- Корпус с одним отсеком, пластмассовый, выносной дисплей
- В Корпус с одним отсеком, алюминиевый, выносной дисплей
- Корпус с одним отсеком, гигиеническое исполнение из стали 316L, выносной дисплей
- Сторона прибора, корпус с одним отсеком, пластмассовый, с подготовкой для подключения дисплея
- Е Сторона прибора, корпус с одним отсеком, алюминиевый, подготовленный для подключения дисплея FHX50B
- Сторона прибора, корпус с двумя отсеками, L-образной формы, подготовленный для подключения дисплея FHX50В
- Сторона прибора, корпус с одним отсеком, гигиеническое исполнение из стали 316L, подготовленный для подключения дисплея FHX50В

Материал корпуса с одним отсеком, выносной дисплей

- Алюминий
- Пластик

Степень зашиты:

- IP68 / NEMA 6P
- IP66 / NEMA 4x

Соединительный кабель:

- Соединительный кабель (опция) длиной до 30 м (98 фут)
- Стандартный кабель, поставляемый заказчиком, длиной до 60 м (197 фут) Рекомендация: EtherLine®-P CAT.5e от LAPP.

Спецификация поставляемого заказчиком соединительного кабеля

Технология подключения к Push-in CAGE CLAMP®, активация нажатием кнопки

- Площадь поперечного сечения проводника:
 - Сплошной проводник 0,2 до 0,75 мм² (24 до 18 AWG)
 - Тонкожильный проводник 0,2 до 0,75 мм² (24 до 18 AWG)
 - Тонкожильный проводник; с изолированной втулкой 0.25 до 0.34 мм²
 - Тонкожильный проводник; без изолированной втулки 0,25 до 0,34 мм²
- Длина зачистки 7 до 9 мм (0,28 до 0,35 дюйм)
- Наружный диаметр: 6 до 10 мм (0,24 до 0,4 дюйм)
- Максимальная длина кабеля: 60 м (197 фут)

Температура окружающей среды:

- -40 до +80 °C (-40 до +176 °F)
- Опционально: −50 до +80 °C (−58 до +176 °F)

👔 Специальная документация SD02991F

14.7 Герметичное уплотнение

Химически инертное стеклянное уплотнение; предотвращающее попадание газов в блок электроники.

По желанию можно выбрать в разделе «Установленные аксессуары» при заказе изделия.

14.8 Field Xpert SMT70

Универсальный высокопроизводительный планшет для настройки приборов во взрывоопасных зонах (зона 2) и невзрывоопасных зонах

Техническое описание TI01342S

14.9 DeviceCare SFE100

Конфигурационный инструмент для полевых приборов с интерфейсом HART, PROFIBUS или FOUNDATION Fieldbus

Техническое описание, TI01134S

14.10 FieldCare SFE500

Инструментальное средство для управления парком приборов на основе технологии **FDT**

С его помощью можно настраивать все интеллектуальные полевые приборы в системе и управлять ими. Использование информации о состоянии также является простым, но эффективным способом проверки состояния и исправности приборов.

Техническое описание (TI00028S)

15 Технические данные

15.1 Вход

Измеряемая переменная

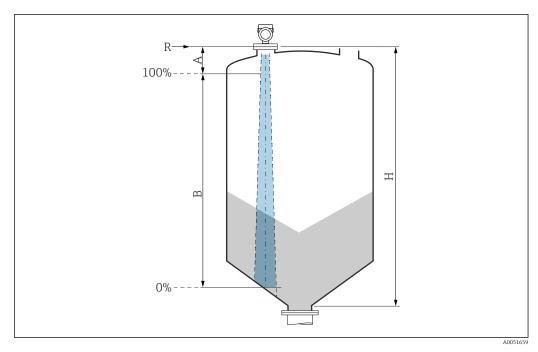
Измеряемая переменная соответствует расстоянию между контрольной точкой и поверхностью среды. Уровень рассчитывается на основе введенного известного расстояния E, соответствующего пустому резервуару.

Диапазон измерений

Диапазон измерения начинается в той точке, в которой луч достигает днища резервуара. Уровень, находящийся ниже этой точки, измерить невозможно, особенно при наличии конического выпуска. Максимальный диапазон измерения в таких условиях применения можно увеличить при помощи приспособления для выравнивания.

Максимальный диапазон измерения

Максимальный диапазон измерения зависит от размера и конструкции антенны.


Антенна	Максимальный диапазон измерения
Герметичное исполнение, PVDF, 40 мм (1,5 дюйм)	30 м (98 фут)
Защита от конденсата, РТFE, 50 мм (2 дюйм)	50 м (164 фут)

Реальный диапазон измерения

Фактический диапазон измерений зависит от размера антенны, отражающих свойств среды, монтажной позиции и любых возможных паразитных отражений.

Теоретически измерение возможно вплоть до кончика антенны.

В зависимости от положения продукта (угол естественного откоса) и во избежание материального ущерба от абразивной среды и образования отложений на антенне конец диапазона измерений должен заканчиваться в 10 мм (0,4 дюйм) от кончика антенны.

А Длина антенны + 10 мм (0,4 дюйм)

- В Фактический диапазон измерений
- Н Высота бункера (емкости)
- R Контрольная точка измерения; зависит от антенной системы
- 📵 Подробнее о контрольной точке см. здесь → 🖺 Механическая конструкция.
- Значения относительной проницаемости ($\varepsilon_{\rm r}$) многих сред, часто применяемых в промышленности, приведены в разделе:
 - Относительная проницаемость (значение ε_r), Compendium CP01076F
 - Приложение "DC Values" компании Endress+Hauser (доступно для операционных систем Android и iOS)

Рабочая частота

Примерно 80 ГГц

В один резервуар можно установить до 8 приборов, причем эти приборы не будут влиять друг на друга.

Мощность передачи

- Пиковая мощность: <1,5 мВт
- Средняя выходная мощность: <70 мкВт

15.2 Выход

PROFINET-APL

PROFINET c Ethernet-APL

10BASE-T1L, 2 провода 10 Мбит/с

Аварийный сигнал

Локальный дисплей

Сигнал статуса (в соответствии с рекомендацией NAMUR NE 107): Отображение текстовых сообщений

Программное обеспечение через сервисный интерфейс (CDI)

Сигнал статуса (в соответствии с рекомендацией NAMUR NE 107):

Отображение текстовых сообщений

Управляющая программа через PROFINET с Ethernet-APL

- Согласно «Протоколу прикладного уровня для децентрализованной периферии», версия 2.4
- Диагностика согласно PROFINET PA, профиль 4.02

Линеаризация

Функция линеаризации, имеющаяся в приборе, позволяет преобразовывать измеренное значение в любую требуемую единицу измерения длины, веса, расхода или объема.

Заранее запрограммированные кривые линеаризации

Таблицы линеаризации для расчета объема в перечисленных ниже резервуарах предварительно запрограммированы в системе прибора.

- Дно пирамидоидальное
- Коническое дно
- Дно под углом
- Горизонтальный цилиндр
- Резервуар сферический

Также доступен ручной ввод дополнительных таблиц, каждая из которых может содержать до 32 пар значений.

PROFINET c Ethernet-APL

Протокол	«Протокол прикладного уровня для децентрализованных периферийных устройств и распределенных автоматизированных систем», версия 2.4
Тип связи	Физический уровень Ethernet Advanced Physical Layer 10BASE-T1L
Класс соответствия	Класс соответствия В
Класс действительной нагрузки	Класс действительной нагрузки II
Скорости передачи	Автоматический выбор 10 Мбит/с с определением полнодуплексного режима
Периоды циклов	От 32 мс
Полярность	Автоматическая настройка полярности для коррекции перекрещивающихся пар TxD и RxD
Протокол резервирования среды передачи (MRP)	Да
Поддержка резервирования системы	Резервирование системы S2 (2 AR c 1 NAP)
Профиль прибора	Идентификатор прикладного интерфейса 0xB321 Стандартный прибор
Идентификатор изготовителя	0x11
Идентификатор типа прибора	0xA1C1
Файлы описания прибора (GSD, FDI, DTM, DD)	Информация и файлы находятся в свободном доступе по следующим адресам: ■ www.endress.com На странице с информацией о приборе: Документы/ПО → Драйверы прибора ■ www.profibus.org
Поддерживаемые подключения	 2 х АR (контроллер ввода/вывода AR) 1 х АR (допустимо подключение к устройству контроля ввода/вывода AR) 1 х вход CR (интерфейс связи) 1 х выход CR (интерфейс связи) 1 х аварийный сигнал CR (интерфейс связи)

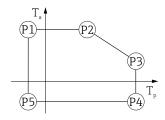
Варианты настройки прибора	 ПО конкретного изготовителя (FieldCare, DeviceCare) Веб-браузер Основной файл прибора (GSD). Возможно считывание с помощью встроенного веб-сервера прибора DIP-переключатель для установки IP-адреса услуги
Настройка названия прибора	Протокол DCPДиспетчер технологических устройств (PDM)Встроенный веб-сервер
Поддерживаемые функции	 Идентификация и техническое обслуживание Простая идентификация прибора следующими средствами: Система управления Заводская табличка Статус измеренного значения Переменные процесса связаны с состоянием измеренного значения Режим мигания индикатора на локальном дисплее для простой идентификации прибора и назначения функций Управление прибором с помощью управляющей программы (напр., FieldCare, DeviceCare, SIMATIC PDM)
Системная интеграция	Дополнительную информацию о системной интеграции см. в руководстве по эксплуатации Циклическая передача данных Обзор и описание модулей Кодировка данных статуса Конфигурация при запуске Заводская настройка

15.3 Условия окружающей среды

Диапазон температуры окружающей среды Следующие значения действительны для рабочей температуры до +85 °C (+185 °F). При более высокой рабочей температуре допустимая температура окружающей среды снижается.

- Прибор без ЖК-дисплея:
 Стандартный вариант: −40 до +85 °C (−40 до +185 °F)
- С ЖК-дисплеем: -40 до +85 °C (-40 до +185 °F) с ограничением оптических свойств, напр. быстродействия и контрастности. Можно использовать без ограничений до -20 до +60 °C (-4 до +140 °F)
- При эксплуатации на открытых площадках в условиях интенсивного солнечного света:
 - устанавливайте прибор в затененном месте;
 - избегайте воздействия прямых солнечных лучей, особенно в регионах с теплым климатом;
 - используйте защитный козырек от погодных явлений (см. раздел «Аксессуары»).

Пределы температуры окружающей среды

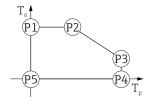

Допустимая температура окружающей среды (T_a) зависит от выбранного материала корпуса (Конфигуратор выбранного продукта \rightarrow Корпус; Материал \rightarrow) и выбранного диапазона рабочей температуры (Конфигуратор выбранного продукта \rightarrow Применение \rightarrow).

В случае температуры (T_p) на присоединении к процессу допустимая температура окружающей среды (T_a) снижается.

В приведенной ниже информации учитываются только функциональные аспекты. К сертифицированным исполнениям прибора могут применяться дополнительные ограничения.

Пластмассовый корпус

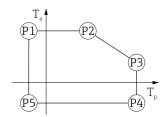
Пластмассовый корпус; рабочая температура -40 до +80 °C (-40 до +176 °F)


A0032024

 \blacksquare 32 Пластмассовый корпус; рабочая температура -40 до +80 °C (-40 до +176 °F)

Если приборы поставляются в пластмассовом корпусе и с сертификатом CSA C/US, выбранная рабочая температура

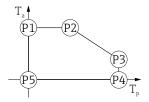
```
-40 до +80 °C (-40 до +176 °F) ограничивается пределом 0 до +80 °C (+32 до +176 °F).
```


Ограничение рабочей температуры 0 до $+80 \,^{\circ}\text{C}$ ($+32 \,$ до $+176 \,^{\circ}\text{F}$) для приборов с сертификатом CSA C/US и пластмассовым корпусом

A0048826

 \blacksquare 33 Пластмассовый корпус; рабочая температура 0 до +80 °C (+32 до +176 °F) для приборов с сертификатом CSA C/US

Пластмассовый корпус; рабочая температура -40 до +130 °C (-40 до +266 °F)


A0032024

■ 34 Пластмассовый корпус; рабочая температура -40 до +130 °C (-40 до +266 °F)

```
\begin{array}{llll} P1 & = & T_p : -40 \, ^{\circ} \! \text{C} \, (-40 \, ^{\circ} \! \text{F}) & | & T_a : +76 \, ^{\circ} \! \text{C} \, (+169 \, ^{\circ} \! \text{F}) \\ P2 & = & T_p : +76 \, ^{\circ} \! \text{C} \, (+169 \, ^{\circ} \! \text{F}) & | & T_a : +76 \, ^{\circ} \! \text{C} \, (+169 \, ^{\circ} \! \text{F}) \\ P3 & = & T_p : +130 \, ^{\circ} \! \text{C} \, (+266 \, ^{\circ} \! \text{F}) & | & T_a : +41 \, ^{\circ} \! \text{C} \, (+106 \, ^{\circ} \! \text{F}) \\ P4 & = & T_p : +130 \, ^{\circ} \! \text{C} \, (+266 \, ^{\circ} \! \text{F}) & | & T_a : -40 \, ^{\circ} \! \text{C} \, (-40 \, ^{\circ} \! \text{F}) \\ P5 & = & T_p : -40 \, ^{\circ} \! \text{C} \, (-40 \, ^{\circ} \! \text{F}) & | & T_a : -40 \, ^{\circ} \! \text{C} \, (-40 \, ^{\circ} \! \text{F}) \\ \end{array}
```

Если приборы поставляются в пластмассовом корпусе и с сертификатом CSA C/US, выбранная рабочая температура -40 до +130 °C (-40 до +266 °F) ограничивается пределом 0 до +130 °C (+32 до +266 °F).

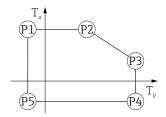
Ограничение рабочей температуры 0 до $+130\,^{\circ}$ С ($+32\,$ до $+266\,^{\circ}$ F) для приборов с сертификатом CSA C/US и пластмассовым корпусом

A004882

் 35 Пластмассовый корпус; рабочая температура 0 до +130 $^{\circ}$ C (+32 до +266 $^{\circ}$ F) для приборов с сертификатом CSA C/US

```
P1 = T_p: 0°C (+32°F) | T_a: +76°C (+169°F)

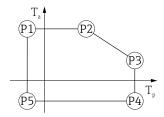
P2 = T_p: +76°C (+169°F) | T_a: +76°C (+169°F)


P3 = T_p: +130°C (+266°F) | T_a: +41°C (+106°F)

P4 = T_p: +130°C (+266°F) | T_a: 0°C (+32°F)

P5 = T_p: 0°C (+32°F) | T_a: 0°C (+32°F)
```

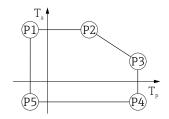
Алюминиевый корпус с покрытием


Алюминиевый корпус; рабочая температура -40 до +80 °C (-40 до +176 °F)

A0032024

 \blacksquare 36 — Алюминиевый корпус с покрытием; рабочая температура -40 до +80 $^{\circ}$ C (-40 до +176 $^{\circ}$ F)

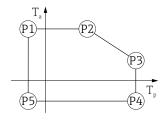
Алюминиевый корпус; рабочая температура -40 до +130 °C (-40 до +266 °F)



A0032024

 \blacksquare 37 — Алюминиевый корпус с покрытием; рабочая температура -40 до +130 $^{\circ}$ С (-40 до +266 $^{\circ}$ F)

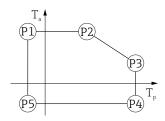
Корпус 316L


Корпус 316L; рабочая температура −40 до +80 $^{\circ}$ C (−40 до +176 $^{\circ}$ F)

A0032024

 \blacksquare 38 Корпус 316L; рабочая температура -40 до +80 $^{\circ}$ (-40 до +176 $^{\circ}$ F)

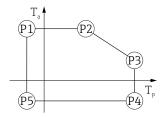
Корпус 316L; рабочая температура -40 до +130 °C (-40 до +266 °F)



A0032024

 \blacksquare 39 Корпус 316L; рабочая температура –40 до +130 $^{\circ}$ С (–40 до +266 $^{\circ}$ F)

Корпус 316L, гигиенический


Корпус 316L, гигиенический; рабочая температура -40 до +80 °C (-40 до +176 °F)

A0032024

 \blacksquare 40 Корпус 316L, гигиенический; рабочая температура -40 до +80 °C (-40 до +176 °F)

Корпус 316L, гигиенический; рабочая температура -40 до +130 °C (-40 до +266 °F)

A0032024

 \blacksquare 41 Корпус 316L, гигиенический; рабочая температура -40 до +130 $^{\circ}$ С (-40 до +266 $^{\circ}$ F)

 $\begin{array}{llll} P1 & = & T_p \colon -40 \, ^{\circ} \! \text{C} \, (-40 \, ^{\circ} \! \text{F}) & | & T_a \colon +76 \, ^{\circ} \! \text{C} \, (+169 \, ^{\circ} \! \text{F}) \\ P2 & = & T_p \colon +76 \, ^{\circ} \! \text{C} \, (+169 \, ^{\circ} \! \text{F}) & | & T_a \colon +76 \, ^{\circ} \! \text{C} \, (+169 \, ^{\circ} \! \text{F}) \\ P3 & = & T_p \colon +130 \, ^{\circ} \! \text{C} \, (+266 \, ^{\circ} \! \text{F}) & | & T_a \colon +55 \, ^{\circ} \! \text{C} \, (+131 \, ^{\circ} \! \text{F}) \\ P4 & = & T_p \colon +130 \, ^{\circ} \! \text{C} \, (+266 \, ^{\circ} \! \text{F}) & | & T_a \colon -40 \, ^{\circ} \! \text{C} \, (-40 \, ^{\circ} \! \text{F}) \\ P5 & = & T_p \colon -40 \, ^{\circ} \! \text{C} \, (-40 \, ^{\circ} \! \text{F}) & | & T_a \colon -40 \, ^{\circ} \! \text{C} \, (-40 \, ^{\circ} \! \text{F}) \\ \end{array}$

Температура хранения

- Прибор без ЖК-дисплея: -40 до +90 °C (-40 до +194 °F)
- С ЖК-дисплеем: −40 до +85 °C (−40 до +185 °F)

Климатический класс

DIN EN 60068-2-38 (испытание Z/AD)

Высота установки в соответствии с IEC 61010-1, ред. 3 Как правило, до 5000 м (16404 фут) над уровнем моря

Степень защиты

Испытание в соответствии с IEC 60529 и NEMA 250

Корпус

IP66/68, NEMA, тип 4X/6P

Условие испытания согласно IP68: 1,83 м под водой в течение 24 часов.

Кабельные вводы

- Соединение M20, пластик, IP66/68 NEMA, тип 4X/6P
- Соединение M20, никелированная латунь, IP66/68 NEMA, тип 4X/6P
- Соединение M20, 316L, IP66/68 NEMA, тип 4X/6P
- Соединение M20, гигиеническое исполнение, IP66/68/69 NEMA, тип 4X/6P
- Резьба M20, IP66/68 NEMA, тип 4X/6P
- Резьба G ½, IP66/68 NEMA, тип 4X/6Р
 Если выбрана резьба G½, то прибор поставляется со стандартной резьбой M20 и переходником M20 на резьбу G M20 ½ вместе с сопроводительной документацией
- Резьба NPT ½, IP66/68 NEMA, тип 4X/6P
- Разъем М12
 - Если корпус закрыт, а соединительный кабель подключен: IP66/67 NEMA, тип 4X
 - Если корпус открыт или соединительный кабель не подключен: IP20, NEMA, тип 1

УВЕДОМЛЕНИЕ

Разъем M12: утрата соответствия классу защиты IP вследствие ненадлежащего монтажа!

- Степень защиты относится только к такому состоянию, при котором соединительный кабель подключен, а уплотнение плотно затянуто.
- ► Степень защиты действует только в том случае, если соединительный кабель соответствует классу защиты IP67 NEMA, тип 4X.
- Классы защиты действуют только при наличии защитной заглушки или подключенного кабеля.

Вибростойкость

DIN EN 60068-2-64 / IEC 60068-2-64 для 5 до 2 000 Hz: 1,25 (м/с²)²/Гц

Электромагнитная совместимость (ЭМС)

- Электромагнитная совместимость соответствует стандартам серии EN 61326 и рекомендациям NAMUR по ЭМС (NE21)
- Максимальная погрешность измерения при испытании на ЭМС: < 0,5 % от текущего измеренного цифрового значения

Более подробные сведения приведены в Декларации соответствия требованиям ЕС.

15.4 Параметры технологического процесса

Диапазон рабочего давления

▲ ОСТОРОЖНО

Максимально допустимое давление для прибора зависит от компонента с наименьшим номинальным давлением (компоненты: технологическое соединение, дополнительные установленные компоненты или аксессуары).

- Эксплуатируйте прибор только в пределах допустимых значений, указанных для компонентов!
- ▶ МРД (максимальное рабочее давление): указано на заводской табличке. Это значение относится к исходной базовой температуре +20 °C (+68 °F) и может воздействовать на прибор в течение неограниченного времени. Обратите внимание на зависимость МРД от температуры. Значения давления, допустимые при более высокой температуре для фланцев, см. в стандартах EN 1092-1 (с учетом температурной стабильности материалы 1.4435 и 1.4404 сгруппированы в соответствии со стандартом EN 1092-1; химический состав двух материалов может быть идентичным), ASME B16.5, JIS B2220 (в каждом случае действует текущая редакция стандарта). Значения МРД, которые не соответствуют этим правилам, приведены в соответствующих разделах технического описания.
- ▶ В директиве для оборудования, работающего под давлением (2014/68/EU), используется аббревиатура **PS**. Это соответствует максимальному рабочему давлению (МРД) прибора.

В следующих таблицах отражены зависимости между материалом уплотнения, диапазоном рабочей температуры (T_p) и рабочего давления для каждого присоединения к процессу, которое может быть выбрано для используемой антенны.

Герметичная антенна, PVDF, 40 мм (1,5 дюйм)

Технологическое соединение: резьба 1-1/2"

	Уплотнение	T _p	Диапазон рабочего давления
	Герметизация материалом PVDF	−40 до +80 °C (−40 до +176 °F)	-1 до 3 бар (-14,5 до 43,5 фунт/кв. дюйм)
	Герметизация материалом PVDF	+80 до +130 °С (+176 до +266 °F)	Атмосферное давление
		от воспламенения горючей и е температурное ограничени	пыли категории 1D, 2D или 3D e
A004783	Герметизация материалом PVDF	−20 до +80 °C (−4 до +176 °F)	-1 до 3 бар (-14,5 до 43,5 фунт/кв. дюйм)

Присоединение к процессу: полипропиленовый фланец UNI

	Уплотнение	T _p	Диапазон рабочего давления
	Герметизация материалом PVDF	–40 до +80 °C (–40 до +176 °F)	−1 до 3 бар (−14,5 до 43,5 фунт/кв. дюйм)
	」	от воспламенения горючей температурное ограничен	й пыли категории 1D, 2D или 3D ие
A0047	Герметизация материалом PVDF	−20 до +80 °C (−4 до +176 °F)	-1 до 3 бар (-14,5 до 43,5 фунт/кв. дюйм)

При наличии сертификата CRN диапазон давления может быть ограничен более жестко.

Антенна с защитой от конденсата 50 мм (2 дюйм)

Резьба технологического соединения

	Уплотнение	T_p	Диапазон рабочего давления
	FKM Viton GLT	−40 до +80 °C (−40 до +176 °F)	-1 до 16 бар (-14,5 до 232 фунт/кв. дюйм)
	FKM Viton GLT	–40 до +130 °C (–40 до +266 °F)	-1 до 16 бар (-14,5 до 232 фунт/кв. дюйм)
A0047447			

Технологическое соединение: фланец PP UNI

	Уплотнение	T_p	Диапазон рабочего давления
A0047726	FKM Viton GLT	−40 до +80 °C (−40 до +176 °F)	-1 до 3 бар (-14,5 до 43,5 фунт/кв. дюйм)

Технологическое соединение: фланец 316L UNI

	Уплотнение	T_p	Диапазон рабочего давления
	FKM Viton GLT	−40 до +80 °C (−40 до +176 °F)	-1 до 3 бар (-14,5 до 43,5 фунт/кв. дюйм)
	FKM Viton GLT	–40 до +130 °C (–40 до +266 °F)	-1 до 3 бар (-14,5 до 43,5 фунт/кв. дюйм)
A0047726			

При наличии сертификата CRN диапазон давления может быть ограничен более жестко.

Диэлектрическая постоянная

Для сыпучих продуктов

 $\epsilon_r \geq 1,6$

По вопросам работы с продуктами, имеющими диэлектрическую постоянную меньше указанной, обратитесь в Endress+Hauser.

Алфавитный указатель

D
Безопасность изделия
Блокировка прибора, статус
В
Версия ПО
Возврат
Встроенное ПО
Дата выпуска 41
-
Д
Декларация соответствия
Диагностическое событие
Документ Назначение
Пазначение
Доступ для чтения
derin du Hemmi
Ж
Журнал событий 60
3
З Запасные части
Зарегистрированные товарные знаки
Supermerphyobalifible Tobapilble Silator
И
Использование измерительного прибора
см. Назначение
Использование измерительных приборов
Использование не по назначению
Сложные ситуации
К
 Климатический класс
Код доступа
Ошибка при вводе
Крепежный винт
М
Маркировка СЕ
Маркировка СЕ10
H
Назначение
Назначение документа 6
Назначение полномочий доступа к параметрам
Доступ для записи
Доступ для чтения
Настройки
Адаптация измерительного прибора к условиям процесса
процесса
0
Область применения
Остаточные риски
Основной файл прибора GSD

Отображаемые значения Для заблокированного статуса	2
Параметр "Версия прибора" 42 Параметр "Версия прошивки" 42 Параметр "Версия прошивки" 42 Параметр "Поворот дисплея 42 Поворот дисплея 20	1 1 1
Подменю 52 Измеренные значения 52 Раздел фаз 37 Список событий 60 Принцип ремонта 65 Протокол PROFINET 47	7 0 5
Р Резервирование системы S2	5
Сведения о версии прибора 42 Сервисный интерфейс (CDI) 40, 48 Сигнал состояния 56 Список событий 60	8 6
Т Текст сообщения о событии 56 Техника безопасности на рабочем месте 10 Технологическая среда 9 Технология беспроводной связи Bluetooth® 32 Требования к работе персонала 9	0 9 2
У Указания по технике безопасности Основные 9 Управление 52 Устранение неисправностей 53 Утилизация 66	2
Файлы описания прибора 42 Фильтрация журнала событий 60	
Ц Циклическая передача данных	3
Ч Чтение измеренных значений	2
Э Эксплуатационная безопасность	O
D DeviceCare 40 Файл описания прибора 42	

FieldCare	40
Файл описания прибора	41
Функция	40

www.addresses.endress.com