Operating Instructions

Silopilot FMM20

Electromechanical Level System
- Make sure the document is stored in a safe place so that it is always available when working on or with the device.
- To avoid danger to individuals or the facility, read the "Safety instructions" section carefully, as well as all other safety instructions in the document that are specific to working procedures.
- The manufacturer reserves the right to modify technical data without prior notice. Your Endress+Hauser Sales Center will supply you with information on modifications or updates to the Operating Instructions.
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Safety instructions</td>
<td>4</td>
</tr>
<tr>
<td>1.1 Intended use</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Installation, commissioning, operation</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Safety instructions (ATEX)</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Notes on safety conventions and icons</td>
<td>5</td>
</tr>
<tr>
<td>2 Identification</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Product identification</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Scope of delivery</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Nameplate</td>
<td>7</td>
</tr>
<tr>
<td>2.4 CE mark, declaration of conformity</td>
<td>7</td>
</tr>
<tr>
<td>3 Sensing weights</td>
<td>8</td>
</tr>
<tr>
<td>3.1 Variants</td>
<td>8</td>
</tr>
<tr>
<td>3.2 Selection recommendation</td>
<td>9</td>
</tr>
<tr>
<td>4 Installation</td>
<td>10</td>
</tr>
<tr>
<td>4.1 Planning the installation location</td>
<td>10</td>
</tr>
<tr>
<td>4.2 Installation conditions</td>
<td>11</td>
</tr>
<tr>
<td>4.3 Installation preparation</td>
<td>13</td>
</tr>
<tr>
<td>4.4 Installation</td>
<td>14</td>
</tr>
<tr>
<td>4.5 Incoming acceptance and storage</td>
<td>15</td>
</tr>
<tr>
<td>4.6 Post-installation check</td>
<td>15</td>
</tr>
<tr>
<td>5 Wiring</td>
<td>16</td>
</tr>
<tr>
<td>5.1 Electrical connection</td>
<td>16</td>
</tr>
<tr>
<td>5.2 Potential matching</td>
<td>16</td>
</tr>
<tr>
<td>5.3 Terminal assignment</td>
<td>17</td>
</tr>
<tr>
<td>5.4 Post-connection check</td>
<td>19</td>
</tr>
<tr>
<td>6 Operation</td>
<td>20</td>
</tr>
<tr>
<td>6.1 Quick operation guide</td>
<td>20</td>
</tr>
<tr>
<td>6.2 Display and operating elements</td>
<td>21</td>
</tr>
<tr>
<td>6.3 General structure of operating menu</td>
<td>22</td>
</tr>
<tr>
<td>6.4 Identification of functions</td>
<td>23</td>
</tr>
<tr>
<td>6.5 Blocking/releasing operation</td>
<td>23</td>
</tr>
<tr>
<td>7 Commissioning</td>
<td>24</td>
</tr>
<tr>
<td>7.1 Switching on measuring device</td>
<td>24</td>
</tr>
<tr>
<td>7.2 Basic setup</td>
<td>25</td>
</tr>
<tr>
<td>8 Description of device functions</td>
<td>27</td>
</tr>
<tr>
<td>8.1 "basic setup (00)" function group</td>
<td>27</td>
</tr>
<tr>
<td>8.2 "inputs and outputs (01)" function group</td>
<td>29</td>
</tr>
<tr>
<td>8.3 "measurement parameters (02)" function group</td>
<td>31</td>
</tr>
<tr>
<td>8.4 "current output (03)" function group</td>
<td>35</td>
</tr>
<tr>
<td>8.5 "safety settings (04)" function group</td>
<td>36</td>
</tr>
<tr>
<td>8.6 "linearization (05)" function group</td>
<td>38</td>
</tr>
<tr>
<td>8.7 "display (06)" function group</td>
<td>39</td>
</tr>
<tr>
<td>8.8 "diagnostics (07)" function group</td>
<td>40</td>
</tr>
<tr>
<td>8.9 "system parameters (08)" function group</td>
<td>41</td>
</tr>
<tr>
<td>9 Manual mode</td>
<td>42</td>
</tr>
<tr>
<td>9.1 Operation</td>
<td>42</td>
</tr>
<tr>
<td>9.2 Display</td>
<td>43</td>
</tr>
<tr>
<td>10 Troubleshooting</td>
<td>44</td>
</tr>
<tr>
<td>10.1 Error messages</td>
<td>44</td>
</tr>
<tr>
<td>10.2 Types of error</td>
<td>44</td>
</tr>
<tr>
<td>10.3 Error messages</td>
<td>45</td>
</tr>
<tr>
<td>11 Maintenance</td>
<td>47</td>
</tr>
<tr>
<td>11.1 External cleaning</td>
<td>47</td>
</tr>
<tr>
<td>11.2 Cleaning dirty compartment</td>
<td>47</td>
</tr>
<tr>
<td>11.3 Wiper check</td>
<td>47</td>
</tr>
<tr>
<td>11.4 Inspection of measuring tape</td>
<td>48</td>
</tr>
<tr>
<td>11.5 Dirty compartment check</td>
<td>48</td>
</tr>
<tr>
<td>12 Repair</td>
<td>49</td>
</tr>
<tr>
<td>12.1 Repairing Ex-certified devices</td>
<td>49</td>
</tr>
<tr>
<td>12.2 Replacing components</td>
<td>49</td>
</tr>
<tr>
<td>12.3 Returns</td>
<td>52</td>
</tr>
<tr>
<td>12.4 Spare parts</td>
<td>53</td>
</tr>
<tr>
<td>13 Accessories</td>
<td>58</td>
</tr>
<tr>
<td>13.1 Protective hood</td>
<td>58</td>
</tr>
<tr>
<td>14 Technical data</td>
<td>59</td>
</tr>
<tr>
<td>14.1 Input values</td>
<td>59</td>
</tr>
<tr>
<td>14.2 Output values</td>
<td>59</td>
</tr>
<tr>
<td>14.3 Accuracy</td>
<td>60</td>
</tr>
<tr>
<td>14.4 Min. time for one measurement cycle</td>
<td>60</td>
</tr>
<tr>
<td>14.5 Run-off speed</td>
<td>60</td>
</tr>
<tr>
<td>14.6 Power supply</td>
<td>60</td>
</tr>
<tr>
<td>14.7 Environmental conditions</td>
<td>61</td>
</tr>
<tr>
<td>14.8 Process conditions</td>
<td>61</td>
</tr>
<tr>
<td>15 Appendix</td>
<td>62</td>
</tr>
<tr>
<td>15.1 Basic settings</td>
<td>62</td>
</tr>
<tr>
<td>15.2 Measurement parameter settings</td>
<td>62</td>
</tr>
<tr>
<td>15.3 Output settings</td>
<td>62</td>
</tr>
<tr>
<td>15.4 Input settings</td>
<td>63</td>
</tr>
<tr>
<td>15.5 Safety settings</td>
<td>63</td>
</tr>
<tr>
<td>15.6 Display settings</td>
<td>63</td>
</tr>
<tr>
<td>15.7 Other settings</td>
<td>63</td>
</tr>
<tr>
<td>15.8 Operating menu</td>
<td>64</td>
</tr>
<tr>
<td>15.9 Declaration of contamination</td>
<td>66</td>
</tr>
</tbody>
</table>
1 Safety instructions

1.1 Intended use
The Silopilot FMM20 is a compact electromechanical level system. It is used for cyclical level measurements in bunkers or silos.

1.2 Installation, commissioning, operation
The Silopilot FMM20 is a reliable state-of-the-art construction and complies with the relevant specifications and EC directives. However, if it is used incorrectly or not as intended, the devices may cause application-related hazardous situations, e.g. product overflow as a result of incorrect installation or setting.

Installation, electrical connection, commissioning, operation and maintenance of the measuring equipment must, therefore, only be undertaken by trained specialists who have been authorized for this purpose by the plant operator. The specialist must have read and understood these Operating Instructions and follow the instructions they contain.

Changes and repairs may only be undertaken on the device if the Operating Instructions expressly permit them.

1.3 Safety instructions (ATEX)
The Safety Instructions (XA00425F) is supplied with the device on delivery, which is an integral part of the Operating Instructions. Please observe the safety instructions using the device inside hazardous areas.

1.3.1 Features of the ATEX version
- Identification: Ⓟ II 1/2D Ex ta/tb IIIIC T99 °C Da/Db IP6X
 II 2D Ex tb IIIIC T99 °C Db IP6X
- Certificate number: BVS 05 ATEX E 049

1.3.2 Installation instructions

Note!
The maximum process temperature at the device (from the lower edge of the process adapter) is +60 °C and must be taken into consideration when mounting.
1.4 Notes on safety conventions and icons

In order to highlight safety-related or alternative processes, we have laid down the following safety instructions where each piece of information is identified by a corresponding pictogram.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| ![Warning!] | **Warning!**
Warning indicates activities or processes which lead to serious injuries to persons, to a safety hazard or to destruction of the device if they are not carried out properly. |
| ![Attention!] | **Attention!**
Attention indicates activities or processes which lead to injuries to persons or to incorrect operation of the device if they are not carried out properly. |
| ![Note!] | **Note!**
Note indicates activities or processes which have an indirect influence on operation or can trigger an unforeseen device reaction if they are not carried out properly. |
| ![Explosion-protected, type-examined devices] | **Explosion-protected, type-examined devices**
If this symbol is shown on the nameplate of the device, the device can be used in hazardous areas or in non-hazardous areas according to the approval. |
| ![Hazardous area] | **Hazardous area**
This symbol indicates a hazardous area in the drawings of these Operating Instructions.
- Devices located in hazardous areas or cables for such devices must have a corresponding explosion protection. |
| ![Safe area (non-hazardous area)] | **Safe area (non-hazardous area)**
This symbol indicates a non-hazardous area in the drawings of these Operating Instructions.
- Devices in non-hazardous areas must also be certified if connecting cables run into the hazardous area. |
| ![Direct current] | **Direct current**
A terminal at which there is DC voltage or through which direct current flows. |
| ![Alternating current] | **Alternating current**
A terminal at which there is (sine-wave) alternating voltage or through which alternating current flows. |
| ![Ground connection] | **Ground connection**
A grounded terminal which from the viewpoint of the user is already grounded via a grounding system. |
| ![Protective earth connection] | **Protective earth connection**
A terminal which has to be grounded before other connections can be established. |
| ![Equipotential connection] | **Equipotential connection**
A coupling that has to be connected to the grounding system of the plant. This can be, for example, a potential matching line or a star grounding system, depending on the national or company codes of practice. |
2 Identification

2.1 Product identification

You can identify your measuring device in the following ways:

- Using the nameplate specifications
- Using the order code with a breakdown of the device features on the delivery note
- Enter serial numbers from nameplates in W@M Device Viewer
 (www.endress.com/deviceviewer): all the information about the measuring device is displayed.
- Enter the serial number from the nameplates in the Endress+Hauser Operations App

For an overview of the scope of the Technical Documentation provided, refer to the following:

- The "Documentation" chapters
- The W@M Device Viewer: enter the serial number from the nameplate
 (www.endress.com/deviceviewer)
- The Endress+Hauser Operations App: enter the serial number from the nameplate

2.2 Scope of delivery

Attention!
Always observe the information provided in the "Incoming acceptance, transport, storage" chapter relating to unpacking, transporting and storing measuring devices!

The scope of delivery consists of:

- Device (fitted)
- Possibly sensing weight
- Possibly accessories

Documentation supplied:

- Operating Instructions (this document)
- Approval documentation (unless provided in these Operating Instructions)
2.3 Nameplate

You will find the following technical data on the device's nameplate:
1. Order code
2. Serial number
3. Ident code
4. Date of manufacture: year-month (datecode)
5. Electrical connection data (input parameters)
6. Electrical connection data (output parameters)
7. Firmware
8. Degree of protection
9. Ambient temperature range and text for approval (if applicable)
10. Related Operating Instructions and Safety Instructions (if applicable)
11. CE mark
12. Place of manufacture

2.4 CE mark, declaration of conformity

The device is built and tested in a reliable, state-of-the-art design and left the factory in perfect condition. The device complies with the relevant standards and specifications as defined in EN 61010 “Safety requirements for electrical equipment for measurement, control and laboratory use”. The device therefore satisfies the statutory requirements of the EC Directives.

By applying the CE mark, Endress+Hauser confirms that the device has passed the necessary tests.
3 Sensing weights

3.1 Variants
The following forms are available and are described on the following pages:
- Normal weight (cylindrical sensing weight with spike) ① (Option B/C)
- Plastic weight ② (Option N)
- Umbrella weight incl. normal weight ③ (Option D/E)
- Medium bag weight ④ (Option G)
3.1.1 Normal weight (Option B/C)
- Application:
 For coarse bulk solids, e.g. coals, ores or stones and granulates.
- Materials:
 Steel or stainless steel (316Ti)
- Weight:
 1.5 kg
- The spike can be screwed off.

3.1.2 Plastic weight (Option N)
- Application:
 For coarse bulk solids, e.g. coals, ores or stones and granulates.
- Materials:
 Plastic (PVC)
- Weight:
 1.5 kg
- Maximum permissible temperature:
 +70 °C
- Use of this sensing weight in the "dust ignition-proof" version is not permitted!

3.1.3 Umbrella weight (Option D/E)
- Application:
 For very light and loose bulk solids, e.g. flour or coal-dust.
- Materials:
 Steel or stainless steel (316Ti) and polyester (umbrella weight)
- Weight:
 1.5 kg
- The umbrella weight has a large square surface area which prevents it from sinking deeply into the product.
- When folded closed, the weight can be passed through the DN100 mounting flange into the bunker.

3.1.4 Medium bag weight (Option G)
- Application:
 In bunkers to which e.g. mills are connected downstream. The bag contains whichever product is contained within the bunker.
- Materials:
 Bag made from polyester, all metal parts made from stainless steel.
- Weight:
 0.25 kg (empty) or 1.5 kg (filled)
- Bind the bag closed at the top so that the contents cannot fall out if the bag tips over on the slope of a product cone.

3.2 Selection recommendation
When selecting the sensing weight, the following points should be considered:
- The sensing weight must not sink into the product nor be diverted by contact with the product cone during the measuring procedure.
- The sensing weight must be suited to the chemical characteristics of the product and the temperature in the bunker or silo.
4 Installation

4.1 Planning the installation location

Select the installation location on the bunker or silo such that product falling inside during filling or cornices collapsing inward are prevented from covering the sensing weight or damaging the measuring tape.

Take due account of the shape and location of the product inflow cone and the outflow funnel within the vessel. The measuring path should not pass too close to any internal fixtures or struts so that the measuring tape will not brush against them if the sensing weight swings around.

*1 Cornices (product accumulating on the container wall)

*2 Select a measuring point roughly in the center of the slope

Planning the installation location
4.2 Installation conditions

4.2.1 Housing dimensions

Housing dimensions

- Dirty compartment
- Electronics compartment
- Rinsing air connection G¼ – bore hole
4.2.2 Dimensions of extended wiper

Dimensions of the wiper extension

4.2.3 Dimensions of process connection

Hole dimensions DN100 PN16 (acc. to EN 1092-1)

*1 Minimum dimension for installing the wiper mechanism and standard weight

Dimensions of process connection
4.2.4 Dimensions of optional window and external start button

![Dimensions of window and start button](image)

4.3 Installation preparation

The Silopilot is best mounted on a counter flange DN100 PN16 (connection dimensions acc. to EN 1092-1) or a flange with the same connection dimensions. Please refer to chapter 4.2 for dimensions.

The counter flange must be mounted exactly horizontal so that the Silopilot can also be mounted horizontally onto it (maximum angle of inclination 2°).

When installing outside, fit a protective hood or mount a weather protection cover.
4.4 Installation

4.4.1 Installing the sensing weight

No structural changes have to be made for the sensing weights according to order code (normal weight, umbrella weight and medium bag weight, see chapter 3 "Sensing weights"). They can be passed through the DN100 mounting flange directly into the bunker or silo.

The measuring tape is pressed into the tape border using two screws. A third screw secures the chain. A rotating bush is mounted at the bottom end of the chain to accommodate any turning motion of the sensing weight.

In the delivery status of the Silopilot, the sensing weight including rotating bush and chain is supplied in a pre-assembled state. It must be secured to the tape border using the enclosed screws when on-site installation is performed.

4.4.2 Installing the Silopilot

Fit a seal ring on the flange (particularly if there is positive pressure in the bunker or silo). Carefully guide the sensing weight into the bunker or silo.

Now place the Silopilot onto the flange and secure it using four M16 bolts of a suitable length. Please note the following points:

- Take the position of cable entries for electrical connections into consideration (see "Housing dimensions" in chapter 4.2).
- Install the Silopilot horizontally (see chapter 4.3 "Installation preparation").

⚠️ Attention!
Please remove the transport fixture in the dirty compartment before installation (see figure)! You would get unpredictable device reactions if you don't remove this transport fixture.
Note!

- When installing the Silopilot in bunkers or silos with heavy dust development, slight positive pressure can be generated at the Silopilot by means of the rinsing air connection at the mounting flange (airflow quantity as required).
- There is a G¼ female connection provided for this purpose (see "Dimensions" in chapter 4.2).
- The sensing weight must be outside the nozzle when the measuring tape is wound up (see the following illustration). The maximum height of the nozzle is defined by the length of the wiper. This is 230 mm when using the standard wiper. The wiper is also available in lengths of 500 mm and 1000 mm (see order code). Other lengths are available on request as special versions.

![Diagram of Silopilot FMM20 with nozzle height](image)

Installing the extended wiper

4.5 Incoming acceptance and storage

4.5.1 Incoming acceptance

Check whether the package or contents are damaged. Check that the goods supplied are complete and compare the scope of delivery with your order details.

4.5.2 Storage

The measuring device must be packaged with protection from impact for storage and transport. The permissible storage temperature is -40 °C to +60 °C.

4.6 Post-installation check

Once the measuring device has been mounted, undertake the following checks:

- Do you remove the transport fixture in the dirty compartment?
- Is the measuring device damaged (visual check)?
- Does the measuring device correspond to the specifications of the measuring point, such as process temperature, ambient temperature, measurement range, etc.?
- Are the measuring point numbers and inscriptions correct (visual check)?
- Is the measuring device sufficiently protected from rain and direct sunlight?
5 Wiring

5.1 Electrical connection

Please note the following points before connecting up the device:

- The voltage supply must match the voltage specified on the nameplate.
- Switch off the supply voltage before connecting the device.
- Connect a potential matching line to the earthing terminal to be used on the Silopilot's housing before connecting the device.
- When using the device in explosion hazard zones, the corresponding national standards and specifications must be observed.

⚠️ Warning!
Always observe the safety instructions on this provided in chapter 1 of these Operating Instructions!

5.2 Potential matching

The potential matching should be connected up to the outer earthing terminal of the Silopilot.

Note!
For optimum electromagnetic compatibility, the potential matching line should be as short as possible. The recommended minimum cable cross-section is 2.5 mm².

⚠️ Attention!
The Silopilot's potential matching should be included in the local potential matching.
5.3 Terminal assignment

5.3.1 Overview

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term. 1</td>
<td>Supply voltage</td>
</tr>
<tr>
<td>Term. 2.1 - Term. 2.3</td>
<td>Relay output 1</td>
</tr>
<tr>
<td>Term. 2.4 - Term. 2.6</td>
<td>Relay output 2</td>
</tr>
<tr>
<td>Term. 2.7 - Term. 2.9</td>
<td>Relay output 3 *1</td>
</tr>
<tr>
<td>Term. 2.10 - Term. 2.12</td>
<td>Relay output 4 *1</td>
</tr>
<tr>
<td>Term. 3.1 - Term. 3.3</td>
<td>Input 1</td>
</tr>
<tr>
<td>Term. 3.6 - Term. 3.8</td>
<td>Input 2</td>
</tr>
<tr>
<td>Term. 3.4 - Term. 3.5</td>
<td>Pulse output *1</td>
</tr>
<tr>
<td>Term. 3.9 - Term. 3.10</td>
<td>0/4 - 20 mA current output</td>
</tr>
</tbody>
</table>

*1 optional (only at versions with four relay outputs)
5.3.2 Supply voltage

The supply voltage is connected to the plug-in terminals of terminal 1.
The maximum cable cross-section is 2.5 mm².
A fuse should be fitted to protect the power supply against short circuits.
Voltage ranges (according to order code):
- 90 to 253 VAC, 50/60 Hz
- 20 to 28 VDC

5.3.3 0/4 - 20 mA current output

The galvanically isolated, active 0/4 - 20 mA current output is connected to the plug-in terminals of terminal 3.
The maximum cable cross-section for the plug-in terminals is 2.5 mm².
Normal installation cables are sufficient for making the connections.
Load: max. 600 Ω

5.3.4 Relay outputs

The connection cables of the relay outputs (relay 1/2 and optional relay 3/4) are connected to the plug-in terminals of terminal 2.
The maximum cable cross-section for the plug-in terminals is 2.5 mm².
Normal installation cables are sufficient for making the connections.
The individual circuits must have a maximum of 6 A fuse protection.
Contact load bearing capacity: 250 VAC, 6 A
5.3.5 Signal inputs

- The signal inputs are connected to the plug-in terminals of terminal 3.
- The maximum cable cross-section for the plug-in terminals is 2.5 mm².
- Normal installation cables are sufficient for making the connections.
- Active input: 12 – 24 VDC
- Passive input: max. 30 VDC / 0.3 W

Note!
- The signal inputs (active/passive) can only be used alternatively. A double connection from input x active and passive cannot be used!
- In the device version with an external start button (Silopilot FMM20 - ********2), this is connected to the passive signal input 1. Only signal output 2 is then available to you as active or passive.
- A start pulse must be present for at least 200 ms for it to be evaluated!

5.3.6 Optocoupler output (optional when 4 relays are selected)

- When using the "counter pulse" output function, the counter pulses on the device version with four relay outputs can be sent to an optocoupler output parallel to relay 4.
- The connection cables of the optoelectronic coupler output are connected to the plug-in terminals of terminal 3.
- The maximum cable cross-section for the plug-in terminals is 2.5 mm².
- Normal installation cables are sufficient for making the connections.
- Electrical data:
 - I = max. 10 mA
 - U = max. 30 VDC

5.4 Post-connection check

Please undertake the following checks after wiring up the measuring device:
- Is the terminal assignment correct?
- Is the cable gland sealed?
- If power supply is present:
 - Is the measuring device ready and is the LC display lit up?
- Is the housing cover screwed shut?
6 Operation

6.1 Quick operation guide

Selection and configuration in the operating menu:

1. Use \(\text{キー}^{1}\) to switch from the measured value display to group selection.

2. Use \(\text{キー}^{2}\) or \(\text{キー}^{3}\) to select the function group required (e.g. "safety settings (04)") and confirm with \(\text{キー}^{4}\). The first function (e.g. "output on alarm (040)") is selected.

Note!
The active selection is indicated by a \(\checkmark\) in front of the menu text!

3. Editing mode is activated by pressing \(\text{キー}^{1}\) or \(\text{キー}^{2}\).

Selection menus:

- a) In the function selected (e.g. "output on alarm (040)"), \(\text{キー}^{2}\) or \(\text{キー}^{3}\) can be used to select the parameter required.
- b) \(\text{キー}^{4}\) confirms the selection. \(\checkmark\) appears in front of the parameter selected.
- c) \(\text{キー}^{5}\) confirms the value edited. Editing mode is quit.
- d) \(\text{キー}^{6}\) + \(\text{キー}^{7}\) cancels the selection. Editing mode is quit.

Numbers and text entry:

- a) The first digit of the number/text can be edited by pressing \(\text{キー}^{2}\) or \(\text{キー}^{3}\) (e.g. "output on alarm (040)").
- b) \(\text{キー}^{4}\) moves the input screen to the next digit. Continue with (a) until the value has been fully entered or modified.
- c) When the symbol → appears in the input screen, use \(\text{キー}^{4}\) to adopt (save) the value.
- d) \(\text{キー}^{6}\) + \(\text{キー}^{7}\) cancels the entry. Editing mode is quit.

4. Use \(\text{キー}^{1}\) to select the next function (e.g. "safety distance (042)").

5. Entering \(\text{キー}^{4}\) + \(\text{キー}^{6}\) (= \(\text{キー}^{7}\)) takes you back to the last function.

Entering \(\text{キー}^{4}\) + \(\text{キー}^{6}\) (= \(\text{キー}^{7}\)) again takes you to group selection.

Entering \(\text{キー}^{4}\) + \(\text{キー}^{6}\) (= \(\text{キー}^{7}\)) again takes you back to the measured value display.
6.2 Display and operating elements

6.2.1 Display symbols

The following table describes the symbols used in the display:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| ![Alarm symbol](image1) | **Alarm symbol**
- This alarm symbol is shown when the device is in an alarm status (error status).
- If the symbol is flashing, a fault has occurred. |
| ![Lock symbol](image2) | **Lock symbol**
- This lock symbol is when the device is locked, i.e. when no energy is available. |
| ![Hand symbol](image3) | **Hand symbol**
- This symbol flashes when the device is in the "manual mode" type of measurement.
- When the \(\text{O} \) or \(\text{S} \) button is pressed, the symbol disappears and the direction selected (run-up ↑ or run-off ↓) is shown. |

6.2.2 Function of buttons

The following table describes the function(s) of the individual buttons:

<table>
<thead>
<tr>
<th>Button(s)</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| ![Upwards navigation in the selection list](image4) | Upwards navigation in the selection list
- Edit the numerical values within a function |
| ![Downwards navigation in the selection list](image5) | Downwards navigation in the selection list
- Edit the numerical values within a function |
| ![Navigation to the left within a function group](image6) | Navigation to the left within a function group
- Navigation to the right within a function group
- Confirmation |
| ![Contrast setting of the liquid crystal display](image7) | Contrast setting of the liquid crystal display
- \(\text{O} \) and \(\text{F} \) increases the contrast
- \(\text{S} \) and \(\text{F} \) reduces the contrast |
| ![Starts measurement process](image8) | Starts measurement process (provided that the Silopilot is in the measured value display function) |
6.2.3 LED

The green LED positioned above the LC display is used to display the pulse of the counting wheel during a measurement process. The counting wheel emits a pulse to the evaluation electronics every 2.5 cm of running. The status of the LED changes at the same time. Once the measurement process is complete, the last LED status is retained.

6.3 General structure of operating menu

The operating menu consists of two levels:

- **Function groups (00, 01, to 08):**
 The individual possible ways of operating the device are divided roughly into function groups. Function groups available are e.g.: "basic setup (00)", "inputs and outputs (01)", "safety settings (04)", etc.

- **Functions (001, 002, to 083):**
 Each function group consists of one or more functions. The actual operation and/or setting of parameters for the device takes place in the functions. Numerical values can be entered here and parameters selected and saved. Functions available from the "inputs and outputs (01)" function group are e.g.: "input 1 (010)", "input 2 (012)", "relay output 1 (014)", etc.

If, for example, the function of relay for output 1 is to be changed, the following procedure applies:
1. Select the function group "inputs and outputs (01)"
2. Select the function "relay output 1 (014)"
3. Select e.g. "counter pulses"
6.4 Identification of functions

An item number is shown for every function in the display to make orientation within the function menu simpler.

The first two digits indicate the function group:
- basic setup (00)
- inputs and outputs (01)
- measurement param. (02)
...

The third digit numbers the individual functions within the function group:
- basic setup (00) → empty calibr. (001)
 blocking distance (002)
...

The item number is always given in brackets below (e.g. "empty calibr. (001)") after the function described.

6.5 Blocking/releasing operation

6.5.1 Software locking

Enter a number other than 100 in the "diagnostics (07)" function group for the "unlock parameter (074)" function.

The lock symbol appears on the display, no more entries can be made.
A measurement can still be triggered using the "man. start" button.

Enter the number "100" to release operation, entries can now be made again.

6.5.2 Hardware locking

Press the

 buttons simultaneously.

The lock symbol appears on the display, no more entries can be made.
A measurement can still be triggered using the "man. start" button.

To release operation, press the

 buttons again, entries can now be made again.
7 Commissioning

Ensure that the post-installation check and post-connection check have been undertaken before you start up your measuring point:
- Checklist "Post-installation check" (see chapter 4.6)
- Checklist "Post-connection check" (see chapter 5.4)

7.1 Switching on measuring device

If the device is being switched on for the first time, the following appears on the display:

Initialization
Nov 06 2006

F MFM20
U01.01.00
R11A1AD1A1

Language
English
Deutsch
Francais

distance unit
in
ft

measured value
000

Note!
A measurement must first be undertaken before a measured value valid for the current system can be obtained.
7.2 Basic setup

In most cases, the basic setup is sufficient for successful commissioning. More complex measurement tasks may however require further settings. For the details of all functions, please see chapter 8.

You will find a table in the appendix detailing the values preset in the factory.

<table>
<thead>
<tr>
<th>Empty calibration (E)</th>
<th>Full calibration (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>= maximum measurement range</td>
<td>= maximum measurement range</td>
</tr>
</tbody>
</table>

level (L) = empty calibration (E) – distance determined to surface of product (D)

7.2.1 Empty calibration (001)

With this function, you enter the distance between the mounting flange (reference point for measurement) and the minimum fill level (=zero point).

Range of values: 1 m to length of measuring tape (or converted value in feet/inches)

Default value: Length of measuring rope/tape

7.2.2 Blocking distance (002)

With this function, you enter the distance between the flange of the Silopilot and the end of the sensing weight (in upper limit position).

Range of values: 0.23 m to 5 m (or converted value in feet/inches)

Default value: 0.72 m
7.2.3 Full calibration (003)

With this function, you enter the distance between the minimum fill level (=zero point) and maximum fill level (=measurement range).

Range of values: 1 m to empty calibration – blocking distance (or converted value in feet/inches)

Default value: Length of measuring tape – 0.72 m

7.2.4 Measurement type (020)

With this function, you select the type of measurement for the Silopilot:

- **single cycle**: A single measurement can be activated manually using buttons on the device or using a corresponding input signal (see chapter 8.2).
- **periodical**: The Silopilot can take time-controlled measurements. The time interval can be defined in functions 021 and 022 (see chapter 8.3).
- **manual**: The Silopilot can only be operated using the buttons on the device. This type of measurement gives the user the opportunity to move the sensing weight slowly (e.g. when changing the sensing weight). For a precise description of this type of measurement, please refer to chapter 9.

Default value: single cycle
8 Description of device functions

8.1 "basic setup (00)" function group

In most cases, basic setup is sufficient for successful commissioning. More complex measurement tasks may however require further settings.

Please refer to this and the following sections for details. You will find a table in the appendix to these Operating Instructions detailing the values preset in the factory.

8.1.1 Empty calibration (001)

With this function, you enter the distance between the mounting flange (reference point for measurement) and the minimum fill level (=zero point).

Range of values: 1 m to length of measuring tape (or converted value in feet/inches)

Default value: Length of measuring tape

8.1.2 Blocking distance (002)

With this function, you enter the distance between the flange of the Silopilot and the end of the sensing weight (in upper limit position).

Range of values: 0.23 m to 5 m (or converted value in feet/inches)

Default value: 0.72 m
8.1.3 Full calibration (003)

With this function, you enter the distance between the minimum fill level (=zero point) and maximum fill level (=measurement range).

Range of values: 1 m to empty calibration – blocking distance (or converted value in feet/inches)

Default value: Length of measuring tape = 0.72 m

8.1.4 Measurement type (020)

With this function, you select the type of measurement for the Silopilot:
- **single cycle**: A single measurement can be activated manually using buttons on the device or using a corresponding input signal (see function 010).
- **periodical**: The Silopilot can take time-controlled measurements. The time interval can be defined in the functions 021/022.
- **manual**: The Silopilot can only be operated using the buttons on the device. This type of measurement gives the user the opportunity to move the sensing weight slowly (e.g. when changing to larger sensing weights). For a precise description of this type of measurement, please refer to the corresponding chapter.

Default value: single cycle

Warning!
When in manual mode, the upper limit switch and the loose band switch have no function! Users must themselves ascertain the position in which the sensing weight is currently located.

With this type of measurement, the sensing weight can (depending on the maximum tape length) be lowered into unauthorized areas of the container (or e.g. in an outlet worm).

Note!
A measurement can only be taken when the device is in the measured value display (000). This also applies to the device version with an external start button.

8.1.5 Distance/measured value (004)

With this function, you can display the distance measured between the Silopilot and product and the current measured value. The display depends on the digits after the decimal place (function 062) and the length unit (function 083).
8.2 "inputs and outputs (01)" function group

The entries made in this function group determine the characteristics of the inputs and relay outputs.

8.2.1 Input 1 (010)

With this function, you determine the characteristics of input 1:
- not used
- bolting: If there is a signal at input 1, the Silopilot is blocked for further measurements. If necessary, the sensing weight is moved into the upper limit position, the measurement is canceled immediately.
- start measurement: If there is a signal at input 1, the Silopilot starts a new measurement.

Default value: not used

Note!
In the device version with an external start button, this is connected to input 1. The function is then set to "start measurement" in the factory.

8.2.2 Input 2 (012)

With this function, you determine the characteristics of input 2. The selection options available are identical to those for input 1.

Default value: not used

8.2.3 Relay output 1 (014)

With this function, you determine the characteristics of the relay for output 1:
- alarm: Relay switches as soon as an error (e.g. tape breakage or burying) is detected.
- service interval: Relay switches when the value set in the maintenance interval (024) function is reached.
- counter pulses: Relay switches at the pulse value set in function 015 and with the counter pulse length set in function 016.
- reset pulse: Relay switches at the reset pulse length set in function 019 before a new measurement. This output can be used to reset an external counter.
- running up: Relay switches when running up the sensing weight.
- top position: Relay switches as soon as the upper limit position of the sensing weight (end of measurement) is reached.
- measuring: Relay switches during the entire Silopilot measuring period.

Default value: alarm
8.2.4 Relay for output 2 (01A) to relay for output 4 (01C)

The functionality of the outputs correspond to those of the relay for output 1 (see function 014). Relay outputs 3 (01B) and 4 (01C) are only available as options. Please refer to the product structure in chapter 2 for details.

Default value:

<table>
<thead>
<tr>
<th>Relay output</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>01A</td>
<td>Service interval</td>
</tr>
<tr>
<td>01B</td>
<td>Measuring</td>
</tr>
<tr>
<td>01C</td>
<td>Top position</td>
</tr>
</tbody>
</table>

8.2.5 Pulse value (015)

With this function, you enter the move distance per pulse at the counting output. The distance is calculated from the value set × 2.5 cm.

Range of values: 1 to 20 (= 2.5 cm to 50 cm or the value converted into feet/inches)

Default value: 1

Example (see illustration):
Every 0.2 m of move distance (pulse value = 8) the preset counting pulse output e.g. relay 1 issues a counting pulse. You can enter the length of this pulse in the "pulse length (016)" function.

8.2.6 Pulse length (016)

With this function, you enter the length of the counter pulses in milliseconds. In such cases, the range of values depends on the pulse value (015).

Range of values: 30 ms to 100 ms [pulse value = 1]
30 ms to 250 ms [pulse value = 2]
30 ms to 400 ms [pulse value = 3]
30 ms to 550 ms [pulse value = 4 to 20]

Default value: 50 ms

8.2.7 Reset pulse (019)

With this function, you determine the length of the reset pulse of the relay outputs, when e.g. "reset pulse" has been selected in function 014, in milliseconds.

Range of values: 30 ms to 1000 ms

Default value: 300 ms
8.3 "measurement parameters (02)" function group

8.3.1 Measurement type (020)

With this function, you select a type of measurement for the Silopilot. You will find a precise description of this function in the "basic setup" section (chapter 7.2.4).

Default value: single cycle

8.3.2 Time interval (021)

With this function, you enter a value for the time interval for the "periodical" type of measurement (see function 020). You enter the unit of this value (minutes or hours) in function 022.

Range of values: 1 to 60 (minutes or hours)
Default value: 1

Attention!
When operating the Silopilot, please observe the minimum time \((T_M) \) for a measurement cycle depending on the measurement range (MR). We recommend:

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
MR [m] & 4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 \\
T_M [minute] & 21 & 18 & 15 & 12 & 9 & 6 & 3 & 3 \\
\end{array}
\]

8.3.3 Time unit (022)

With this function, you enter the unit of the time interval from function 021.

- min.: minute(s)
- h: hour(s)

Default value: h
8.3.4 Normal or short (023)

With this function, you select the operating mode for the measurement (with the "single cycle" and "periodical" types of measurement):

- **normal**: At the start of a measurement, the Silopilot lowers the sensing weight down to the product, the sensing weight is then pulled back into the upper limit position.
- **short**: At the start of a measurement, the Silopilot lowers the sensing weight down to product, but the sensing weight is then only raised by one meter. An input for the lock (i.e. when the input is active, the sensing weight immediately moves to the upper limit position) should be used because the sensing weight is not protected against burying in this operating mode. The upper limit position is approached every 20 measurement cycles.

Default value: normal

Note!
Depending on silo height and fill level, the "short" operating mode can considerably shorten the length of a measurement cycle. Disadvantages of this operating mode:

- By selecting the appropriate settings, the user must ensure that the sensing weight is not buried.
- There is little point in using the "counter pulses" output function because the Silopilot does not approach a defined point (and therefore no defined distance) at the end of a measurement.

8.3.5 Service interval (024)

With this function, you specify the number of measurement cycles before the next maintenance (including tape changes) is undertaken. If the set value is reached, the Silopilot issues a warning. The "service interval" relay output switches. The warning and/or switched relay output can be reset by resetting the service interval counter in function 025.

Range of values: 1 to 90000

Default value: 45000

Note!
The number of Silopilot measurements before the next round of maintenance work depends on the process environment. The user should adjust this value depending on the level of dirt and/or measuring tape condition!

8.3.6 Service interval counter (025)

With this function, you can change the internal counter for the service interval, e.g. for resetting purposes once the service interval has been reached (see function 024).

Range of values: 0 to 90000
8.3.7 Simulation (026)

Simulation mode allows the user to simulate a particular measured value, e.g. in order to check downstream process control systems. The relay outputs can also be checked. During simulation, the measured value display (function 000) shows the alarm symbol.

The following simulations can be selected:

- **sim. off**: Simulation is switched off.
- **sim. level**: A fill level can be specified in function 027. In such cases, the range of values conforms with the upper-range value entered in function 057. The value entered is shown in the measured value display. The current output follows the simulation value.
- **sim. volume**: A volume can be specified in function 027. In such cases, the range of values conforms with the upper-range value entered in function 057. The value entered is shown in the measured value display. The current output follows the simulation value.
- **sim. current**: A current value can be specified in function 027. The measured value display continues to show the last measured value.

Default value: sim. off

Note!

When in simulation mode, normal measuring with the Silopilot is not possible.

- If the device was in manual mode before simulation was activated, the sensing weight remains in its current setting.
- If the device was in measuring mode before simulation was activated, this mode remains active. The last measured value is saved internally and once the simulation is ended, is shown in the measured value display.
- If the device was in individual measurement mode before simulation was activated, this mode is no longer active. The inputs and the "man.start" button are deactivated. A measurement which has already been started is normally ended, measured value is saved internally and once the simulation is ended, is shown in the measured value display.

8.3.8 Simulation value (027)

With this function, you enter a value for the type of simulation selected in function 026.

Range of values: 0 to 99 m (fill level)
0 to 22.00 mA (current)
0 to 100 000 (volume)

Example of fill level simulation

Silopilot settings:

<table>
<thead>
<tr>
<th>Function</th>
<th>Function number</th>
<th>Input/value</th>
</tr>
</thead>
<tbody>
<tr>
<td>empty calibration</td>
<td>001</td>
<td>20 m</td>
</tr>
<tr>
<td>full calibration</td>
<td>003</td>
<td>15 m</td>
</tr>
<tr>
<td>Fill level/volume</td>
<td>050</td>
<td>TU (technical unit)</td>
</tr>
<tr>
<td>customer unit</td>
<td>056</td>
<td>m³</td>
</tr>
<tr>
<td>max. scale</td>
<td>057</td>
<td>1000</td>
</tr>
</tbody>
</table>
1. simulation (026) = level
 sim. value (027) = 800
→ Display (000)
 Current output = 800 m³
 = 16.8 mA

2. simulation (026) = fill level
 sim. value (027) = 200
→ Display (000)
 Current output = 200 m³
 = 7.2 mA

8.3.9 Run up length (028)

With the run up length 028 function, you determine the
distance the sensing weight travels upwards in the "short"
operating mode (function 023).

Range of values: 1 m to empty calibration - 1 m (or converted
value in feet/inches)

Default value: 1 m

Note!
Make sure that the sensing weight is not buried by a filling process (e.g. by using the "upper limit
position" relay locking function).
8.4 "current output (03)" function group

8.4.1 Current range (033)

With this function, you determine the range of the current output.

- 0 - 20 mA
- 4 - 20 mA

Default value: 4 - 20 mA

Note!

The characteristics of the current output can be influenced using the "level/volume (050)" function as follows:

- The "level CU" or "level DU" cause an increasing output current when the fill level (H) rises.
- In contrast, the "ullage CU" or "ullage DU" settings cause a declining output current when the fill level (H) rises.
8.5 "safety settings (04)" function group

8.5.1 Output on alarm (040)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN (0/3.6mA)</td>
<td>If the Silopilot detects an error (e.g. rope/tape tearing off), the current falls to 0 mA or 3.6 mA (depending on function 033).</td>
</tr>
<tr>
<td>MAX (22mA)</td>
<td>If the Silopilot detects an error, the current increases to 22 mA.</td>
</tr>
<tr>
<td>hold</td>
<td>If the Silopilot detects an error, the last current output is retained.</td>
</tr>
<tr>
<td>user-specific</td>
<td>If the Silopilot detects an error, the current set in function 041 is output.</td>
</tr>
</tbody>
</table>

Default value: MIN (0/3.6mA)

8.5.2 Output on alarm (041)

With this function, you determine the user-specific current value in the event of an error (see function 040).

Range of values: 0 to 22.00 mA

Default value: 3.60 mA

8.5.3 Safety distance (042)

With this function, you determine the minimum distance e.g. to an outlet worm. This function prevents the measuring tape from running out into an unauthorized area of the silo/bunker (also see "basic setup" in chapter 8.1).

Range of values: 0 m to (full calibration - safety distance) (or converted value in feet/inches)

Default value: 0 m

8.5.4 Security distance (043)

A configurable safety zone is set up underneath the maximum full calibration (function 003). This zone is used to warn the user that if the fill level continues to rise future measurements could be invalid if the current measured value leaves the range of the maximum full calibration.

Range of values: 0 m to (full calibration - safety distance) (or converted value in feet/inches)

Default value: 0 m

8.5.5 In security distance (044)

With this function you can select the device reaction, if the fill level reaches the security distance (function 043). This function is only available if the value in "security distance" function (043) is greater than zero.

- alarm
- warning

Default value: warning
8.5.6 in safety dist. (045)

With this function you can select the device reaction, if the fill level reaches the safety distance (function 042). This function is only available if the value in "safety distance" function (042) is greater than zero.

- alarm
- warning

Default value: alarm

Behaviour of the FMM20 at the achievement of the safety distance:

1. "in safety distance" (045) = warning
 - The sensing weight stops.
 - The actual measurement is completed with a new measuring value. (measuring value [level] = full calibration (002) – safety distance (042)
 - The current value of the current output represents the measuring value.
 - The warning W661 is shown on the display (error symbol flashes).

2. "in safety distance" (045) = alarm
 - The sensing weight stops.
 - The actual measurement is disapproved (last valid measuring value is displayed).
 - The current value of the current output represents the value you select in the function "output on alarm" (040).
 - The alarm A660 is shown on the display (error symbol flashes permanent).
 - The relay with the programmed alarm function drops out.
8.6 "linearization (05)" function group

8.6.1 Level/volume (050)

With this function, you determine the display value in the measured value display function (000).

- **level CU**: Depiction of fill level in customer units. The unit can be selected or deselected in the "customer unit" function (056), and the maximum scale value in the "max. scale" function (057).
- **level DU**: Depiction of the fill level in the "distance unit" function (083).
- **ullage CU**: Depiction of residual volume in customer units. The unit can be selected or deselected in the "customer unit" function (056), and the maximum scale value in the "max. scale" function (057).
- **ullage DU**: Depiction of residual distance in the "distance unit" function (083).

Default value: level CU

Note!
The reference point for residual distance and/or residual volume is the "full calibration (003)".

Example of a volumetric measurement with the following parameters:
- Full calibration (003) = 20 m
- Silo volume (in measurement range selected) = 500 m³
- Current fill level = 4 m

1. Measurement of current volume
 - level/volume (050) = level CU
 - customer unit (056) = m³
 - max. scale (057) = 500
 - display (000) = 100 m³

2. Measurement of residual volume
 - level/volume (050) = ullage CU
 - customer unit (056) = m³
 - max. scale (057) = 500
 - display (000) = 400 m³

8.6.2 Customer unit (056)

With this function, you can select the customer unit (CU). The following units are available for selection:
- percentage %
- weight: kg, t
- volume: m³, ft³
- length: m, ft, in

Default value: %

8.6.3 Max. scale (057)

With this function, you can define the maximum scale value (in the unit selected and the number of digits after the decimal point selected).

Range of values: 1 to 100000

Default value: 100
8.7 "display (06)" function group

8.7.1 Language (060)

Use this function to select the language of the display texts in the display:
- Deutsch
- English
- Français
- ニホソゴ (Katakana, Japanese)

Default value: English

8.7.2 Back to home (061)

With this function, you specify the time after which the display returns to the measured value display (000).

Range of values: 3 to 9999 seconds
Default value: 100

8.7.3 Number of decimals (062)

With this function, you select the number of digits after the decimal point for the measured value display (000) and for entry of several parameter values:
- x: No digit after the decimal point
- x.x: One digit after the decimal point
- x.xx: Two digits after the decimal point
- x.xxx: Three digits after the decimal point

Default value: x.xx

8.7.4 Format display (063)

With this function, you activate a test for the LC display. All points on the display are activated for around 2 seconds.
- off: No display test
- on: Display test

Default value: off
8.8 "diagnostics (07)" function group

8.8.1 Present error (070)

The present error (e.g. "simulation activated"), its error code (e.g. 621) and the letter "W" for warning or "A" for alarm are shown in the display. If the error is a warning, only this is displayed. In the case of an alarm, this is also output via the "alarm" relay output, provided that this has been selected.

Note!
For the depiction of all error codes, please refer to chapter 10 "Troubleshooting".

8.8.2 Previous error (071)

The previous error, its error code and the letter "W" for warning or "A" for alarm are shown in the display.

For the depiction of all error codes, please refer to chapter 10 "Troubleshooting".

8.8.3 Clear errors (072)

With this function, you can delete the errors shown:
- **keep**: Errors are not deleted.
- **erase previous**: Previous error is deleted.
- **erase present**: Present error is deleted.
- **erase all**: All errors are deleted.

Default value: keep

8.8.4 Reset (073)

With this function, you can reset the Silopilot. All parameters are loaded with their default values.

Range of values:
- **333** undertakes reset
- **<>333** does not undertake reset

Note!
- A reset of the Silopilot must be followed at least by a basic setup!
- Take a note (if possible) of the parameters set so that the Silopilot functions required can be re-established after a reset! You will find suitable tables for noting all settings in the appendix.

8.8.5 Unlock parameter (074)

With this function, you can lock the parameter entries. No more values can then be entered in any part of the menu (exception: unlock parameter).

Range of values:
- **<>100** locks parameter entry
- **100** unlocks parameter entry
8.9 "system parameters (08)" function group

8.9.1 Tag number (080)

With this function, you can give the measuring point of the Silopilot a name of no more than 16 alpha-numerical digits.

Default value:

8.9.2 Protocol + software number (081)

With this function, you can display the protocol and software version of the Silopilot.

8.9.3 Serial number (082)

With this function, you can display the serial number of the Silopilot. You will also find the serial number on the nameplate.

8.9.4 Distance unit (083)

With this function, you can enter the length unit of the Silopilot. This forms the basis for all display and entry values, with the exception of the customer unit (CU), provided that this has been selected.

- **m**: meter
- **ft**: feet
- **in**: inch

Default value: **m**
9 Manual mode

By selecting "manual" mode in the "measurement type (020)" function (see chapter 8.2), the Silopilot can be operated using the [\(\text{-}\)] and [\(\text{+}\)] keys on the device. Manual mode gives the user the opportunity to move the sensing weight slowly (e.g. for a tape change).

⚠️ Warning!
When in manual mode, the upper limit switch and the loose band switch have no function! Users must themselves ascertain the position in which the sensing weight is currently located. In manual mode, the sensing weight can e.g. be lowered into an outlet worm (depending on the maximum tape length).

9.1 Operation

Once the manual mode has been selected, the "measured value (000)" function must be selected. Manual movements can now be undertaken using the sensing weight keys.
9.2 Display

If the Silopilot is in manual mode, a hand symbol appears on the display:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>🧤</td>
<td>This symbol flashes when the device is in the "manual mode" type of measurement without a button being pressed.</td>
</tr>
<tr>
<td>🧤</td>
<td>This symbol flashes when the device is in the "manual mode" type of measurement and the [-] button is pressed.</td>
</tr>
<tr>
<td>🧤</td>
<td>- The sensing weight moves down.</td>
</tr>
<tr>
<td>🧤</td>
<td>This symbol flashes when the device is in the "manual mode" type of measurement and the [+] button is pressed.</td>
</tr>
<tr>
<td>🧤</td>
<td>- The sensing weight moves up.</td>
</tr>
</tbody>
</table>

In manual mode, the "measured value" (000) automatically shows the tape length run out. The value displayed depends on the distance unit (m, ft, in) selected in function 083 as well as the depiction of digits after the decimal point selected in function 062. Once work in manual mode has been completed, the measured value display is changed back to the form of depiction originally selected (e.g. fill level in technical units).

Note!
The last valid measured value remains saved internally, it is not overwritten in manual mode. The outputs still follow this (e.g. with a 50% fill level, 12 mA is still output for the current output).
10 Troubleshooting

10.1 Error messages

The Silopilot FMM20 can display an error, which occurs during commissioning or measurement operation, in the following ways:

- by the error symbol in the "measured value (000)" function
- in the "diagnostics (07)" function group in the "present error (070)" function or in the "previous error (071)" function
- by means of relays, as long as the "alarm" option has been selected in the function(s) "relay output 1 (014)" and/or "relay output 2 (01A)" and/or optionally "relay output 3 (01B)" and/or "relay output 4 (01C)"
- via the current output characteristics programmed in the "output on alarm (040)" function

10.1.1 Present error (070)

The present error is displayed in the "diagnostics (07)" function group in the "present error (070)" function.

```
<table>
<thead>
<tr>
<th>Type</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm (A)</td>
<td>![Permanent]</td>
<td>- The relay with the programmed alarm function (see 10.1) drops out.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The current output takes on a value which has been defined by means of the &quot;output on alarm (040)&quot; and &quot;current range (033)&quot; functions.</td>
</tr>
<tr>
<td>Warning (W)</td>
<td>![Flashing]</td>
<td>- Device continues to measure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- An error message is displayed.</td>
</tr>
</tbody>
</table>
```

Note!

Only the error with the highest level priority is displayed.

10.1.2 Previous error (071)

The previous error is displayed in the "diagnostics (07)" function group in the "previous error (071)" function.

This display can be deleted in the "clear errors (072)" function.
10.3 Error messages

All possible errors, their error codes and their meaning and/or possible forms of rectification can be seen in the following tables:

<table>
<thead>
<tr>
<th>Code</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| A100 | Checksum error in internal program memory | - Reset
| | | - Avoid EMC problems
| | | - If the alarm is still present after a reset, contact service and/or replace the electronics |
| A101 | Check sum error in EEPROM 1 | |
| A102 | Check sum error in EEPROM 2 | |
| A103 | Initialization failed | |
| A106 | Program download error (only for service technicians) | Repeat download and/or restart |
| W110 | Default service parameters loaded | - Warning that a reset has been undertaken |
| W111 | Default customer parameters loaded | - Goes out automatically with next entry |
| W112 | Default input/output configuration loaded | |
| A120 | Error during loading the service parameters | - Reset
| | | - Avoid EMC problems |
| | | - If the alarm is still present after a reset, contact service and/or replace the electronics |
| A121 | Error during loading the customer parameters | |
| A122 | Error when loading the input/output configuration | |
| A123 | Error during loading the last measured values | |
| A125 | Error during loading the language string | |
| A130 | Process of saving the service parameters has failed | - Reset
| | | - Avoid EMC problems |
| | | - If the alarm is still present after a reset, contact service and/or replace the electronics |
| A131 | Process of saving the customer parameters has failed | |
| A132 | Process of saving the input/output configuration has failed | |
| A133 | Process of saving the measured values has failed | |
| A200 | Interface to motor controller defective | |
| A201 | Initialization of motor controller failed | |
| A202 | Fatal motor error | |
| A203 | Temperature inside the motor driver is too high | - Reset
| | | - avoid excessive heating of the Silopilot |
| | | - If the alarm is still present after a reset, contact service |
Continuation of system error messages:

<table>
<thead>
<tr>
<th>Code</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A205</td>
<td>Motor current consumption is too high</td>
<td>- Reset</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Avoid heating the Silopilot too much</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- If the alarm is still present after a reset, contact service and/or replace the electronics</td>
</tr>
<tr>
<td>A206</td>
<td>Motor driver defective</td>
<td>- Reset</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- If the alarm is still present after a reset, contact service and/or replace the electronics</td>
</tr>
<tr>
<td>A220</td>
<td>Temperature is too high</td>
<td>- Check mounting position (see chapter 4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- If the alarm is still present after a reset, contact service</td>
</tr>
<tr>
<td>A330</td>
<td>Maximum time for a measurement exceeded</td>
<td>If the alarm is still present after several measurement processes, contact service</td>
</tr>
<tr>
<td>A340</td>
<td>Sensing weight or tape/rope is torn</td>
<td>- Inspection of the sensing weight and measuring tape</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- If necessary, replace the sensing weight and/or measuring tape</td>
</tr>
<tr>
<td>A350</td>
<td>Sensing weight is buried</td>
<td>- Expose sensing weight by hand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Reset or briefly withdraw supply voltage (restart the device)</td>
</tr>
<tr>
<td>A430</td>
<td>Tape-switch expected</td>
<td>Contact service and/or replace tape switch</td>
</tr>
<tr>
<td>A431</td>
<td>Limit-switch expected</td>
<td>Contact service</td>
</tr>
<tr>
<td>A440</td>
<td>Minimum move distance not reached</td>
<td>- Check mounting situation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Remove the transport fixture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Observe minimum sensing weight move distance of 20 cm</td>
</tr>
<tr>
<td>A450</td>
<td>Time for counting wheel pulses exceeded</td>
<td>- Check the counting wheel</td>
</tr>
<tr>
<td>A460</td>
<td>Counting wheel is slipping</td>
<td>- Reset</td>
</tr>
<tr>
<td>A470</td>
<td>Measurement could not be started</td>
<td>- Check the device for damage or blocking parts</td>
</tr>
<tr>
<td>W621</td>
<td>Simulation activated</td>
<td>Deactivate simulation in function 026</td>
</tr>
<tr>
<td>A630</td>
<td>Maximum move distance exceeded</td>
<td>- Check the tape switch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Check the installation situation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Use device with larger measurement range</td>
</tr>
<tr>
<td>A650</td>
<td>Below minimum security distance</td>
<td>- Check the installation situation</td>
</tr>
<tr>
<td>W651</td>
<td></td>
<td>- Check the programming</td>
</tr>
<tr>
<td>A660</td>
<td>Safety distance underrun</td>
<td>- Check maintenance interval counter</td>
</tr>
<tr>
<td>W661</td>
<td></td>
<td>- Check measuring tape/ measuring rope, replace if necessary</td>
</tr>
<tr>
<td>W681</td>
<td>Measurement range exceeded</td>
<td>- Reset maintenance interval counter</td>
</tr>
<tr>
<td>W700</td>
<td>Tape/rope change required</td>
<td>- Check measuring tape/ measuring rope, replace if necessary</td>
</tr>
</tbody>
</table>
11 Maintenance

11.1 External cleaning
When externally cleaning the Silopilot, ensure that the cleaning agent used does not attack the housing surface and seals.

11.2 Cleaning dirty compartment
The cleaning periods depend on the properties of the bulk solid. If a lot of dust has accumulated, we would recommend blowing in small amounts of clean compressed air via the rinsing air connection (see chapter 4 "Installation").

11.3 Wiper check
The two wiper pieces in the wiper are worn to a greater or lesser extent depending on the abrasive nature of the product and then no longer sufficiently clean the measuring tape.

To check the wiper, you have to remove the Silopilot. To do so, please note chapter 4 "Installation". The following points should be checked:
- Check whether the taper and guide of the start piece are being dissected by the measuring tape. If there are deep gashes, there is a risk of the measuring tape jamming. Replace the end guide if necessary.
- Check whether both wiper plates are securely in contact with the measuring tape. Also replace the wiper plates if worn.
- Check whether the bellows are still in perfect condition. Replace if damaged.

Note!
Please refer to chapter 12 "Repair" for details of how to dismantle the Silopilot.
11.4 Inspection of measuring tape

On the Silopilot, it is the measuring tape which is subject to the greatest mechanical load. It should therefore be checked as follows at regular intervals:

- If the visible part (Silopilot limit position) of the measuring tape is damaged, uncoil a section (measuring type "manual" (020)) until it looks perfect. Cut off the damaged part and re-mount the sensing weight.

\[\text{Attention!}\]
Do not cut off too much. Note the original length and the measurement range required (e.g. silo height).

- If the measuring tape is damaged on a longer part, replace the entire measuring tape. Tape spools of standard lengths can be supplied for this purpose.

\[\text{Note!}\]
Please refer to chapter 12 "Repair" for details of how to dismantle the Silopilot.

11.5 Dirty compartment check

Check the dirty compartment at regular intervals as follows:

- If the tape spool is severely corroded or damaged, replace it. Tape spools with standard lengths of measuring tape wound on can be supplied for this purpose.
- If the counting wheel is very sluggish to turn when the measuring tape is unwound or it is damaged, replace it.
- If the cover seals have deteriorated or are damaged, replace them.

\[\text{Note!}\]
Please refer to chapter 12 "Repair" for details of how to dismantle the Silopilot.
12 Repair

The Endress+Hauser repair concept ensures that the measuring devices have a modular structure and that repairs can be undertaken by the customer. Spare parts are each combined in useful kits. All the spare part kits and their order numbers are listed in the spare parts section. These can be ordered from Endress+Hauser for repairs to the Silopilot. For more information on service and spare parts, please contact the Endress+Hauser service department.

12.1 Repairing Ex-certified devices

When repairing Ex-certified devices, the following must also be noted:

- Repairs to Ex-certified devices may only be undertaken by the Endress+Hauser service team.
- When replacing spare parts, only genuine parts from Endress+Hauser may be used.
- When ordering spare parts, please note the device designation on the nameplate. Parts may only be replaced with the same parts.
- Conversion of a certified device in a variant with different certification may only be undertaken by the Endress+Hauser service team.

12.2 Replacing components

Once a complete electronic or one PCB has been replaced, basic setup must be undertaken again. All parameters also have to be re-entered. We would therefore recommend the following procedure:

- Note down all settings. Tables appropriate for this purpose can be found in the appendix.
- After replacement, transfer all the settings noted.

12.2.1 Tape change

When changing the tape, proceed as follows:

1. Move the sensing weight down a little (at least 5 cm) in the "manual (020)" mode so that the measuring tape is relieved.

Note!

When using larger special sensing weights, the weight must be lowered to an appropriate hatch (see chapter 4 "Installation").

2. Render the device voltage-free.
3. Remove and/or expose the Silopilot until the wiper and sensing weight are accessible.
4. Remove the sensing weight including the tape border.
5. Remove the tape guide.
6. Unscrew the four screws on the tape spool.
7. Carefully remove the tape spool and the unwound part from the device.
8. A new tape spool is then installed in reverse order.

Details of this can also be found in the exploded drawing on the next page.
12.2.2 Replacing the wiper

You can also replace the wiper as soon as you have prepared the device as described under 12.2.1 “Tape change”.

Unfasten the three M5 wiper screws. You can now take out the wiper.

Note!
When dismantling and/or installing, ensure that the measuring tape is positioned correctly in the wiper. The tape must not be turned in the dirty compartment. The dirty compartment cover should be opened during installation for this purpose.
12.2.3 Replacing the drive unit

To replace the drive unit, proceed as follows:
1. Move the sensing weight down a little in the "manual (020)" mode so that the measuring tape and therefore the drive shaft are relieved. Then fix the sensing weight or measuring tape in place.
2. Render the device voltage-free.
3. Unscrew the mounting screws on the cover plates and remove the plates.
4. The plug for the motor connector cable can be seen at the top right of the motor-gearbox combination, disconnect the plug.
5. Unscrew the mounting screw of the gearbox (see figure in chapter 12.2.1) on the dirty compartment side.
6. Carefully remove the top PCB (FMM20_C), you can pull out the PCB for 3-4 cm. Put the PCB on the top of the Silopilot housing.
7. Carefully hang out the return spring (see the following figure).
8. The motor-gearbox combination can now be removed carefully.
Attention!
You need to install the mounting screw of the gearbox again with a copper washer (ATEX).

12.2.4 Replacing the electronic

The single PCBs of the electronic should only be replaced by a specialist. A precise description of replacement process is enclosed with every new piece of PCB. A precise description of the process is not therefore given at this point.

Observe the following points when carrying out a replacement:
- When working with electronic components, ensure that you have sufficient ESD protection (protection against electrostatic discharge).
- Only use the PCBs permitted for the device type when replacing parts.
 Using incorrect electronic parts may result in the device being destroyed or its Ex-certification being lost.

After you replaced the PCB "FMM20_C", basic setup must be undertaken again. All parameters also have to be re-entered. We would therefore recommend the following procedure:
- Note down all settings. Tables appropriate for this purpose can be found in the appendix.
- After replacement, transfer all the settings noted.

12.3 Returns

The following measures must be taken before returning a measuring device to Endress+Hauser, e.g. for repair:
- Remove all residue from measuring materials which may be stuck onto the device. Pay particular attention to seal grooves and scoring in which residue from measuring materials may stick. This is of particular importance if the measuring material poses a risk to health, e.g. is flammable, poisonous, corrosive, carcinogenic, etc.
- Always enclose a fully completed "Declaration of Contamination" with the device (a template of this declaration can be found in the appendix). Endress+Hauser can only check or repair any devices returned if this is done.

Also specify:
- The chemical and physical characteristics of the measuring material
- A description of the application
- A description of the error which has occurred (if necessary, specify the error code)
- Operating period of the device
12.4 Spare parts

Note!
Please refer to the instruction leaflet supplied or these Operating Instructions for installation instructions.

12.4.1 Electronics

1 Cover seal for electronics compartment
 71031652 Seal, non-Ex version (including cover seal for dirty compartment)
 71031653 Seal, Ex version (including cover seal for dirty compartment)

2 Housing cover (including cover seal)
 71031695 Housing cover, not coated, no sight glass
 71031696 Housing cover, coated, no sight glass, extended resistance to climatic changes
 71031697 Housing cover, not coated, with sight glass
 71031698 Housing cover, coated, with sight glass, extended resistance to climatic changes

3 Electronic cover
 71031706 Cover (2-part), steel plate with inscription
 71031707 Cover (2-part), steel plate with inscription, extended resistance to climatic changes

4 Motor-gearbox combination
 71031654 24 VDC, 150 N
 71031655 24 VDC, 150 N, extended resistance to climatic changes
| 5 Device heating | 71031795 Device heating, 115/230 VAC
| 71031709 Device heating, 24 VDC |
| 6 PCB FMM20_M | 71031711 90-253 VAC, 2 relays, not an Ex version, without heating connection
| 71031751 same as 71031711 + extended resistance to climatic changes
| 71031747 90-253 VAC, 2 relays, not an Ex version, with heating connection
| 71031713 90-253 VAC, 4 relays, not an Ex version, without heating connection
| 71031752 same as 71031713 + extended resistance to climatic changes
| 71031748 90-253 VAC, 4 relays, not an Ex version, with heating connection
| 71031745 90-253 VAC, 2 relays, Ex version, without heating connection
| 71031753 same as 71031745 + extended resistance to climatic changes
| 71031749 90-253 VAC, 2 relays, Ex version, with heating connection
| 71031746 90-253 VAC, 4 relays, Ex version, without heating connection
| 71001754 same as 71031746 + extended resistance to climatic changes
| 71001750 90-253 VAC, 4 relays, Ex version, with heating connection
| 71031767 20-28 VDC, 2 relays, not an Ex version, without heating connection
| 71031775 same as 71031767 + extended resistance to climatic changes
| 71031771 20-28 VDC, 2 relays, not an Ex version, with heating connection
| 71031768 20-28 VDC, 4 relays, not an Ex version, without heating connection
| 71031776 same as 71031768 + extended resistance to climatic changes
| 71031772 20-28 VDC, 4 relays, not an Ex version, with heating connection
| 71031769 20-28 VDC, 2 relays, Ex version, without heating connection
| 71031777 same as 71031769 + extended resistance to climatic changes
| 71031773 20-28 VDC, 2 relays, Ex version, with heating connection
| 71031770 20-28 VDC, 4 relays, Ex version, without heating connection
| 71001778 same as 71031770 + extended resistance to climatic changes
| 71001774 20-28 VDC, 4 relays, Ex version, with heating connection |
| 7 PCB FMM20_N | 71031779 PCB power supply 90-253 VAC
| 71031780 PCB power supply 90-253 VAC + extended resistance to climatic changes
| 71031781 PCB power supply 20-28 VDC
| 71031782 PCB power supply 20-28 VAC + extended resistance to climatic changes |
| 8 PCB FMM20_C | 71031783 PCB processor
| 71031784 PCB processor + extended resistance to climatic changes |
| 9 External start button | 71031710 Start button, external, stainless steel version |
| 10 Cable glands | 71031689 Cable gland, 3 pieces, without Ex certification
| 71031694 Cable gland, 3 pieces, with Ex certification |
| 11 Pressure compensation element | 71031705 Pressure compensation element, plastic, not an Ex version
| 71032447 Pressure compensation element, stainless steel, Ex version |
12.3.2 Mechanics

1 Cover seal for dirty compartment
 71031652 Seal, non-Ex version (including cover seal for electronics compartment)
 71031653 Seal, Ex version (including cover seal for electronics compartment)

2 Housing cover (including cover seal item 1)
 71031699 Housing cover, not coated
 71031700 Housing cover, coated

3 Tape spool
 71031658 Spool with measuring tape, 15 m
 71031659 Spool with measuring tape, 15 m + extended resistance to climatic changes
 71031671 Spool with measuring tape, 32 m
 71031672 Spool with measuring tape, 32 m + extended resistance to climatic changes

4 Spare parts kit for drive shaft
 71031649 Drive shaft including ball bearing, shaft seal and mounting material
5 Counting wheel, complete
 71031650 Counting wheel for tape version, fully mounted
 71031651 Counting wheel for rope version, fully mounted

6 Wiper, complete
 71031621 Wiper 230 mm, aluminum/steel, process temp. of up to +70°C
 71031622 Wiper 230 mm, stainless steel, process temp. of up to +70°C
 71031623 Wiper 230 mm, aluminum/steel, process temp. of up to +150°C
 71031624 Wiper 230 mm, stainless steel, process temp. of up to +150°C
 71031625 Wiper 500 mm, aluminum/steel, process temp. of up to +70°C
 71031626 Wiper 500 mm, stainless steel, process temp. of up to +70°C
 71031627 Wiper 500 mm, aluminum/steel, process temp. of up to +150°C
 71031628 Wiper 500 mm, stainless steel, process temp. of up to +150°C
 71031629 Wiper 1000 mm, aluminum/steel, process temp. of up to +70°C
 71031630 Wiper 1000 mm, stainless steel, process temp. of up to +70°C
 71031631 Wiper 1000 mm, aluminum/steel, process temp. of up to +150°C
 71031632 Wiper 1000 mm, stainless steel, process temp. of up to +150°C

7 Spare parts kit for wiper
 52028080 Spare parts kit for wiper, process temperature of up to +70°C
 52028081 Spare parts kit for wiper, process temperature of up to +150°C
12.3.3 Sensing weights

For a description of the sensing weights and their possible applications, please refer to chapter 3 "Sensing weights".

1 Sensing weight mounting, complete
 52028088 Tape border, rotating bush, chain, mounting material, aluminum/steel
 52028089 Tape border, rotating bush, chain, mounting material, stainless steel

2 Rotating bush, complete
 52028100 Rotating bush, mounting material, steel
 52028101 Rotating bush, mounting material, stainless steel

3 Sensing weight, including rotating bush item 2
 71031620 Plastic
 71031615 Steel
 71031616 Stainless steel
 71031617 Steel + umbrella
 71031618 Stainless steel + umbrella
 71031619 Medium bag
13 Accessories

13.1 Protective hood

A protective hood is available for outdoor installation of the Silopilot FMM20.

Note!
You will need a free height of at least 240 mm above the Silopilot for installing and/or dismantling the protective hood.

13.1.1 Stainless steel protective hood

- Order no.: 71028956
- Material: stainless steel 304 (1.4301)
- Weight: 4.2 kg
- The delivery includes suitable mounting screws.

13.1.2 Aluminium protective hood

- Order no.: 71075962
- Material: aluminium
- Weight: 0.7 kg
- The delivery includes suitable mounting screws.
14 Technical data

14.1 Input values

Measurement parameter
The distance between Silopilot (device flange) and product surface is measured. The Silopilot can calculate the following values from this:
- Fill level in optional units or
- Volume in optional units

Measurement range
The maximum measurement range is calculated from the type code:
- Silopilot FMM20 - **1*/-**4*: 15 m
- Silopilot FMM20 - **2*/-**5*: 32 m

Blocking distance
The blocking distance is dependent on the wiper used and the sensing weight:

<table>
<thead>
<tr>
<th>Sensing weight</th>
<th>Wiper 230 mm</th>
<th>Wiper 500 mm</th>
<th>Wiper 1000 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>B, C, D, E</td>
<td>0.72 m</td>
<td>1.02 m</td>
<td>1.52 m</td>
</tr>
<tr>
<td>G</td>
<td>1.22 m</td>
<td>1.52 m</td>
<td>2.02 m</td>
</tr>
<tr>
<td>N</td>
<td>0.72 m</td>
<td>1.02 m</td>
<td>1.52 m</td>
</tr>
</tbody>
</table>

Input signal
- 2 signal inputs (start measurement, lock)
 - Active: 12 to 24 VDC
 - Passive: switching contact, max. 30 VDC / 0.3 W
 - galvanically isolated from the supply voltage and the signal outputs
 - Start pulse length: min. 200 ms

14.2 Output values

Output signal
- 0 - 20 mA / 4 - 20 mA current output
 - Active
 - Max. load: 600 Ω
- 2 relay outputs (max. 4 relays)
 - Contact load bearing capacity: 250 VAC, 6 A
 - Contact material: silver-cadmium-oxide, with gold flashings
- Optoelectronic coupler output (only for devices with 4 relays)
 - max. 30 VDC
 - max. 10 mA
- Output signals are galvanically isolated from each other, from the supply voltage and from the input signals.

Failure signal
- Error symbol, error code and description in plain text on the on-site display
- Current output, can be configured:
 - MIN (0/3.6 mA)
 - MAX (22 mA)
 - Last value is retained
 - Optional value (0 to 22 mA) is output
- Relay outputs (alarm function)
14.3 **Accuracy**

Measurement error
- ± 2.5 cm (independent of measurement range selected)

14.4 **Min. time for one measurement cycle**

![Graph showing time vs. measurement range (MR)]

We recommend not to go below a time of 5 minutes for one measuring cycle, even with measuring ranges below 8 m.

14.5 **Run-off speed**

Run-off speed
- 0.21 m/s (average speed)

14.6 **Power supply**

Supply voltage
- Silopilot FMM20 - ****1*: 90 - 253 VAC, 50/60 Hz
- Silopilot FMM20 - ****3*: 20 - 28 VDC

Power consumption
- AC version:
 - approx. 150 VA (device without heater)
 - approx. 170 VA (device with optional heater)
- DC version:
 - approx. 150 VA (device without heater)
 - approx. 170 VA (device with optional heater)

Note!
The maximum switch-on current of the DC version with optional heater will be 10 A (≤ 2 s).

Cable entry
- M20 x 1.5
- Cable gland (3 pieces):
 - Material: Plastic
 - Color: gray (or black for Ex version)
14.7 Environmental conditions

Ambient temperature

- Silopilot FMM20 - ******D*/ -******F*: -20 °C...+60 °C
- Silopilot FMM20 - ******E*: -40 °C...+60 °C

When operating outdoors with high levels of direct sunlight, the protective hood (available as an accessory) should be used.

Storage temperature

-40 °C...+60 °C

Type of protection

- With closed housing: IP 67
- With closed housing and when using the external start button: IP 65
- With open housing: IP 20

Electromagnetic compatibility (EMC)

- Interference emission in accordance with EN 61326, class B operating equipment
- Interference immunity in accordance with EN 61326, Appendix A (industrial sector)
- Normal installation cable is sufficient for the wiring.

14.8 Process conditions

Process temperature

- Silopilot FMM20 - *******1*: -20 °C...+70 °C
- Silopilot FMM20 - *******2*: -20 °C...+150 °C

Process pressure

- 0.8...1.1 bar absolute
15 Appendix

15.1 Basic settings

<table>
<thead>
<tr>
<th>Empty calibration (001)</th>
<th>Blocking distance (002)</th>
<th>Full calibration (003)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default value:</td>
<td>Default value:</td>
<td>Default:</td>
</tr>
<tr>
<td>length of measuring</td>
<td>0.72 m</td>
<td>Empty calibration</td>
</tr>
<tr>
<td>tape</td>
<td></td>
<td>- 0.72 m</td>
</tr>
</tbody>
</table>

15.2 Measurement parameter settings

<table>
<thead>
<tr>
<th>Measurement type (020)</th>
<th>Time interval (021)</th>
<th>Time unit (022)</th>
<th>Normal or short (023)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default:</td>
<td>Default:</td>
<td>Default:</td>
<td>Default:</td>
</tr>
<tr>
<td>Single cycle</td>
<td>1 h</td>
<td>h</td>
<td>Normal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service interval (024)</th>
<th>Simulation (026)</th>
<th>Run up length (028)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45000</td>
<td>Default value:</td>
<td>Default value:</td>
</tr>
<tr>
<td>Sim. off</td>
<td>1 m</td>
<td>1 m</td>
</tr>
</tbody>
</table>

15.3 Output settings

<table>
<thead>
<tr>
<th>Relay output 1 (014)</th>
<th>Relay output 2 (01A)</th>
<th>Relay output 3 (01B)</th>
<th>Relay output 4 (01C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default:</td>
<td>Default:</td>
<td>Default:</td>
<td>Default:</td>
</tr>
<tr>
<td>Alarm</td>
<td>Service interval</td>
<td>Measuring</td>
<td>Top position</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pulse value (015)</th>
<th>Counting pulse (016)</th>
<th>Reset pulse (019)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50 ms</td>
<td>300 ms</td>
</tr>
</tbody>
</table>
15.4 Input settings

<table>
<thead>
<tr>
<th>Input 1 (010)</th>
<th>Input 2 (012)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Default:</td>
<td>Default:</td>
</tr>
<tr>
<td>Not used</td>
<td>Not used</td>
</tr>
</tbody>
</table>

15.5 Safety settings

<table>
<thead>
<tr>
<th>Output on alarm (040)</th>
<th>Output on alarm (041)</th>
<th>Safety distance (042)</th>
<th>Security distance (043)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default: MIN (0/3.6 mA)</td>
<td>Default: 3.6 mA</td>
<td>Default value: 0.00 m</td>
<td>Default value: 0.00 m</td>
</tr>
<tr>
<td>in security dist. (044)</td>
<td>in safety dist. (045)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default value: Warning</td>
<td>Default value: Alarm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15.6 Display settings

<table>
<thead>
<tr>
<th>Language (060)</th>
<th>Back to home (061)</th>
<th>No. of decimal (062)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default: English</td>
<td>Default: 100 s</td>
<td>Default: x.xx</td>
</tr>
</tbody>
</table>

15.7 Other settings

<table>
<thead>
<tr>
<th>Current range (033)</th>
<th>Tag number (080)</th>
<th>Distance unit (083)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default: 4-20 mA</td>
<td>Default: ---------</td>
<td>Default: m</td>
</tr>
</tbody>
</table>
15.8 Operating menu

- **basic setup 00**
 - empty calibr. 001: Distance between device flange and min. fill level
 - block distance 002: Distance between device flange and bottom edge of sensing weight
 - full calibration 003: Measurement range
 - measurement type 020: Single cycle, periodical, manual
 - dist. meas. value 004: Display of distance between device flange and product surface and measured value (000)

- **inputs and outputs 01**
 - input 1 010: Not used, bolting, start measurement
 - input 2 012: Not used, bolting, start measurement
 - relay output 1 014: Running up, top position, measuring, service interval, counter pulses, alarm, reset pulse
 - pulse weight 015: Move distance per pulse for the counting output 2.5 cm/pulse
 - pulse length 016: Length of counting pulse 50 ms
 - reset pulse 019: Length of reset pulse 300 ms

- **measurement param. 02**
 - measurement type 020: Single cycle, manual, periodical
 - time interval 021: 1 h
 - time unit 022: h, min.
 - normal or short 023: Normal, Short

- **current output 03**
 - current range 033: 4-20mA, 0-20mA

- **safety setting 04**
 - output on alarm 040: MIN (0/3.6mA), MAX (22mA), hold, user specific
 - safety distance 042: Minimum distance to empty calibration 0.00 m, in safety dist. 045: Alarm, Warning

- **linearization 05**
 - level/volume 050: Level DU, Ullage DU, Level CU, Ullage CU
 - max. scale 057: With reference to customer unit 100.00 %

- **display 06**
 - language 060: English, Deutsch
 - back to home 061: Time until autom. return 100 s
 - no. of decimals 062: X, X.X, X.XX, X.XXX
 - format display 063: Off, On

- **diagnostics 07**
 - present error 070: Display of present error
 - previous error 071: Display of previous error
 - clear errors 072: Keep erase previous, erase present, erase all
 - reset 073: For code input, see Operating Instructions

- **system parameters 08**
 - tag no. 080: Display of current version
 - protocol sw-no. 081: Display of current version
 - serial no. 082: Serial no. of device
 - distance unit 083: M, ft, in
15.9 Declaration of contamination

Declaration of Hazardous Material and De-Contamination

Erklärung zur Kontamination und Reinigung

RA No. [Blank Line]

Because of legal regulations and for the safety of our employees and operating equipment, we need the "Declaration of Hazardous Material and De-Contamination", with your signature, before your order can be handled. Please make absolutely sure to attach it to the outside of the packaging.

Aufgrund der gesetzlichen Vorschriften und zum Schutz unserer Mitarbeiter und Betriebseinrichtungen, benötigen wir die unterschriebene "Erklärung zur Kontamination und Reinigung", bevor Ihr Auftrag bearbeitet werden kann. Bringen Sie diese unbedingt außen an der Verpackung an.

<table>
<thead>
<tr>
<th>Type of instrument / sensor</th>
<th>Serial number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☐ **Used as SIL device in a Safety Instrumented System** / *Einsatz als SIL Gerät in Schutzeinrichtungen*

Process data / **Prozessdaten**

- Temperature / Temperatur [°F] [°C]
- Pressure / Druck [psi] [Pa]
- Conductivity / Leitfähigkeit [µS/cm]
- Viscosity / Viskosität [cp] [mm²/s]

Medium and warnings

* Warnhinweise zum Medium *

<table>
<thead>
<tr>
<th>Medium / concentration</th>
<th>Identification</th>
<th>flammable</th>
<th>toxic</th>
<th>corrosive</th>
<th>harmful/irritant</th>
<th>other *</th>
<th>harmless</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium / Konzentration</td>
<td>CAS No.</td>
<td>entzündlich</td>
<td>giftig</td>
<td>ätzend</td>
<td>gesundheitsschädlich/ reizend</td>
<td>sonstiges *</td>
<td>unbedenklich</td>
</tr>
</tbody>
</table>

- Process medium
- Medium im Process
- Medium for process cleaning
- Medium zur Prozessreinigung
- Returned part cleaned with
- Medium zur Endreinigung

* explosive; oxidising; dangerous for the environment; biological risk; radioactive
* explosiv; brandfördernd; umweltgefährlich; biogefährlich; radioaktiv

Please tick should one of the above be applicable, include safety data sheet and, if necessary, special handling instructions.

Zutreffendes ankreuzen; tritt einer der Warnhinweise zu, Sicherheitsdatenblatt und ggf. spezielle Handhabungsvorschriften beiliegen.

Description of failure / **Fehlerbeschreibung**

__

__

__

Company data / **Angaben zum Absender**

<table>
<thead>
<tr>
<th>Company / Firma</th>
<th>Phone number of contact person / Telefon-Nr. Ansprechpartner:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address / Adresse</th>
<th>Fax / E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Your order No. / Ihre Auftragsnr.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We hereby certify that this declaration is filled out truthfully and completely to the best of our knowledge. We further certify that the returned parts have been carefully cleaned. To the best of our knowledge they are free of any residues in dangerous quantities.

Wir bestätigen, die vorliegende Erklärung nach unserem besten Wissen wahrheitsgetreu und vollständig ausgefüllt zu haben. Wir bestätigen weiter, dass die zurückgesandten Teile sorgfältig gereinigt wurden und nach unserem besten Wissen frei von Rückständen in gefahrbringenden Menge sind.

(place, date / Ort, Datum) Name, dept./Abt. (please print / bitte Druckschrift) Signature / Unterschrift
Index

A
ATEX..4, 49

B
Basic setup..25, 27
Blocking distance ..25, 27
Buttons...21

C
Certificates and approvals..7
Commissioning..24
Current output..18, 35
Current range ...35
Customer unit...38

D
Description of device functions.................................27
Diagnostics..40
Dimensions...11
Display...39, 43
Display symbols ...21
Distance unit ..41

E
Electrical connection...16
Empty calibration ..25, 27
Environmental conditions...61
Error...40, 44
Error messages ...45
Explanation on contamination....................................66

F
Full calibration..26, 27

H
Hardware locking..23
Hochlauflänge ..34

I
Identification..6
Inputs and outputs..29
Installation...4, 10, 13

L
Language...39
Linearization..38

M
Maintenance..47
Manual mode..42
Max. scale ..38
Measurement cycle..60
Measurement parameters ..31
Measurement type ...26, 31

N
Nameplate ..7
Number of decimals ..39

O
Operating menu ...64
Operation ...20

P
Optocoupler output..19, 59
Output on alarm ...36

R
Process conditions...61
Process temperature ...4
Protective hood ...58
Pulse length ...30
Pulse value...30

S
Relay outputs...18, 29, 59
Repair ...49
Reset ...40
Reset pulse ..30
Run up length ..34

T
Safety distance ...27, 36
Safety instructions...4
Safety settings ...36
Security distance ...27, 36
Sensing weights ...8
Service interval ...32
Signal inputs ...19, 29, 59
Simulation ...33
Software locking ...23
Spare parts ..53
Supply voltage ...18, 60
System parameters ..41

U
Unlock parameter ...40

W
Wartungsintervall ...34
Wiring...16