Safety Instructions
 Proline Promass 200

Class I, Division1; Zone 0 for IS
(Ex i Intrinsically safe version)

Document: XA00152D
Safety instructions for electrical apparatus for explosionhazardous areas \rightarrow 圈 3

Proline Promass 200

Table of contents

Associated documentation 4
Manufacturer's certificates 4
Manufacturer address 5
Extended order code 6
Safety instructions: General 8
Safety instructions: Installation 9
Safety instructions: Class II,Class III 10
Temperature tables 10
Connection values: Signal circuits 20

Associated documentation

All documentation is available:

- On the CD-ROM supplied (not included in the delivery for all device versions).
- Available for all device versions via:
- Internet: www.endress.com/deviceviewer
- Smart phone/tablet: Endress+Hauser Operations App
- In the Download Area of the Endress+Hauser web site: www.endress.com \rightarrow Download

This document is an integral part of the following Operating Instructions:

	Documentation code		
Measuring device	HART	FOUNDATION Fieldbus	PROFIBUS PA
8A2B**-..	BA01821D	BA01827D	BA01828D
$8 E 2 B^{* *} \ldots$	BA01027D	BA01314D	BA01133D
$8 E 2 C^{* *} \ldots$	BA01638D	BA01637D	BA01639D
$8 \mathrm{~F} 2 \mathrm{~B}^{* *} \ldots$	BA01112D	BA01315D	BA01113D

Additional documentation

Contents	Document type	Documentation code
Remote display FHX50	Special documentation	SD01007F
	Safety Instructions Division 1	XA01095F
Overvoltage Protection (OVP)	Special documentation	SD01090F
Control drawing	As wanted on the nameplate.	

Please note the documentation associated with the device.

Manufacturer's certificates

Certificate number
160686-2317872

Notified body

CSA: Canadian Standards Association

Manufacturer	Endress+Hauser Flowtec AG
address	Kägenstrasse 7
	4153 Reinach BL
	Switzerland

Extended order code

The extended order code is indicated on the nameplate, which is affixed to the device in such a way that it is clearly visible. Additional information about the nameplate is provided in the associated Operating Instructions.

Structure of the extended order code

$\frac{* * * * * *}{\text { (Device type) }}-\frac{* * * * * \ldots * * * * *}{\text { (Basic specifications) }}+\frac{\mathrm{A}^{*} \mathrm{~B}^{*} \mathrm{C}^{*} \mathrm{D}^{*} \mathrm{E}^{*} \mathrm{~F}^{*} \mathrm{G}^{*} \ldots}{\text { (Optional specifications) }}$	
$*=\quad$	Placeholder At this position, an option (number or letter) selected from the specification is displayed instead of the placeholders.

Device type

The device and the device design is defined in the "Device type" section (Product root).

Basic specifications

The features that are absolutely essential for the device (mandatory features) are specified in the basic specifications. The number of positions depends on the number of features available. The selected option of a feature can consist of several positions.

Optional specifications

The optional specifications describe additional features for the device (optional features). The number of positions depends on the number of features available. The features have a 2-digit structure to aid identification (e.g. JA). The first digit (ID) stands for the feature group and consists of a number or a letter (e.g. J = Test, Certificate). The second digit constitutes the value that stands for the feature within the group (e.g. A = 3.1 material (wetted parts), inspection certificate).

More detailed information about the device is provided in the following tables. These tables describe the individual positions and IDs in the extended order code which are relevant to hazardous locations.

Device type

Position	Order code for	Option selected	Description
1	Instrument family	8	Coriolis flowmeter
2	Sensor	A, E, F	Sensor type
3	Transmitter	2	Transmitter type: 2-wire, compact version

Position	Order code for	Option selected	Description
4	Generation index	B, C	Platform generation
5,6	Nominal diameter	$01,02,04,08,15,25,40$, 50,80	Nominal diameter of sensor

Basic specifications

Position	Order code for	Option selected	Device type		Description
			Position 2 Sensor	Position 5, 6 Nominal diameter	
1, 2	Approval	C2	A, E, F	$\begin{aligned} & 01,02,04,08, \\ & 15,25,40,50 \end{aligned}$	Class I, Division 1 for Group A, B, C, D
			F	80	Class I, Division 1 for Group C, D
			A, E, F	$\begin{aligned} & 01,02,04,08, \\ & 15,25,40,50, \\ & 80 \end{aligned}$	Class II, Division 1 for Group E, F, G Class III
			A, E, F	$\begin{aligned} & 01,02,04,08, \\ & 15,25,40,50 \end{aligned}$	Ex ia IIC and AEx ia IIC
			F	80	Ex ia IIB and AEx ia IIB
			A, E, F	$\begin{aligned} & 01,02,04,08, \\ & 15,25,40,50, \\ & 80 \end{aligned}$	Class I Zone 0

Position	Order code for	Option selected	Description
3	Output; Input	A	4-20mA HART
		B	4-20mA HART, Pulse/frequency/switch output
		C	4-20mA HART + 4-20mA analog
		E	FOUNDATION Fieldbus, Pulse/frequency/ switch output
		G	PROFIBUS PA, Pulse/frequency/switch output
4	Display; Operation	A	W/o; via communication
		C	SD02 4-line; push buttons + data backup function
		E	SD03 4-line, illum.; touch control + data backup function
		L	Prepared for display FHX50 + M12 connection ${ }^{1)}$

Position	Order code for	Option selected	Description
		M	Prepared for display FHX50 + M12 custom connection
$17,18^{2)}$	Device Model	A1	1

1) FHX50 is approved separately.
2) Order code for "Device model" only for measuring devices with product code 8A2B, 8E2C**,

Optional specifications

ID	Order code for	Option selected	Description
NX_{X}	Accessory mounted	NA	Overvoltage Protection (OVP)

Safety instructions: General

- Staff must meet the following conditions for mounting, electrical installation, commissioning and maintenance of the device:
- Be suitably qualified for their role and the tasks they perform
- Be trained in explosion protection
- Be familiar with national regulations (e.g. CEC or NEC)
- Install the device according to the manufacturer's instructions and national regulations.
- Do not operate the device outside the specified electrical, thermal and mechanical parameters.
- Only use the device in media to which the wetted materials have sufficient durability.
- Refer to the temperature tables for the relationship between the permitted ambient temperature for the sensor and/or transmitter, depending on the range of application, and the temperature classes.
- Modifications to the device can affect the explosion protection and must be carried out by staff authorized to perform such work by Endress+Hauser.
- When using in hybrid mixtures (gas and dust occurring simultaneously), observe additional measures for explosion protection.
- Observe all the technical data of the device (see nameplate).
- Class II Group G: The surface temperature of the apparatus cannot exceed $+165^{\circ} \mathrm{C}$.
- Classification of Zones: When installed in Zone 1 the interior of the measuring tube is permissible for use in Zone 0.
In Zone 0/1 not permitted: Promass A DN1 (order code "Nominal Diameter", Option 01)

WARNING

Substitution of components is not permitted.

- Substitution of components may impair intrinsic safety.

Safety instructions: Installation

- Continuous service temperature of the connecting cable:
-40 to $+80^{\circ} \mathrm{C}$; in accordance with the range of service temperature taking into account additional influences of the process conditions $\left(\mathrm{T}_{\mathrm{a}, \min }\right.$ and $\mathrm{T}_{\mathrm{a}, \max }+20 \mathrm{~K}$).
- Only use certified cable entries suitable for the application. Observe selection criteria as per CEC or NEC.
- When the measuring device is connected, attention must be paid to explosion protection at the transmitter.
- Control room equipment shall not use or generate more than 250 $\mathrm{V}_{\text {rms }}$.
- Install the transmitter circuit wiring according to Canadian Electrical Code (CEC) respective National Electrical Code (NEC) using threaded conduit or other wiring methods in accordance with articles 500 to 510.
- Install all Intrinsically Safe Circuits:
- Per Canadian Electrical Code (CEC) Part I Section 18 and Appendix F
- Per National Electrical Code (NEC) ANSI/NFPA 70 and ISA RP 12.6
- The sensors Promass E and Promass F is rated as Dual Seal Device in accordance with ANSI/ISA-12.27.01-2003. The sensor Promass E is only rated as Dual Seal Device, if the optional rupture disk is present.

Intrinsic safety

- The intrinsically safe input power circuit of the device is isolated from ground. If the device is only equipped with one input, the dielectric strength of the input is at least $500 \mathrm{~V}_{\text {rms }}$. If the device is equipped with more than one input, the dielectric strength of each individual input to ground is at least $500 \mathrm{~V}_{\mathrm{rms}}$, and the dielectric strength of the inputs vis-à-vis one another is also at least $500 \mathrm{~V}_{\text {rms }}$.
- The device can be connected to the Endress+Hauser FXA291 service tool: refer to the Operating Instructions.
- The device can be connected to the remote display FHX50 with IS explosion protection; refer to the Special Documentation and Ex documentation.

Potential equalization

- Integrate the device into the local potential equalization .
- If the ground connection has been established via the pipe as specified, it is also possible to integrate the sensor into the potential equalization system via the pipe.

Overvoltage protection

Optional specification, ID Nx (Accessory Mounted) = NA

- Minimum ambient temperature when using Overvoltage Protection (OVP): $-40^{\circ} \mathrm{C}$
- When using the internal overvoltage protection: Reduce the admissible ambient temperature at the housing by 2 K .
- For installations which require overvoltage protection to comply with national regulations or standards.
Install the device using overvoltage protection (e.g. HAW56x from Endress+Hauser).
- Observe the safety instructions of the overvoltage protection.
- If an overvoltage protection against atmospheric over voltages is required: no other circuits may leave the housing during normal operation without additional measures.
- The intrinsically safe input power circuit of the device is isolated from ground. If the device is only equipped with one input, the dielectric strength of the input is at least $290 \mathrm{~V}_{\text {rms }}$. If the device is equipped with more than one input, the dielectric strength of each individual input to ground is at least $290 \mathrm{~V}_{\text {rms }}$, and the dielectric strength of the inputs vis-à-vis one another is also at least $290 \mathrm{~V}_{\text {rms }}$.

Safety instructions:
Class II,Class III

- To ensure dust-tightness, securely seal the transmitter housing, cable entries and sealing plugs.
- Only open the transmitter housing briefly, ensuring that no dust or moisture enters the housing.
- Seal unused entry glands with approved sealing plugs that correspond to the type of protection. The plastic transport sealing plug does not meet this requirement and must therefore be replaced during installation.
- Only use certified cable entries and sealing plugs. The metal cable entries, extensions and sealing plugs supplied meet this requirement.
- The remote display FHX50 is not suitable for installation in Class II, Class III.

Temperature Ambient temperature tables
 Minimum ambient temperature

Basic specification, position 3 (Output; input) = A, B, C, E, G:
$\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$
Maximum ambient temperature:
$\mathrm{T}_{\mathrm{a}}=+60^{\circ} \mathrm{C}$ depending on the medium temperature and temperature class

Medium temperature

Minimum medium temperature

- Promass 8F2B**-... , Promass 8A2B**-... $\mathrm{T}_{\mathrm{m}}=-50^{\circ} \mathrm{C}$
- Promass 8E2B**-..., Promass 8E2C**-...: $\mathrm{T}_{\mathrm{m}}=-40^{\circ} \mathrm{C}$

Maximum medium temperature

T_{m} for T6...T1 depending on the maximum ambient temperature T_{a}

Compact version

Basic specification, position 3 (Output; Input) = A
Basic specification, position 1, 2 (Approval) = C2
Promass A

DN	$\mathrm{T}_{\mathrm{m}, \text { max }}$ [${ }^{\circ} \mathrm{C}$]	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 6 \\ {\left[85^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 5 \\ {\left[100^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 4 \\ {\left[135^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ {\left[200^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 2 \\ {\left[300^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 1 \\ {\left[450^{\circ} \mathrm{C}\right]} \end{gathered}$
1... 4	205	$40^{1)}$	50	95	130	170	205	205
		$60^{1)}$	-	95	130	170	205	205

1) For installation with overvoltage protection in connection with temperature class $\mathrm{T} 5, \mathrm{~T} 6: \mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$

Promass E (Promass 8E2B**-...)

DN	$\mathrm{T}_{\mathrm{m}, \max }$ $\left[{ }^{\circ} \mathrm{C}\right]$	T $\left[{ }^{\circ} \mathrm{C}\right]$	T 6 $\left[85{ }^{\circ} \mathrm{C}\right]$	T 5 $\left[100^{\circ} \mathrm{C}\right]$	T 4 $\left[135{ }^{\circ} \mathrm{C}\right]$	T 3 $\left[200{ }^{\circ} \mathrm{C}\right]$	T 2 $\left[300{ }^{\circ} \mathrm{C}\right]$	T 1 $\left[450{ }^{\circ} \mathrm{C}\right]$
$8 . .50$	140	$50^{1)}$	50	95	130	140	140	140
		$60^{1)}$	-	95	130	140	140	140

1) For installation with overvoltage protection in connection with temperature class T5, T6: $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$

Promass E (Promass 8E2C**-...)

DN	$\begin{gathered} \mathrm{T}_{\mathrm{m}, \max }{ }^{1)} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ {\left[{ }^{\mathrm{C}}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 6 \\ {\left[85^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 5 \\ {\left[100^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 4 \\ {\left[135^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ {\left[200^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 2 \\ {\left[300^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 1 \\ {\left[450^{\circ} \mathrm{C}\right]} \end{gathered}$
8... 50	150	$40^{2)}$	50	95	130	150	150	150
		$60^{2)}$	-	95	130	150	150	150
	205	$40^{2)}$	50	95	130	170	205	205
		$60^{2)}$	-	95	130	170	205	205

1) Maximum temperature range, see nameplate
2) For installation with overvoltage protection in connection with temperature class T5, T6: $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$

Promass F

DN	$\underset{\substack{\mathrm{T}_{\mathrm{m}, \max }{ }^{1)} \\\left[{ }^{\circ} \mathrm{C}\right]}}{ }$	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 6 \\ {\left[85^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 5 \\ {\left[100^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 4 \\ {\left[135^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ {\left[200^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 2 \\ {\left[300^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 1 \\ {\left[450^{\circ} \mathrm{C}\right]} \end{gathered}$
8... 50	150	$40^{2)}$	50	95	130	150	150	150
		$60^{2)}$	-	95	130	150	150	150
	205	$40^{2)}$	50	95	130	170	205	205
		$60^{2)}$	-	95	130	170	205	205
80	150	$40^{2)}$	50	85	110	150	150	150
		$60^{2)}$	-	85	110	150	150	150
	205	$40^{2)}$	50	85	110	170	205	205
		$60^{2)}$	-	85	110	170	205	205

1) Maximum temperature range, see nameplate
2) For installation with overvoltage protection in connection with temperature class T5, T6: $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$

Basic specification, position 3 (Output; Input) = B
Basic specification, position 1, 2 (Approval) = C2
Promass A

DN	$\mathrm{T}_{\mathrm{m}, \text { max }}$ [$\left.{ }^{\circ} \mathrm{C}\right]$	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 6 \\ {\left[85^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 5 \\ {\left[100^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 4 \\ {\left[135{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ {\left[200^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 2 \\ {\left[300^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 1 \\ {\left[450^{\circ} \mathrm{C}\right]} \end{gathered}$
1... 4	205	$35^{1) 2)}$	50	95	130	170	205	205
		$50^{1 / 3)}$	-	95	130	170	205	205
		55	-	-	130	170	205	205
		60	-	-	130	170	205	200

1) For installation with overvoltage protection in connection with temperature class $\mathrm{T} 5, \mathrm{~T} 6: \mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$
2) $\mathrm{T}_{\mathrm{a}}=40^{\circ} \mathrm{C}$ for Impulse/Frequency/Switch output input $\mathrm{P}_{\mathrm{i}} \leq 0,85 \mathrm{~W}$
3) $\mathrm{T}_{\mathrm{a}}=55^{\circ} \mathrm{C}$ for Impulse/Frequency/Switch output input $\mathrm{P}_{\mathrm{i}} \leq 0,85 \mathrm{~W}$

Promass E (Promass 8E2B**-...)

DN	$\mathrm{T}_{\mathrm{m}, \text { max }}$ $\left[{ }^{\circ} \mathrm{C}\right.$]	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 6 \\ {\left[85^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 5 \\ {\left[100^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 4 \\ {\left[135{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ {\left[200^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 2 \\ {\left[300^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 1 \\ {\left[450^{\circ} \mathrm{C}\right]} \end{gathered}$
8... 50	150	$35^{1 / 2)}$	50	95	130	140	140	140
		$50^{1 / 3)}$	-	95	130	140	140	140
		60	-	-	130	140	140	140

1) For installation with overvoltage protection in connection with temperature class $T 5, T 6: T_{a}=T_{a}-2 \mathrm{~K}$
2) $\mathrm{T}_{\mathrm{a}}=40^{\circ} \mathrm{C}$ for Impulse/Frequency/Switch output input $\mathrm{P}_{\mathrm{i}} \leq 0,85 \mathrm{~W}$
3) $\mathrm{T}_{\mathrm{a}}=55^{\circ} \mathrm{C}$ for Impulse/Frequency/Switch output input $\mathrm{P}_{\mathrm{i}} \leq 0,85 \mathrm{~W}$

Promass E (Promass 8E2C**-...)

DN	$\begin{gathered} \mathrm{T}_{\mathrm{m}, \max }{ }^{1)} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 6 \\ {\left[85^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 5 \\ {\left[100^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 4 \\ {\left[135^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ {\left[200^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 2 \\ {\left[300^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 1 \\ {\left[450^{\circ} \mathrm{C}\right]} \end{gathered}$
8... 50	150	$35^{2) 3)}$	50	95	130	150	150	150
		$50^{2)} 4$)	-	95	130	150	150	150
		55	-	-	130	150	150	150
		60	-	-	130	150	150	150
	205	35 ${ }^{\text {2) }}$)	50	95	130	170	205	205
		$50^{2 / 4)}$	-	95	130	170	205	205

DN	$\mathrm{T}_{\mathrm{m}, \max }{ }^{1)}$ $\left[{ }^{\circ} \mathrm{C}\right]$	T_{a} $\left[{ }^{\circ} \mathrm{C}\right]$	T 6 $\left[85{ }^{\circ} \mathrm{C}\right]$	T 5 $\left[100{ }^{\circ} \mathrm{C}\right]$	T 4 $\left[135{ }^{\circ} \mathrm{C}\right]$	T 3 $\left[200{ }^{\circ} \mathrm{C}\right]$	T 2 $\left[300{ }^{\circ} \mathrm{C}\right]$	T 1 $\left[450{ }^{\circ} \mathrm{C}\right]$
		55	-	-	130	170	205	205
		60	-	-	130	170	205	200

1) Maximum temperature range, see nameplate
2) For installation with overvoltage protection in connection with temperature class T5, T6: $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$
3) $\mathrm{T}_{\mathrm{a}}=40^{\circ} \mathrm{C}$ for Impulse/Frequency/Switch output input $\mathrm{P}_{\mathrm{i}} \leq 0,85 \mathrm{~W}$
4) $\mathrm{T}_{\mathrm{a}}=55^{\circ} \mathrm{C}$ for Impulse/Frequency/Switch output input $\mathrm{P}_{\mathrm{i}} \leq 0,85 \mathrm{~W}$

Promass F

DN	$\underset{\left[{ }^{\circ} \mathrm{C}\right]}{\mathrm{T}_{\mathrm{m}, \max }^{1)}}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 6 \\ {\left[85^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 5 \\ {\left[100^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 4 \\ {\left[135^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ {\left[200^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 2 \\ {\left[300^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 1 \\ {\left[450^{\circ} \mathrm{C}\right]} \end{gathered}$
8... 50	150	$35^{2) 31}$	50	95	130	150	150	150
		$50^{2 / 4)}$	-	95	130	150	150	150
		55	-	-	130	150	150	150
		60	-	-	130	150	150	150
	205	$35^{2(3)}$	50	95	130	170	205	205
		$50^{2 / 4)}$	-	95	130	170	205	205
		55	-	-	130	170	205	205
		60	-	-	130	170	205	200
80	150	$35^{2 / 3)}$	50	85	110	150	150	150
		$50^{2 / 4)}$	-	85	110	150	150	150
		55	-	-	110	150	150	150
		60	-	-	110	150	150	150
	205	$35^{2 / 3)}$	50	85	110	170	205	205
		$50^{2 / 4)}$	-	85	110	170	205	205
		55	-	-	110	170	205	205
		60	-	-	110	170	205	200

1) Maximum temperature range, see nameplate
2) For installation with overvoltage protection in connection with temperature class T5, T6: $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$
3) $\mathrm{T}_{\mathrm{a}}=40^{\circ} \mathrm{C}$ for Impulse/Frequency/Switch output input $\mathrm{P}_{\mathrm{i}} \leq 0,85 \mathrm{~W}$
4) $\mathrm{T}_{\mathrm{a}}=55^{\circ} \mathrm{C}$ for Impulse/Frequency/Switch output input $\mathrm{P}_{\mathrm{i}} \leq 0,85 \mathrm{~W}$

Basic specification, position 3 (Output; Input) = C
Basic specification, position 1, 2 (Approval) = C2

Promass A

DN	$\begin{gathered} \mathrm{T}_{\mathrm{m}, \max } \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 6 \\ {\left[85^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 5 \\ {\left[100^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 4 \\ {\left[135^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ {\left[200^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 2 \\ {\left[300^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 1 \\ {\left[450^{\circ} \mathrm{C}\right]} \end{gathered}$
1... 4	205	$35^{1)}$	50	95	130	170	205	205
		$50^{2)}$	-	-	130	170	205	205
		55	-	-	130	170	205	205
		60	-	-	130	170	205	200

1) For installation with overvoltage protection in connection with temperature class $T 5, T 6: T_{a}=T_{a}-2 \mathrm{~K}$
2) For installation with overvoltage protection in connection with temperature class $\mathrm{T} 5, \mathrm{~T} 6$ and basic specification, position 1, 2 (Approval) $=: \mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$

Promass E (Promass 8E2B**-...)

DN	$\mathrm{T}_{\mathrm{m}, \text { max }}$ [$\left.{ }^{\circ} \mathrm{C}\right]$	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 6 \\ {\left[85^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 5 \\ {\left[100^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 4 \\ {\left[135{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ {\left[200^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 2 \\ {\left[300^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 1 \\ {\left[450{ }^{\circ} \mathrm{C}\right]} \end{gathered}$
8... 50	150	$35^{1)}$	50	95	130	150	150	150
		$50^{2)}$	-	-	130	150	150	150
		55	-	-	130	150	150	150
		60	-	-	130	150	150	150

1) For installation with overvoltage protection in connection with temperature class $T 5, T 6: T_{a}=T_{a}-2 \mathrm{~K}$
2) For installation with overvoltage protection in connection with temperature class $\mathrm{T} 5, \mathrm{~T} 6$ and basic specification, position 1, 2 (Approval) $=: \mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$

Promass E (Promass 8E2C**-...)

DN	$\underset{\left[{ }^{\circ} \mathrm{C}\right]}{\mathrm{T}_{\mathrm{m}, \max }^{1)}}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 6 \\ {\left[85^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 5 \\ {\left[100^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 4 \\ {\left[135^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ {\left[200^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 2 \\ {\left[300^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 1 \\ {\left[450^{\circ} \mathrm{C}\right]} \end{gathered}$
8... 50	150	$35^{2)}$	50	95	130	150	150	150
		$50^{3)}$	-	-	130	150	150	150
		55	-	-	130	150	150	150
		60	-	-	130	150	150	150
	205	$35^{2)}$	50	95	130	170	205	205
		$50^{3)}$	-	-	130	170	205	205

DN	$\mathrm{T}_{\mathrm{m}, \max }{ }^{1)}$ $\left[{ }^{\circ} \mathrm{C}\right]$	T_{a} $\left[{ }^{\circ} \mathrm{C}\right]$	T 6 $\left[85{ }^{\circ} \mathrm{C}\right]$	T 5 $\left[100{ }^{\circ} \mathrm{C}\right]$	T 4 $\left[135{ }^{\circ} \mathrm{C}\right]$	T 3 $\left[200{ }^{\circ} \mathrm{C}\right]$	T 2 $\left[300{ }^{\circ} \mathrm{C}\right]$	T 1 $\left[450{ }^{\circ} \mathrm{C}\right]$
		55	-	-	130	170	205	205
		60	-	-	130	170	205	200

1) Maximum temperature range, see nameplate
2) For installation with overvoltage protection in connection with temperature class T5, T6: $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$
3) For installation with overvoltage protection in connection with temperature class T5, T6 and basic specification, position 1, 2 (Approval) $=: \mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$

Promass F

DN	$\underset{\left[{ }^{\circ} \mathrm{C}\right]}{\mathrm{T}_{\mathrm{m}, \max }^{1)}}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 6 \\ {\left[85^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T5} \\ {\left[100^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 4 \\ {\left[135^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ {\left[200^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 2 \\ {\left[300^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 1 \\ {\left[450^{\circ} \mathrm{C}\right]} \end{gathered}$
8... 50	150	$35^{2)}$	50	95	130	150	150	150
		50^{31}	-	-	130	150	150	150
		55	-	-	130	150	150	150
		60	-	-	130	150	150	150
	205	$35^{2)}$	50	95	130	170	205	205
		50^{31}	-	-	130	170	205	205
		55	-	-	130	170	205	205
		60	-	-	130	170	205	200
80	150	$35^{2)}$	50	85	110	150	150	150
		50^{31}	-	85	110	150	150	150
		55	-	-	110	150	150	150
		60	-	-	110	150	150	150
	205	$35^{2)}$	50	85	110	170	205	205
		$50^{3)}$	-	85	110	170	205	205
		55	-	-	110	170	205	205
		60	-	-	110	170	205	200

1) Maximum temperature range, see nameplate
2) For installation with overvoltage protection in connection with temperature class $\mathrm{T} 5, \mathrm{~T} 6: \mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$
3) For installation with overvoltage protection in connection with temperature class T5, T6 and basic specification, position 1, 2 (Approval) $=: \mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$

Basic specification, position 3 (Output; Input) = E
Basic specification, position 1, 2 (Approval) = C2

Promass A

DN	$\mathrm{T}_{\mathrm{m}, \max }$ $\left[{ }^{\circ} \mathrm{C}\right]$	T_{a} $\left[{ }^{\circ} \mathrm{C}\right]$	T 6 $\left[85{ }^{\circ} \mathrm{C}\right]$	T 5 $\left[100{ }^{\circ} \mathrm{C}\right]$	T 4 $\left[135{ }^{\circ} \mathrm{C}\right]$	T 3 $\left[200{ }^{\circ} \mathrm{C}\right]$	T 2 $\left[300{ }^{\circ} \mathrm{C}\right]$	T 1 $\left[450{ }^{\circ} \mathrm{C}\right]$
$1 \ldots 4$	205	$40^{1) 2)}$	50	95	130	170	205	205
		$55^{1) 3)}$	-	95	130	170	205	205
		60	-	-	130	170	205	205

1) For installation with overvoltage protection in connection with temperature class $\mathrm{T} 5, \mathrm{~T} 6: \mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$
2) $\mathrm{T}_{\mathrm{a}}=50^{\circ} \mathrm{C}$ for use without Impulse/Frequency/Switch output
3) $\mathrm{T}_{\mathrm{a}}=60^{\circ} \mathrm{C}$ for use without Impulse/Frequency/Switch output

Promass E (Promass 8E2B**-...)

DN	$\mathrm{T}_{\mathrm{m}, \max }$ $\left[{ }^{\circ} \mathrm{C}\right]$	T_{a} $\left[{ }^{\circ} \mathrm{C}\right]$	T 6 $\left[85{ }^{\circ} \mathrm{C}\right]$	T 5 $\left[100{ }^{\circ} \mathrm{C}\right]$	T 4 $\left[135{ }^{\circ} \mathrm{C}\right]$	T 3 $\left[200{ }^{\circ} \mathrm{C}\right]$	T 2 $\left[300{ }^{\circ} \mathrm{C}\right]$	T 1 $\left[450{ }^{\circ} \mathrm{C}\right]$
$8 \ldots 50$	150	$40^{1) 2)}$	50	95	130	140	140	140
		$55^{1) 3)}$	-	95	130	140	140	140
		60	-	-	130	140	140	140

1) For installation with overvoltage protection in connection with temperature class T5, T6: $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$
2) $\mathrm{T}_{\mathrm{a}}=50^{\circ} \mathrm{C}$ for use without Impulse/Frequency/Switch output
3) $\mathrm{T}_{\mathrm{a}}=60^{\circ} \mathrm{C}$ for use without Impulse/Frequency/Switch output

Promass E (Promass 8E2C**-...)

DN	$\mathrm{T}_{\mathrm{m}, \max }{ }^{1)}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 6 \\ {\left[85^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 5 \\ {\left[100^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 4 \\ {\left[135^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ {\left[200^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 2 \\ {\left[300^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 1 \\ {\left[450^{\circ} \mathrm{C}\right]} \end{gathered}$
8... 50	150	$40^{2) 3)}$	50	95	130	150	150	150
		$55^{2)} 4$)	-	95	130	150	150	150
		60	-	-	130	150	150	150
	205	40 ${ }^{2) 3 \text {) }}$	50	95	130	170	205	205
		$55^{2)} 4$)	-	95	130	170	205	205
		60	-	-	130	170	205	205

1) Maximum temperature range, see nameplate
2) For installation with overvoltage protection in connection with temperature class T5, T6: $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$
3) $\mathrm{T}_{\mathrm{a}}=50^{\circ} \mathrm{C}$ for use without Impulse/Frequency/Switch output
4) $\mathrm{T}_{\mathrm{a}}=60^{\circ} \mathrm{C}$ for use without Impulse/Frequency/Switch output

Promass F

DN	$\underset{\mathrm{T}_{\mathrm{m}, \max }{ }^{1)}}{\left[{ }^{\circ} \mathrm{C}\right]}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 6 \\ {\left[85^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 5 \\ {\left[100^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 4 \\ {\left[135^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ {\left[200^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 2 \\ {\left[300^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 1 \\ {\left[450^{\circ} \mathrm{C}\right]} \end{gathered}$
8... 50	150	$40^{2 / 3)}$	50	95	130	150	150	150
		$55^{2) 41}$	-	95	130	150	150	150
		60	-	-	130	150	150	150
	205	$40^{2) 31}$	50	95	130	170	205	205
		$55^{2 / 4)}$	-	95	130	170	205	205
		60	-	-	130	170	205	205
80	150	$40^{2 / 3)}$	50	85	110	150	150	150
		$55^{2 / 4)}$	-	85	110	150	150	150
		60	-	-	110	150	150	150
	205	$40^{2) 31}$	50	85	110	170	205	205
		$55^{2 / 4)}$	-	85	110	170	205	205
		60	-	-	110	170	205	205

1) Maximum temperature range, see nameplate
2) For installation with overvoltage protection in connection with temperature class $\mathrm{T} 5, \mathrm{~T} 6: \mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$
3) $\mathrm{T}_{\mathrm{a}}=50^{\circ} \mathrm{C}$ for use without Impulse/Frequency/Switch output
4) $\mathrm{T}_{\mathrm{a}}=60^{\circ} \mathrm{C}$ for use without Impulse/Frequency/Switch output

Basic specification, position 3 (Output; Input) = G
Basic specification, position 1, 2 (Approval) = C2

Promass A

DN	$\mathrm{T}_{\mathrm{m}, \max }$ $\left[{ }^{\circ} \mathrm{C}\right]$	T_{a} $\left[{ }^{\circ} \mathrm{C}\right]$	T 6 $\left[85{ }^{\circ} \mathrm{C}\right]$	T 5 $\left[100{ }^{\circ} \mathrm{C}\right]$	T 4 $\left[135{ }^{\circ} \mathrm{C}\right]$	T 3 $\left[200{ }^{\circ} \mathrm{C}\right]$	T 2 $\left[300{ }^{\circ} \mathrm{C}\right]$	T 1 $\left[450{ }^{\circ} \mathrm{C}\right]$
$1 \ldots 4$	205	$40^{1) 2)}$	50	95	130	170	205	205
		$55^{1) 3)}$	-	95	130	170	205	205
		60	-	-	130	170	205	205

1) For installation with overvoltage protection in connection with temperature class $\mathrm{T} 5, \mathrm{~T} 6: \mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$
2) $\mathrm{T}_{\mathrm{a}}=50^{\circ} \mathrm{C}$ for use without Impulse/Frequency/Switch output
3) $\mathrm{T}_{\mathrm{a}}=60^{\circ} \mathrm{C}$ for use without Impulse/Frequency/Switch output

Promass E (Promass 8E2B**-...)

DN	$\mathrm{T}_{\mathrm{m}, \max }$ $\left[{ }^{\circ} \mathrm{C}\right]$	T_{a} $\left[{ }^{\circ} \mathrm{C}\right]$	T 6 $\left[85{ }^{\circ} \mathrm{C}\right]$	T 5 $\left[100{ }^{\circ} \mathrm{C}\right]$	T 4 $\left[135{ }^{\circ} \mathrm{C}\right]$	T 3 $\left[200{ }^{\circ} \mathrm{C}\right]$	T 2 $\left[300{ }^{\circ} \mathrm{C}\right]$	T 1 $\left[450{ }^{\circ} \mathrm{C}\right]$
$8 \ldots 50$	150	$40^{1) 2)}$	50	95	130	140	140	140
		$55^{1) 3)}$	-	95	130	140	140	140
		60	-	-	130	140	140	140

1) For installation with overvoltage protection in connection with temperature class T5, T6: $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$
2) $\mathrm{T}_{\mathrm{a}}=50^{\circ} \mathrm{C}$ for use without Impulse/Frequency/Switch output
3) $\mathrm{T}_{\mathrm{a}}=60^{\circ} \mathrm{C}$ for use without Impulse/Frequency/Switch output

Promass E (Promass 8E2C**-...)

DN	$\mathrm{T}_{\mathrm{m}, \max }{ }^{1)}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 6 \\ {\left[85^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 5 \\ {\left[100^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 4 \\ {\left[135^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ {\left[200^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 2 \\ {\left[300^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 1 \\ {\left[450^{\circ} \mathrm{C}\right]} \end{gathered}$
8... 50	150	$40^{2) 3)}$	50	95	130	150	150	150
		$55^{2)} 4$)	-	95	130	150	150	150
		60	-	-	130	150	150	150
	205	40 ${ }^{2) 3 \text {) }}$	50	95	130	170	205	205
		$55^{2)} 4$)	-	95	130	170	205	205
		60	-	-	130	170	205	205

1) Maximum temperature range, see nameplate
2) For installation with overvoltage protection in connection with temperature class T5, T6: $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$
3) $\mathrm{T}_{\mathrm{a}}=50^{\circ} \mathrm{C}$ for use without Impulse/Frequency/Switch output
4) $\mathrm{T}_{\mathrm{a}}=60^{\circ} \mathrm{C}$ for use without Impulse/Frequency/Switch output

Promass F

DN	$\mathrm{T}_{\mathrm{m}, \max }{ }^{1)}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 6 \\ {\left[85^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 5 \\ {\left[100^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 4 \\ {\left[135^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ {\left[200^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 2 \\ {\left[300^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T} 1 \\ {\left[450^{\circ} \mathrm{C}\right]} \end{gathered}$
8... 50	150	$40^{2) 31}$	50	95	130	150	150	150
		$55^{2) 4}$	-	95	130	150	150	150
		60	-	-	130	150	150	150
	205	$40^{2) 31}$	50	95	130	170	205	205
		$55^{2 / 4)}$	-	95	130	170	205	205
		60	-	-	130	170	205	205
80	150	$40^{2 / 3)}$	50	85	110	150	150	150
		$55^{2) 4}$	-	85	110	150	150	150
		60	-	-	110	150	150	150
	205	$40^{2 / 3)}$	50	85	110	170	205	205
		$55^{2 / 4)}$	-	85	110	170	205	205
		60	-	-	110	170	205	205

1) Maximum temperature range, see nameplate
2) For installation with overvoltage protection in connection with temperature class T5, T6: $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{a}}-2 \mathrm{~K}$
3) $\mathrm{T}_{\mathrm{a}}=50^{\circ} \mathrm{C}$ for use without Impulse/Frequency/Switch output
4) $\mathrm{T}_{\mathrm{a}}=60^{\circ} \mathrm{C}$ for use without Impulse/Frequency/Switch output

Connection values: Signal circuits

The following tables contain specifications which are dependent on the transmitter type and its input and output assignment. Compare the following specifications with those on the nameplate of the transmitter.

Connecting the transmitter

	ition	Basic specification, position 1, 2 Approval	Type of protection used for cable entry	Description
1	Cable entry for output 1	C2	IS/Ex ia/DIP IS/AEx ia/DIP	In the case of device versions with a plastic transport sealing plug, this plug does not meet the explosion protection requirements and must be replaced during installation by a suitable entry that meets the approval specifications. In the case of device versions with a cable entry, this entry has a separate component approval and meets the requirements of the explosion protection indicated on the nameplate
2	Cable entry for output 2	C2	IS/Ex ia/DIP IS/AEx ia/DIP	In the case of device versions with metal extensions and sealing plugs, the latter are part of the device approval and meet the requirements of the explosion protection indicated on the nameplate. In the case of device versions with a cable entry, this entry has a separate component approval and meets the requirements of the explosion protection indicated on the nameplate.
3	Cable entry of the remote display and operating module FHX50	C2	IS/Ex ia/DIP IS/AEx ia/DIP	In the case of device versions with metal extensions and sealing plugs, the latter are part of the device approval and meet the requirements of the explosion protection indicated on the nameplate. In the case of device versions with a cable entry, this entry has a separate component approval and meets the requirements of the explosion protection indicated on the nameplate.
Position			Description	
4	Pressure compensation plug		NOTICE Housing degree of protection voided due to insufficient sealing of the housing. Do not open - not a cable entry.	
©	Potential equalization		NOTICE Terminal for connection to potential equalization. Pay attention to the grounding concept of the facility.	

Terminal assignment

Transmitter

The order code is part of the extended order code. Detailed information on the features of the device and on the structure of the extended order code \rightarrow 屏 6 .

Connection versions

Order code for "Output"	Terminal numbers			
	Output 1		Output 2	
	1 (+)	$2(-)$	3 (+)	$4(-)$
Option A	4-20mA	(passive)		
Option B ${ }^{1)}$	4-20mA	(passive)	Pulse/ ou	/switch ive)
Option C	4-20mA	(passive)	4-20m	(passive)
Option $\mathrm{E}^{2)}$	FOUND	Fieldbus	Pulse/ ou	/switch ive)
Option G ${ }^{\text {3) }}$			Pulse/f outp	/switch ive)

1) Output 1 must always be used; output 2 is optional.
2) FOUNDATION Fieldbus with integrated reverse polarity protection.
3) PROFIBUS PA with integrated reverse polarity protection.

Intrinsically safe values

1The order code is part of the extended order code. Detailed information on the features of the device and on the structure of the extended order code \rightarrow 圈 6 .

Type of protection IS

Order code for "Output"	Output type	Intrinsically safe values			
Option A	4 -20mA HART	$\mathrm{U}_{\mathrm{i}}=\mathrm{DC} 30 \mathrm{~V}$ $\mathrm{I}_{\mathrm{i}}=300 \mathrm{~mA}$ $\mathrm{P}_{\mathrm{i}}=1 \mathrm{~W}$ 			
		$\mathrm{~L}_{\mathrm{i}}=0 \mu \mathrm{H}$			
$\mathrm{C}_{\mathrm{i}}=5 \mathrm{nF}$			$	$	$\mathrm{U}_{\mathrm{i}}=\mathrm{DC} 30 \mathrm{~V}$
:---					
Option B					

Order code for "Output"	Output type	Intrinsically safe values	
	Pulse/frequency/switch output	$\begin{aligned} & \mathrm{U}_{\mathrm{i}}=\mathrm{DC} 30 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{i}}=300 \mathrm{~mA} \\ & \mathrm{P}_{\mathrm{i}}=1 \mathrm{~W} \\ & \mathrm{~L}_{\mathrm{i}}=0 \mu \mathrm{H} \\ & \mathrm{C}_{\mathrm{i}}=6 \mathrm{nF} \end{aligned}$	
Option C	4-20mA HART	$\begin{aligned} & \mathrm{U}_{\mathrm{i}}=\mathrm{DC} 30 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{i}}=300 \mathrm{~mA} \\ & \mathrm{P}_{\mathrm{i}}=1 \mathrm{~W} \\ & \mathrm{~L}_{\mathrm{i}}=0 \mu \mathrm{H} \\ & \mathrm{C}_{\mathrm{i}}=30 \mathrm{nF} \end{aligned}$	
	4-20mA analog		
Option E	FOUNDATION Fieldbus	STANDARD $\begin{aligned} & \mathrm{U}_{\mathrm{i}}=30 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{i}}=300 \mathrm{~mA} \\ & \mathrm{P}_{\mathrm{i}}=1.2 \mathrm{~W} \\ & \mathrm{~L}_{\mathrm{i}}=10 \mu \mathrm{H} \\ & \mathrm{C}_{\mathrm{i}}=5 \mathrm{nF} \end{aligned}$	FISCO $\begin{aligned} & \mathrm{U}_{\mathrm{i}}=17.5 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{i}}=550 \mathrm{~mA} \\ & \mathrm{P}_{\mathrm{i}}=5.5 \mathrm{~W} \\ & \mathrm{~L}_{\mathrm{i}}=10 \mu \mathrm{H} \\ & \mathrm{C}_{\mathrm{i}}=5 \mathrm{nF} \end{aligned}$
	Pulse/frequency/switch output	$\begin{aligned} & \mathrm{U}_{\mathrm{i}}=30 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{i}}=300 \mathrm{~mA} \\ & \mathrm{P}_{\mathrm{i}}=1 \mathrm{~W} \\ & \mathrm{~L}_{\mathrm{i}}=0 \mu \mathrm{H} \\ & \mathrm{C}_{\mathrm{i}}=6 \mathrm{nF} \end{aligned}$	
Option G	PROFIBUS PA	STANDARD $\begin{aligned} & \mathrm{U}_{\mathrm{i}}=30 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{i}}=300 \mathrm{~mA} \\ & \mathrm{P}_{\mathrm{i}}=1.2 \mathrm{~W} \\ & \mathrm{~L}_{\mathrm{i}}=10 \mu \mathrm{H} \\ & \mathrm{C}_{\mathrm{i}}=5 \mathrm{nF} \end{aligned}$	FISCO $\begin{aligned} & \mathrm{U}_{\mathrm{i}}=17.5 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{i}}=550 \mathrm{~mA} \\ & \mathrm{P}_{\mathrm{i}}=5.5 \mathrm{~W} \\ & \mathrm{~L}_{\mathrm{i}}=10 \mu \mathrm{H} \\ & \mathrm{C}_{\mathrm{i}}=5 \mathrm{nF} \end{aligned}$
	Pulse/frequency/switch output	$\begin{aligned} & \mathrm{U}_{\mathrm{i}}=30 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{i}}=300 \mathrm{~mA} \\ & \mathrm{P}_{\mathrm{i}}=1 \mathrm{~W} \\ & \mathrm{~L}_{\mathrm{i}}=0 \mu \mathrm{H} \\ & \mathrm{C}_{\mathrm{i}}=6 \mathrm{nF} \end{aligned}$	

Remote display FHX50

Basic specification, position 1, 2 Approval	Cable specification	Basic specification, position 4 Display; operation Option L, M
Option C2	Max. cable length: 60 m (196.85 ft)	$\mathrm{U}_{0}=7.3 \mathrm{~V}$
		$\mathrm{I}_{0}=327 \mathrm{~mA}$
		$\mathrm{P}_{\mathrm{o}}=362 \mathrm{~mW}$
		$\mathrm{L}_{0}=149 \mu \mathrm{H}$
		$\mathrm{C}_{0}=388 \mathrm{nF}$
		$\mathrm{C}_{\mathrm{c}} \leq 125 \mathrm{nF}$
		$\mathrm{L}_{\mathrm{c}} \leq 149 \mu \mathrm{H}$

