

Technical Information

Solicap S FTI77

Capacitance

Robust point level switch for applications with bulk solids and very high temperatures

Application

Solicap S is used for point level detection at high temperatures in bulk solids. It can be operated in minimum or maximum failsafe mode.

Due to its robust construction, it can also be used to provide accurate measurements in applications with very high lateral loads (up to 800 Nm for sword version) and in applications with abrasive media.

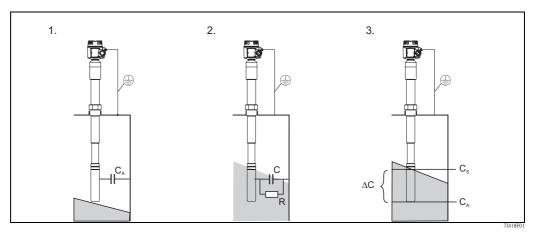
Active buildup compensation facilitates safe switching, even in the event of media that tend to cause buildup.

Your benefits

- Extremely robust design for harsh process conditions
- Easy and fast commissioning as calibration is performed at the press of a button
- Universal application thanks to wide range of certificates and approvals
- Two-stage overvoltage protection against static discharges from the silo
- Active buildup compensation for bulk solids with caking tendency
- Use in safety systems requiring functional safety to SIL2/SIL3 in combination with electronic insert FFI55
- Increased safety due to permanent automatic monitoring of electronics
- Reduction in storage costs thanks to easy-to-shorten sword model and rope model

Table of contents

Function and system design4	FEI52 electronic insert (DC PNP)	
Measuring principle4	Power supply	
Application examples	Electrical connection	
Measuring system	Output signal	
Electronic versions	Signal on alarm	
System integration via Fieldgate	Connectable load	29
Operating conditions: Installation	Electronic insert FEI53 (3-wire)	30
Installation	Power supply	
Preparing to install sword probes FTI77	Electrical connection	
Preparing to install rope probes FTI77	Output signal	30
Probe with separate housing	Signal on alarm Connectable load	
Operating conditions: Environment18		
Ambient temperature range	FEI54 electronic insert (AC/DC with relay output)	. 31
Storage temperature	Power supply	31
Climate class	Electrical connection	
Degree of protection	Output signal	
Vibration resistance	Signal on alarm	
Cleaning	Connectable load	31
Electromagnetic compatibility (EMC)		
Shock resistance	Electronic insert FEI55 (8/16 mA; SIL2/SIL3)	
O	Power supply	
Operating conditions: Process	Electrical connection	
Process temperature range	Output signal	
Process pressure limits	Signal on alarm	
State of aggregation	Connectable load	32
Mechanical construction	FEI57S electronic insert (PFM)	33
Overview	Power supply	33
Housing	Electrical connection	33
Material	Output signal	33
Weight	Signal on alarm Connectable load	
Input		
Measured variable	Electronic insert FEI58 (NAMUR H-L edge)	34
Measuring range (valid for all)	Power supply	
Input signal26	Electrical connection	
Measuring conditions	Output signal	
Minimum probe length for nonconductive media	Signal on alarm	34
(<1μs/cm)	Connectable load	34
Output	Power supply	35
Galvanic isolation	Electrical connection	
Switch behavior27	Connector	
Switch-on behavior27	Cable entry	
Fail-safe mode27		
Switching delay	Performance characteristics	36
Electronic transfer EPIE1 (A.O.O)	Reference operating conditions	
Electronic insert FEI51 (AC 2-wire)28	Switch point	
Power supply	Ambient temperature effect	36
Signal on alarm		
Output signal	Human interface	
Connectable load	Electronic inserts	
	Electronic inserts	
	Electronic insert	39


Certificates and approvals	40
CE approval	40
Other certificates	
Other standards and guidelines	40
Ordering information	41
Solicap S FTI77	41
Accessories	43
Weather protection cover	
Overvoltage protection HAW56x	
Adapter flange FAU70E / FAU70A	
Spare parts	
Documentation	44
Technical Information	
Operating Instructions	
Certificates	
Patents	
	46
	40

Function and system design

Measuring principle

The principle of capacitance point level detection is based on the change in capacitance of a capacitor as a result of the probe being covered by bulk solids. The probe and container wall (conductive material) form an electric capacitor. When the probe is in air (1), a certain low initial capacitance is measured. If the container is being filled, the capacitance of the capacitor increases as more of the probe is covered (2), (3).

The point level switch switches when the capacitance C_S specified during calibration is reached. In addition, a probe with inactive length ensures that the effects of medium buildup or condensate near the process connection are avoided. A probe with active buildup compensation compensates for the effects of buildup on the probe in the area of the process connection.

- R: Conductivity of bulk solids
- C: Capacitance of bulk solids
- C_A: Initial capacitance (probe not covered)
- C_S: Switching capacitance
- ΔC : Change in capacitance

Function

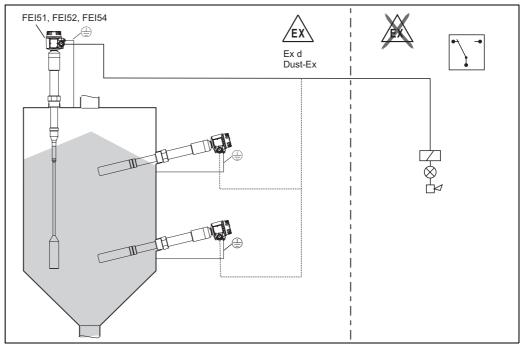
The electronic insert selected for the probe determines the change in capacitance depending on how much of the probe is covered. This ensures accurate switching at the switchpoint (level) calibrated for this purpose.

Application examples

Fly ash, sand, glass aggregate, gravel, molding sand, lime, ore (crushed), plaster, aluminum shavings, cement, pumice, dolomite, kaolin and similar bulk solids.

In general:

Bulk solids with a relative dielectric constant $\varepsilon_r \ge 2.5$.

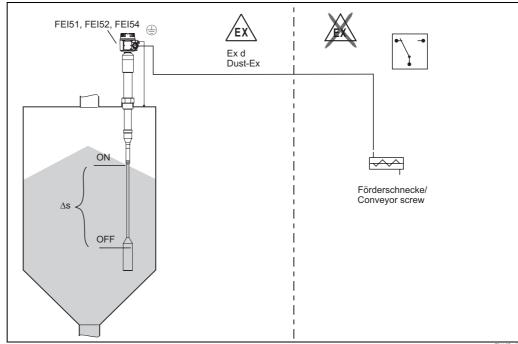

Measuring system

The make-up of the measuring system depends on the electronic insert selected.

Point level switch

The complete measuring system consists of:

- The point level switch, Solicap S FTI77
- An electronic insert FEI51, FEI52, FEI54

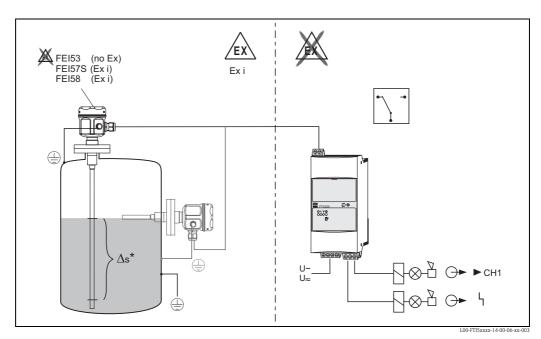

TI433Fxx02

Two-point control (∆s function)

Note!

Only in conjunction with nonconductive bulk solids.

TI418Fer


The point level switch can also be used to control a screw conveyor, for example, where the on and off values can be freely defined.

Point level switch

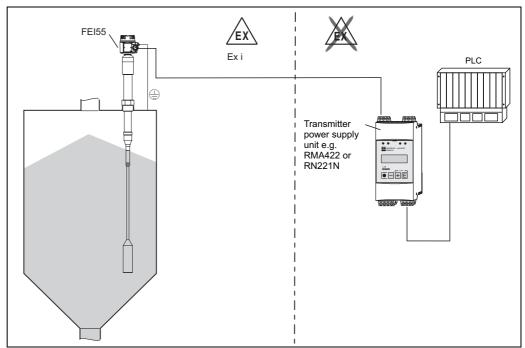
Solicap S FTI77 with electronic versions FEI53, FEI57S and FEI58 for connecting to a separate switching unit.

The complete measuring system consists of:

- the capacitance point level switch, Solicap S FTI77
- an FEI53, FEI57S, FEI58 electronic insert
- a transmitter power supply e.g. FTC325, FTC625 (SW V1.4 or higher), FTC470Z, FTC471Z, FTL325N, FTL375N

* Only possible with FEI53

The following table lists the transmitter power supply units that are available and can be operated with the electronic inserts FEI57S and FEI53.


Electronic insert	FEI57S	FEI53	FEI58
Transmitter power supply unit			
FTC625	X	_	_
FTC325	X	Х	_
FTL325N	_	_	Х
FTL375N	_	_	Х
FTC470Z	X	_	_
FTC471Z	X	_	-
FTC520Z*	X	_	_
FTC521Z*	X	_	-
FTC420*	_	Х	_
FTC421*	-	Х	_
FTC422*		Х	_

- x Combination is possible
- Combination is not possible
- * Product phase-out 2006

Point level switch 8/16 mA

The complete measuring system consists of:

- the point level switch, Solicap S FTI77
- the FEI55 electronic insert
- a transmitter power supply unit (e.g. RN221N, RNS221, RMA421, RMA422)

TI433Fen6

Electronic versions

FEI51

Two-wire AC connection

- Switching the load directly into the power supply circuit via the thyristor.
- Point level adjustment directly at the point level switch.

FEI52

3-wire direct current version:

- Switch the load via the transistor (PNP) and separate supply voltage connection.
- Point level adjustment directly at the point level switch.

FEI53

3-wire direct current version with 3 to 12 V signal output:

- For separate switching unit, Nivotester FTC325 3–WIRE.
- Point level adjustment directly at the switching unit.

FEI54

Universal current version with relay output:

- Switch the loads via 2 floating changeover contacts (DPDT).

FEI55

Signal transmission 8/16 mA on two-wire cabling:

- SIL2 approval for the hardware
- SIL3 approval for the software
- \blacksquare For separate switching unit (e.g. RN221N, RNS221, RMA421, RMA422).
- Point level adjustment directly at the point level switch.

FEI57S

PFM signal transmission (current pulses are superimposed on the supply current):

 For separate switching unit with PFM signal transmission e.g. FTC325 PFM, FTC625 PFM and FTC470Z/471Z

- Self-test from the switching unit without changing levels.
- Point level adjustment directly at the point level switch.
- Recurrent function test from the switching unit.

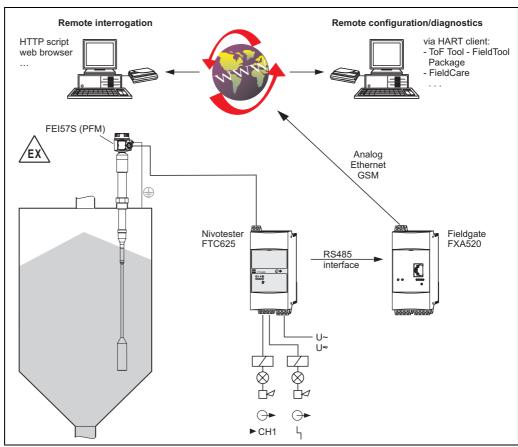
FEI58 (NAMUR)

Signal transmission H-L edge 2.2 to 3.5 / 0.6 to 1.0 mA as per IEC 60947-5-6 on two-wire cable:

- For a separate switching unit (e.g. Nivotester FTL325N and FTL375N).
- Point level adjustment directly at the point level switch.
- Test of the connection cables and slave devices by pressing a key on the electronic insert.

Note!

For additional information see $\rightarrow \stackrel{\triangle}{=} 28$ ff.


System integration via Fieldgate

Vendor managed inventory

The remote interrogation of tank or silo levels via Fieldgate enables suppliers of raw materials to gather information about the current inventories of their regular customers at any time and, for example, to take this into account in their own production planning. The Fieldgate monitors the configured point levels and automatically triggers the next order as required. Here, the range of possibilities ranges from simple requisitioning by e-mail through to fully automatic order processing by incorporating XML data into the planning systems on both sides.

Remote maintenance of measuring systems

Not only does Fieldgate transmit the current measured values, it also alerts the standby personnel responsible by e-mail or SMS as required. Fieldgate forwards the information transparently. In this way, all options of the operating software in question are available remotely. By using remote diagnosis and remote configuration some onsite service operations can be avoided and all others can at least be planned and prepared better.

TI433Fen0

Operating conditions: Installation

Note!

All dimensions in mm.

Installation

Installation instructions

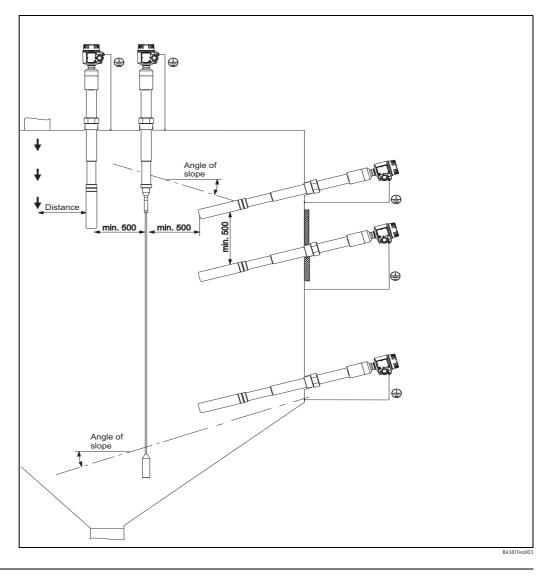
The Solicap S FTI77 (sword probe) can be installed from above and from the side. The Solicap S FTI77 (rope probe) can be installed vertically from above.

Caution

If you order a probe that is prepared for subsequent mounting of an active length (feature: active length; version: VV), grounding must take place at the lower ceramic fixture when welding on the active length.

Note!

The probe may not come into contact with the container wall! Do not install probes in the area of the filling curtain!


General notes

Filling the silo

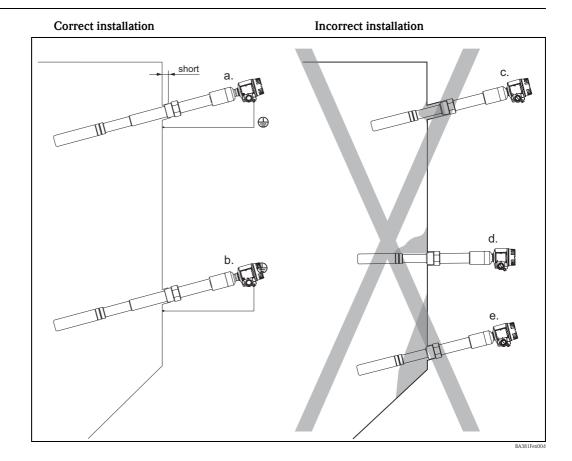
The filling stream should not be directed onto the probe.

Angle of material flow

Note the expected angle of the material flow or of the outlet funnel when determining the mounting location or probe length.

Distance between probes

When installing several probes in a silo, a minimum distance of 0.5 m between the probes must be observed.


Threaded coupling for mounting

When installing the Solicap S FTI77, the threaded coupling should be as short as possible. Condensation or product residue may occur in a long threaded coupling and interfere with the correct operation of the probe.

Heat insulation

In the event of high temperatures in the silo: Insulate the external silo wall to avoid exceeding the permitted temperature of the Solicap S housing. Heat insulation also prevents condensation from forming near the threaded boss in the silo. This reduces buildup and the risk of error switching.

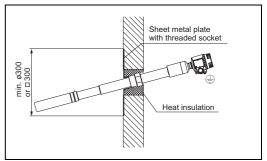
Preparing to install sword probes FTI77

Correct installation

- a. For maximum point level detection, a short threaded coupling is used.
- b. For minimum point level detection, a short threaded coupling is used.

Note!

Aligning the sword probe

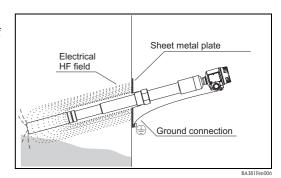

To prevent unnecessary lateral load when installing the sword probe from the side, the sword must be installed with the narrow edge pointing upwards. An adhesive label indicates the installation position of the sword.

Incorrect installation

- c. The threaded coupling is too long. This may cause material to settle inside and result in error switching.
- d. Horizontal mounting means a risk of error switching in the event of heavy buildup on the silo wall. In this case, the Solicap S FTI77 (sword probe) with inactive length is recommended.
- e. In areas where product buildup occurs, the device cannot detect if the silo is "empty". In this case, the FTI77 (rope probe) should be installed from above.

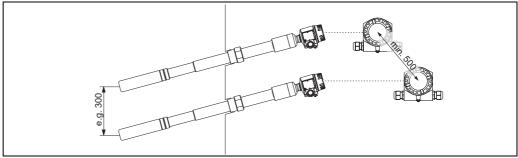
In this example, the grounded steel plate forms the counter electrode.

Heat insulation prevents condensation and therefore buildup on the steel plate.


BA3

In a silo with concrete walls

When installing in a nonconductive container, a sheet metal plate must be attached to the exterior of the silo as a counter electrode.

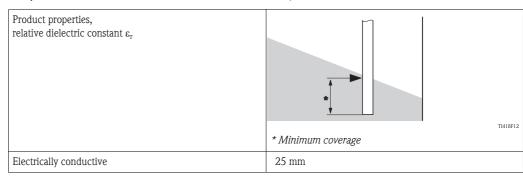

This plate can be either square or round.

- Dimensions in the case of a thin silo wall with a low dielectric constant:
 approx. 0.5 m along each side or Ø0.5 m;
- Dimensions in the case of a thicker silo wall or wall with a higher dielectric constant: approx. 0.7 m along each side or ø0.7 m.

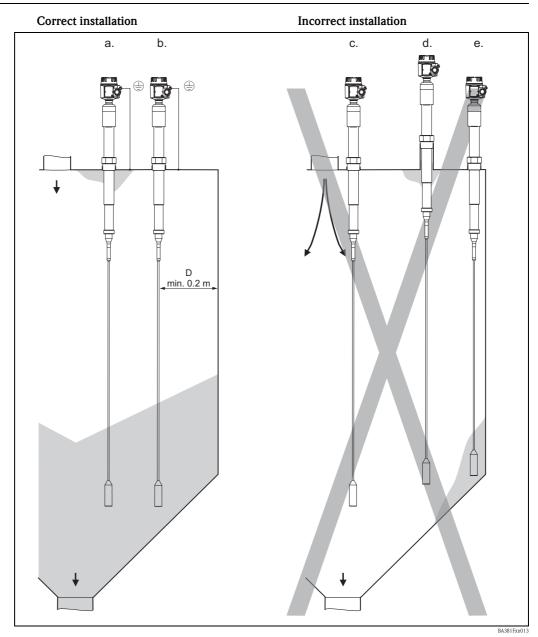
In a silo with plastic walls

The required minimum distances can be achieved by offset installation.

BA381Fen007


For small differences in level

Probe length and minimum coverage


Note!

- lacktriangle When selecting the probe length, pay attention to the dependency between the relative dielectric constant ϵ_r and the minimum amount the probe needs to be covered (see Table).
- For probe length tolerances see Seite 23 ff.
- To ensure problem-free operation, it is important that the difference in capacitance between the covered and uncovered parts of the probe is at least 5 pF.
- If you do not know the dielectric constant of the material, contact us for advice.

Nonconductive	
_{εr} > 10	100 mm
εr > 5 to 10	200 mm
$_{\rm \epsilon r}$ > 2 to 5	500 mm

Preparing to install rope probes FTI77

In a silo with metal walls Distance D between the probe and the wall approx. 10 to 25 % of the silo diameter

Correct installation

- a. Solicap S FTI77 with inactive length in the event of condensation and material buildup on the silo roof.
- At the correct distance from the silo wall, the material inlet and the material outlet.
 Close to the wall, for reliable switching in the case of a low dielectric constant (not for pneumatic filling).
 For pneumatic filling, the distance from the probe to the wall should not be too short, as the probe may swing.

Incorrect installation

- c. If too close to the material inlet, inflowing bulk solids may damage the sensor.

 If close to the center of the material outflow, high tensile forces at this point may cause the probe to break off or subject the silo roof to excessive strain.
- d. The threaded coupling is too long. This may cause condensation and dust to settle inside which may result in error switching.
- e. If too close to the silo wall, the probe may swing slightly against the wall or come in contact with buildup. This can result in error switching.

Silo roof

Ensure that the silo roof is of a sufficiently stable construction.

High tensile forces may occur when material is being extracted, particularly in the case of heavy and powdery bulk solids which have a tendency to form buildup.

Abrasive bulk solids

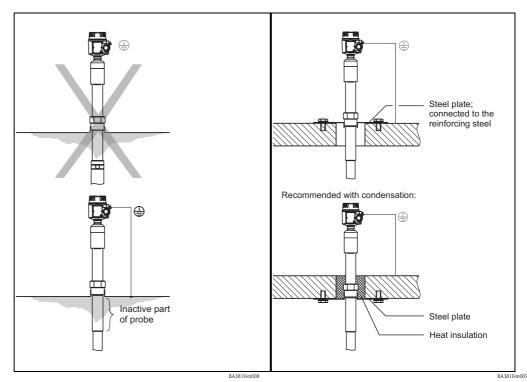
In silos with extremely abrasive bulk solids, the use of a Solicap S $\,$ FTI77 is recommended only for maximum detection.

Distance between the rope probes

To rule out mutual probe interference, you must maintain a minimum distance of 0.5 m between the rope probes. This also applies if you are installing several Solicap S units in adjacent silos with nonconductive walls.

In the event of condensation:

Use the FTI77 with inactive length.

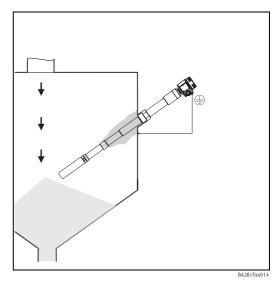

The inactive length (Fig. A) prevents moisture and buildup forming between the active part of the probe and the silo roof.

Or:

To reduce the effects of condensation ($Fig.\ B$) and buildup, the threaded coupling (length: max. 25 mm) must project into the silo.

Heat insulation reduces condensation and therefore buildup on the steel plate.

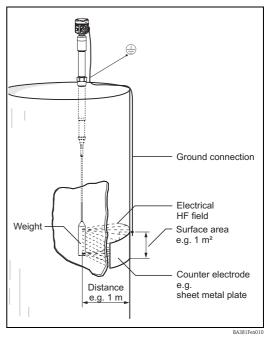
Fig. A Fig. B



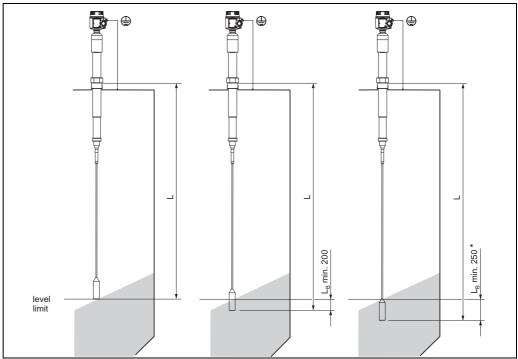
Silo with walls that conduct electricity

Silo with concrete walls

In the event of buildup:


If buildup on the sword probe can be expected when operating the measuring system, the active buildup compensation function prevents the measurement result from becoming distorted. This renders cleaning work on the sword probe unnecessary.

Installation in a nonconductive tank


When installing in a silo made of concrete, a counter electrode must be mounted on the silo exterior at the same height as the tensioning weight.

The length of the edge of the counter electrode should be approximately the same length as the distance between the tensioning weight and the silo wall.

In a silo with plastic walls

Range of sensor lengths

BA381Fen011

Electrically conductive bulk solids (e.g. coal)

Bulk solids with high dielectric constant (e.g. rock salt)

Bulk solids with low dielectric constant (e.g. fly ash)

* L_B (covered length):

For nonconductive bulk solids with a low dielectric constant, the rope probe must be approx. 5% (but no less than $250\ mm$) longer than the distance between the tank roof and the required point level.

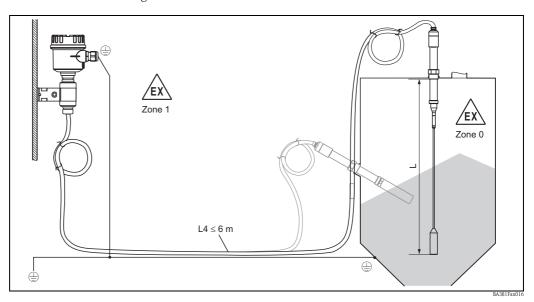
Shortening the probe

Sword probe:

The sword probe can be shortened at a later stage by the user.

Rope probe:

The rope probe can be shortened at a later stage by the user.


Probe with separate housing

With separate housing

Note!

- The maximum connection length between the probe and the separate housing is 6 m (L4). When ordering a Solicap S with a separate housing, the desired length must be specified.
- If the connecting cable is to be shortened or passed through a wall, it must be separated from the process connection. See also $\rightarrow \stackrel{\triangle}{=} 16$ (extension heights).
- The cable has a bending radius of $r \ge 100$ mm. This must be observed as a minimum.

The maximum overall length of L + L4 may not exceed 20 m.

Extension heights

Housing side: wall mounting

Housing side: pipe mounting

Sensor side

T≥ 100

T≥ 100

		Polyester housing F16	Stainless steel housing F15	Aluminum housing F17
В	-	76	64	65
H1	-	172	166	177
D	50	-	-	-
H4	330	-	-	-

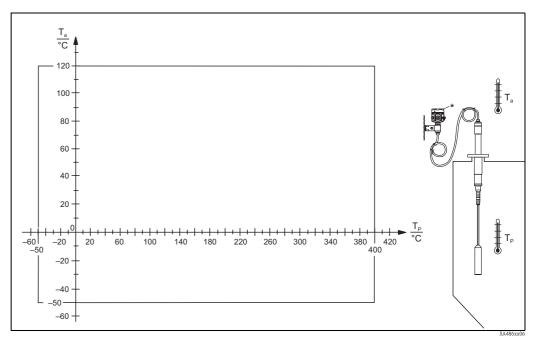
Note!

- Connecting cable: ø10.5 mm
- Outer jacket: silicone, notch-resistant

Wall holder unit

Note!

- The wall holder unit forms part of the scope of supply.
- The wall holder unit first has to be screwed to the separate housing before you can use it as a drilling template. The distance between the holes is reduced by screwing it to the separate housing.


Temperature derating with separate housing

Note:

The maximum connection length between the probe and the separate housing is 6 m (L4). When ordering a Solicap S with a separate housing, the desired length must be specified.

If the connecting cable is to be shortened or passed through a wall, it must be separated from the process connection. See "Documentation" => "Operating Instructions" on $\rightarrow \stackrel{\square}{=} 44$.

 $T_a = ambient temperature,$

 $T_p = process temperature,$

^{*} temperature at separate housing: –40 °C \leq Ta \leq 70 °C

Operating conditions: Environment

Ambient temperature range

■ Ambient temperature of the point level switch (note derating, see \rightarrow 🗎 19): \square -50 to +70 °C

 \Box -40 to +70 °C (with F16 housing)

■ A weather protection cover should be used when operating outdoors in strong sunlight. For further information on the weather protection cover, see → \(\begin{align*} \exists 43. \exists 43. \exists \)

Storage temperature

-50 to +85 °C

Climate class

DIN EN 60068-2-38/IEC 68-2-38: test Z/AD

Degree of protection

	IP66*	IP67*	IP68*	NEMA4X**
Polyester housing F16	X	X	_	X
Stainless steel housing F15	X	X	_	X
Aluminum housing F17	X	X	-	X
Aluminum housing F13	X	_	X***	X
with gas-tight process seal				
Aluminum housing T13	X	_	X***	X
with gas-tight process seal and				
separate connection compartment (EEx d)				
Separate housing	X	_	X***	X

^{*} As per EN60529

Vibration resistance

DIN EN 60068-2-64/IEC 68-2-64: 20 Hz- 2000 Hz; 0.01 g²/Hz

Cleaning

Housing:

When cleaning, make sure that the cleaning agent used does not corrode the housing surface or the seals.

Probe:

Depending on the application, buildup (contamination and soiling) can form on the sword of the probe. A high degree of material buildup can affect the measurement result. If the medium tends to create a high degree of buildup, regular cleaning is recommended. If cleaning agents are used make sure the material is resistant to them!

Electromagnetic compatibility (EMC)

- Interference emission to EN 61326, Electrical Equipment Class B Interference immunity in accordance with EN 61326, Appendix A (Industrial) and NAMUR Recommendation NE 21 (EMC)
- A usual commercial instrument cable can be used.

Shock resistance

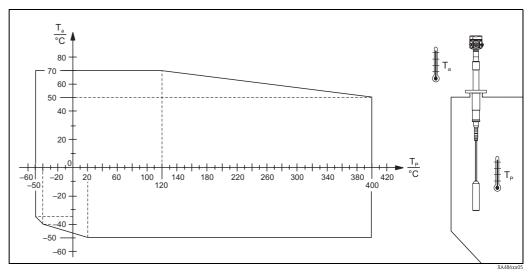
DIN EN 60068-2-27/IEC 68-2-27: 30g acceleration

^{**} As per NEMA 250

^{***} Only with M20 cable entry or G1/2 thread

Operating conditions: Process

Process temperature range


Note!

- The following process temperature ranges only apply for standard applications outside hazardous areas.
- Regulations for use in hazardous areas are provided in the Supplementary Documentation XA389F/00.

Permitted ambient temperature T_a at the housing depending on the process temperature T_p in the tank.

Compact version

Sword and rope version

 $T_a = ambient temperature,$

 $T_p = process temperature$

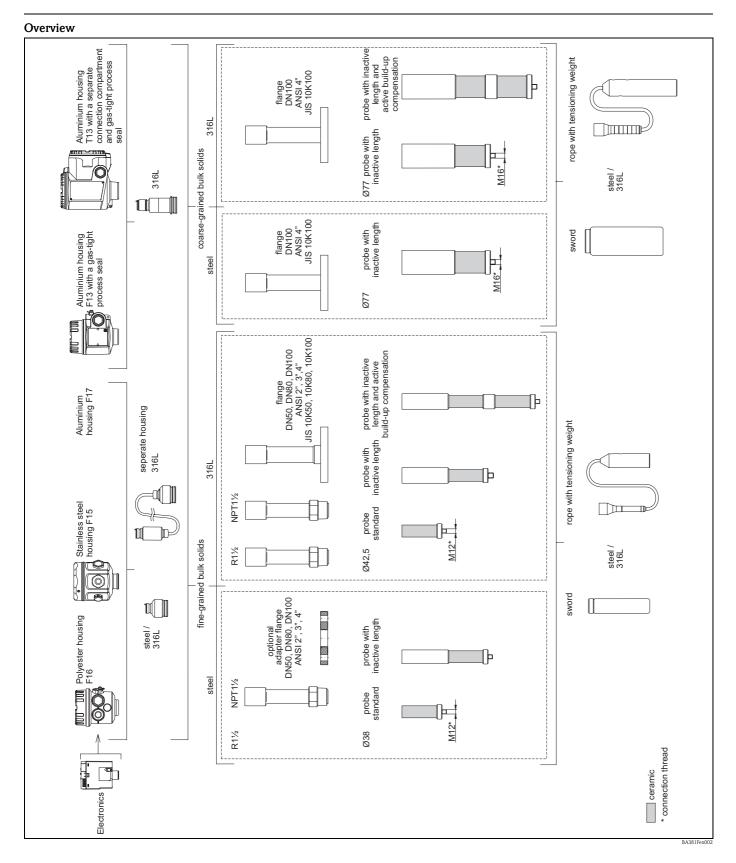
Process pressure limits

-1 to 10 bar

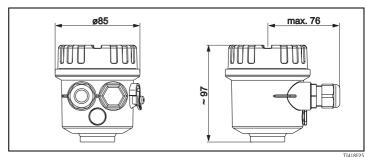
The permitted pressure values depend on the flange selected. In the case of higher temperatures, the permitted pressure values can be taken from the following standards.

- pR EN 1092-1: 2005 table, Appendix G2
- ASME B 16.5a 1998 Tab. 2-2.2 F316
- ASME B 16.5a 1998 Tab. 2.3.8 N10276
- JIS B 2220

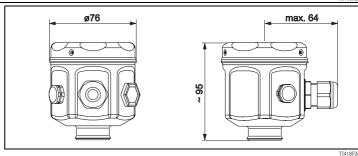
State of aggregation


See $\rightarrow \triangle$ 4, "Application examples"

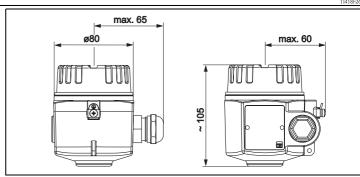
Mechanical construction

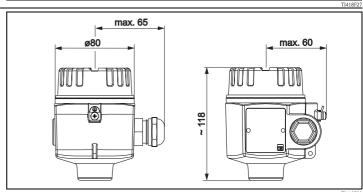

Note!

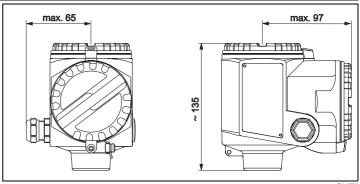
All dimensions in mm.



Housing


Polyester housing F16


Stainless steel housing F15


Aluminum housing F17

Aluminum housing F13 with gas-tight process seal

Aluminum housing T13 with separate connection compartment and gas-tight process seal

Endress+Hauser 21

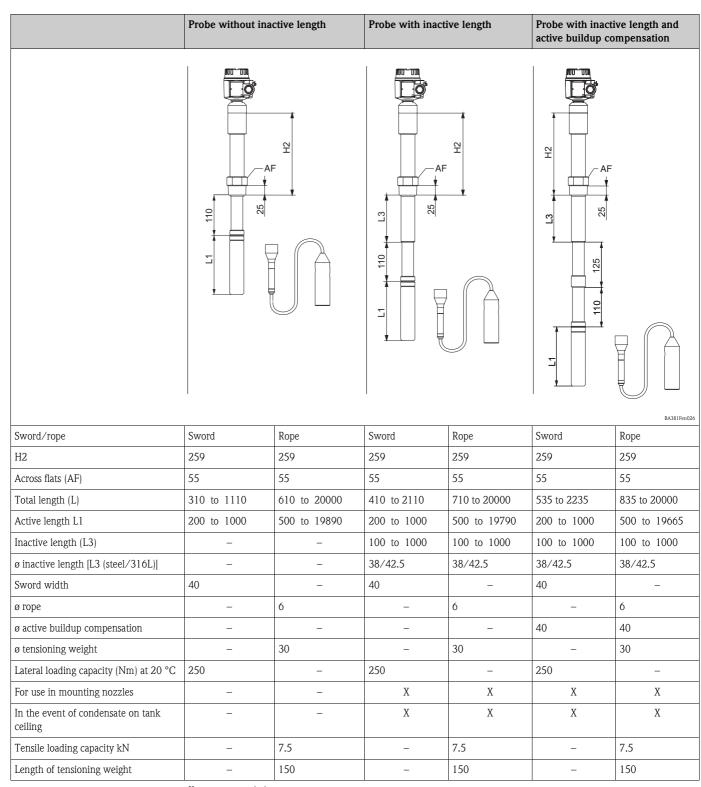
TI418F29

Housing heights with adapter

	Polyester housing F16	Stainless steel housing F15	Aluminum housing F17	Aluminum housing F13*	Aluminum housing with separate connection compartment T13*
			± 100	E 100000	H 1
	BA381Fxx003	BA381Fxx004	BA381Fxx005	BA381Fxx006	BA381Fxx007
Order code	2	1	3	4	5
FTI77					
H1	125**/177	121**/ 173	131**/183	177	194

Process connections and flanges

	Thread: R 1½*	Thread: NPT 1½*	Flanges
* Optional with adapter flange (for steel)	(DIN EN 10226-1)	(ANSI B 1.20.1)	(EN1092-1) (ANSI B 16.5) (JIS B2220)
Order code/material	RVJ / 316L RV1 / steel*	RGJ / 316L RG1 / steel*	
Pressures up to	10 bars	10 bars	Depends on flange max. 10 bar


Sword probes FTI77 for fine-grained bulk solids

Note

Total length of the probe from the start of the thread: L = L1 + L3 + 110 mm (ceramic)

+ 125 mm with active buildup compensation (optional)

X = recommended

Length tolerance of sword probe

< 1 m: 0 to -5 mm; > 1 m up to 3 m: 0 to -10 mm

Length tolerance of rope probe

< 1 m: 0 to -10 mm; > 1 m up to 3 m: 0 to -20 mm; > 3 m up to 6 m: 0 to -30 mm, > 6 m up to 20 m: 0 to -40 mm

Sword probes FTI77 for coarse-grained bulk solids

Total length of probe from start of thread: L = L1 + L3

- \blacksquare + 110 mm (ceramic for probe with inactive length) **or**
 - + 92 mm (ceramic for probe with inactive length and active buildup compensation)
- + 125 mm in the event of active buildup compensation (optional)

	Probe with inactive length		Probe with inactive length compensation	and active buildup
	L1		L1 H2	
Sword/rope	Sword	Rope	Sword	Rope
H2	259	259	259	259
Total length (L)	410 to 2110	710 to 20000	517 to 2235	817 to 20000
Active length (L1)	200 to 1000	500 to 19790	200 to 1000	500 to 19665
Inactive length (L3)	100 to 1000	100 to 1000	100 to 1000	100 to 1000
ø inactive length	77	77	77	77
Sword width	90	-	90	-
ø rope	-	12	-	12
ø active buildup compensation	-	-	76	76
ø tensioning weight	-	40	-	40
Lateral loading capacity (Nm) at 20 °C	800	-	800	-
For use in mounting nozzles	X	X	X	X
In the event of condensate on tank ceiling	X	X	X	X
Tensile loading capacity kN	-	20	-	20
Length of tensioning weight	_	250	-	250

X = recommended

Length tolerance of sword probe < 1 m: 0

< 1 m: 0 to –5 mm; > 1 m up to 3 m: 0 to –10 mm

Length tolerance of rope probe

< 1 m: 0 to -10 mm; > 1 m up to 3 m: 0 to -20 mm; > 3 m up to 6 m: 0 to -30 mm, > 6 m up to 20 m: 0 to -40 mm

Material

Housing

- Aluminum housing F17, F13, T13: GD–Al Si 10 Mg, DIN 1725, with plastic coating (blue/gray)
- Polyester housing F16: PBT-FR fiberglass reinforced polyester (blue/gray)
- Stainless steel housing F15: corrosion-resistant steel 316L (14404), uninsulated

Housing cover and seals

- Aluminum housing F17, F13, T13: EN-AC-AlSi10Mg, plastic-coated cover seal: EPDM
- Polyester housing F16: Cover made of PBT-FR or cover with sight glass made of PA12 Cover seal: EPDM
- Stainless steel housing F15: AISI 316L Cover seal: silicone

Probe material

- Process connection, inactive length, sword, tensioning weight for rope probe: 316L or steel
- Probe rope: 1.4401 (AISI 316)

Weight

Probes for fine-grained bulk solids:

The probe weighs approx. 3 kg. This weight comprises:

- Housing
- Process connection: thread
- Temperature spacing sleeve

Additional weights have to be taken into consideration depending on the make-up of the device:

- + Flange weight
- + Inactive length 0.288 kg/100 mm
- + Probe sword 0.25 kg/100 mm
- + Probe rope (ø6) 0.180 kg/m

Probes for coarse-grained bulk solids (always with flange)

The probe weighs approx. 9 kg. This weight comprises:

- Housing
- Process connection: flange
- Temperature spacing sleeve

Additional weights have to be taken into consideration depending on the make-up of the device:

- + Inactive length 0.844 kg/100 mm
- + Probe sword 0.6 kg/100 mm
- + Probe rope (ø12) 0.550 kg/m

Input

Measured variable

Measurement of the change in capacitance between the probe sword and the tank wall, depending on the level of the bulk solids.

Measuring range (valid for all)

- Measuring frequency: 500 kHz
- Span:

 $\Delta C = 5$ to 1600 pF

 $\Delta C = 5$ to 500 pF (with FEI58)

■ Final capacitance:

 $C_E = max. 1600 pF$

■ Adjustable initial capacitance:

 $C_A = 5$ to 500 pF (range 1 = factory setting)

 $C_A = 5$ to 1600 pF (range 2; not with FEI58)

Input signal

Probe covered => high capacitance Probe not covered => low capacitance

Measuring conditions

Note!

- When installing in a nozzle, use inactive length (L3).
- To control a screw conveyor (\Delta s mode), sword probes and rope probes can be used (only for nonconductive bulk solids). The on-value and off-value are determined by the empty and full calibration.

DK > 10 Measuring range up to 4 m 5 < DK < 10 Measuring range up to 12 m

2 < DK < 5 Measuring range up to 20 m

 The minimum capacitance change for point level detection must be ≥ 5 pF.

Minimum probe length for nonconductive media (<1µs/cm)

$$l_{min} = \Delta C_{min} / (C_s * [\epsilon r - 1])$$

 l_{min} = Minimum probe length

 $\Delta C_{min} = 5 pF$

 C_s = Probe capacitance in air

 ϵr = Dielectric constant, for example of dried grain = 3.0

Output

Galvanic isolation	FEI51, FEI52 between rod probe and power supply		
	FEI54: between rod probe, power supply and load		
	FEI53, FEI57S, FEI57S FEI58 see connected switching device (functional galvanic isolation in the electronic insert)		
Switch behavior	Binary or Δs mode (controlling a screw conveyor, not with FEI58)		
Switch-on behavior	When the power supply is switched on, the switching status of the outputs corresponds to the signal on alarm. The correct switch condition is reached after max. 3 seconds.		
Fail-safe mode	Minimum/maximum quiescent current safety can be switched at the electronic insert (for FEI53 and FEI57S only at Nivotester FTCxxx)		
	MAX = minimum safety: The output switches safety-oriented when the probe is uncovered (signal on alarm). For use for dry running protection and pump protection for example		
	MAX = maximum safety: The output switches safety-oriented when the probe is covered (signal on alarm). For use with overfill protection for example		
Switching delay	FEI51, FEI52, FEI54, FEI55 Can be adjusted incrementally at the electronic insert: 0.3 to 10 s		
	FEI53, FEI57S Depends on the connected Nivotester (transmitter): FTC325, FTC625, FTC470Z or FTC471Z		
	FEI58 Can be adjusted alternately at the electronic insert: 1 s/5 s		

Electronic insert FEI51 (AC 2-wire)

Note!

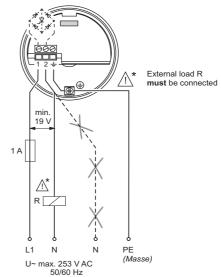
Connect in series with an external load.

Power supply

Supply voltage: 19 to 253 V AC Power consumption: < 1.5 W

Residual current consumption: < 3.8 mA

Short-circuit protection


FEI51 overvoltage protection: overvoltage category II

Electrical connection

Always connect in series with a load. Check the following:

- the residual current consumption in blocked state.
- that for low voltage:
 - the voltage drop across the load is such that the minimum terminal voltage at the electronic insert (19 V) when blocked is not undershot.
 - $-\,$ the voltage drop across the electronics when switched through is observed (up to 12 V).
- that a relay cannot de-energize with holding power below 1 mA.
 If this is the case, a resistor should be connected parallel to the relay (RC module available on request).

When selecting the relay, pay attention to the holding power / rated power (see below: "Connectable load").

1.00-FMI5xxxx-06-05-xx-en-07

Signal on alarm

Safety mode	Level	Output signal	LEDs gn gnrd gngnye
MAX		L+ I _L + 3	-×
		< 3,8 mA 1 3	<i>-</i> ∕⁄•••••
		L+ I _L + 3	- ; • • • • - ; ;-
MIN		< 3,8 mA 1 3	·⁄⁄ • • • • •
Maintenance required		I _L / < 3,8 mA 1 3	-ÿ • -ÿ • • •
Instrument failu	ire	< 3,8 mA 1 3	-ÿ•-ÿ-•••

BA300Fen017

Output signal

Output signal on power failure or in the event of damage to the sensor: < 3.8 mA

Connectable load

- For relays with a minimum holding power or rated power > 2.5 VA at 253 V AC (10 mA) or > 0.5 VA at 24 V AC (20 mA)
- Relays with a lower holding power or rated power can be operated by means of an RC module connected in parallel.
- For relays with a maximum holding power or rated power < 89 VA at 253 V AC or < 8.4 VA at 24 V AC
- Voltage drop across FEI51 max. 12 V
- Residual current with blocked thyristor max. 3.8 mA
- Load switched directly into the power supply circuit via the thyristor.

FEI52 electronic insert (DC PNP)

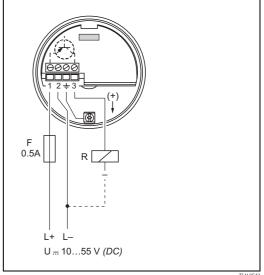
Power supply

Supply voltage: 10 to 55 V DC Ripple: max. 1.7 V, 0...400 Hz Current consumption: < 20 mA

Power consumption without load: max. 0.9 W Power consumption with full load (350 mA): 1.6 W

Reverse polarity protection: yes Separation voltage: 3.7 kV

FEI52 overvoltage protection: overvoltage category II


Electrical connection

Three-wire DC connection

Preferably in conjunction with programmable logic controllers (PLC),

DI modules in accordance with EN 61131-2.

Positive signal present at the switch output of the electronic system (PNP).

Output signal

Safety mode	Level	Output signal	LEDs gn gn rd gn gn ye	
MAX		L+ I _L + 3	ॐ • • • • ∜-	$I_L = Load curr$ (switched $I_R = Residual current)$
		1 - 3	÷ • • • •	(blocked)
		L+ I _L + 3	- ⁄ • • • • - ∕ ⁄-	
MIN		1 - 3	÷ • • • •	
Maintenance required		13	-ÿ • -ÿ • •	-¤- Lit
Instrument failu	ire 4	I _R	-⁄• • -⁄• • •	- Flashes
		1 3	TI418Fen43	● Unlit

Load current (switched through) Residual current (blocked)

Signal on alarm

Output signal on power failure or in the event of device failure: $I_R < 100 \,\mu A$

Connectable load

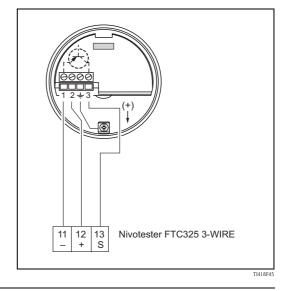
- Load switched via transistor and separate PNP connection, max. 55 V
- Load current max. 350 mA (cyclical overload and short-circuit protection)
- lacktriangle Residual current < 100 μA (with transistor blocked)
- \blacksquare Capacitance load max. 0.5 μF at 55 V; max. 1.0 μF at 24 V
- Residual voltage < 3 V (for transistor switched through)

Electronic insert FEI53 (3-wire)

Power supply

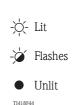
Supply voltage: 14.5 V DC Current consumption: < 15 mA Power consumption: max. 230 mW Reverse polarity protection: yes Separation voltage: 0.5 kV

Electrical connection


Three-wire DC connection

3 to 12 V signal

For connecting to the switching unit, Nivotester FTC325 3–WIRE from Endress+Hauser.


Switching between minimum/maximum Safety in the Nivotester FTC325 3-WIRE.

Point level adjustment directly at the Nivotester.

Output signal

Mode	Output signal	LEDs green red
Normal operation	312 V at terminal 3	->
Maintenance required *	312 V at terminal 3	- ⁄3 - ⁄3
Instrument failure	< 2,7 V at terminal 3	- ☆ - ☆ -

Signal on alarm

Voltage at terminal 3 vis-à-vis terminal 1: < 2.7 V

Connectable load

- Floating relay contacts in the connected switching unit Nivotester FTC325 3–WIRE
- For the contact load capacity, refer to the technical data of the switching device.

FEI54 electronic insert (AC/DC with relay output)

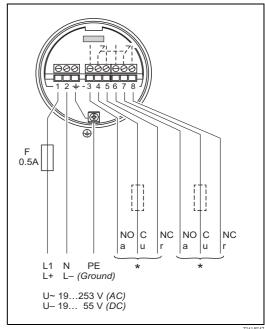
Power supply

Supply voltage: 19 to 253 V AC, 50/60 Hz or 19 to 55 V DC

Power consumption: max. 1.6 W Reverse polarity protection: yes Separation voltage: 3.7 kV

FEI54 overvoltage protection: overvoltage category II

Electrical connection


Universal current connection with relay output (DPDT)

Power supply: Please note the different voltage ranges for AC and DC.

Output:

When connecting an instrument with high inductance, provide a spark arrester to protect the relay contact. A fine-wire fuse (depending on the load connected) protects the relay contact on short-circuiting. Both relay contacts switch simultaneously.

* See below "Connectable load"

Output signal

Safety mode	Level	Output signal	LEDs gn gn rd gn gn ye	
MAX		3 4 5 6 7 8	-× • • • • -×-	
WICV		3 4 5 6 7 8	- ⁄	
		3 4 5 6 7 8	ॐ • • • ❖	
MIN		3 4 5 6 7 8	÷ • • • •	↑ Relay energized
Maintenance required			- ' • - ' • • •	Lit
Instrument failu	ure 4	3 4 5 6 7 8	ॐ • ☆•••	Flashes Unlit
			TI418Fen48	TI418F49

Signal on alarm

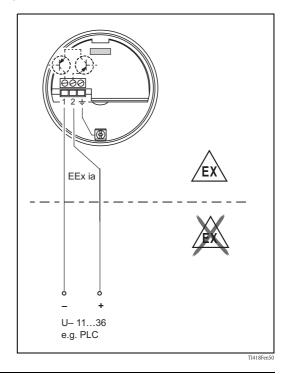
Output signal on power failure or in the event of device failure: relay de-energized

Connectable load

- Loads switched via 2 floating changeover contacts (DPDT)
- I~ max. 6 A, U~ max. 253 V; P~ max. 1500 VA at $\cos \varphi = 1$, P~ max. 750 VA at $\cos \varphi > 0.7$
- I- max. 6 A to 30 V, I- max. 0.2 A to 125 V
- The following applies when connecting a functional low-voltage circuit with double isolation as per IEC 1010: Sum of voltages of relay output and power supply max. $300\ V$

Electronic insert FEI55 (8/16 mA; SIL2/SIL3)

Power supply


Supply voltage: 11 to 36 V DC Power consumption: < 600 mW Reverse polarity protection: yes Separation voltage: 0.5 kV

Electrical connection

Two-wire connection for separate switching unit

For connecting to programmable logic controllers (PLC), AI modules 4 to 20 mA in accordance with EN 61131-2.

The point level signal is sent via an output signal jump from 8 mA to 16 mA.

Output signal

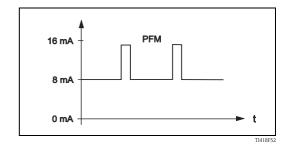
Safety mode Level Output signal LEDs gn gn rd gn gn ye	max 1					1
MAX 2 ~16 mA 1 ~ ~ 8 m + ~ ~8 mA 1 ~ ~ ~ 8 m 1 ~ ~ ~ 8 mA 1 ~ ~ ~ ~ ~ 8 m Min	MAX 2 ~16 mA 1 + ~8 mA 1 + ~16 mA 1 -	Safety mode	Level	Output signal		
# 2 ~8 mA 1	### 2 ~8 mA 1	MAY		⁺ 2 ~16 mA → 1	→ • • • • \	-
Maintenance required *	MIN the strument failure and the strument fai	WAX		+ ~8 mA 1	÷ • • • • •	
Maintenance required * 2 8/16 mA 1	Maintenance required * 2 8/16 mA 1 3/10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			+ ~16 mA → 1	<i>-</i>	
required * 2 8/16 mA 1 -> -> -> -> -> ->	required * 2 8/16 mA 1 - 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MIN		+ ~8 mA → 1	- '	
	nstrument failure + < 3.6 mA 1			+ 8/16 mA 1	-\$' • \$' • • •	-\\\\\-
		Instrument failu	ure _\	+ < 3.6 mA	-2 - 5 - 0 - 0	- `

 $mA \pm 5 \%$ $mA \pm 6 \%$

Signal on alarm

Output signal on power failure or in the event of device failure: < 3.6 mA

Connectable load


- U = Connection DC voltage:
- 11 to 36 V DC (non-hazardous area and Ex ia)
- 14.4 to 30 V DC (Ex d)
- $I_{max} = 16 \text{ mA}$

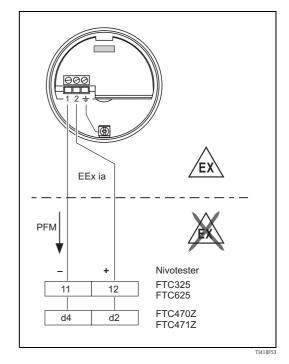
FEI57S electronic insert (PFM)

Power supply

Supply voltage: 9.5 to 12.5 VDC Power consumption: < 150 mW Reverse polarity protection: yes

Separation voltage: 0.5 kV

Frequency: 17 to 185 Hz


Electrical connection

Two-wire connection for separate switching unit

For connecting to switching units Nivotester FTC325, FTC625, FTC470Z, FTC471Z from Endress+Hauser.

PFM signal 17 to 185 Hz

Switching between minimum/maximum safety in the Nivotester.

Output signal

PFM 60 to 185 Hz (Endress+Hauser)

Signal on alarm

Mode	Output signal	LEDs green red	
Normal operation	60185 Hz 1 → 2	- ⁄	
Maintenance required *	60185 Hz 1 → 2	- ,	-\(\overline{\pi}\)- Lit
Instrument failure	<20 Hz 1→2	- À - À -	- Flash Unli

Connectable load

- Floating relay contacts in the connected switching unit Nivotester FTC325, FTC625, FTC470Z, FTC471Z
- For the contact load capacity, refer to the technical data of the switching device.

Electronic insert FEI58 (NAMUR H-L edge)

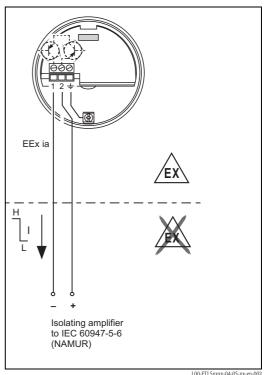
Power supply

Power consumption: < 6 mW at I < 1 mA; < 38 mW at I = 2.2 to 4 mAInterface connection data: IEC 60947-5-6

Electrical connection

Two-wire connection for separate switching unit

For connecting to isolating amplifiers as per NAMUR (IEC 60947-5-6), e.g. FXN421, FXN422, FTL325N, FTL375N from Endress+Hauser. Change in output signal from high to low current in event of point level detection.


(H-L edge)

Additional function: Test key on the electronic insert. Pressing the key interrupts the connection to the isolating amplifier.

Note!

In the case of Ex-d operation, the additional function can only be used if the housing is not exposed to an explosive atmosphere.

Connection to Multiplexer: set 3 s as the cycle time at least.

L00-FTL5xxxx-04-05-xx-er

Output signal

2.2 + 3.5 mA 2 → 1	->	-\
0.0		
0.6 + 1.0 mA 2 → 1		•
2.2 + 3.5 mA 2 1	->_	-\\
0.6 + 1.0 mA 2 1	->	•
1901	+ 3.5 mA 2 3.5 mA 1	+ 3.5 mA 1 - 0.6

Signal on alarm

Output signal in the event of damage to the sensor: < 1.0 mA

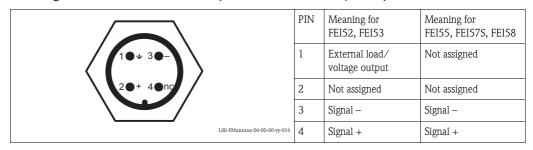
Connectable load

- See the technical data of the connected isolating amplifier as per IEC 60947-5-6 (NAMUR)
- Connection also to isolating amplifiers which have special safety circuits (I > 3.0 mA)

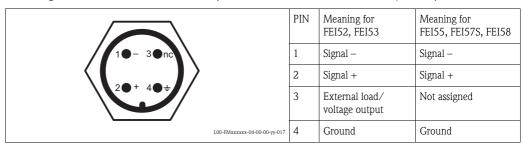
Power supply

Electrical connection

Connection compartment


Five housings with the following protection classes are available:

Housing	Standard	EEx ia	EEx d	gas-tight process seal
Polyester housing F16	X	X	-	-
Stainless steel housing F15	X	X	-	-
Aluminum housing F17	X	X	-	-
Aluminum housing F13	X	X	X	X
Aluminum housing T13	X	X	X	X
(with separate connection compartment)				


Connector

In the case of the versions with a connector (M12 or 7/8"), the housing does not have to be opened to connect the signal cable.

PIN assignment for the M12 connector (PROFIBUS PA standard, HART)

PIN assignment for the 7/8" connector (Fieldbus FOUNDATION standard, HART)

Cable entry

- Cable gland: M20x1.5 (for EEx d only cable entry M20) Two cable glands included in scope of delivery.
- Cable entry: G ½, NPT ½, NPT ¾ or M20 thread

Performance characteristics

Reference operating conditions

- Room temperature: +20 °C ±5 °C
- Span:
 - Standard measuring range: 5 to 500 pFExtended measuring range: 5 to 1600 pF
 - Span for reference: 5 to 250 pF
- Uncertainty according to DIN 61298-2: max ±0.3%
- \blacksquare Non-repeatability (reproducibility) according to DIN 61298-2: max. $\pm 0.1~\%$

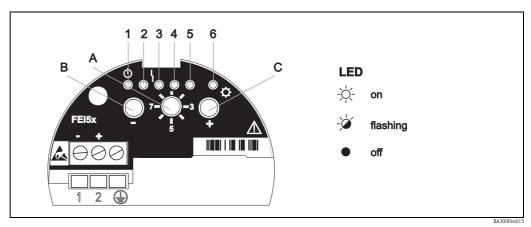
Switch point

- Uncertainty according to DIN 61298–2: max $\pm 0.3\%$
- \blacksquare Non-repeatability (reproducibility) according to DIN 61298-2: max. $\pm 0.1~\%$

Ambient temperature effect

Electronic insert

< 0.06~%~/~10~K related to the full scale value


Separate housing

Capacitance change of connecting cable per meter $0.15\ pF/10K$

Human interface

Electronic inserts

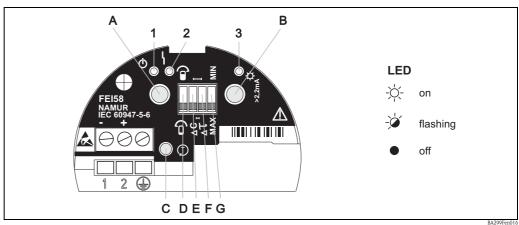
FEI51, FEI52, FEI54, FEI55

Green LED 1 (♥ operational), red LED 3 (\ fault), yellow LED 6 (★ switching state)

Function switch	Function	– key	+ key		Ligh	nt emitting di	odes (LED sig	gnals)	
setting				Ф		4			₽
7			•	☆ *	☆	ॐ	*	☆ * •	☆ * •
				1 (green)	2 (green)	3 (red)	4 (green)	5 (green)	6 (yellow)
1	Operation			Flashes Operational LED	On (MIN-SIL)	Flashes (warning/ alarm)	On (MAX-SIL)		On/off/ flashes
	Restore factory setting	appro	th keys for ox. 20 s	On	->	->	->	->	On/off/ flashes
2	Empty calibration	Press		On (present)					On/off/ flashes
	Full calibration		Press					On (present)	On/off/ flashes
	Reset: Calibration and switchpoint adjustment		th keys for ox. 10 s	On	->	->	->	->	On/off/ flashes
3 (AC O	Switchpoint adjustment	Press for <	Press for >	On (2 pF)	Off (4 pF)	Off (8 pF)	Off (16 pF)	Off (32 pF)	On/off/ flashes
4	Measuring range	Press for <		On (500 pF)	Off (1600 pF)				On/off/ flashes
Δs	Two-point control Δs		Press once					On	On/off/ flashes
	Buildup mode		Press twice				On	On	On/off/ flashes
5 T	Switching delay	Press for <	Press for >	Off (0.3 s)	On (1.5 s)	Off (5 s)	Off (10 s)		On/off/ flashes
6	Self-test (function test)	Press both k	eys	Off (inactive)				Flashes (active)	On/off/ flashes
7	MIN-/MAX Fail-safe mode	Press for MIN	Press for MAX	Off (MIN)				On (MAX)	On/off/ flashes
	Lock/unlock SIL mode*	Press both k	•		On (MIN-SIL)		On (MAX-SIL)		On/off/ flashes
8 1	Upload/download Sensor DAT (EEPROM)	Press for download	Press for upload	Flashes (download)				Flashes (upload)	On/off/ flashes
* Only in conjunct	 ion with electronic insert FE	II I55 (SIL).							

Electronic inserts

FEI53, FEI57S



Green LED ($^{f O}$ operational), red LED ($^{f I}$ fault)

DIP sw	ritches	Function
A	В	
A	Standard	Standard ¹⁾ : If the measuring range is exceeded no alarm is output.
A	Ф 🗐	四: If the measuring range is exceeded an alarm is output.
В	0500pF	Measuring range: The measuring range is between 0 and 500 pF. Span: The span is between 5 and 500 pF.
В	01600pF	Measuring range: The measuring range is between 0 and 1600 pF. Span: The span is between 5 and 1600 pF.

Electronic insert

FEI58

Green LED 1 (♠ operational), red LED 2 (\ fault), yellow LED 3 (★ switching state)

DIF	P switches (C, D, E, F)	Function
D		The probe is covered during calibration.
D	○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○<	The probe is uncovered during calibration.
E	△C I	Switchpoint adjustment: 10 pF
Е	△C	Switchpoint adjustment: 2 pF
F	ΔT —	Switching delay: 5 s
F	ΔΤ	Switching delay: 1 s
G	MIN	Fail-safe mode: MIN The output switches safety-oriented when the probe is uncovered (signal on alarm). For use for dry running protection and pump protection for example
G	MAX	Fail-safe mode: MAX The output switches safety-oriented when the probe is covered (signal on alarm). For use with overfill protection for example

Key			Function
Α	В	С	
X			Display diagnostic code
	X		Display calibration situation
X	X		Perform calibration (during operation)
X	X		Delete calibration points (during startup)
		X	Test key ① , (disconnects the transmitter from the switching unit)

Certificates and approvals

CE approval

The devices are designed to meet state-of-the-art safety requirements, have been tested and left the factory in a condition in which they are safe to operate. The devices comply with the applicable standards and regulations that are listed in the EC Declaration of Conformity and thus meet the legal requirements of the EC Directives. Endress+Hauser confirms the conformity and the successful testing of the device by affixing to it the CE approval.

Other certificates

- See also "Ordering information" \rightarrow $\stackrel{\triangle}{=}$ 41
- AD2000

The wetted material (316L) corresponds to AD2000 – W0/W2

Other standards and guidelines

EN 60529

Degrees of protection by housing (IP code)

EN 61010

Safety requirements for electrical equipment for measurement, control and laboratory use

EN 61326

Interference emission (Class B equipment), interference immunity (Appendix A – Industrial).

NAMUR

Association for Standards for Control and Regulation in the Chemical Industry

IEC 61508

Functional safety

IEC 60947-5-6

Low-voltage switchgear and control gear; DC interface for proximity sensors and switching amplifiers (NAMUR)

Ordering information

Note! In this list, versions which are mutually exclusive are not marked.

Solicap S FTI77

10	Aŗ	proval:	
	Α	Non-hazardous area	
	В	ATEX II 1/3 D	Ex tD
	С	ATEX II 1/2 D	Ex tD
	D	ATEX II 3 D	Ex nA/nL/nC
	F	ATEX II 1 D, 1/2 D, 1/3 D	EEx ia D20 T 90 °C
	K	CSA General Purpose,	CSA C US
	L	CSA/FM IS Cl. I, II, III,	Div. 1+2, Gr. A-G
	M	CSA/FM XP Cl. I, II, III,	Div. 1+2, Gr. A-G
	N	CSA/FM DIP Cl. II, III,	Div. 1+2, Gr. E-G
	Y	Special version, TSP-no. to I	be specified
1			

15	Aŗ	pplication:									
	1	Solid, fine-grained									
	2	Solid, coarse-solids									
	9	Special version									

20 Ir	nactive length L3:	
A	Not selected	
В	200 mm	steel
C	400 mm	steel
E	200 mm	316L
F	400 mm	316L
G	mm	316L
Н	mm, inactive length + 125 mm active buildup compensation	316L
L	8 inch	steel
l M	16 inch	steel
N	8 inch	316L
P	16 inch	316L
R	inch	316L
S	inch, inactive length + 5 inch active buildup compensation	316L
9	Special version	

30	Act	ive length L1:			
	AB	200 mm	sword	steel	
	AC	400 mm	sword	steel	
	AD	700 mm	sword	steel	
	BB	200 mm	sword	316L	
	ВС	400 mm	sword	316L	
	BR	mm	sword	316L	
	CR	mm	6 mm rope	steel zinc coated	tension weight steel
	CS	mm	12 mm rope	steel zinc coated	tension weight steel
	DR	mm	6 mm rope	316L	tension weight 316L
	DS	mm	12 mm rope	316L	tension weight 316L
	EB	8 inch	sword	steel	
	EC	16 inch	sword	steel	
	ED	28 inch	sword	steel	
	FB	8 inch	sword	316L	
	FC	16 inch	sword	316L	
	FR	inch	sword	316L	
	GR	inch	0.24 " rope	steel zinc coated	tension weight steel
	GS	inch	0.47 " rope	steel zinc coated	tension weight steel
	HR	inch	0.24 " rope	316L	tension weight 316L
	HS	inch	0.47 " rope	316L	tension weight 316L
	VV	Connection thread, p	repared for active	probe length	
	YY	Special version, TSP-	no. to be specified	i	

50		Proce	Process connection:						
		AFJ	2",	150 lbs RF	316/316L				
		AGJ	3",	150 lbs RF	316/316L				
		AHJ	4",	150 lbs RF	316/316L				
		AH1	4",	150 lbs RF	steel				

50	Process		ootion.		
30		S COI II ON80,	PN10/16 A	316L	EN1092-1 (DIN2527 B)
		ON100,		316L	EN1092-1 (DIN2527 B) EN1092-1 (DIN2527 B)
		DN100		steel	EN1092-1 (DIN2527 B) EN1092-1 (DIN2527 B)
		DN50,	PN25/40 A	316L	EN1092-1 (DIN2527 B)
		OK 50		316L	JIS B2220
	-	OK 80		316L	JIS B2220
		OK 10		316L	JIS B2220
		OK 10		steel	JIS B2220
	RGJ N	NPT 1	2,	316L	thread ANSI
	RG1 N	NPT 1	2,	steel	thread ANSI
	RVJ F	R 1½,		316L	thread EN10226
	RV1 F	R 1½,		steel	thread EN10226
	YY9 S	Special	version, TSP-no. to be	specified	
60	l I	Electr	onics; output:		
	1	l FE	51; 2-wire	19 to	253 VAC
	2	PE FE	52; 3-wire PNP,	10 to	55VDC
	3	B FE	53; 3-wire,	3 to	12 V signal
	4	4 FE	54; relay DPDT,	19 to	253 VAC, 19 to 55 VDC
	5		55; 8/16 mA,	11 to	36VDC
	7		57S; 2–wire PFM		
	3		58; NAMUR+test key	(H–L signal)	
			pared for FEI5x		
)	Spe	cial version, TSP-no. t	o be specified	
	1 1				
70			using:		
		1	F15 316L		IP66, NEMA4X
		2	F16 polyester		IP66, NEMA4X
		3	F17 Alu	uaha aasl	IP66, NEMA4X
		4 5	F13 Alu + gas-tight pa T13 Alu + gas-tight pa		IP66, NEMA4X
)	+ separate connection		IP66, NEMA4X
		9	Special version, TSP-r		d
80			Cable entry:		
			A Gland M20		
			B Thread G ½		
			C Thread NPT ½		
			D Thread NPT 3/4		
			G Thread M20		
			E M12 connector		
			F 7/8" connector		
			Y Special version, T	SP-no. to be spe	cified
90			Type of probe	:	
			1 Compact		
			2 2000 mm L4		rate housing
			3 mm L4		rate housing
				*	rate housing
			5 inch L4	•	rate housing
			9 Special versio	n, TSP-no. to be	specified
100			Additional	option:	
			A Basic vers	sion	
					16L pressurized), Inspection certificate
				ration of Confor	
			Y Special ve	ersion, TSP-no. t	o be specified
FTI77			Product of	designation	

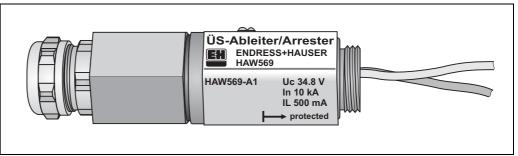
Accessories

Weather protection cover

For F13 and F17 housing Order number: 71040497

Overvoltage protection HAW56x

Overvoltage protection (housing)


- HAW569–A11A (non-hazardous)
- HAW569–B11A (hazardous area)

Note!

These two versions can be screwed directly into the housing (M20x1.5).

Surge arrester for limiting overvoltage in signal lines and components.

I.00-FMI5xxxx-03-05-xx-xx-00

Overvoltage protection (cabinet)

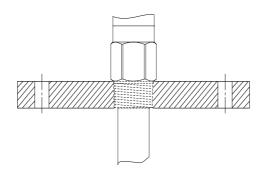
■ HAW562Z (hazardous area)

The HAW562Z module can be used for installation in cabinets.

Adapter flange FAU70E / FAU70A

The following (steel) probe versions are available for fine-grained bulk solids:

- R 1½
- NPT 1½


Adapter flanges that can be ordered via the following FAU70E and FAU70A product structures are optionally available.

■ FAU70E

- 1233 -> DN50 PN16 A, flange EN1092-1 (DIN2527 B)
- 1433 -> DN80 PN16 A, flange EN1092-1 (DIN2527 B)
- 1533 -> DN100 PN16 A, flange EN1092-1 (DIN2527 B)

■ FAII70A

- 2253 -> 2" 150lbs FF, flange ANSI B16.5
- 2453 -> 3" 150lbs FF, flange ANSI B16.5
- 2553 -> 4" 150lbs FF, flange ANSI B16.5

BA381Fxx025

Spare parts

Electronic inserts

Electronic insert	Parts number
FEI51	71042887
FEI52	71025819
FEI53	71025820
FEI54	71025814
FEI55	71025815
FEI57S	71025816
FEI58	71100895

Note!

- You can order spare parts directly from your E+H service organization by quoting the order number (see below).
- Before ordering, please note that all ordered spare parts must correspond with the indications on your nameplate. Otherwise, the indications on the nameplate will no longer correspond with the instrument version.

Housing cover

Cover	Parts number
For aluminum housing F13: gray with sealing ring	52002698
For stainless steel housing F15: with sealing ring	52027000
For stainless steel housing F15: with clasp and sealing ring	52028268
For polyester housing F16, flat: gray with sealing ring	52025606
For aluminum housing F13, flat: gray with sealing ring	52002699
For aluminum housing T13, flat: gray with sealing ring/electronics compartment	52006903
For aluminum housing T13, flat: gray with sealing ring/connection compartment	52007103

Seal set for stainless steel housing

 Seal set for stainless steel housing F15: with 5 sealing rings 52028179

Documentation

Note!

This documentation is available on the product pages at www.endress.com

Technical Information

- EMC test procedures TI241F/00/en
- Nivotester FTL325N TI353F/00/en
- Nivotester FTL375N TI361F/00/en

Operating Instructions

Solicap S FTI77 BA381F/00/en

Certificates

Safety information (ATEX)

Solicap S FTI77
 ATEX II 1 D Ex tD A20 IP65 T 90 °C,
 ATEX II 1/2 D Ex tD A20/A21 IP65 T 100 °C
 XA486F/00/a3

Control drawings

■ Solicap S FTI77 FM: ZD243F/00/en ■ Solicap S FTI77 CSA ZD225F/00/en

Functional safety

■ Solicap S FTI77 SD278F/00/en

CRN registration

■ CRN 0F1988.75

Other

■ AD2000

The wetted material (316L) corresponds to AD2000 – W0/W2 $\,$

Patents

This product is protected by at least one of the patents listed below. Further patents are under development.

- DE 103 22 279, WO 2004 102 133, US 2005 003 9528
- DE 203 13 695, WO 2005 025 015

Instruments International

Endress+Hauser Instruments International AG Kaegenstrasse 2 4153 Reinach Switzerland

Tel. +41 61 715 81 00 Fax +41 61 715 25 00 www.endress.com info@ii.endress.com

People for Process Automation

