
Válido a partir da versão do firmware: ISU00XA: V01.06.xx ISU01XA: V01.05.xx ISU03XA: V01.06.xx

Instruções de operação **RIA15**

Indicador do processo de 4 a 20 mA alimentados por ciclo com comunicação $HART^{\circledR}$

RIA15 Sumário

Sumário

1	Sobre este documento	. 4	8.4	Matriz de operação em conjunto com o	<i>(</i> , 0
1.1 1.2	Função do documento		8.5	Waterpilot FMX21	
1.3	Marcas registradas		8.6	Gammapilot FMG50	50
2	Instruções de segurança	7	8.7	Proservo NMS8x	54
2.1	Especificações para o pessoal	. 7	0.7	Liquiline CM82	56
2.2 2.3	Uso indicado		9	Localização de falhas	61
2.4	Segurança da operação	. 7	9.1	Limites de erro conforme NAMUR NE 43	
2.5	Segurança do produto	. 8	9.2	Mensagens de diagnóstico	
3	Descrição do produto	. 9	9.3 9.4	Peças de reposição	00
3.1	Função	. 9		compatibilidade	66
3.2 3.3	Modos de operação		10	Manutenção	67
4	Identificação	21	11	Devolução	67
4.1	Etiqueta de identificação				
4.2 4.3	Escopo de entrega		12	Descarte	67
4.4	Certificação de protocolo ® HART		12.1 12.2	Segurança de TI	
5	Montagem	23	12.3	Descarte do medidor	
5.1	Recebimento, transporte, armazenamento		13	Acessórios	69
5.2	Condições de instalação	23	13.1	Acessórios específicos para equipamentos	
5.3 5.4	Instruções de instalação		13.2	Acessórios específicos do serviço	
6	Ligação elétrica	29	14	Dados técnicos	
6.1	Guia de ligação elétrica rápida	29	14.1 14.2	Entrada	
6.2 6.3	Conexão em 4 para 20 mA modo	30 30	14.2	Características de desempenho	
6.4	Ligação elétrica com iluminação de fundo		14.4	Instalação	72
	comutável		14.5 14.6	Ambiente	
6.5 6.6	Inserindo o cabo, invólucro em campo Blindagem e aterramento		14.7	Operabilidade	
6.7	Conectando ao aterramento funcional	38	14.8	Certificados e aprovações	74
6.8	Grau de proteção		1.5		
6.9	Verificação pós-conexão	40	15	Comunicação® HART	
7	Operação	41	15.1 15.2	Classes de comando do protocolo HART® Comandos HART® usados	
7.1	Funções de operação		15.3	Status do equipamento de campo	
	, , , , , , , , , , , , , , , , , , ,		15.4	Unidades compatíveis	78
8	Comissionamento	43	15.5 15.6	Tipos de conexão do protocolo HART® Variáveis de dispositivo para dispositivos de	82
8.1	Verificação pós-instalação e ligar o	4.2	10.0	medição multivariáveis	83
8.2	equipamento		,		
8.3	Matriz de operação em conjunto com o Micropilot FMR20		Indic	ce	84
	•				

Sobre este documento RIA15

1 Sobre este documento

1.1 Função do documento

Essas instruções de operação contêm todas as informações necessárias em várias fases do ciclo de vida do equipamento: da identificação do produto, recebimento e armazenamento, até a instalação, conexão, operação e comissionamento, incluindo a localização de falhas, manutenção e descarte.

1.2 Convenções de documentos

1.2.1 Símbolos de segurança

▲ PERIGO

Este símbolo alerta sobre uma situação perigosa. A falha em evitar esta situação resultará em sérios danos ou até morte.

A ATENÇÃO

Este símbolo alerta sobre uma situação perigosa. A falha em evitar esta situação pode resultar em sérios danos ou até morte.

▲ CUIDADO

Este símbolo alerta sobre uma situação perigosa. A falha em evitar esta situação pode resultar em danos pequenos ou médios.

AVISO

Este símbolo contém informações sobre procedimentos e outros dados que não resultam em danos pessoais.

1.2.2 Símbolos elétricos

Símbolo	Significado	
===	Corrente contínua	
~	Corrente alternada	
$\overline{\sim}$	Corrente contínua e corrente alternada	
≐	Conexão de aterramento Um terminal aterrado que, pelo conhecimento do operador, está aterrado através de um sistema de aterramento.	
	Aterramento de proteção (PE) Um terminal que deve ser conectado ao terra antes de estabelecer quaisquer outras conexões.	
	Os terminais de aterramento são situados dentro e fora do equipamento: Terminal de terra interno: conecta o aterramento de proteção à rede elétrica. Terminal de terra externo: conecta o equipamento ao sistema de aterramento da fábrica.	

1.2.3 Símbolos para determinados tipos de informações

Símbolo	Significado
✓	Permitido Procedimentos, processos ou ações que são permitidas.
Preferido Procedimentos, processos ou ações que são preferidas.	

RIA15 Sobre este documento

Símbolo	Significado
X	Proibido Procedimentos, processos ou ações que são proibidas.
i	Dica Indica informação adicional.
	Referência à documentação.
A=	Referência à página.
	Referência ao gráfico.
>	Nota ou etapa individual a ser observada.
1., 2., 3	Série de etapas.
L	Resultado de uma etapa.
?	Ajuda em casos de problema.
	Inspeção visual.

1.2.4 Símbolos em gráficos

Símbolo	Significado
1, 2, 3,	Números de itens
1. , 2. , 3	Série de etapas
A, B, C,	Visualizações
A-A, B-B, C-C,	Seções
≈ → A0013441	Direção da vazão
	Área classificada Indica uma área classificada.
A0011188	Área segura (área não classificada) Indica uma área não classificada.

1.2.5 Símbolos da ferramenta

Símbolo	Significado
0/	Chave de fenda plana
A0011220	
06	Chave Allen
A0011221	
W	Chave de boca
A0011222	
0	Chave de fenda Torx
A0013442	

Sobre este documento RIA15

1.3 Marcas registradas

HART®

Marca registrada da HART® Communication Foundation

RIA15 Instruções de segurança

2 Instruções de segurança

2.1 Especificações para o pessoal

O pessoal para a instalação, comissionamento, diagnósticos e manutenção deve preencher as sequintes especificações:

- ► Especialistas treinados e qualificados devem ter qualificação relevante para esta função e tarefa específica.
- ► Estejam autorizados pelo dono/operador da planta.
- ▶ Estejam familiarizados com as regulamentações federais/nacionais.
- ► Antes de iniciar o trabalho, leia e entenda as instruções no manual e documentação complementar, bem como nos certificados (dependendo da aplicação).
- ▶ Siga as instruções e esteja em conformidade com condições básicas.

O pessoal de operação deve preencher as sequintes especificações:

- Ser instruído e autorizado de acordo com as especificações da tarefa pelo proprietáriooperador das instalações.
- Siga as instruções desse manual.

2.2 Uso indicado

O indicador do processo exibe variáveis analógicas do processo ou variáveis do processo $HART^{\circ}$ na tela.

Por meio da comunicação HART®, os dispositivos /sensores de campo Endress+Hauser selecionados (com a opção apropriada) também podem ser configurados e comissionados com muita flexibilidade ou suas mensagens de status lidas e exibidas.

4 para 20 mAO equipamento é alimentado pelo ciclo de corrente e não demanda uma alimentação de tensão adicional.

- O fabricante não se responsabiliza por danos resultantes de uso incorreto ou uso diferente daquele que foi determinado para o instrumento. Não é permitido converter ou modificar o equipamento de qualquer modo.
- Equipamento montado em painel:
 - O equipamento é projetado para instalação em um painel e deve ser operado no estado instalado.
- Equipamento de campo:
 - O equipamento é projetado para instalação no campo.

2.3 Segurança no local de trabalho

Ao trabalhar no e com o equipamento:

 Use o equipamento de proteção individual de acordo com as regulamentações federais/ nacionais.

2.4 Segurança da operação

Risco de lesões.

- ▶ Somente opere o equipamento em condições técnicas adequadas e no modo seguro.
- ▶ O operador é responsável por fazer o equipamento funcionar sem interferências.

Conversões para o equipamento

Não são permitidas modificações não-autorizadas no equipamento pois podem levar a riscos imprevistos.

▶ Se, apesar disso, for necessário realizar alterações, consulte a Endress+Hauser.

Instruções de segurança RIA15

Reparo

Para garantir a contínua segurança e confiabilidade da operação

- ► Faça reparos no equipamento somente se estes forem expressamente permitidos.
- ▶ Observe os regulamentos federais /nacionais relacionados com o equipamento elétrico.
- ▶ Use somente peças sobressalentes e acessórios originais da Endress+Hauser.

2.5 Segurança do produto

Este medidor foi projetado em conformidade com as boas práticas de engenharia para atender aos requisitos de segurança da tecnologia de ponta, foi testado e deixou a fábrica em condições seguras de operação.

Atende as normas gerais de segurança e aos requisitos legais. Também está em conformidade com as diretrizes da CE listadas na declaração de conformidade da CE específicas do equipamento. A Endress+Hauser confirma este fato fixando a identificação CE no equipamento.

RIA15 Descrição do produto

3 Descrição do produto

3.1 Função

O indicador de processo RIA15 é incorporado ao ciclo 4 para 20 mA/HART® e exibe o sinal de medição em formato digital. O indicador de processo não requer uma fonte de alimentação externa. Ela é energizada pelo ciclo de corrente.

Por meio da comunicação HART®, o RIA15 permite a configuração e comissionamento extremamente flexíveis dos equipamentos de campo selecionados e leituras das mensagens de status do equipamento/sensor. O pré-requisito é que o RIA15 foi solicitado com a opção "nível" ou "análise" adequada (ex. opção do nível RIA15 FMR20 + FMX21 + FMG50).

Descrição detalhada das aplicações compatíveis → 🖺 10

O equipamento atende as solicitações das especificações do protocolo de comunicação $HART^{\otimes}$ e pode ser usado com equipamentos com $HART^{\otimes}$ Revisão ≥ 5.0 .

3.2 Modos de operação

O indicador do processo pode ser usado simplesmente como um indicador ou como um indicador com função de diagnóstico/configuração no local.

3.2.1 Funções do display

O indicador suporta dois modos diferentes de display:

Modo 4 a 20 mA:

Neste modo de operação, o indicador de processo é incorporado no ciclo de corrente 4 para 20 mA e mede a corrente transmitida. A variável calculada com base no valor da corrente e nos limites da faixa é exibida na forma digital no LCD de 5 dígitos. Além disso, podem ser exibidos um gráfico de barras e a unidade associada.

Modo HART:

O dispositivo funciona como um indicador, mesmo quando estiver operando com um sensor/ atuador HART®. Nesse caso, o indicador também é alimentado pelo ciclo atual.

O indicador de processo pode optar por funcionar como mestre primário ou mestre secundário (padrão) no ciclo HART®. Quando ela funciona como um mestre, o equipamento pode ler os valores de processo a partir do medidor e exibi-los. A comunicação HART® opera com o princípio de mestre /escravo. Como regra geral, o sensor/atuador é um escravo e transmite informações somente no caso de uma solicitação feita pelo mestre.

Um ciclo HART® pode ter um máximo de dois mestres HART® a qualquer hora. Com esses mestres HART, é feita uma distinção entre o mestre primário (ex.: o sistema de controle) e o mestre secundário (ex. terminal portátil para operação local dos medidores). Os dois mestres no ciclo/na rede não podem ser mestres do mesmo tipo, por exemplo, não podem ser dois "mestres secundários".

Se um terceiro mestre $HART^{\otimes}$ for adicionado à rede, um dos outros mestres deverá ser desabilitado; caso contrário haverá uma colisão na rede.

Se o indicador de processo estiver operando como "mestre secundário" e outro "mestre secundário" (por exemplo, um equipamento portátil) for adicionado à rede, o equipamento interromperá a comunicação HART® logo que ele detectar a presença de outro "mestre secundário". O display alterna entre mensagem de erro C970 "Colisão de multimestre" e "---". Um valor medido não é exibido neste caso. O equipamento sai do ciclo HART® por 30

RIA15 Descrição do produto

> segundos e, em seguida, tenta restabelecer a comunicação HART® novamente. Assim que o "mestre secundário" adicional for removido da rede, o equipamento continua a comunicação e exibe os valores medidos do sensor/atuador mais uma vez.

Observe que, se dois indicadores do processo precisarem ser usado em uma conexão Multidrop, um dispositivo deverá ser configurado como o "mestre primário" e o outro como "mestre secundário" para evitar uma colisão com o mestre.

No modo HART, o indicador de processo pode exibir até quatro variáveis de equipamento de um medidor multivariável. Essas variáveis são denominadas Variável primária (PV), Variável secundária (SV), Variável terciária (TV) e variável guaternária (QV). Essas variáveis são espaços reservados para valores medidos que podem ser recuperados usando a comunicação HART®.

Para um medidor de vazão, como o Promass, esses quatro valores podem ser da sequinte

- Variável primária do processo (PV) →Vazão de massa
- Variável secundária do processo (SV) → Totalizador 1
- Terceira variável do processo (TV) → Densidade
- Quarta variável do processo (QV) → Temperatura

A seção HART® no final destas instruções de operação fornece exemplos dessas quatro variáveis de dispositivo para dispositivos de medição multivariáveis→ 🖺 83.

Consulte as instruções de operação de cada dispositivo para obter detalhes sobre as variáveis definidas como padrão no sensor /atuador e como elas podem ser alteradas.

O indicador de processo pode mostrar cada um desses valores. Os valores individuais devem ser ativados no menu SETUP - HART1 a HART4 para essa finalidade. Os parâmetros individuais são atribuídos a variáveis de processo fixas no dispositivo neste caso:

HART1 = PV

HART2 = SV

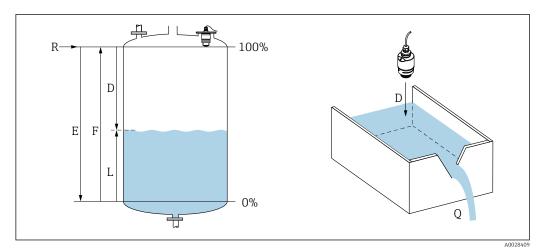
HART3 = TV

HART4 = OV

Por exemplo, se o PV e a TV forem exibidos no indicador de processo, HART1 e HART3 deverão ser ativados.

Os valores podem ser mostrados alternadamente no indicador de processo ou um valor é exibido continuamente e os outros valores são mostrados apenas ao pressionar '+' ou '-'. O tempo de comutação pode ser configurado no menu **EXPRT - SYSTM - TOGTM**.

3.2.2 O RIA15 como um indicador com função de configuração


Para sensores /transmissores específicos da Endress+Hauser, o RIA15 pode ser usado para configuração / diagnóstico, além de sua função de exibição.

O RIA15 como um indicador remoto e para operação do Micropilot FMR20

O Micropilot é um sistema de medição "descendente", que funciona de acordo com o método "time of flight" (ToF). Ele mede a distância do ponto de referência (conexão do processo do dispositivo de medição) à superfície do meio. Os pulsos de radar são emitidos por uma antena, refletidos pela superfície do meio e recebidos novamente pelo sistema de radar.

No modo HART®, o RIA15 com a opção "nível" suporta a configuração básica do FMR20. O FMR20 pode ser ajustado na opção do menu **CONFIGURAÇÃO** → **NÍVEL** (consulte a matriz operacional). O valor exibido no RIA15 no modo display corresponde à distância medida ou, se a linearização estiver habilitada, a um valor de porcentagem. A temperatura também pode ser exibida.

RIA15 Descrição do produto

Parâmetros de calibração Micropilot FMR20

- E Calibração vazia (= zero)
- F Calibração cheia (= intervalo)
- D Distância medida
- L Nível (L = E D)
- Q Faixa de vazão em açudes ou canais de medição (calculados a partir do nível usando a linearização)

Princípio de operação do FMR20

Os pulsos de radar refletidos são recebidos pela antena e transmitidos aos componentes eletrônicos. Lá, um microprocessador avalia os sinais e identifica o nível de eco causado pela reflexão dos pulsos de radar na superfície do meio.

A distância $\bf D$ até a superfície do meio é proporcional ao tempo de voo (time of flight) $\bf t$ do pulso:

 $D = c \cdot t/2,$

onde \mathbf{c} é a velocidade da luz.

Baseando-se na distância vazia E conhecida, o nível L é calculado:

L = E - D

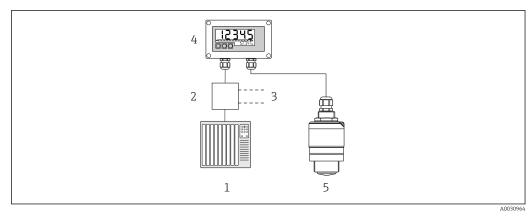
O Micropilot é calibrado inserindo a distância vazia \mathbf{E} (= ponto zero) e a distância total \mathbf{F} (= intervalo).

Resultados e comissionamento básico do FMR20

O RIA15 pode ser usado como um indicador local dos valores medidos, bem como para comissionamento básico do sensor do nível de radar Micropilot FMR20 através do HART®.

Os seguintes valores são produzidos aqui:

Saída digital (HART®):


PV: Nível linearizado

SV: Distância

TV: Amplitude de eco relativa

QV: Temperatura (sensor)

Descrição do produto RIA15

■ 2 Operação remota do FMR20 pelo RIA15

- 1 PLC
- 2 Fonte de alimentação do transmissor, por exemplo RN221N (com resistor de comunicação)
- 3 Conexão para Commubox FXA195 e Field Communicator 375, 475
- 4 Indicador do processo RIA15 alimentado por ciclo
- 5 Transmissor FMR20

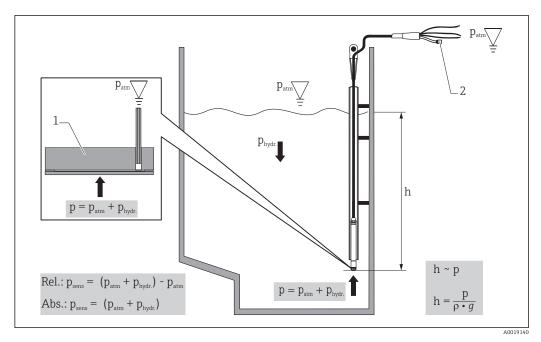
Os seguintes ajustes para o FMR20 podem ser feitos usando três teclas de operação na frente do RIA15:

- Unidade
- Calibração vazio e cheio
- Área de mapeamento se a distância medida não corresponder à distância real

Mais informações sobre os parâmetros de operação → 🖺 48

Para aproveitar essas funções, o RIA15 pode ser solicitado junto com o FMR20 usando a estrutura do produto FMR20 ou pedido separadamente com a opção 3 "sinal de corrente de 4 a 20 mA + nível HART +" no código de pedido 030 "Entrada".

O RIA15 como um indicador remoto e para operação do Waterpilot FMX2


O Waterpilot é um transmissor com uma célula de medição em cerâmica livre de óleo e com capacitância para medição de nível hidrostático. O dispositivo com medição de temperatura integrada é certificado para aplicações de água potável. Também estão disponíveis uma versão para aplicações de efluentes e lodos, bem como uma versão sem metal para uso em água salgada.

No modo HART®, o RIA15 com a opção "nível" suporta a configuração básica do FMX21. O FMX21 pode ser ajustado na opção do menu **CONFIGURAÇÃO** → **NÍVEL** (consulte a matriz operacional). O valor exibido no RIA15 no modo de display corresponde ao nível medido (configuração inicial). A pressão e a temperatura também podes ser exibidas.

Quando o menu **NÍVEL** é convocado, o RIA15 automaticamente executa as seguintes configurações iniciais no FMX21:

- Modo de medição: NívelModo de calibração: Seca
- Seleção de Nível: Em pressão
- Modo lin: Linear

RIA15 Descrição do produto

Parâmetros de calibração do Waterpilot FMX21

- 1 Célula de medição de cerâmica
- 2 Tubo de compensação de pressão
- h Altura do nível
- p Pressão total = pressão atmosférica + pressão hidrostática
- ρ Densidade do meio
- g Aceleração gravitacional
- P_{hidr.} A pressão hidrostática
- P_{atm} Pressão atmosférica
- P_{sens} Pressão exibida no sensor

Princípio de operação do FMX21

A pressão total, compreendendo pressão atmosférica e pressão hidrostática, atua diretamente no processo de isolamento do diafragma do Waterpilot FMX21. As alterações na pressão do ar são guiadas através de um prensa-cabo com uma membrana de compensação de pressão instalado no RIA15 através do tubo de compensação de pressão no cabo de extensão à parte traseira do diafragma de isolamento de processo de cerâmica no FMX21 e são compensadas.

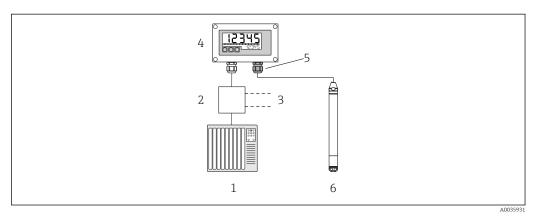
Uma alteração dependente de pressão em capacidade, causada pelo movimento do diafragma de isolamento do processo, é medida nos eletrodos na portadora de cerâmica. A unidade de componentes eletrônicos então converte isso em um sinal que é proporcional à pressão e linear ao nível.

O Waterpilot FMX21 é calibrado configurando o valor da faixa inferior e o valor da faixa superior inserindo valores de pressão e nível. Para dispositivos com sensor de pressão manométrica, existe a opção de realizar um ajuste de ponto zero.

O intervalo predefinido corresponde de 0 a URL, onde **URL** é o limite superior do intervalo do sensor selecionado. É possível solicitar um intervalo diferente da fábrica, selecionando uma faixa de medição específica do cliente.

Resultado e comissionamento básico do FMX21

O RIA15 pode ser usado como um indicador local dos valores medidos, bem como para comissionamento básico do sensor de nível hidrostático Waterpilot FMX21 através do HART®.


Descrição do produto RIA15

Os sequintes valores são produzidos aqui:

Saída digital (HART®): PV: Nível linearizado SV: Pressão medida

TV: Pressão após ajuste de posição

QV: Temperatura (sensor)

■ 4 Operação remota do FMX21 através do RIA15

- 1 PLC
- 2 Fonte de alimentação do transmissor, por exemplo RN221N (com resistor de comunicação)
- 3 Conexão para Commubox FXA195 e Field Communicator 375, 475
- 4 Indicador do processo RIA15 alimentado por ciclo
- 5 Prensa-cabos M16 com membrana de compensação de pressão
- 6 Transmissor FMX21

Os seguintes ajustes para o FMX21 podem ser feitos usando três teclas de operação na frente do RIA15:

- Unidade de pressão
- Unidade de nível
- Unidade de temperatura
- Zero ajustes (apenas para sensores de pressão manométrica)
- Ajuste de pressão cheio e vazio
- Ajuste de nível cheio e vazio
- Reiniciar para os padrões de fábrica

Mais informações sobre os parâmetros de operação → 🖺 48

Para aproveitar essas funções, o RIA15 pode ser encomendado junto com o FMX21 usando a estrutura do produto FMX21. Como alternativa, o RIA15 pode ser encomendado separadamente com a opção 3 "sinal de corrente de 4 a 20 mA + HART + nível" no código de pedido 030 "Entrada".

AVISO

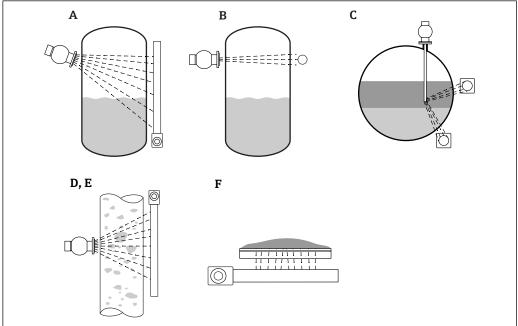
Compensação da pressão atmosférica

- ▶ Ao instalar o FMX21, a compensação da pressão atmosférica deve ser garantida. A compensação de pressão ocorre através de um tubo de compensação de pressão no cabo de extensão do FMX21 em conjunto com uma prensa-cabo especial com membrana de compensação de pressão integrada, que deve ser conectada à direita do RIA15. Este prensa-cabo é fornecido em preto para que possa ser facilmente distinguido de outros prensa-cabos.
- ► Se necessário, o prensa-cabo com membrana de compensação de pressão integrada pode ser encomendado como peça sobressalente posteriormente → 🗎 69.

O RIA15 como um indicador remoto e para operação do Gammapilot FMG50

O Gammapilot FMG50 é um transmissor compacto para medição sem contato através das paredes do recipiente.

RIA15 Descrição do produto


Aplicações

 Medição de nível, interface, densidade e concentração, bem como detecção de nível de ponto

- Medição em líquidos, sólidos, suspensões ou lodos
- Use sob condições extremas de processo
- Todos os tipos de recipientes de processo

Princípio de operação do Gammapilot FMG50

O princípio de medição radiométrica baseia-se no fato de que a radiação gama é atenuada quando penetra um material. A medição radiométrica pode ser usada para várias tarefas de medição:

A0018108

- Tarefas de medição do Micropilot FMG50
- A Medição de nível contínua
- B Detecção de nível pontual
- C Medição de interface
- D Medição de densidade
- E Medição de concentração (medição de densidade seguida por linearização)
- F Medição de concentração com meio irradiado

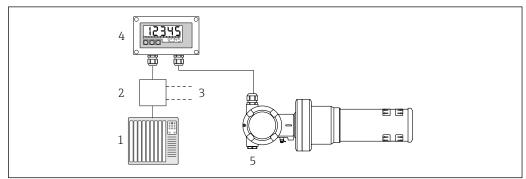
Medição de nível contínua

Um contêiner de fonte com uma fonte de radiação e um Gammapilot FMG50 (para receber a radiação gama) são montados em lados opostos de um recipiente. A radiação emitida pela fonte de radiação é absorvida pelo meio no recipiente. Quanto mais alto o nível aumenta, mais radiação é absorvida pelo meio. Isso significa que o Gammapilot FMG50 recebe menos radiação quanto maior o nível do meio. Este efeito é usado para determinar o nível atual do meio no recipiente. Como o Gammapilot FMG50 está disponível em diferentes comprimentos, o detector pode ser usado para medir faixas de tamanhos diferentes.

Detecção de nível pontual

Um contêiner de fonte com uma fonte de radiação e um Gammapilot FMG50 (para receber a radiação gama) são montados em lados opostos de um recipiente. A radiação emitida pela fonte de radiação é absorvida pelo meio no recipiente. No caso de detecção de nível de ponto, a radiação recebida pelo Gammapilot FMG50 é normalmente absorvida de forma completa se o caminho do feixe entre a fonte de radiação e o detector estiver completamente cheio com meio. Nesse caso, o nível do meio no recipiente está no valor limite definido. O Gammapilot FMG50 indica o estado descoberto (nenhum meio no

Descrição do produto RIA15


caminho do feixe) como 0% e o estado coberto (caminho do feixe preenchido com o meio) como 100%.

Medição de densidade

Um contêiner de fonte com uma fonte de radiação e um Gammapilot FMG50 (para receber a radiação gama) são montados em lados opostos de um tubo. A radiação emitida pela fonte de radiação é absorvida pelo meio no recipiente. Quanto mais denso o meio no caminho do feixe entre a fonte de radiação e o detector, mais radiação é absorvida. O Gammapilot FMG50, portanto, recebe menos radiação conforme aumenta a densidade do meio. Este efeito é usado para determinar a densidade atual do meio no recipiente. A unidade de densidade pode ser selecionada através de um menu.

Resultados e configuração básica do FMG50

O RIA15 pode ser usado como um indicador local dos valores medidos, bem como para configuração básica do Gammapilot FMG50 através do HART®. 4 valores HART de resultados (PV, SV, TV e QV) podem ser configurados através do FMG50.

A00403

■ 6 Operação remota do FMG50 através do RIA15

- 1 PLC
- 2 Fonte de alimentação do transmissor, por exemplo RN221N (com resistor de comunicação)
- 3 Conexão para Commubox FXA195 e Field Communicator 375, 475
- 4 Indicador do processo RIA15 alimentado por ciclo
- 5 Gammapilot FMG50

Os seguintes ajustes para o FMG50 podem ser feitos usando três teclas de operação na frente do RIA15:

- Configuração básica do tipo de operação "Nível" (medição de nível contínua)
- Configuração básica do tipo de operação "Nível de ponto" (medição de nível de ponto)
- Configuração básica do tipo de operação "Densidade" (medição da densidade)

Mais informações sobre os parâmetros de operação → 🖺 50

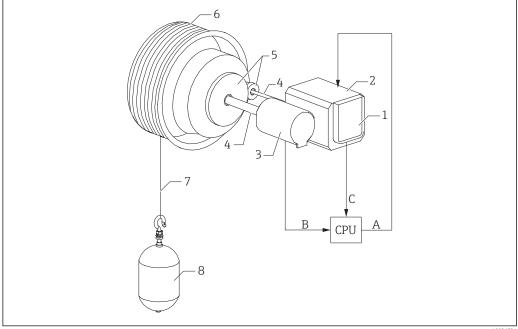
As sequintes opções de pedido estão disponíveis para usar esta função:

- Estrutura do produto FMG50
- Estrutura do produto RIA15, recurso 030 "Entrada": Opção 3: "sinal de corrente de 4 a 20 mA + HART + nível ... FMG50"

O RIA15 como um indicador remoto e para operação do Proservo NMS8x

Os medidores de tanque inteligentes Proservo série NMS8x são projetados para medição de alta precisão do nível de líquidos em aplicações de armazenamento e processos. Os dispositivos são perfeitamente adaptados às demandas de gerenciamento de estoque de tanques, controle de estoque, transferência de custódia e controle de perdas, além de oferecer economia de custos e segurança operacional.

Princípio de operação do NMS8x

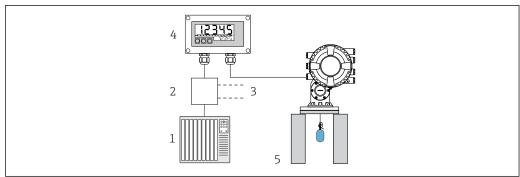

O NMS8x é um medidor de tanque inteligente para medição de nível de alta precisão. O sistema baseia-se no princípio de medição de deslocamento. Um pequeno deslocador é posicionado de forma precisa em um meio líquido utilizando um motor de passo. O

RIA15 Descrição do produto

> deslocador é suspenso por um fio de medição que é enrolado em um carretel de ranhuras precisas. O NMS8x conta as rotações do carretel de medição para calcular quanto fio é desenrolado e, portanto, calcular a mudança no nível do líquido.

O carretel é movido através de acoplamentos magnéticos que estão completamente separados entre si pelo invólucro do carretel. Os ímãs externos estão conectados ao carretel de medição e os imãs internos conectados ao motor. A medida que os imãs internos giram, sua atração magnética faz com que os imãs externos também girem, fazendo com que o conjunto do carretel gire. O peso do deslocador no cabo cria torque nos imãs externos. qerando alteração de fluxo magnético. Essas alterações atuando entre os componentes do carretel de medição são detectadas por um transdutor eletromagnético exclusivo nos imãs internos. O transdutor transmite o sinal do peso para uma CPU usando um princípio de não contato (patenteado). O motor é acionado para manter o sinal do peso constante em um valor pré-definido pelo comando de medição.

Quando o deslocador é abaixado e toca o líquido, o peso do deslocador é reduzido pela força de empuxo do liquido, que é medida por um transdutor magnético compensado pela temperatura. Como resultado, o torque no acoplamento magnético muda, e isso é medido pelos seis sensores de efeito hall. Um sinal indicando o peso do deslocador é enviado ao circuito de controle do motor. A medida que o nível de líquido sobe ou desce, a posição do deslocador é ajustada pelo motor. A rotação do carretel de medição é avaliada continuamente para determinar o nível utilizando um codificador magnético rotativo. Além de medir o nível, o NMS8x é capaz de medir as interfaces entre até três fases líquidas, e o fundo do tanque, assim como densidade pontual e densidade de perfil.


₽ 7 Princípio de operação do NMS8x

- Α Dados da posição do deslocador
- В Dados de peso
- Codificador 1
- 2 Motor
- 3 Codificador rotativo
- **Eixos**
- Engrenagens
- 6 Carretel de medição
- Fio de medição
- Deslocador

Resultados e configuração básica do NMS8x

Descrição do produto RIA15

O RIA15 pode ser usado como um indicador local dos valores medidos, bem como para configuração básica do NMS8x. Além disso, os comandos de medição podem ser enviados ao NMS8x através do HART® e o status de medição do NMS8x pode ser exibido. 4 valores HART de resultados (PV, SV, TV e QV) podem ser configurados através do NMS8x.

A004032

■ 8 Operação remota do NMS8x via RIA15

- 1 PLC
- 2 Fonte de alimentação do transmissor, por exemplo RN221N (com resistor de comunicação)
- 3 Conexão para Commubox FXA195 e Field Communicator 375, 475
- 4 Indicador do processo RIA15 alimentado por ciclo
- 5 NMS8x

Os seguintes ajustes para o NMS8x podem ser feitos usando três teclas de operação na frente do RIA15:

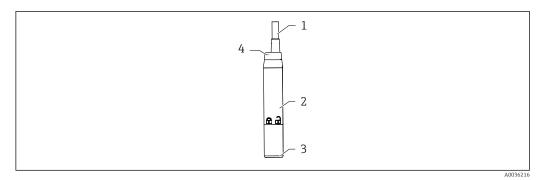
- Comando de medição
- Status de medição
- Status de equilíbrio

Mais informações sobre os parâmetros de operação → 🖺 54

As seguintes opções de pedido estão disponíveis para usar esta função:

- Estrutura do produto NMS8x
- Estrutura do produto RIA15, recurso 030 "Entrada":
 Opção 5: "Sinal de corrente de 4 a 20 mA + HART + nível ... NMS8x"

O RIA15 como um indicador remoto e para operação do Liquiline CM82


O Liquiline CM82 é um transmissor compacto de dois fios e canal simples para conexão dos sensores digitais com tecnologia Memosens. É adequado para aplicações exigentes nas Ciências Biológicas, áqua/efluentes e indústrias químicas.

No modo HART[®], o RIA15 com a opção "análise" suporta a configuração básica do CM82. O CM82 pode ser ajustado na opção do menu **CONFIGURAÇÃO** → **CT** (consulte a matriz operacional). O valor exibido no RIA15 no modo de display corresponde ao valor medido (configuração inicial).

Princípio de operação do CM82

Os sensores digitais são conectados através do Memosens ao transmissor Liquiline CM82 usando Plug and Play. A tecnologia do sensor Memosens digitaliza o valor medido do sensor e o transfere para o transmissor através de uma conexão sem contato. O transmissor converte esse valor medido em um sinal 4 para 20 mA e HART para conexão direta ao CLP. A manutenção e o comissionamento do transmissor podem ser realizados via interface Bluetooth usando um smartphone, tablet ou laptop. O RIA15 (HART®) pode ser usado para configuração básica e exibição local dos valores medidos.

RIA15 Descrição do produto

Projeto do Liquiline CM82

- 1 Cabo de medição
- 2 Invólucro
- 3 Conexão Memosens
- 4 LED para indicação do status

Faixas de medição e conexão do sensor

O transmissor CM82 é projetado para sensores digitais Memosens com cabeça plug-in indutiva. O sensor Memosens é facilmente conectado ao CM82 utilizando Plug and Play.

Tipos de sensores	Sensores
Sensores digitais com protocolo Memosens sem alimentação interna de tensão adicional	 Sensores pH Sensores ORP sensores de combinação pH/ORP Sensores de oxigênio Sensores de condutividade

As faixas de medição dependem do sensor conectado e podem ser encontradas na documentação relevante do sensor.

Display do valor local medido e comissionamento básico do CM82

O RIA15 pode ser usado como um indicador local dos valores medidos, bem como para configuração básica do Liquiline CM82 através do $\rm HART^{\scriptsize @}$.

Os seguintes valores são produzidos aqui:

Saída digital (HART®): valor medido e unidade dependendo do sensor conectado

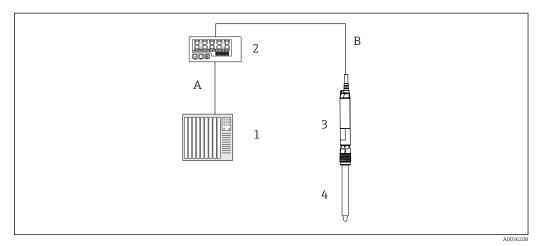
PV: Valor primário configurado (Parâmetro operacional CMAIN)

SV: Temperatura (sensor)

TV: Dependente do parâmetro do transmissor conectado + tipo do sensor

QV: Dependente do parâmetro do transmissor conectado + tipo do sensor

Parâmetro do transmissor	Tipo de sensor	Valor "TV"	Valor "QV"
pН	Vidro	Valor bruto em mV	Impedância de vidro em MOhm
рН	ISFET	Valor bruto em mV	Corrente de fuga em nA
рН	ORP	Valor relativo ORP como %	Valor bruto em mV
рН	Sensor combinado de pH/ORP	pН	ORP em mV
Condutividade		Resistência	Condutividade, valor bruto
Oxigênio dissolvido		Concentração líquida	Saturação como %


Se for exibido "UC170" em vez da unidade, consulte $\rightarrow \triangleq 61$

Descrição do produto RIA15

Os seguintes ajustes para o CM82 podem ser feitos usando três teclas de operação na frente do RIA15:

- Unidades do sensor conectado
- Faixa de saída de corrente
- Retenção das informações de diagnóstico

Mais informações sobre os parâmetros de operação → 🖺 56

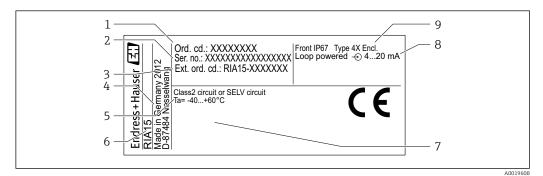
■ 10 Operação remota do CM82 via RIA15

- 1 PLC
- 2 Indicador do processo RIA15 alimentado por ciclo
- 3 Transmissor CM82
- 4 Sensor Memosens (por ex. sensor pH)
- 5 Conexão via Bluetooth ao SmartBlue App

Para aproveitar essas funções, o RIA15 pode ser solicitado junto com o CM82 usando a estrutura do produto CM82 ou pedido separadamente com a opção 4 "sinal de corrente de 4 a 20 mA + HART + análise" no código de pedido 030 "Entrada".

Para mais informações sobre o CM82, consulte as instruções de operação associadas \rightarrow BA01845C

3.3 Canais de entrada


O indicador do processo possui uma entrada 4 para 20 mA analógica. No modo de operação "HART", este canal pode ser usado para recuperar e exibir valores HART® de um sensor/ atuador conectado. Aqui, um dispositivo HART® pode ser conectado diretamente ao indicador de processo em uma conexão ponto a ponto, ou o indicador de processo pode ser incorporado a uma rede HART® Multidrop.

RIA15 Identificação

4 Identificação

4.1 Etiqueta de identificação

A etiqueta de identificação está localizada no lado direito do invólucro, no caso de equipamento de campo, e na parte de trás do invólucro no caso de equipamento montado em painel.

■ 11 Etiqueta de identificação do indicador do processo (exemplo)

- 1 Código de pedido do equipamento
- 2 Número de série do equipamento
- 3 Código de pedido estendido do equipamento
- 4 Endereço do fabricante
- 5 Faixa de temperatura ambiente
- 6 Denominação do equipamento
- 7 Aprovações (opcionais)
- 8 Sinal de entrada
- 9 Grau de proteção do invólucro

4.2 Escopo de entrega

O escopo de entrega do equipamento compreende:

- Equipamento montado em painel
 - Indicador do processo
 - Resumo das instruções de operação
 - Instruções de segurança Ex (opcional)
 - Fixações
 - Módulo de resistência da comunicação HART[®] (opcional)
- Equipamento de campo
 - Indicador do processo
 - Resumo das instruções de operação
 - Instruções de segurança Ex (opcional)
 - Fixações para montagem na parede/tubulação (opcional)
 - Módulo de resistência da comunicação HART® (opcional)
 - Prensa-cabos (opcional)
 - Tampa de proteção contra tempo (opcional)

4.3 Certificados e aprovações

4.3.1 Identificação CE

O produto atende às especificações das normas europeias harmonizadas. Assim, está em conformidade com as especificações legais das diretrizes EC. O fabricante confirma que o equipamento foi testado com sucesso com base na identificação CE fixada no produto.

Identificação RIA15

4.3.2 Identificação EAC

O produto atende às exigências legais das diretrizes EEU. O fabricante confirma o teste bem-sucedido do produto ao fixar a ele a identificação EAC.

4.4 Certificação de protocolo [®] HART

O RIA15 é registrada pela HART® Communication Foundation. O equipamento cumpre os requisitos da Especificação HCF, Revisão 7.1. Essa versão abaixo é compatível com todos os sensores/atuadores com HART® versões \geq 5.0.

RIA15 Montagem

5 Montagem

5.1 Recebimento, transporte, armazenamento

A conformidade com as condições ambientais e de armazenamento permitidas é obrigatória. Especificações precisas são fornecidas na seção "Dados técnicos" .

5.1.1 Recebimento

Após o recebimento das mercadorias, verifique os sequintes pontos:

- A embalagem ou o conteúdo está danificado?
- A entrega está completa? Compare o escopo de entrega com a informação no formulário de pedido.

5.1.2 Armazenamento e transporte

Observe também os seguintes pontos:

- Embale o equipamento de tal forma que fique protegido contra impactos para armazenamento e transporte. A embalagem original fornece a proteção ideal.
- A temperatura de armazenamento permitida é de −40 para +85 °C (−40 para +185 °F); é possível armazenar o equipamento na temperatura limite por um período limitado (48 horas no máximo).

5.2 Condições de instalação

Em temperaturas abaixo de -25 °C (-13 °F), a leitura do display não pode mais ser garantida.

5.2.1 Indicador no invólucro de montagem do painel

Faixa de temperatura ambiente permitida -40 para 60 °C (-40 para 140 °F), orientação horizontal.

IP65 proteção frontal, IP20 traseira.

Consulte a seção "Dados técnicos".

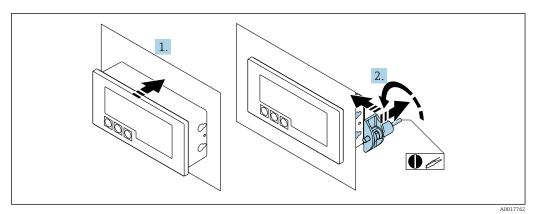
5.2.2 Indicador no invólucro de campo

Invólucro em alumínio: Temperatura ambiente permitida -40 para 60 °C (-40 para 140 °F).

Grau de proteção: IP IP66/67, NEMA 4x

Invólucro em plástico: Temperatura ambiente permitida -40 para 60 °C (-40 para 140 °F).

Grau de proteção: IP66/67


Consulte a seção "Dados técnicos" .

5.3 Instruções de instalação

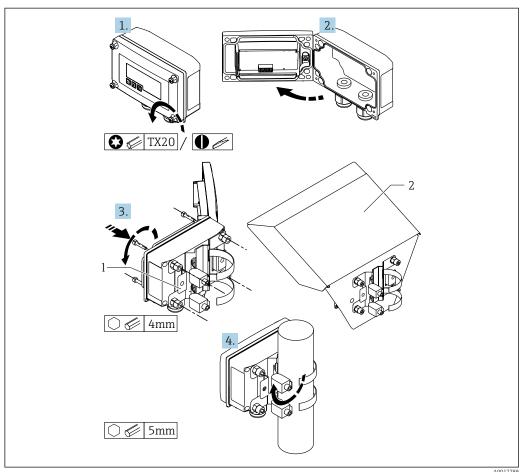
Para dimensões do dispositivo, consulte "Dados técnicos" $\rightarrow \triangleq 73$.

Montagem RIA15

5.3.1 Invólucro do painel

🗷 12 Instruções de instalação para o invólucro do painel

Instalação em um painel com corte 92x45 mm (3.62x1.77 in), espessura máx. do painel 13 mm (0.51 in).

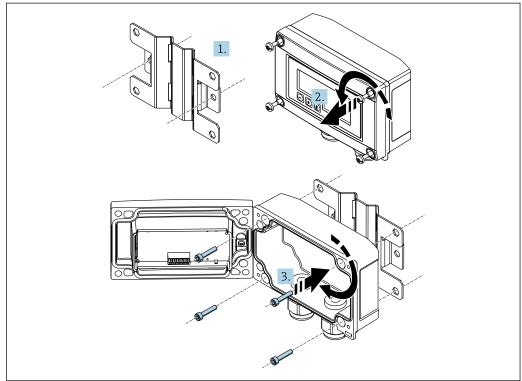

- 1. Encaixe o equipamento no corte do painel pela frente.
- 2. Coloque as presilhas de montagem na lateral do invólucro e aperte as hastes roscadas.

RIA15 Montagem

5.3.2 Invólucro de campo

Montagem na tubulação (com kit de montagem opcional)

O equipamento pode ser montado na tubulação com um diâmetro de até 50.8 mm (2 in) com o kit de montagem (disponível opcionalmente).



- 🗷 13 Montagem do indicador do processo em uma tubulação
- Placa de montagem para parede/tubulação
- Tampa de proteção contra tempo (opcional)
- 1. Soltar os 4 parafusos
- 2. Abra o invólucro
- 3. Fixar a placa de montagem na parte de trás do equipamento com os 4 parafusos fornecidos. A tampa de proteção contra tempo opcional pode ser fixada entre o equipamento e a placa de montagem.
- 4. Guie as duas garras de fixação pela placa de montagem, coloque ao redor da tubulação e aperte.

Montagem RIA15

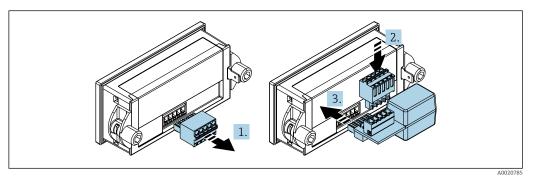
Montagem em parede

Com kit de montagem disponível opcionalmente.

Δ001780

■ 14 Montagem do indicador do processo em uma parede

- 1. Use a placa de montagem como um molde para 2 6 mm (0.24 in)furos, 82 mm (3.23 in)afastados, e fixe a placa na parede com 2 parafusos (não fornecidos).
- 2. Abra o invólucro.
- 3. Fixe o indicador na placa de montagem com os 4 parafusos fornecidos.
- 4. Feche a tampa e aperte os parafusos.

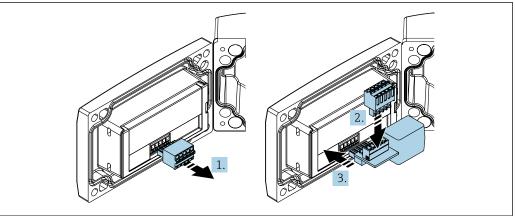

Sem um kit de montagem.

- 1. Abra o invólucro.
- 2. Use o equipamento como um molde para 4 6 mm (0.24 in)furos, 99 mm (3.9 in)afastados no plano horizontal, 66 mm (2.6 in)afastados no plano vertical.
- 3. Fixe o indicador na parede com 4 parafusos.
- 4. Feche a tampa e aperte os parafusos do invólucro.

RIA15 Montagem

5.3.3 Instalação do módulo de resistência da comunicação HART® opcional

Invólucro do painel



■ 15 Instalação do módulo de resistência da comunicação HART® opcional

1. Desconecte o borne de encaixe do conector.

- 2. Insira o borne no slot fornecido no módulo de resistência de comunicação HART®.
- 3. Insira o módulo de resistência de comunicação HART® no slot dentro do invólucro.

Invólucro de campo

■ 16 Instalação do módulo de resistência da comunicação HART® opcional

A0020844

- 1. Desconecte o borne de encaixe do conector.
- 2. Insira o borne no slot fornecido no módulo de resistência de comunicação HART[®].
- 3. Insira o módulo de resistência de comunicação HART® no slot dentro do invólucro.

Montagem RIA15

5.4 Verificação pós-instalação

5.4.1 Unidade do display no invólucro de montagem do painel

- A vedação não está danificada?
- As presilhas de montagem estão bem apertadas no invólucro do equipamento?
- As hastes das roscas estão apertadas adequadamente?
- O equipamento está localizado no centro do corte do painel?

5.4.2 Unidade do display no invólucro em campo

- A vedação não está danificada?
- O invólucro está bem fixado com parafusos à placa de montagem?
- O suporte de montagem está bem fixado na parede/tubulação?
- Os parafusos de fixação estão bem fixados?

RIA15 Ligação elétrica

6 Ligação elétrica

▲ ATENÇÃO

Perigo! Tensão elétrica!

 Toda a conexão do equipamento deve ser posicionada enquanto o equipamento é desenergizado.

Apenas equipamentos certificados (disponíveis opcionalmente) podem ser conectados na área classificada

▶ Observe as notas correspondentes e esquemas elétricos no complemento específico para Ex para essas Instruções de operação. Se você tiver dúvidas, não hesite em contatar seu representante E+H.

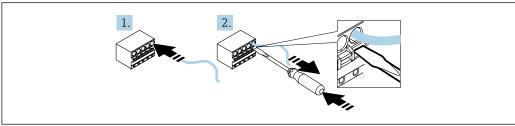
AVISO

Equipamento SELV/Classe 2

▶ O equipamento pode ser alimentado apenas por uma unidade de alimentação com um circuito limitado de energia, de acordo com UL/EN/IEC 61010-1 Parágrafo 9.4 ou Classe 2 conforme UL 1310: 'SELV ou circuito Classe 2'.

Equipamento destruído, se a corrente for muito alta

▶ Não opere o equipamento em uma fonte de tensão sem um limitador de corrente. Ao invés disso, opere o equipamento apenas no ciclo de corrente com um transmissor.


Invólucro do painel:

Os terminais estão localizados na parte de trás do invólucro.

■ Invólucro de campo:

Os terminais estão localizados dentro do invólucro. O equipamento tem duas entradas para cabo M16. O invólucro deve ser aberto para fins de ligação elétrica.

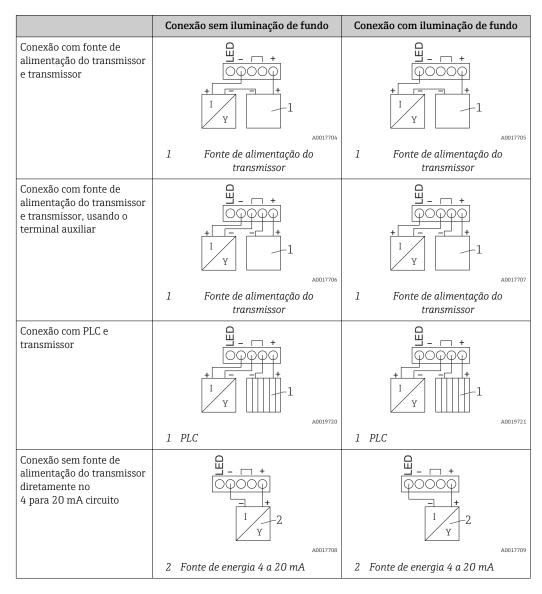
Operação dos terminais de mola

A0020848

🖪 17 🛮 Operação dos terminais de mola

- 1. Caso esteja utilizando cabos rígidos ou flexíveis com uma ponteira, insira somente o cabo no terminal para conectar. Não precisa de ferramentas. Se estiver usando cabos flexíveis sem ponteiras, o mecanismo da mola deve ser ativado como mostrado na etapa 2.
- 2. Para soltar o cabo, empurre o mecanismo de mola por completo, usando uma chave de fenda ou outra ferramenta adequada e puxe o cabo para fora.

6.1 Guia de ligação elétrica rápida


Terminal	Descrição
+	Conexão positiva, medição de corrente
-	Conexão negativa, medição de corrente (sem iluminação de fundo)
LED	Conexão negativa, medição de corrente (com iluminação de fundo)

Ligação elétrica RIA15

Terminal	Descrição
	Terminais auxiliares (eletricamente conectados internalmente)
<u></u>	Aterramento funcional: Equipamento montado em painel: Terminal na parte de trás do invólucro Equipamento de campo: Terminal no invólucro

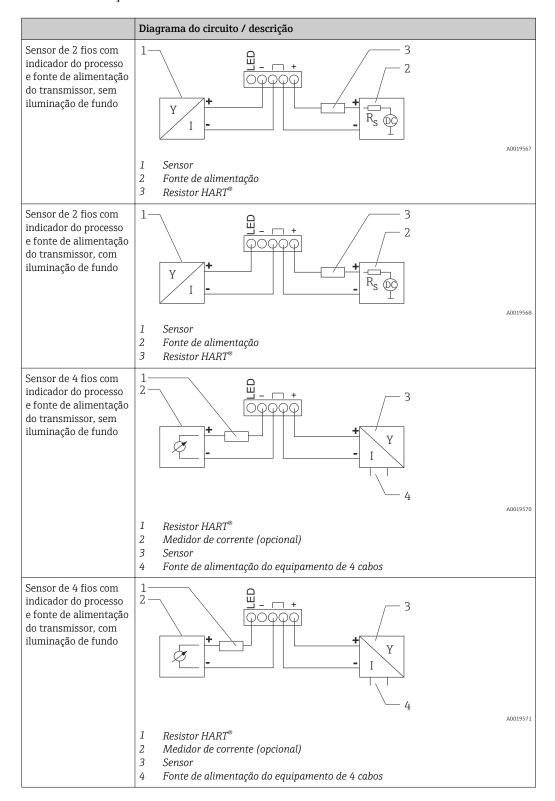
6.2 Conexão em 4 para 20 mA modo

Os seguintes diagramas mostram de forma simplificada como a o indicador do processo está conectado no modo 4 para 20 mA.

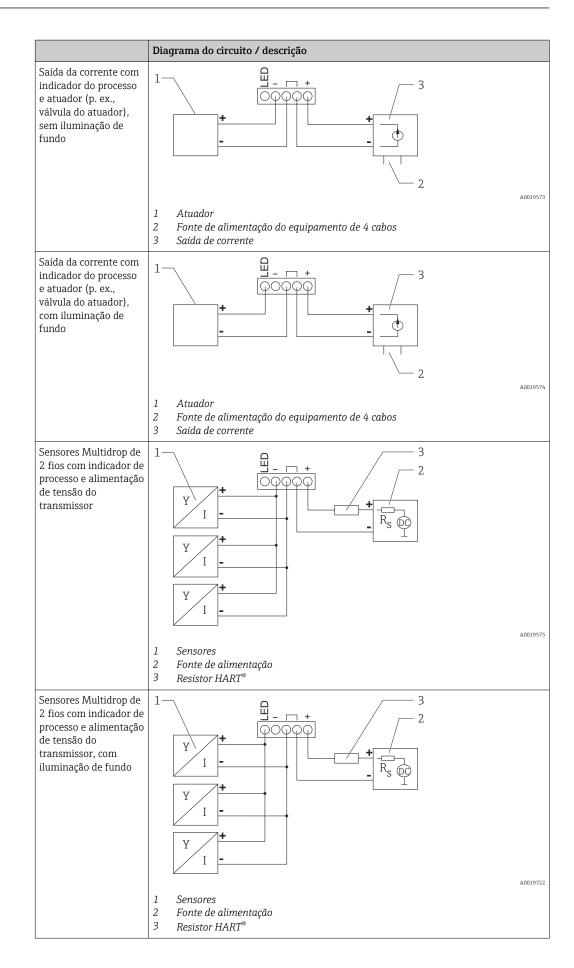
6.3 Conexão em modo HART

Os seguintes diagramas mostram de forma simplificada como a o indicador do processo está conectado no modo HART.

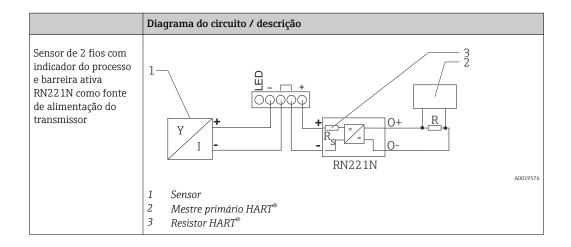
RIA15 Ligação elétrica


6.3.1 Conexão HART®

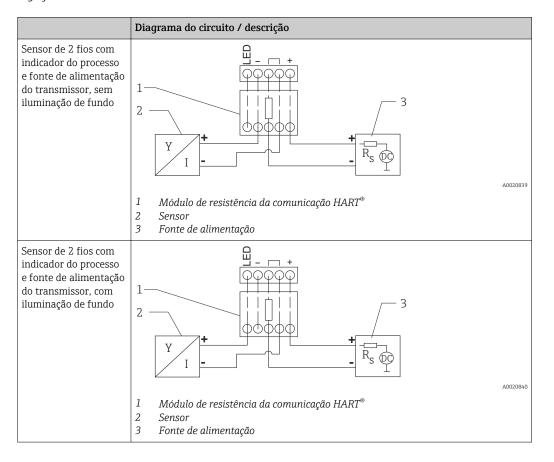
AVISO


Comportamento indefinido devido à ligação elétrica incorreta de um atuador

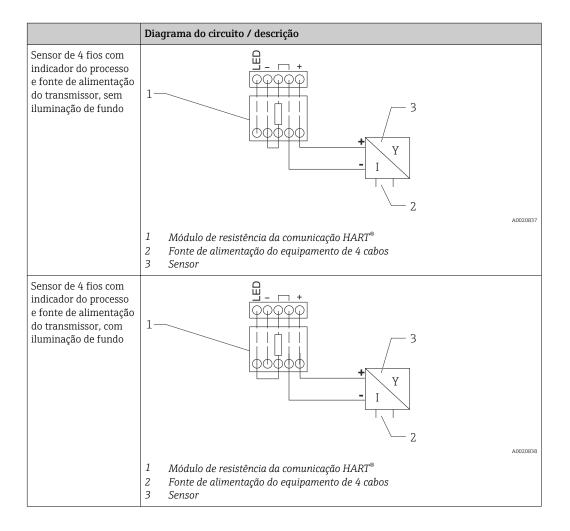
► Ao instalar o indicador do processo junto com um atuador, as Instruções de operação para o atuador devem ser seguidas!


O resistor de comunicação $230~\Omega~HART^{\circ}$ no cabo de sinal é sempre necessário no caso de uma alimentação de tensão de baixa impedância. Deve ser instalado entre a fonte de alimentação e o indicador.

Ligação elétrica RIA15

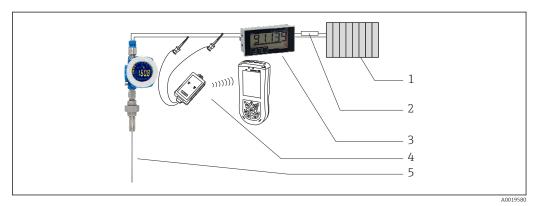


RIA15 Ligação elétrica



Módulo de resistência da comunicação HART® opcional

Ligação elétrica



Ligação elétrica RIA15

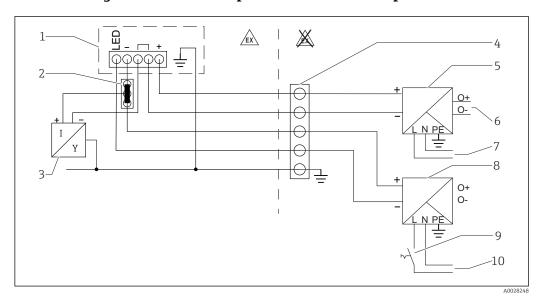
Configuração de equipamentos HART®

Os dispositivos HART® geralmente não são configurados pelo indicador de processo. A configuração é feita usando o configurador de equipamento Field Xpert SFX100, por exemplo. Uma exceção a isso são as opções especiais (por exemplo, nível RIA15 e opção de análise).

■ 18 Configuração de equipamentos HART®; exemplo TMT162

- 1 Mestre primário HART® (p. ex., PLC)
- 2 Resistor HART®
- 3 Indicador do processo RIA15
- 4 Terminal portátil HART®, ex. Field Xpert SFX100
- 5 Sensor com transmissor HART®, p. ex., TMT162

RIA15 Ligação elétrica


6.4 Ligação elétrica com iluminação de fundo comutável

Uma corrente contínua adicional da corrente limitada, por exemplo, a barreira ativa do RN221N, é necessária para implementar uma iluminação de fundo comutável. Uma corrente contínua é usada para alimentar a iluminação LED de fundo em até sete indicadores do processo RIA15 sem causar uma queda de tensão adicional no ciclo de medição. A corrente contínua pode ser ligada e desligada usando um seletor externo.

i

O seguinte mostra exemplos de conexão para a área classificada. A ligação elétrica é similar à área não classificada; no entanto, não é necessário usar equipamentos com certificado Ex.

6.4.1 Diagrama de conexão para um indicador do processo

l Indicador do processo RIA15

2 Conector de 3 cabos, p. ex., série WAGO 221

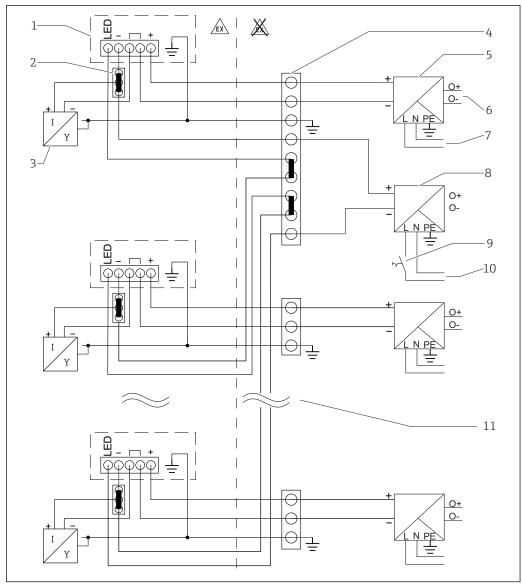
3 Sensor de 2 fios

4 Bloco de terminal no trilho DIN

5 Barreira ativa, p. ex., RN221N

6 4 para 20 mA saída para a unidade de controle

7 Fonte de alimentação

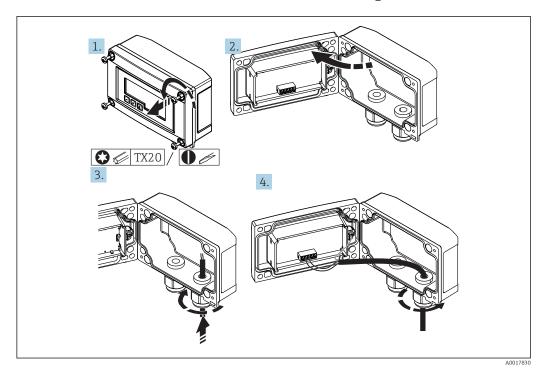

8 Corrente contínua, p. ex., RN221N

9 Alterna para ativar a iluminação de fundo

10 Fonte de alimentação

Ligação elétrica RIA15

6.4.2 Diagrama de conexão para indicadores de processos múltiplos



A002824

- 1 Indicador do processo RIA15
- 2 Conector de 3 cabos, p. ex., série WAGO 221
- 3 Sensor de 2 fios
- 4 Bloco de terminal no trilho DIN
- 5 Barreira ativa, p. ex., RN221N
- 6 4 para 20 mA saída para a unidade de controle
- 7 Fonte de alimentação
- 8 Corrente contínua, p. ex., RN221N
- 9 Alterna para ativar a iluminação de fundo
- 10 Fonte de alimentação
- 11 Pode ser estendida para 7 equipamentos

RIA15 Ligação elétrica

6.5 Inserindo o cabo, invólucro em campo

🛮 19 🛮 Inserindo o cabo, invólucro em campo

Inserindo o cabo, invólucro em campo, conexão sem fonte de alimentação do transmissor (exemplo)

- 1. Soltar os parafusos do invólucro
- 2. Abra o invólucro
- 3. Solte o prensa-cabo (M16) e insira o cabo
- 4. Conecte o cabo incluindo aterramento funcional e feche o prensa-cabo
- Se usar o módulo do resistor de comunicação no RIA15, o cabo do FMX21 deve ser inserido no prensa-cabos direito quando conectar o FMX21, de modo que o tubo de compensação de pressão integrado não seja comprimido.

6.6 Blindagem e aterramento

A compatibilidade eletromagnética ideal (EMC) somente pode ser garantida se os componentes de sistema e, em particular, as linhas estiverem blindadas e a blindagem formar uma cobertura o mais completa possível. O ideal é uma cobertura de blindagem de 90%.

- Para garantir um efeito protetor ideal da EMC, ao comunicar com HART[®], conecte a blindagem, sempre que possível, ao fio terra de referência.
- No entanto, por motivos de proteção contra explosão, você deve evitar o aterramento.

Para estar em conformidade com ambos os requisitos, três tipos diferentes de blindagem são possíveis ao comunicar com HART®:

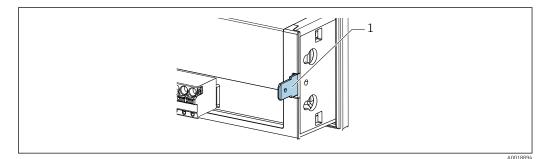
- Blindagem em ambas as extremidades
- Blindagem em uma extremidade na lateral de alimentação com terminação de capacitância no equipamento de campo
- Blindagem em uma extremidade do lado da alimentação

Por experiência, sabe-se que o melhor resultado com relação a EMC é obtido, na maioria das vezes, em instalações com blindagem unilateral, no lado da alimentação (sem

Ligação elétrica RIA15

terminação de capacitância no equipamento de campo). Deve-se tomar medidas apropriadas com relação à ligação elétrica de entrada para permitir a operação irrestrita quando houver interferência de EMC. Estas medidas foram levadas em consideração para este equipamento. A operação em casos de variáveis de turbulência de acordo com NAMUR NE21 fica garantida. Onde aplicável, as regulamentações e diretrizes de instalação nacionais devem ser observadas durante a instalação! Onde houver grandes diferenças no potencial entre pontos individuais de aterramento, somente um ponto da blindagem é conectado diretamente ao terra de referência. Em sistemas sem equalização potencial, portanto, a blindagem do cabo dos sistemas fieldbus somente deve ser aterrada em um dos lados, por exemplo, na unidade de alimentação fieldbus ou nas barreiras de segurança.

AVISO

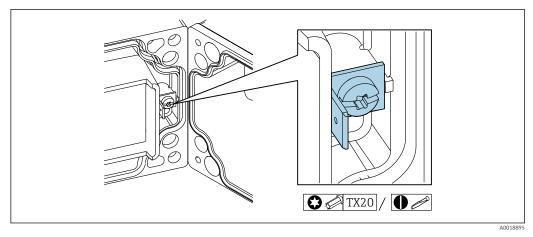

Se a blindagem do cabo for aterrada a mais de um ponto nos sistemas sem equalização potencial, poderão ocorrer correntes equalizantes de frequência da fonte de alimentação, danificando o cabo de sinal ou tendo um grave efeito na transmissão do sinal.

► Nestes casos, a blindagem do cabo de sinal deve ser aterrada em apenas um dos lados, ou seja, não deve estar conectado ao terminal de terra do invólucro. A blindagem que não estiver conectada deverá ser isolada!

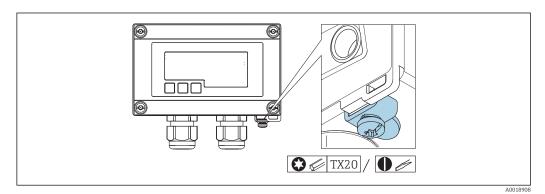
6.7 Conectando ao aterramento funcional

6.7.1 Equipamento montado em painel

Por motivos de EMC, o aterramento funcional deve estar sempre conectado. Quando o equipamento é usado em área classificada (com aprovação Ex opcional), a conexão é obrigatória.



🗷 20 Terminal de terra funcional no equipamento montado em painel


6.7.2 Equipamento de campo

Por motivos de EMC, o aterramento funcional deve estar sempre conectado. Se usado em área classificada (com aprovação Ex opcional), a conexão é obrigatória e o invólucro em campo deve ser aterrado através de um parafuso de aterramento instalado na parte de fora do involucro.

RIA15 Ligação elétrica

21 Terminal de terra funcional no invólucro em campo

🖪 22 🛮 Terminal de terra no invólucro em campo

6.8 Grau de proteção

6.8.1 Invólucro de campo

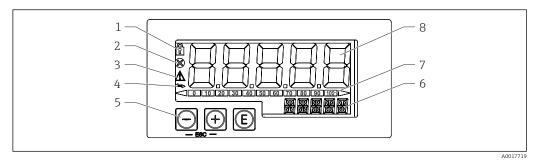
O equipamento atende todos os requisitos de IP67. É absolutamente essencial estar em conformidade com os seguintes pontos para certificar que essa está garantida após a montagem ou funcionamento do equipamento:

- A vedação do invólucro deve estar limpa e não danificada ao ser inserida na ranhura. A vedação deve estar limpa, seca ou substituída, se necessário.
- Os cabos usados para a conexão devem ser do diâmetro externo especificado (p. ex., M16 x 1,5, diâmetro do cabo 5 para 10 mm (0.2 para 0.39 in)).
- Instale o medidor de forma que as entradas do cabo não apontem para baixo.
- Substitua entradas de cabos não usadas por conectores falsos.
- A tampa do invólucro e as entradas para cabo devem estar bem apertadas.

6.8.2 Invólucro do painel

A parte frontal do equipamento deve atender aos requisitos IP65. É absolutamente essencial estar em conformidade com os seguintes pontos para certificar que essa está garantida após a montagem ou funcionamento do equipamento:

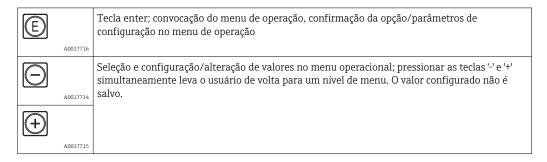
- A vedação entre a parte frontal do invólucro e o painel deve estar limpa e não danificada. A vedação deve estar limpa, seca ou substituída, se necessário.
- As hastes das roscas das presilhas de montagem em painel devem estar bem apertadas.


Ligação elétrica RIA15

6.9 Verificação pós-conexão

Condição do equipamento e especificações	Notas
Os cabos ou o equipamento estão danificados?	Inspeção visual
Conexão elétrica	Notas
A fonte de alimentação corresponde às especificações na etiqueta de identificação?	-
Os cabos, incluindo aterramento funcional , estão conectados corretamente e sem deformações?	-
Invólucro em campo: os prensa-cabos estão firmemente fechados?	-

RIA15 Operação


7 Operação

■ 23 Display e elementos de operação do indicador de processo

- 1 Símbolo: menu de operação desabilitado
- 2 Símbolo: erro
- 3 Símbolo: aviso
- 4 Símbolo: comunicação HART® ativa
- 5 Teclas de operação "-", "+", "E"
- 6 Display de 14 segmentos para unidade/TAG
- Gráfico de barras com indicadores para sub-faixa e sobrefaixa
- 8 Display de 5 dígitos e 7 segmentos para valor medido, altura do dígito 17 mm (0,67 pol.)

O equipamento é operado utilizando-se três teclas de operação na frente do invólucro. A configuração do equipamento pode ser desabilitada com um código de usuário com 4 dígitos. Se a configuração estiver desabilitada, aparecerá um símbolo de cadeado no display quando um parâmetro de operação for selecionado.

7.1 Funções de operação

As funções de operação do indicador de processo são divididas nos seguintes menus. Os parâmetros e configurações individuais estão descritos na seção "Comissionamento".

Se o menu de operação for desabilitado por meio de um código de usuário, os menus e parâmetros individuais podem ser exibidos, mas não alterados. Para alterar um parâmetro, o código de usuário deve ser inserido. Como a unidade de display pode exibir somente dígitos no display de 7 segmentos e não caracteres alfanuméricos, o procedimento para os parâmetros dos números é diferente daquele para os parâmetros de texto.

Se a posição de operação contiver somente números como parâmetros, a posição de operação é exibida no display de 14 segmentos e o parâmetro configurado é exibido no display de 7 segmentos. Para editar, pressione o botão E seguido pelo código de usuário.

Se a posição de operação contiver parâmetros de texto, somente a posição de operação será exibida inicialmente no display de 14 segmentos. Se o botão 'E' for pressionado novamente, o parâmetro configurado é exibido no display de 14 segmentos. Para editar, pressione o botão '+' sequido pelo código de usuário.

Operação RIA15

Configuração (SETUP)	Configurações básicas do equipamento → 🖺 43
Diagnóstico (DIAG)	Informações do equipamento, display das mensagens de erro $ ightarrow$ $ riangleq$ 45
Expert (EXPRT)	Configurações Expert para configuração do equipamento → 🖺 43 O menu Expert está protegido contra edição através de um código de acesso (padrão 0000).

8 Comissionamento

8.1 Verificação pós-instalação e ligar o equipamento

Execute as verificações finais antes do comissionamento:

- Checklist para "verificação pós-conexão" → 🖺 40.

O dispositivo inicia após ser conectado ao circuito 4 para 20 mA/HART®. A versão do firmware aparece no visor durante a fase de inicialização.

Quando o dispositivo estiver sendo comissionado pela primeira vez, programe a configuração de acordo com as descrições nas Instruções de Operação.

Se estiver comissionando um equipamento que já esteja configurado ou pré-ajustado, o equipamento inicia a medição da corrente imediatamente ou começa a fazer uma solicitação HART®, conforme definido nos ajustes. Os valores das variáveis do processo ativadas atualmente aparecem no display.

Remova o filme protetor do display, pois isso afeta a leitura dele.

8.2 Matriz operacional

No caso do RIA15 com as opções "Nível" , "Análise", "FMG50" ou "NMS8x", que são solicitadas diretamente como acessórios para o dispositivo de medição, as configurações padrão podem variar.

Menu de configur	Menu de configuração (SETUP)			
Parâmetros	Valores (padrão em negrito)	visível em	Descrição	
LEVEL		Opção de nível MODE = HART Medidor conectado	Este menu contém os parâmetros para configurar os dispositivos de medição FMR20 e FMX21. Os parâmetros individuais são descritos na seção "Matriz operacional em conjunto com o Micropilot FMR20" → 🖺 48 e também na seção "Matriz operacional em conjunto com o FMX21" → 🖺 48.	
FMG50		Opção FMG50 MODE = HART Medidor conectado	Este menu contém os parâmetros para configuração do Gammapilot FMG50. Os parâmetros individuais estão descritos em "Matriz de operação em conjunto com o FMG50" → 🖺 50.	
OPRAT		Opção NMS8x MODE = HART Medidor conectado	Este menu contém os parâmetros para configuração do Proservo NMS8x. Os parâmetros individuais estão descritos em "Matriz de operação em conjunto com o NMX8x" → 🖺 54.	
СТ		Opção de análise MODE = HART CM82 conectado	Este menu contém os parâmetros para configuração do equipamento de medição CM82. Os parâmetros individuais estão descritos na seção "Matriz de operação em conjunto com o CM82" → 🖺 56.	
MODE	4-20 HART		Selecione o tipo de operação para o indicador. 4-20: O sinal 4 para 20 mA do circuito é exibido. HART: Podem ser exibidas até quatro variáveis HART® (PV, SV, TV, QV) por sensor/atuador no ciclo.	
DECIM	0 DEC 1 DEC 2 DEC 3 DEC 4 DEC	MODE = 4-20	Número de casas decimais para o modo de exibição 4 a 20 mA.	
SC4	Valor numérico– 19999 para 9999 9 Padrão: 0.0	MODE = 4-20	Valor de 5 dígitos (número de casas decimais conforme configurado sob DECIM) para dimensionamento do valor medido 4 mA Exemplo: $SC_4 = 0.0 \Rightarrow 0.0$ exibido na corrente de medição 4 mA A unidade selecionada sob UNIT é usada para exibir o valor.	

Menu de configura Parâmetros	Valores (padrão	visível em	Descrição
rarametros	em negrito)	visivei em	Descrição
SC_20	Valor numérico– 19 999 para 99 99 9 Padrão: 100.0	MODE = 4-20	Valor de 5 dígitos (número de casas decimais conforme configurado sob DECIM) para dimensionamento do valor medido 20 mA Exemplo: SC20 = 100,0 ⇒ 100,0 exibido na corrente de medição 20 mA A unidade selecionada sob UNIT é usada para exibir o valor.
UNIT	% °C °F K USER	MODE = 4-20	Use esta função para selecionar a unidade para exibição do valor. Se for selecionado "USER", é possível inserir uma unidade definida pelo usuário no parâmetro TEXT.
TEXT	Texto customizado, 5 dígitos	MODE = 4-20	Unidade definida pelo usuário, visível somente se a opção "USER" tiver sido selecionada em UNIT.
SCAN	NO YES	MODE = HART	Selecione "SIM" para começar a varredura. Todos os endereços são varridos automaticamente assim que estiver em uma aplicação HART® até que um sensor / ator seja encontrado. A varredura é executada de 0 a 63. Somente endereços até 15 são permitidos para o HART 5. Quando encontrados os valores do endereço do sensor /ator que devem sere exibidos, o endereço deverá ser confirmado pressionando a tecla 'E. Este endereço é adotado e é usado mesmo após a reinicialização do dispositivo. Pressionando a tecla '+' ou '-', é possível procurar outros endereços. Pressionar '+'- e '-' simultaneamente cancelará a varredura. Se "NÃO" for selecionado, a digitalização não estará ativa. O endereço do sensor / ator, cujos valores devem ser exibidos no indicador de processo, deve ser configurado manualmente usando as teclas de operação.
ADDR	Valor O para 63 Padrão: 0	MODE = HART	Use esta função para inserir manualmente o endereço do sensor/ ator HART® cujo valores devem ser exibidos. Se o endereço do escravo HART® for alterado, ele também deverá ser alterado no indicador de processo. Para fazer isso, digite o endereço manualmente ou pesquise usando o modo DIGITALIZAR.
МТҮРЕ	PRIM SEC	MODE = HART	Use esta função para selecionar o tipo de mestre HART®: PRIM = Mestre primário SEC = Mestre secundário
HART1-HART4		MODE = HART	Use esta função para selecionar qual valor HART® de um sensor /ator (PV, SV, TV, QV) deve ser ativado e configurado: HART1 = PV HART2 = SV HART3 = TV HART4 = QV Pressione a tecla 'E' para abrir o submenu configuração.
DISP1-DISP4	DESLIGADO MAN AUTO Padrão: DISP1: AUTO DISP2: MAN DISP3: MAN DISP4: MAN	MODE = HART	Use esta função para selecionar como e se o valor deve ser exibido. OFF: Valor não é exibido MAN: É possível rolar manualmente através dos valores HART® ativados pressionando '+' ou '-'. Caso contrário, os valores não serão exibidos. Se todos os quatro valores HART® (HART1 a HART4) estiverem definidos como "MAN", HART1 (PV) será exibido se você não percorrer manualmente os valores. AUTO: Os valores HART® ativados são exibidos alternadamente (o tempo de comutação pode ser configurado no menu EXPRT em "TOGTM"). Se um valor for definido como AUTO, esse valor será exibido continuamente no dispositivo.
DEC1 - DEC4	0 DEC 1 DEC 2 DEC 3 DEC 4 DEC	MODE = HART	Número de casas decimais para os valores HART1 - HART4.
BGL01-BGL04	Valor numérico– 19 999 para 99 99 9 Padrão: 0.0	MODE = HART	Valor de 5 dígitos (número de casas decimais, conforme configurado em DEC1-DEC4) para dimensionar o intervalo inferior do gráfico de barras para HART1 - HART4. O gráfico de barras será desativado se BGLOx e BGHIx estiverem definidos como "0,0".

Menu de configuraçã	Menu de configuração (SETUP)			
Parâmetros	Valores (padrão em negrito)	visível em	Descrição	
BGHI1-BGHI4	Valor numérico– 19999 para 9999 9 Padrão: 0.0	MODE = HART	Valor de 5 dígitos (número de casas decimais, conforme configurado em DEC1-DEC4) para dimensionar o intervalo superior do gráfico de barras para HART1 - HART4. O gráfico de barras será desativado se BGLOx e BGHIx estiverem definidos como "0,0".	
UNIT1-UNIT4	HART % °C °F K USER	MODE = HART	Use esta função para selecionar a unidade para exibição do valor HART®. Se "HART" for selecionado, a unidade configurada no sensor /ator será automaticamente adotada para o valor HART® relevante. Apenas unidades com no máximo 5 caracteres podem ser exibidas. As unidades mais longas são exibidas como código de unidade "UCxxx". A tabela na seção de comunicação HART® no final destas instruções de operação fornece uma visão geral das unidades que podem ser exibidas. Se for selecionado "USER", é possível inserir uma unidade definida pelo usuário no parâmetro TEXT-TEXT4.	
TEXT1-TEXT4	Texto customizado, 5 dígitos	MODE = HART	Unidade definida pelo usuário. Visível somente se a opção "USER" tiver sido selecionada em UNIT	

Menu diagnóstico (DIAG)	Menu diagnóstico (DIAG)		
Parâmetros	Valores	Descrição	
AERR	Somente leitura	A seguinte mensagem de diagnóstico atual aparece no display. Caso duas ou mais mensagens ocorram ao mesmo tempo, somente será exibida a mensagem com o nível de prioridade máxima.	
LERR	Somente leitura	A última mensagem de diagnóstico com a prioridade máxima aparece no display.	
FWVER	Somente leitura	A versão do firmware aparece no display.	
TERR 1).	Somente leitura	Exibe o código de diagnóstico /código de erro pendente nos transmissores /sensores Endress+Hauser HART®. Consulte as instruções de operação do transmissor/sensor Endress+Hauser relevante para obter informações adicionais sobre o significado do número de diagnóstico e as medidas corretivas.	

¹⁾ Para transmissores/sensores Endress+Hauser com comunicação HART®, o código de erro/código de diagnóstico atualmente pendente pode ser solicitado através do comando #231 da Endress+Hauser. Este comando é suportado somente pelos sensores/transmissores Endress+Hauser. Portanto, o parâmetro TERR não fica visível se dispositivos de terceiros estiverem conectados ao RIA15

Menu Expert (EXPRT); um código deve ser inserido

Além de todos os parâmetros no menu Configuração, os seguintes parâmetros descritos nesta tabela também estão disponíveis no modo Expert. Se você acessar o menu Expert, será solicitado a inserir o código do usuário (UCODE, padrão: 0000).

Parâmetros	Valores (padrão em negrito)	visível em	Descrição
LEVEL		Opção de nível MODE = HART Medidor conectado	Este menu contém os parâmetros para configurar os dispositivos de medição FMR20 e FMX21. Os parâmetros individuais são descritos na seção "Matriz operacional em conjunto com o Micropilot FMR20" → 🖺 48 e também na seção "Matriz operacional em conjunto com o FMX21" → 🖺 48.
FMG50		Opção FMG50 MODE = HART Medidor conectado	Este menu contém os parâmetros para configuração do Gammapilot FMG50. Os parâmetros individuais estão descritos em "Matriz de operação em conjunto com o FMG50" → 🖺 50.
OPRAT		Opção NMS8x MODE = HART Medidor conectado	Este menu contém os parâmetros para configuração do Proservo NMS8x. Os parâmetros individuais estão descritos em "Matriz de operação em conjunto com o NMX8x" → 🖺 54.

Menu Expert (EXPRT); um código deve ser inserido

Além de todos os parâmetros no menu Configuração, os seguintes parâmetros descritos nesta tabela também estão disponíveis no modo Expert. Se você acessar o menu Expert, será solicitado a inserir o código do usuário (UCODE, padrão: 0000).

Parâ	metros	Valores (padrão em negrito)	visível em	Descrição
CT			Opção de análise MODE = HART CM82 conectado	Este menu contém os parâmetros para configuração do equipamento de medição CM82. O menu CT e todos os submenus associados são visíveis apenas se o RIA15 foi encomendado com a opção "análise" e um dispositivo apropriado estiver conectado. Usando este menu, as configurações básicas para o dispositivo de medição analítica podem ser feitas pelo RIA15. Descrição dos parâmetros individuais →
SYST	M			
	UCODE	Valor numérico entre 0000 e 9999 Padrão: 0000		Código de usuário com 4 dígitos Com o código do usuário, é possível proteger a configuração do dispositivo contra modificações não autorizadas. Se a configuração estiver desabilitada, aparecerá um símbolo de cadeado no display quando um parâmetro de operação for selecionado. O código do usuário não está ativo com a configuração padrão "0000". Isso significa que os parâmetros de configuração podem ser alterados sem a inserção do código. O código sempre deve ser inserido no menu Expert, mesmo na configuração padrão.
	FRSET	NO SIM		Redefine a configuração do dispositivo. Os valores são redefinidos para os valores predefinidos nos dispositivos pré-configurados e para os valores padrão em todos os outros dispositivos. Selecione "SIM" e pressione "E" como confirmação para redefinir o dispositivo.
	TOGTM	5 10 15 20	MODE = HART	Selecione o tempo de comutação em segundos entre os valores HART® se "AUTO" foi selecionado no menu DISP1-DISP4.
ENTI	RADA			Os seguintes parâmetros estão disponíveis além dos parâmetros no menu Configuração.
	CURV	LINAR SQRT		Use para selecionar a função de cálculo do valor do processo (para MODO = 4-20) LINAR (escalonamento com SC4 e SC_20): Valor do processo = (valor de mA - 4)/16 * (SC_20 - SC4) + SC4 + OFFST SQRT (extração de raiz quadrada e escalonamento): Valor do processo = Raiz quadrada (valor de mA - 4)/16 * (SC_20 - SC4) + SC4 + OFFST Valores negativos ao calcular a raiz quadrada estão definidos para 0. Use para selecionar a função de cálculo do valor do HART1 (PV) (para MODO = HART) LINAR: Valor HART1 (PV) = "valor PV exportado" * FACT1 + OFFS1 SQRT (extração de raiz quadrada e escalonamento com BGLO1 e BGHI1): Valor HART1 (PV) = (raiz quadrada ("valor PV com porcentagem exportada" / 100) * (BGHI1 - BGLO1) + BGLO1) * FACT1 + OFFS1 Valores negativos ao calcular a raiz quadrada estão definidos para 0. Exemplo para SQRT: • valor PV com porcentagem exportada = 50 • BGLO1 = 100,0 • BGH11 = 200,0 • FACT1 = 1 • OFFS1 = 0,0 Valor HART1 (PV) = (raiz quadrada (50/100) * (200 - 100) + 100) * 1 + 0 = 170,7
	NAMUR	NÃO YES	MODE = 4-20	Use esta função para definir os limites de erro de acordo com a norma NAMUR NE $43 \rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	RNGLO	Valor	NAMUR = NO	Limite inferior da faixa. Uma mensagem de erro é exibida se a corrente medida cair abaixo deste limite.
	RNGHI	Valor	NAMUR = NO	Limite superior da faixa. Uma mensagem de erro é exibida se a corrente medida exceder este limite.

Menu Expert (EXPRT); um código deve ser inserido

Além de todos os parâmetros no menu Configuração, os seguintes parâmetros descritos nesta tabela também estão disponíveis no modo Expert. Se você acessar o menu Expert, será solicitado a inserir o código do usuário (UCODE, padrão: 0000).

Parâmetros		Valores (padrão em negrito)	visível em	Descrição	
	OFFST	Valor numérico- 19 999 para 99 99 9	MODE = 4-20	Use esta função para inserir um valor de desvio para exibir o valor medido.	
	FACT1-FACT4	1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1 1E1 1E2 1E3 1E4 1E5 1E6	MODE = HART	Como a exibição é limitada a 5 caracteres, o valor medido deve ser multiplicado por um fator, se necessário. Por exemplo: condutividade 0,00003 S multiplicada pelo fator 1E6 ⇒ 30.000 µS. Se um fator for usado, recomenda-se definir a unidade em UNIT1-4 como "UNIT" e inserir texto definido pelo usuário, porque a unidade entregue automaticamente via HART® não corresponde mais ao valor exibido.	
	OFFS1-OFFS4	Valor numérico– 19 999 para 99 99 9	MODE = HART	Use esta função para inserir um valor de desvio para exibir o valor HART1-HART4 medido. Se um fator for usado, o desvio é adicionado ao valor multiplicado (valor exibido = valor medido*fator + desvio)	
	EXP1-EXP4	YES NÃO	MODE = HART	 Exibição do valor medido para valores medidos maiores que 99999. SIM: Se o visor exceder, o valor medido será exibido em notação exponencial. NÃO: Valores com mais de 5 dígitos não serão exibidos se o visor exceder. O valo é exibido com zeros à esquerda. Exemplo: Valor medido: 130002.4 SIM => 1.30E5 NÃO => 0002.4 	
IAG				WW > 0002.1	
	THI	Somente leitura	MODE = HART	Contador para o número de valores transmitidos via HART®, 5 posições superiores O contador volta a O após a reinicialização ou varredura de um dispositivo.	
CN	TLO	Somente leitura	MODE = HART	Contador para o número de valores transmitidos via HART®, 5 posições inferiores. contador volta a 0 após a reinicialização ou varredura de um dispositivo.	
RE	TRY	Somente leitura	MODE = HART	Contador para o número de tentativas para estabelecer a comunicação HART®. O contador volta a 0 após a reinicialização ou varredura de um dispositivo.	
FA	IL	Somente leitura	MODE = HART	Contador para o número de tentativas fracassadas de estabelecer a comunicação HART®. O contador volta a O após a reinicialização ou varredura de um dispositivo	
HL	EVL				
	Tx mV	Somente leitura	MODE = HART	Valor do nível de pico-a-pico do sinal de transmissão em mV	
	Rx mV	Somente leitura	MODE = HART	Valor do nível de pico-a-pico do sinal recebido em mV	
	NOISE	Somente leitura	MODE = HART	Exibe o nível do sinal de interferência LO = sinal com baixa interferência MED = sinal com média interferência HI = sinal com alta interferência	
	Rc Ω	Somente leitura	MODE = HART	Valor da resistência total no ciclo HART® em Ohm	

8.3 Matriz de operação em conjunto com o Micropilot FMR20

No modo HART, o RIA15 com a opção "nível" pode ser usado para o comissionamento básico do sensor de nível de radar Micropilot FMR20.

Para mais informações sobre o FMR20, consulte as instruções de operação associadas → B BA01578F.

Comissionamento básico do FMR20

O RIA15 deve estar no modo HART (MODO = HART) para realizar os ajustes básicos. O menu NÍVEL não é visível no modo analógico (MODO = 4-20).

- 1. Pressione a tecla.
 - ► O menu **Setup** é aberto.
- 2. Pressione a tecla.
 - → O submenu NÍVEL é aberto.
- 3. Ajuste os parâmetros desejados. Para descrições de parâmetros, consulte a seguinte

Setup -> Menu Level (LEVEL)

O menu LEVEL está visível apenas se o RIA15 foi solicitado com a opção "Level" e o indicador for operado no modo HART (MODO = HART). Com este menu, os ajustes básicos do sensor de nível do radar Micropilot FMR20 podem ser feitos através do RIA15.

Par	âmetros	Valores	Descrição
LEV	ÆL.		Este menu contém os parâmetros para configuração do transmissor de nível FMR20. Com este menu, os ajustes básicos do sensor de nível do radar Micropilot FMR20 podem ser feitos através do RIA15.
	UNIT	m pés	Selecione a unidade exibida
	EMPTY	Valor numérico– 199.99 para 999.9 9	Calibração vazio utilizando as teclas -,+,E. Insira a distância da comunicação do processo para o nível mínimo Faixa de ajuste válida: 0 para 100 m
	FULL	Valor numérico– 199.99 para 999.9 9	Calibração cheio utilizando as teclas -,+,E. Insira o intervalo do nível máx. para o nível mín.
	DIST	Valor medido	Valor medido (distância medida)
	MAP		
	DI OK		Selecionar se a distância exibida corresponder à distância real. O equipamento então registra um mapeamento.
	MAN		Selecionar se a faixa de mapeamento for definida manualmente no parâmetro "Mapeando o ponto final". A comparação entre a distância exibida e a distância real não é necessária neste caso. O mapeamento se torna ativo após aprox. 20 s.
DI UN			Selecionar se a distância real for desconhecida. Não há nenhum mapeamento registrado.
	FACT		Selecionar se a curva de mapeamento apresentada (se houver) tiver que ser excluída. O equipamento retorna ao parâmetro "Confirmar distância" e um novo mapeamento pode ser registrado.

8.4 Matriz de operação em conjunto com o Waterpilot FMX21

No modo HART, o RIA15 com a opção "nível" pode ser usado para o comissionamento básico do sensor de nível Waterpilot FMX21.

Para mais informações sobre o FMX21, consulte as instruções de operação associadas $\rightarrow \mathbb{B}$ BA00380 e PBA01605P.

Comissionamento básico do FMX21

O RIA15 deve estar no modo HART (MODO = HART) para realizar os ajustes básicos. O menu NÍVEL não é visível no modo analógico (MODO = 4-20).

- 1. Pressione a tecla.
 - └ O menu **Setup** é aberto.
- 2. Pressione a tecla.
 - → O submenu **NÍVEL** é aberto.
- 3. Ajuste os parâmetros desejados. Para descrições de parâmetros, consulte a seguinte tabela

Setup -> Menu Level (LEVEL)

O menu LEVEL está visível apenas se o RIA15 foi solicitado com a opção "Level" e o indicador for operado no modo HART (MODO = HART). Neste menu, os ajustes básicos para o sensor de nível Waterpilot FMX21 podem ser feitos pelo RIA15.

râmetros	Valores	Descrição
VEL		Esse menu contém os parâmetros para configuração do medidor de pressão para medição de nível hidrostático, FMX21. Usando este menu, as configurações básicas para o FMX21 podem ser feitas pelo RIA15.
		Uma vez que o item do menu LEVEL for aberto, os seguintes parâmetros são automaticamente ajustados para operação mais fácil: Tipo de operação: Nível Modo de calibração: Seca Seleção de Nível: Em pressão Modo lin: Linear
		É possível reiniciar esses parâmetros para configurações-padrão de fábrica ao executar uma reinicialização.
PUNIT	mbar bar kPa PSI	Use esta função para selecionar a unidade para a pressão
LUNIT	% m polegada pés	Use esta função para selecionar a unidade para o nível
TUNIT	°C °F K	Use esta função para selecionar a unidade para a temperatura
ZERO	NÃO SIM	Para executar um ajuste de posição (sensor de pressão manométrica). O valor 0,0 é especificado ao valor de pressão presente. O valor corrente também é corrigido.
P_LRV	-1999.9 9999.9	Calibração vazio de pressão utilizando as teclas -,+,E Descrição mais profunda / faixa de valor válido: qualquer valor na faixa indicada ¹⁾ Número de casas decimais dependem da unidade de pressão configurada. Intervalos válidos de ajuste: 0 a 100 mbar ou 0 a 20 bar
P_URV	-1999.9 9999.9	Calibração cheio de pressão utilizando as teclas -,+,E Descrição mais profunda / faixa de valor válido: qualquer valor na faixa indicada ¹⁾ Número de casas decimais dependem da unidade de pressão configurada. Intervalos válidos de ajuste: 0 a 100 mbar ou 0 a 20 bar
ЕМРТҮ	-1999.9 9999.9	Calibração vazio de nível utilizando as teclas -,+,E Descrição mais profunda / faixa de valor válido: qualquer valor na faixa indicada ¹⁾ Número de casas decimais dependem da unidade de nível configurada. Para intervalos válidos de ajuste, consulte as instruções de operação associadas do FMX21 → ■ BA00380 e BA01605P.
FULL	-1999.9 9999.9	Calibração cheio de nível utilizando as teclas -,+,E Descrição mais profunda / faixa de valor válido: qualquer valor na faixa indicada ¹⁾ Número de casas decimais dependem da unidade de nível configurada. Para intervalos válidos de ajuste, consulte as instruções de operação associadas do FMX21 → ■ BA00380 e BA01605P.

Setup -> Menu Level (LEVEL)

O menu LEVEL está visível apenas se o RIA15 foi solicitado com a opção "Level" e o indicador for operado no modo HART (MODO = HART). Neste menu, os ajustes básicos para o sensor de nível Waterpilot FMX21 podem ser feitos pelo RIA15.

Parâmetros Valore		Valores	Descrição
	LEVEL	Valor medido	Exibe o nível medido Número de casas decimais dependem da unidade de nível configurada.
	RESET	NÃO SIM	Reiniciar o FMX21 para os padrões de fábrica

Os valores inseridos para "Calib. cheio/Calib. vazio", "Pressão cheio/Pressão vazio" e "Ajuste LRV/Ajuste URV" devem estar pelo menos 1% separados. O valor será rejeitado e uma mensagem mostrada, se os valores forem muito próximos. Mais valores limites não são verificados, isto é, os valores registrados devem ser apropriados para o módulo do sensor e a tarefa de medição para o equipamento poder fazer a medição corretamente.

8.5 Matriz de operação em conjunto com o Gammapilot FMG50

No modo HART, o RIA15 com a opção "FMG50" pode ser usado para o ajuste básico do modo de nível, modo de nível de ponto ou modo de densidade do Gammapilot FMG50.

Para mais informações sobre o FMG50, consulte as instruções de operação associadas →

BA01966F

Ajuste básico para o Gammapilot FMG50

O RIA15 deve estar no modo HART (MODO = HART) para realizar os ajustes básicos. O menu **FMG50** não é visível no modo analógico (MODO = 4-20).

- 1. Pressione a© tecla.
 - ► O menu **SETUP** é aberto.
- 2. Pressione a© tecla.
 - → O submenu **FMG50** é aberto.
- 3. Opere o dispositivo configurando o comando de medição. A tabela a seguir contém uma descrição dos parâmetros e uma explicação das várias abreviações usadas.

Menu SETUP -> FMG50 -> OPER (tipo de operação)

O menu FMG50 está visível apenas se o RIA15 foi solicitado com a opção "FMG50" e o indicador for operado no modo HART (MODO = HART). A configuração básico do modo de nível, do modo de nível de ponto ou modo de densidade do Gammapilot FMG50 pode ser feita através do RIA15 utilizando este menu.

Parâmetros	Valores	Descrição			
FMG50		Este menu contém os parâmetros para a configuração básica do Gammapilot FMG50 para medição de nível, detecção de nível de ponto ou medição de densidade;. Usando este menu, os ajustes básicos para o Gammapilot FMG50 podem ser feitos pelo RIA15.			
OPER	PLEV LEVEL DENS	Abre o menu "Tipo de operação" onde o usuário pode selecionar o modo de medição para o dispositivo. Os usuários podem escolher entre as seguintes opções: Nível de ponto Nível contínuo Densidade Para uma descrição detalhada dos modos de operação individuais, consulte as Instruções de Operação do FMG50.			

Menu SETUP -> FMG50 -> OPER -> PLEV (nível de ponto)

Usando este menu, os ajustes básicos para o Gammapilot FMG50 na detecção de nível de ponto podem ser feitos pelo RIA15.

Caso "PLEV" (Point Level) tenha sido selecionado como tipo de operação, o tipo de linearização é automaticamente definido para "Linear".

râmetros	Valores	Descrição					
LRV		Valor do nível para 4 mA					
	Valor	0.1 para 9999.9					
URV		Valor do nível para 20 mA					
	Valor	0.1 para 9999.9					
BEAMT		Tipo de feixe: Escolha de radiação contínua ou modulada. Radiação modulada é usada para suprimir a gamagrafia. O modulador FHG65 deve ser usado para utilizar a radiação modulada.					
	MOD	Modulada					
	STD	Padrão					
ISOTY		Use esta função para selecionar o isótopo para a medição. O tipo de isótopo é fundamental para a correta compensação de declínio.					
	CS137	Césio 137					
	CO60	Cobalto 60					
CTIME		Tempo de integração para a calibração.					
	Valor	1 para 8 000 s					
BCKCL		Calibração de fundo é necessária para a medição da radiação natural de fundo.					
	START	Inicia a medição da taxa de pulso, causada pela radiação natural de fundo.					
	STOP	Para a calibração					
WAIT DONE		Calibração em andamento					
		A calibração terminou. O ponto de calibração é ativado pressionando a tecla "E".					
PULSF		Calibração cheio: calibração da taxa de pulso para "Cheio"					
	START	START aciona uma calibração cheio. O dispositivo determina a taxa de pulso no estado "Cheio".					
	STOP	Para a calibração					
	WAIT	Calibração em andamento					
DONE		A calibração terminou. O ponto de calibração é ativado pressionando a tecla "E".					
FULL		Use esta função para inserir um valor de nível para calibração cheio (para detecção de nível de ponto = 100 %).					
	Valor	100.0 para 60.0 %					
PULSE		Calibração vazio: calibração da taxa de pulso para "Vazio"					
	START	START aciona uma calibração vazio. O dispositivo determina a taxa de pulso no estado "Vazio".					
	STOP	Para a calibração					
	WAIT	Calibração em andamento					
	DONE	A calibração terminou. O ponto de calibração é ativado pressionando a tecla "E".					
EMPTY		Use esta função para inserir um valor de nível para calibração vazio (para detecção de nível de ponto = 0 o					
	Valor	0.0 para 40.0 %					
PLSB		Exibe a taxa de pulso de fundo					
PLSF		Exibe a taxa de pulso cheia					
PLSE		Exibe a taxa de pulso vazia					

Menu SETUP -> FMG50 -> OPER -> LEVEL (nível contínuo)

Usando este menu, os ajustes básicos do Gammapilot FMG50 para medição de nível contínua podem ser feitos pelo RIA15.

Caso "Nível contínuo" tenha sido selecionado como tipo de operação, o tipo de linearização é automaticamente definido para "Padrão".

âmetros	Valores	Descrição
LUNIT		Unidade para medição de nível contínua (somente porcentagem)
	%	Porcentagem
LRV		Valor do nível para 4 mA
	Valor	0.1 para 9 999.9
URV		Valor do nível para 20 mA
	Valor	0.1 para 9 999.9
BEAMT		Tipo de feixe: Escolha de radiação contínua ou modulada. Radiação modulada é usada para suprimir a gamagrafia. O modulador FHG65 deve ser usado para utilizar a radiação modulada.
	MOD	Modulada
	STD	Padrão
ISOTY		Use esta função para selecionar o isótopo para a medição. O tipo de isótopo é fundamental para a correta compensação de declínio.
	CS137	Césio 137
	CO60	Cobalto 60
CTIME		Tempo de integração para a calibração.
Valor		1 para 8000 s
BCKCL		Calibração de fundo é necessária para a medição da radiação natural de fundo.
	START	Inicia a medição da taxa de pulso, causada pela radiação natural de fundo.
	STOP	Para a calibração
	WAIT	Calibração em andamento
DONE		A calibração terminou. O ponto de calibração é ativado pressionando a tecla "E".
PULSF		Calibração cheio: calibração da taxa de pulso para 100%
START		START aciona uma calibração cheio. O dispositivo determina a taxa de pulso no estado "Cheio".
	STOP	Para a calibração
	WAIT	Calibração em andamento
	DONE	A calibração terminou. O ponto de calibração é ativado pressionando a tecla "E".
PULSE		Calibração vazio: calibração da taxa de pulso para 0%
	START	START aciona uma calibração vazio. O dispositivo determina a taxa de pulso no estado "Vazio".
	STOP	Para a calibração
	WAIT	Calibração em andamento
	DONE	A calibração terminou. O ponto de calibração é ativado pressionando a tecla "E".
PLSB		Exibe a taxa de pulso de fundo
PLSF		Exibe a taxa de pulso cheia
PLSE		Exibe a taxa de pulso vazia

Menu SETUP -> FMG50 -> OPER -> DENS (Densidade)

Usando este menu, os ajustes básicos do Gammapilot FMG50 para medição de densidade podem ser feitos pelo RIA15.

Caso "Densidade" tenha sido selecionado como tipo de operação, o tipo de linearização é automaticamente definido para "Calibração multiponto".

râmetros	Valores	Descrição				
DUNIT		Unidade de engenharia para exibição e transmissão do valor de densidade.				
	G/CM3 KG/M3 G/L LB/GA LB/IN	g/cm ³ kg/m ³ g/l lb/gal lb/in ³				
LUNIT		Unidade de comprimento para inserir distâncias, por exemplo, comprimento do caminho do feixe				
	MM POLEGADA	mm polegada				
LRV		Valor de densidade para 4 mA				
	Valor	0.0 para 9999.9 (o número de casas decimais depende da configuração no parâmetro DUNIT)				
URV		Valor de densidade para 20 mA				
	Valor	0.0 para 9999.9 (o número de casas decimais depende da configuração no parâmetro DUNIT)				
BEAMP		Caminho do feixe: O comprimento do caminho do feixe é a distância entre o contêiner da fonte e o detect Se esta distância não for conhecida, pode ser usado um valor aproximado ou o diâmetro do tubo.				
	Valor	0 para 99 999 mm (0.1 para 9 999.9 in)				
BEAMT		Tipo de feixe: Escolha de radiação contínua ou modulada. Radiação modulada é usada para suprimir a gamagrafia. O modulador FHG65 deve ser usado para utilizar a radiação modulada.				
	MOD	Modulada				
STD		Padrão				
ISOTY		Use esta função para selecionar o isótopo para a medição. O tipo de isótopo é fundamental para a correcompensação de declínio.				
	CS137	Césio 137				
	CO60	Cobalto 60				
CTIME Valor		Tempo de integração para a calibração.				
		1 para 8 0 0 0 s				
BCKCL		Calibração de fundo é necessária para a medição da radiação natural de fundo.				
	START	Inicia a medição da taxa de pulso, causada pela radiação natural de fundo.				
	STOP	Para a calibração				
	WAIT	Calibração em andamento				
	DONE	A calibração terminou. O ponto de calibração é ativado pressionando a tecla "E".				
PULS1		Taxa de pulso do ponto de calibração da 1ª densidade A taxa de pulso que corresponde à densidade do material no caminho do feixe é determinada durante a calibração. Este valor e o coeficiente de absorção são usados para calcular o curso da curva de calibração pe medição da densidade.				
	START	START inicia a calibração do primeiro ponto de densidade. O dispositivo determina a taxa de pulso no esta "Ponto de densidade 1".				
	STOP	Para a calibração				
	WAIT	Calibração em andamento				
	DONE	A calibração terminou. O ponto de calibração é ativado pressionando a tecla "E".				
DENS1		Use esta função para inserir o valor de densidade correspondente para a calibração do ponto de densidade 1				
	Valor	0.1 para 999.9				

Menu SETUP -> FMG50 -> OPER -> DENS (Densidade)

Usando este menu, os ajustes básicos do Gammapilot FMG50 para medição de densidade podem ser feitos pelo RIA15.

Caso "Densidade" tenha sido selecionado como tipo de operação, o tipo de linearização é automaticamente definido para "Calibração multiponto".

Parâmetros	Valores	Descrição			
PULS2		Taxa de pulso do 2º ponto de calibração da densidade A taxa de pulso que corresponde à densidade do material no caminho do feixe é determinada durante a calibração. Este valor e o coeficiente de absorção são usados para calcular o curso da curva de calibração para medição da densidade.			
	START	START inicia a calibração do segundo ponto de densidade. O dispositivo determina a taxa de pulso no estado "Ponto de densidade 2".			
	STOP	Para a calibração			
	WAIT	Calibração em andamento			
	DONE	A calibração terminou. O ponto de calibração é ativado pressionando a tecla "E".			
DENS2		Use esta função para inserir o valor de densidade correspondente para a calibração do ponto de densidade 2.			
	Valor	0.1 para 9 999.9			
PLSB		Exibe a taxa de pulso de fundo			
PLSD1		Exibe a taxa de pulso do ponto de calibração da 1ª densidade			
PLSD2		Exibe a taxa de pulso do 2º ponto de calibração da densidade			

8.6 Matriz de operação em conjunto com o Proservo NMS8x

No modo HART, o RIA15 com a opção "NMS8x" pode ser usado para a operação básica do dispositivo calibrador do tanque NMS8x.

Para mais informações sobre o NMS80, consulte as instruções de operação associadas →

BA01456G.

Para mais informações sobre o NMS81, consulte as instruções de operação associadas \rightarrow \square BA01459G.

Para mais informações sobre o NMS83, consulte as instruções de operação associadas \rightarrow \blacksquare BA01462G.

Comissionamento básico do NMS8x

O RIA15 deve estar no modo HART (MODO = HART) para realizar os ajustes básicos. O menu **OPRAT** não é visível no modo analógico (MODO = 4-20).

- 1. Pressione a© tecla.
 - → O menu **OPRAT** é aberto.
- 2. Pressione a tecla.
 - ► O submenu **CDM** é aberto.
- 3. Ajuste os parâmetros desejados. Para descrições de parâmetros, consulte a seguinte tabela.

Menu OPRAT (Operacional)

O menu OPRAT está visível apenas se o RIA15 foi solicitado com a opção "NMS8x" e o indicador for operado no modo HART (MODO = HART). Usando este menu, as configurações básicas para o dispositivo de medição do tanque Proservo NMS8x podem ser feitas pelo RIA15.

Parâmetros Valores Descrição			
OPRAT		Este menu contém os parâmetros para operação do Proservo NMS8x e de leitura do status atual de medição	
CMD		Comando usado para selecionar o modo de medição do dispositivo. O status da execução do comando é indicado no parâmetro de status STA .	
		Para mais informações sobre o NMS8x, consulte as Instruções de operação para o equipamento.	
	STOP	Para	
	LEVEL	Nível	
	UP	Sobe	
	BTM L	Nível de fundo	
	UP IF	Nível I/F superior	
	LO IF	Nível I/F inferior	
	U DEN	Densidade superior	
	M DEN	Densidade intermediária	
	L DEN	Densidade inferior	
	REPET	Repetibilidade	
	W DIP	Mergulhado em água	
	R OVR	Liberar sobretensão	
	T Pro	Perfil do tanque	
	IFPro	Perfil da interface	
	M Pro	Perfil manual	
	STBY	Standby do nível	
	SELF	Auto-verificação	
BAL		Indica a validade da medição. Se estiver equilibrado, o valor correspondente (Nível do líquido, Interface superior, Interface inferior, Fundo do tanque) é atualizado.	
	Não	Dados do nível do dispositivo não são válidos.	
	Sim	Dados do nível do dispositivo são válidos.	
STA		Indica o status atual de medição do equipamento.	
	REF	Deslocador na posição de referência	
	UP	Deslocador em elevação	
	STOP	Parada do deslocador	
	BAL	Medição de nível equilibrada	
	UIF B	Nível de interface superior equilibrado	
	UDErr	Erro de densidade superior	
	BTm B	Medição do fundo balanceada	
	UDDon	Densidade superior terminada	
	MDDon	Densidade intermediária terminada	
	LDDon	Densidade inferior terminada	
	REL	Liberar sobretensão	
	CALIB	Calibração ativada	
	SEEK	Buscar nível	
	FLW	Acompanhar nível	

Menu OPRAT (Operacional)

O menu OPRAT está visível apenas se o RIA15 foi solicitado com a opção "NMS8x" e o indicador for operado no modo HART (MODO = HART). Usando este menu, as configurações básicas para o dispositivo de medição do tanque Proservo NMS8x podem ser feitas pelo RIA15.

Parâmetros	Valores	Descrição				
	S UIF	Buscar nível de interface superior				
	F UIF	Seguir nível de interface superior				
	MDErr	Erro de densidade intermediária				
	F LIF	Seguir nível de interface inferior				
	S BTm	Buscar nível inferior				
	H STP	Parado no batente alto				
	L STP	Parado no batente baixo				
	REPET	Teste de repetibilidade				
	S WL	Buscar nível de água				
	WLErr	Erro do nível de água				
	T BAL	Temporário balanceado				
	LDErr	Erro de densidade inferior				
	SL UP	Içamento lento para cima				
	MAINT	Manutenção				
	LIF B	Nível de interface inferior balanceado				
	S LIF	Buscar nível de interface inferior				
	RELSD	Sobretensão liberada				
	Abv_L	Acima do líquido				
	WDDon	Mergulho em água terminado				
	P Don	Perfil terminado				
	B Don	Fundo terminado				
	L Fnd	Nível encontrado				
	P Err	Erro de perfil				
	WAIT	Aguardar o nível				
	S STb	Buscar posição de standby				
	MOVE	Mover para o alvo				
	M DEN	Medir densidade				
	M AIR	Medir no ar				
	B Err	Erro do fundo				

8.7 Matriz de operação em conjunto com o Liquiline CM82

No modo HART, o RIA15 com a opção "Análise" pode ser usado para comissionamento básico do Liquiline CM82.

Para mais informações sobre o CM82, consulte as instruções de operação associadas \rightarrow BA01845C

Comissionamento básico do CM82

O RIA15 deve estar no modo HART (MODO = HART) para realizar os ajustes básicos. O menu ANALYSIS não é visível no modo analógico (MODO = 4-20).

- 1. Pressione a tecla.
 - ► O menu **Setup** é aberto.
- 2. Pressione a tecla.
 - └ O submenu **CT** é aberto.
- 3. Ajuste os parâmetros desejados. Para descrições de parâmetros, consulte a seguinte tabela

Configuração -> menu ANALYSIS

O menu CT e todos os submenus associados estão visíveis apenas se o RIA15 foi solicitado com a opção "Analysis", a opção HART foi configurada e um CM82 foi detectado pelo RIA15. Usando este menu, as configurações básicas para o CM82 podem ser feitas pelo RIA15.

Parâmetros			Valores	Descrição
СТ				Este menu contém os parâmetros para configuração do transmissor compacto CM82.
CSET				Acesse o submenu "CM82 setup"
	TUNIT		°C °F °K	Selecione a unidade para temperatura no CM82.
	OUTS			Acesse o submenu "CM82 - Output Setting" para alterar o ajuste no CM82. O valor primário (CMAIN) do CM82 é especificado aqui e a faixa de medição (4-20mA) configurada. Dependendo do tipo de sensor conectado, somente certos valores medidos podem ser configurados/exibidos.
		pH senso	res de vidro	
		CMAIN	pH mV_PH IMPGL TEMP	PH: pH valor medido em pH mV_PH: pH valor bruto em mV IMPGL: Impedância de vidro em MOhm ¹⁾ TEMP: Temperatura em °C/°F/K (unidade de acordo com configuração em TUNIT)
		Sensores	de pH-ISFET	
		CMAIN	pH mV_PH LEAKC TEMP	PH: pH valor medido em pH mV_PH: pH valor bruto em mV LEAKC: Corrente de fuga ISFET em "nA" 1) TEMP: Temperatura em °C/°F/K (unidade de acordo com configuração em TUNIT)
		Sensores	pH/ORP	
		CMAIN	mVORP %_ORP TEMP	mVORP: Valor medido ORP exibido em mV %_ORP: Porcentagem valor ORP em % TEMP: Temperatura em °C/°F/K (unidade de acordo com configuração em TUNIT)
		Sensores pH/ORP	de combinação	

Configuração -> menu ANALYSIS

O menu CT e todos os submenus associados estão visíveis apenas se o RIA15 foi solicitado com a opção "Analysis", a opção HART foi configurada e um CM82 foi detectado pelo RIA15. Usando este menu, as configurações básicas para o CM82 podem ser feitas pelo RIA15.

Parâmetros		Valores	Descrição
	CMAIN	pH mV_PH IMPGL IMPRE mVORP %_ORP RH TEMP	PH: pH valor medido em pH mV_PH: pH valor bruto em mV IMPGL: Impedância de vidro em MOhm ¹⁾ IMPRE: Impedância de referência em Ohm mVORP: Valor medido ORP exibido em mV %_ORP: Porcentagem valor ORP em % RH: valor rH em rH TEMP: Temperatura em °C/°F/K (unidade de acordo com configuração em TUNIT)
	Sensores	de oxigênio	
	CMAIN	PAR_P %SAT C_LIQ C_GAS CURR RTIME TEMP	PAR_P: Pressão parcial do oxigênio em hPa %SAT: Porcentagem de saturação em % C_LIQ: Concentração líquida (unidade de acordo com configuração em UCLIQ) C_GAS: Concentração gasosa (unidade de acordo com configuração em UCGAS) CURR: Valor bruto, corrente de medição do sensor em nA 11 (visível apenas no caso de sensores de oxigênio amperométricos) RTIME: Tempo de decaimento, valor bruto em µs (visível apenas no caso de sensores de oxigênio ópticos) TEMP: Temperatura em °C/°F/K (unidade de acordo com configuração em TUNIT)
	UCLIQ	mG_L uG_L PPM PPB	Unidade de configuração de rangeabilidade superior e inferior se o valor primário (CMAIN) é ajustado para C_LIQ mG_L: miligrama/litro ¹⁾ uG_L: micrograma/litro PPM: partes por milhão PPB: partes por bilhão
	UCGAS	%_VOL PPM_V	Unidade de configuração de rangeabilidade superior e inferior se o valor primário (CMAIN) é ajustado para C_GAS %_VOL: porcentagem por volume PPM_V: partes por milhão
	Sensores	de condutividade	
	CMAIN	COND RESIS RAWC TEMP	COND: condutividade específica (unidade de acordo com configuração em UCOND) RESIS: resistividade (unidade de acordo com configuração em URES) RAWC: condutividade não compensada (unidade de acordo com configuração em UCOND) TEMP: temperatura (unidade de acordo com configuração em TUNIT)
	URES	KO*CM MO*CM KO*M	Unidade de configuração de rangeabilidade superior e inferior se o valor primário (CMAIN) é ajustado para RESIS KO*CM: kOhm*cm MO*CM: MOhm*cm KO*M: kOhm*m
	UCOND	uS/cm mS/cm S/cm uS/m mS/m S/m	Unidade de configuração de rangeabilidade superior e inferior se o valor primário (CMAIN) é ajustado para COND ou RESIS uS/cm: microsiemens/cm mS/cm: milisiemens/cm S/cm: siemens/cm uS/m: microsiemens/m mS/m: milisiemens/m S/m: siemens/m
	(para tod	os os sensores)	

Configuração -> menu ANALYSIS

O menu CT e todos os submenus associados estão visíveis apenas se o RIA15 foi solicitado com a opção "Analysis", a opção HART foi configurada e um CM82 foi detectado pelo RIA15. Usando este menu, as configurações básicas para o CM82 podem ser feitas pelo RIA15.

Parâmetros		Valores	Descrição
	BAIXO		Descrição Configurar a rangeabilidade da saida corrente. O valor medido que corresponde a 4 mA é ajustado aqui. Os limites do ajuste variam dependendo do tipo do sensor e do valor medido. A posição do ponto decimal é permanentemente pré-ajustado dependendo do valor primário (CMAIN) configurado. Faixas válidas de ajuste: Sensor de pH: PH: -2.00 a 16.00 pH mV PH: -2.000 a 2000 mV LEAKC: -4000.0 a 4000.0 nA IMPGI: 0 a 99999 MOhm IMPRE: 0.0 a 70.0 rH TEMP: -50.0 a 150.0 °C (dependendo da unidade configurada sob TEMP) -58.0 a 302.0 °F 223.1 a 423.1 K sensor de oxigênio dissolvido: PAR_P: 0.0 a 2500.0 hPa %SAT: saturação 0.02 a 200,00 % C_LIQ: -0.02 a 120.00 mg/l -20.00 a 999.99 uy/l -0.02 a 120.00 ppm -20.00 a 999.99 ppb (dependendo da unidade configurada em UCLIQ) C_GAS: -0.02 a 200.00 Vol% -0.02 a 200.00 Vol% -0.02 a 200.00 Vol% -0.02 a 200.00 Vol% -10.00 a 999.99 pp m Vol (dependendo da unidade configurada sob UCGAS) CORR: 0.0 a 999.99 pm Vol (dependendo da unidade configurada sob UCGAS) CORR: 0.0 a 999.99 pm Vol (dependendo da unidade configurada sob UCGAS) CORR: 0.0 a 999.99 mS/m -10.00 a 140.0 °C -14.0 a 284°F 263.1 a 413.1 K (dependendo da unidade configurada sob TEMP) Sensor de condutividade: COND: 0.000 a 99.999 mS/m 0.000 a 99.999 s/com 0.000 a 99.999 mS/m

Configuração -> menu ANALYSIS

O menu CT e todos os submenus associados estão visíveis apenas se o RIA15 foi solicitado com a opção "Analysis", a opção HART foi configurada e um CM82 foi detectado pelo RIA15. Usando este menu, as configurações básicas para o CM82 podem ser feitas pelo RIA15.

Parâmetros			Valores	Descrição	
				TEMP: -50,0 a 250,0 °C -58,0 a 482,0°F 223,1 a 523,1 K (dependendo da unidade configurada sob TEMP)	
		HIGH	-19.999 99.999	Configurar a rangeabilidade da saída corrente. O valor medido que corresponde a 20 mA é ajustado aqui. Os limites do ajuste variam dependendo do tipo do sensor e do valor medido. A posição do ponto decimal é permanentemente pré-ajustada dependendo do valor primário (CMAIN) e unidades (UCLIQ, UCGAS, URES, UCOND) configuradas. Para faixas válidas de ajuste, veja LOW (ajuste para 4 mA)	
		ERRC	3,6 a 23,0	Configure a corrente do erro no CM82 em mA	
CDIAC				Acesse o submenu "CM82- Device diagnostics"	
	FCSM		Categoria de erro de acordo com NAMUR e número do erro	Exiba a mensagem de erro com a prioridade máxima no CM82	
	DTAG		Tag do equipamento	Exiba a etiqueta de equipamento do CM82 (use as teclas +/- para listar pelo texto)	
	DSER		Número de série do equipamento	Exiba o número de série do CM82 (use as teclas +/- para listar pelo texto)	
	SENOC		Código do pedido do sensor	Exiba o código de pedido do sensor (use as teclas +/- para listar pelo texto)	
	SENSN		Número de série do sensor	Exiba o número de série do sensor (use as teclas +/- para listar pelo texto)	
CTRES				Acesse o submenu "CM82 - Reset"	
	RBOOT		Não SIM	Causa uma reinicialização do CM82	
	FDEF		Não SIM	Reinicializar o CM82 para ajustes de fábrica	
CTSIM	,			Acesse o submenu "CM82 - Simulation"	
	SIMUL		DESLIGADO LIGADO	Ativa a simulação para valor de saída de corrente em CM82	
	VALOR		3,6 a 23,0	Configura o valor de saída de corrente em CM82 para simulação em mA	

RIA15 Localização de falhas

9 Localização de falhas

9.1 Limites de erro conforme NAMUR NE 43

O equipamento exibe uma mensagem de erro caso um valor esteja fora desses limites.

Valor corrente	Erro	Código de diagnóstico
≤ 3.6 mA	Abaixo da faixa	F100
3.6 mA < x ≤ 3.8 mA	Valor medido não permitido	S901
20.5 mA ≤ x < 21.0 mA	Valor medido não permitido	S902
> 21.0 mA	Acima da faixa	F100

9.2 Mensagens de diagnóstico

Caso vários erros estejam pendentes de forma simultânea, o equipamento sempre exibe o erro com a maior prioridade.

1 = Maior prioridade

Número de diagnóstico	Texto curto	Medida corretiva	Sinal de status	Comportamento de diagnóstico	Prioridade	
		Diagnósticos para o sensor				
F100	Erro de sensor	de sensor Verificar a ligação elétrica Verificar o sensor Verificar as configurações do sensor		Alarme	6	
S901	Sinal de entrada muito baixo	 Verificar saída do transmissor quanto ao defeito e erro de conformidade Verificar o transmissor quanto à configuração incorreta 	S	Aviso	4	
S902	Sinal de entrada muito amplo		S	Aviso	5	
		Diagnósticos para componentes eletrônicos		'		
F261	Módulo dos componentes eletrônicos	Substitua os componentes eletrônicos	F	Alarme	1	
F283	Conteúdo da memória	 Reinicie o equipamento Redefinir o equipamento Substitua os componentes eletrônicos 	F	Alarme	2	
F431	Calibração na fábrica	Substitua os componentes eletrônicos	F	Alarme	3	
Diagnósticos para configuração						
M561	Overshoot do display	Verifique o escalonamento	M	Aviso	7	

9.2.1 Display "UCxxx" em vez da unidade HART®

Por padrão, a unidade do valor medido transmitido é automaticamente lido e exibido usando um comando HART®. Se o "código de unidade" transmitido não pode ser exclusivamente especificado pelo RIA15, o código de unidade (UCxx) é exibido ao invés da unidade.

Localização de falhas RIA15

> Para remediar isso, a unidade deve ser ajustada manualmente. (SETUP => HART => HART1-4 => UNIT1-4 => TEXT1-4).

Para ver as unidades afetadas, consulte \rightarrow $\stackrel{\triangle}{=}$ 78

Caso especial CM82:

Os códigos de unidade 170 a 219 são especificados múltiplas vezes, de acordo com a especificação HART®. Como o UC170 também é usado com o CM82, a unidade deve ser especificada manualmente. Isso é aplicado aos seguintes unidades/valores medidos:

PV (TEXT1):

Parâmetro do transmissor Valor primário (CMAIN)		Unidade
рН	Corrente de fuga (LEAKC)	nA
рН	Impedância de vidro (IMPGL)	MOhm
Oxigênio dissolvido	Concentração líquida (C_LIQ)	mg/l
Oxigênio dissolvido	Valor bruto do sensor (CORR)	nA

QV (TEXT4):

Parâmetro do transmissor	Tipo de sensor	Unidade
рН	Vidro	MOhm
pH	IsFET	nA

9.2.2 Mensagens de erro HART®

Caso vários erros estejam pendentes de forma simultânea, o equipamento sempre exibe o erro com a maior prioridade.

1 = Maior prioridade

Número de diagnóstico	Texto curto	Medida corretiva	Sinal de status	Comportamento de diagnóstico	Prioridade
F960	Comunicação HART® (escravo não respondendo)	 Verificar endereço de escravo HART Verificar a ligação elétrica (HART®) Verificar o ator/sensor da função HART® 	F	Alarme	8
C970	Colisão Multi-mestre	 Verifique o mestre adicional na rede HART® (ex.: portátil). Verifique a configuração do mestre (secundário/primário) 	С	Verificação	9
F911	Erro do dispositivo HART® escravo (HART® Field Device Status)	Verifique a configuração do sensor/ator ou verifique quanto a defeitos	F	Alarme	10
S913	Saída da corrente escrava HART® saturada (HART® Field Device Status)	 Comissionamento: Verificação do sensor/ator quanto à configuração incorreta, verifique a configuração do sensor/ator Operação: Parâmetro do processo fora do intervalo 	S	Aviso	11
S915	Variável do escravo HART® fora dos limites da faixa (HART® Field Device Status)	válido	S	Aviso	12

RIA15 Localização de falhas

9.2.3 Outros diagnósticos no modo HART®

O indicador de processo possui uma função de diagnóstico HART® integrada. Esta função pode ser usada para estimar o nível do sinal HART®, a resistência de comunicação aplicável e o ruído da rede.

O indicador pode medir e exibir os seguintes valores:

Parâmetros	Descrição	Interface de usuário	
Tx mV	Nível do sinal do indicador do processo	mV	Nível de pico a pico do sinal do transmissor
Rx mV	Nível do sinal escravo	mV	Nível de pico a pico do sinal recebido
NOISE	Ponderação do sinal de interferência	LO / MED / HI	Categorização da interferência em baixa, média ou alta
Rc Ω	Resistência de comunicação efetiva	Ω	Resistência em Ohm

Os valores podem ser acessados no menu EXPRT - DIAG - HLEVL.

Medindo o nível do sinal de transmissão "Tx":

A medição Tx pode ser usada para avaliar o nível do sinal de transmissão.

De forma ideal, isso deve estar entre 200 mV e 800 mV. Os seguintes valores são exibidos:

Tx	< 120 mV	120 para 200 mV	200 para 800 mV	800 para 850 mV	> 850 mV
Display	LO	Nível em mV			HI
Gráfico de barras	<	<	0 para 100 %	>	>

Medindo o nível de sinal recebido "Rx":

A medição Rx pode ser usada para avaliar o nível do sinal recebido. De forma ideal, isso deve estar entre 200 mV e 800 mV.

O valor do sinal Rx exibido é um nível de sinal filtrado, conforme avaliado pelo indicador de processo. Dessa maneira, o valor medido externamente e o valor exibido podem diferir um do outro, por exemplo, no caso de um sinal recebido trapezoidal.

Os seguintes valores são exibidos:

Rx	< 120 mV	120 para 200 mV	200 para 800 mV	800 para 850 mV	> 850 mV
Display	LO	Nível em mV			HI
Gráfico de barras	<	<	0 para 100 %	>	>

Medição do sinal de interferência "NOISE":

Quando o nível do sinal de interferência for medido, o sinal de interferência determinado é dividido em três categorias:

LO = baixo

MED = médio

HIGH = alto

Localização de falhas RIA15

A medição de ruído também é um nível de sinal filtrado, conforme avaliado pelo indicador de processo. O valor medido externamente e o valor exibido podem, portanto, diferir um do outro, dependendo da frequência e da forma do sinal.

Com baixos níveis de sinal desejado (Rx, Tx), erros de transmissão podem ocorrer mesmo se o nível do sinal de interferência for baixo ("LO" é exibido).

Medindo a resistência de comunicação "Rc":

A medição "Rc" pode ser usada para determinar a resistência da rede da rede HART®. De forma ideal, isso deve estar entre 230 Ω e 600 Ω .

A resistência da rede é a soma da resistência de comunicação HART®, a resistência de entrada do dispositivo, a resistência da linha de transmissão e a capacitância da linha.

Os seguintes valores são exibidos:

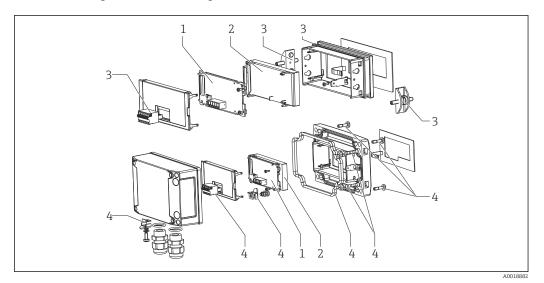
Rc	< 100 Ω	100 para 230 Ω	230 para 600 Ω	600 para 1000 Ω	> 1000 Ω
Display	LO	Resistência em Ω			HI
Gráfico de barras	<	< 	0 para 100 %	>	>

9.2.4 Mensagens de erro durante a configuração básica dos transmissores conectados

Durante a configuração dos transmissores conectados, pode acontecer que o transmissor responda com um código de resposta diferente de 0. Nesse caso, o código de resposta é exibido brevemente no indicador de processo ("RC XX"). A configuração atual no transmissor é recuperada novamente e exibida no indicador de processo.

O significado dos códigos de resposta é explicado na tabela a seguir.

Código	Descrição	Solução
RC 02	Seleção inválida	Verifique a configuração de HART® e firmware no transmissor correto
RC 03	Valor grande demais	Verifique os ajustes básicos do transmissor conectado $\rightarrow \ \ \cong \ 48$
RC 04	Valor pequeno demais	Verifique os ajustes básicos do transmissor conectado → 🖺 48
RC 05	Bytes de dados não suficientes recebidos	Verifique a configuração de HART® e firmware no transmissor correto
RC 06	Erro de comando específico do dispositivo	Verifique a configuração de HART® e firmware no transmissor correto
RC 07	No modo protegido contra gravação	Verifique a proteção contra gravação no transmissor conectado
RC 14	Extensão muito pequena	Verifique os ajustes básicos do transmissor conectado → 🖺 48
RC 16	Acesso restrito	Verifique a configuração de HART® e firmware no transmissor correto
RC 29	Extensão inválida	Verifique os ajustes básicos do transmissor conectado → 🖺 48
RC 32	Ocupado	Tente estabelecer comunicação novamente


RIA15 Localização de falhas

9.2.5 Podem ocorrer outras mensagens de erro durante a configuração

Código	Descrição	Solução
F960	Erro de comunicação HART	Verifique a comunicação HART: Resistência da comunicação Nível de sinal Falhas Versão do sensor
F013	O transmissor/ sensor CM82 não é suportado pelo RIA15	Conecte um transmissor/tipo de sensor suportado

Localização de falhas RIA15

9.3 Peças de reposição

■ 24 Peças de reposição do indicador do processo

Item n°. Descrição Número de pedido 1 Placa principal HART® XPR0005-ABA XPR0005-ACA Placa principal HART® com opção de nível (FMX21, FMR20) Placa principal HART® com opção de análise (CM82) XPR0005-ADA XPR0006-A1 Pequenas peças para alojamento com montagem em painel XPR0006-A2 (terminal plug-in de 5 pinos, vedação no chassi dianteiro, 2x braçadeiras de fixação) Conjunto de peças pequenas para alojamento de campo XPR0006-A3 (terminal de 5 pinos com plug-in, vedação na tampa, 2x dobradiça da tampa, conexão de aterramento na parte inferior, parafusos da tampa, terminal de aterramento) Prensa-cabos com membrana de compensação de pressão RK01 integrada (para FMX21)

9.4 Protocolo do software e visão geral de compatibilidade

Lançamento

A versão do firmware na etiqueta de identificação e nas Instruções de operação indica a liberação do equipamento: XX.YY.ZZ (exemplo 1,02,01).

XX	Alterar para a versão principal. Não é mais compatível. O equipamento e as instruções de operação também mudam.
YY	Mudança nas funções e operação. Compatível. As instruções de operação mudam.
ZZ	Mudanças fixas e internas. Sem mudanças para as Instruções de operação

Data	Versão firmware	Alterações no software	Documentação
03/2013	1.01.00	Opção HART®	BA01170K/09/EN/02.13
07/2013	1.02.00	Medição de nível HART®	BA01170K/09/EN/03.13

RIA15 Manutenção

Data	Versão firmware	Alterações no software	Documentação
11/2014	1.03.00	Novo parâmetro EXP1-EXP4 para opção HART®	BA01170K/09/EN/04.14
05/2016	1.04.00	Novos menus e parâmetros em "Comissionamento básico do FMR20"	BA01170K/09/EN/05.15
04/2018	ISU00XA (padrão): 1.05.01 ISU01XA (CM82): 1.05.01	Novos menus e parâmetros em "Comissionamento básico do FMX21/CM82"	BA01170K/09/EN/06.18
08/2019	ISU00XA (Padrão): 1.06.xx ISU03XA (NMS8x): 1.06.xx	Novos menus e parâmetros em "Comissionamento básico do FMG50/NMS8x"	BA01170K/09/EN/07.19

10 Manutenção

Nenhum trabalho de manutenção especial do equipamento é exigido.

11 Devolução

As especificações para devolução segura do equipamento podem variar, dependendo do tipo do equipamento e legislação nacional.

- 1. Consulte o website para maiores informações: http://www.endress.com/support/return-material
- 2. Devolva o equipamento caso sejam necessários reparos ou calibração de fábrica ou caso o equipamento errado tenha sido solicitado ou entregue.

12 Descarte

12.1 Segurança de TI

Observe as seguintes instruções antes do descarte:

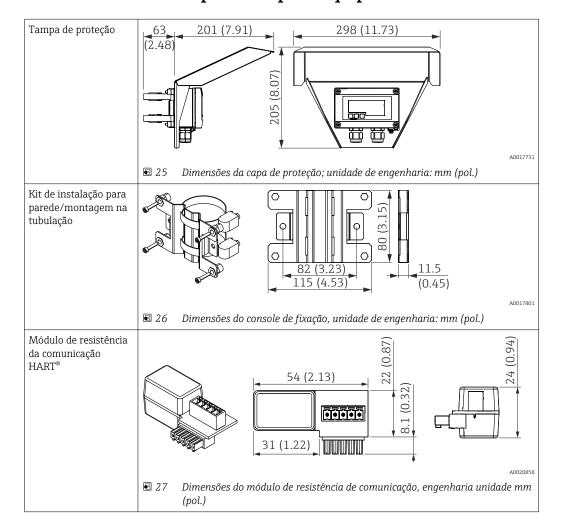
- Excluir dados
- 2. Restaurar o equipamento
- 3. Excluir/alterar senhas
- 4. Excluir usuários
- 5. Realizar medidas alternativas ou complementares para destruir a mídia de armazenamento

12.2 Desmontagem do equipamento de medição

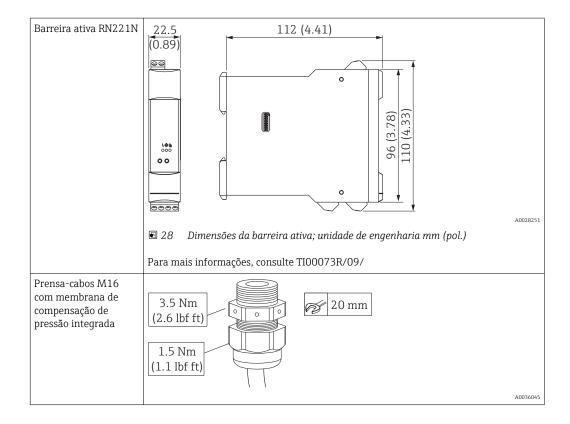
- 1. Deslique o equipamento
- 2. Executar as etapas de fixação e conexão das seções "Fixando o medidor" e "Conectando o medidor" na ordem inversa. Observe as instruções de segurança.

RIA15 Descarte

Descarte do medidor 12.3


- Siga as observações seguintes durante o descarte:
 Verifique as regulamentações federais/nacionais.
 - Garanta a separação adequada e o reuso dos componentes do equipamento.

RIA15 Acessórios


13 Acessórios

Vários acessórios, que podem ser solicitados com o equipamento ou posteriormente da Endress+Hauser, estão disponíveis para o equipamento. Informações detalhadas sobre o código de pedido em questão estão disponíveis em seu centro de vendas local Endress +Hauser ou na página do produto do site da Endress+Hauser: www.endress.com.

13.1 Acessórios específicos para equipamentos

Acessórios RIA15

13.2 Acessórios específicos do serviço

Acessórios	Descrição
Applicator	Software para seleção e dimensionamento de medidores Endress+Hauser: Cálculo de todos os dados necessários para identificar o medidor ideal: ex. perda de pressão, precisão ou conexões de processo. Indicação gráfica dos resultados dos cálculos
	Administração, documentação e acesso a todos os dados e parâmetros relacionados ao processo durante toda a duração do projeto.
	OApplicator está disponível: através da Internet: https://wapps.endress.com/applicator Em CD-ROM para instalação em PC local .
W@M	Gerenciamento do ciclo de vida para suas instalações O W@M oferece uma vasta gama de aplicações de software ao longo de todo o processo: desde o planejamento e aquisição, até a instalação, comissionamento e operação dos medidores. Todas as informações relevantes sobre o equipamento, como o status do equipamento, peças de reposição e documentação específica de todos os equipamentos durante toda a vida útil. O aplicativo já contém os dados de seu equipamento Endress+Hauser. A Endress +Hauser também cuida da manutenção e atualização dos registros de dados.
	OW@M está disponível: através da Internet: www.endress.com/lifecyclemanagement Em CD-ROM para instalação em PC local.

RIA15 Dados técnicos

14 Dados técnicos

14.1 Entrada

Queda de tensão		
Equipamento padrão com comunicação 4 para 20 mA	≤ 1.0 V	
Equipamento com comunicação HART®	≤ 1.9 V	
Iluminação do display	adicionalmente 2.9 V	

Impedância de entrada HART®	
$Rx = 40 \text{ k}\Omega$	
Cx = 2.3 nF	

Variável medida

A variável de entrada é o sinal de corrente 4 para 20 mA ou o sinal HART®.

Sinais do HART® não são afetados.

Faixa de medição

 $4\ para\ 20\ mA$ (escalável, proteção de polaridade reversa)

Corrente máx. de entrada 200 mA

14.2 Fonte de alimentação

Fonte de alimentação

AVISO

Equipamento SELV/Classe 2

▶ O equipamento pode ser alimentado apenas por uma unidade de alimentação com um circuito limitado de energia, de acordo com UL/EN/IEC 61010-1 Parágrafo 9.4 ou Classe 2 conforme UL 1310: 'SELV ou circuito Classe 2'.

O indicador de processo é alimentado por ciclo e não requer uma fonte de alimentação externa. A queda de tensão é ≤ 1 V na versão padrão com comunicação 4 para 20 mA e, ≤ 1.9 V com comunicação HART® e uma 2.9 V adicional se for usada a iluminação do display.

14.3 Características de desempenho

Condições de operação de referência

Temperatura de referência 25 °C ±5 °C (77 °F ±9 °F)

Umidade relativa 20 para 60 %

Erro máximo medido

Entrada	Faixa	Erro medido da faixa de medição
Corrente	4 para 20 mA Acima da faixa até 22 mA	±0.1 %

Resolução

Resolução de sinal > 13 bit

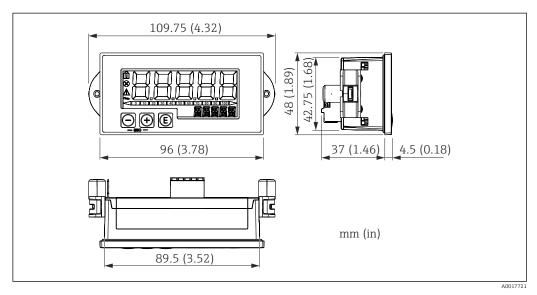
Dados técnicos RIA15

Influência da temperatura ambiente	< 0.02 %/K (0.01 %/°F) da faixa de medição	
Período de aquecimento	10 minutos	
	14.4 Instalação	
Local de instalação	Invólucro do painel	
	O dispositivo é projetado para uso em um painel.	
	Corte do painel exigido 45x92 mm (1.77 x 3.62 in)	
	Invólucro de campo	
	A versão do alojamento de campo é projetada para instalação no campo. A unidade é montada diretamente em uma parede ou em um tubo com um diâmetro de até 2 " com a ajuda de um console de fixação opcional. Uma tampa opcional de proteção contra intempéries protege o dispositivo contra os efeitos das condições climáticas.	
	Invólucro do painel	
	A orientação é horizontal.	
	Invólucro de campo	
	O dispositivo deve ser instalado de forma que as entradas do cabo não apontem para baixo.	
	14.5 Ambiente	
Faixa de temperatura	-40 para 60 °C (−40 para 140 °F)	
ambiente	10 para 00 0 (10 para 110 1)	
uniblente	Em temperaturas abaixo de -25 °C (-13 °F), a leitura do display não pode mais ser garantida.	
	Em temperaturas abaixo de –25 °C (–13 °F), a leitura do display não pode mais ser	
Temperatura de armazenamento	Em temperaturas abaixo de -25 °C (-13 °F), a leitura do display não pode mais ser garantida.	
Temperatura de	Em temperaturas abaixo de -25 °C (-13 °F), a leitura do display não pode mais ser garantida. -40 para 85 °C (-40 para 185 °F)	
Temperatura de armazenamento Classe climática	Em temperaturas abaixo de -25 °C (-13 °F), a leitura do display não pode mais ser garantida. -40 para 85 °C (-40 para 185 °F) IEC 60654-1, Classe B2	
Temperatura de armazenamento Classe climática Altitude de operação	Em temperaturas abaixo de -25 °C (-13 °F), a leitura do display não pode mais ser garantida. -40 para 85 °C (-40 para 185 °F) IEC 60654-1, Classe B2 Até 5 000 m (16 400 ft) acima do MSL em conformidade com IEC61010-1	
Temperatura de armazenamento Classe climática Altitude de operação	Em temperaturas abaixo de -25 °C (-13 °F), a leitura do display não pode mais ser garantida. -40 para 85 °C (-40 para 185 °F) IEC 60654-1, Classe B2 Até 5 000 m (16 400 ft) acima do MSL em conformidade com IEC61010-1 Invólucro do painel	
Temperatura de armazenamento Classe climática Altitude de operação	Em temperaturas abaixo de -25 °C (-13 °F), a leitura do display não pode mais ser garantida. -40 para 85 °C (-40 para 185 °F) IEC 60654-1, Classe B2 Até 5 000 m (16 400 ft) acima do MSL em conformidade com IEC61010-1 Invólucro do painel IP65 frontal, IP20 traseira	

RIA15 Dados técnicos

Compatibilidade eletromagnética

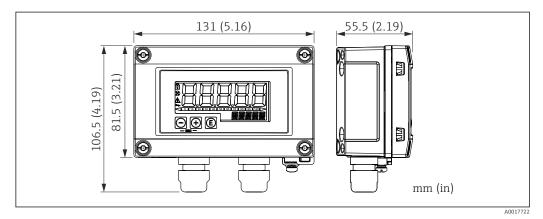
- Imunidade a interferência: Conforme IEC61326 (ambientes industriais) / NAMUR NE 21 Máximo erro medido < 1 % o. MR
- Emissão de interferência: Conforme IEC61326, Classe B


Segurança elétrica

Classe III, proteção contra sobretensão categoria II, grau de poluição 2

14.6 Construção mecânica

Design, dimensões


Invólucro com montagem em painel

29 Dimensões do invólucro do painel

Corte do painel exigido 45x92 mm (1.77x3.62 in), espessura máxima de chapa 13 mm (0.51 in).

Invólucro de campo

30 Dimensões do alojamento do campo incl. entradas para cabo (M16)

Peso

Invólucro com montagem em painel

115 g (0.25 lb.)

Dados técnicos RIA15

Invólucro de campo

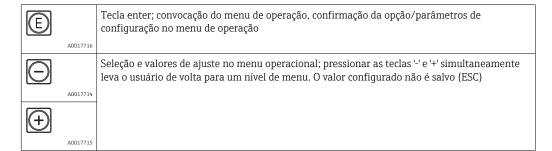
Alumínio: 520 g (1.15 lb)Plástico: 300 g (0.66 lb)

Materiais

Invólucro com montagem em painel

Frontal: alumínio

Parede traseira: policarbonato PC


Invólucro de campo

Alumínio ou plástico (PBT com fibras de aço, antiestática)

14.7 Operabilidade

Operação local

O equipamento é operado utilizando-se 3 teclas de operação na frente do invólucro. A configuração do equipamento pode ser desabilitada com um código de usuário com 4 dígitos. Se a configuração estiver desabilitada, aparecerá um símbolo de cadeado no display quando um parâmetro de operação for selecionado.

14.8 Certificados e aprovações

Identificação CE	O produto atende às especificações das normas europeias harmonizadas. Assim, está em conformidade com as especificações legais das diretrizes EC. O fabricante confirma que o equipamento foi testado com sucesso com base na identificação CE fixada no produto.
Identificação EAC	O produto atende às exigências legais das diretrizes EEU. O fabricante confirma o teste bem-sucedido do produto ao fixar a ele a identificação EAC.
Aprovação Ex	Informação sobre versões Ex disponíveis atualmente (ATEX, FM, CSA etc.) podem ser fornecidas pela central de vendas E+H sob encomenda. Todos os dados de proteção antiexplosão são fornecidos em documentação separada, disponível mediante solicitação.
Segurança funcional	Liberdade de interferência SIL de acordo com EN61508 (opcional)
Aprovação da marinha	Aprovação da marinha (opcional)
Comunicação® HART	O indicador é registrado pela HART® Communication Foundation. O equipamento atende as necessidades das Especificações de protocolo de comunicação HART®, em maio de

RIA15 Dados técnicos

2008, revisão 7.1. Essa versão abaixo é compatível com todos os sensores/atuadores com $HART^{\circ}$ versões \geq 5.0.

Outras normas e diretrizes

■ IEC 60529:

Graus de proteção dos gabinetes (código IP)

- IEC 61010-1: 2010 cor 2011 Especificações de segurança para equipamentos elétricos para medição, controle e uso de laboratório
- NAMUR NE21, NE43
 Associação para normas para regulamentação e controle na indústria química

15 Comunicação® HART

HART® (Highway Addressable Remote Transducer) é um padrão mundial estabelecido da indústria, que foi experimentado e testado em campo e possui uma base instalada de mais de 14 milhões de dispositivos.

HART® é uma tecnologia "smart" que permite a transmissão analógica 4 para 20 mA e a comunicação digital simultâneas ao longo do mesmo par de fios. Com o HART®, a transmissão baseia-se na norma Bell 202 Frequency Shift Keying (FSK). Uma onda de alta frequência (±0.5 mA) é sobreposta ao sinal analógico de baixa frequência (4 para 20 mA). As distâncias máximas de transmissão dependem da estrutura da rede e das condições ambientais.

Em muitas aplicações, o sinal HART® é usado apenas para fins de configuração. No entanto, com as ferramentas apropriadas, o HART® pode ser usado para monitoramento de dispositivos, diagnóstico de dispositivos e registro de informações de processo multivariáveis.

O protocolo HART® base-a-se no princípio mestre /escravo. Isso significa que durante a operação normal, toda a comunicação é iniciada pelo mestre. Ao contrário de outros tipos de comunicação mestre-escravo, o HART® permite dois mestres em um ciclo/rede: um mestre primário, por exemplo o sistema de controle distribuído e um mestre secundário, por exemplo um terminal de mão. No entanto, dois mestres do mesmo tipo não são permitidos simultaneamente. Os dispositivos mestre secundários podem ser usados sem afetar a comunicação de e para o mestre primário. Os dispositivos de campo geralmente são os escravos HART® e respondem aos comandos HART® do mestre endereçados diretamente a eles ou a todos os dispositivos.

A especificação HART® estipula que os mestres transmitem um sinal de tensão, enquanto os sensores /atuadores (escravos) transmitem suas mensagens usando correntes independentes de carga. Os sinais de corrente são convertidos em sinais de tensão no resistor interno do receptor (carga).

Para garantir a recepção confiável do sinal, o protocolo HART especifica que a carga total do ciclo de corrente - incluindo a resistência do cabo - deve estar entre um mínimo de 230 Ω e um máximo de 600 Ω . Se a resistência for menor que 230 Ω , o sinal digital é bastante atenuado ou entra em curto-circuito. Portanto, um resistor de comunicação HART é sempre necessário no cabo 4 para 20 mAem caso de uma alimentação de tensão de baixa impedância.

15.1 Classes de comando do protocolo HART®

Cada comando é atribuído a uma das três classes abaixo:

- Comandos universais são compatíveis com todos os dispositivos utilizando o protocolo HART® (ex. tag de dispositivo, n. do firmware etc.).
- Comandos práticos comuns oferecer funções compatíveis com muitos, mas não todos os instrumentos HART[®] (por exemplo, valor de leitura, ajuste de parâmetro etc.)
- Comandos específicos do equipamento fornecer acesso a dados do dispositivo que não são padrão HART[®], mas exclusivos de um modelo específico de equipamento (por exemplo, linearização, funções avançadas de diagnóstico)

Como o protocolo HART® é um protocolo de comunicação aberto entre o dispositivo de controle e o dispositivo de campo, pode ser implementado por qualquer fabricante e aplicado livremente pelo usuário. O suporte técnico necessário é fornecido pela Fundação de Comunicação HART® (HCF).

15.2 Comandos HART[®] usados

O indicador do processo utiliza os seguintes comandos HART® universais:

Número do comando universal	Dados de resposta utilizados		
0 Identificador exclusivo do dispositivo	O identificador do dispositivo fornece informações sobre o dispositivo e o fabricante; não pode ser alterado. A resposta compreende um ID de dispositivo de 12 bytes.		
	Os seguintes bytes são usados pelo indicador de processo: Byte 0: valor fixo 254 Byte 2: ID do tipo de equipamento, para endereçamento escravo com formato longo de endereço Byte 3: número de preâmbulos Byte 9-11: Identificação do equipamento, para endereçamento escravo com formato longo de endereço		
2 Leia a variável primária do processo como corrente em mA e o valor percentual com base no intervalo atual	A resposta compreende 8 bytes: Byte 0-3: corrente em mA Byte 4-7: valor de porcentagem		
3 Leia a variável primária do processo como corrente em mA e quatro variáveis dinâmicas do processo	A resposta compreende 24 bytes: Os seguintes bytes são usados pelo indicador de processo: Byte 4: Código de unidade HART® da variável primária do processo Byte 5-8: variável primária do processo Byte 9: Código de unidade HART® da variável secundária do processo Byte 10-13: variável secundária do processo Byte 14: Código de unidade HART® da terceira variável do processo Byte 15-18: terceira variável do processo Byte 19: Código de unidade HART® da quarta variável do processo Byte 20-23: quarta variável do processo		

Os comandos universais usados pelo indicador de processo devem ser compatíveis com os escravos para garantir a comunicação adequada.

15.3 Status do equipamento de campo

O status do equipamento de campo está contido no segundo byte de dados de uma resposta de escravo /atuador.

Os seguintes bits são analisados pelo indicador de processo e exibidos como uma mensagem de diagnóstico:

Máscara de bits	Definição	Usada no indicador do processo
0x80	Função de erro do equipamento - O dispositivo detectou um erro grave ou uma função de erro que afeta a operação do dispositivo.	Diagnóstico F911
0x40	Configuração alterada – Uma função foi realizada e alterou a configuração do equipamento.	Não
0x20	Partida a frio – A tensão de alimentação falhou ou ocorreu a restauração de um equipamento.	Não
0x10	Status adicional disponível – Informações adicionais de status estão disponíveis via comando #48.	Não
0x08	Corrente de ciclo fixa - A corrente de ciclo é mantida em um valor fixo e não reage a alterações no processo.	Não
0x04	Corrente do circuito saturada - A corrente do circuito atingiu seu ponto limite superior (ou inferior) e não pode aumentar (diminuir) mais.	Diagnóstico S913

Máscara de bits	Definição	Usada no indicador do processo
0x02	Variável não-primária fora dos limites.	Diagnóstico S915
0x01	Variável primária fora dos limites.	Diagnóstico S915

15.4 Unidades compatíveis

Se "HART" estiver configurado no parâmetro UNIT1-4, as unidades serão lidas e exibidas automaticamente pelo transmissor.

No entanto, se a unidade transmitida não puder ser exibida claramente, o HART-UnitCode "UCxxx" será exibido, com xxx representando o número de código da unidade.

Nesse caso, um texto auto-definido pode ser especificado para a unidade através do parâmetro TEXT1-4.

Código de unidade	Descrição	Exibir texto
1	Polegadas de água em 68 °F	inH2O
2	Polegadas de mercúrio em 0 °C	inHG
3	Pés de água em 68 °F	FTH2O
4	Milímetros de água em 68 °F	mmH2O
5	Milímetros de mercúrio em 0 °C	mmHG
6	Libras por polegada quadrada	PSI
7	Bar	BAR
8	Millibars	mBAR
9	Gramas por centímetro quadrado	g/cm2
10	Quilogramas por centímetro quadrado	UC010
11	Pascals	Pa
12	Quilopascais	kPa
13	Torr	TORR
14	Atmosferas	ATM
15	Pés cúbicos por minuto	UC015
16	Galões por minuto	UC016
17	Litros por minuto	l/min
18	Galões imperiais por minuto	UC018
19	Metros cúbicos por hora	m3/h
20	Pés por segundo	FT/S
21	Metros por segundo	m/S
22	Galões por segundo	gal/S
23	Milhões de galões por dia	MGD
24	Litros por segundo	1/S
25	Milhões de litros por dia	MLD
26	Pés cúbicos por segundo	FT3/S
27	Pés cúbicos por dia	FT3/d
28	Metros cúbicos por segundo	m3/S
29	Metros cúbicos por dia	m3/d
30	Galões imperiais por hora	UC030

Código de unidade	Descrição	Exibir texto
31	Galões imperiais por dia	UC031
32	Graus Celsius	°C
33	Graus Fahrenheit	°F
34	Graus Rankine	°R
35	Kelvin	K
36	Millivolts	mV
37	Ohms	Ohms
38	Hertz	HZ
39	Milliamperes	mA
40	Galões	gal
41	Litro	LITROS
42	Galões imperiais	Igal
43	Metros cúbicos	m3
44	Pés	FEET
45	Metros	METER
46	Barris	bbl
47	Polegadas	polegada
48	Centímetros	cm
49	Milimetros	mm
50	minutos	mín
51	Segundos	SEC
52	Horas	HORA
53	Dias	DIA
54	Centistokes	cST
55	Centipoises	cР
56	Microsiemens	uS
57	Porcentagem	%
58	Volts	VOLT
59	рН	PH
60	Gramas	g
61	Quilogramas	Kg
62	Toneladas métricas	Т
63	Libras	lb
64	Toneladas americanas	TN SH
65	Toneladas britânicas	TN L
66	Millisiemens por centímetro	mS/cm
67	Microsiemens por centímetro	uS/cm
68	Newton	N
69	Newton metros	Nm
70	Gramas por segundo	g/S
71	Gramas por minuto	g/min
72	Gramas por hora	g/h

Código de unidade	Descrição	Exibir texto
73	Quilogramas por segundo	kg/S
74	Quilogramas por minuto	Kg/mi
75	Quilogramas por hora	Kg/h
76	Quilogramas por dia	Kg/d
77	Toneladas métricas por minuto	T/min
78	Toneladas métricas por hora	T/h
79	Toneladas métricas por dia	T/d
80	Libras por segundo	lb/S
81	Libras por minuto	lb/mi
82	Libras por hora	lb/h
83	Libras por dia	lb/d
84	Toneladas americanas por minuto	TnS/m
85	Toneladas americanas por hora	TnS/h
86	Toneladas americanas por dia	TnS/d
87	Toneladas britânicas por hora	Tnl/h
88	Toneladas britânicas por dia	Tnl/d
89	Dekatherm	dTh
90	Unidades específicas de gravidade	UC090
91	Gramas por centímetro cúbico	g/cm3
92	Quilogramas por metro cúbico	Kg/m3
93	Libras por galão	lb/ga
94	Libras por pés cúbicos	lb/F3
95	Gramas por milímetro	g/ml
96	Quilogramas por litro	Kg/l
97	Gramas por litro	g/l
98	Libras por polegadas cúbicas	lb/ci
99	Toneladas americanas por jarda cúbica	UC099
100	Graus Twaddell	°Tw
101	Graus Brix	°BX
102	Graus Baumé pesado	UC102
103	Graus Baumé leve	UC103
104	Graus API	°API
105	Porcentagem de sólidos por peso	%wT
106	Porcentagem de volume	%VOL
107	Graus Balling	°bal
108	Prova por volume	P/VOL
109	Prova por massa	P/maS
110	Alqueires	bSh
111	Jardas cúbicas	YARD3
112	Pés cúbicos	FEET3
113	Polegadas cúbicas	inch3
114	Polegadas por segundo	in/S

Código de unidade	Descrição	Exibir texto
115	Polegadas por minuto	in/mi
116	Pés por minuto	F/min
117	Graus por segundo	DEG/S
118	Rotações por segundo	RPS
119	Rotações por minuto	RPM
120	Metros por hora	m/h
121	Metros cúbicos normais por hora	Nm3/h
122	Litros normais por hora	Nl/h
123	Pés cúbicos normais por minuto	F3/mi
124	Barril de fluido (1 barril = 31,5 galões dos EUA)	UC124
125	Onças	ouncE
126	Força da libra do pé	FTLBF
127	Quilowatts	kW
128	Quilowatt horas	kWh
129	Cavalo de potência	HP
130	Pés cúbicos por hora	FT3/h
131	Metros cúbicos por minuto	m3/mi
132	Barris por segundo	bbl/S
133	Barris por minuto	bbl/m
134	Barris por hora	bbl/h
135	Barris por dia	bbl/d
136	Galões por hora	gal/h
137	Galões imperiais por segundo	UC137
138	Litros por hora	l/h
139	Partes por milhão	PPm
140	Mega calorias por hora	UC140
141	Mega joules por hora	mJ/h
142	Unidades térmicas britânicas por hora	BTU/h
143	Graus	DEG
144	Radiano	rad
145	Milímetros de água em 60 °F	inH2O
146	Microgramas por litro	ug/l
147	Microgramas por metro cúbico	ug/m3
148	Consistência da porcentagem	%con
149	Porcentagem de volume	VOL%
150	Porcentagem da qualidade de vapor	%SQ
151	Pés polegadas décimos sextos	UC151
152	Pés cúbicos por libra	F3/lb
153	Picofarads	PF
154	Mililitros por litro	ml/l
155	Microlitros por litro	ul/l

Código de unidade	Descrição	Exibir texto
156-159	Tabelas de expansão do código unitário	UC156 - UC159
160	Platô de porcentagem	%P
161	Porcentagem do nível de explosão inferior	%LEL
162	Megacalorias	Mcal
163	Quilo ohms	KOHM
164	Mega joules	MJ
165	Unidade térmica britânica	BTU
166	Metros cúbicos padrão	Nm3
167	Litros normais	Nl
168	Pés cúbicos normais	SCF
169	Partes por bilhão	PPb
170 - 219	Tabelas de expansão do código unitário	UC170 -
	Consulte as instruções de operação do transmissor/sensor conectado. Para CM82: consulte → 🖺 61	UC219
220 - 234	não definido	UC220 - UC234
235	Galões por dia	gal/d
236	Hectolitros	hl
237	Megapascais	MPa
238	Polegadas de água em 4 °C	inH2O
239	Milímetros de água em 4 °C	mmH2O
240 - 249	Específico do fabricante	UC240 - UC249
250	Não usado	
251	Nenhum	
252	Desconhecido	UC252
253	Especial	UC253

15.5 Tipos de conexão do protocolo HART®

O protocolo HART pode ser usado para conexões ponto a ponto e Multidrop:

Ponto a ponto (TÍPICO)

 $^{\mathrm{Em}}$ uma conexão ponto a ponto, o mestre $\mathrm{HART}^{\mathrm{@}}$ se comunica com exatamente um escravo $\mathrm{HART}^{\mathrm{@}}$.

Uma conexão ponto a ponto sempre deve ser a opção preferida quando possível.

Multidrop (medição não por corrente, mais lenta)

No modo Multidrop, vários dispositivos HART® são incorporados em um único ciclo de corrente. A transmissão de sinal analógico é desativada neste caso e os dados e valores medidos são trocados exclusivamente através do protocolo HART®. A saída de corrente de cada dispositivo conectado é definida como um valor fixo de 4 mA e é usada apenas para fornecer energia aos dispositivos de dois fios.

Usando Multidrop, vários sensores /atuadores podem ser conectados em paralelo a um par de fios. O mestre diferencia os dispositivos com base nos endereços configurados. Cada

dispositivo deve ter um endereço diferente. Quando mais de sete sensores /atuadores são conectados em paralelo, ocorre uma queda de tensão aumentada.

O ciclo não deve incluir uma mistura de dispositivos com uma saída de corrente ativa (por exemplo, dispositivos de quatro fios) e dispositivos com uma saída de corrente passiva (por exemplo, dispositivos de dois fios).

O protocolo HART® é uma forma de comunicação que não é suscetível a interferências. Isso significa que, durante a operação, os dispositivos de comunicação podem ser conectados ou removidos sem colocar em risco os componentes dos outros dispositivos ou interromper sua comunicação.

15.6 Variáveis de dispositivo para dispositivos de medição multivariáveis

Dispositivos de medição multivariáveis podem transmitir até quatro variáveis de dispositivo via HART®: a variável primária (PV), a variável secundária (SV), a variável terciária (TV) e a variável quaternária (QV).

Abaixo, você encontrará alguns exemplos de quais valores padrão podem ser definidos para essas variáveis para vários sensores /atuadores:

Medidor de vazão, ex. Promass:

- Variável primária do processo (PV) -> Vazão de massa
- Variável secundária do processo (SV) -> Totalizador 1
- Terceira variável do processo (TV) -> Densidade
- Quarta variável do processo (QV) -> Temperatura

Transmissor de temperatura, ex. TMT82:

- Variável primária do processo (PV) -> Sensor 1
- Variável secundária do processo (SV) -> Temperatura do dispositivo
- Terceira variável do processo (TV) -> Sensor 1
- Quarta variável do processo (QV) -> Sensor 1

Para um medidor de nível, como o Levelflex FMP5x, esses quatro valores podem ser da seguinte forma:

Medição de nível:

- Variável primária do processo (PV) → Nível linearizado
- Variável secundária do processo (SV) → Distância
- Terceira variável do processo (TV) → Amplitude absoluta do eco
- Quarta variável do processo (QV) → Amplitude relativa do eco

Medição de interface:

- Variável primária do processo (PV) → Interface
- Variável secundária do processo (SV) → Nível linearizado
- Terceira variável do processo (TV) → Espessura da interface superior
- Quarta variável do processo (QV) → Amplitude relativa da interface

Atuador HART®, ex, posicionador:

- Variável primária do processo (PV) Valor atuante
- Variável secundária do processo (SV) -> Ponto de ajuste da válvula
- Terceira variável do processo (TV) Posição desejada
- Quarta variável do processo (QV) Posição da válvula

Índice RIA15

Índice

A	
Aterramento funcional Equipamento de campo	
С	
Códigos de resposta	4
D	
Declaração de conformidade 6 Devolução	
HART®	1
Documento Função	
E	
Especificações para o pessoal	7
F	
- Função do documento	4
I	
Identificação CE	4
Invólucro de campo	
M	
Mensagens de diagnóstico 6 HART® 6 Sinal HART® 6 Módulo de resistência da comunicação HART® 3	2 3
S	
Segurança da operação	8
U	
Unidades Unidades HART® compatívois	ρ

