Technical Information **Proline Cubemass C 100**

Coriolis flowmeter

Ultra compact for smallest quantities and an ultra-compact transmitter

Application

- Measuring principle operates independently of physical fluid properties such as viscosity or density
- Accurate measurement of smallest quantities of liquids and gases; ideal for skid integration

Device properties

- Nominal diameter: DN 1 to 6 ($\frac{1}{24}$ to $\frac{1}{4}$ ")
- Process pressure up to 400 bar (5800 psi)
- Medium temperature up to +205 °C (+401 °F)
- Robust, ultra-compact transmitter housing
- Pre-configured plug connector

Your benefits

- Space-saving installation compact single-tube design
- Fewer process measuring points multivariable measurement (flow, density, temperature)
- ullet Suitable for skids lightweight sensor
- Space-saving transmitter full functionality on smallest footprint
- Time-saving local operation without additional software and hardware – integrated web server
- Integrated verification Heartbeat Technology

Table of contents

About this document		
Symbols	Electromagnetic compatibility (EMC)	
Function and system design	4	
Measuring principle		48
Measuring system	4 Medium temperature range	
Equipment architecture	6 Density	49
Safety	6 Pressure-temperature ratings	49
	Sensor housing	
Input	Rupture disk	
Measured variable	7 Flow limit	50
Measuring range	7 Pressure loss	50
Operable flow range	7 System pressure	51
Input signal	o Thermai hisulation	51
mput orginal	neaulig	
Output	Vibrations	ÞΙ
Output	0	
Output signal	Mechanical construction	52
	11 Dimensions in 31 units	
	Dimensions in US units	
Protocol-specific data	12 Weight	
Totocol specific data	iviateriais	
	Process connections	
		65
Terminal assignment		
Pin assignment, device plug	I DUMAN INTELLACE	5 5
	32 Operating concept	
Power consumption	Jocal display	
<u>.</u>	Remote operation 6	
	Service interface	68
	33 37	
		70
	37 CE mark	
Cable specification		
cubic specification	Pressure Equipment Directive	
	Other standards and guidelines	
Performance characteristics	39	
Reference operating conditions		71
Maximum measured error	3	, 1
· · · · · · · · · · · · · · · · · · ·	40	
	41 Application packages	
Influence of medium temperature	Heartbeat recinology	72
	(2) Concentration	
Design fundamentals	Special defisity	72
beorgii rumuumemuub		
In atallation (Accessories	72
Installation		72
Mounting location	Communication-specific accessories	72
	Service-specific accessories	
	System components	74
-	47	
mistaining the parety partier rivillass 100		74
	Standard documentation	
	Supplementary device-dependent documentation	
1 3	47	
	47 Pagistared trademarks 7	7=
	Registered trademarks	ני
Degree of protection	47	

2

About this document

Symbols

Electrical symbols

Symbol	Meaning
===	Direct current
~	Alternating current
$\overline{\sim}$	Direct current and alternating current
-	Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.
	Protective Earth (PE) A terminal which must be connected to ground prior to establishing any other connections.
	The ground terminals are situated inside and outside the device: Inner ground terminal: Connects the protectiv earth to the mains supply. Outer ground terminal: Connects the device to the plant grounding system.

Symbols for certain types of information

Symbol	Meaning
✓	Permitted Procedures, processes or actions that are permitted.
✓ ✓	Preferred Procedures, processes or actions that are preferred.
X	Forbidden Procedures, processes or actions that are forbidden.
i	Tip Indicates additional information.
	Reference to documentation.
A=	Reference to page.
	Reference to graphic.
	Visual inspection.

Symbols in graphics

Symbol	Meaning
1, 2, 3,	Item numbers
1., 2., 3.,	Series of steps
A, B, C,	Views
A-A, B-B, C-C,	Sections
EX	Hazardous area
×	Safe area (non-hazardous area)
≋➡	Flow direction

Function and system design

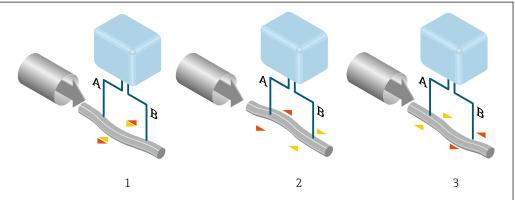
Measuring principle

The measuring principle is based on the controlled generation of Coriolis forces. These forces are always present in a system when both translational and rotational movements are superimposed.

 $F_c = 2 \cdot \Delta m (v \cdot \omega)$

 F_c = Coriolis force

 $\Delta m = moving mass$


 ω = rotational velocity

v = radial velocity in rotating or oscillating system

The amplitude of the Coriolis force depends on the moving mass Δm , its velocity v in the system and thus on the mass flow. Instead of a constant rotational velocity ω , the sensor uses oscillation.

In the sensor, an oscillation is produced in the measuring tube. The Coriolis forces produced at the measuring tube loop cause a phase shift in the tube oscillations (see illustration):

- If there is zero flow (i.e. when the fluid stands still), the oscillation measured at points A and B has the same phase (no phase difference) (1).
- Mass flow causes deceleration of the oscillation at the inlet of the tubes (2) and acceleration at the outlet (3).

A002993

The phase difference (A-B) increases with increasing mass flow. Electrodynamic sensors register the tube oscillations at the inlet and outlet. System balance is ensured by the antiphase oscillation of the two measuring tubes. The measuring principle operates independently of temperature, pressure, viscosity, conductivity and flow profile.

Density measurement

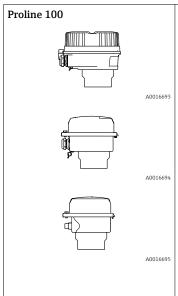
The measuring tube is continuously excited at its resonance frequency. A change in the mass and thus the density of the oscillating system (comprising measuring tube and fluid) results in a corresponding, automatic adjustment in the oscillation frequency. Resonance frequency is thus a function of medium density. The microprocessor utilizes this relationship to obtain a density signal.

Volume measurement

Together with the measured mass flow, this is used to calculate the volume flow.

$Temperature\ measurement$

The temperature of the measuring tube is determined in order to calculate the compensation factor due to temperature effects. This signal corresponds to the process temperature and is also available as an output signal.


Measuring system

The device consists of a transmitter and a sensor. If a device with Modbus RS485 intrinsically safe is ordered, the Safety Barrier Promass 100 is part of the scope of supply and must be implemented to operate the device.

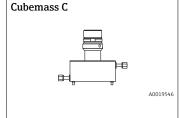
The device is available as a compact version:

The transmitter and sensor form a mechanical unit.

Transmitter

Device versions and materials:

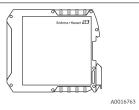
- Compact, aluminum, coated: Aluminum, AlSi10Mg, coated
- Compact, hygienic, stainless:
 Hygienic version, stainless steel 1.4301 (304)
- Ultra-compact, hygienic, stainless:
 Hygienic version, stainless steel 1.4301 (304)


Configuration:

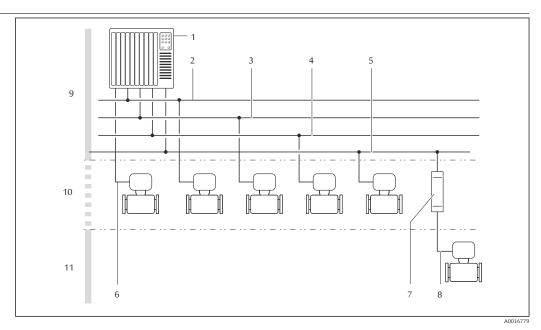
- Via operating tools (e.g. FieldCare, DeviceCare)
- Also for device version with local display:
 Via Web browser (e.g. Microsoft Internet Explorer)
- Also for device version with 4-20 mA HART, pulse/frequency/switch output:

Via Web browser (e.g. Microsoft Internet Explorer)

- Also for device version with EtherNet/IP output:
 - Via Web browser (e.g. Microsoft Internet Explorer)
 - Via Add-on Profile Level 3 for automation system from Rockwell Automation
- Via Electronic Data Sheet (EDS)
- Also for device version with PROFINET output:
 - Via Web browser (e.g. Microsoft Internet Explorer)
 - Via device master file (GSD)


Sensor

The ultra compact, bent single-tube system for minimum flow rates and high pressure $% \left\{ 1\right\} =\left\{ 1\right\}$


- Simultaneous measurement of flow, volume flow, density and temperature (multivariable)
- Immune to process influences
- Nominal diameter range: DN 1 to 6 ($\frac{1}{24}$ to $\frac{1}{4}$ ")
- Materials:
 - Sensor: stainless steel, 1.4301 (304)
 - Measuring tube: stainless steel, 1.4539 (904L)
 - Process connections: stainless steel, 1.4404 (316/316L); 1.4539 (904L)

Safety Barrier Promass 100

- Dual-channel safety barrier for installation in non-hazardous locations or zone 2/div. 2:
 - Channel 1: DC 24 V power supply
 - Channel 2: Modbus RS485
- In addition to current, voltage and power limitation, it offers galvanic isolation of circuits for explosion protection.
- Easy top-hat rail mounting (DIN 35 mm) for installation in control cabinets

Equipment architecture

 $\ \blacksquare \ 1$ Possibilities for integrating measuring devices into a system

- 1 Control system (e.g. PLC)
- 2 EtherNet/IP
- 3 PROFIBUS DP
- 4 PROFINET
- 5 Modbus RS485
- 6 4-20 mA HART, pulse/frequency/switch output
- 7 Safety Barrier Promass 100
- 8 Modbus RS485 intrinsically safe
- 9 Non-hazardous area
- 10 Non-hazardous area and Zone 2/Div. 2
- 11 Hazardous area and Zone 1/Div. 1

Safety IT security

Our warranty is valid only if the device is installed and used as described in the Operating Instructions. The device is equipped with security mechanisms to protect it against any inadvertent changes to the settings.

IT security measures, which provide additional protection for the device and associated data transfer, must be implemented by the operators themselves in line with their security standards.

Input

Measured variable

Direct measured variables

- Mass flow
- Density
- Temperature

Calculated measured variables

- Volume flow
- Corrected volume flow
- Reference density

Measuring range

Measuring ranges for liquids

DN		Measuring range full scale values $\dot{m}_{min(F)}$ to $\dot{m}_{max(F)}$	
[mm]	[in]	[kg/h]	[lb/min]
1	1/24	0 to 20	0 to 0.735
2	1/12	0 to 100	0 to 3.675
4	1/8	0 to 450	0 to 16.54
6	1/4	0 to 1000	0 to 36.75

Measuring ranges for gases

The full scale values depend on the density of the gas and can be calculated with the formula below: $\dot{m}_{max(G)} = \dot{m}_{max(F)} \cdot \rho_G : x$

m _{max(G)}	Maximum full scale value for gas [kg/h]
m _{max(F)}	Maximum full scale value for liquid [kg/h]
$\dot{m}_{\max(G)} < \dot{m}_{\max(F)}$	$\dot{m}_{ max(G)}$ can never be greater than $\dot{m}_{ max(F)}$
ρ_{G}	Gas density in [kg/m³] at operating conditions
х	Constant dependent on nominal diameter

DN		х
[mm]	[in]	[kg/m³]
1	1/24	20
2	1/12	20
4	1/8	20
6	1/4	20

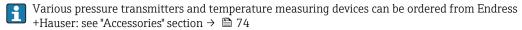
To calculate the measuring range, use the *Applicator* sizing tool $\rightarrow \triangleq 73$

Recommended measuring range

"Flow limit" section $\rightarrow \triangleq 50$

Operable flow range

Over 1000:1.


Flow rates above the preset full scale value do not override the electronics unit, with the result that the totalizer values are registered correctly.

Input signal

External measured values

To increase the accuracy of certain measured variables or to calculate the corrected volume flow for gases, the automation system can continuously write different measured values to the measuring device:

- Operating pressure to increase accuracy (Endress+Hauser recommends the use of a pressure measuring device for absolute pressure, e.g. Cerabar M or Cerabar S)
- Medium temperature to increase accuracy (e.g. iTEMP)
- Reference density for calculating the corrected volume flow for gases

It is recommended to read in external measured values to calculate the following measured variables:

- Mass flow
- Corrected volume flow

HART protocol

The measured values are written from the automation system to the measuring device via the HART protocol. The pressure transmitter must support the following protocol-specific functions:

- HART protocol
- Burst mode

Digital communication

The measured values can be written from the automation system to the measuring via:

- PROFIBUS DP
- Modbus RS485
- EtherNet/IP
- PROFINET

Output

Output signal

HART current output

Current output	4-20 mA HART (active)
Maximum output values	DC 24 V (no flow)22.5 mA
Load	0 to 700Ω
Resolution	0.38 μΑ
Damping	Configurable: 0.07 to 999 s
Assignable measured variables	 Mass flow Volume flow Corrected volume flow Density Reference density Temperature The range of options increases if the measuring device has one or more application packages.

Pulse/frequency/switch output

Function	Can be set to pulse, frequency or switch output
Version	Passive, open collector
Maximum input values	■ DC 30 V ■ 25 mA
Voltage drop	For 25 mA: ≤ DC 2 V
Pulse output	

Pulse width	Configurable: 0.05 to 2 000 ms
Maximum pulse rate	10 000 Impulse/s
Pulse value	Adjustable
Assignable measured variables	Mass flowVolume flowCorrected volume flow
Frequency output	
Output frequency	Configurable: 0 to 10000 Hz
Damping	Configurable: 0 to 999 s
Pulse/pause ratio	1:1
Assignable measured variables	 Mass flow Volume flow Corrected volume flow Density Reference density Temperature The range of options increases if the measuring device has one or more
	application packages.
Switch output	
Switching behavior	Binary, conductive or non-conductive
Switching delay	Configurable: 0 to 100 s
Number of switching cycles	Unlimited
Assignable functions	 Off On Diagnostic behavior Limit value Mass flow Volume flow Corrected volume flow Density Reference density Temperature Totalizer 1-3 Flow direction monitoring Status Partially filled pipe detection Low flow cut off The range of options increases if the measuring device has one or more application packages.

PROFIBUS DP

Signal encoding	NRZ code
Data transfer	9.6 kBaud12 MBaud

Modbus RS485

Physical interface	In accordance with EIA/TIA-485-A standard
Terminating resistor	 For device version used in non-hazardous areas or Zone 2/Div. 2: integrated and can be activated via DIP switches on the transmitter electronics module For device version used in intrinsically safe areas: integrated and can be activated via DIP switches on the Safety Barrier Promass 100

EtherNet/IP

Standards In accordance with IEEE 802.3

PROFINET

Standards	In accordance with IEEE 802.3	
-----------	-------------------------------	--

Signal on alarm

Depending on the interface, failure information is displayed as follows:

Current output 4 to 20 mA

4 to 20 mA

Failure mode	Choose from: 4 to 20 mA in accordance with NAMUR recommendation NE 43 4 to 20 mA in accordance with US Min. value: 3.59 mA Max. value: 22.5 mA Freely definable value between: 3.59 to 22.5 mA Actual value Last valid value
--------------	---

Pulse/frequency/switch output

Pulse output	Pulse output	
Failure mode	Choose from: Actual value No pulses	
Frequency output		
Failure mode	Choose from: Actual value O Hz Defined value: 0 to 12 500 Hz	
Switch output		
Failure mode	Choose from: Current status Open Closed	

PROFIBUS DP

Status and alarm	Diagnostics in accordance with PROFIBUS PA Profile 3.02
messages	

Modbus RS485

Failure mode	Choose from:
	NaN value instead of current valueLast valid value

EtherNet/IP

Device diagnostics	Device condition can be read out in Input Assembly
--------------------	--

PROFINET

Device diagnostics	According to "Application Layer protocol for decentralized periphery", Version 2.3	l
--------------------	--	---

Local display

Plain text display	With information on cause and remedial measures
Backlight	Red backlighting indicates a device error.

Status signal as per NAMUR recommendation NE 107

Interface/protocol

- Via digital communication:
 - HART protocol
 - PROFIBUS DP
 - Modbus RS485
 - EtherNet/IP
 - PROFINET
- Via service interface CDI-RJ45 service interface

Plain text display	With information on cause and remedial measures
--------------------	---

Web browser

Plain text display	With information on cause and remedial measures
--------------------	---

Light emitting diodes (LED)

Status information	Status indicated by various light emitting diodes
	The following information is displayed depending on the device version: Supply voltage active Data transmission active Device alarm/error has occurred EtherNet/IP network available EtherNet/IP connection established PROFINET network available PROFINET connection established PROFINET blinking feature

Ex connection data

These values only apply for the following device version:

Order code for "Output", option M "Modbus RS485", for use in intrinsically safe areas

Safety Barrier Promass 100

Safety-related values

Terminal numbers			
Supply voltage		Signal tra	nsmission
2 (L-) 1 (L+)		26 (B)	27 (A)
U _{nom} = DC 24 V U _{max} = AC 260 V		$U_{\text{nom}} = U_{\text{max}} = A$	

Intrinsically safe values

Terminal numbers			
Supply voltage Signal transmission			nsmission
20 (L-) 10 (L+) 62 (B) 72 (A)		72 (A)	
$U_o = 16.24 \text{ V}$ $I_o = 623 \text{ mA}$ $P_o = 2.45 \text{ W}$ With IIC: $L_o = 92.8 \mu\text{H}, C_o = 0.433 \mu\text{F}, L_o/R_o = 14.6 \mu\text{H}/\Omega$			
For an overview and for information on the interdependencies between the gas group - sensor - nominal diameter, see the "Safety Instructions" (XA) document for the measuring device			

Transmitter

Intrinsically safe values

Order code for	Terminal numbers			
"Approval"	Supply voltage		Signal transmission	
	20 (L-)	10 (L+)	62 (A)	72 (B)
 Option BM: ATEX II2G + IECEx Z1 Ex ia, II2D Ex tb Option BO: ATEX II1/2G + IECEx Z0/Z1 Ex ia, II2D Option BQ: ATEX II1/2G + IECEx Z0/Z1 Ex ia Option BU: ATEX II2G + IECEx Z1 Ex ia Option C2: CSA C/US IS Cl. I, II, III Div. 1 Option 85: ATEX II2G + IECEx Z1 Ex ia + CSA C/US IS Cl. I, II, III Div. 1 		$P_i = 2$ $L_i = 0$	23 mA	

Low flow cut off

The switch points for low flow cut off are user-selectable.

Protocol-specific data

HART

Manufacturer ID	0x11
Device type ID	0x4A
HART protocol revision	7
Device description files (DTM, DD)	Information and files under: www.endress.com
HART load	Min. 250 Ω

12

Dynamic variables	Read out the dynamic variables: HART command 3 The measured variables can be freely assigned to the dynamic variables.
	Measured variables for PV (primary dynamic variable) Mass flow Volume flow Corrected volume flow Density Reference density Temperature
	Measured variables for SV, TV, QV (secondary, tertiary and quaternary dynamic variable) Mass flow Volume flow Corrected volume flow Density Reference density Temperature Totalizer 1 Totalizer 2 Totalizer 3
	The range of options increases if the measuring device has one or more application packages. Heartbeat Technology application package Additional measured variables are available with the Heartbeat Technology application package: Carrier pipe temperature Oscillation amplitude 0
Device variables	Read out the device variables: HART command 9 The device variables are permanently assigned. A maximum of 8 device variables can be transmitted: O = mass flow 1 = volume flow 2 = corrected volume flow 3 = density 4 = reference density 5 = temperature 6 = totalizer 1 7 = totalizer 2 8 = totalizer 3 13 = target mass flow 14 = carrier mass flow 15 = concentration

PROFIBUS DP

Manufacturer ID	0x11
Ident number	0x1561
Profile version	3.02
Device description files (GSD, DTM, DD)	Information and files under: ■ www.endress.com On the product page for the device: Documents/Software → Device drivers ■ www.profibus.org

Output values (from measuring device to	Analog input 1 to 8 Mass flow Volume flow
automation system)	 Volume flow Corrected volume flow Target mass flow Carrier mass flow Density Reference density Concentration Temperature Carrier pipe temperature Electronic temperature Oscillation frequency Oscillation amplitude Frequency fluctuation Oscillation damping Tube damping fluctuation Signal asymmetry Exciter current Digital input 1 to 2 Partially filled pipe detection
	 Low flow cut off Totalizer 1 to 3 Mass flow Volume flow Corrected volume flow
Input values (from automation system to measuring device)	Analog output 1 to 3 (fixed assignment) Pressure Temperature Reference density
	 Digital output 1 to 3 (fixed assignment) Digital output 1: switch positive zero return on/off Digital output 2: perform zero point adjustment Digital output 3: switch switch output on/off
	Totalize 1 to 3 Totalize Reset and hold Preset and hold Stop Operating mode configuration: Net flow total Forward flow total Reverse flow total
Supported functions	 Identification & Maintenance Simplest device identification on the part of the control system and nameplate PROFIBUS upload/download Reading and writing parameters is up to ten times faster with PROFIBUS upload/download Condensed status Simplest and self-explanatory diagnostic information by categorizing diagnostic messages that occur
Configuration of the device address	 DIP switches on the I/O electronics module Via operating tools (e.g. FieldCare)

Modbus RS485

Protocol	Modbus Applications Protocol Specification V1.1	
Device type	Slave	
Slave address range	1 to 247	
Broadcast address range	0	

Function codes	 03: Read holding register 04: Read input register 06: Write single registers 08: Diagnostics 16: Write multiple registers 23: Read/write multiple registers
Broadcast messages	Supported by the following function codes: 06: Write single registers 16: Write multiple registers 23: Read/write multiple registers
Supported baud rate	 1200 BAUD 2400 BAUD 4800 BAUD 9600 BAUD 19200 BAUD 38400 BAUD 57600 BAUD 115200 BAUD
Data transfer mode	• ASCII • RTU
Data access	Each device parameter can be accessed via Modbus RS485. For Modbus register information, see "Description of device parameters" documentation

EtherNet/IP

Protocol	■ The CIP Networks Library Volume 1: Common Industrial Protocol ■ The CIP Networks Library Volume 2: EtherNet/IP Adaptation of CIP	
Communication type	■ 10Base-T ■ 100Base-TX	
Device profile	Generic device (product type: 0x2B)	
Manufacturer ID	0x49E	
Device type ID	0x104A	
Baud rates	Automatic ¹⁰ / ₁₀₀ Mbit with half-duplex and full-duplex detection	
Polarity	Auto-polarity for automatic correction of crossed TxD and RxD pairs	
Supported CIP connections	Max. 3 connections	
Explicit connections	Max. 6 connections	
I/O connections	Max. 6 connections (scanner)	
Configuration options for measuring device	 DIP switches on the electronics module for IP addressing Manufacturer-specific software (FieldCare) Add-on Profile Level 3 for Rockwell Automation control systems Web browser Electronic Data Sheet (EDS) integrated in the measuring device 	
Configuration of the EtherNet interface	 Speed: 10 MBit, 100 MBit, auto (factory setting) Duplex: half-duplex, full-duplex, auto (factory setting) 	
Configuration of the device address	 DIP switches on the electronics module for IP addressing (last octet) DHCP Manufacturer-specific software (FieldCare) Add-on Profile Level 3 for Rockwell Automation control systems Web browser EtherNet/IP tools, e.g. RSLinx (Rockwell Automation) 	
Device Level Ring (DLR)	No	

Fix Input			
RPI	5 ms to 10 s (factory setting: 2	0 ms)	
Exclusive Owner Multicast		Instance	Size [byte]
	Instance configuration:	0x68	398
	O → T configuration:	0x66	64
	$T \rightarrow O$ configuration:	0x64	44
Exclusive Owner Multicast		Instance	Size [byte]
	Instance configuration:	0x69	-
	O → T configuration:	0x66	64
	$T \rightarrow O$ configuration:	0x64	44
Input only Multicast		Instance	Size [byte]
	Instance configuration:	0x68	398
	O → T configuration:	0xC7	-
	$T \rightarrow O$ configuration:	0x64	44
Input only Multicast		Instance	Size [byte]
,	Instance configuration:	0x69	- [-9]
	O → T configuration:	0xC7	-
	$T \rightarrow O$ configuration:	0x64	44
	• Volume flow		
	 Corrected volume flow Density Reference density Temperature Totalizer 1 Totalizer 2 Totalizer 3 		
Configurable Input	 Corrected volume flow Density Reference density Temperature Totalizer 1 Totalizer 2 		
Configurable Input RPI	 Corrected volume flow Density Reference density Temperature Totalizer 1 Totalizer 2 Totalizer 3 	0 ms)	
	 Corrected volume flow Density Reference density Temperature Totalizer 1 Totalizer 2 	0 ms) Instance	Size [byte]
RPI	Corrected volume flow Density Reference density Temperature Totalizer 1 Totalizer 2 Totalizer 3 5 ms to 10 s (factory setting: 2)	Instance	Size [byte]
RPI	Corrected volume flow Density Reference density Temperature Totalizer 1 Totalizer 2 Totalizer 3 5 ms to 10 s (factory setting: 2) Instance configuration:	_	
RPI	Corrected volume flow Density Reference density Temperature Totalizer 1 Totalizer 2 Totalizer 3 5 ms to 10 s (factory setting: 2 Instance configuration: O → T configuration:	Instance 0x68 0x66	398
RPI Exclusive Owner Multicast	Corrected volume flow Density Reference density Temperature Totalizer 1 Totalizer 2 Totalizer 3 5 ms to 10 s (factory setting: 2) Instance configuration:	0x68 0x66 0x65	398 64 88
RPI Exclusive Owner Multicast	 Corrected volume flow Density Reference density Temperature Totalizer 1 Totalizer 2 Totalizer 3 5 ms to 10 s (factory setting: 2 Instance configuration: O → T configuration: T → O configuration: 	Instance 0x68 0x66 0x65 Instance	398 64
RPI	Corrected volume flow Density Reference density Temperature Totalizer 1 Totalizer 2 Totalizer 3 5 ms to 10 s (factory setting: 2) Instance configuration: O → T configuration: Instance configuration:	0x68 0x66 0x65 Instance 0x69	398 64 88 Size [byte]
RPI Exclusive Owner Multicast	 Corrected volume flow Density Reference density Temperature Totalizer 1 Totalizer 2 Totalizer 3 5 ms to 10 s (factory setting: 2 Instance configuration: O → T configuration: T → O configuration: Instance configuration: O → T configuration: O → T configuration:	0x68 0x66 0x65 Instance 0x69 0x66	398 64 88 Size [byte] - 64
RPI Exclusive Owner Multicast Exclusive Owner Multicast	Corrected volume flow Density Reference density Temperature Totalizer 1 Totalizer 2 Totalizer 3 5 ms to 10 s (factory setting: 2) Instance configuration: O → T configuration: Instance configuration:	0x68 0x66 0x65 Instance 0x69 0x66 0x65	398 64 88 Size [byte] - 64 88
RPI Exclusive Owner Multicast Exclusive Owner Multicast	 Corrected volume flow Density Reference density Temperature Totalizer 1 Totalizer 2 Totalizer 3 5 ms to 10 s (factory setting: 2 Instance configuration: O → T configuration: T → O configuration: O → T configuration: O → T configuration: Instance configuration: T → O configuration: T → O configuration: 	Instance 0x68 0x66 0x65 Instance 0x69 0x66 0x65 Instance	398 64 88 Size [byte] - 64
RPI Exclusive Owner Multicast Exclusive Owner Multicast	 Corrected volume flow Density Reference density Temperature Totalizer 1 Totalizer 2 Totalizer 3 5 ms to 10 s (factory setting: 2 Instance configuration: O → T configuration: T → O configuration: O → T configuration: Instance configuration: T → O configuration: Instance configuration: 	Instance	398 64 88 Size [byte] - 64 88 Size [byte]
RPI Exclusive Owner Multicast Exclusive Owner Multicast	 Corrected volume flow Density Reference density Temperature Totalizer 1 Totalizer 2 Totalizer 3 5 ms to 10 s (factory setting: 2 Instance configuration: O → T configuration: T → O configuration: O → T configuration: T → O configuration: T → O configuration: T → O configuration: 	Instance 0x68 0x66 0x65 Instance 0x69 0x66 0x65 Instance 0x68 0xC7	398 64 88 Size [byte] - 64 88 Size [byte] 398 -
Exclusive Owner Multicast Exclusive Owner Multicast Exclusive Owner Multicast Input only Multicast	 Corrected volume flow Density Reference density Temperature Totalizer 1 Totalizer 2 Totalizer 3 5 ms to 10 s (factory setting: 2 Instance configuration: O → T configuration: T → O configuration: O → T configuration: Instance configuration: T → O configuration: Instance configuration: 	Instance	398 64 88 Size [byte] - 64 88 Size [byte] 398 - 88
Exclusive Owner Multicast Exclusive Owner Multicast Exclusive Owner Multicast Input only Multicast	 Corrected volume flow Density Reference density Temperature Totalizer 1 Totalizer 2 Totalizer 3 5 ms to 10 s (factory setting: 2) Instance configuration: T → O configuration: O → T configuration: T → O configuration: T → O configuration:	Instance	398 64 88 Size [byte] - 64 88 Size [byte] 398 -
RPI Exclusive Owner Multicast	 Corrected volume flow Density Reference density Temperature Totalizer 1 Totalizer 2 Totalizer 3 5 ms to 10 s (factory setting: 2 Instance configuration: O → T configuration: T → O configuration: O → T configuration: T → O configuration: T → O configuration: T → O configuration: 	Instance	398 64 88 Size [byte] - 64 88 Size [byte] 398 - 88 Size [byte]

Configurable Input Assembly	 Current device diagnostics Mass flow Volume flow Corrected volume flow Density Reference density Temperature Totalizer 1 Totalizer 2 Totalizer 3 The range of options increases if the measuring device has one or more application packages.
Fix Output	
Output Assembly	 Activation of reset totalizers 1-3 Activation of pressure compensation Activation of reference density compensation Activation of temperature compensation Reset totalizers 1-3 External pressure value Pressure unit External reference density Reference density unit External temperature Temperature unit
Configuration	
Configuration Assembly	Only the most common configurations are listed below.
	 Software write protection Mass flow unit Volume flow unit Volume unit Corrected volume flow unit Corrected volume unit Density unit Reference density unit Temperature unit Pressure unit Length Totalizer 1-3: Assignment Unit Operating mode Failsafe mode Alarm delay

PROFINET

Protocol	"Application layer protocol for decentral device periphery and distributed automation", version 2.3
Conformity class	В
Communication type	100 MBit/s
Device profile	Application interface identifier 0xF600 Generic device
Manufacturer ID	0x11
Device type ID	0x844A
Device description files (GSD, DTM)	Information and files under: ■ www.endress.com On the product page for the device: Documents/Software → Device drivers ■ www.profibus.org
Baud rates	Automatic 100 Mbit/s with full-duplex detection

Cycle times	From 8 ms			
Polarity	Auto-polarity for automatic correction of crossed TxD and RxD pairs			
Supported connections	 1 x AR (Application Relation) 1 x Input CR (Communication Relation) 1 x Output CR (Communication Relation) 1 x Alarm CR (Communication Relation) 			
Configuration options for measuring device	 DIP switches on the electronics module, for device name assignment (last part) Manufacturer-specific software (FieldCare, DeviceCare) Web browser Device master file (GSD), can be read out via the integrated Web server of the measuring device 			
Configuration of the device name	 DIP switches on the electronics module, for device name assignment (last part) DCP protocol 			
Output values (from measuring device to automation system)	Analog Input module (slot 1 to 14) Mass flow Volume flow Corrected volume flow Target mass flow Carrier mass flow Density Reference density Concentration Temperature Carrier pipe temperature Electronic temperature Oscillation frequency Oscillation amplitude Frequency fluctuation Oscillation damping Tube damping fluctuation Signal asymmetry Exciter current			
	Discrete Input module (slot 1 to 14) Empty pipe detection Low flow cut off Diagnostics Input module (slot 1 to 14) Last diagnostics Current diagnosis Totalizer 1 to 3 (slot 15 to 17)			
	 Mass flow Volume flow Corrected volume flow Heartbeat Verification module (fixed assignment) 			
	Verification status (slot 23) The range of options increases if the measuring device has one or more application packages.			

Input values (from automation system to measuring device)	Analog Output module (fixed assignment) External pressure (slot 18) External temperature (slot 19) External reference density (slot 20) Discrete Output module (fixed assignment) Activate/deactivate positive zero return (slot 21) Perform zero point adjustment (slot 22)
	Totalizer 1 to 3 (slot 15 to 17) Totalize Reset and hold Preset and hold Stop Operating mode configuration: Net flow total Forward flow total Reverse flow total
	Heartbeat Verification module (fixed assignment) Start verification (slot 23) The range of options increases if the measuring device has one or more application packages.
Supported functions	 Identification & Maintenance Simple device identification via: Control system Nameplate Measured value status The process variables are communicated with a measured value status Blinking feature via the local display for simple device identification and assignment

Administration of software options

Input/output value	Process variable	Category	Slot	
Output value	Mass flow	Process variable	1 to 14	
	Volume flow			
	Corrected volume flow			
	Density			
	Reference density			
	Temperature			
	Electronic temperature			
	Oscillation frequency			
	Frequency fluctuation			
	Oscillation damping			
	Oscillation frequency			
	Signal asymmetry			
	Exciter current			
	Empty pipe detection			
	Low flow cut off			
	Current device diagnostics			
	Previous device diagnostics			
Output value	Target mass flow	Concentration 1)	1 to 14	
	Carrier mass flow			
	Concentration			
Output value	Carrier pipe temperature	Heartbeat ²⁾	1 to 14	

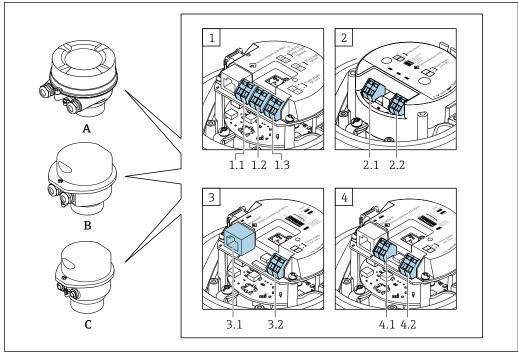
Input/output value	Process variable	Category	Slot
	Oscillation damping 1		
	Oscillation frequency 1		
	Oscillation amplitude 0		
	Oscillation amplitude 1		
	Frequency fluctuation 1		
	Tube damping fluctuation 1		
	Exciter current 1		
Input value	External density	Process monitoring	18
	External temperature		19
	External reference density		20
	Flow override		21
	Zero point adjustment		22
	Status verification	Heartbeat Verification 2)	23

- Only available with the "Concentration" application package. Only available with the "Heartbeat" application package.
- 1) 2)

Startup configuration

Startup configuration (NSU)

If startup configuration is enabled, the configuration of the most important device parameters is taken from the automation system and used.


The following configuration is taken from the automation system:

- Management
 - Software revision
 - Write protection
- System units
 - Mass flow
 - Mass
 - Volume flow
 - Volume
 - Corrected volume flow
 - Corrected volume
 - Density
 - Reference density
 - Temperature
 - Pressure
- Concentration application package
 - Coefficients A0 to A4
 - Coefficients B1 to B3
- Sensor adjustment
- Process parameter
 - Damping (flow, density, temperature)
 - Flow override
- Low flow cut off
 - Assign process variable
 - Switch-on/switch-off point
 - Pressure shock suppression
- Empty pipe detection
 - Assign process variable
 - Limit values
 - Response time
 - Max. damping
- Corrected volume flow calculation
 - External reference density
 - Fixed reference density
 - Reference temperatureLinear expansion coefficient
 - Square expansion coefficient
- Measuring mode
 - Medium
 - Gas type
 - Reference sound velocity
- Temperature coefficient sound velocity
- External compensation
 - Pressure compensation
 - Pressure value
 - External pressure
- Diagnostic settings
- Diagnostic behavior for diverse diagnostic information

Power supply

Terminal assignment

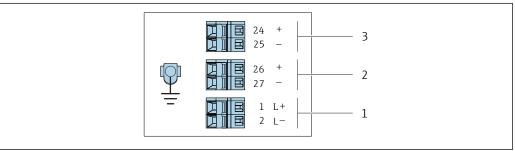
Overview: housing version and connection versions

A00167

- A Housing version: compact, aluminum coated
- B Housing version: compact, hygienic, stainless
- C Housing version: ultra-compact, hygienic, stainless
- 1 Connection version: 4-20 mA HART, pulse/frequency/switch output
- 1.1 Signal transmission: pulse/frequency/switch output
- 1.2 Signal transmission: 4-20 mA HART
- 1.3 Supply voltage
- 2 Connection version: Modbus RS485
- 2.1 Signal transmission
- 2.2 Supply voltage
- 3 Connection versions: EtherNet/IP and PROFINET
- 3.1 Signal transmission
- 3.2 Supply voltage
- 4 Connection version: PROFIBUS DP
- 4.1 Signal transmission
- 4.2 Supply voltage

Transmitter

Connection version 4-20 mA HART with pulse/frequency/switch output


Order code for "Output", option **B**

Depending on the housing version, the transmitters can be ordered with terminals or device plugs.

Order code	Connection me	thods available	Possible options for order code
"Housing"	Outputs	Power supply	"Electrical connection"
Options A, B	Terminals	Terminals	 Option A: coupling M20x1 Option B: thread M20x1 Option C: thread G ½" Option D: thread NPT ½"
Options A, B	Device plugs → 🗎 30	Terminals	■ Option L: plug M12x1 + thread NPT ½" ■ Option N: plug M12x1 + coupling M20 ■ Option P: plug M12x1 + thread G ½" ■ Option U: plug M12x1 + thread M20
Options A, B, C	Device plugs → 🖺 30	Device plugs → 🖺 30	Option Q : 2 x plug M12x1

Order code for "Housing":

- Option **A**: compact, coated aluminum
- lacktriangledown Option **B**: compact, hygienic, stainless
- Option **C** ultra-compact, hygienic, stainless

A001688

- 2 Terminal assignment 4-20 mA HART with pulse/frequency/switch output
- 1 Power supply: DC 24 V
- 2 Output 1: 4-20 mA HART (active)
- 3 Output 2: pulse/frequency/switch output (passive)

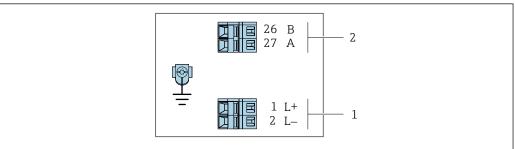
	Terminal number					
Order code "Output"	Power supply		Output 1		Output 2	
5 m . F. m.	2 (L-)	1 (L+)	27 (-)	26 (+)	25 (-)	24 (+)
Option B	DC 24 V		4-20 mA HART (active)		Pulse/frequency/switch output (passive)	

Order code for "Output":

Option B: 4-20 mA HART with pulse/frequency/switch output

PROFIBUS DP connection version

For use in the non-hazardous area and Zone 2/Div. 2


Order code for "Output", option \boldsymbol{L}

Depending on the housing version, the transmitters can be ordered with terminals or device plugs.

Oudou codo	Connection methods available		Descible autions for order and
"Housing"	Output	Power supply	Possible options for order code "Electrical connection"
Options A, B	Terminals	Terminals	 Option A: coupling M20x1 Option B: thread M20x1 Option C: thread G ½" Option D: thread NPT ½"
Options A, B	Device plug connectors → 🖺 30	Terminals	■ Option L: plug M12x1 + thread NPT ½" ■ Option N: plug M12x1 + coupling M20 ■ Option P: plug M12x1 + thread G ½" ■ Option U: plug M12x1 + thread M20
Options A, B, C	Device plug connectors → 🗎 30	Device plug connectors → 🗎 30	Option Q : 2 x plug M12x1

Order code for "Housing":

- Option A: compact, coated aluminum
 Option B: compact, hygienic, stainless
- Option **C** ultra-compact, hygienic, stainless

- ₩ 3 PROFIBUS DP terminal assignment
- Power supply: DC 24 V PROFIBUS DP

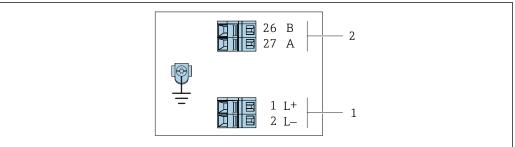
	Terminal number			
Order code	Power supply		Output	
"Output"	2 (L-)	1 (L+)	26 (RxD/TxD-P)	27 (RxD/TxD- N)
Option L	DC 24 V		В	А

Order code for "Output":

Option L: PROFIBUS DP, for use in non-hazardous areas and Zone 2/Div. 2

Modbus RS485 connection version

For use in the non-hazardous area and Zone 2/Div. 2


Order code for "Output", option \boldsymbol{M}

Depending on the housing version, the transmitters can be ordered with terminals or device plugs.

Order code	Connection me	thods available	Possible options for order code
"Housing"	Output	Power supply	"Electrical connection"
Options A, B	Terminals	Terminals	 Option A: coupling M20x1 Option B: thread M20x1 Option C: thread G ½" Option D: thread NPT ½"
Options A, B	Device plugs → 🖺 30	Terminals	■ Option L: plug M12x1 + thread NPT ½" ■ Option N: plug M12x1 + coupling M20 ■ Option P: plug M12x1 + thread G ½" ■ Option U: plug M12x1 + thread M20
Options A, B, C	Device plugs → 🖺 30	Device plugs → 🖺 30	Option Q : 2 x plug M12x1

Order code for "Housing":

- $\, \bullet \,$ Option A: compact, coated aluminum
- Option **B**: compact, hygienic, stainless
- Option **C**: ultra-compact, hygienic, stainless

- € 4 Modbus RS485 terminal assignment, connection version for use in non-hazardous areas and Zone 2/Div.
- Power supply: DC 24 V
- Modbus RS485

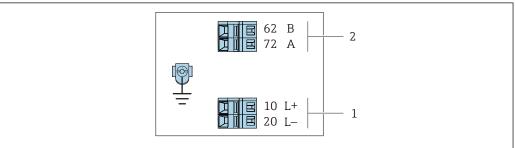
	Terminal number			
Order code "Output"	Power supply		Out	put
Julput	1 (L+)	2 (L-)	26 (B)	27 (A)
Option M	DC 24 V		Modbus	RS485

Order code for "Output":

Option M: Modbus RS485, for use in non-hazardous areas and Zone 2/Div. 2

Modbus RS485 connection version

For use in the intrinsically safe area. Connection via Safety Barrier Promass 100.


Order code for "Output", option ${\bf M}$

Depending on the housing version, the transmitters can be ordered with terminals or device plugs.

Order code	Connection me	thods available	Descible entions for order sode
"Housing"	Output	Power supply	Possible options for order code "Electrical connection"
Options A, B	Terminals	Terminals	 Option A: coupling M20x1 Option B: thread M20x1 Option C: thread G ½" Option D: thread NPT ½"
A, B, C	Device plugs → 30		Option I: plug M12x1

Order code for "Housing":

- Option **A**: compact, coated aluminum
- Option **B**: compact, hygienic, stainless
- Option **C** ultra-compact, hygienic, stainless

A0030219

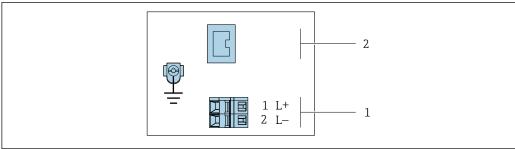
- Modbus RS485 terminal assignment, connection version for use in intrinsically safe areas (connection via Safety Barrier Promass 100)
- 1 Intrinsically safe power supply
- 2 Modbus RS485

Order code "Output"	10 (L+)	20 (L-)	62 (B)	72 (A)
Option M	Intrinsically safe supply voltage		Modbus RS485	intrinsically safe

Order code for "Output":

Option \mathbf{M} : Modbus RS485, for use in the intrinsically safe area (connection via Safety Barrier Promass 100)

EtherNet/IP connection version


Order code for "Output", option ${\bf N}$

Depending on the housing version, the transmitters can be ordered with terminals or device plugs.

Ondon codo	Connection methods available Order code		Possible options for order code	
"Housing"	Output	Power supply	"Electrical connection"	
Options A, B	Device plug connectors → 🖺 31	Terminals	■ Option L: plug M12x1 + thread NPT ½" ■ Option N: plug M12x1 + coupling M20 ■ Option P: plug M12x1 + thread G ½" ■ Option U: plug M12x1 + thread M20	
Options A, B, C	Device plug connectors → 🗎 31	Device plug connectors → 🗎 31	Option Q : 2 x plug M12x1	

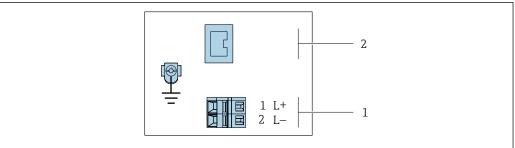
Order code for "Housing":

- Option A: compact, coated aluminum
 Option B: compact, hygienic, stainless
- Option **C** ultra-compact, hygienic, stainless

- **№** 6 EtherNet/IP terminal assignment
- Power supply: DC 24 V
- EtherNet/IP

	Terminal number			
Order code "Output"	Power supply		Output	
	2 (L-)	1 (L+)	Device plug M12x1	
Option N	DC 2	24 V	EtherNet/IP	
Order code for "Output": Option N : EtherNet/IP				

PROFINET connection version

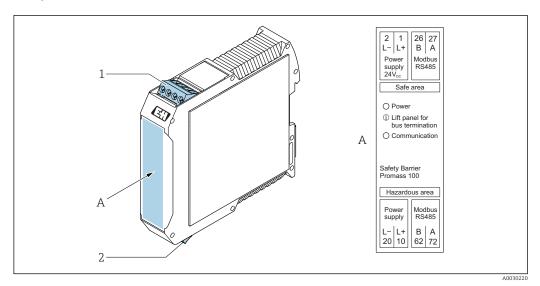

Order code for "Output", option ${\bf R}$

Depending on the housing version, the transmitters can be ordered with terminals or device plugs.

Order code	Connection me	thods available	Describle entires for order sade	
"Housing"	Output	Power supply	Possible options for order code "Electrical connection"	
Options A, B	Device plug connectors → 🖺 29	Terminals	■ Option L: plug M12x1 + thread NPT ½" ■ Option N: plug M12x1 + coupling M20 ■ Option P: plug M12x1 + thread G ½" ■ Option U: plug M12x1 + thread M20	
Options A, B, C	Device plug connectors → 🗎 29	Device plug connectors → 🗎 29	Option Q : 2 x plug M12x1	

Order code for "Housing":

- Option A: compact, coated aluminum
 Option B: compact, hygienic, stainless
- Option **C** ultra-compact, hygienic, stainless


A0017054

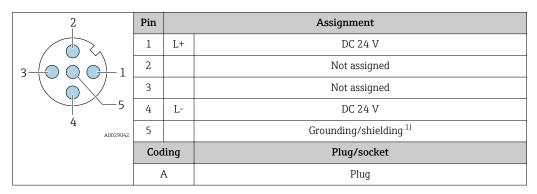
- **₽** 7 PROFINET terminal assignment
- Power supply: DC 24 V PROFINET

	Terminal number			
Order code "Output"	Power supply		Output	
- m .	2 (L-)	1 (L+)	Device plug M12x1	
Option R	DC 24 V		PROFINET	
Order code for "Output": Option R : PROFINET				

28

Safety Barrier Promass 100

- Safety Barrier Promass 100 with terminals
- 1 Non-hazardous area, Zone 2, Class I Division 2
- 2 Intrinsically safe area


Pin assignment, device plug

Order codes for the M12x1 connectors, see the "Order code for **electrical connection**" column:

- 4-20 mA HART, pulse/frequency/switch output → 🖺 22
- PROFIBUS DP→ 🖺 24
- Modbus RS485 → 🖺 25
- EtherNet/IP \rightarrow 🗎 27
- PROFINET→ 🗎 28

Supply voltage

For all connection versions except MODBUS RS485 intrinsically safe (device side)

- 1) Not assigned for order code for "Housing", option C "Ultra-compact, hygienic, stainless"
- The following is recommended as a socket:
 - Binder, series 763, part no. 79 3440 35 05
 - Alternatively: Phoenix part no. 1682951 SAC-5P-5.0-PUR/M12FS SH
 - With the order code for "Output", option **B**: 4-20 mA HART, pulse/frequency/switch output
 - With the order code for "Output", option N: EtherNet/IP
 - When using the device in a hazardous location: Use a suitably certified socket.

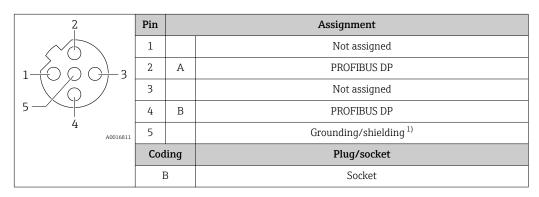
4-20 mA HART with pulse/frequency/switch output

Device plug for signal transmission (device side)

2	Pin	Assignment	
1	1	+	4-20 mA HART (active)
$1 \longrightarrow 0$	2	-	4-20 mA HART (active)
	3	+	Pulse/frequency/switch output (passive)
5	4	-	Pulse/frequency/switch output (passive)
4 A0016810	5		Grounding/shielding 1)
	Cod	ling	Plug/socket
	A	A	Socket

Not assigned for order code for "Housing", option C "Ultra-compact, hygienic, stainless"

Recommended plug: Binder, series 763, part no. 79 3439 12 05

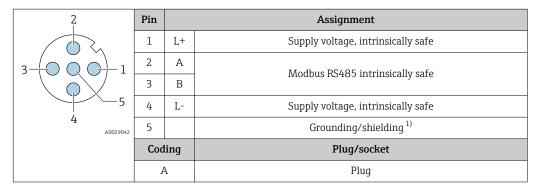

• When using the device in a hazardous location, use a suitably certified plug.

PROFIBUS DP

For use in the non-hazardous area and Zone 2/Div. 2.

Device plug for signal transmission (device side)

1) Not assigned for order code for "Housing", option C "Ultra-compact, hygienic, stainless"



• Recommended plug: Binder, series 763, part no. 79 4449 20 05

• When using the device in a hazardous location, use a suitably certified plug.

MODBUS RS485

Device plug for signal transmission with supply voltage (device side), MODBUS RS485 (intrinsically safe)

1) Not assigned for order code for "Housing", option C "Ultra-compact, hygienic, stainless"

- Recommended socket: Binder, series 763, part no. 79 3439 12 05
 - When using the device in a hazardous location: Use a suitably certified socket.

Device plug for signal transmission (device side), MODBUS RS485 (not intrinsically safe)

For use in the non-hazardous area and Zone $2/\text{Div.}\ 2$.

2	Pin		Assignment
	1		Not assigned
1 0 0 3	2	А	Modbus RS485
	3		Not assigned
5	4	В	Modbus RS485
4 A0016811	5		Grounding/shielding 1)
	Cod	ling	Plug/socket
	I	3	Socket

- Not assigned for order code for "Housing", option C "Ultra-compact, hygienic, stainless"

- Recommended plug: Binder, series 763, part no. 79 4449 20 05
 When using the device in a hazardous location, use a suitably certified plug.

Ethernet/IP

Device plug for signal transmission (device side)

2	Pin		Assignment
	1	+	Tx
$\begin{vmatrix} 1 & 1 & 1 \end{vmatrix}$	2	+	Rx
	3	1	Tx
	4	-	Rx
4 A0016812	Cod	ling	Plug/socket
	I)	Socket

Recommended plug:

- Binder, series 763, part no. 99 3729 810 04
- Phoenix, part no. 1543223 SACC-M12MSD-4Q
- When using the device in a hazardous location, use a suitably certified plug.

PROFINET

Device plug for signal transmission (device side)

2	Pin		Assignment
	1	+	TD+
1 3	2	+	RD +
	3	-	TD -
	4	-	RD -
4 A0016812	Cod	ling	Plug/socket
	I)	Socket

Recommended plug:

- Binder, series 763, part no. 99 3729 810 04
- Phoenix, part no. 1543223 SACC-M12MSD-4Q
- When using the device in a hazardous location, use a suitably certified plug.

Supply voltage

The power unit must be tested to ensure it meets safety requirements (e.g. PELV, SELV).

Transmitter

For device version with communication type:

- HART, PROFIBUS DP, EtherNet/IP: DC 20 to 30 V
- Modbus RS485, device version:
 - For use in the non-hazardous area and Zone 2/Div. 2: DC 20 to 30 V
 - For use in the intrinsically safe area: power supply via Safety Barrier Promass 100

Promass 100 safety barrier

DC 20 to 30 V

Power consumption

Transmitter

Order code for "Output"	Maximum Power consumption
Option B : 4-20 mA HART with pulse/frequency/switch output	3.5 W
Option L: PROFIBUS DP	3.5 W
Option M Modbus RS485, for use in non-hazardous areas and Zone 2/Div. 2	3.5 W
Option M : Modbus RS485, for use in intrinsically safe areas	2.45 W
Option N: EtherNet/IP	3.5 W
Option R: PROFINET	3.5 W

Promass 100 safety barrier

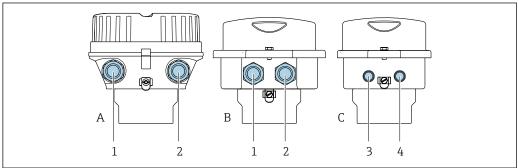
Order code for "Output"	Maximum Power consumption
Option \mathbf{M} : Modbus RS485, for use in intrinsically safe areas	4.8 W

Current consumption

Transmitter

Order code for "Output"	Maximum Current consumption	Maximum switch-on current
Option B : 4-20mA HART, pul./freq./switch output	145 mA	18 A (< 0.125 ms)
Option L: PROFIBUS DP	145 mA	18 A (< 0.125 ms)
Option M Modbus RS485, for use in non-hazardous areas and Zone 2/Div. 2	90 mA	10 A (< 0.8 ms)
Option \mathbf{M} : Modbus RS485, for use in intrinsically safe areas	145 mA	16 A (< 0.4 ms)
Option N : EtherNet/IP	145 mA	18 A (< 0.125 ms)
Option R : PROFINET	145 mA	18 A (< 0.125 ms)

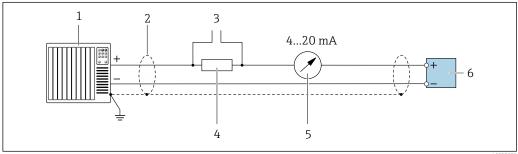
Promass 100 safety barrier

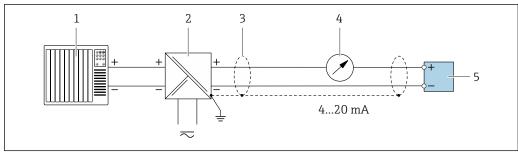

Order code for "Output"	Maximum Current consumption	Maximum switch-on current
Option \mathbf{M} : Modbus RS485, for use in intrinsically safe areas	230 mA	10 A (< 0.8 ms)

Power supply failure

- Totalizers stop at the last value measured.
- Depending on the device version, the configuration is retained in the device memoryor in the pluggable data memory (HistoROM DAT).
- Error messages (incl. total operated hours) are stored.

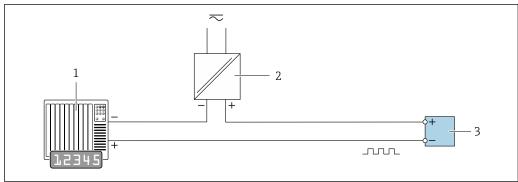
Electrical connection


Connecting the transmitter

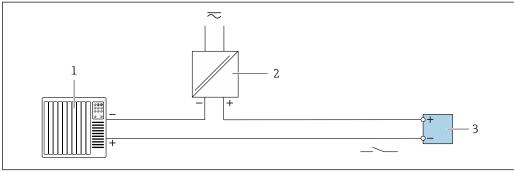

- Housing version: compact, coated, aluminum
- В Housing version: compact, hygienic, stainless
- Cable entry or device plug for signal transmission
- Cable entry or device plug for supply voltage 2
- Housing version: ultra-compact, hygienic, stainless, M12 device plug
- Device plug for signal transmission
- Device plug for supply voltage
- Terminal assignment → 🖺 22
- Pin assignment, device plug→ 🖺 29
- In the case of device versions with a connector, the transmitter housing does not need to be opened to connect the signal cable or power supply cable.

Connection examples

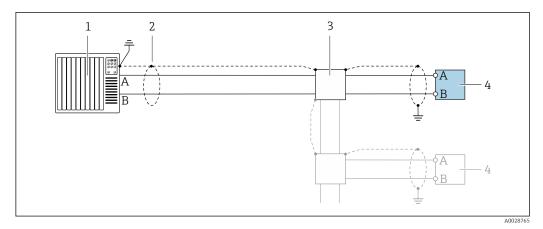
Current output 4 to 20 mA HART



- **9** Connection example for 4 to 20 mA HART current output (active)
- Automation system with current input (e.g. PLC)
- Cable shield provided at one end. The cable shield must be grounded at both ends to comply with EMC 2 requirements; observe cable specifications → 🖺 37
- Connection for HART operating devices $\rightarrow \triangleq 66$
- Resistor for HART communication ($\geq 250 \Omega$): observe maximum load
- Analog display unit: observe maximum load
- Transmitter

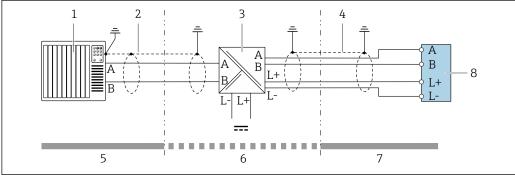

- **■** 10 Connection example for 4 to 20 mA HART current output (passive)
- Automation system with current input (e.g. PLC)
- 2 Power supply
- 3 Cable shield provided at one end. The cable shield must be grounded at both ends to comply with EMC requirements; observe cable specifications $\rightarrow \implies 37$
- Analog display unit: observe maximum load
- Transmitter

Pulse/frequency output


- Connection example for pulse/frequency output (passive)
- 1 Automation system with pulse/frequency input (e.g. PLC)
- 3

Switch output

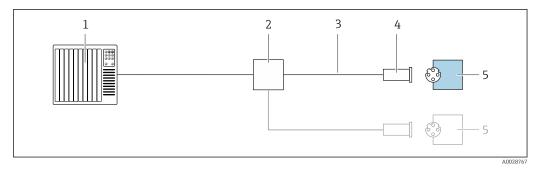
- Connection example for switch output (passive)
- 1 Automation system with switch input (e.g. PLC)
- 2 Power supply
- 3 Transmitter: Observe input values


PROFIBUS DP

- \blacksquare 13 Connection example for PROFIBUS DP, non-hazardous area and Zone 2/Div. 2
- 1 Control system (e.g. PLC)
- 2 Cable shield provided at one end. The cable shield must be grounded at both ends to comply with EMC requirements; observe cable specifications
- 3 Distribution box
- 4 Transmitter
- If baud rates > 1.5 MBaud an EMC cable entry must be used and the cable shield must continue as far as the terminal wherever possible.

Modbus RS485

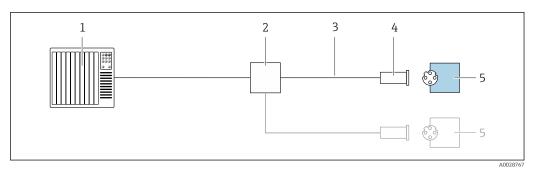
Modbus RS485 intrinsically safe



A002876

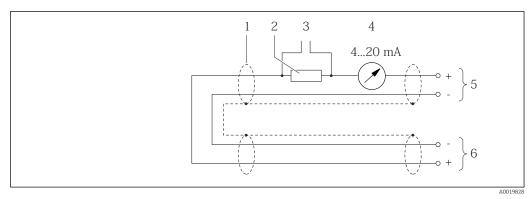
 $\blacksquare 14$ Connection example for Modbus RS485 intrinsically safe

- 1 Control system (e.g. PLC)
- 2 Cable shield provided at one end. Observe cable specifications
- 3 Safety Barrier Promass 100
- 4 Observe cable specifications
- 5 Non-hazardous area
- 6 Non-hazardous area and Zone 2/Div. 2
- 7 Intrinsically safe area
- 8 Transmitter

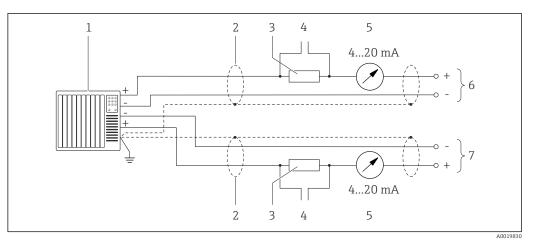

EtherNet/IP

\blacksquare 15 Connection example for EtherNet/IP

- 1 Control system (e.g. PLC)
- 2 Ethernet switch
- 3 Observe cable specifications
- 4 Device plug
- 5 Transmitter


PROFINET

■ 16 Connection example for PROFINET


- 1 Control system (e.g. PLC)
- 2 Ethernet switch
- 3 Observe cable specifications
- 4 Device plug
- 5 Transmitter

HART input

■ 17 Connection example for HART input (burst mode) via current output (active)

- $1 \qquad \textit{Cable shield provided at one end. Observe cable specifications}$
- 2 Resistor for HART communication (\geq 250 Ω): observe maximum load
- 3 Connection for HART operating devices
- 4 Analog display unit
- 5 Transmitter
- 6 Sensor for external measured variable

■ 18 Connection example for HART input (master mode) via current output (active)

- 1 Automation system with current input (e.g. PLC).Prerequisite: automation system with HART version 6, HART commands 113 and 114 can be processed.
- 2 Cable shield provided at one end. Observe cable specifications
- 3 Resistor for HART communication (≥ 250 Ω): observe maximum load
- 4 Connection for HART operating devices
- 5 Analog display unit
- 6 Transmitter
- 7 Sensor for external measured variable

Potential equalization

Requirements

No special measures for potential equalization are required.

Please consider the following to ensure correct measurement:

- Same electrical potential for the fluid and sensor
- Company-internal grounding concepts

For devices intended for use in hazardous locations, please observe the guidelines in the Ex documentation (XA).

Terminals

Transmitter

Spring terminals for wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG)

Promass 100 safety barrier

Pluq-in screw terminals for wire cross-sections0.5 to 2.5 mm² (20 to 14 AWG)

Cable entries

- Cable gland: M20 \times 1.5 with cable Ø 6 to 12 mm (0.24 to 0.47 in)
- Thread for cable entry:
 - M20
 - G ½"
 - NPT ½"

Cable specification

Permitted temperature range

- The installation quidelines that apply in the country of installation must be observed.
- The cables must be suitable for the minimum and maximum temperatures to be expected.

Power supply cable (incl. conductor for the inner ground terminal)

Standard installation cable is sufficient.

Signal cable

Current output 4 to 20 mA HART

A shielded cable is recommended. Observe grounding concept of the plant.

Pulse/frequency/switch output

Standard installation cable is sufficient.

PROFIBUS DP

The IEC 61158 standard specifies two types of cable (A and B) for the bus line which can be used for every transmission rate. Cable type A is recommended.

Cable type	A	
Characteristic impedance	135 to 165 Ω at a measuring frequency of 3 to 20 MHz	
Cable capacitance	< 30 pF/m	
Wire cross-section	> 0.34 mm ² (22 AWG)	
Cable type	Twisted pairs	
Loop resistance	2110 Ω/km	
Signal damping	Max. 9 dB over the entire length of the cable cross-section	
Shield	Copper braided shielding or braided shielding with foil shield. When grounding the cable shield, observe the grounding concept of the plant.	

For further information on planning and installing PROFIBUS networks see:

Operating Instructions "PROFIBUS DP/PA: Guidelines for planning and commissioning" (BA00034S)

Modbus RS485

The EIA/TIA-485 standard specifies two types of cable (A and B) for the bus line which can be used for every transmission rate. Cable type A is recommended.

Cable type	A	
Characteristic impedance	135 to 165 Ω at a measuring frequency of 3 to 20 MHz	
Cable capacitance	< 30 pF/m	
Wire cross-section	0.34 mm ² (22 AWG)	
Cable type	Twisted pairs	
Loop resistance	≤110 Ω/km	
Signal damping	Max. 9 dB over the entire length of the cable cross-section	
Shield	Copper braided shielding or braided shielding with foil shield. When grounding the cable shield, observe the grounding concept of the plant.	

EtherNet/IP

The standard ANSI/TIA/EIA-568-B.2 Annex specifies CAT 5 as the minimum category for a cable used for EtherNet/IP. CAT 5e and CAT 6 are recommended.

For more information on planning and installing EtherNet/IP networks, please refer to the "Media Planning and Installation Manual. EtherNet/IP" of ODVA Organization

PROFINET

Standard IEC 61156-6 specifies CAT 5 as the minimum category for a cable used for PROFINET. CAT 5e and CAT 6 are recommended.

For more information on planning and installing PROFINET networks, see: "PROFINET Cabling and Interconnection Technology" and Interconnection Technology is a few and and Interconnection Technology", Guideline for PROFINET

Connecting cable between Safety Barrier Promass 100 and measuring device

Cable type	Shielded twisted-pair cable with 2x2 wires. When grounding the cable shield, observe the grounding concept of the plant.
Maximum cable resistance	$2.5~\Omega$, one side

i

Comply with the maximum cable resistance specifications to ensure the operational reliability of the measuring device.

The maximum cable length for individual wire cross-sections is specified in the table below. Observe the maximum capacitance and inductance per unit length of the cable and connection values for hazardous areas .

Wire cross-section		Maximum cable length		
[mm ²]	[AWG]	[m]	[ft]	
0.5	20	70	230	
0.75	18	100	328	
1.0	17	100	328	
1.5	16	200	656	
2.5	14	300	984	

Performance characteristics

Reference operating conditions

- Error limits based on ISO 11631
- Water with +15 to +45 °C (+59 to +113 °F) at 2 to 6 bar (29 to 87 psi)
- Specifications as per calibration protocol
- Accuracy based on accredited calibration rigs that are traced to ISO 17025.

Maximum measured error

o.r. = of reading; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = medium temperature

Base accuracy

Design fundamentals → 🖺 42

Mass flow and volume flow (liquids)

±0.10 % o.r.

Mass flow (gases)

±0.50 % o.r.

Density (liquids)

Under reference conditions	Standard density calibration 1)	Wide-range Density specification ^{2) 3)}
[g/cm³]	[g/cm³]	[g/cm³]
±0.0005	±0.02	±0.002

- Valid over the entire temperature and density range
- Valid range for special density calibration: 0 to 2 g/cm³, +5 to +80 °C (+41 to +176 °F)
- B) Order code for "Application package", option EE "Special density"

Temperature

 $\pm 0.5 \,^{\circ}\text{C} \pm 0.005 \cdot \text{T} \,^{\circ}\text{C} \, (\pm 0.9 \,^{\circ}\text{F} \pm 0.003 \cdot (\text{T} - 32) \,^{\circ}\text{F})$

Zero point stability

DN		Zero point stability	
[mm]	[in]	[kg/h] [lb/min]	
1	1/24	0.0008	0.00003
2	1/12	0.002	0.00007
4	1/8	0.014	0.0005
6	1/4	0.02	0.0007

Flow values

Flow values as turndown parameter depending on nominal diameter.

SI units

DN	1:1	1:10	1:20	1:50	1:100	1:500
[mm]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]
1	20	2	1	0.4	0.2	0.04
2	100	10	5	2	1	0.2
4	450	45	22.5	9	4.5	0.9
6	1000	100	50	20	10	2

US units

DN	1:1	1:10	1:20	1:50	1:100	1:500
[inch]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]
1/24	0.735	0.074	0.037	0.015	0.007	0.001
1/12	3.675	0.368	0.184	0.074	0.037	0.007
1/8	16.54	1.654	0.827	0.331	0.165	0.033
1/4	36.75	3.675	1.838	0.735	0.368	0.074

Accuracy of outputs

The output accuracy must be factored into the measured error if analog outputs are used, but can be ignored for fieldbus outputs (e.g. Modbus RS485, EtherNet/IP).

The outputs have the following base accuracy specifications.

Current output

Accuracy	Max. ±5 μA
----------	------------

Pulse/frequency output

o.r. = of reading

Accuracy	Max. ±50 ppm o.r. (over the entire ambient temperature range)
----------	---

Repeatability

o.r. = of reading; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = medium temperature

Base repeatability

Design fundamentals → 🖺 42

Mass flow and volume flow (liquids)

±0.05 % o.r.

Mass flow (gases)

±0.25 % o.r.

Density (liquids)

 $\pm 0.00025 \text{ g/cm}^3$

Temperature

 $\pm 0.25 \,^{\circ}\text{C} \pm 0.0025 \cdot \text{T} \,^{\circ}\text{C} \, (\pm 0.45 \,^{\circ}\text{F} \pm 0.0015 \cdot (\text{T}-32) \,^{\circ}\text{F})$

Response time

The response time depends on the configuration (damping).

Influence of ambient temperature

Current output

o.r. = of reading

Temperature coefficient	Max. ±0.005 % o.r./°C
-------------------------	-----------------------

Pulse/frequency output

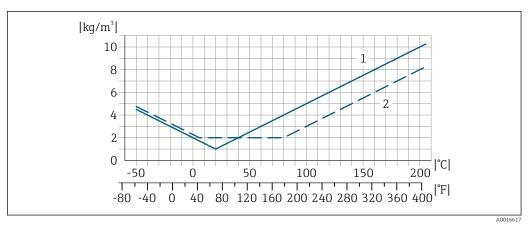
Temperature coefficient	No additional effect. Included in accuracy.
-------------------------	---

Influence of medium temperature

Mass flow and volume flow

o.f.s. = of full scale value

When there is a difference between the temperature for zero point adjustment and the process temperature, the additional measured error of the sensor is typically ± 0.0002 % o.f.s./°C (± 0.0001 % o.f.s./°F).


The effect is reduced if zero point adjustment is performed at process temperature.

Density

When there is a difference between the density calibration temperature and the process temperature, the typical measured error of the sensor is $\pm 0.00005 \text{ g/cm}^3$ /°C ($\pm 0.000025 \text{ g/cm}^3$ /°F). Field density calibration is possible.

Wide-range density specification (special density calibration)

If the process temperature is outside the valid range ($\rightarrow \triangleq 39$) the measured error is $\pm 0.00005 \text{ g/cm}^3$ /°C ($\pm 0.000025 \text{ g/cm}^3$ /°F)

- Field density calibration, for example at +20 $^{\circ}$ C (+68 $^{\circ}$ F)
- 2 Special density calibration

Temperature

 $\pm 0.005 \cdot \text{T} \,^{\circ}\text{C} \, (\pm 0.005 \cdot (\text{T} - 32) \,^{\circ}\text{F})$

Influence of medium pressure

The table below shows the effect on accuracy of mass flow due to a difference between calibration pressure and process pressure.

o.r. = of reading

It is possible to compensate for the effect by:

- Reading in the current pressure measured value via the current input.
- Specifying a fixed value for the pressure in the device parameters.

Operating Instructions.

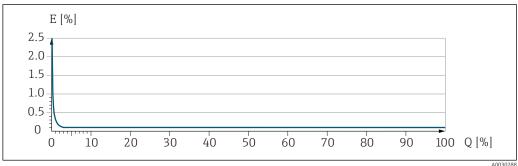
DN		[% o.r./bar]	[% o.r./psi]	
[mm]	[in]			
1	1/24	-0.001	-0.00007	
2	1/12	0	0	
4	1/8	-0.005	-0.0004	
6	1/4	-0.003	-0.0002	

Design fundamentals

o.r. = of reading, o.f.s. = of full scale value

BaseAccu = base accuracy in % o.r., BaseRepeat = base repeatability in % o.r.

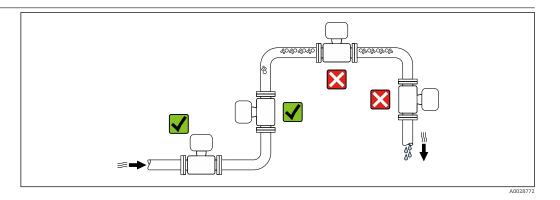
MeasValue = measured value; ZeroPoint = zero point stability


Calculation of the maximum measured error as a function of the flow rate

Flow rate	Maximum measured error in % o.r.
$\geq \frac{\text{ZeroPoint}}{\text{BaseAccu}} \cdot 100$	± BaseAccu
A0021332	AUUZ1997
< ZeroPoint · 100	± ZeroPoint MeasValue · 100
A0021333	A0021334

Calculation of the maximum repeatability as a function of the flow rate

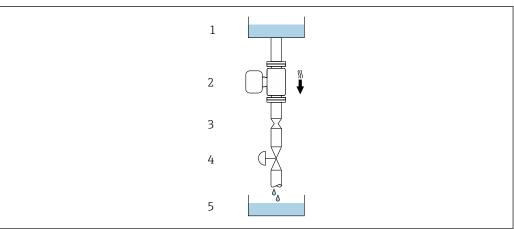
Flow rate		Maximum repeatability in % o.r.
$\geq \frac{\frac{1}{2} \cdot ZeroPoint}{BaseRepeat} \cdot 100$		± BaseRepeat
, , , , , , , , , , , , , , , , , , ,	A0021335	200023
< ¹ ⁄ ₂ · ZeroPoint · 100		$\pm \frac{1}{2} \cdot \frac{\text{ZeroPoint}}{\text{MeasValue}} \cdot 100$
, , , , , , , , , , , , , , , , , , ,	A0021336	A0021337


Example for maximum measured error

- Maximum measured error in % o.r. (example)
- Q Flow rate in % of maximum full scale value

Installation

Mounting location



To prevent measuring errors arising from accumulation of gas bubbles in the measuring tube, avoid the following mounting locations in the pipe:

- Highest point of a pipeline.
- Directly upstream of a free pipe outlet in a down pipe.

Installation in down pipes

However, the following installation suggestion allows for installation in an open vertical pipeline. Pipe restrictions or the use of an orifice with a smaller cross-section than the nominal diameter prevent the sensor running empty while measurement is in progress.

A002877

Installation in a down pipe (e.g. for batching applications)

- 1 Supply tank
- 2 Sensor
- 3 Orifice plate, pipe restriction
- 4 Valve
- 5 Batching tank

D	N	Ø orifice plate, pipe restriction		
[mm]	[in]	[mm]	[in]	
1	1/24	0.8	0.03	
2	1/12	1.5	0.06	
4	1/8	3.0	0.12	
6	1/4	5.0	0.20	

Orientation

The direction of the arrow on the sensor nameplate helps you to install the sensor according to the flow direction (direction of medium flow through the piping).

	Recommendation		
A	Vertical orientation	A0015591	 ✓
В	Horizontal orientation, transmitter at top	A0015589	✓ ✓ 1)
С	Horizontal orientation, transmitter at bottom	A0015590	✓ ✓ ²⁾
D	Horizontal orientation, transmitter at side	A0015592	×

- Applications with low process temperatures may decrease the ambient temperature. To maintain the minimum ambient temperature for the transmitter, this orientation is recommended.
- 2) Applications with high process temperatures may increase the ambient temperature. To maintain the maximum ambient temperature for the transmitter, this orientation is recommended.

Inlet and outlet runs

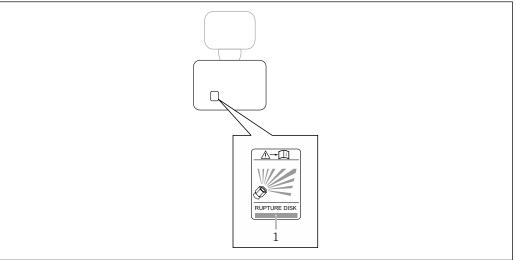
Special mounting instructions

Sanitary compatibility

When installing in hygienic applications, please refer to the information in the "Certificates and approvals/hygienic compatibility" section

Rupture disk

Information that is relevant to the process: $\rightarrow \triangleq 50$.


A WARNING

Danger from medium escaping!

Medium escaping under pressure can cause injury or material damage.

- ▶ Take precautions to prevent danger to persons and damage if the rupture disk is actuated.
- ▶ Observe information on the rupture disk sticker.
- Make sure that the function and operation of the rupture disk is not impeded through the installation of the device.
- ▶ Do not use a heating jacket.
- ▶ Do not remove or damage the rupture disk.

The position of the rupture disk is indicated on a sticker beside it.

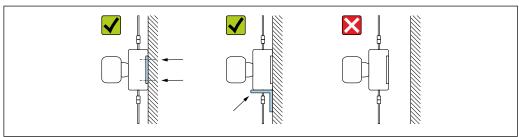
A002994

Rupture disk label

Wall mounting

A WARNING

Incorrect sensor mounting


Risk of injury if measuring tube breaks

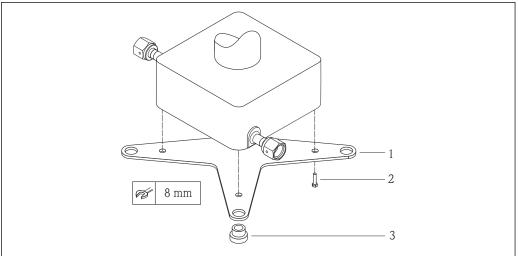
- ► The sensor should never be installed in a pipe in a way that it is freely suspended
- ▶ Using the base plate, mount the sensor directly on the floor, wall or ceiling.
- ► Support the sensor on a securely mounted support base (e.g. angle bracket).

The following mounting versions are recommended for the installation.

Vertical

- Mounted directly on a wall using the base plate, or
- Device supported on an angle bracket mounted on the wall

A0030286


Horizontal

Device standing on a solid support base

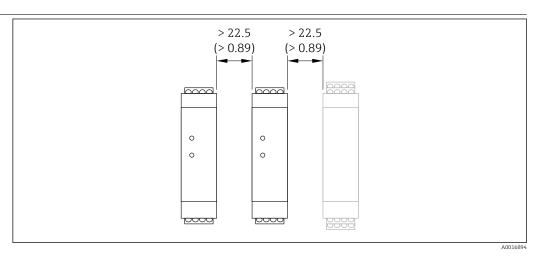
Mounting plate

The universal mounting plate can be used to affix or place the unit on a flat surface (order code for "Accessories", option PA).

A00197

■ 20 Mounting kit for Cubemass mounting plate

- 1 1 x Cubemass mounting plate
- 2 4 x screw M5 x 8
- 3 4 x grommet


Zero point adjustment

Experience shows that zero point adjustment is advisable only in special cases:

- To achieve maximum measuring accuracy even with low flow rates.
- Under extreme process or operating conditions (e.g. very high process temperatures or very high-viscosity fluids).

46

Installing the Safety Barrier Promass 100

 \blacksquare 21 Minimum distance between additional Safety Barrier Promass 100 or other modules. Engineering unit mm (in)

Environment

Ambient temperature range	Measuring device	 -40 to +60 °C (-40 to +140 °F) Order code for "Test, certificate", option JM: -50 to +60 °C (-58 to +140 °F) 				
	Safety Barrier Promass 100	-40 to +60 °C (-40 to +140 °F)				
	If operating outdoors:Avoid direct sunlight, particula	arly in warm climatic regions.				
Storage temperature	-40 to +80 °C (-40 to +176 °F), pr	referably at +20 °C (+68 °F) (standard version)				
	−50 to +80 °C (−58 to +176 °F) (0:	rder code for "Test, certificate", option JM)				
Climate class	DIN EN 60068-2-38 (test Z/AD)					
Degree of protection	Transmitter and sensor ■ As standard: IP66/67, type 4X enclosure ■ When housing is open: IP20, type 1 enclosure ■ Display module: IP20, type 1 enclosure					
	Safety Barrier Promass 100 IP20					
Vibration- and shock-	Vibration sinusoidal, in accordar	nce with IEC 60068-2-6				
resistance	2 to 8.4 Hz, 3.5 mm peak8.4 to 2 000 Hz, 1 g peak					
	Vibration broad-band random, according to IEC 60068-2-64					
	 10 to 200 Hz, 0.003 g²/Hz 200 to 2000 Hz, 0.001 g²/Hz Total: 1.54 g rms 					
	Shock half-sine, according to IEC 60068-2-27					
	6 ms 30 g					

Endress+Hauser 47

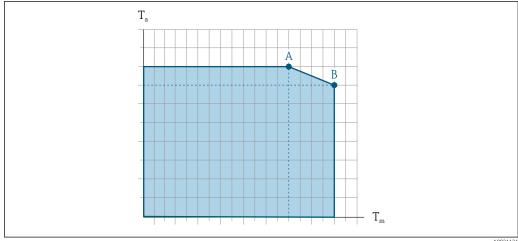
Rough handling shocks, according to IEC 60068-2-31 $\,$

Interior cleaning

- Cleaning in place (CIP)
- Sterilization in place (SIP)

Oil- and grease-free version for wetted parts, without declaration Order code for "Service", option HA

Electromagnetic compatibility (EMC)


- Depends on the communication protocol:
 - HART, PROFIBUS DP, EtherNet/IP: As per IEC/EN 61326 and NAMUR Recommendation 21 (NE 21)
 - Modbus RS485: As per IEC/EN 61326 and NAMUR Recommendation 21 (NE 21)
 - PROFINET: as per IEC/EN 61326
- Complies with emission limits for industry as per EN 55011 (Class A)
- Device version with PROFIBUS DP: Complies with emission limits for industry as per EN 50170 Volume 2, IEC 61784
- The following applies for PROFIBUS DP: If baud rates > 1.5 MBaud, an EMC cable entry must be used and the cable shield must continue as far as the terminal wherever possible.
- Details are provided in the Declaration of Conformity.

Process

Medium temperature range

 $-50 \text{ to } +205 ^{\circ}\text{C} (-58 \text{ to } +401 ^{\circ}\text{F})$

Dependency of ambient temperature on medium temperature

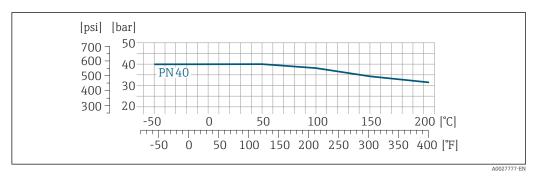
- 22 Exemplary representation, values in the table below.
- Ambient temperature range
- Medium temperature
- Maximum permitted medium temperature T_m at $T_{a max}$ = 60 °C (140 °F); higher medium temperatures T_m require a reduced ambient temperature T_a
- Maximum permitted ambient temperature T_a for the maximum specified medium temperature T_m of the В sensor
- Values for devices used in the hazardous area: Separate Ex documentation (XA) for the device .

Seals

For mounting sets with screwed-on connections:

- Viton: -15 to +200 °C (-5 to +392 °F)
- EPDM: -40 to +160 °C (-40 to +320 °F)
- Silicon: -60 to +200 °C (-76 to +392 °F)
- Kalrez: -20 to +275 °C (-4 to +527 °F)

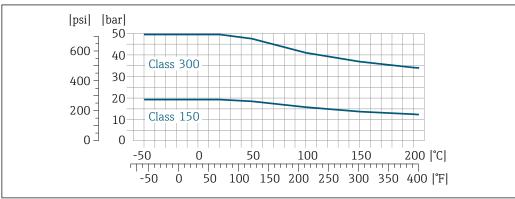
Density


0 to 5000 kg/m^3 (0 to 312 lb/cf)

Pressure-temperature ratings

The following pressure/temperature diagrams apply to all pressure-bearing parts of the device and not just the process connection. The diagrams show the maximum permissible medium pressure depending on the specific medium temperature.

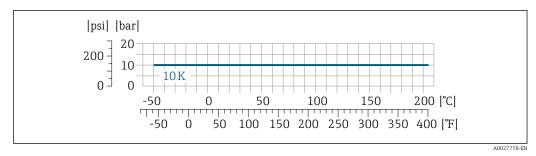
Flange connection according to EN 1092-1 (DIN 2501)


Order code for "Mounting kit", option PE

 \blacksquare 23 With flange material: 1.4539 (904L), Alloy C22; lap joint flanges (not wetted) 1.4404 (316/316L)

Flange connection according to ASME B16.5

Order code for "Mounting kit", option PF, PG


■ 24 With flange material: 1.4539 (904L); lap joint flanges (not wetted) 1.4404 (316/316L)

Flange connection according to JIS B2220

Order code for "Mounting kit", option PH

Endress+Hauser 49


A0027771-EN

■ 25 With flange material: 1.4539 (904L); lap joint flanges (not wetted): 1.4404 (316/316L)

Process connection 4-VCO-4, ¼ NPTF (DN 1 to 4); 8-VCO-4, ½ NPTF (DN 6)

Order code for "Mounting kit", option PC, PD

26 4-VCO-4 coupling: 1.4539 (904L); 8-VCO-4 coupling: 1.4539 (904L); NPTF threaded adapter: 1.4539 (904L)

Sensor housing

The sensor housing is filled with dry nitrogen gas and protects the electronics and mechanics inside.

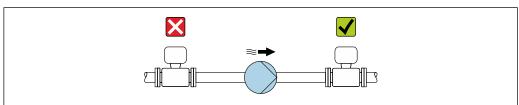
Rupture disk

Flow limit

Select the nominal diameter by optimizing between the required flow range and permissible pressure loss.

- The minimum recommended full scale value is approx. 1/20 of the maximum full scale value
- In most applications, 20 to 50 % of the maximum full scale value can be considered ideal
- A low full scale value must be selected for abrasive media (such as liquids with entrained solids): flow velocity < 1 m/s (< 3 ft/s).
- For gas measurement the following rules apply:
 - The flow velocity in the measuring tubes should not exceed half the sound velocity (0.5 Mach).
 - The maximum mass flow depends on the density of the gas: formula $\rightarrow \blacksquare 7$

Pressure loss


To calculate the pressure loss, use the *Applicator* sizing tool $\rightarrow \bigcirc 73$

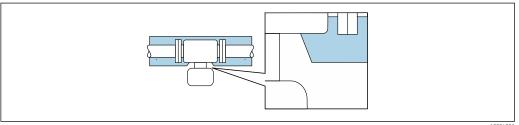
System pressure

It is important that cavitation does not occur, or that gases entrained in the liquids do not outgas. This is prevented by means of a sufficiently high system pressure.

For this reason, the following mounting locations are recommended:

- At the lowest point in a vertical pipe
- Downstream from pumps (no danger of vacuum)

Δ0028777


Thermal insulation

In the case of some fluids, it is important to keep the heat radiated from the sensor to the transmitter to a low level. A wide range of materials can be used for the required insulation.

NOTICE

Electronics overheating on account of thermal insulation!

- ▶ Recommended orientation: horizontal orientation, transmitter housing pointing downwards.
- Do not insulate the transmitter housing.
- ► Maximum permissible temperature at the lower end of the transmitter housing: 80 °C (176 °F)
- ► Thermal insulation with extended neck free: We recommend that you do not insulate the extended neck in order to ensure optimum dissipation of heat.

27 Thermal insulation with extended neck free

Heating

Some fluids require suitable measures to avoid loss of heat at the sensor.

Heating options

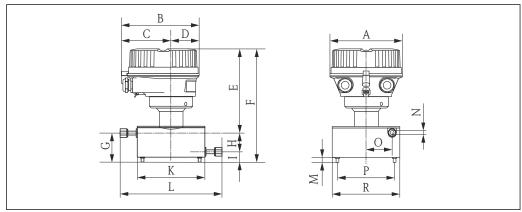
- Electrical heating, e.g. with electric band heaters
- Via pipes carrying hot water or steam
- Via heating jackets

NOTICE

Danger of overheating when heating

- ► Ensure that the temperature at the lower end of the transmitter housing does not exceed 80 °C (176 °F).
- ▶ Ensure that sufficient convection takes place at the transmitter neck.
- ► Ensure that a sufficiently large area of the transmitter neck remains exposed. The uncovered part serves as a radiator and protects the electronics from overheating and excessive cooling.
- ▶ When using in potentially explosive atmospheres, observe the information in the device-specific Ex documentation. For detailed information on the temperature tables, see the separate document entitled "Safety Instructions" (XA) for the device.

Vibrations

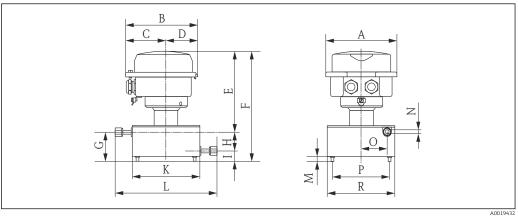

The high oscillation frequency of the measuring tubes ensures that the correct operation of the measuring system is not influenced by plant vibrations.

Mechanical construction

Dimensions in SI units

Compact version

Order code for "Housing", option A "Compact coated alu"

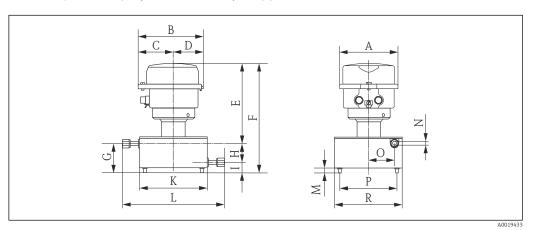


DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E ¹⁾ [mm]	F ¹⁾ [mm]	G [mm]	H [mm]
1	136	147.5	93.5	54	162	214	52	30
2	136	147.5	93.5	54	162	214	52	30
4	136	147.5	93.5	54	162	214	52	30
6	136	147.5	93.5	54	162	214	52	30

1) If using a display, order code for "Display; operation", option B: values +28 mm

DN [mm]	I [mm]	K [mm]	L [mm]	M [mm]	N [mm]	0 [mm]	P [mm]	R [mm]
1	22	120	175	10	1.3	40	90	120
2	22	120	175	10	2	40	90	120
4	22	120	175	10	3.9	40	90	120
6	22	120	175	10	5.35	40	90	120

Order code for "Housing", option B "Compact hygienic, stainless"

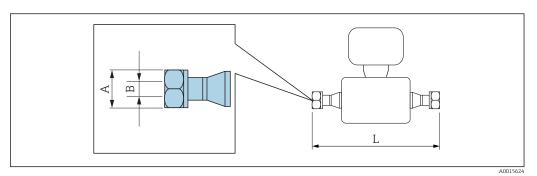


DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E ¹⁾ [mm]	F ¹⁾ [mm]	G [mm]	H [mm]
1	133.5	136.8	78	58.8	158	210	52	30
2	133.5	136.8	78	58.8	158	210	52	30
4	133.5	136.8	78	58.8	158	210	52	30
6	133.5	136.8	78	58.8	158	210	52	30

1) If using a display, order code for "Display; Operation", option B: values +14 mm

DN [mm]	I [mm]	K [mm]	L [mm]	M [mm]	N [mm]	0 [mm]	P [mm]	R [mm]
1	22	120	175	10	1.3	40	90	120
2	22	120	175	10	2	40	90	120
4	22	120	175	10	3.9	40	90	120
6	22	120	175	10	5.35	40	90	120

Order code for "Housing", option C "Ultra-compact hygienic, stainless"


E 1) F 1) В С DN [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] 1 111.4 123.6 67.7 55.9 157 209 52 30 2 111.4 123.6 67.7 55.9 157 209 52 30 111.4 123.6 67.7 55.9 157 209 52 30 4 6 111.4 123.6 67.7 55.9 157 209 52 30

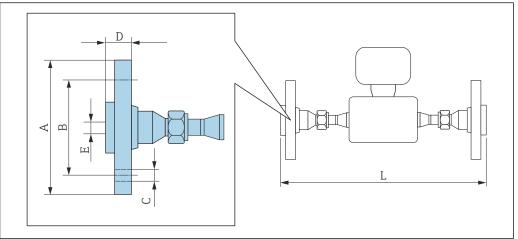
1) If using a display, order code for "Display; Operation", option B: values +14 mm

DN [mm]	I [mm]	K [mm]	L [mm]	M [mm]	N [mm]	0 [mm]	P [mm]	R [mm]
1	22	120	175	10	1.3	40	90	120
2	22	120	175	10	2	40	90	120
4	22	120	175	10	3.9	40	90	120
6	22	120	175	10	5.35	40	90	120

Threaded glands

VCO coupling

■ 28 Engineering unit mm (in)


4-VCO-4 1.4539 (904L): order code for "Process connection", option HAW DN [mm] A [in] L [mm] [mm] 11/16 1 12.5 175 11/16 175 2 12.5 4 11/16 12.5 175

8-VCO-4 1.4404 (316/316L): order code for "Process connection", option CVS							
DN [mm]	A [in]	B [mm]	L [mm]				
6	1	20	175				

54

Adapter

Adapter, DN 15 flange to VCO

A0019725

■ 29 Engineering unit mm (in)

Adapter, DN 15 flange according to EN 1092-1 (DIN 2501): PN 40

1.4539 (904L): order code for "Accessories", option PE

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]
1 to 6	95	65	4 × Ø14	28	17.3	278

DN 1 to 4 with 4-VCO-4, DN 6 with 8-VCO-4

Lap joint flanges (not wetted) made of stainless steel 1.4404 (316/316L)

Sealing sets: order code for "Accessory enclosed", option P1 (Viton), P2 (EPDM), P3 (silicone), P4 (Kalrez)

Adapter, flange according to ASME B16.5: Class 150 1.4539 (904L): order code for "Accessories", option PF

DN [mm]	A B [mm]		C [mm]	D [mm]	E [mm]	L [mm]
1 to 6	90.0	60.3	4 × Ø15.7	17.7	15.7	278

DN 1 to 4 with 4-VCO-4, DN 6 with 8-VCO-4

Lap joint flanges (not wetted) made of stainless steel 1.4404 (316/316L)

Sealing sets: order code for "Accessory enclosed", option P1 (Viton), P2 (EPDM), P3 (silicone), P4 (Kalrez)

Adapter, flange according to ASME B16.5: Class 300

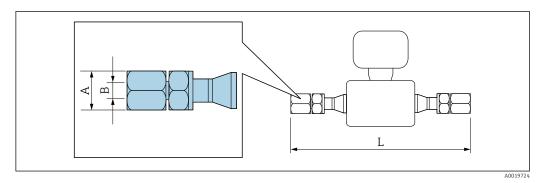
1.4539 (904L): order code for "Accessories, option PG

DN	A	B	C	D	E	L
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
1 to 6	95.0	60.3	4 × Ø15.7	20.7	15.7	

DN 1 to 4 with 4-VCO-4, DN 6 with 8-VCO-4

Lap joint flanges (not wetted) made of stainless steel 1.4404 (316/316L)

 $Sealing\ sets:\ order\ code\ for\ "Accessory\ enclosed",\ option\ P1\ (Viton),\ P2\ (EPDM),\ P3\ (silicone),\ P4\ (Kalrez)$


Adapter, JIS B2220 flange: 10K 1.4539 (904L): order code for "Accessories", option PH

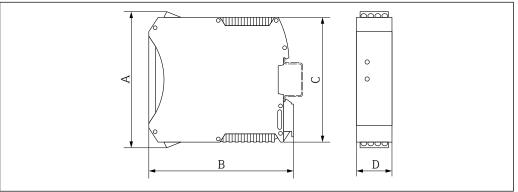
DN	A	B	C	D	E	L
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
1 to 6	95	70	4 × Ø15	28	15.0	

DN 1 to 4 with 4-VCO-4, DN 6 with 8-VCO-4 $\,$

Lap joint flanges (not wetted) made of stainless steel 1.4404 (316/316L)
Sealing sets: order code for "Accessory enclosed", option **P1** (Viton), **P2** (EPDM), **P3** (silicone), **P4** (Kalrez)

Adapter, NPTF to VCO

■ 30 Engineering unit mm (in)


Adapter, ¹ / ₄ " NPTF to 4-VCO-4 1.4539 (904L): order code for "Accessories", option PC							
DN [mm]	A [in]	B [in]	L [mm]				
1-4	3/4	½ NPT	246				
Sealing sets: order code for "Accessory enclosed", option P1 (Viton), P2 (EPDM), P3 (silicone), P4 (Kalrez)							

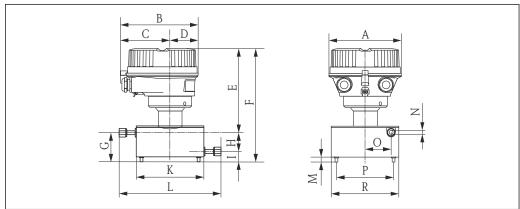
Adapter, ¼" NPTF to 8-VCO-4 1.4539 (904L): order code for "Accessories", option PD							
DN [mm]	A [in]	B [in]	L [mm]				
6	11/16	½ NPT	246				
Sealing sets; order code for "Accessory enclosed", option P1 (Viton), P2 (EPDM), P3 (silicone), P4 (Kalrez)							

Safety Barrier Promass 100

Top-hat rail EN 60715:

- TH 35 x 7.5
- TH 35 x 15

A001677

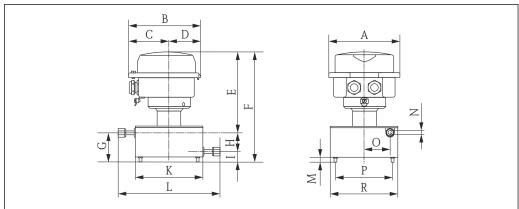

Α	В	С	D
[mm]	[mm]	[mm]	[mm]
108	114.5	99	22.5

Accessories

Dimensions in US units

Compact version

Order code for "Housing", option A "Compact coated alu"

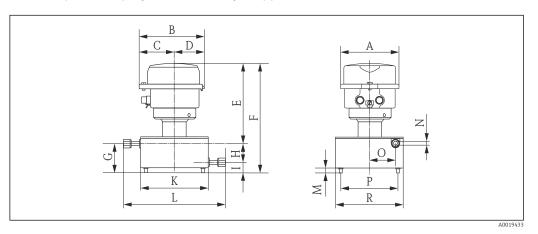

10019431

DN [in]	A [in]	B [in]	C [in]	D [in]	E ¹⁾ [in]	F ¹⁾ [in]	G [in]	H [in]
1/24	5.35	5.81	3.68	2.13	6.38	8.43	2.05	1.18
1/12	5.35	5.81	3.68	2.13	6.38	8.43	2.05	1.18
1/8	5.35	5.81	3.68	2.13	6.38	8.43	2.05	1.18
1/4	5.35	5.81	3.68	2.13	6.38	8.43	2.05	1.18

1) If using a display, order code for "Display; operation", option B: values +1.1 in

DN [in]	I [in]	K [in]	L [in]	M [in]	N [in]	0 [in]	P [in]	R [in]
1/24	0.87	4.72	6.89	0.39	0.051	1.57	3.54	4.72
1/12	0.87	4.72	6.89	0.39	0.08	1.57	3.54	4.72
1/8	0.87	4.72	6.89	0.39	0.15	1.57	3.54	4.72
1/4	0.87	4.72	6.89	0.39	0.21	1.57	3.54	4.72

Order code for "Housing", option B "Compact hygienic, stainless"

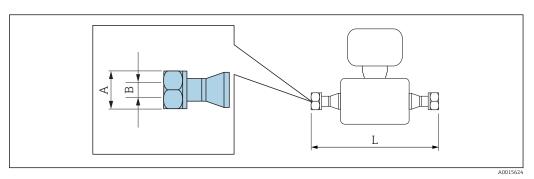

A0019432

DN [in]	A [in]	B [in]	C [in]	D [in]	E 1) [in]	F ¹⁾ [in]	G [in]	H [in]
1/24	5.26	5.39	3.07	2.31	6.22	8.27	2.05	1.18
1/12	5.26	5.39	3.07	2.31	6.22	8.27	2.05	1.18
1/8	5.26	5.39	3.07	2.31	6.22	8.27	2.05	1.18
1/4	5.26	5.39	3.07	2.31	6.22	8.27	2.05	1.18

1) If using a display, order code for "Display; operation", option B: values +0.55 in

DN [in]	I [in]	K [in]	L [in]	M [in]	N [in]	O [in]	P [in]	R [in]
1/24	0.87	4.72	6.89	0.39	0.051	1.57	3.54	4.72
1/12	0.87	4.72	6.89	0.39	0.08	1.57	3.54	4.72
1/8	0.87	4.72	6.89	0.39	0.15	1.57	3.54	4.72
1/4	0.87	4.72	6.89	0.39	0.21	1.57	3.54	4.72

Order code for "Housing", option C "Ultra-compact hygienic, stainless"


E 1) F 1) С DN [in] [in] [in] [in] [in] [in] [in] [in] 1/24 4.39 4.87 2.67 2.2 6.18 8.23 2.05 1.18 1/12 4.39 4.87 2.67 2.2 6.18 8.23 2.05 1.18 1/8 4.39 4.87 2.67 2.2 6.18 8.23 2.05 1.18 1/4 4.87 4.39 2.67 2.2 6.18 8.23 2.05 1.18

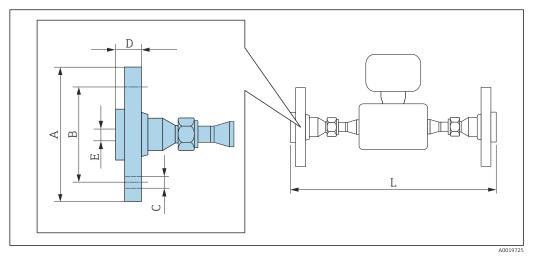
1) If using a display, order code for "Display; operation", option B: values +0.55 in

DN [in]	I [in]	K [in]	L [in]	M [in]	N [in]	O [in]	P [in]	R [in]
1/24	0.87	4.72	6.89	0.39	0.051	1.57	3.54	4.72
1/12	0.87	4.72	6.89	0.39	0.08	1.57	3.54	4.72
1/8	0.87	4.72	6.89	0.39	0.15	1.57	3.54	4.72
1/4	0.87	4.72	6.89	0.39	0.21	1.57	3.54	4.72

Threaded glands

VCO coupling

■ 31 Engineering unit mm (in)


4-VCO-4 1.4539 (904L): order code for "Process connection", option HAW A [in] L [mm] [in] [in] 1/24 11/16 0.49 6.89 11/16 1/12 0.49 6.89 1/8 11/16 0.49 6.89

8-VCO-4 1.4404 (316/316L): order code for "Process connection", option CVS			
DN [mm]	A [in]	B [in]	L [in]
1/4	1	0.79	6.89

60

Adapter

Adapter, DN 15 flange to VCO

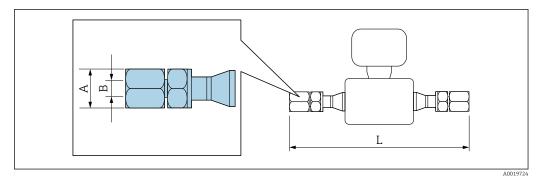
■ 32 Engineering unit mm (in)

Adapter, flange (1.4539 (904L): 6						
DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]	L [in]
½4 to ¼	3.54	2.37	4 × Ø0.62	0.7	0.62	10.94

DN $^{1}\!/_{\!24}$ to $^{1}\!/_{\!8}$ with 4-VCO-4, DN $^{1}\!/_{\!4}$ with 8-VCO-4

Lap joint flanges (not wetted) made of stainless steel 1.4404 (316/316L)

Sealing sets: order code for "Accessory enclosed", option P1 (Viton), P2 (EPDM), P3 (silicone), P4 (Kalrez)


Adapter, flange 1.4539 (904L):	3					
DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]	L [in]
½4 to ¼	3.74	2.37	4 × Ø0.62	0.81	0.62	10.94

DN $^{1}\!\!/_{\!\!24}$ to $^{1}\!\!/_{\!\!8}$ with 4-VCO-4, DN $^{1}\!\!/_{\!\!4}$ with 8-VCO-4

Lap joint flanges (not wetted) made of stainless steel 1.4404 (316/316L)

Sealing sets: order code for "Accessory enclosed", option P1 (Viton), P2 (EPDM), P3 (silicone), P4 (Kalrez)

Adapter, NPTF to VCO

■ 33 Engineering unit mm (in)

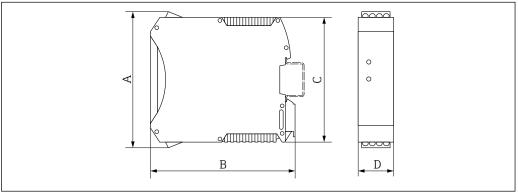
 Adapter, ½," NPTF to 4-VCO-4

 1.4539 (904L): order code for "Accessories", option PC

 DN
 A
 B
 L
 L

 [mm]
 [in]
 [in]
 [in]

 ½4 to ½
 ¾
 ½, NPT
 9.69


 Sealing sets: order code for "Accessory enclosed", option P1 (Viton), P2 (EPDM), P3 (silicone), P4 (Kalrez)

Adapter, ¼" NPTF to 8-VCO-4 1.4539 (904L): order code for "Accessories", option PD			
DN [mm]	A [in]	B [in]	L [in]
¹ / ₄			
Sealing sets: order code for "Accessory enclosed", option P1 (Viton), P2 (EPDM), P3 (silicone), P4 (Kalrez)			

Safety Barrier Promass 100

Top-hat rail EN 60715:

- TH 35 x 7.5
- TH 35 x 15

A001677

A	В	С	D
[in]	[in]	[in]	[in]
4.25	4.51	3.9	0.89

Accessories

Weight

All values (weight exclusive of packaging material) refer to devices with VCO couplings. Weight specifications including transmitter: order code for "Housing", option A "Compact, aluminum coated".

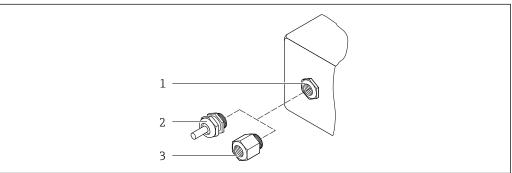
Weight in SI units

DN [mm]	Weight [kg]
1 to 6	3.5

Weight in US units

DN [in]	Weight [lbs]
$^{1}\!/_{24}$ to $^{1}\!/_{4}$	8

Safety Barrier Promass 100


49 g (1.73 ounce)

Materials

Transmitter housing

- Order code for "Housing", option A "Compact, aluminum coated": Aluminum, AlSi10Mg, coated
- Order code for "Housing", option B "Compact, hygienic, stainless": Hygienic version, stainless steel 1.4301 (304)
- Order code for "Housing", option C "Ultra-compact, hygienic, stainless": Hygienic version, stainless steel 1.4301 (304)
- Window material for optional local display (→ 🖺 65):
 - For order code for "Housing", option A: glass
 - For order code for "Housing", option **B** and **C**: plastic

Cable entries/cable glands

A0020640

- \blacksquare 34 Possible cable entries/cable glands
- 1 Female thread M20 \times 1.5
- 2 Cable gland $M20 \times 1.5$
- 3 Adapter for cable entry with female thread G ½" or NPT ½"

Order code for "Housing", option A "Compact, aluminum, coated"

The various cable entries are suitable for hazardous and non-hazardous areas.

Cable entry/cable gland	Material
Cable gland M20 × 1.5	
Adapter for cable entry with female thread G ½"	Nickel-plated brass
Adapter for cable entry with female thread NPT ½"	

Order code for "Housing", option B "Compact, hygienic, stainless"

The various cable entries are suitable for hazardous and non-hazardous areas.

Cable entry/cable gland	Material
Cable gland M20 × 1.5	Stainless steel, 1.4404 (316L)
Adapter for cable entry with female thread G 1/2"	
Adapter for cable entry with female thread NPT ½"	

Device plug

Electrical connection	Material
Plug M12x1	 Socket: Stainless steel, 1.4404 (316L) Contact housing: Polyamide Contacts: Gold-plated brass

Sensor housing

- Acid and alkali-resistant outer surface
- Stainless steel 1.4301 (304)

Measuring tubes

Stainless steel, 1.4539 (904L)

Process connections

VCO connection:

VCO connection: stainless steel, 1.4539 (904L)

Adapter for DN 15 flange according to EN 1092-1 (DIN2501) / according to ASME B 16.5 /

as per JIS B2220:

Stainless steel, 1.4539 (904L)

NPTF adapter:

Stainless steel, 1.4539 (904L)

Available process connections → 🖺 65

Seals

Welded process connections without internal seals

Seals for mounting kit

- Viton
- EPDM
- Silicone
- Kalrez

Accessories

Protective cover

Stainless steel, 1.4404 (316L)

Safety Barrier Promass 100

Housing: Polyamide

Process connections

- Fixed flange connections:
 - EN 1092-1 (DIN 2512N) flange
 - ASME B16.5 flange
 - JIS B2220 flange
- VCO connections:
 - 4-VCO-4
 - 8-VCO-4
- Adapter for VCO connections:
 - Flange EN 1092-1 (DIN 2501)
 - Flange ASME B16.5
 - Flange IIS B2220
 - NPT

Process connection materials

Surface roughness

All data relate to parts in contact with fluid. The following surface roughness quality can be ordered. Not polished

Human interface

Operating concept

Operator-oriented menu structure for user-specific tasks

- Commissioning
- Operation
- Diagnostics
- Expert level

Quick and safe commissioning

- Individual menus for applications
- Menu guidance with brief explanations of the individual parameter functions

Reliable operation

- Operation in the following languages:
 - Via "FieldCare", "DeviceCare" operating tool: English, German, French, Spanish, Italian, Chinese, Japanese
 - Via integrated Web browser(only available for device versions with HART, PROFIBUS DP, PROFINET and EtherNet/IP):
 - English, German, French, Spanish, Italian, Dutch, Portuguese, Polish, Russian, Turkish, Chinese, Japanese, Bahasa (Indonesian), Vietnamese, Czech, Swedish, Korean
- Uniform operating philosophy applied to operating tools and Web browser
- If replacing the electronic module, transfer the device configuration via the plug-in memory (HistoROM DAT) which contains the process and measuring device data and the event logbook. No need to reconfigure.

For devices with Modbus RS485, the data recovery function is implemented without the plug-in memory (HistoROM DAT).

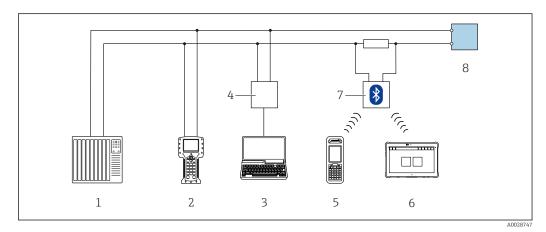
Efficient diagnostics increase measurement availability

- Troubleshooting measures can be called up via the operating tools and web browser
- Diverse simulation options
- Status indicated by several light emitting diodes (LEDs) on the electronic module in the housing compartment

Local display

A local display is only available for device versions with the following communication protocols: HART, PROFIBUS-DP, PROFINET, EtherNet/IP

The local display is only available with the following device order code: Order code for "Display; operation", option **B**: 4-line; illuminated, via communication

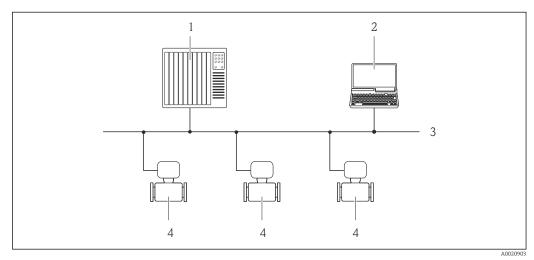

Display element

- 4-line liquid crystal display with 16 characters per line.
- White background lighting; switches to red in event of device errors.
- Format for displaying measured variables and status variables can be individually configured.
- Permitted ambient temperature for the display: -20 to +60 °C (-4 to +140 °F). The readability of the display may be impaired at temperatures outside the temperature range.

Remote operation

Via HART protocol

This communication interface is available in device versions with a HART output.



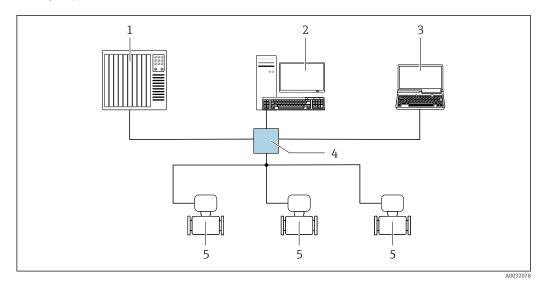
 \blacksquare 35 Options for remote operation via HART protocol

- 1 Control system (e.g. PLC)
- 2 Field Communicator 475
- 3 Computer with operating tool (e.g. FieldCare, AMS Device Manager, SIMATIC PDM)
- 4 Commubox FXA 195 (USB)
- 5 Field Xpert SFX350 or SFX370
- 6 Field Xpert SMT70
- 7 VIATOR Bluetooth modem with connecting cable
- 8 Transmitter

Via PROFIBUS DP network

This communication interface is available in device versions with PROFIBUS DP.

■ 36 Options for remote operation via PROFIBUS DP network

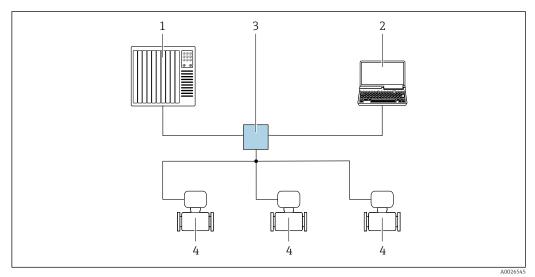

- 1 Automation system
- 2 Computer with PROFIBUS network card
- *3 PROFIBUS DP network*
- 4 Measuring device

Via EtherNet/IP network

This communication interface is available in device versions with EtherNet/IP.

66

Star topology



- 37 Options for remote operation via EtherNet/IP network: star topology
- 1 Automation system, e.g. "RSLogix" (Rockwell Automation)
- 2 Workstation for measuring device operation: with Custom Add-On Profile for "RSLogix 5000" (Rockwell Automation) or with Electronic Data Sheet (EDS)
- 3 Computer with Web browser (e.g. Internet Explorer) for accessing the integrated device Web server or computer with operating tool (e.g. FieldCare, DeviceCare) with COM DTM "CDI Communication TCP/IP"
- 4 Ethernet switch
- 5 Measuring device

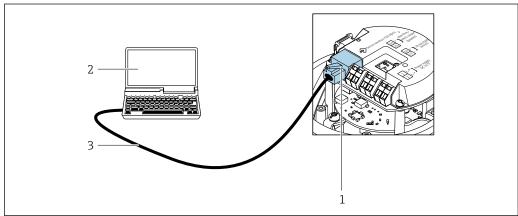
Via PROFINET network

This communication interface is available in device versions with PROFINET.

Star topology

■ 38 Options for remote operation via PROFINET network: star topology

- 1 Automation system, e.g. Simatic S7 (Siemens)
- 2 Computer with Web browser (e.g. Internet Explorer) for accessing the integrated device Web server or computer with operating tool (e.g. FieldCare, DeviceCare, SIMATIC PDM) with COM DTM "CDI Communication TCP/IP"
- 3 Switch, e.g. Scalance X204 (Siemens)
- 4 Measuring device

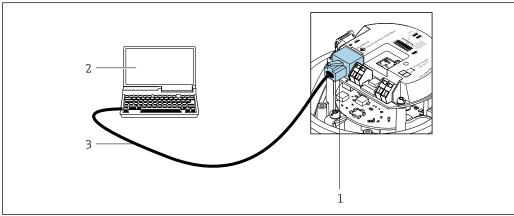

Service interface

Via service interface (CDI-RJ45)

This communication interface is present in the following device version:

- Order code for "Output", option **B**: 4-20 mA HART, pulse/frequency/switch output
- Order code for "Output", option L: PROFIBUS DP
- Order code for "Output", option N: EtherNet/IP
- Order code for "Output", option **R**: PROFINET

HART

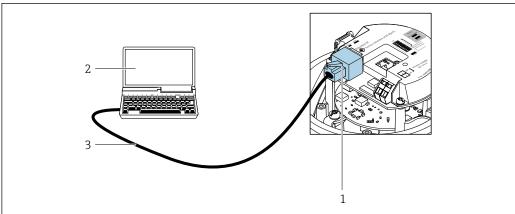


A0016926

■ 39 Connection for the order code for "Output", option B: 4-20 mA HART, pulse/frequency/switch output

- 1 Service interface (CDI -RJ45) of the measuring device with access to the integrated Web server
- 2 Computer with Web browser (e.g. Internet Explorer) for accessing the integrated device Web server or with "FieldCare" operating tool with COM DTM "CDI Communication TCP/IP"
- 3 Standard Ethernet connecting cable with RJ45 plug

PROFIBUS DP

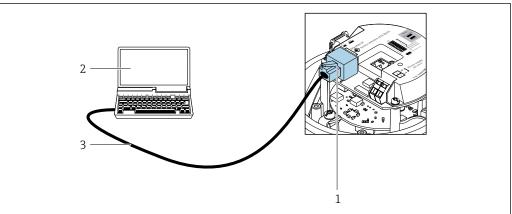


A002127

■ 40 Connection for order code for "Output", option L: PROFIBUS DP

- 1 Service interface (CDI -RJ45) of the measuring device with access to the integrated Web server
- 2 Computer with Web browser (e.g. Internet Explorer) for accessing the integrated device Web server or with "FieldCare" operating tool with COM DTM "CDI Communication TCP/IP"
- 3 Standard Ethernet connecting cable with RJ45 plug

EtherNet/IP



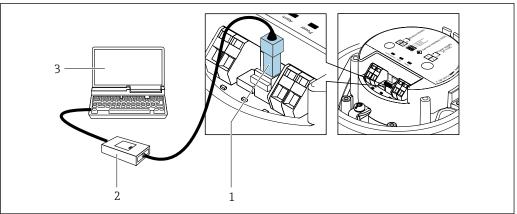
A0016040

41 Connection for order code for "Output", option N: EtherNet/IP

- 1 Service interface (CDI -RJ45) and EtherNet/IP interface of the measuring device with access to the integrated Web server
- 2 Computer with Web browser (e.g. Internet Explorer) for accessing the integrated device Web server or with "FieldCare" operating tool with COM DTM "CDI Communication TCP/IP"
- 3 Standard Ethernet connecting cable with RJ45 plug

PROFINET

A0016940


■ 42 Connection for order code for "Output", option R: PROFINET

- Service interface (CDI -RJ45) and PROFINET interface of the measuring device with access to the integrated Web server
- 2 Computer with Web browser (e.g. Internet Explorer) for accessing the integrated device Web server or with "FieldCare" operating tool with COM DTM "CDI Communication TCP/IP"
- 3 Standard Ethernet connecting cable with RJ45 plug

Via service interface (CDI)

This communication interface is present in the following device version: Order code for "Output", option $\bf M$: Modbus RS485

Modbus RS485

A0030216

- 1 Service interface (CDI) of measuring device
- 2 Commubox FXA291
- 3 Computer with "FieldCare" operating tool with "CDI Communication FXA291" COM DTM

Certificates and approvals

Currently available certificates and approvals can be called up via the product configurator.

CE mark

The device meets the legal requirements of the applicable EU Directives. These are listed in the corresponding EU Declaration of Conformity along with the standards applied.

Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.

RCM-tick symbol

The measuring system meets the EMC requirements of the "Australian Communications and Media Authority (ACMA)".

Pressure Equipment Directive

- With the identification PED/G1/x (x = category) on the sensor nameplate, Endress+Hauser confirms conformity with the "Essential Safety Requirements" specified in Appendix I of the Pressure Equipment Directive 2014/68/EU.
- Devices bearing this marking (PED) are suitable for the following types of medium:
 - Media in Group 1 and 2 with a vapor pressure greater than, or smaller and equal to 0.5 bar (7.3 psi)
 - Unstable gases
- Devices not bearing this marking (PED) are designed and manufactured according to good engineering practice. They meet the requirements of Article 4 paragraph 3 of the Pressure Equipment Directive 2014/68/EU. The range of application is indicated in tables 6 to 9 in Annex II of the Pressure Equipment Directive 2014/68/EU.

Other standards and guidelines

■ EN 60529

Degrees of protection provided by enclosures (IP code)

- IEC/EN 60068-2-6
 - Environmental influences: Test procedure Test Fc: vibrate (sinusoidal).
- IEC/EN 60068-2-31
 - Environmental influences: Test procedure Test Ec: shocks due to rough handling, primarily for devices.
- EN 61010-1
 - Safety requirements for electrical equipment for measurement, control and laboratory use general requirements
- IEC/EN 61326
 - Emission in accordance with Class A requirements. Electromagnetic compatibility (EMC requirements).
- NAMUR NE 21

Electromagnetic compatibility (EMC) of industrial process and laboratory control equipment

■ NAMUR NE 32

Data retention in the event of a power failure in field and control instruments with microprocessors

■ NAMUR NE 43

Standardization of the signal level for the breakdown information of digital transmitters with analog output signal.

■ NAMUR NE 53

Software of field devices and signal-processing devices with digital electronics

■ NAMUR NE 105

Specifications for integrating fieldbus devices in engineering tools for field devices

■ NAMUR NE 107

Self-monitoring and diagnosis of field devices

■ NAMUR NE 131

Requirements for field devices for standard applications

 NAMUR NE 132 Coriolis mass meter

Ordering information

Detailed ordering information is available as follows:

- In the Product Configurator on the Endress+Hauser website: www.endress.com -> Click "Corporate" -> Select your country -> Click "Products" -> Select the product using the filters and search field -> Open product page -> The "Configure" button to the right of the product image opens the Product Configurator.
- From your Endress+Hauser Sales Center:www.addresses.endress.com

Product Configurator - the tool for individual product configuration

- Up-to-the-minute configuration data
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop

Application packages

Many different application packages are available to enhance the functionality of the device. Such packages might be needed to address safety aspects or specific application requirements.

The application packages can be ordered with the device or subsequently from Endress+Hauser. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

Detailed information on the application packages: Special Documentation for the device $\rightarrow \implies 75$

Heartbeat Technology	Package	Description
	Heartbeat Verification +Monitoring	Heartbeat Verification Meets the requirement for traceable verification to DIN ISO 9001:2008 Chapter 7.6 a) "Control of monitoring and measuring equipment". Functional testing in the installed state without interrupting the process. Traceable verification results on request, including a report. Simple testing process via local operation or other operating interfaces. Clear measuring point assessment (pass/fail) with high test coverage within the framework of manufacturer specifications. Extension of calibration intervals according to operator's risk assessment.
		Heartbeat Monitoring Continuously supplies data, which are characteristic of the measuring principle, to an external condition monitoring system for the purpose of preventive maintenance or process analysis. These data enable the operator to: Draw conclusions - using these data and other information - about the impact process influences (such as corrosion, abrasion, buildup etc.) have on the measuring performance over time. Schedule servicing in time. Monitor the process or product quality, e.g. gas pockets.

Concentration

Package	Description
Concentration	Calculation and outputting of fluid concentrations
	The measured density is converted to the concentration of a substance of a binary mixture using the "Concentration" application package: Choice of predefined fluids (e.g. various sugar solutions, acids, alkalis, salts, ethanol etc.) Common or user-defined units ("Brix, "Plato, % mass, % volume, mol/l etc.) for standard applications. Concentration calculation from user-defined tables. The measured values are output via the digital and analog outputs of the device.

Special density

Package	Description
Special density	Many applications use density as a key measured value for monitoring quality or controlling processes. The device measures the density of the fluid as standard and makes this value available to the control system. The "Special Density" application package offers high-precision density measurement over a wide density and temperature range particularly for applications subject to varying process conditions.

Accessories

Various accessories, which can be ordered with the device or subsequently from Endress+Hauser, are available for the device. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

Device-specific accessories

Communication-specific accessories

Accessories	Description
Commubox FXA195 HART	For intrinsically safe HART communication with FieldCare via the USB interface. Technical Information TI00404F
Commubox FXA291	Connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) and the USB port of a computer or laptop. Technical Information TI405C/07

HART Loop Converter HMX50 Wireless HART adapter SWA70	Is used to evaluate and convert dynamic HART process variables to analog current signals or limit values. • Technical Information TI00429F • Operating Instructions BA00371F Is used for the wireless connection of field devices. The WirelessHART adapter can be easily integrated into field devices and existing infrastructures, offers data protection and transmission safety and can be operated in parallel with other wireless networks with minimum cabling complexity. • Operating Instructions BA00061S
Fieldgate FXA42	Is used to transmit the measured values of connected 4 to 20 mA analog measuring devices, as well as digital measuring devices Technical Information TI01297S Operating Instructions BA01778S
Field Xpert SMT70	 Product page: www.endress.com/fxa42 The Field Xpert SMT70 tablet PC for device configuration enables mobile plant asset management in hazardous and non-hazardous areas. It is suitable for commissioning and maintenance staff to manage field instruments with a digital communication interface and to record progress. This tablet PC is designed as an all-in-one solution with a preinstalled driver library and is an easy-to-use, touch-sensitive tool which can be used to manage field instruments throughout their entire life cycle. Technical Information TI01342S Operating Instructions BA01709S Product page: www.endress.com/smt70
Field Xpert SMT77	The Field Xpert SMT77 tablet PC for device configuration enables mobile plant asset management in areas categorized as Ex Zone 1. Technical Information TI01418S Operating Instructions BA01923S Product page: www.endress.com/smt77

Service-specific accessories

Accessories	Description
Applicator	 Software for selecting and sizing Endress+Hauser measuring devices: Choice of measuring devices for industrial requirements Calculation of all the necessary data for identifying the optimum flowmeter: e.g. nominal diameter, pressure loss, flow velocity and accuracy. Graphic illustration of the calculation results Determination of the partial order code, administration, documentation and access to all project-related data and parameters over the entire life cycle of a project.
	Applicator is available: • Via the Internet: https://portal.endress.com/webapp/applicator • As a downloadable DVD for local PC installation.
W@M	W@M Life Cycle Management Improved productivity with information at your fingertips. Data relevant to a plant and its components is generated from the first stages of planning and during the asset's complete life cycle. W@M Life Cycle Management is an open and flexible information platform with online and on-site tools. Instant access for your staff to current, in-depth data shortens your plant's engineering time, speeds up procurement processes and increases plant uptime. Combined with the right services, W@M Life Cycle Management boosts productivity in every phase. For more information, visit www.endress.com/lifecyclemanagement

Accessories	Description
FieldCare	FDT-based plant asset management tool from Endress+Hauser. It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition. Operating Instructions BA00027S and BA00059S
DeviceCare	Tool to connect and configure Endress+Hauser field devices. Innovation brochure IN01047S

System components

Accessories	Description
Memograph M graphic data manager	The Memograph M graphic data manager provides information on all the relevant measured variables. Measured values are recorded correctly, limit values are monitored and measuring points analyzed. The data are stored in the 256 MB internal memory and also on a SD card or USB stick. Technical Information TI00133R Operating Instructions BA00247R
iTEMP	The temperature transmitters can be used in all applications and are suitable for the measurement of gases, steam and liquids. They can be used to read in the medium temperature. [Fields of Activity" document FA00006T

Supplementary documentation

For an overview of the scope of the associated Technical Documentation, refer to the following:

- *W@M Device Viewer* (www.endress.com/deviceviewer): Enter the serial number from nameplate
- *Endress+Hauser Operations App*: Enter the serial number from the nameplate or scan the 2D matrix code (QR code) on the nameplate

Standard documentation

Brief Operating Instructions

Brief Operating Instructions for the sensor

Measuring device	Documentation code
Proline Cubemass C	KA01217D

Transmitter Brief Operating Instructions

Measuring device	Documentation code
Proline Promass 100	KA01334D
	KA01333D
	KA01335D
	KA01332D
	KA01336D

Technical Information

Measuring device	Documentation code
Cubemass C 100	TI01105D

Description of Device Parameters

Measuring device	Documentation code
Cubemass 100	GP01063D
Cubemass 100	GP01064D
Cubemass 100	GP01065D
Cubemass 100	GP01066D
Cubemass 100	GP01067D

Supplementary devicedependent documentation

Safety Instructions

Content	Documentation code
ATEX/IECEx Ex i	XA01030D
ATEX/IECEx Ex nA	XA01143D
cCSAus IS	XA01142D
INMETRO Ex i	XA01221D
INMETRO Ex nA	XA01222D
NEPSI Ex i	XA01261D
NEPSI Ex nA	XA01263D

Special Documentation

Content	Documentation code
Information on the Pressure Equipment Directive	SD00142D
Modbus RS485 Register Information	SD00154D
Concentration measurement	SD01152D
Heartbeat Technology	SD01153D
Heartbeat Technology	SD01493D
Web server	SD01820D
Web server	SD01821D
Web server	SD01822D
Web server	SD01823D

Installation Instructions

Contents	Comment
Installation instructions for spare part sets and accessories	Documentation code: specified for each individual accessory → 🖺 72.

Registered trademarks

HART®

Registered trademark of the HART Communication Foundation, Austin, USA

PROFIBUS®

Registered trademark of the PROFIBUS User Organization, Karlsruhe, Germany

Modbus®

Registered trademark of SCHNEIDER AUTOMATION, INC.

EtherNet/IPTM

Trademark of ODVA, Inc.

PROFINET®

Registered trademark of the PROFIBUS User Organization, Karlsruhe, Germany

Microsoft

Registered trademark of the Microsoft Corporation, Redmond, Washington, USA

TRI-CLAMP®

Registered trademark of Ladish & Co., Inc., Kenosha, USA

 $\label{eq:continuous} Applicator^{\circ}, FieldCare^{\circ}, DeviceCare^{\circ}, Field Xpert^{TM}, HistoROM^{\circ}, Heartbeat Technology^{TM} \\ Registered or registration-pending trademarks of the Endress+Hauser Group$

www.addresses.endress.com

