Operating Instructions

TOCII CA72TOC

Analyzer for online determination of TOC in aqueous media using thermic catalytic combustion
Table of contents

1 **About this document** 4
1.1 Warnings 4
1.2 Symbols 4
1.3 Symbols on the device 4
1.4 Documentation 4

2 **Basic safety instructions** 5
2.1 Requirements for personnel 5
2.2 Designated use 5
2.3 Workplace safety 5
2.4 Operational safety 5
2.5 Product safety 6

3 **Incoming acceptance and product identification** 7
3.1 Incoming acceptance 7
3.2 Product identification 7
3.3 Scope of delivery 8
3.4 Certificates and approvals 8

4 **Product description** 9
4.1 Product design 9
4.2 Process diagram 10
4.3 Standby mode 10
4.4 Chemicals 11

5 **Installation** 12
5.1 Installation conditions 12
5.2 Mounting the analyzer 14
5.3 Post-installation check 18

6 **Electrical connection** 19
6.1 Connection instructions 19
6.2 Connecting the analyzer 20
6.3 Ensuring the degree of protection 24
6.4 Post-connection check 25

7 **Operation options** 26
7.1 Overview of operation options 26
7.2 Structure and function of the operating menu 26
7.3 Access to the operating menu via the local display 27
7.4 Access to the operating menu via the operating tool 29

8 **Commissioning** 31
8.1 Preparatory steps 31
8.2 Function check 35
8.3 Switching on the measuring device 35

8.4 Setting the operating language 35
8.5 Configuring the measuring device 35
8.6 Simulation 39

9 **Operation** 42
9.1 Reading measured values 42
9.2 Adapting the measuring device to the process conditions 42
9.3 Showing measurement data history 50

10 **Diagnostics and troubleshooting** 51
10.1 Diagnostic information on local display 51
10.2 Diagnostic list 58
10.3 Event logbook 59
10.4 Firmware history 61

11 **Maintenance** 62
11.1 Maintenance schedule 62
11.2 Maintenance tasks 62
11.3 Endress+Hauser services 91

12 **Repair** 92
12.1 Spare parts 92
12.2 Return 95
12.3 Disposal 95

13 **Accessories** 97
13.1 Device-specific accessories 97
13.2 Service-specific accessories 97
13.3 System components 97

14 **Technical data** 98
14.1 Input 98
14.2 Output 98
14.3 Power supply 99
14.4 Performance characteristics 99
14.5 Environment 99
14.6 Process 100
14.7 Mechanical construction 100

Index 101
1 About this document

1.1 Warnings

<table>
<thead>
<tr>
<th>Structure of information</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER Causes (/consequences)</td>
<td>This symbol alerts you to a dangerous situation. Failure to avoid the dangerous situation will result in a fatal or serious injury.</td>
</tr>
<tr>
<td>If necessary, Consequences of non-compliance (if applicable)</td>
<td>Corrective action</td>
</tr>
<tr>
<td>WARNING Causes (/consequences)</td>
<td>This symbol alerts you to a dangerous situation. Failure to avoid the dangerous situation can result in a fatal or serious injury.</td>
</tr>
<tr>
<td>If necessary, Consequences of non-compliance (if applicable)</td>
<td>Corrective action</td>
</tr>
<tr>
<td>CAUTION Causes (/consequences)</td>
<td>This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or more serious injuries.</td>
</tr>
<tr>
<td>If necessary, Consequences of non-compliance (if applicable)</td>
<td>Corrective action</td>
</tr>
<tr>
<td>NOTICE Cause/situation</td>
<td>This symbol alerts you to situations which may result in damage to property.</td>
</tr>
<tr>
<td>If necessary, Consequences of non-compliance (if applicable)</td>
<td>Action/note</td>
</tr>
</tbody>
</table>

1.2 Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>📖</td>
<td>Additional information, tips</td>
</tr>
<tr>
<td>✔</td>
<td>Permitted or recommended</td>
</tr>
<tr>
<td>✗</td>
<td>Not permitted or not recommended</td>
</tr>
<tr>
<td>📚</td>
<td>Reference to device documentation</td>
</tr>
<tr>
<td>📝</td>
<td>Reference to page</td>
</tr>
<tr>
<td>📊</td>
<td>Reference to graphic</td>
</tr>
<tr>
<td>🔄</td>
<td>Result of a step</td>
</tr>
</tbody>
</table>

1.3 Symbols on the device

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>📖</td>
<td>Reference to device documentation</td>
</tr>
</tbody>
</table>

1.4 Documentation

The following manual which complements these Operating Instructions can be found on the product page on the Internet:
Technical Information TOCII CA72TOC, TI00448C
2 Basic safety instructions

2.1 Requirements for personnel

- Installation, commissioning, operation and maintenance of the measuring system may be carried out only by specially trained technical personnel.
- The technical personnel must be authorized by the plant operator to carry out the specified activities.
- The electrical connection may be performed only by an electrical technician.
- The technical personnel must have read and understood these Operating Instructions and must follow the instructions contained therein.
- Faults at the measuring point may only be rectified by authorized and specially trained personnel.

Repairs not described in the Operating Instructions provided must be carried out only directly at the manufacturer's site or by the service organization.

2.2 Designated use

The analyzer is a compact thermo-catalytic analytical system. It is designed to monitor the TOC content of industrial and municipal wastewater.

The device is particularly suited for use in the following applications:
- Monitoring of industrial wastewater, in the inlet and outlet
- Control of process wastewater
- Monitoring of surface run-off in industrial systems
- Monitoring of surface run-off in airports
- Municipal wastewater monitoring
- Measurement of carbon load for nutrient dosing

NOTICE
Non-designated use
Incorrect measurements, malfunctions and even measuring point failure could result!
- Use the product only in accordance with the specifications.
- Observe the technical data indicated on the nameplate.

Use of the device for any purpose other than that described, poses a threat to the safety of people and of the entire measuring system and is therefore not permitted.

The manufacturer is not liable for damage caused by improper or non-designated use.

2.3 Workplace safety

As the user, you are responsible for complying with the following safety conditions:
- Installation guidelines
- Local standards and regulations

Electromagnetic compatibility
- The product has been tested for electromagnetic compatibility in accordance with the applicable international standards for industrial applications.
- The electromagnetic compatibility indicated applies only to a product that has been connected in accordance with these Operating Instructions.

2.4 Operational safety

Before commissioning the entire measuring point:

1. Verify that all connections are correct.
2. Ensure that electrical cables and hose connections are undamaged.
3. Do not operate damaged products, and protect them against unintentional operation.
4. Label damaged products as defective.

During operation:

- If faults cannot be rectified:

 products must be taken out of service and protected against unintentional operation.

2.5 Product safety

2.5.1 State-of-the-art technology

The product is designed to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate. The relevant regulations and international standards have been observed.

2.5.2 IT security

We only provide a warranty if the device is installed and used as described in the Operating Instructions. The device is equipped with security mechanisms to protect it against any inadvertent changes to the device settings.

IT security measures in line with operators' security standards and designed to provide additional protection for the device and device data transfer must be implemented by the operators themselves.
3 Incoming acceptance and product identification

3.1 Incoming acceptance

1. Verify that the packaging is undamaged.
 - Notify the supplier of any damage to the packaging.
 - Keep the damaged packaging until the issue has been resolved.

2. Verify that the contents are undamaged.
 - Notify the supplier of any damage to the delivery contents.
 - Keep the damaged goods until the issue has been resolved.

3. Check that the delivery is complete and nothing is missing.
 - Compare the shipping documents with your order.

4. Pack the product for storage and transportation in such a way that it is protected against impact and moisture.
 - The original packaging offers the best protection.
 - Make sure to comply with the permitted ambient conditions.

If you have any questions, please contact your supplier or your local Sales Center.

3.2 Product identification

3.2.1 Nameplate

The nameplate provides you with the following information on your device:
- Manufacturer identification
- Order code (device version)
- Serial number
- Measuring range
- Outputs and communication
- Power connection
- Degree of protection
- (Permitted) ambient conditions

- Compare the information on the nameplate with the order.

3.2.2 Product identification

Product page
www.endress.com/CA72TOC

Interpreting the order code

The order code and serial number of your product can be found in the following locations:
- On the nameplate
- In the delivery papers

Obtaining information on the product

2. Call up the site search (magnifying glass).
3. Enter a valid serial number.
4. Search.
 - The product structure is displayed in a popup window.

5. Click on the product image in the popup window.
 - A new window (Device Viewer) opens. All of the information relating to your device is displayed in this window as well as the product documentation.

3.2.3 Manufacturer address

Endress+Hauser Conducta GmbH+Co. KG
Dieselstraße 24
D-70839 Gerlingen

3.3 Scope of delivery

The scope of delivery comprises:
- 1 analyzer in the version ordered
- 1 accessories package for leak test
- Tool kit for glass ball and media removal
- Accessories for acid filter
- Accessories for commissioning the strip and separation chamber
- Accessories for combustion furnace maintenance
- Hose set
- 1 canister, 5 liter
- 2 canisters, 2 liter
- Set of cabinet keys
- 10 ml graduated cylinder
- Sponge cloth
- Protective goggles
- Gloves, acid-proof and base-proof
- Protective gloves, heat-resistant
- Silicone grease
- 1 x Operating Instructions

If you have any queries:
Please contact your supplier or local sales center.

3.4 Certificates and approvals

3.4.1 EU Declaration of Conformity

The product meets the requirements of the harmonized European standards. As such, it complies with the legal specifications of the EU directives. The manufacturer confirms successful testing of the product by affixing to it the CE mark.

3.4.2 CSA C/US General Purpose (optional)

The device meets the requirements of “Class 8721 06, laboratory equipment, electrical; Class 8721 86, electrical equipment for laboratory use - certified to US standards” for indoor use.

Certificate no.: 2577401

3.4.3 Electrical safety

In accordance with IEC 61010-1, Protection class I, Installation category II. Fluctuations in the supply voltage may not exceed 10 percent of the nominal voltage.
4 Product description

4.1 Product design

<table>
<thead>
<tr>
<th></th>
<th>Product design</th>
<th></th>
<th>Injection unit</th>
<th></th>
<th>Solenoid valve 1 (wastewater/calibration standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main switch</td>
<td>11</td>
<td>Acid filter</td>
<td>22</td>
<td>Valve for online sample/manual sample</td>
</tr>
<tr>
<td>2</td>
<td>Display and operating elements</td>
<td>12</td>
<td>Tube furnace with catalyst</td>
<td>23</td>
<td>Pump P3, acid dosing</td>
</tr>
<tr>
<td>3</td>
<td>USB port</td>
<td>13</td>
<td>Air outlet (filter mat)</td>
<td>24</td>
<td>Pump P4, sample - dilution (optional)</td>
</tr>
<tr>
<td>4</td>
<td>Pump P2, sample - analysis</td>
<td>14</td>
<td>Combined filter (water trap)</td>
<td>25</td>
<td>Mixing chamber (optional)</td>
</tr>
<tr>
<td>5</td>
<td>EMC junction box</td>
<td>15</td>
<td>Pump P5, sample - strip chamber/condensate extraction</td>
<td>26</td>
<td>Pump P1, sample - strip chamber/condensate extraction</td>
</tr>
<tr>
<td>6</td>
<td>Compressor switch</td>
<td>16</td>
<td>Condensate hose connector</td>
<td>27</td>
<td>Strip chamber with pH electrode</td>
</tr>
<tr>
<td>7</td>
<td>Ventilator</td>
<td>17</td>
<td>Circuit gas flowmeter</td>
<td>28</td>
<td>Sample conditioning</td>
</tr>
<tr>
<td>8</td>
<td>Separation chamber</td>
<td>18</td>
<td>Pump P5, dilution water (optional)</td>
<td>29</td>
<td>Vent valve with throttle</td>
</tr>
<tr>
<td>9</td>
<td>Dosing valve</td>
<td>19</td>
<td>Acid hose connector</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ventilator</td>
<td>20</td>
<td>Solenoid valve 4 (calibration standard C1/C2)</td>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>

9
4.2 Process diagram

A Analyzer outlet L Furnace Q1 Carrier gas
B Strip chamber M1 to 8 Solenoid valves Q2 Stripping gas
C Separation chamber N Acid filter R Check valves
D Pressure sensor O Water block S Acid
E Pressure switch P1-1 Sample pump T Heated filter
F Gas supply P2 Sample pump U Cooler
G Membrane compressor P3 Acid pump V CO₂ detection
H Mixer (optional) P4 Sample pump (optional) X Condensate drain
J Gas discharge P5 Dilution water pump (optional) Y Standard
K Circuit, flow reading P1-2 Condensate pump Z Bypass

4.3 Standby mode

The standby mode can be used to operate the analyzer at measuring points where the flow of sample is interrupted intermittently. The option is available in the one-channel version with the PA-2 or PA-3 sample conditioning system.
Function
If the flow of sample is interrupted, the pressure monitor reports this to the computer via the DI 04 switch input. This has the following effect:
- All pumps are stopped.
- Pump P2 is drained.
- The strip chamber is rinsed.
- The analyzer is on standby and waits for sample.
Measuring mode starts again automatically as soon as the flow of sample is re-established.

4.4 Chemicals
Chemical solutions are required to operate the device. (→ 97)

Stripper solution
25% nitric acid, HNO₃ (CAS: 7697-37-2). Nitric acid does not form lyophobic salts in the strip chamber. The resulting nitrogen oxides in the combustion gas are filtered out with an acid filter upstream from the IR detector.
It is used to acidify the sample following appropriate dilution. As a result, the carbonate ion CO₃²⁻ is converted to CO₂ and the dissolved CO₂ is removed from the solution (TIC stripping).

Parent solution 1
Potassium hydrogen phthalate, KHP (CAS: 877-24-7) with a concentration of 5000 mg/l TOC
Is used for calibrating and adjusting the analyzer as a diluted standard in the measuring range from 0 to 600 mg/l TOC. In the event of high KHP concentrations and sample acidification (pH < 2.5), there is the risk of KHP precipitating in the solution.

Parent solution 2
Citric acid (CAS: 5949-29-1) with a concentration of 100,000 mg/l TOC
This parent solution is used as a diluted standard for calibrating and adjusting the analyzer in the measuring range from 600 mg/l TOC.
5 Installation

5.1 Installation conditions

The analyzer requires a drain beneath the device.

- Use a 6/8 mm drain pipe made of PTFE. No backpressure should form in the drain.

Halogens or other vapors may not build up in enclosed spaces.

- Use an exhaust gas connection. No backpressure should form in the 4/6 mm exhaust gas hose.

- Avoid exposure to direct sunlight.

- Observe ambient conditions (technical data).

5.1.1 Dimensions

Dimensions in mm (in)

* Depending on sample preparation
5.1.2 Mounting options

The analyzer can be mounted in three different ways:
- Bench mounting
- Wall mounting
- On a base frame

- Mount the device in such a way that it is also accessible from the rear for maintenance purposes.

5.1.3 Compressed air and water supply

Compressed air supply
- Only use CO$_2$-free air to operate the analyzer.

The air must be dry and oil-free and must meet the following conditions:
- < 3 ppm CO$_2$
- < 3 ppm hydrocarbons
- Constant pressure of 2 bar (29 psi)
- Pressure tolerance ± 5 %
The compressed air supply must be fitted with a CO₂ scrubber (supply pressure 4 to 10 bar (58 to 145 psi) and a pressure regulator.

- Connection: 4/6 mm DN
- Required quantity of compressed air:
 - 600 l/h (21.2 ft³/h) for the CO₂ gas generator adsorber (Domnick Hunter)
 - 60 l/h (2.12 ft³/h) for the soda lime CO₂ scrubber

Water supply

A water connection is absolutely essential for the correct operation of the CA72TOC analyzer.

- The water is connected via a 6/8 mm DN or G3/8 coupling
- Pressure is between 2 and 4 bar (29 to 58 psi), except for the version with sample dilution
- Version with sample predilution:
 - Use deionized water (DI water) or drinking water with a water hardness level < 10 °dH (< 179 ppm CaCO₃)
 - Pressure 3 ± 0.2 bar (43.5 ± 3 psi)

5.1.4 Gas flow

Circuit gas

The flowmeter for the circuit gas is used to perform function checks and is set at the factory. The flow rate during operation is between 0.7 and 1.2 l/min (1.5 to 2.5 ft³/h).

Carrier gas

The volume flow for the carrier gas is regulated using a precision restrictor. The flow is approx. 0.8 l/min (1.7 ft³/h) at a pressure of 2 bar (29 psi).

Stripping gas

The volume flow for the stripping gas is regulated also using a precision restrictor. The flow is approx. 0.15 l/min (0.3 ft³/h) at a pressure of 2 bar (29 psi).

5.2 Mounting the analyzer

WARNING

Device is live
Risk of electric shock!

- Do not connect the analyzer to the electricity supply until the installation work has been completed and the liquid and gaseous media have been connected.
- Follow the instructions in the "Electrical connection" section.

5.2.1 Mounting sequence

1. Mount the analyzer on the base frame, a table or in the pivoting frame.
2. Mount the reagent tray under the analyzer.
3. Mount the CO₂ adsorber.
4. Mount the vent valve on the sample conditioning system (only for PA-2 / PA-3 or PA-9).
5. Connect the media.

5.2.2 Mounting on the wall with a pivoting frame

In the case of the "Wall mounting" version, the analyzer is mounted on the wall with a pivoting frame. All bore holes for wall mounting have a diameter of 8.5 mm (0.33").
1. First mount the left rail.
2. Hook the analyzer into the hinges provided.
3. Then mount the right rail such that the weight of the analyzer is evenly distributed on both rails.

Use suitable wall plugs that meet the requirements of the mounting surface and can carry the weight of the analyzer.
5.2.3 Mounting on a base frame

Mount the device in such a way that it is also accessible from the rear for maintenance purposes.

5.2.4 Mounting the CO₂ adsorber

CO₂-free air can be provided in one of two ways:
- With a gas generator
- With a soda-lime scrubber

Gas generator version (cartridge gas generator)

1. Place the gas generator on the ground or mount it on the wall in accordance with the enclosed drawing.
2. Connect it to the analyzer according to the drawing.

Soda-lime scrubber version

- Mount and connect the soda-lime scrubber in accordance with the enclosed Operating Instructions BA01243C.
5.2.5 Connecting the media

Sample conditioning connections

<table>
<thead>
<tr>
<th>Sample conditioning</th>
<th>Inlet connection, outer diameter in mm (in)</th>
<th>Drain connection, outer diameter in mm (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA2</td>
<td>40 (1.57)</td>
<td>50 (1.97)</td>
</tr>
<tr>
<td>PA3</td>
<td>20 (0.79)</td>
<td>30 (1.18)</td>
</tr>
<tr>
<td>PA9</td>
<td>20 (0.79)</td>
<td>32 (1.26)</td>
</tr>
</tbody>
</table>

Analyzer sample outlet

Sample is drained off unpressurized via a DN 6/8 mm hose connection (compression fitting) on the left side panel (→ 8, item 12) into an open channel or pipe.

- Route the hose in such a way that backpressure cannot form.

Condensate drain

Condensate is drained off unpressurized via a hose gland (PE, DN 1.6/3.2 mm, scope of delivery) on the left side panel (item 10):
- into a collecting vessel
- into an open channel
- into a pipe

The condensate discharge is acidic (pH = 2 to 2.5).

- Route the hose in such a way that backpressure cannot form.

Connecting the acid

1. Place the acid cistern in the reagent tray.
2. Connect the acid hose to the left side panel (item 9).
Connecting the standards

1. Put the standard containers in the holders on the left side panel.
2. Connect the standards to the left side panel (C1 to item 8 and C2 to item 7).

Gas outlet

Gas escapes via a hose gland (DN 4/6 mm) on the left side panel (item 2).

- Ensure that there is adequate ventilation in the room, or remove the exhaust gas from the room via a hose (DN 4/6 mm).

The end of the hose must be pressure-free and protected from frost.

5.3 Post-installation check

1. Check whether all the connections are secure and do not have any leaks.
2. Inspect all the hoses for any damage.
 - Replace damaged hoses.
6 Electrical connection

WARNING

Device is live!
Incorrect connection may result in injury or death!
- The electrical connection may be performed only by an electrical technician.
- The electrical technician must have read and understood these Operating Instructions and must follow the instructions contained therein.
- Prior to commencing connection work, ensure that no voltage is present on any cable.

6.1 Connection instructions

WARNING

Device is live
Risk of electric shock! The line filter, the overvoltage module and the main switch are still connected to the power supply even when the main switch is switched off!
- Disconnect the device from the power supply (unplug the mains plug).
- Before connecting, ensure that the mains voltage matches the voltage indicated on the nameplate.
- Ensure that the analyzer is sufficiently grounded via the mains connection.

The analyzer is available for the following mains voltage ratings:
- 115 V AC 50 Hz
- 115 V AC 60 Hz
- 230 V AC 50 Hz
- 230 V AC 60 Hz

The following condition applies for grounding the analyzer via the mains connection:
50 V < R*I$_{\text{max}}$

Imax = maximum current at which the failure current protection switch is not yet triggered
R = resistance between the protective ground and the device ground
If this condition cannot be guaranteed, the device must be grounded locally on site.

The signal connections are in the EMC shield box on the right-hand cabinet side. The connection for external grounding is on the left-hand cabinet side at the bottom.

Make the following connections:
1. Connect analog 0/4 to 20 mA outputs.
2. Connect binary inputs and outputs.
3. Connect the RS-232 interface.
4. Establish external grounding if necessary.
5. Connect the alternating current via the mains plug.
6.2 Connecting the analyzer

6.2.1 Power distribution

The power distribution system is located at the back in the top door.
Terminal strip assignment

<table>
<thead>
<tr>
<th>Connection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Main switch, power distribution</td>
</tr>
<tr>
<td>4</td>
<td>Solenoid valve 3, stripping gas</td>
</tr>
<tr>
<td>6</td>
<td>Peltier cooler regulator</td>
</tr>
<tr>
<td>7</td>
<td>Membrane compressor</td>
</tr>
<tr>
<td>8</td>
<td>Tube furnace</td>
</tr>
<tr>
<td>9</td>
<td>External salt trap</td>
</tr>
<tr>
<td>10</td>
<td>Solenoid valve 4, standard 1 + 2</td>
</tr>
<tr>
<td>11</td>
<td>Solenoid valve 7, carrier gas</td>
</tr>
<tr>
<td>13</td>
<td>Solenoid valve 5, bypass screen rinsing</td>
</tr>
<tr>
<td>14</td>
<td>Solenoid valve 1, sample/standard</td>
</tr>
<tr>
<td>15</td>
<td>Solenoid valve 6, channel switchover</td>
</tr>
<tr>
<td>16</td>
<td>24 V power supply</td>
</tr>
<tr>
<td>17</td>
<td>Solenoid valve 2, strip chamber</td>
</tr>
<tr>
<td>18</td>
<td>Solenoid valve 8, dosing</td>
</tr>
</tbody>
</table>

Relay module assignment

<table>
<thead>
<tr>
<th>Relay No.</th>
<th>Relay type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4A</td>
<td>Solenoid valve 1, sample/standard switchover</td>
</tr>
<tr>
<td>2</td>
<td>3A</td>
<td>Solenoid valve 2, strip chamber rinsing</td>
</tr>
<tr>
<td>3</td>
<td>3A</td>
<td>Solenoid valve 3, stripping gas, tube furnace regulator, external salt trap regulator, Peltier cooler regulator, membrane compressor</td>
</tr>
<tr>
<td>4</td>
<td>4A</td>
<td>Solenoid valve 4, standard C1/standard C2 switchover</td>
</tr>
<tr>
<td>5</td>
<td>4A</td>
<td>Solenoid valve 5, bypass rinsing</td>
</tr>
<tr>
<td>6</td>
<td>4A</td>
<td>Solenoid valve 6, channel switchover</td>
</tr>
<tr>
<td>7</td>
<td>4A</td>
<td>Solenoid valve 7, carrier gas</td>
</tr>
<tr>
<td>8</td>
<td>3A</td>
<td>Solenoid valve 8, dosing</td>
</tr>
<tr>
<td>RA</td>
<td>25A</td>
<td>Emergency stop</td>
</tr>
<tr>
<td>RB</td>
<td>25A</td>
<td>Heater, furnace regulator</td>
</tr>
<tr>
<td>RC</td>
<td>25A</td>
<td>Heater, salt trap</td>
</tr>
</tbody>
</table>
6.2.2 Connecting signals

![Diagram of electrical connections]

10 **Signal connection**

<table>
<thead>
<tr>
<th>Messages I to IV</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Calibration external trigger</td>
</tr>
<tr>
<td>2</td>
<td>Adjustment external trigger</td>
</tr>
<tr>
<td>3</td>
<td>Screen flush external trigger</td>
</tr>
<tr>
<td>4</td>
<td>Power flush, external activation</td>
</tr>
<tr>
<td>5</td>
<td>Not assigned</td>
</tr>
<tr>
<td>6</td>
<td>Not assigned</td>
</tr>
<tr>
<td>7</td>
<td>Standby external trigger</td>
</tr>
<tr>
<td>8</td>
<td>Channel switchover, external activation (optional)</td>
</tr>
</tbody>
</table>

Signal outputs

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I to IV</td>
<td>Potential-free relay contact (max. 0.2 A and 50 V), normally closed (NC) Relay contact I closed = no error messages Relay contact II closed = no collective alarm Relay contact III closed = standby Relay contact IV closed = operational control At the end of a measuring cycle, relay IV opens for 2 seconds to indicate the end of the measuring cycle.</td>
</tr>
</tbody>
</table>

Signal inputs 1 to 8

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 8</td>
<td>24 V DC active, max. 500 Ω load</td>
</tr>
</tbody>
</table>

Signal inputs 40 to 41

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 to 41</td>
<td>0 to 20 mA or 4 to 20 mA can be switched, galvanically isolated max. 500 Ω load</td>
</tr>
</tbody>
</table>

Signal inputs 1 to 8

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 8</td>
<td>24 V DC active, max. 500 Ω load</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal input</th>
<th>Description</th>
<th>Switching state off (open)</th>
<th>Switching state on (closed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Calibration external trigger</td>
<td>Analyzer is in measuring mode</td>
<td>Calibration is triggered</td>
</tr>
<tr>
<td>2</td>
<td>Adjustment external trigger</td>
<td>Analyzer is in measuring mode</td>
<td>Adjustment is triggered</td>
</tr>
<tr>
<td>3</td>
<td>Screen flush external trigger</td>
<td>Analyzer is in measuring mode</td>
<td>Screen flush is triggered</td>
</tr>
<tr>
<td>4</td>
<td>Power flush, external activation</td>
<td>Analyzer is in measuring mode</td>
<td>Power flush is triggered</td>
</tr>
</tbody>
</table>
Electrical connection

Signal input

<table>
<thead>
<tr>
<th>Signal input</th>
<th>Description</th>
<th>Switching state off (open)</th>
<th>Switching state on (closed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Not assigned</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Not assigned</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Standby external trigger</td>
<td>Analyzer ends the standby mode and returns to the measuring mode or is in the measuring mode.</td>
<td>Standby is triggered. Analyzer is prepared for standby. Standby is maintained as long as the switching state is closed.</td>
</tr>
<tr>
<td>8</td>
<td>Channel switchover, external activation (optional)</td>
<td>Analyzer is in the measuring mode of the selected channel.</td>
<td>The channel is switched.</td>
</tr>
</tbody>
</table>

> The floating contact must be closed for approx. 2 seconds for the switching state to be triggered.

6.2.3 Power unit

<table>
<thead>
<tr>
<th>Connection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Pump control 24 V DC</td>
</tr>
<tr>
<td>21</td>
<td>Magnetic stirrer controller 24 V DC</td>
</tr>
<tr>
<td>22</td>
<td>Motor</td>
</tr>
<tr>
<td>23</td>
<td>Relay module 24 V DC</td>
</tr>
<tr>
<td>23A</td>
<td>Ventilator 24 V DC</td>
</tr>
</tbody>
</table>

The power unit terminals are located on the rear of the computer.
6.2.4 Connecting the distributor

Distributor assignment:

<table>
<thead>
<tr>
<th>Connection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI-24</td>
<td>NDIR detector</td>
</tr>
<tr>
<td>FI-26</td>
<td>pH amplifier</td>
</tr>
<tr>
<td>BI-28</td>
<td>Carrier gas pressure switch DI 06</td>
</tr>
<tr>
<td>BI-29</td>
<td>DI 05 leak detector</td>
</tr>
<tr>
<td>BI-30</td>
<td>Standby internal DI 04</td>
</tr>
<tr>
<td>BI-34</td>
<td>Peltier cooler regulator DI 01 + 02</td>
</tr>
<tr>
<td>BI-35</td>
<td>Dilution water pressure switch DI 03</td>
</tr>
<tr>
<td>PWM-1</td>
<td>Furnace regulator (pin 1 black, pin 2 blue)</td>
</tr>
<tr>
<td>PWM-2</td>
<td>Salt trap regulator (pin 3 brown, pin 4 gray)</td>
</tr>
<tr>
<td>BO-39</td>
<td>Relay module</td>
</tr>
<tr>
<td>PU-38</td>
<td>Pump control</td>
</tr>
<tr>
<td>Ext. 55</td>
<td>External junction box</td>
</tr>
<tr>
<td>MI1</td>
<td>Temperature sensor, furnace regulator, type K (pin 4 green, pin 6 white)</td>
</tr>
<tr>
<td>MI2</td>
<td>Temperature sensor, furnace monitoring, type K (pin 4 green, pin 6 white)</td>
</tr>
<tr>
<td>MI3</td>
<td>Temperature sensor, salt trap regulator, type J (pin 4 black, pin 6 white)</td>
</tr>
<tr>
<td>MI4</td>
<td>Pressure sensor (pin 1 VS brown, pin 3 signal + black, pin 4 signal – gray, pin 6 GND blue)</td>
</tr>
</tbody>
</table>

6.3 Ensuring the degree of protection

Only the mechanical and electrical connections which are described in these instructions and which are necessary for the required, designated use, may be carried out on the device delivered.

- Exercise care when carrying out the work.

Otherwise, the individual types of protection (Ingress Protection (IP), electrical safety, EMC interference immunity) agreed for this product can no longer be guaranteed due, for example to covers being left off or cable (ends) that are loose or insufficiently secured.
6.4 Post-connection check

Carry out the following checks once you have made the electrical connection:

<table>
<thead>
<tr>
<th>Device status and specifications</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are the sensor and cable free from damage on the outside?</td>
<td>Visual inspection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical connection</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Does the supply voltage of the connected transmitter match the data on the nameplate? | 230 V AC 50/60 Hz
115 V AC 50/60 Hz |
| Are the current outputs shielded and connected? | |
| Are the connected cables provided with strain relief? | |
| Are the cable types properly isolated from one another? | Route the power cable and signal cables separately from one another over the entire route. Separate cable ducts are ideal. |
| Is the cable run correct, without loops and cross-overs? | |
| Are the power cable and signal cables connected correctly and in accordance with the wiring diagram? | |
| Are all the screw terminals tightened? | |
| Are all the cable entries fitted, tightened and leak-proof? | |
7 Operation options

7.1 Overview of operation options

7.2 Structure and function of the operating menu

7.2.1 Operating modes

The analyzer has three operating modes:
- Measuring mode
- Service mode
- Programming mode

The measuring process is fully automated. Manual intervention is not possible.

7.2.2 Recording mode

In the recording mode, you can display measured values that have been recorded. Recording time:
- 14 days for one-channel operation
- 7 days for two-channel operation

1. Press in the measuring mode.
 ➞ This takes you to the recording mode.

2. With the arrow keys, scroll through the recorded measured values:
 - : 1 day earlier
 - : 1 day later
 - : 2 hours earlier
 - : 2 hours later

3. Once you have selected the desired measured value:
 Press .
 ➞ The spot view is enabled.
The following is displayed:
- Load curve
- Measured value
- Date (refers to the start of the timeline displayed)
- Time

14 Spot view (example, English)
1 Time indicator on the load curve
2 Measured value for the selected time

1. Press \(\text{ } \).
 🔴 The spot view is disabled.

2. Press \(\text{ } \).
 🔴 You exit the recording mode.

7.3 Access to the operating menu via the local display

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{OP})</td>
<td>OPERATION</td>
</tr>
<tr>
<td>(\text{S})</td>
<td>SERVICE</td>
</tr>
</tbody>
</table>

OPERATION
- Press the key.
 - This takes you to the measuring mode. The progression of the measured values over the past six hours is graphically illustrated on the display.

SERVICE
- Press the key.
 - This takes you to the service mode.

The following menu items are displayed:
- Pumps
- Adjustment
- Cleaning
- Filter
Operation options

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>➯</td>
<td>PROGRAMMING
1. Press the key.
 ➯ You are asked to enter the four-digit numerical code indicated on your code card.
2. Enter the code.
 ➯ This takes you to the programming mode.
The following menu items are displayed:
 • Setting
 You can configure the measuring device here.
 • Lists
 You can list the records and alarms on the display here.
 • Test
 You can test the functions of the measuring device with test programs here.
 The Help key [?] provides additional information about the current date and program version.</td>
</tr>
<tr>
<td>➯</td>
<td>Arrow keys
Use the arrow keys to set the position of the cursor on the display. You can enter negative values for certain parameters with the "right" arrow key. A minus sign appears when this key is pressed.</td>
</tr>
<tr>
<td>➯</td>
<td>User entry
The following functions are available:
 • Call up a menu item.
 • Start a program item.
 • You always confirm an entry.
 • If performing maintenance tasks, acknowledge every maintenance step once it has been performed by pressing the "Enter" key.</td>
</tr>
<tr>
<td>➯</td>
<td>Help
1. Press the key.
 ➯ A short help text on the program item is displayed.
2. Press the key.
 ➯ The help text disappears.</td>
</tr>
<tr>
<td>➯</td>
<td>Limit value list
► Press the key.
 ➯ The current instances where the limit value has been overshot are displayed.</td>
</tr>
<tr>
<td>➯</td>
<td>Error list
► Press the key.
 ➯ The current errors and alarms are displayed.</td>
</tr>
<tr>
<td>➯</td>
<td>Automatic services
► Press the key.
 ➯ The selected service and the time remaining - in seconds - until the next service are displayed.</td>
</tr>
<tr>
<td>➯</td>
<td>To change channel
On devices with two sample flows, you can toggle between the values displayed on the screen for the two flows.</td>
</tr>
<tr>
<td>➯</td>
<td>Process step
1. Press the key.
 ➯ Displays the current process step in the measuring process.
2. Press the key.
 ➯ The following information is displayed: temperature, pH value, pressure in the gas circuit and the feed rate of pump P3.
3. Press the key.
 ➯ Reduces the information shown on the display again to the minimum elements necessary.</td>
</tr>
<tr>
<td>➯</td>
<td>Clear
You can display the following information on the screen with the "CLR key":
 • Device type
 • Software program version
 • Device options</td>
</tr>
</tbody>
</table>
7.4 Access to the operating menu via the operating tool

The analyzer is fitted with an RS-232 serial interface. Data transmission is unidirectional and performed with the following parameters:
- Baud rate: 9600 baud
- Bits: 8 bit
- Parity: N
- Stop bit: 1 bit
- Handshake: no
- The string is 104 bytes long and is sent every 2 seconds.

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Start byte</td>
</tr>
</tbody>
</table>
| 1 | 0 = measuring operation disabled
 | 1 = measuring operation enabled |
| 2 | 0 = emergency stop
 | 1 = channel 1 operation enabled
 | 2 = adjustment or calibration
 | 3 = service
 | 4 = programming
 | 5 = channel 2 measuring operation enabled |
| 3 | Leak (0 = off, 1 = on) |
| 4 | Temperature too high (0=off, 1 = on) |
| 5 | Low carrier gas supply (0 = off, 1 = on) |
| 6 | IR detector fault (0 = off, 1 = on) |
| 7 | Temperature too low (< 85 % T_{set}) (0 = off, 1 = on) |
| 8 | Outside the measuring range (0 = off, 1 = on) |
| 9 | Temperature deviation of Peltier cooler (T_{set} ± 3 °C) (0 = off, 1 = on) |
| 10 | pH alarm (0 = off, 1 = on) |
| 11 | Temperature deviation (< T_{set} -30 °C) (0 = off, 1 = on) |
| 12 | Standby (0 = off, 1 = on) |
| 13 |Limit value exceeded (0 = off, 1 = on) |
| 14 |Limit value undershot (0 = off, 1 = on) |
| 15 | Slope alarm (0 = off, 1 = on) |
| 16 | Unstable dosing, sample failure (furnace) (0 = off, 1 = on) |
| 17 | Water supply failure (0 = off, 1 = on) |
| 18 | Gas circuit pressure monitoring
 | 0 = OK
 | 1 = 70 % of max. permitted pressure
 | 2 = > max. permitted pressure |
| 19 | Check CO₂ baseline (0 = off, 1 = on) |
| 20 | Adjustment error (0 = off, 1 = on) |
| 21 | 0 |
| 22 | 0 |
| 23 | 0 = no valid measured value available
 | 1 = valid measured value available
 | 2 = new measured value determined (present for approx. 4 seconds) |
| 24 | Separator |
| 25 | 0 = sample
<pre><code> | 1 = standard is dosed |
</code></pre>
<p>| 26 | Flushing strip and separation chamber with supply water |</p>
<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
</tr>
</thead>
</table>
| 27 | 0 = error shutdown active, no power is supplied to any of the units powered by the power relay
 1 = power supply active |
| 28 | 0 = standard C1 is dosed
 1 = standard C2 is dosed
 If relay 1 (byte 25) is set to 1 |
| 29 | Sample conditioning rinsing |
| 30 | Only relevant for two-channel operation
 0 = sample is taken from sample channel 1
 1 = sample is taken from sample channel 2 |
| 31 | Flushing with carrier gas |
| 32 | A 0-1-0 change indicates that the process of dosing the sample into the furnace is finished. |
| 33 | Separator |
| 34...39 | TOC measured value (mg/l)
 1 decimal place for measuring range A and B
 0 decimal places for measuring range C and D |
| 40 | Separator |
| 41 to 46 | Only for channel 2 TOC measured value (mg/l)
 1 decimal place for measuring range A and B
 0 decimal places for measuring range C and D |
| 47 | Separator |
| 48 ... 53 | CO₂ (ppm)
 1 decimal place; current value of the gas card |
| 54 | Separator |
| 55 ... 60 | CO₂ (ppm)
 1 decimal place; CO₂ difference calculated from the measuring cycle |
| 61 | Separator |
| 62 ... 67 | pH value, 2 decimal places |
| 68 | Separator |
| 69 ... 74 | Number of drops dosed into furnace, no decimal places |
| 75 | Separator |
| 76 ... 81 | Batch status |
| 82 | Separator |
| 83 ... 92 | Date DD.MM.YYYY |
| 93 | Separator |
| 94 ... 101 | Time HH:MM:SS |
| 102 | Carriage return |
| 103 | Line feed |
| 104 | End of transmission |
8 Commissioning

8.1 Preparatory steps

8.1.1 Commissioning sequence

1. Prepare the chemicals.
2. Prepare the analyzer.
3. Switch on the analyzer.

8.1.2 Preparing the chemicals

Many chemicals are toxic or corrosive, and some are explosive - either on their own or combined with other substances. Other chemicals pose a hazard as they can easily enter the body either through the skin or through respiratory channels. Accidents with chemicals can result in death, blindness, burns or lung damage!

‣ When working with chemicals, follow the instructions in this manual and in the safety data sheets.
‣ Carefully read the safety data sheet that is supplied with every chemical to determine the hazards posed and the precautionary measures that need to be taken.
‣ In case of doubt, ask the advice of a certified expert.

Never prepare chemicals alone. You may need assistance in the event of an accident!

‣ Always make sure that someone is close by.
‣ Only prepare chemicals in a properly equipped laboratory.

Lack of protective equipment can result in injury!

‣ Always wear protective goggles, rubber gloves and a rubber apron.
‣ In addition, wear a dust mask or face shield when working with fine-powder chemicals.

Recklessness!

‣ Never inhale, taste or swallow chemicals or solutions.

Danger of confusion and incorrect disposal!

‣ Always affix a label to the containers indicating the contents and the date of preparation.
‣ Dispose of unlabeled or expired solutions in accordance with local regulations and guidelines.

Some chemicals are very reactive when dissolved in water or mixed with other substances. Dangerous accidents can occur as a result!

‣ Do not mix chemicals with other substances if you do not know how they react.
‣ Never mix chemicals that are known to react severely.

Specifying the standard concentrations

The right choice of standard concentration is critical to the accuracy of the measurement method.

1. Before specifying the concentrations of the standard solutions:
 Define the measuring range. The most common concentrations must be covered by the standard solutions.

2. Maintain a concentration ratio of between 1:4 and 1:20 between the two standard solutions.

3. If a limit value must be respected in an application:
 Select the limit value as the concentration for one of the standards.
 ⇨ This guarantees the greatest precision when monitoring.
Example

- Concentration to be measured: 3 to 300 mg/l
- Most common concentration: 50 to 150 mg/l
- Limit value to be monitored: 200 mg/l

20 and 200 mg/l should be selected here as the standard solutions. The analyzer can then measure accurately in the range from 10 to 300 mg/l (taking the measuring range of the system into account). A higher measured error can be expected below a concentration level of 10 mg/l and above a concentration level of 300 mg/l.

Reagent quality

The quality of the standard solutions affects the accuracy of the measurements.

- Use "pro analysis" (p.a.) grade reagents.
- Ideally, only use original reagents.

1. Rinse all glass parts and plastic containers thoroughly with deionized water.
2. For best measurement results:
 Before use, wash once more with acid and rinse thoroughly with deionized water.
3. Weigh out the calibration solution as accurately as possible prior to mixing.
4. Keep the containers closed to avoid contamination and a deterioration in quality.

Preparing the KHP parent solution

The accurate preparation of the standard is essential for the accurate calibration or adjustment of the analyzer. Inaccurate preparation will result in incorrect calibration or adjustment, which in turn will yield incorrect results.

The KHP and citric acid parent solutions can also be purchased as ready-to-use solutions from Endress+Hauser (→ 97). This helps you to save time preparing the solutions and you can rely on consistent solution quality.

CAUTION

Potassium hydrogen phthalate (KHP)

Can irritate the skin and eyes and cause respiratory problems!

- Do not inhale the powder.
- Do not swallow any of the solution prepared.
- Observe the warnings in the safety data sheets.

1. For an organic carbon solution with a concentration of 5000 mg/l:
 Use a 1-liter volumetric flask to dissolve 10.627 g KHP p.a. in 500 to 700 ml of deionized water.
2. Once the KHP has dissolved:
 Fill the volumetric flask up to the mark with deionized water.
3. Stir the solution once more.
4. Label the container, indicating the contents and the date of preparation.

Storable parent solutions with concentrations of 5000 mg/l are stable for 12 months if stored in a cool, dark place at 4 to 8 °C (40 to 46 °F). Prepared standard solutions must be used within 4 weeks even if stored in a cool, dark place.

Diluting the parent solution

Perform serial dilutions to produce lower concentrations.

1. Dilute 10 ml of the parent solution (5000 mg/l) with 90 ml of deionized water.
 ⇔ Standard with a concentration of 500 mg/l
2. Dilute 10 ml of the 500 mg/l standard with 90 ml of deionized water.
 ⇔ Standard with a concentration of 50 mg/l
3. Dilute 10 ml of the 50 mg/l standard with 90 ml of deionized water.
 ↪ Standard with a concentration of 5 mg/l

Serial dilution is the preferred method for producing lower concentrations.

Do not dilute 1 ml of the 5000 mg/l parent solution with 99 ml of water, as this carries a higher risk of measurement errors.

NOTICE
The use of standards that are stored incorrectly or have expired results in measurement errors!

▪ Store parent solutions in a cool, dark and air-tight space. Parent solutions with concentrations of 1000 and 5000 mg/l are stable for several weeks at room temperature. The quality of a 10 mg/l solution begins to deteriorate at room temperature within 3 to 5 days.

▪ For improved stabilization of KHP standard solutions, use nitric acid or sulfuric acid for acidification purposes: 4 ml of 25% nitric acid or 4 ml of 20% sulfuric acid for one liter standard.

▪ If parent solutions with a high KHP content are acidified, there is the risk of the KHP precipitating.

▪ Keep the container with the crystalline KHP sealed at all times. If the crystalline KHP comes into contact with air, it absorbs water very quickly and must be dried before use. Otherwise you will get inaccurate measurements since the concentration of carbon is lower in the hydrous salt.

▪ Dry KHP that has come into contact with air for one hour at 105 °C (221 °F).

Preparing the citric acid parent solution

⚠️ **WARNING**

Nitric acid and citric acid

Nitric acid is highly caustic! Citric acid can irritate the skin and eyes and cause respiratory problems!

▪ Wear protective goggles, protective gloves and protective clothing.

▪ Always add acids to water, not vice versa.

▪ Do not swallow any of the solution prepared.

▪ Observe the warnings in the safety data sheets.

1. For an organic carbon solution with a concentration of 100 000 mg/l:
 Use a 1-liter volumetric flask to dissolve 291.6 g of citric acid monohydrate (C₆H₈O₇·H₂O, p.a.) in 500 ml of deionized water.

2. Carefully add 55.0 ml (77.0 g) of nitric acid (HNO₃, 65 %, p.a.).

3. Top up with water to the 1 liter mark.

4. Stir the solution once more.

5. Label the container, indicating the contents and the date of preparation.

Storable parent solutions with concentrations of 100 000 mg/l are stable for 12 months if stored in a cool, dark place at 4 to 8 °C (40 to 46 °F). Prepared standard solutions must be used within 4 weeks even if stored in a cool, dark place.

For parent solutions of other concentrations, e.g. 50 000 mg/l, use less citric acid monohydrate accordingly. The amount of nitric acid to be added always remains the same, however: 55 ml.

Diluting the parent solution

Perform serial dilutions to produce lower concentrations.

1. Dilute 10 ml of the parent solution (100 000 mg/l) with 90 ml of deionized water.
 ↪ Standard with a concentration of 10 000 mg/l
2. Dilute 10 ml of the 10 000 mg/l standard with 90 ml of deionized water. Standard with a concentration of 1000 mg/l
3. Dilute 10 ml of the 1000 mg/l standard with 90 ml of deionized water. Standard with a concentration of 100 mg/l

Preparing the stripping reagent

Stripping reagent dosing is regulated via the pH sensor. The regulation range for dosing is approx. 300 times the minimum feed rate of the acid pump. The necessary acid quantity varies greatly from measuring place to measuring place. Ideally, the strength of the acid in the feeder tank is set in a way that enables regulation in both directions, but the regulation range should be higher for higher volumes of acid dosed.

1. Prepare 0.5 l of deionized water with 0.125 l of nitric acid (25 %, p.a.) for the acid feeder.
2. Fill the acid hose.
3. Start the measuring operation with a real sample.
4. Allow the acid dosing to adjust.
 - The aim should be to achieve a feed rate of 2 to 5 % (17 μl/min to 44 μl/min) for pump P3 (current feed rate: PROGRAMMING/OUTPUT TEST/PUMPS).
5. If the feed rate is in the desired range between 2 and 5 %:
 - Note down the acid concentration and use for future mixtures.
6. If the feed rate is less than 2 %:
 - The acid concentration is too high, dilute (→ see Table, add acid preparation to deionized water, not vice versa).
7. If the feed rate is greater than 5 %:
 - The acid concentration is too low, increase the concentration (→ see Table, add more acid to the preparation).

<table>
<thead>
<tr>
<th>Deionized water [ml]</th>
<th>HNO₃, 25 % [ml]</th>
<th>HNO₃ concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original preparation</td>
<td>500</td>
<td>125</td>
</tr>
<tr>
<td>Increase the concentration</td>
<td>+125</td>
<td>8.3 %</td>
</tr>
<tr>
<td></td>
<td>+125</td>
<td>10.7 %</td>
</tr>
<tr>
<td></td>
<td>+125</td>
<td>12.5 %</td>
</tr>
<tr>
<td>Original preparation</td>
<td>500</td>
<td>125</td>
</tr>
<tr>
<td>Dilute</td>
<td>+ 500</td>
<td>2.8 %</td>
</tr>
<tr>
<td></td>
<td>+ 500</td>
<td>1.5 %</td>
</tr>
<tr>
<td></td>
<td>+ 500</td>
<td>0.8 %</td>
</tr>
</tbody>
</table>

8. Replace the contents of the acid hose.
9. Allow the acid dosing system to adjust, read the feed rate.

8.1.3 Preparing the analyzer

1. Install the pH sensor in the strip chamber and connect the sensor cable to the amplifier.
2. Remove the transportation lock (cable ties) on the furnace unlocking device.
3. Place the combustion pipe insert with the catalyst into the furnace (see the "Maintenance" section).
4. Optionally, depending on the device version:
 - Install the heated salt trap.
5. Mount the hose cassettes (see "Maintenance" section).

6. Place the stripping reagent in the reagent tray beneath the measuring device, and put the standards C1 and C2 in the reagent bottle holders provided for this purpose on the left side panel.

8.2 Function check

Incorrect or improperly connected hose connections cause liquid to leak and can cause damage!

- Check all connections and ensure they have been established correctly.
- In particular, check all hose connections to ensure they are secure and liquid cannot escape.

Incorrect power supply will damage the device!

- Ensure that the supply voltage matches the voltage indicated on the nameplate.

8.3 Switching on the measuring device

1. Switch on the analyzer.
 ➤ The furnace begins to heat up.

2. In the programming mode, configure the operating parameters of the analyzer.

3. Adjust the pH sensor (CALIBRATION/ADJUSTMENT PH SENSOR).

4. Adjust the peristaltic pumps P1 and P4 (PUMPS/REPLACE HOSE PUMP P1/4).

5. Adjust the peristaltic pump P2 and determine the empty volume (PUMPS/ADJUSTMENT PUMP P2 and CALIBRATION/EMPTY VOLUME DOSING).

6. Once the analyzer is in operation following the warm-up process and the temperature is stable:
 - Check the gas circuit for leaks (CLEANING/LEAKAGE TEST).

7. Perform a 2-point adjustment (CALIBRATION/ANALYZER ADJUSTMENT).

8.4 Setting the operating language

You specified the operating language in your order.

Changing the operating language

- Contact the Service Department.

8.5 Configuring the measuring device

You can update the analyzer software via the USB port.

⚠️ WARNING

Connection of unpermitted mass storage devices
Risk of electric shock by connecting faulty storage media with an external power supply!

- Only use passive storage media (e.g. USB stick).

1. Switch off the analyzer.

2. Plug the USB stick with the desired software into the USB port.

3. Switch on the analyzer.
 ➤ The Endress+Hauser logo appears.
4. Press \(\text{ } \).
\(\Rightarrow \) 3 options are displayed.

2 and 3 are reserved for Endress+Hauser Service.

5. Press \(\text{ } \).
\(\Rightarrow \) A list of all the software versions available is displayed.

Only one version can be selected to update the software, while several versions can be selected to delete the software.

6. If you do not want to update:
 Press \(\text{ } \).
\(\Rightarrow \) Cancel and start the existing analyzer software.

7. Search for the desired software version.

Operation:

- \(\text{ } \): Scroll up and down
- \(\text{ } \): Scroll from page to page (if over 12 versions are available)
- \(\text{ } \): Select the software version \((\ast = \text{marking}) \)
- \(\text{ } \): Delete the software version \((! = \text{marking}) \)
- \(\text{ } \): Confirm

The analyzer goes to the measuring mode as soon as the software is started. You can check the software version in the measuring mode \(\text{ } \).

If the software versions are not deleted, they are available to you in the memory. For a better overview, it can be advantageous to delete these versions during other updates.

8. Remove the USB stick after updating the software.

8.5.1 Main menu

You set the operating parameters of the analyzer in the programming mode.

1. Press \(\text{ } \).
\(\Rightarrow \) You are asked to enter the four-digit numerical code indicated on the code card supplied.

2. Enter the code. Press \(\text{ } \).
\(\Rightarrow \) The following menu appears on the display:

Programm \(\Rightarrow \) Programming

> Setting \(\rightarrow \) Range Data
Lists \(\rightarrow \) Basic Data
Input Test \(\rightarrow \) Alarm Limits
Output Test \(\rightarrow \) Set Clock
Defaults \(\rightarrow \) Set Brightn./Contr.
Measuring Site
8.5.2 SETTING

PROGRAMMING/SETTING/RANGE DATA

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Factory setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCALE</td>
<td>mg/l TOC</td>
<td>1000</td>
<td>Enter the maximum concentration for your measuring point here. This value determines the scale end value for the graphics screen. Enter two independent values for the two-channel version.</td>
</tr>
<tr>
<td>SCREEN FLUSH</td>
<td>n/Day</td>
<td>0</td>
<td>The number of automatic bypass screen flushes per day (recommended value: 2).</td>
</tr>
<tr>
<td>DURATION FLUSH</td>
<td>s</td>
<td>15</td>
<td>The duration can be varied if screen flushing is enabled. If the flush time is longer than 15 seconds, 2/3 of the flush time is assigned to flushing the screen and 1/3 to flushing the strip chamber.</td>
</tr>
<tr>
<td>POWER FLUSH</td>
<td>n/Day</td>
<td>0</td>
<td>The number of automatic power flush cycles for the stripping vessel and separation chamber per day (recommended value: 2).</td>
</tr>
<tr>
<td>PAUSE CYCLE [s]</td>
<td>s</td>
<td>0</td>
<td>Interval between 2 measurements</td>
</tr>
<tr>
<td>P1 (B) [ml/min]</td>
<td>ml/min</td>
<td>7.5</td>
<td>Feed rate of pump P1</td>
</tr>
<tr>
<td>P2 (B) [ul/min]</td>
<td>µl/min</td>
<td>250</td>
<td>Feed rate of pump P2</td>
</tr>
<tr>
<td>P4 (B) [ml/min]</td>
<td>ml/min</td>
<td>5.0</td>
<td>Feed rate of optional pumps. The feed rates of pumps P4 and P5 determine the dilution ratio.</td>
</tr>
<tr>
<td>P5 (B) [ml/min]</td>
<td>ml/min</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>BATCH VOL [µl]</td>
<td>µl</td>
<td>300</td>
<td>Dosing volume for a batch. Increasing the volume increases the sensitivity of the measuring system but also increases the salt load.</td>
</tr>
<tr>
<td>STANDARD C1 [mg/l]</td>
<td>mg/l</td>
<td>0.2</td>
<td>Concentration of standard solution C1</td>
</tr>
<tr>
<td>STANDARD C2 [mg/l]</td>
<td>mg/l</td>
<td>2.0</td>
<td>Concentration of standard solution C2</td>
</tr>
<tr>
<td>CAL./ADJUSTMENT</td>
<td>n days</td>
<td>3</td>
<td>Here you can specify after how many days a calibration or an adjustment should be performed. The automatic function is switched off if 0 is set as the value.</td>
</tr>
<tr>
<td>CAL./ADJUSTMENT TIME</td>
<td>xx</td>
<td>23.00</td>
<td>Here you can specify the start time of the calibration or adjustment. The value is entered as a decimal number. Example: 22.50 means 22:30 (10.30 p.m.)</td>
</tr>
<tr>
<td>CAL./ADJUSTMENT</td>
<td></td>
<td>2</td>
<td>Here you can specify which function should be executed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 - Calibration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 - Adjustment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The function is executed 90 minutes before the day changes.</td>
</tr>
</tbody>
</table>
PROGRAMMING/SETTING/BASIC DATA

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Factory setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC OUT 0/4-20 mA</td>
<td>mV</td>
<td>0</td>
<td>Sets the signal output to 0 to 20 mA or 4 to 20 mA.</td>
</tr>
<tr>
<td>DC OUT STANDBY</td>
<td>mV</td>
<td>0</td>
<td>Sets the signal output as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0: Signal output is set to 0 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1: Signal output is set to 3.6 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2: Signal output in mA is held (last measured value)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3: Signal output is set to 21 mA</td>
</tr>
<tr>
<td>DC OUT CALIBRATION</td>
<td>mV</td>
<td>0</td>
<td>Sets the signal output as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0: In the event of a calibration, the last measured value is transmitted to the analog output. This output is set to "Hold" until the calibration value has been determined. The calibration value is then transmitted to the analog output until a new measured value has been determined for the current sample.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1: Signal output in mA is held (last measured value) until a new measured value has been determined.</td>
</tr>
<tr>
<td>SCALE AO</td>
<td>mg/l</td>
<td>1000</td>
<td>Scale end value of the analog output, e.g. 1000 mg/l = 20 mA</td>
</tr>
<tr>
<td>EMPTY VOLUME P2 [ul]</td>
<td>µl</td>
<td>220</td>
<td>Empty volume of pump P2 from the separation chamber to the end of the capillary</td>
</tr>
<tr>
<td>P1 100% [ml/min]</td>
<td>ml/min</td>
<td>8.6</td>
<td>Feed rate of pump P1 at 100 % pump capacity</td>
</tr>
<tr>
<td>P2 100% [µl/min]</td>
<td>µl/min</td>
<td>870</td>
<td>Feed rate of pump P2 at 100 % pump capacity</td>
</tr>
<tr>
<td>P3 100% [µl/min]</td>
<td>µl/min</td>
<td>870</td>
<td>Feed rate of pump P3 at 100 % pump capacity</td>
</tr>
<tr>
<td>P4 100% [ml/min]</td>
<td>ml/min</td>
<td>5.6</td>
<td>Feed rate of optional pump P4 at 100 % pump capacity</td>
</tr>
<tr>
<td>P5 100% [ml/min]</td>
<td>ml/min</td>
<td>30</td>
<td>Feed rate of optional pump P5 at 100 % pump capacity</td>
</tr>
<tr>
<td>ADJUSTMENT CONSTANTS</td>
<td></td>
<td></td>
<td>Do not change!</td>
</tr>
<tr>
<td>X0</td>
<td></td>
<td>0</td>
<td>Offset, value is overwritten during adjustment</td>
</tr>
<tr>
<td>KP</td>
<td></td>
<td>50</td>
<td>Slope, value is overwritten during adjustment</td>
</tr>
<tr>
<td>PH CONTROL</td>
<td></td>
<td>1.00</td>
<td>The measuring device is equipped with automatic pH control in the stripping vessel. You can use this parameter to switch pH control on or off.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1.00 = pH control is switched on, reading on display = TOC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0.00 = pH control is switched off, reading on display = TC</td>
</tr>
<tr>
<td>PH NOMINAL</td>
<td></td>
<td>2.5</td>
<td>Target value in the stripping vessel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The pH value must be between 1 and 4 for complete stripping. If the sample becomes too acidic in municipal wastewater treatment plants, there is the problem of humic acid precipitating, which could mask carbonates. This inorganic carbon component enters the furnace and results in higher readings than expected.</td>
</tr>
<tr>
<td>Parameters</td>
<td>Unit</td>
<td>Factory setting</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>PH ADJ.OFFSET 1)</td>
<td></td>
<td>2.4</td>
<td>Offset of the pH sensor; the value is overwritten during the adjustment of the pH sensor.</td>
</tr>
<tr>
<td>PH ADJ.SLOPE 2)</td>
<td>mV/ decade</td>
<td>57.5</td>
<td>Slope of the pH sensor; the value is overwritten during the adjustment of the pH sensor.</td>
</tr>
</tbody>
</table>

1) These parameters are adapted by menu-guided adjustments.

PROGRAMMING/SETTING/ALARM LIMITS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Factory setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH ALARM LIMIT</td>
<td>mg/l</td>
<td>12 000</td>
<td>Limit value for alarm when value is overshot</td>
</tr>
<tr>
<td>LOW ALARM LIMIT</td>
<td>mg/l</td>
<td>0</td>
<td>Limit value for alarm when value is undershot</td>
</tr>
</tbody>
</table>

PROGRAMMING/SETTING/SET CLOCK

SET CLOCK

1. **♀♂**: Place the cursor at the position to be changed.
2. **.GetTextArrow** Change the value at the cursor position.
3. **E**: Confirm the changes.

PROGRAMMING/SETTING/SET BRIGHTN./CONTR.

Setting the brightness and contrast

The range of adjustment is between 0 and 100 %.

1. **♀♂**: Switch between brightness and contrast.
2. **.GetTextArrow** Change the value.
3. **E**: Confirm the changes.

PROGRAMMING/SETTING/MEASURING SITE

Entering the name of the measuring site

The factory default name is **MEASURING SITE**. You can change the name.

1. **♀♂**: Position the cursor. **1**: Goes to letter A.
2. **.GetTextArrow** Change the character at the cursor position.
3. **E**: Confirm the changes.

8.6 Simulation

8.6.1 PROGRAMMING/INPUT TEST

Test programs for checking the function of the analyzer

1. Select the input.
2. Press **E**.
ANALOG INPUTS
The following values are displayed:
- Current CO$_2$ measured value
- $T_1 =$ temperature, furnace monitoring
- $T_2 =$ temperature, furnace heating regulation, PWM performance display
- $T_3 =$ temperature, salt trap heating regulation, PWM performance display
- pH value in stripping vessel
- Pressure level in gas circuit

BINARY INPUTS
Switching state of the binary inputs:
- $I_x = 0 =$ OFF
- $I_x > 0 =$ ON
- $I_{N1} =$ Peltier cooler, Peltier regulator BI34
- $I_{N2} =$ Peltier cooler, Peltier regulator
- $I_{N3} =$ dilution water BI35
- $I_{N4} =$ standby BI30
- $I_{N5} =$ leak detector BI29
- $I_{N6} =$ carrier gas pressure switch BI28

8.6.2 PROGRAMMING/OUTPUT TEST
Test programs for checking the function of the analyzer

1. Select the output.
2. Press $oxed{4}$.

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASUREM.OFF</td>
<td>Deactivates the measurement mode, status shown: MEASUREM.OFF</td>
</tr>
<tr>
<td></td>
<td>Select the function.</td>
</tr>
<tr>
<td></td>
<td>Tests for the outputs do not trigger an alarm.</td>
</tr>
<tr>
<td>DC-SIGNAL</td>
<td>Sets the analog current outputs to any value between 0 and 20 mA.</td>
</tr>
<tr>
<td>PUMPS</td>
<td>Parameter for testing the function of the pumps</td>
</tr>
<tr>
<td></td>
<td>Negative value changes the direction of flow.</td>
</tr>
<tr>
<td>BINARY OUTPUTS</td>
<td>Displays the switching states of the switch outputs (→ see the following table).</td>
</tr>
<tr>
<td>TEST COM</td>
<td>Displays the transmission data for the RS 232 computer interface. The menu</td>
</tr>
<tr>
<td></td>
<td>item makes it possible to test data transmission with an external terminal.</td>
</tr>
<tr>
<td></td>
<td>If the data connection is established, a data string is sent every 2 seconds.</td>
</tr>
<tr>
<td></td>
<td>Key strokes at the external terminal are shown on the display. "Carriage return"</td>
</tr>
<tr>
<td></td>
<td>must be pressed to send data entered at the terminal.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output</th>
<th>Description</th>
<th>OFF (contacts open)</th>
<th>ON (contacts closed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA1</td>
<td>Switch between standard and sample</td>
<td>Sample</td>
<td>Standard solution</td>
</tr>
<tr>
<td>SA2</td>
<td>Flushing valve for power flushing</td>
<td>Strip chamber flushing switched off</td>
<td>Strip chamber flushing switched on</td>
</tr>
<tr>
<td>SA3</td>
<td>Stripping gas supply, tube furnace regulator, Peltier cooler regulator, membrane compressor</td>
<td>Consumer load switched off</td>
<td>Switch status during measuring operation</td>
</tr>
<tr>
<td>SA4</td>
<td>Switch between standard 1 and standard 2</td>
<td>Standard 1</td>
<td>Standard 2</td>
</tr>
<tr>
<td>SA5</td>
<td>Screen flush valve</td>
<td>Screen flush off</td>
<td>Screen flush on</td>
</tr>
<tr>
<td>SA6</td>
<td>Changeover between channel 1 and channel 2 (optional)</td>
<td>Channel 1</td>
<td>Channel 2</td>
</tr>
<tr>
<td>Output</td>
<td>Description</td>
<td>OFF (contacts open)</td>
<td>ON (contacts closed)</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>SA7</td>
<td>Carrier gas flushing valve</td>
<td>Carrier gas flushing off</td>
<td>Carrier gas flushing on</td>
</tr>
<tr>
<td>SA8</td>
<td>Dosing valve</td>
<td>Dosing valve open</td>
<td>Dosing valve closed</td>
</tr>
<tr>
<td>SA9</td>
<td>Collective alarm for relay I error (e.g. acid failure, leak)</td>
<td>Error on</td>
<td>Error off</td>
</tr>
<tr>
<td>SA10</td>
<td>Collective alarm for relay II limit values</td>
<td>Limit value alarm on</td>
<td>Limit value alarm off</td>
</tr>
<tr>
<td>SA11</td>
<td>Standby relay III</td>
<td>Standby off</td>
<td>Standby on</td>
</tr>
<tr>
<td>SA12</td>
<td>Relay IV operational control</td>
<td>At the end of the measuring cycle in the measuring mode, the contact is opened for 2 seconds to report the end of the measuring cycle. The contact is opened if the analyzer is in service or in a fault condition that does not allow measurement.</td>
<td>The contact is closed during measuring operation as soon as the displayed measured value is reliable, (e.g. after servicing this contact is closed after the first measured value has been determined).</td>
</tr>
</tbody>
</table>
9 Operation

9.1 Reading measured values

![Graph](image)

- **Display in the measuring mode**
 - 1 Time
 - 2 Load curve of the last six hours
 - 3 Timeline
 - 4 Measured value
 - 5 Measured value of the IR detector

9.2 Adapting the measuring device to the process conditions

9.2.1 Two-channel operation

External changeover

The analyzer is equipped with one or two separate sample supply systems.

The current sample selected is controlled externally by signal input 8 (binary in 8).

- Signal input 8 = 0 → channel 1
- Signal input 8 = 1 → channel 2

Analyzer operated with one sample conditioning system:
The operator must ensure that the right sample is at the bypass when a channel switch is requested.

Analyzer operated with two sample conditioning systems:
- The solenoid valve MV6 is used to switch the channels.
- If the signal status at signal input 8 changes, the measuring cycle is terminated immediately and the channel switchover commences.
- If the 'Operation' key is pressed during channel switchover, the process of switching channels is canceled and the measuring cycle is resumed in the active channel. Conditioning of the analyzer to the sample in the active channel is suppressed.

The measuring channel cannot be switched manually.
Settings for the graphics screen

1. Press , enter the numerical code.
2. Open the menu: \texttt{PROGRAMMING/SETTING/RANGE DATA}
3. \texttt{SCALE CH1}: Enter the maximum concentration [mg/l] for channel 1.
 \textbullet{} Scale end value for channel 1 in the graphics screen
4. \texttt{SCALE CH2}: Enter the maximum concentration [mg/l] for channel 2.
 \textbullet{} Scale end value for channel 2 in the graphics screen
5. \texttt{SCALE CH1}: Changes the channel displayed on the screen.

Settings for the analog outputs

6. \texttt{SCALE AO CH1}: Enter the maximum concentration for channel 1.
 \textbullet{} Scale end value of the analog output of channel 1
7. \texttt{SCALE AO CH2}: Enter the maximum concentration for channel 2.
 \textbullet{} Scale end value of the analog output of channel 2

Settings for the limit values

8. \texttt{HI ALARM LIMIT CH1}: Enter the upper limit value [mg/l] for channel 1.
 \textbullet{} Alarm limit value for when the value of channel 1 is overshot
9. \texttt{LO ALARM LIMIT CH1}: Enter the lower limit value [mg/l] for channel 1.
 \textbullet{} Alarm limit value for when the value of channel 1 is undershot
10. \texttt{HI ALARM LIMIT CH2}: Enter the upper limit value [mg/l] for channel 2.
 \textbullet{} Alarm limit value for when the value of channel 2 is overshot
11. \texttt{LO ALARM LIMIT CH2}: Enter the lower limit value [mg/l] for channel 2.
 \textbullet{} Alarm limit value for when the value of channel 2 is undershot

All the limit values affect the same signal output II (binary out II). A limit value alarm is also retained following channel switchover until the limit value for the channel in question is undershot.

Time-controlled changeover

The analyzer is equipped with two separate sample supply systems.

Settings for the measuring duration

The measuring duration can be individually configured for each channel.

5. \texttt{PROGRAMMING/SETTING/BASIC DATA}
6. \texttt{DURATION CH1 [min]}: Enter the measuring duration [min] for channel 1.
7. \texttt{DURATION CH2 [min]}: Enter the measuring duration [min] for channel 2.
If you configure a duration of 0 minutes in one channel, measurement will be performed permanently in the other channel. You must set a duration greater than 0 minutes for at least one channel.

Irrespective of the measuring duration configured, any measuring cycle that has started will always be completed before the system switches to the other channel.

Settings for the analog outputs

8. Open the menu: PROGRAMMING/SETTING/BASIC DATA
9. SCALE AO CH1: Enter the maximum concentration for channel 1.
 - Scale end value of the analog output of channel 1
10. SCALE AO CH2: Enter the maximum concentration for channel 2.
 - Scale end value of the analog output of channel 2

Settings for the limit values

11. Open the menu: PROGRAMMING/SETTING/ALARM LIMITS
12. HI ALARM LIMIT CH1: Enter the upper limit value [mg/l] for channel 1.
 - Alarm limit value for when the value of channel 1 is overshot
13. LO ALARM LIMIT CH1: Enter the lower limit value [mg/l] for channel 1.
 - Alarm limit value for when the value of channel 1 is undershot
14. HI ALARM LIMIT CH2: Enter the upper limit value [mg/l] for channel 2.
 - Alarm limit value for when the value of channel 2 is overshot
15. LO ALARM LIMIT CH2: Enter the lower limit value [mg/l] for channel 2.
 - Alarm limit value for when the value of channel 2 is undershot

All the limit values affect the same signal output II (binary out II). A limit value alarm is also retained following channel switchover until the limit value for the channel in question is undershot.

Interrupting the time control system
Irrespective of the time-based control system, the channel can be switched via a manual entry, or by remote control via the external signal input 8.

- **1** or **2**: Switch the channel manually.
- Switch the channel remotely via signal input 8
 - Signal 0 = no effect
 - Signal 1 (for approx. 10 s) = channel is switched

If you trigger channel changeover by using the keyboard or the signal input, the measuring cycle is terminated immediately and the channel changeover initiated.

9.2.2 Optimizing the measuring range

Depending on its configuration, the analyzer can measure from just a few mg/l to several 10 000 mg/l.

The analyzer can be optimized in two ways:

- **Optimization by changing a component**
 - Change the infrared detector
 - Fit a predilution system (can only be performed by the manufacturer’s service department)
- **Optimization via the device settings** (feed rate of dosing pump P2 is optimized)
 - Optimization of the sensitivity by selecting a higher dosing volume
 - Optimization of the salt load

Please note that action to optimize the sensitivity or the salt load often requires conflicting settings on the analyzer. Select settings that offer the best compromise for your measuring task.
Optimizing the dosing volume

An increase in the dosing volume (pump P2) increases the measuring signal, with a 50 % increase in the feed rate being equivalent to a signal increase of approx. 50 %.

1. Press , enter the numerical code.
2. Open the menu: PROGRAMMING / SETTING / RANGE DATA / BATCH VOL. [µl] (BATCH VOL. CH1 [µl], BATCH VOL. CH2 [µl] for two-channel operation).
3. Enter the desired volume [µl].

Resulting measuring range: → Table.

Please note that if the dosing volume is increased, the salt load also increases to the same extent.

The maximum measuring range indicated on the nameplate is the range at a dosing volume of 100 µl/batch (for the detection of the end of the measuring range) or 1200 µl/batch (for the detection of the start of the measuring range).

<table>
<thead>
<tr>
<th>Version</th>
<th>Dosing</th>
<th>Resulting measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA72TOC-A*</td>
<td>100 µl/batch</td>
<td>3 to 600 mg/l</td>
</tr>
<tr>
<td>0.25 to 600 mg/l TOC</td>
<td>300 µl/batch</td>
<td>1 to 200 mg/l</td>
</tr>
<tr>
<td></td>
<td>1200 µl/batch</td>
<td>0.25 to 50 mg/l</td>
</tr>
<tr>
<td>CA72TOC-B*</td>
<td>100 µl/batch</td>
<td>12 to 2400 mg/l</td>
</tr>
<tr>
<td>1 to 2400 mg/l TOC</td>
<td>300 µl/batch</td>
<td>4 to 800 mg/l</td>
</tr>
<tr>
<td></td>
<td>1200 µl/batch</td>
<td>1 to 200 mg/l</td>
</tr>
<tr>
<td>CA72TOC-C*</td>
<td>100 µl/batch</td>
<td>20 to 6000 mg/l</td>
</tr>
<tr>
<td>2.5 to 6000 mg/l TOC</td>
<td>300 µl/batch</td>
<td>8 to 2400 mg/l</td>
</tr>
<tr>
<td></td>
<td>1200 µl/batch</td>
<td>2.5 to 500 mg/l</td>
</tr>
<tr>
<td>CA72TOC-D*</td>
<td>100 µl/batch</td>
<td>60 to 12000 mg/l</td>
</tr>
<tr>
<td>5 to 12 000 mg/l TOC</td>
<td>300 µl/batch</td>
<td>24 to 4800 mg/l</td>
</tr>
<tr>
<td></td>
<td>1200 µl/batch</td>
<td>5 to 1000 mg/l</td>
</tr>
</tbody>
</table>

1) Factory setting
2) Factory setting: 250 µl/batch

Optimizing the salt load

High salt loads can occur in many applications, making it necessary to reduce the salt load. The following options are available:

- Reduce the dosing volume (dosing pump P2)
- Program a break in the measurement
- Optional dilution module for very high salt loads

Dilution ratios between 1:5 and 1:20 are possible. The effective TOC concentration in the diluted wastewater should be in the analyzer's measuring range.

9.2.3 Adjusting the analyzer

Adjustment principle

Two different standard solutions that are connected to the device are measured to adjust the analyzer.

1. The baseline is measured.
2. The analyzer measures the concentration of standard C1.
3. The baseline is measured.
4. The analyzer measures the concentration of standard C2.
5. The offset x_0 and the slope k_p are calculated from these measured values.
ADJUSTMENT CONSTANTS: The offset and the reciprocal standardized slope of the adjustment curve (measuring signal per concentration) are saved in the maintenance record log.

The analyzer adjustment can be started in three different ways:

- Manually via local operation
- Remotely via a floating contact
- Automatically

1. **Manually**

 Press \[\text{SERVICE} \]

2. **CALIBRATION/ANALYZER ADJUSTMENT.**

3. **Remotely via a floating contact**

 Use input 2 of the 'binary in' terminal strip. \(\rightarrow \) \[\) 10, \(\) \[22

4. **Automatically**

 Press \[\text{PROGRAMMING/SETTING/RANGE DATA} \]

5. **Enter the code. Press \[\text{CAL./ADJUST.\[n Days\]}**: Specify the number of days after which the analyzer should be adjusted.

 \[\text{Recommendation: Not more often than one adjustment every 3 days.} \]

8. **CAL./ADJUSTMENT**: Enter 2. (1 = CALIBRATION, 2 = ADJUSTMENT)

9.2.4 **Calibrating the analyzer**

The analyzer measures the standard solution \(C2 \) connected to the device and in doing so checks the current recovery. In contrast to an adjustment, the adjustment constants are not modified.
The analyzer calibration can be started in three different ways:
- Manually via local operation
- Remotely via a floating contact
- Automatically

1. **Manually**

 Press \U{1E240} S E R V I C E

2. **CALIBRATION/ANALYZER CALIBRATION.**

3. **Remotely via a floating contact**

 Use input 1 of the "binary in" terminal strip. → \U{1E240} 10, \U{1E243} 22

4. **Automatically**

 Press \U{1E241}.

 - You are asked to enter the four-digit numerical code indicated on the code card supplied.

5. Enter the code. Press \U{1E241}.

6. **PROGRAMMING/SETTING/RANGE DATA.**

7. **CAL./ADJUST.[n Days]**: Specify the number of days after which the analyzer should be calibrated.

 - Recommendation: Not more often than one calibration every 3 days.

8. **CAL./ADJUSTMENT**: Enter 1. (1 = CALIBRATION, 2 = ADJUSTMENT)

Analog value output during calibration

PROGRAMMING/SETTING/BASIC DATA/DC OUT CALIBRATION

- **0**

 In the event of a calibration, the last measured value is transmitted to the analog output. This output is set to "Hold" until the calibration value has been determined. The calibration value is then transmitted to the analog output until a new measured value has been determined for the current sample.

- **1**

 Signal output in mA is held (last measured value) until a new measured value has been determined.

During calibration, relay IV is open until a new measured value is present in the measuring mode. If the analog output is used for control purposes, this signal can be used to declare the analog output as invalid.

9.2.5 Empty volume dosing

You determine the empty volume of pump P2 from the separation chamber to the end of the capillary.
1. **Manually**
 Press \[\text{1} \].
 \[
 \downarrow \text{ Service}
 \]

2. **CALIBRATION/EMPTY VOLUME DOSING.**
 \[
 \downarrow \text{ Please wait pump conveys backwards.}
 \]
 The hose of pump P2 is drained.

3. **Wait until:**
 PUMP CONVEYS SAMPLE FOR INJECTION.
 \[
 \downarrow \text{ The pump pumps automatically in the direction of the capillary.}
 \]

Pumping stops if:
- (A) A drop is detected or
- (B) The system times out (after 180 s)

(A) A drop is detected

The new volume value determined is shown on the display and saved.

Check the value: **EMPTY VOLUME DOSING/EMPTY VOLUME P2 [ul]**.

- Press \[\text{3} \].
 \[
 \downarrow \text{ Measuring operation is restarted.}
 \]

(B) The system has timed out

Display: **DROP DETECTION FAILED. MANUAL CONFIRMATION REQUIRED!**

You must determine the empty volume manually.

1. Press \[\text{3} \].
 \[
 \downarrow \text{ The service is restarted and the automatic determination function is disabled.}
 \]
 PLEASE WAIT PUMP CONVEYS BACKWARDS.
 The hose of pump P2 is drained.

2. **Start the pump.**
 \[
 \downarrow \text{ PUMP CONVEYS SAMPLE FOR INJECTION.}
 \]

3. **Wait for the first drop to fall.**

4. **Once the first drop has fallen:**
 - **Stop the pump.**
 \[
 \downarrow \text{ The new volume value determined is shown on the display and saved.}
 \]
 Check the value: **EMPTY VOLUME DOSING/EMPTY VOLUME P2 [ul]**.

5. Press \[\text{3} \].
 \[
 \downarrow \text{ Measuring operation is restarted.}
 \]
9.2.6 Adjusting the pH sensor

Prepare the following to adjust the pH sensor:
- Deionized water
- Buffer solution pH = 4.00
- Buffer solution pH = 7.00
- Paper towels to absorb liquid
- Vessel to hold liquids

1. Press SERVICE.
2. CALIBRATION/ADJUSTMENT PH SENSOR.
3. Release the thread adapter nut. (→ 17, item 4)
4. Remove the cover (2) with the pH sensor (1) from the strip chamber.
5. Press enter.
6. Follow the instructions. Rinse the sensor and then immerse in the vessel with buffer 4.00.
7. Press enter.
 - Wait until the measured value stabilizes (a bar appears to the right of the measured value).
8. Press enter.
9. Follow the instructions. Rinse the sensor and then immerse in the vessel with buffer 7.00.
 - Wait until the measured value stabilizes (a bar appears to the right of the measured value).
 - Calibration values (offset, slope) are calculated. Typical slope value: between 55 mV/decade and 58 mV/decade
11. Follow the instructions. Put the sensor with the cover back into the strip chamber, and tighten the thread adapter nut by hand.
12. Press enter.
 - Measuring operation starts again.

ERROR PH ADJUSTMENT: The calibration data are not accepted in this case. Check the buffer and sensor, replace the sensor if necessary. Repeat the adjustment.
9.3 Showing measurement data history

9.3.1 PROGRAMMING/LISTS/MAX MIN AVERAGE
Logs the maximum, minimum and average measured values for the days saved.

9.3.2 PROGRAMMING/LISTS/RECORD DATA
Use this menu item to save the measured data and logs of the last 14 days to a USB storage medium. The data records are available as csv files.

1. If the time or date is changed during these 14 days, the date of the data is updated accordingly. If the date change is outside these 14 days, then the data memory is cleared completely.

1. Press 1. You are prompted to plug in the USB storage medium.
2. Plug the USB storage medium into the USB port. Data are written to the medium.
3. When prompted:
 Remove the USB storage medium.
4. Press 3. The user exits the menu.
10 Diagnostics and troubleshooting

WARNING
Device is live
Incorrect troubleshooting may result in injury or death!
- Troubleshooting on components behind the mounting plate may only be performed by an electrical technician.

CAUTION
Bacteria or germs in the wastewater
Risk of infection and injury!
- Wear acid-proof protective gloves, protective goggles and a protective gown.
- When working, be careful not to damage the reagents.

10.1 Diagnostic information on local display

The analyzer monitors its functions automatically. If an error occurs which the device recognizes, this is indicated on the display.

<table>
<thead>
<tr>
<th>Message</th>
<th>Cause</th>
<th>Possible defect</th>
<th>Tests or remedial action</th>
</tr>
</thead>
</table>
| VALUE>MEASURING RANGE | The IR detector continuously returns a signal that is larger than the specification. | The measured values in the flow of sample are continuously higher than the measuring device configuration. If the 'pre-dilution' option is being used, the dilution function has failed. | 1. Select PROGRAMMING/INPUT TEST. The temperatures are displayed. 3)
2. If there is a significant difference in the temperatures: Check the temperature sensors. |
| TEMPERATURE TOO HIGH | The temperature at the tube furnace is 70 °C above the set point. | • Temperature sensor
• Relay RB
• PWM1
• I/O card | 1. Select PROGRAMMING/INPUT TEST.
• If the PWM controller continuously outputs 200 %, there is a malfunction in the PWM.
2. Switch the main switch off and on again.
3. If the error persists: Replace the I/O card.
It may be the case that the furnace is permanently heated.
1. Remove the PWM connection (cable 54).
2. If the temperature continues to rise: Check the relay RB. |
<table>
<thead>
<tr>
<th>Message</th>
<th>Cause</th>
<th>Possible defect</th>
<th>Tests or remedial action</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPERATURE TOO LOW</td>
<td>The temperature is 15 % below the set point.</td>
<td>• Temperature sensor</td>
<td>1. Select PROGRAMMING/INPUT TEST. The temperatures are displayed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Relay RB</td>
<td>2. If the temperature rises: Wait until the heating process has stabilized.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PWM1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• I/O card</td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE BELOW XXX °C</td>
<td>The measured temperature is 30 °C below the set temperature.</td>
<td>• Temperature sensor</td>
<td>1. Select PROGRAMMING/INPUT TEST. If the PWM control system does not regulate and continuously outputs 200 % or 0 %, there is a malfunction in the PWM.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Relay RB</td>
<td>2. Switch the main switch off and on again.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PWM1</td>
<td>3. If the error persists: Replace the I/O card.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• I/O card</td>
<td></td>
</tr>
<tr>
<td>CARRIER FAILURE</td>
<td>The pressure sensor for monitoring the carrier gas has been triggered. Pressure < 1.5 bar, carrier gas supply failure</td>
<td>• Pressure sensor</td>
<td>1. Call up: PROGRAMMING/INPUT TEST/BINARY INPUTS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cable</td>
<td>2. Release the connecting cable on the pressure switch and short-circuit the contacts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• I/O card</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. If it does: Replace the pressure switch.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. If it does not: Use a multimeter to check that there are no interruptions in the cable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5. If there are no interruptions: Replace the cable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6. If there are interruptions: Replace the I/O card.</td>
</tr>
<tr>
<td>Message</td>
<td>Cause</td>
<td>Possible defect</td>
<td>Tests or remedial action</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>LEAKAGE</td>
<td>The leak detector has been triggered. Leaks in the measuring device if the springs of the leak detector have been bridged.</td>
<td>• Leak detector • Cable • I/O card</td>
<td>1. Check for leaks. 2. Leak found? Fix the leak. The error message disappears. 3. No leak found? Check the leak detector for electrical short-circuiting of the spring contacts. 4. Short circuit? Eliminate the bridge (creating the short-circuit). 5. No short circuit? Is the BI29 plug plugged in? If not, plug in the plug. If it is, check signal processing.</td>
</tr>
</tbody>
</table>

<p>| MALFUNCTION PELTIER | The Peltier cooler deviates > 3 °C from the set point. Following servicing or maintenance, in the event of high ambient temperatures, in the event of unfavorable ventilator suction conditions | • Ventilator failure • Cable • Power supply outage | 1. No LED on: Check the power supply of the Peltier cooler regulator. 2. Green LED on (Peltier cooler at operating temperature): Check the transmission cable to the I/O card and the I/O card itself. 3. If the cable is OK, replace the I/O card. 4. Red > °C LED on (Peltier cooler is too hot): Check the function of the ventilator on the cooler. Can the ventilator not draw in a sufficient amount of air? Is the air temperature too high? 5. Red < °C LED on (Peltier cooler is too cold, control system is defective): Replace the Peltier controller. |</p>
<table>
<thead>
<tr>
<th>Message</th>
<th>Cause</th>
<th>Possible defect</th>
<th>Tests or remedial action</th>
</tr>
</thead>
</table>
| MALFUNCT. IR-DETECTOR | The measuring signal of the IR detector has failed. f < 10 000 Hz | Cable | The IR detector switches to an automatic warm-up phase following a power outage. It does not supply a current output signal during this time. This phase is finished after approx. 30 s and the analyzer switches automatically to the measuring mode. In the event of an error (malfunction constantly present after 60 s):
 1. Replace the connecting cable between the I/O card (FI-24, → 12, 24) and the IR detector with a replacement cable.
 ◆ If the measuring signal is > 10 000 Hz, the cable was defective and must be replaced. Otherwise check the signal input on the I/O card.
 2. Connect another cable to FI-24 (e.g. unplug cable from pH sensor, FI-26, and plug into FI-24).
 3. Call up: PROGRAMMING/INPUT TEST/ANALOG INPUTS.
 4. Check signal (FI2 frequency input).
 ◆ Plausible signal (> 10 000 Hz): → the I/O card is OK, the IR detector must be replaced.
 Signal not plausible (< 10 000 Hz): → replace the IO card. |
| ACID FAILURE | If the pH value permanently deviates by more than ±2.5 from the set point. Severely fluctuating buffer capacity values | Cable interruption | 1. Check the acid cistern.
 2. Is the acid concentration sufficient? Does the acid pump operate at a maximum feed rate of 200 %? Increase the acid concentration in the feeder.
 3. Is acid being dosed?
 PROGRAMMING/OUTPUT TEST/PUMPS: Test pump P3 by specifying values manually.
 4. Check the pump hose for leaks.
 5. Adjust the pH sensor.
 Check signal processing (I/O card slot no. 26 frequency input FI4)
 1. Disconnect the modular jack at I/O card slot no. 26.
 ◆ Does the measured value drop?
 2. If the display value does not change: Replace the I/O card. |
<table>
<thead>
<tr>
<th>Message</th>
<th>Cause</th>
<th>Possible defect</th>
<th>Tests or remedial action</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNSTABLE DOSING</td>
<td>The drop monitor does not count any, or too few, drop events.</td>
<td>Is sample in the separation chamber? Is pump P2 pumping medium? Can dripping be observed at the dosing head? Is the pressure sensor OK?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✚ PROGRAMMING/INPUT TEST/ANALOG INPUTS: Observe the pressure sequence when medium drips.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>➣ Can a pressure increase > 10 mbar be observed? Is the furnace fitted with the combustion pipe insert?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check signal processing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1. Disconnect the connector at MI4 (cable 53) and plug it back in.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>➣ If the display has frozen, the I/O card has a malfunction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Switch off the main switch, wait a few seconds and switch it back on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. If the error persists: Replace the I/O card.</td>
</tr>
<tr>
<td>WATER PRESS. FAILURE</td>
<td>The pressure sensor for monitoring the water supply has been triggered. Water pressure < 1 bar</td>
<td>• Pressure monitor • Cable • I/O card</td>
<td>1. Check the water supply. Check signal processing (I/O card slot no. 35 switch input DI03)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Call up: PROGRAMMING/INPUT TEST/BINARY INPUTS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Release the connecting cable on the pressure switch and short-circuit the contacts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>➣ The switch state of DI03 should react on the display.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. If it does: Replace the pressure switch.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5. If it does not: Use a multimeter to check that there are no interruptions in the cable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6. If the cable is OK: Replace the I/O card.</td>
</tr>
<tr>
<td>Message</td>
<td>Cause</td>
<td>Possible defect</td>
<td>Tests or remedial action</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>CIRCUIT PRESSURE HIGH</td>
<td>The pressure sensor measures a high pressure in the gas circuit. A blockage is forming in the gas circuit.</td>
<td>• Pressure monitor</td>
<td>1. Check the gas circuit for blockages. In particular check the acid filter, water trap and reactor, and the heated salt trap if necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cable</td>
<td>2. Has the gas circuit flow rate dropped below 0.7 l/min? Eliminate the blockage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• I/O card</td>
<td>3. Is the pressure sensor OK?</td>
</tr>
<tr>
<td>CIRCUIT PRES.TOO HIGH</td>
<td>The pressure sensor measures too high a pressure in the gas circuit. A blockage has occurred in the gas circuit.</td>
<td>• Pressure monitor</td>
<td>4. Increase the pressure by manually squeezing the gas circuit hose for dosing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cable</td>
<td>✲ Can a pressure increase be observed? Check signal processing. Is the plug correctly inserted in the Multi In on the I/O card?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• I/O card</td>
<td>1. Disconnect the connector at MI4 (cable 53) and plug it back in.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✲ If the display has frozen, there is a malfunction in the I/O card.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Switch off the main switch, wait a few seconds and switch it back on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. If the error persists: Replace the I/O card.</td>
</tr>
<tr>
<td>VALUE>MEASURING RANGE</td>
<td>The TOC concentrations of the sample are too high, sample dilution missing or failed</td>
<td>Optional sample dilution</td>
<td>The message appears if the IR signal is continuously above the detector measuring range.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✲ Check the dilution.</td>
</tr>
<tr>
<td>ADJUSTMENT FAULT ADJUSTMENT CONSTANTS 1</td>
<td>CO₂ concentrations measured for standard C1 or C2 are above the measuring range for the IR detector. Incorrect standard solution</td>
<td>Gas circuit leaking</td>
<td>Is the gas circuit leak-tight?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1. Check the gas-tightness of the analyzer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Replace standard solutions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Repeat the adjustment.</td>
</tr>
<tr>
<td>ADJUSTMENT FAULT ADJUSTMENT CONSTANTS 2</td>
<td>Calculated X_0 value is above the maximum value permitted for the IR detector used.</td>
<td>Gas circuit leaking</td>
<td>Is the gas circuit leak-tight?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1. Check the gas-tightness of the analyzer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Check the adjustment values in the service log.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✲ Do one of the two log values deviate from the typical value?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Replace standard solutions.</td>
</tr>
<tr>
<td>ADJUSTMENT FAULT ADJUSTMENT CONSTANTS 3</td>
<td>The calibration line slope is negative or zero. The CO₂ concentration measured for standard 1 is higher than that for standard 2.</td>
<td>MV1, MV4</td>
<td>1. PROGRAMMING/OUTPUT TEST/BINARY OUTPUTS: Switch on output SA1 for MV1 and output SA4 for MV4.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✲ If the solenoid valves do not switch: Replace the relevant solenoid valve.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Check the concentration of the prepared standard solutions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Check the assignment of the standard vessels.</td>
</tr>
</tbody>
</table>
| | | | 4. Check the level of the standard vessels.
<table>
<thead>
<tr>
<th>Message</th>
<th>Cause</th>
<th>Possible defect</th>
<th>Tests or remedial action</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADJUSTMENT FAULT</td>
<td>KP value is less than 30 or greater than 150</td>
<td>• Gas circuit leaking</td>
<td>1. Check the gas-tightness of the analyzer.</td>
</tr>
<tr>
<td>ADJUSTMENT CONSTANTS 4</td>
<td></td>
<td>• Standard solutions</td>
<td>2. Have the standard solutions been prepared properly? Replace standard solutions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Biological growth in the standard vessel. Replace the vessel.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. Dilution option - feed rate of pump P4 deviates from the values determined. S E R V I C E/ PUMPS/REPLACE HOSE PUMP P1/4: Replace the pump hose to determine the feed rate for pump P4.</td>
</tr>
<tr>
<td>ADJUSTMENT FAULT</td>
<td>CO₂ concentration < min. permitted CO₂ value. (~ -9.4 % gas card measuring range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADJUSTMENT CONSTANTS 5</td>
<td></td>
<td></td>
<td>Is the IR detector OK?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1. Convey pure supply gas through the IR detector.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. P R O G R A M M I N G/INPUT TEST/ANALOG INPUTS: Check whether the IR detector displays a negative offset.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. If the frequency displayed has dropped below 10000 Hz: Replace the IR detector.</td>
</tr>
<tr>
<td>CO₂ BASELINE</td>
<td>Baseline value ≥5 % of IR detector full scale value</td>
<td>• New catalyst</td>
<td>The catalyst may outgas following a catalyst replacement. This can cause an error message, particularly in low CO₂ measuring ranges. The problem resolves itself after a few measuring cycles.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pellets for soda-lime scrubbers are used up</td>
<td>1. Are the pellets completely discolored? Replace the pellet filling.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gas generator malfunction</td>
<td>2. Check the function of the gas generator. Does the carrier gas valve allow sufficient gas through to allow for adequate flushing? Is the carrier gas valve leak-tight?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Defective carrier gas valve</td>
<td>3. Carry out a pump adjustment for pump P2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Leak in gas circuit</td>
<td>4. Is the gas circuit leak-tight? Perform a leak test.</td>
</tr>
<tr>
<td>INPUT ERROR C1>C2</td>
<td>Input value for C1 is higher than for C2</td>
<td></td>
<td>▶ Enter the correct concentrations.</td>
</tr>
<tr>
<td>Calibration marked with an asterisk</td>
<td>The IR signal is less than 75% of the value for C2 from the last adjustment</td>
<td></td>
<td>1. Replace the standard solution for C2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Repeat calibration.</td>
</tr>
</tbody>
</table>
Diagnostics and troubleshooting

Message Possible defect Tests or remedial action

INTERNAL COM-FAULT 1
- IO not responding during INIT process
 1. Switch the main switch off and, after a short period of time, switch it back on again.
 2. If the error persists: Contact the manufacturer's service department.

INTERNAL COM-FAULT 2
- IO not responding during the NOINIT process

INTERNAL COM-FAULT 10
- Keyboard not responding

INTERNAL COM-FAULT 20
- CRC error between I/O and CPU or between keyboard and CPU

1. There are 2 temperature sensors: one to check the temperature, the other for the furnace heater. The furnace is adjusted to the set temperature (850°C). If there is a significant difference between the two temperature values, it is necessary to check whether a temperature sensor is defective or whether there are other reasons for the difference in temperature.

10.2 Diagnostic list

10.2.1 PROGRAMMING/LISTS/ALARM RECORDS

All the alarms along with the date and time of the event are logged in the alarm record.

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Description</th>
<th>Tests or remedial action</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALARM T<Tmin</td>
<td>Furnace temperature drops below 85 % of the set value</td>
<td>1. Operation stops.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. System starts as soon as 90 % of the set value is reached.</td>
</tr>
<tr>
<td>TEMPERATURE TOO HIGH</td>
<td>Furnace temperature exceeds the set value by more than 70 °C (126 °F)</td>
<td>1. The furnace and stripping gas supply are switched off.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Restart the analyzer manually.</td>
</tr>
<tr>
<td>TEMPERATURE TOO LOW</td>
<td>Furnace temperature drops below the set value by more than 30 °C (54 °F)</td>
<td></td>
</tr>
<tr>
<td>ACID FAILURE</td>
<td>Acid failure</td>
<td></td>
</tr>
<tr>
<td>CARRIER FAILURE</td>
<td>The supply pressure has dropped below 1.5 bar (21 psi).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ Restart the analyzer manually.</td>
</tr>
<tr>
<td>MALFUNCTION PELTIER</td>
<td>Peltier cooler malfunction</td>
<td>1. Operation stops.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. The analyzer restarts automatically once the error status is reset.</td>
</tr>
<tr>
<td>VALUE>MEASURING RANGE</td>
<td>The value is outside the measuring range</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The IR detector has been working above its maximum value for over 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>minutes or the measuring device has been measuring 0 mg/l for over an</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hour.</td>
<td></td>
</tr>
<tr>
<td>MALFUNCTION IR</td>
<td>IR detector is defective</td>
<td>1. Operation stops.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. The analyzer restarts automatically once the error status is reset.</td>
</tr>
<tr>
<td>LEAKAGE</td>
<td>Leak in the system</td>
<td>1. The furnace and carrier gas supply are switched off.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Restart the analyzer manually.</td>
</tr>
<tr>
<td>ADJUSTMENT FAULT</td>
<td>An error number is assigned to the error.</td>
<td></td>
</tr>
<tr>
<td>Alarm</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
| UNSTABLE DOSING | Error when dosing the sample
The minimum number of drops to be expected was undershot. |
| WATER PRESS. FAILURE | Failure in the supply of water for flushing and dilution
1. The minimum permitted pressure of approx. 1.5 bar (21 psi) was undershot.
Operation stops.
2. The analyzer restarts automatically once the error status is reset. |
| CO2 BASELINE | The limit value for the CO\textsubscript{2} drift [ppm/min] or for the CO\textsubscript{2} threshold value [ppm] was overshot in the baseline measurement
• Value 1: Baseline drift slope [ppm/min]
• Value 2: Baseline offset [ppm] |
| INPUT ERROR C1>C2 | Error entering the standard concentrations
The concentration of standard C1 must be lower than the concentration of standard C2. |
| CIRCUIT PRESSURE HIGH | At 175 mbar, the pressure in the gas circuit is 70 % above the pressure permitted in the gas circuit (250 mbar). |
| CIRCUIT PRES.TOO HIGH | The maximum permitted pressure in the gas circuit has been exceeded
MAX. PRESSURE [mbar]: The default value is 250. |
| INTERNAL COM-FAULT | Fault in internal communication between I/O card, keyboard and Modbus connection
1. Operation stops.
2. The analyzer restarts automatically once the error status is reset. |

10.3 Event logbook

10.3.1 PROGRAM/MIN/G/LISTS/COMPLETE RECORDS
Displays all the saved events in chronological order. The last 200 events are saved in the list.

10.3.2 PROGRAM/MIN/G/LISTS/MAINTENANCE RECORDS
All the maintenance procedures are sorted and logged by the maintenance actions in the maintenance records. Maintenance procedures which have not been performed cannot be selected.

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAM STARTED</td>
<td>Date and time when the program was started</td>
</tr>
<tr>
<td>CHANGE DATA</td>
<td>Date and time when configuration data are changed</td>
</tr>
</tbody>
</table>
| CHANGE TIME | Date and time when the clock changes. The newly set time and the time difference in hours between the old time and new time is documented.
• Negative value: the clock was put back.
• Positive value: the clock was put forward. |
| ADJUSTMENT | Date and time when the analyzer and the CO\textsubscript{2} concentrations of the standard solutions are adjusted
• Value 1: CO\textsubscript{2} concentration of C1 [ppm]
• Value 2: CO\textsubscript{2} concentration of C2 [ppm] |
| ADJUSTMENT CONSTANTS | Date and time and the adjustment constants obtained during adjustment
• Value 1: Offset [ppm]
• Value 2: Standardized slope [ppm] |
<table>
<thead>
<tr>
<th>Alarm</th>
<th>Description</th>
</tr>
</thead>
</table>
| CALIBRATION | Date and time of the calibration of the analyzer and the calibration value found, and the recovery with regard to the specified concentration of standard C2
 | • Value 1: TOC [mg/l]
 | • Value 2: Recovery [%] |
| BASELINE DRIFT | Date and time of the baseline drift when calibrating and adjusting
 | • Value 1: Baseline offset [ppm]
 | • Value 2: Baseline drift increase [ppm/min] |
| EMPTY VOLUME DOSING | Date and time when selected in the service menu
 | • Value 1: Duration of the filling process [s]
 | • Value 2: Volume [μl] |
| ADJUSTMENT PUMP P1 | Date and time of the adjustment for pump P1
 | • Value 1: New feed rate (ml/min)
 | • Value 2: Old feed rate (ml/min) |
| ADJUSTMENT PUMP P2 | Date and time of the adjustment for pump P2
 | • Value 1: New feed rate (μl/min)
 | • Value 2: Old feed rate (μl/min) |
| ADJUSTMENT PUMP P4 | Date and time of the adjustment for pump P4
 | • Value 1: New feed rate (ml/min)
 | • Value 2: Old feed rate (ml/min) |
| ADJUSTMENT PH SENSOR | Date and time and the adjustment constants obtained during adjustment
 | • Value 1: Offset [mV]
 | • Value 2: Slope [mV/log pH] |
| REPLACE HOSE PUMP P1 | Date and time when the hose of pump P1 is changed |
| REPLACE HOSE PUMP P2 | Date and time when the hose of pump P2 is changed |
| REPLACE HOSE PUMP P3 | Date and time when the hose of pump P3 is changed |
| REPLACE HOSE PUMP P4 | Date and time when the hose of pump P4 is changed (when sample pre-dilution is provided) |
| SCREEN FLUSH | Date and time when selected in the service menu
 | Automatic screen flushes are not logged. |
| BYPASS SCREEN | Date and time when selected in the service menu |
| POWER FLUSH | Date and time when selected in the service menu
 | Automatic power flushing is not logged. |
| STRIPPING+SEPARATION | Date and time when selected in the service menu |
| OPEN GAS CIRCUIT | Date and time when selected in the service menu |
| COMBUSTION PIPE | Date and time when selected in the service menu |
| LEAKAGE TEST | Date and time when the leak tightness display is quit
 | • Value 1: Current pressure
 | • Value 2: Current leakage rate [mbar/min]
 | • Typical value: -0.5 to -2.0 mbar/min |
| REPLACE ACID FILTER | Date and time when selected in the service menu |
| REPLACE GAS FILTER | Date and time when selected in the service menu |
| REPLACE HEATED FILTER | Date and time when selected in the service menu (heated salt trap) |
| REPLACE GAS PREFILTER | Date and time when selected in the service menu |
| STANDBY | Date and time of a standby event |
| SAVE DEFAULTS | Date and time when selected in the menu PROGRAMMING/SETTING |
| SET DEFAULTS | Date and time when selected in the menu PROGRAMMING/SETTING |
10.4 Firmware history

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes to firmware</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/2020</td>
<td>01.00.07</td>
<td>Extension Name of the measuring point recorded in the daily log and in the daily data record</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improvement • Time-controlled automatic service • WATER PRESS. FAILURE: Entry in daily log</td>
<td>BA00448C/07../15.19</td>
</tr>
<tr>
<td>07/2018</td>
<td>01.00.07</td>
<td>Extension • Modified signal output in standby mode and during calibration • Introduction of new parameters for signal output in standby mode and during calibration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improvement • Limit changed for slope CO₂ baseline parameter • Process steps for manual service in standby mode</td>
<td>BA00448C/07../14.17</td>
</tr>
<tr>
<td>09/2017</td>
<td>01.00.06</td>
<td>Extension • ACID FAILURE: Error detection in standby mode • ACID FAILURE: Error detection in measuring mode • Parameters and process steps for 2-channel measurement • Hardware and software revision status displayed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improvement</td>
<td>BA00448C/07../13.15</td>
</tr>
<tr>
<td>05/2017</td>
<td>01.00.05</td>
<td>Improvement • Process steps for acid regulation in the standby function</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BA00448C/07../13.15</td>
</tr>
<tr>
<td>04/2017</td>
<td>01.00.04</td>
<td>Improvement • Display format</td>
<td></td>
</tr>
<tr>
<td>11/2016</td>
<td>01.00.03</td>
<td>Improvement • Functions for long-term data storage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BA00448C/07../13.15</td>
</tr>
<tr>
<td>08/2016</td>
<td>01.00.02</td>
<td>Improvement • Time calculation for process steps in sample conditioning and the measuring cycle • SCREEN FLUSH, WATER PRESS. FAILURE: Error detection • Possible to adjust temperature for heating in the furnace</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BA00448C/07../13.15</td>
</tr>
<tr>
<td>06/2016</td>
<td>01.00.01</td>
<td>Extension • Default parameters are saved as a data set on a USB data storage medium</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improvement • Current output for 2-channel measurement</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BA00448C/07../13.15</td>
</tr>
<tr>
<td>12/2015</td>
<td>01.00.00</td>
<td>Original software</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BA00448C/07../13.15</td>
</tr>
</tbody>
</table>
11 Maintenance

Incorrect maintenance can result in inaccurate operation and pose a safety hazard!

- All the maintenance processes described in this section must only be performed by a properly qualified technician.
- Before every maintenance activity: The specialist staff must be completely familiar with the entire process and have perfectly understood all the steps involved.

11.1 Maintenance schedule

Regular maintenance guarantees the efficient operation of the analyzer.

<table>
<thead>
<tr>
<th>Window</th>
<th>Maintenance work</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least once a week</td>
<td>1. Visual inspection</td>
</tr>
<tr>
<td></td>
<td>2. Check sample conditioning (see appropriate Operating Instructions)</td>
</tr>
<tr>
<td>At least once a month</td>
<td>1. Check feed rate of pump P1/P4 and P2</td>
</tr>
<tr>
<td></td>
<td>2. Replace standard</td>
</tr>
<tr>
<td>Every 3 months at the latest</td>
<td>1. Clean strip and separation chamber</td>
</tr>
<tr>
<td></td>
<td>2. Replace glass ball</td>
</tr>
<tr>
<td></td>
<td>3. Adjust the pH sensor</td>
</tr>
<tr>
<td></td>
<td>4. Change pump hoses</td>
</tr>
<tr>
<td></td>
<td>5. Check the filter mats of the ventilators and replace if necessary</td>
</tr>
<tr>
<td>If salt quantity > 1 g/l, then perform the following every 3 months at the latest</td>
<td>1. Replace the acid filter</td>
</tr>
<tr>
<td></td>
<td>2. Replace the catalyst</td>
</tr>
<tr>
<td></td>
<td>3. Clean the combustion pipe</td>
</tr>
<tr>
<td>Once a year</td>
<td>1. Check the filter mats of the ventilators (do not clean)</td>
</tr>
<tr>
<td></td>
<td>2. Replace membrane filter (gas filter)</td>
</tr>
</tbody>
</table>

The maintenance intervals depend greatly on the application. Therefore adapt the maintenance intervals to your specific needs but make sure that these maintenance tasks are always performed regularly!

11.2 Maintenance tasks

11.2.1 Cleaning the housing

NOTICE

Incorrect cleaning and incorrect cleaning agents can cause damage!

- Do not use cleaners that contain solvents.
- Do not damage the nameplate on the analyzer.

Regularly

- Clean the housing with fluoride-free cleaner and a lint-free cloth.
11.2.2 Visual inspection

⚠️ CAUTION
Risk of injury from hot components!
- Wear heat-resistant gloves when in contact with hot components in the vicinity of the combustion furnace.

Visual inspection (at least once a week)
1. Are the measured values within the measuring range?
2. Is the sample supply line OK? To check, place a receptacle under the valve and set it briefly to Manual Sample.
 - Does sample flow out of the bypass?
3. Is sample being dosed into the furnace?
4. Check whether hoses P1 to P3 (optionally P4) are leak-tight.
5. Check whether sufficient C1 and C2 standard and sufficient stripping acid are still available.
6. If the condensate is being collected in a container:
 Check if the container is full and empty it if necessary.

Visual inspection of media supply (at least once a week)
1. Check the gas supply.
 - Pressure regulator at 2 bar (29 psi)? Circuit gas (right flowmeter) at 0.7 to 1.2 l/min (0.18 to 0.32 gal/min)?
2. Check the water supply pressure.
 - Target value: 3 ± 0.2 bar (43 ± 3 psi)
3. Check that the acid filter is free of condensate and not severely discolored.
4. Check gas sparging in the strip chamber.
5. Check the rotating slit filter.
 - It must rotate uniformly. There must be a visible slit between the rotating body and the base of the chamber.
11.2.3 Service menu: Overview

The maintenance work is supported by the service software. This software is divided into four sections:

- **PUMPS**
 - REPLACE HOSE PUMP P1/4
 - REPLACE HOSE PUMP P2
 - REPLACE HOSE PUMP P3
 - ADJUSTMENT PUMP P2
- **CALIBRATION**
 - ANALYZER ADJUSTMENT
 - ANALYZER CALIBRATION
 - EMPTY VOLUME DOSING
 - ADJUSTMENT PH SENSOR
- **CLEANING**
 - SCREEN FLUSH
 - POWER FLUSH
 - BYPASS SCREEN
 - STRIPPING+SEPARATION
 - OPEN GAS CIRCUIT
 - COMBUSTION PIPE
 - LEAKAGE TEST
- **FILTERS**
 - REPLACE ACID FILTER
 - REPLACE GAS FILTER
 - REPLACE GAS PREFILTER
 - REPLACE HEATED FILTER

11.2.4 Service menu: PUMPS

Replacing the hoses of pumps P1 and P4

Releasing the hoses

⚠️ **CAUTION**

Rotating parts

Danger of crushing!

- Never reach into the pump head while the pump is in operation.

![Position of the pumps](image)

19 Position of the pumps

Required tools and materials:

- Graduated cylinder, 10 ml
- Allen key, 2.5 mm
- Dosing needle (injector, included in the delivery)
Absorbent paper
Collecting vessel, approx. 150 ml (5 fl.oz)
Silicone grease

The procedure for replacing hoses on pumps P1 and P4 is described below. All steps and information relating to pump P4 do not apply for device versions without the predilution function.

1. SERVICE/PUMPS/REPLACE HOSE PUMP P1/4.

2. CAUTION

Wastewater
Risk of infection from bacteria!
- Wear protective gloves, protective goggles and protective clothing.

Follow the instructions. Press .
- The strip and separation chambers are flushed with pressurized water.

3. Turn the valve to manual sample, place a collecting vessel under the hose connection for manual sampling and press .

4. Hose cassettes (pump P1: sample hose at front, condensate hose at rear)

Open the hose cassettes of the pumps, first P1 then P4 (only for version 'with predilution').
- The pump hoses and strip chambers are drained.

5. Press .

6. Removing the hose from a cassette

Place the absorbent paper under the hose connections, release the hoses from the connections and remove them from the cassettes.
Mounting new hoses (display: REPLACE PUMP HOSE)

Hose markings
- Pump P1
 - Sample hose to strip chamber: violet-white color coding (VT-WH), ID 2.79 mm (0.11")
 - Hose of condensate extraction unit: black-black color coding (BK-BK), ID 0.76 mm (0.03")
- Pump P4 (only for version ‘with predilution’)
 - Sample hose to static mixer: violet-white color coding (VT-WH), ID 2.79 mm (0.11”)

1. Grease the new hoses with a light coating of silicone grease.
2. Fit the hoses on the cassettes.
3. Lock the hose cassettes in place in the retainer. Make sure the hose cassettes are seated correctly in the retainer.
4. Press \[\text{ }\].
5. Connect the suction side (bottom end in the cassette) of P4 and P1: P4 to lowest connection of the mixing chamber (→ 2, 9, item 25), P1 to top connection or, in the version without the dilution function, connect directly to the sample supply at solenoid valve MV1 (item 21).
6. Press \[\text{ }\] (pump start/stop).
 - The hoses are filled with sample. Observe the drip pattern.
7. Press \[\text{ }\].
8.

 ![Diagram](image-url)

 \[\text{ }\] 22 Adjusting screw

 Set the contact pressure of pump P4:
 Release the adjusting screw until no more medium is conveyed. Tighten the screw again until the unit starts to pump medium.
 - The sample must be pumped evenly across all pump heads.
9. Tighten the adjusting screw one more turn. Press \[\text{ }\].

Measuring the capacity of pump P4
If required, you can measure the capacity of pump hose P4. If you prefer to skip this step, press \[\text{ }\].

1. Measuring the capacity:
 Place the delivery side of the hose into the 10 ml graduated cylinder (near pump P4).
2. \[\text{ }\]: Start the pump.
 - Pump P4 pumps liquid into the graduated cylinder for 60 s.
3. After 60 s have elapsed:
 Read the sampling volume and enter the value.
 - The value typically lies between 5.5 and 7 ml (0.18 and 0.24 fl.oz).
4. Press
5. Connect the delivery side of pump 4 to the mixing chamber (middle connection).

Pumping sample (P1)

1. Seal the strip chamber inlet with a separate seal (e.g. plug for seal test).
2. If necessary:
 Expand the condensate hose. Use the nozzle of the injector for this purpose.
3. Connect the suction side of the P1 condensate hose (at mixing chamber). Press.
4. Place the delivery side of the condensate hose into a glass of water.
5. Start the pump.
 - The sample hose fills.
6. Observe the drip pattern of the sample hose and check the air bubbles in the glass of water (even feed rate).
7. Check the contact pressure of the two hoses of P1: Release the adjusting screw (→ 22), tighten it again until medium is pumped evenly and then tighten the screw one more turn.
 - The sample must be pumped evenly across all pump heads.
8. Acknowledge.
9. Where necessary:
 Measure the capacity of pump P1. Proceed as explained above: Place the hose (delivery side) into the graduated cylinder, start the pump, after 60 s read the level in the graduated cylinder and enter the value in the device.
 - The value typically lies between 5.5 and 7 ml (0.18 and 0.24 fl.oz).
10. Press
11. Connect the delivery side of sample hose P1 to the strip chamber, press again.

Final steps

1. Set the valve to bypass.
2. Start: Pump sample out of the bypass and acknowledge by pressing

Automatic filling of the strip chamber, conditioning of the strip chamber with active acid dosing.
Changing the hose of pump P2

CAUTION

Rotating parts
Danger of crushing!
- Never reach into the pump head while the pump is in operation.

Required tools and materials:
- Graduated cylinder, 10 ml
- Allen key, 2.5 mm
- Dosing needle (injector, included in the delivery)
- Absorbent paper
- Collecting vessel, approx. 150 ml (5 fl.oz)
- Silicone grease

1. **SERVICE/PUMPS/REPLACE HOSE PUMP P2.**
2. **CAUTION**
 Wastewater
 Risk of infection from bacteria!
 - Wear protective gloves, protective goggles and protective clothing.

 Follow the instructions. Press ↓.
 - The hose is drained.

3. Open the cover of the separation chamber.
4. Empty the separation chamber with the injector and press ↓.
5. Release the hose at the injection unit and separation chamber.
6. **Hose cassette P2**

 Release the hose cassette from pump P2, remove the hose.
7. Grease the new hose ((BK-BK) 0.76 mm (0.03")) with a light coating of grease.
8. Fit the new hose in place.
9. If necessary:
 Widen the openings with the dosing injector.
10. Lock the hose cassette back in place in the retainer. Make sure the hose cassette is seated correctly in the retainer.
11. Press

Setting the contact pressure

1. Seal the separation chamber.
2. Connect the pump hose on the suction side.
3. Press .
 The hose fills.
4. Observe the drip pattern.
5. Tighten the adjusting screw one more turn. Press .
6. Connect the hose to the injection unit (delivery side). Press .

To set the contact pressure:
Release the adjusting screw until no more medium is conveyed. Tighten the screw again until the unit starts to pump medium.
 The sample must be pumped evenly across all pump heads.

Adjusting the pump and checking the empty volume

The accuracy of the feed rate of pump P2 affects the measurement result. The ADJUSTMENT PUMP P2 and EMPTY VOLUME DOSING service menus are used to configure and check the pumps. New hoses are subject to deterioration and aging in the first hours of operation. For this reason, repeat the actions in these two menus after 24 hours.

1. ADJUSTMENT PUMP P2: Start. → 72
2. EMPTY VOLUME DOSING: Starts automatically afterwards. (→ 47)
Changing the hose of pump P3

⚠️ CAUTION

Rotating parts
Danger of crushing!
- Never reach into the pump head while the pump is in operation.

Required tools and materials:
- Acid-resistant protective gloves, protective goggles and protective clothing
- Graduated cylinder, 10 ml
- Allen key, 2.5 mm
- Dosing needle (injector, included in the delivery)
- Absorbent paper
- Collecting vessel, approx. 150 ml (5 fl.oz)
- Silicone grease

1. **SERVICE/PUMPS/REPLACE HOSE PUMP P3.**
2. Follow the instructions. Press E.
 - The strip and separation chambers are flushed with pressurized water.
3. Place a vessel to catch the liquid under the hose connection from pump P1 to the strip chamber.
4. Release the hose connection from pump P1 to the strip chamber.
 - Liquid runs out of the strip chamber.
5. Empty the strip chamber with the injector and press E.
6. ⚠️ CAUTION
 - Acid
 - Risk of injury!
 - Wear acid-resistant protective gloves, protective goggles and protective clothing.
 - Observe the warnings in the safety data sheets for the acids.
 - Rinse areas splashed with acid immediately with plenty of water and a 1% solution of sodium hydrogen carbonate.
 - Consult a physician and show him/her the instructions on the canister.

Remove the acid suction hose from the acid cistern and place the end in a collecting vessel.
7. Release the hose cassette from pump P3, drain the hose into the collecting vessel and press
8. Release the old hose from the connection on the strip chamber and remove from the cassette.
9. Grease the new hose ((BK-BK) 0.76 mm (0.03\") with a light coating of grease.
10. Fit the new hose in place and press
11. Connect the hose of pump P1 to the strip chamber again and press
12. **NOTICE**
 TOC contamination
 TOC in the acid circuit can result in incorrect measurements!
 ► Do not allow any medium containing TOC to enter the acid feeder.
 ► Do not contaminate hoses with traces containing TOC.

Rinse the suction hose of acid pump P3 and then guide it into the acid feeder tank.
13. If necessary:
 Widen the hose opening with the dosing injector.
14. Lock the hose cassette back into place in the retainer and connect the hose to the hose fitting of the strip chamber.

Setting the contact pressure
1. Press
 The hose fills.
2. Observe the drip pattern.
3. **Adjusting screw**

To set the contact pressure:
Release the adjusting screw until no more medium is conveyed. Tighten the screw again until the unit starts to pump medium.

⚠️ The sample must be pumped evenly across all pump heads.

4. Tighten the adjusting screw one more turn. Press 🍎.

5. Only for versions with predilution:
 - Wait for the dilution to stabilize.
 ⚠️ Dilution stabilizes for 120 s.

The strip chamber then fills automatically and is conditioned with active acid dosing. Measuring operation is started automatically.

Adjusting pump P2

⚠️ **CAUTION**

Rotating parts
Danger of crushing!

▶ Never reach into the pump head while the pump is in operation.

29 **Pump P2**

Required tools and materials:
- Graduated cylinder, 10 ml
- Allen key, 2.5 mm
- Dosing needle (injector, included in the delivery)
- Absorbent paper
- Collecting vessel, approx. 150 ml (5 fl.oz)
- Silicone grease

1. ⬇️ **SERVICE/PUMPS/ADJUSTMENT PUMP P2.**
2. **CAUTION**

Wastewater
Risk of infection from bacteria!
- Wear protective gloves, protective goggles and protective clothing.

Follow the instructions. Press \(\text{E} \).

3. Release the hose at the injection unit (dosing nozzle) and place it into the collecting vessel.

4. \(\text{Start the pump.} \)
 - The hose fills.

5. Wait until there is a steady flow of sample. No air bubbles should be conveyed; dosing must be even over all the rollers of the pump head.

6. When a steady flow of medium is pumped:
 - \(\text{Stop the pump.} \)

If the pump is pumping at a steady rate, press \(\text{E} \) by way of acknowledgment.

If a steady flow of medium does not occur, set the contact pressure:

1. Hold the hose into the graduated cylinder. Press \(\text{E} \).
 - The pump pumps at 100 % for 10 minutes.

2. Enter the delivery volume determined.
 - The value typically lies between 8.5 and 9.5 ml (0.29 and 0.32 fl.oz).

3. Press \(\text{E} \).

4. Connect the hose again and press \(\text{E} \).
 - **EMPTY VOLUME DOSING**: The service menu starts automatically. (→ 47)
11.2.5 Service menu: CLEANING

Bypass screen flush

In the version with the pipe backflush option, water is supplied via the solenoid valve MV1. This means that, in addition to the sample conditioning system, the pipe is backflushed all the way to the bypass screen.

Flushing can be started in three different ways:
- Manually
- Remotely
- Automatically

Manual activation of screen flushing

- 1 → SERVICE/CLEANING/SCREEN FLUSH.
 Screen flushing runs automatically, no other actions are required.

Remote activation of screen flushing

Screen flushing can be activated via a floating contact.
- Use input 3 of the "binary in" terminal strip. → 10, 22
 Screen flushing runs automatically, no other actions are required.

Automatic activation of screen flushing

1. Press .
 You are asked to enter the four-digit numerical code indicated on the code card supplied.

2. Enter the code. Press 3.

3. PROGRAMMING/SETTING/RANGE DATA.

4. SCREEN FLUSH [n/Day]: Enter the number of flushes per day. The factory setting is 2.

5. DURA.SCREEN FLUSH[s]: Specify the duration of a flush. The factory setting is 15 s.
 Operation starts automatically when the screen flush process is finished.
Cleaning the bypass screen manually

As a precaution, place a vessel under the suction line as water could flow back.

1. **SERVICE/CLEANING/BYPASS SCREEN.**

2. **CAUTION**
 Wastewater
 Risk of infection from bacteria!
 - Wear protective gloves, protective goggles and protective clothing.

3. Set the 'online sample/manual sample' valve to 'manual sample'.
 - Bypass line is emptied.

4. Set the valve back to the previous position.

5. Release the lower and upper thread adapter nut (items 1 and 3).

6. Remove the bypass elbow (2) and bypass screen (6).

7. Clean the bypass screen and the housing with the bottle brush.

8. Unscrew the vent valve (5) and open it.

9. Clean the vent valve and make sure the bearing is able to move freely.

10. Reassemble the parts again in the reverse order. Make sure that the O-rings (7, 8) are undamaged and are correctly positioned.

11. Switch the supply of wastewater back on.

12. Press 🎈.
Measuring operation starts.

Power flush

The strip and separation chambers are flushed with the connected pressurized water via the solenoid valve MV2.

Flushing can be started in three different ways:
- Manually
- Remotely
- Automatically

Manual activation of power flushing

- Use **SERVICE/CLEANING/POWER FLUSH**. → Power flushing runs automatically, no other actions are required.

 Operation starts automatically when the power flush process is finished.

Remote activation of power flushing

Power flushing can be activated via a floating contact.

- Use input 4 of the "binary in" terminal strip. → 10, 22

 → Power flushing runs automatically, no other actions are required.

 Operation starts automatically when the power flush process is finished.

Automatic activation of power flushing

1. Press .
 → You are asked to enter the four-digit numerical code indicated on the code card supplied.

2. Enter the code. Press .

3. **PROGRAMMING/SETTING/RANGE DATA.**

4. **POWER FLUSH [n/Day]:** Enter the number of flushes per day. The factory setting is 2.

 Operation starts automatically when the power flush process is finished.

Cleaning the strip and separation chamber manually

→ 33, 76

Required tools and materials
- Pliers
- Paper towels
- Injector
- 4 mm Allen key
- Soft brush
- Vessel with volume of approx. 150 ml (5 fl. oz) to collect liquid
- Glass ball

Disassembling

![Disassembly diagram]

1. **SERVICE/CLEANING/STRIPPING+SEPARATION.**
2. **CAUTION**
 Wastewater
 Risk of infection from bacteria!
 - Wear protective gloves, protective goggles and protective clothing.

 Press **B**.

 - The strip and separation chamber are automatically flushed with pressurized water for 10 s.

3. Have a vessel at the ready to collect the liquid and release the hose connection of pump P1 at the strip chamber.

4. Drain the strip chamber, absorb any drops of water with paper towels.

5. Press **B**.
6. Release the thread adapter nut on the strip chamber (→ 34, item 13).
7. Release the cable of the pH sensor and remove with the cover (1) from the strip chamber.
8. Release the coupling of the connection for the stripping gas (9) and remove the coupling along with the O-ring (10) and glass frit (11).
9. Release the coupling of the drain (2) and remove the hose connection.
10. Release the thread adapter nut (3) and remove the cover (4).
11. Use the pliers to remove the magnetic stir bar (5) from the separation chamber.
12. Empty the separation chamber with the injector.
13. Connect the empty injector to the suction nozzle for the sample (P2) and inject air quickly to force the glass ball out of the bore hole.

Maintenance tasks
1. Clean both chambers with a soft brush.
2. In the event of severe fouling:
 Separate the strip chamber and separation chamber from one another by releasing the securing screw (12) using the 4mm Allen key. For complete removal, you must disconnect the connector of the magnetic stirrer controller.
3. Clean the pH sensor.

Operating Instructions for pH and ORP sensors, BA01572C

Assembly
1. Insert a new glass ball.
2. Insert the magnetic stir bar (5) (thin shaft pointing upwards).
3. Release the knurled head screw and remove the capillary (8).
4. Insert a new capillary. Slide in the capillary as far as it will go (end stop). In doing so, ensure that the seal (7) is seated correctly in the knurled head screw.
5. Tighten the knurled head screw.
6. Fit the hose (P2) onto the capillary.
7. Put the cover on the separation chamber and tighten the thread adapter nut hand-tight.
8. Fit the drain pipe onto the coupling (2) and screw the coupling closed.
9. Insert the pH sensor with cover and connect the cable.
10. Tighten the thread adapter nut hand-tight.
11. Reinstall the cleaned or new glass frit (11), O-ring (10) and coupling (9).
12. Press 🔄.
13. Connect the hose of pump P1 to the strip chamber.
14. Press 🔄.

ROWSER - The strip and separation chamber are automatically flushed with pressurized water for 180 s. Measuring operation then starts automatically.

▶ After cleaning the strip and separation chamber, adjust the pH sensor (→ 49).
Opening the circuit (cleaning the dosing head)

The furnace temperature is not reduced to clean or replace the dosing head (capillary) and sample conditioning (stripping) is continued.

Required tools
Damp cloth

1. **SERVICE/CLEANING/OPEN GAS CIRCUIT**.

2. Remove hose P2 from the capillary and release the red screw plug.

3. Remove the dosing head.

4. Using a damp cloth, remove salt residue on the capillary.

5. If necessary:
Replace the capillary. Ensure that the new capillary protrudes 10mm (0.4") out of the bottom of the dosing head.
Check the O-rings (1 only if replacing the capillary).

7. Insert the dosing head and tighten the red screw plug.

8. Fit the hose P2 back onto the capillary.

9. Press \[\text{I} \].

Measuring operation starts.

Cleaning or replacing the combustion pipe

The furnace heating system is switched off when the combustion pipe is cleaned or replaced.

Required tools
- Auxiliary tool for the combustion pipe insert
- Crucible tongs
- Heat-resistant gloves

Preparing the furnace, releasing the optional salt trap

If the insert in the combustion pipe is removed when the pipe is very hot (over 300 °C), cracks may form in the insert and the combustion pipe if they cool down too quickly. This causes a higher baseline and has a negative impact on the operation of the measuring device.

1. \[\text{SERVICE/CLEANING/COMBUSTION PIPE} \]

 The power supply for the combustion furnace is switched off. The furnace cools down.

2. Release the hose on the dosing head (item 1).

3. Press \[\text{I} \].
4. Only with optional salt trap:
 Release the hose connection and electrical connection to the heated salt trap.

5. **CAUTION**

 Hot parts
 Contact with hot parts of the combustion furnace may cause injury!
 ▶ Use heat-resistant gloves!

 Unlock the furnace, fold it out and remove the safety guard.

6. Pull the heated salt trap down from the furnace outlet by turning the trap gently back and forth.

7. Swivel the furnace back in and lock it.

8. When the temperature has dropped below 300 °C:
 Slacken the lower knurled head screw.

9. Allow the furnace to cool to below 50 °C.

10. Press \(\text{[]} \).

Removing the combustion pipe

1. Dosing head
2. Red screw plug with O-ring
3. Furnace cover
4. Thread adapter nut at furnace entry
5. Furnace outlet with O-ring
6. Knurled head screw with support ring and sealing ring
7. Clamp screw
8. Salt trap
9. Safety guard
10. Combustion pipe

1. Only for versions without a salt trap:
 Release the hose connection between the furnace outlet and the mounting plate (\(\rightarrow \) 37, item 5).

2. Remove the knurled head screw (6) and then remove the furnace outlet and the O-ring from the combustion pipe.

3. Release the red screw plug (2) and remove the dosing head (1).

4. Release the thread adapter nut on the furnace entry (4) and remove the furnace cover (3).
5. Remove the O-ring and support ring.
6. Unlock the furnace and fold it out.
7. Using the auxiliary tool, pull the combustion pipe insert approx. 10 mm (0.4") out of the combustion pipe and then remove it completely using the crucible tongs.
8. Place the filler of the combustion pipe insert (catalyst) into a container for inorganic materials.
 \[\text{ Dispose of the waste in accordance with local laws and safety regulations. Do not pour it down the drain or into a garbage bin!}\]
9. Lift the combustion pipe under the furnace and using the crucible tongs remove it from the furnace from the top.
10. If necessary, clean the combustion pipe using a brush.

Reassembling the combustion unit

1. Insert the combustion pipe into the furnace.
2. Fill the insert with 32 g high-temperature catalyst and place the insert into the combustion pipe.
3. Check, clean and insert the support ring and O-ring for the furnace cover.
4. Fit the cleaned furnace cover and thread adapter nut on the furnace entry and tighten the thread adapter nut.
5. Mount the dosing head with the O-ring, and tighten the red screw plug.
6. Version **without** a salt trap:
 - Fit the furnace outlet with a glass fiber fabric as the salt trap. To do so, roll two fabrics together loosely and put them into the furnace outlet.
 - \[\text{ Approx. 10 mm (0.4') must remain free at the top end to catch the salt.}\]
7. Version **with** a salt trap:
 - Leave the furnace outlet empty.
8. Insert the cleaned furnace outlet with a support ring and a clean O-ring into the combustion pipe and tighten the knurled head screw hand-tight.
9. Version **without** a salt trap:
 - Connect the hose from the furnace outlet to the bulkhead gland of the mounting plate.

Additionally for versions with a salt trap

1. Turn the salt trap to push it onto the furnace outlet nozzle.
 - \[\text{ Ensure that the seal seals the glass nozzle with a slight suction effect. Adjust with the clamp screw if necessary. The seal should not be too tight, however.}\]
2. Push the salt trap under the furnace.
3. Fold down the retaining bracket and rest the filter on the bracket.
4. Plug in the electrical contact and lock it.
5. Fit the hose on the salt trap and screw it down.

Putting the furnace back into operation

1. Press \[\text{ E }\].
2. Connect the hose to the injection unit.
3. Make sure that the hose is correctly inserted into solenoid valve 8.
4. Press \[\text{ E }\].

The carrier gas valve MV7 (relay #7) is opened as soon as 85% of the set temperature is reached. The system flushes permanently with carrier gas. Sample conditioning takes place (strip chamber) after the furnace has heated up. Operation starts automatically.
Perform a leak test. (→ 83)

Leak test

Required tools:
Drain plug from the accessories supplied
To locate a leak, the following tools are provided in the "maintenance toolkit" (see the "Spare parts" section) to bridge components:
- Hose D 3/5 mm FPM
- Hose connector 1/8 - 1/8 PP
- To seal the gas outlet on the furnace:
 - Protection cap
 - Reducer 8/4 mm, straight
- To seal the gas outlet on the housing:
 - Sealing cap M3 EPDM

Check the leak-tightness of the gas circuit after each modification to the furnace.
Possible points where a leak might be present:
- Furnace seals
- Acid filter seal at the glass
- Condensate drain
- Gas filter

1. → SERVICE/CLEANING/LEAKAGE TEST.
2. Switch off the membrane compressor (→ 38, item 2).
3. Seal the gas outlet (1) with a plug.
4. Press and then .
 The carrier gas valve is opened and pressure is applied to the gas circuit. The pressure is shown on the display.
 The carrier gas valve is closed automatically if the pressure has exceeded 100 mbar or after 7 seconds at the latest.

The pressure loss rate is displayed (mbar/min) after 30 s. The pressure loss must be < 3 mbar/min. Values are typically between -0.5 and -2.0 mbar/min.

If the pressure of 100 mbar is not reached, this indicates that a larger leak is present.
If the pressure loss exceeds 3 mbar/min, divide the leak test into smaller sections.

5. Bridge individual components using a hose and repeat the leak test until you have found the leak.
 ➔ If no pressure loss occurs when testing with a bridged component e.g. the furnace with the salt trap, the leak is in the bridged component.

6. Finish the leak test:
 Press

7. Remove the sealing cap from the gas outlet.

8. Switch on the compressor.

9. Press

Measuring operation starts.

11.2.6 Service menu: CALIBRATION

→ 45 ff.

11.2.7 Service menu: FILTERS

Replacing the acid filter

![Image of acid filter]

39 Acid filter

Required materials (included in the wear parts kit):
• Glass fiber fabric
• Zinc pellets
• Copper powder

Replace the acid filter:
• If it is blocked or worn out. This is noticeable from the flow rate and pressure level of the gas circuit.
• If zinc or copper become completely and obviously discolored.

1. ➔ SERVICE/FILTERS/REPLACE ACID FILTER.
1. Release the couplings (1, 6).
2. Remove the filter from the retaining clips.
3. Remove the filler.
4. Clean the glass body.
5. Roll the fabric into a roll and push it into the filter glass (5). Do not press it in too hard. Shorten the fabric if necessary.
6. Fill the glass up to the halfway mark with copper (7) and then with zinc (3). Allow enough room for the second piece of fabric.
7. Roll the fabric (2) into a roll and use it to close the filling in the acid filter.
8. Clean the O-rings with distilled water and seal the acid filter. To ensure the filter housing is sealed properly, make sure that the fabric does not extend as far as the plug (→ 40, zoom detail).
9. Fit the acid filter into the retaining clips and connect the filter.
10. Press .

Operation starts (initially without a measured value).

Replacing the gas filter
Replace the gas filter if it is blocked.

1. **SERVICE/FILTERS/REPLACE GAS FILTER.**

2. ![Diagram of gas filter components]

 42 Gas filter
 1, 3 Gland
 2 Gas filter

 Release the couplings (1, 3).

3. Remove the gas filter.

4. Pay attention to the direction of flow.
 Connect the new gas filter first to coupling 3 and then to coupling 1 (on the acid filter). Make sure that the cone is properly positioned on the filter.

 ![Correct and incorrect cone positioning]

5. Tighten the couplings.

6. Press ▲.

 Operation starts (initially without a measured value).

Replacing the prefilter

![Diagram of prefilter installation]

43 Rear (open) with gas connection block and prefilter
Required tool:
- Open-ended wrench
- Long-nose pliers

1. S E R V I C E/FILTERS/REPLACE GAS PREFILTER.
2. Close the valve for the carrier gas supply.
3. CAUTION
 Risk of injury from release of pressure!
 - Wear protective goggles.

Relieve the pressure on the pressure line before opening the hose connection to prevent injury from the uncontrolled release of pressure.

4. Press 3.
5. Release the coupling (2) on the side panel.
6. Inspect the prefilter for wear. Replace it if necessary.
7. Screw the couplings back on.
9. Reconnect the hose connection and open the valve of the carrier gas supply.

The furnace is heated after 10 seconds. The analyzer remains in the service mode until 90% of the set temperature is reached and the CO₂ value has dropped below the threshold value. During the heat-up time, sample conditioning takes place (strip chamber) and pH regulation is activated.

Measuring operation commences when both conditions are met.
Cleaning the filter of the salt trap

Required tool:
- 4 mm Allen screw
- Deionized water
- Heat-resistant gloves

Preparatory steps
To ensure that the furnace does not cool down too much during the cleaning process, it continues to be heated between the removal of the salt trap and the installation of the salt trap. Extended measuring device downtime results if the furnace cools down too much, and should therefore be avoided.

Carry out the following tasks quickly to ensure the furnace does not cool down too much.

1. → SERVICE/FILTERS/REPLACE HEATED FILTER
2. Release the hose connections on the dosing head.
3. CAUTION
 Hot surface
 Contact with hot parts of the combustion furnace causes injury!
 ▶ Use heat-resistant gloves.
 Unlock the furnace and swivel it outwards.

4. → SERVICE/FILTERS/REPLACE HEATED FILTER
5. Press 3.

Release the electrical connection to the salt trap (disconnect the plug at the socket).
6. Confirm that you have disconnected the electrical connection to the salt trap and press \textbf{E}. The furnace is reheated and the temperature displayed.

\section*{Cleaning the filter}

1. \textbf{Release the hose on the outlet of the salt trap.}

2. \textbf{Raise the salt trap slightly and fold the retaining bracket to the side.}

3. \textbf{Remove the salt trap from below and remove the insulation.}
4. Release the threaded bolts (4) and remove the bottom part (1) of the filter housing.

5. Clean the inside of the filter (3), seal (2) and filter housing with deionized water.

6. Place the seal in the groove, fit the filter and bottom part, screw together and put the insulation back on.

7. Press [].

Mounting the salt trap

Carry out the following tasks quickly to ensure the furnace does not cool down too much.

1. Fit the salt trap on the glass nozzle of the furnace. Ensure that the seal seals the glass nozzle with a slight suction effect. Adjust with the clamp screw if necessary. The seal should not be too tight, however.

2. Slide the salt trap under the furnace, fold down the retaining bracket and rest the salt trap on the bracket.

3. Reestablish the electrical connection.

4. Press [].
 - The furnace is reheated and the temperature displayed.

5. Connect the hose to the outlet of the salt trap.

6. Swivel the furnace back and ensure that the hose passes comfortably through the rear panel and does not buckle. Lock the furnace.

7. Reestablish the hose connection at the dosing head.

8. Press [].
 - The analyzer waits until the temperature is 30 °C below the set temperature. Then a message regarding a leak test is displayed.

9. Press [].
 - Measuring operation starts.

10. Perform a leak test. (→ 83)
Replacing the filter mats in the ventilators

Required materials:
- Replacement filter mat AM 115P (x 2)
- Replacement filter mat AM 335P (x 1)

1. Remove the guard (no tool required).
2. Check if the filter mats are dirty.
3. Replace dirty filter mats.
4. Put the protective guard back in. Ensure that the ventilation slits point downwards.

11.3 Endress+Hauser services

Having the optional dilution water pump cleaned

If you use deionized water as the dilution medium, the P5 pump need only be cleaned as part of the annual maintenance tasks performed by Endress+Hauser Service.

- If you use drinking water as the dilution medium, the maintenance intervals may be shorted depending on the hardness of the water. Please contact Endress+Hauser Service should this be the case.
12 Repair

12.1 Spare parts

<table>
<thead>
<tr>
<th>Spare part</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIT CA71 pump head for peristaltic pump</td>
<td>51512085</td>
</tr>
<tr>
<td>KIT CA71 hose cassette for pump</td>
<td>51512086</td>
</tr>
<tr>
<td>Kit CA72TOC repair kit for standby</td>
<td>71092619</td>
</tr>
<tr>
<td>Kit CA72xx leak sensor</td>
<td>71092621</td>
</tr>
<tr>
<td>Kit CA72xx mains filter</td>
<td>71092625</td>
</tr>
<tr>
<td>Kit CA72xx 3-way ball valve</td>
<td>71092636</td>
</tr>
<tr>
<td>Kit CA72TOC standby circuit PA-2</td>
<td>71092637</td>
</tr>
<tr>
<td>Kit CA72TOC standby circuit PA-3</td>
<td>71092638</td>
</tr>
<tr>
<td>Kit CA72TOC heatable salt trap</td>
<td>71101532</td>
</tr>
<tr>
<td>Kit CA72TOC dilution water pump</td>
<td>71101535</td>
</tr>
<tr>
<td>Kit CA72TOC stripping vessel type II</td>
<td>71101536</td>
</tr>
<tr>
<td>Kit CA72TOC separation chamber type II</td>
<td>71101537</td>
</tr>
<tr>
<td>Kit CA72TOC flowmeter 0.2 - 2 l/min</td>
<td>71101538</td>
</tr>
<tr>
<td>Kit CA72TOC MV1 standard and MV4</td>
<td>71101539</td>
</tr>
<tr>
<td>Kit CA72TOC MV1 for aggressive media</td>
<td>71101540</td>
</tr>
<tr>
<td>Kit CA72TOC relay MV1, aggressive media</td>
<td>71101541</td>
</tr>
<tr>
<td>Kit CA72TOC water connection w/o dilution</td>
<td>71101545</td>
</tr>
<tr>
<td>Kit CA72TOC water connection with dilution</td>
<td>71101546</td>
</tr>
<tr>
<td>Kit CA72TOC peristaltic pump for P1/P2/P3/P4</td>
<td>71101547</td>
</tr>
<tr>
<td>Kit CA72TOC adapter for condensate and acid</td>
<td>71101548</td>
</tr>
<tr>
<td>Kit CA72TOC adapter for acid pump</td>
<td>71101555</td>
</tr>
<tr>
<td>Kit CA72TOC adapter for sample pump</td>
<td>71101557</td>
</tr>
<tr>
<td>Kit CA72TOC IR detector 500 ppm</td>
<td>71101559</td>
</tr>
<tr>
<td>Kit CA72TOC IR detector 2000 ppm</td>
<td>71101563</td>
</tr>
<tr>
<td>Kit CA72TOC IR detector 5000 ppm</td>
<td>71101566</td>
</tr>
<tr>
<td>Kit CA72TOC IR detector 10,000 ppm</td>
<td>71101567</td>
</tr>
<tr>
<td>Kit CA72TOC membrane compressor 50 Hz</td>
<td>71101568</td>
</tr>
<tr>
<td>Kit CA72TOC membrane compressor 60 Hz</td>
<td>71101569</td>
</tr>
<tr>
<td>Kit CA72TOC pressure sensor</td>
<td>71101570</td>
</tr>
<tr>
<td>Kit CA72TOC tube furnace, complete</td>
<td>71101572</td>
</tr>
<tr>
<td>Kit CA72TOC combustion pipe</td>
<td>71101578</td>
</tr>
<tr>
<td>Kit CA72TOC combustion pipe insert type II</td>
<td>71101579</td>
</tr>
<tr>
<td>Kit CA72TOC combustion pipe insert type I</td>
<td>71101580</td>
</tr>
<tr>
<td>Kit CA72TOC furnace outlet, optical heating filter</td>
<td>71101581</td>
</tr>
<tr>
<td>Kit CA72TOC furnace outlet, standard</td>
<td>71101582</td>
</tr>
<tr>
<td>Kit CA72TOC injection unit 4th version</td>
<td>71101584</td>
</tr>
<tr>
<td>Kit CA72TOC acid filter with membrane filter</td>
<td>71101585</td>
</tr>
</tbody>
</table>
Repair

Spare part

<table>
<thead>
<tr>
<th>Spare part</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kit CA72TOC solenoid valve, dosing (MV8)</td>
<td>71101587</td>
</tr>
<tr>
<td>Kit CA72TOC Peltier cooler</td>
<td>71101589</td>
</tr>
<tr>
<td>Kit CA72TOC regulator for Peltier cooler</td>
<td>71101591</td>
</tr>
<tr>
<td>Kit CA72xx pH amplifier and cable</td>
<td>71101598</td>
</tr>
<tr>
<td>Kit CA72xx magnetic stirrer controller</td>
<td>71101599</td>
</tr>
<tr>
<td>Kit CA72TOC temperature amplifier</td>
<td>71101601</td>
</tr>
<tr>
<td>Kit CA72xx cable for pH electrode</td>
<td>71101602</td>
</tr>
<tr>
<td>Kit CA72TOC hoses for gas area</td>
<td>71101614</td>
</tr>
<tr>
<td>Kit CA72TOC insert, Peltier cooler TOCII</td>
<td>71102254</td>
</tr>
<tr>
<td>Kit CA72TOC maintenance tools</td>
<td>71102317</td>
</tr>
<tr>
<td>Kit CO₂ scrubber, pressure regulator</td>
<td>71232257</td>
</tr>
<tr>
<td>Not to be used for Parker CO₂ adsorber</td>
<td></td>
</tr>
<tr>
<td>Kit CO₂ scrubber, humidifier</td>
<td>71232258</td>
</tr>
<tr>
<td>Not to be used for Parker CO₂ adsorber</td>
<td></td>
</tr>
<tr>
<td>Kit CO₂ scrubber, absorber container</td>
<td>71232259</td>
</tr>
<tr>
<td>Not to be used for Parker CO₂ adsorber</td>
<td></td>
</tr>
<tr>
<td>Kit CO₂ scrubber, couplings</td>
<td>71232263</td>
</tr>
<tr>
<td>Not to be used for Parker CO₂ adsorber</td>
<td></td>
</tr>
<tr>
<td>Kit CA72TOC water connection 24 V</td>
<td>71295731</td>
</tr>
<tr>
<td>Kit CA72xx M1 backplane</td>
<td>71303187</td>
</tr>
<tr>
<td>Kit CA72xx M1 multi I/O</td>
<td>71303188</td>
</tr>
<tr>
<td>Kit CA72xx M1 CPU module</td>
<td>71303253</td>
</tr>
<tr>
<td>Kit CA72xx M1 keyboard controller 1010</td>
<td>71303254</td>
</tr>
<tr>
<td>Kit CA72xx M1 LC display</td>
<td>71303255</td>
</tr>
<tr>
<td>Kit CA72xx M1 EMC filter</td>
<td>71303257</td>
</tr>
<tr>
<td>Kit CA72TOC water connection pressure monitor</td>
<td>71312862</td>
</tr>
<tr>
<td>Kit CA72TOC mixing chamber</td>
<td>71341850</td>
</tr>
<tr>
<td>Kit CA72TOC MV5</td>
<td>71363638</td>
</tr>
<tr>
<td>Kit CA72TOC relay 2+8</td>
<td>71363643</td>
</tr>
<tr>
<td>Kit CA72TOC temperature sensor, type II</td>
<td>71371085</td>
</tr>
<tr>
<td>Kit CA72TOC pressure sensor with cable</td>
<td>71373210</td>
</tr>
<tr>
<td>Kit CA72TOC MV gas supply</td>
<td>71414586</td>
</tr>
<tr>
<td>Kit CA72TOC restrictor, carrier gas</td>
<td>71414588</td>
</tr>
<tr>
<td>Kit CA72TOC restrictor, stripping gas</td>
<td>71414589</td>
</tr>
<tr>
<td>Kit CA72TOC pump controller, type III</td>
<td>71440164</td>
</tr>
<tr>
<td>Kit CA72TOC gas connection, type III</td>
<td>71440885</td>
</tr>
<tr>
<td>Kit CA72TOC relays and fuses</td>
<td>71450809</td>
</tr>
</tbody>
</table>

Wear parts

<table>
<thead>
<tr>
<th>Wear part</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kit CA72TOC volatile salts/heating filter</td>
<td>71095149</td>
</tr>
<tr>
<td>Kit CA72TOC volatile salts</td>
<td>71095156</td>
</tr>
<tr>
<td>Kit CA72TOC non-volatile salts</td>
<td>71095158</td>
</tr>
<tr>
<td>Kit CA72TOC membrane filter</td>
<td>71101586</td>
</tr>
<tr>
<td>Wear part</td>
<td>Order number</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>Kit CA72TOC maintenance, strip/separation chamber</td>
<td>71101606</td>
</tr>
<tr>
<td>Kit CA72TOC maintenance, acid filter</td>
<td>71101607</td>
</tr>
<tr>
<td>Kit CA72TOC maintenance, dilution pump</td>
<td>71101608</td>
</tr>
<tr>
<td>Kit CA72xx membrane for solenoid v. EPDM</td>
<td>71101610</td>
</tr>
<tr>
<td>Kit CA72xx membrane, solenoid valve, KALREZ</td>
<td>71101611</td>
</tr>
<tr>
<td>Kit CA72TOC hoses for liquid area</td>
<td>71101613</td>
</tr>
<tr>
<td>Kit CA72xx hose 2.79 violet/white</td>
<td>71101615</td>
</tr>
<tr>
<td>Kit CA72xx hose 0.76 black-black</td>
<td>71101616</td>
</tr>
<tr>
<td>Kit CA72TOC couplings and fittings</td>
<td>71101617</td>
</tr>
<tr>
<td>Kit CA72TOC O-rings and seals</td>
<td>71101618</td>
</tr>
<tr>
<td>Kit CA72TOC furnace filler, non-volatile salts</td>
<td>71102294</td>
</tr>
<tr>
<td>Kit CA72TOC furnace filler, volatile salts</td>
<td>71102295</td>
</tr>
<tr>
<td>Kit CA72TOC capillary</td>
<td>71144072</td>
</tr>
<tr>
<td>Kit CA72xx maintenance PA-9</td>
<td>71206103</td>
</tr>
<tr>
<td>Kit CO₂ scrubber, annual consumption Not to be used for Parker CO₂ adsorber</td>
<td>71232256</td>
</tr>
<tr>
<td>Kit CO₂ scrubber, sorbent Not to be used for Parker CO₂ adsorber</td>
<td>71232261</td>
</tr>
<tr>
<td>Kit CO₂ scrubber, filter pads FP 60 Not to be used for Parker CO₂ adsorber</td>
<td>71232262</td>
</tr>
<tr>
<td>Kit CO₂ scrubber, accessories Not to be used for Parker CO₂ adsorber</td>
<td>71232264</td>
</tr>
<tr>
<td>Kit CA72TOC screen for water connection block</td>
<td>71304484</td>
</tr>
<tr>
<td>Kit CA72TOC wear parts, salt trap</td>
<td>71250117</td>
</tr>
<tr>
<td>Kit CA72TOC seals for furnace</td>
<td>71254334</td>
</tr>
<tr>
<td>pH sensor for strip chamber</td>
<td>CPS71-1TB2GSA</td>
</tr>
</tbody>
</table>
12.2 Return

The product must be returned if repairs or a factory calibration are required, or if the wrong product was ordered or delivered. As an ISO-certified company and also due to legal regulations, Endress+Hauser is obliged to follow certain procedures when handling any returned products that have been in contact with medium.

To ensure the swift, safe and professional return of the device:

- Refer to the website www.endress.com/support/return-material for information on the procedure and conditions for returning devices.

12.3 Disposal

12.3.1 Decommissioning

⚠️ CAUTION
Wastewater
There is a risk of infection if you come in contact with wastewater!

- Wear safety gloves, protective goggles and a protective gown.

Pumps

1. Switch off the wastewater pump.
2. If sample preparation is present:
 - Activate screen flushing (SERVICE/CLEANING/SCREEN Flush). Allow the bypass to drain.
3. Optional dilution water pump P5:
 - Rinse the pump directly from the feeder tanks first with 5 % acid and then with deionized water (PROGRAMMING/OUTPUT TEST/PUMPS).

Rinsing the hoses

1. Set valve 1 to "Manual sample" and place a container with deionized water under the valve.
2. PROGRAMMING/OUTPUT TEST/PUMPS: Enter 400% for pump P1 and pump P4 (optional) and let the pumps pump for some time.
3. Remove the acid hose of pump P3 from the acid canister and insert it into a container with deionized water.
4. Also let this pump run at 400 % for some time.

Cleaning the vessels

1. SERVICE/CLEANING/POWER FLUSH: Activate automatic flushing of the strip chamber.
2. Afterwards, perform manual cleaning of the strip and separation chamber.
 (→ 76)
3. Remove the pH sensor.
 - The sensor must be stored wet. For this purpose, pour some 3-mole KCl solution into the protection cap and insert the sensor into the cap.

Emptying the hoses

1. Open the hose cassettes of the pumps P1, P2, P3 and P4 (for optional dilution).
2. Allow the rinse water to drain out of the hoses.
3. Remove the canister with the standard.
4. **PROGRAMM/OUTPUT TEST/BINARY OUTPUTS**: Switch on SA1 and SA4.
5. Wait until the lines for standard 1 and 2 are empty.
6. Switch off the switch outputs again and remove the feeder tank.

Switching off the analyzer

- Switch off the main switch.

Combustion pipe insert

1. Disassemble the combustion pipe. (→ 80)
2. Drain the combustion pipe insert (catalyst, fiberglass precut part for version with salt trap).
3. Drain the furnace outlet (glass insert), (salt residue and fiberglass precut part for standard version).
4. Assemble the combustion unit.
 - If transporting, assemble without the combustion pipe insert and without the furnace outlet (danger of breakage)!

Gas pipes

1. Remove the exhaust gas pipe (if present).
2. Close off the carrier gas supply.
3. To prevent injury from the uncontrolled release of pressure:
 - Relieve the pressure on the pressure line before opening the hose connection.
4. Unscrew the hose for the carrier gas supply on the left side panel.
5. Detach the hose on the pressure-reducing valve of the carrier gas cylinder or gas preparation system.

12.3.2 Disposing of the analyzer

CAUTION

Risk of injury if used reagents and reagent waste are disposed of incorrectly!

- When disposing, follow the instructions of the safety data sheets for the chemicals used.
- Observe the local regulations regarding waste disposal.

If required by the Directive 2012/19/EU on waste electrical and electronic equipment (WEEE), the product is marked with the depicted symbol in order to minimize the disposal of WEEE as unsorted municipal waste. Do not dispose of products bearing this marking as unsorted municipal waste. Instead, return them to Endress+Hauser for disposal under the applicable conditions.
13 Accessories

The following are the most important accessories available at the time this documentation was issued.

- For accessories not listed here, please contact your Service or Sales Center.

13.1 Device-specific accessories

Retrofitting of dilution unit
- To be used in the event of high salt loads or high measured values
- Order number: 71189243

Retrofitting of salt trap, type II
- To be used in the event of high salt loads
- Order number: 71375329

Conversion of PA-2 to PA-3
- To be used with sample flow volumes of 0.1 – 1 m³/h
- Order number: 71295866

Sample conditioning PA-9 PP
- Recommended for problematic wastewater due to its high chemical resistance properties (except in the case of oxidizing acids and halogens)
- Order number: 71101588

CO₂ scrubber, soda lime
- Can be used as a replacement for the Parker CO₂ adsorber
- Order number: 71232260

Pipe backflushing
- To be used in the event of severe deposit formation in the inlet from the bypass to the MV 1
- Order number: 71414592

13.2 Service-specific accessories

Reagent and parent solutions
- CAY450-V10AAE, 1000 ml stripping reagent for CA72TOC
- CAY451-V10C01AAE, 1000 ml parent solution (KHP) 5 000 mg/l TOC
- CAY451-V10C10AAE, 1000 ml parent solution (citric acid) 100 000 mg/l TOC

High-quality buffer solutions from Endress+Hauser - CPY20
The secondary buffer solutions have been referenced to primary reference material of the PTB (German Federal Physico-technical Institute) or to standard reference material of NIST (National Institute of Standards and Technology) according to DIN 19266 by a laboratory accredited by the DAkkS (German accreditation body) according to DIN 17025. Product Configurator on the product page: www.endress.com/cpy20

13.3 System components

Kit CA72TOC heated salt trap
- For replacement for maintenance tasks (shortens the maintenance time) or as a substitute
- Order number: 71101532
14 Technical data

14.1 Input

Measured variable
Total organic carbon (TOC)

Measuring range
- CA72TOC-A: 0.25 to 600 mg/l TOC
- CA72TOC-B: 1 to 2400 mg/l TOC
- CA72TOC-C: 2.5 to 6000 mg/l TOC
- CA72TOC-D: 5 to 12,000 mg/l TOC

With optional predilution, the measuring range can be expanded by a factor of 20.

Input signal
8 signal inputs 24 V DC, active, load max. 500 Ω

<table>
<thead>
<tr>
<th>Input</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Service, trigger calibration</td>
</tr>
<tr>
<td>#2</td>
<td>Service, trigger adjustment</td>
</tr>
<tr>
<td>#3</td>
<td>Service, trigger screen flush</td>
</tr>
<tr>
<td>#4</td>
<td>Service, trigger power flush</td>
</tr>
<tr>
<td>#5</td>
<td>Not assigned</td>
</tr>
<tr>
<td>#6</td>
<td>Not assigned</td>
</tr>
<tr>
<td>#7</td>
<td>Trigger standby</td>
</tr>
<tr>
<td>#8</td>
<td>Trigger channel switchover (optional)</td>
</tr>
</tbody>
</table>

14.2 Output

Output signal

Measuring channel 1
0/4 to 20 mA, galvanically isolated

Measuring channel 2 (optional)
0/4 to 20 mA, galvanically isolated

Signal on alarm
4 outputs:
- Limit value alarm
- Fault message
- Standby message
- Operational control

Floating, normally closed (max. 0.25 A / 50 V)

Load
Max. 500 Ω

Data interface
RS 232 C, proprietary, for outputting data and remote operation (optional)
14.3 Power supply

Supply voltage 115/230 V AC, 50/60 Hz

Power consumption 800 VA

Fuses
- **Power distribution**
 2.5 A, slow-blow, design: fine-wire fuse 6.3 x 32
- **Relays**
 4 A per relay, slow-blow, design: TR5
- **Power unit**
 2 A, slow-blow, design: fine-wire fuse 5 x 20

14.4 Performance characteristics 1)

- **Maximum measured error**
 0.4 %, systematic measured value deviation at 20 % of the measuring range (BIAS)
 2.4 %, systematic measured value deviation at 80 % of the measuring range (BIAS)

- **Measured value resolution**
 1.1 %, resolution limit at 20 % of the measuring range (LDC)
 4.6 %, resolution limit at 80 % of the measuring range (LDC)

- **Repeatability**
 0.4 %, repeatability precision at 20 % of the measuring range
 1.6 %, repeatability precision at 80 % of the measuring range

- **Short-term drift**
 0.5 %/day

- **Limit of detection LOD**
 0.75 % of end of measuring range

- **Limit of quantification LOQ**
 2.5 % of end of measuring range

14.5 Environment

- **Ambient temperature**
 +5 to 35 °C (41 to 95 °F)

- **Humidity**
 20 to 80 %, non-condensing

- **Degree of protection**
 IP54

1) The performance characteristics have been determined in accordance with ISO 15839, Annex B. 300 µl of sample were metered into the CA72TOC-B1A0B1 per measurement. This resulted in a measuring range from 4 to 800 mg/l. The following data refer to this device. Slight deviations should be factored in if applying the performance characteristics to other measuring ranges.
Electromagnetic compatibility

Interference emission and interference immunity as per EN 61326-1:2013, Class A for Industry

14.6 Process

Medium temperature range
4 to 40 °C (39 to 104 °F)

Medium pressure range
Non-pressurized infeed to the analyzer from sample preparation

Sample flow rate
20 ml/min (0.32 US gal/h)

Sample consistency
Water-based
Flammable substances must not occur in combustible concentrations. Sample dilution is then necessary.

Sample feeder volume
90 ml (3 fl.oz)

14.7 Mechanical construction

Design, dimensions
→ 12

Weight
Approx. 75 kg (165 lbs)

Materials

<table>
<thead>
<tr>
<th>Housing</th>
<th>Aluminum, powder-coated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front window</td>
<td>Glass, conductive coating</td>
</tr>
<tr>
<td>Valve seals</td>
<td>EPDM, FPM, FFKM</td>
</tr>
<tr>
<td>Pump hoses</td>
<td>Ismaprene</td>
</tr>
<tr>
<td>Pump and pump seals</td>
<td>PTFE, FFKM</td>
</tr>
<tr>
<td>Reagent and sample hoses</td>
<td>PTFE, PE</td>
</tr>
<tr>
<td>Exhaust gas and ventilation hoses</td>
<td>PTFE</td>
</tr>
<tr>
<td>Outflow hoses</td>
<td>PTFE</td>
</tr>
</tbody>
</table>
Index

A
- Accessories 97
- Acid filter 84
- Adjustment 45
- ALARM LIMITS 39
- ALARM RECORDS 58
- Ambient temperature 99
- Analyzer
 - Adapting to process conditions 42
 - Adjusting the pH sensor 49
 - Adjustment 45
 - Calibration 46
 - Configuration 35
 - Empty volume dosing 47
 - Mounting 14
 - Optimizing the measuring range 44
 - Preparing to commission 34
 - Switching on 35

B
- BASIC DATA 38
- Brightness 39
- Bypass screen
 - Flush 74
 - Manual cleaning 75

C
- Calibration 46
- CALIBRATION 84
- Certificates and approvals 8
- Chemicals.................................. 11, 31
- CLEANING 74
- Cleaning the housing 62
- Commissioning 31
- COMPLETE RECORDS 59
- Compressed air supply 13
- Configuration 35
- Connecting the media 17
- Connection
 - Analyzer 20
 - Distributor 24
 - Media 17
 - Signals 22
- Connection instructions 19
- Contrast 39

D
- Data interface 98
- Decommissioning 95
- Degree of protection 24, 99
- Designated use 5
- Diagnostics 51
- Dimensions 12, 100
- Disposal 95
- Documentation 4
- Dosing head 79
- Dosing volume 45

E
- Electrical connection 19
- Electromagnetic compatibility 100
- Empty volume dosing 47
- Environment 99
- Error messages 51
- Events 59
- External channel changeover 42

F
- Filter mats in the ventilators 91
- FILTERS 84
- Firmware history 61
- Function check 35
- Fuses 99

G
- Gas filter 85
- Gas flow 14

H
- Heated salt trap 88
- Humidity 99

I
- Incoming acceptance 7
- Influence of the dosing volume 45
- Input 98
- Input signal 98
- INPUT TEST 39
- Installation check 35
- Installation conditions 12
 - Dimensions 16

K
- Keypad 26

L
- Leak test 83
- Limit of detection 99
- Limit of quantification 99

M
- MAINTENANCE RECORDS 59
- Maintenance schedule 62
- Maintenance tasks 62
Manufacturer address .. 8
Materials .. 100
MAX MIN AVERAGE ... 50
Maximum measured error 99
Measured value resolution 99
Measured variable .. 98
Measuring range ... 98
MEASURING SITE ... 39
Mounting options ... 13
Mounting the analyzer 14
Mounting the CO2 adsorber 16

N
Nameplate ... 7

O
Operation options .. 26
Operational safety .. 5
Optimizing ... 44
Order code ... 7
Output ... 98
Output signal .. 98
OUTPUT TEST .. 40

P
PROGRAMMING
Main menu .. 36
pH sensor ... 49
Post-connection check 25
Post-installation check 18
Power connection .. 99
Power consumption .. 99
Power distribution ... 20
Power flush ... 76
Power supply ... 99
Power unit ... 23
Prefilter ... 86
Process ... 100
Process diagram .. 10
Product description ... 9
Product design ... 9
Product identification 7
Product page .. 7
Product safety .. 6
PUMPS .. 64

R
RANGE DATA .. 37
RECORD DATA .. 50
Recording mode ... 26
Repair .. 92
Repeatability .. 99
Return .. 95

S
SERVICE
CALIBRATION .. 84
CLEANING ... 74
FILTERS ... 84
PUMPS .. 64

T
Technical data .. 98
Time-controlled channel changeover 43
Troubleshooting ... 51
Two-channel operation
 External changeover 42
 Time-controlled changeover 43

U
Use ... 5
User interface ... 26

V
Visual inspection .. 63

W
Wall mounting .. 14
Warnings ... 4
Water supply ... 13
Weight .. 100
Workplace safety 5